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Abstract. This paper is about the joint operation of wind power with thermal 

power for bidding in day-ahead electricity market. Start-up and variable costs of 

operation, start-up/shut-down ramp rate limits, and ramp-up limit are modeled 

for the thermal units. Uncertainty not only due to the electricity market price, 

but also due to wind power is handled in the context of stochastic mix integer 

linear programming. The influence of the ratio between the wind power and the 

thermal power installed capacities on the expected profit is investigated. 

Comparison between joint and disjoint operations is discussed as a case study. 
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1   Introduction 

Renewable energy sources play an important role in the need for clean energy in a 

sustainable society [1]. Renewable energy can partly replace fossil fuels, avowing 

anthropogenic gas emissions. Energy conversion from renewable energy has been 

supported by policies, providing incentive or subsidy for exploitation [2]. These 

polices have pushed the integration of renewable energy forward, but by an extra-

market approach. The approach involves, for instances, legislative directives, feed-in 

tariffs, favorable penalty pricing and grid right of entry, and survives at reserved 

integration level. But as integration of renewable energy increases the approach is 

expected to be untenable [3]. Sooner or later, a wind power producer (WPP) has to 

face competition in a day-ahead electricity market. For instances, in Portugal, a WPP 

is paid by a feed-in tariff under the condition of a limited amount of time or of energy 

delivered. Otherwise, the route is the day-ahead market or by bilateral contracting [4]. 

Conversion of wind energy into electric energy to trade in the day-ahead electricity 

market has to face uncertainty, particularly, on the: availability of wind energy, 

energy price and imbalance penalty. These uncertainties have to be addressed to avoid 

dropping profit [5-7]. A stochastic programming addresses uncertainty by the use of 

modeling via scenarios, and is a suitable approach to aid a Wind-Thermal Power 

Producer (WTPP) in developing a joint bid strategy in a day-ahead market [8-12]. The 

problem formulation is approached in a way of approximating all expressions 

regarding the objective function and the constraints to describe the problem by a 

mixed integer linear program (MILP) one. The approximation is intended to use 

excellent commercial available for MILP. The uncertainties are treated by uncertain 

measures and multiple scenarios built by wind power forecast [13-15] and market-

clearing electricity price forecast [16-18] applications. 



A case study with data from the Iberian Electricity Market is used to illustrate the 

effectiveness of the proposed approach. The approach proves both to be accurate and 

computationally acceptable. 

2   Problem Formulation 

2.1   Market Balancing  

System imbalance is defined as a non-null difference on the trading, i.e., between 

physical delivered of energy and the value of energy on contract at the closing of the 

market. If there is an excess of delivered energy in the power system, the system 

imbalance is positive; otherwise, the system imbalance is negative. The system 

operator seeks to minimize the absolute value of the system imbalance in a power 

system, using a mechanism based on prices penalization for producer imbalance, i.e., 

the difference of the physical delivery of energy from the one accepted due to the bid 

of the producer. If the system imbalance is negative, the system operator keeps the 

price for the physical delivery of bided energy for the producers with positive 

imbalance and pays a premium price for the energy produced above bid. The revenue 

tR  of the producer in hour t  is given by [19]: 
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In (1), 
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tP  is the power traded by the producer in the day-ahead market and tI  is 

the imbalance income resulting from the balancing process, 
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t
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that the producer collects from trading energy if there is no uncertainties. The 

deviation of the producer in hour t  is given by: 
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In (2), 
act

tP  is the physical delivery of energy in hour t . Two ratio prices for positive 

and negative imbalances are, respectively, given by: 
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In (3), 

t  is the price paid by the market to the producer for a positive imbalance, 


t  is the price to be charged to the producer for a negative imbalance. The imbalance 

in (1) using (3) is given by: 
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A producer that needs to correct its energy imbalance in the balancing market 

incurs on an opportunity cost, because energy is traded at a more profitable price in 

the day-ahead market.  



The imbalance in (2) will cause an opportunity cost given by: 
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The uncertainties are considered by a set of scenarios   for wind power, energy 

price and ratio prices for system imbalance. Each scenario   will be weighted with a 

probability of occurrence  . 

2.2   Thermal Production 

The operating cost tiF in scenario  for a thermal unit i in hour t is given by [20]: 
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In (6), the operating cost is composed by four terms, namely: iA  is a fixed operating 

cost; tid   is a variable cost, i.e., is a part of the cost incurred by the amount of fossil 

fuel consumed above the minimum power; tib  is the unit start-up cost; iC  is the 

unit shut-down cost. The typical non-differentiable and nonconvex functions used to 

quantify the variable costs of a thermal unit is replaced by a piecewise linear 

approximation in order to take the advantage of using MILP [5]. The piecewise linear 

approximations for the variable cost tid   is formulated by the statements given by: 
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In (7), the variable cost is computed as the sum of the product of the slope of each 

segment l

iF  by the segment power l

ti . In (8), the power production of the unit i is 



given by the minimum power production plus the sum of the segment powers 

associated with each segment. The binary variable tiu  ensures that the power 

production is equal to 0 if unit i is offline. In (9), if the binary variable l

tit   has a null 

value, then the segment power 
1

ti  can be less than the segment 1 maximum power; 

otherwise and in conjunction with (10), if the unit is on, then 
1

ti  is equal to the 

segment 1 maximum power. In (11), from the second segment to the second last one, 

if the binary variable l

tit   has a null value, then the segment power l

ti  can be less 

than the segment l maximum power; otherwise and in conjunction with (12), if the 

unit is on, then l

ti  is equal to the segment l maximum power. In (13), if the binary 

variable 1L
tit 

  has a null value, then the segment power L must be zero; otherwise is 

bounded by the last segment maximum power. 

The exponential nature of a start-up cost of thermal units is modelled by an 

approximation of a non-decreasing stepwise function with a step [5] given by: 
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In (14), if in scenario   unit i in hour t  is online and has been offline in   

preceding hours, the expression in parentheses is equal to one, implying that a start-up 

happen in hour t  and the respective cost 


iK  is incurred. 

The box constraints for the power production in scenario   of unit i in hour t  are 

given by: 
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In (16), the power limits of the units are set. In (17) and (18), the upper bound of 
max

tip  is set, which is the maximum available power in scenario   for a thermal unit i 

in hour t . This variable considers the: actual power of a unit, start-up/shut-down 

ramp rate limits, and ramp-up limit. In (18)–(19), the relation between the start-up and 

shut-down variables of the unit are given, using binary variables and their weights. In 

(19), the ramp-down and shut-down ramp rate limits are considered. 



The minimum down time constraint is imposed by a linear formulation given by: 
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In (21), the minimum down time is satisfied for all the possible sets of consecutive 

hours of size iDT , and in (22) is satisfied for the last 1iDT  hours. 

The minimum up time constraint is imposed by linear formulation given by: 
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In (24), the minimum up time is satisfied for all the possible sets of consecutive hours 

of size iUT . In (25), the minimum up time will be satisfied for the last 1iUT . The 

relations between the binary variables to identify start-up and shutdown are given by: 
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The total power produced by the thermal units is given by: 
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In (30), I is the set of indexes for the thermal units, 
g

tp  is the total thermal power in 

scenario   in hour t .  



The total operating costs 
T

tF  of the thermal power system is given by: 
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In (31), the operating cost tiF  in scenario   for unit i in hour is given by (5). 

2.3   Objective Function 

The power in the bid submitted by the WTPP is the sum of the power from the 

thermal power system with the power from the wind power system and is given by: 
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In (32), 
g

t
p

  is the actual power of the thermal power system and 
d

t
p

  is the actual 

power of the wind power system produced for scenario  . The expected revenue of 

the WTPP over the time horizon NT is given by the solution of the following 

mathematical programing problem with the objective function given by: 
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In (34), 
M

tp  is the maximum available power (38), limited by the sum of the installed 

capacity in the wind power system, maxEp , with the maximum thermal production. 

Some day-ahead markets require that the bidding to be submitted is given by: 
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In (39), if the day-ahead market prices are equal for two scenarios   and '  then the 

power bid difference between the two scenarios is indifferent. Otherwise, the power 

bids have to be non-decreasing with the price. Non decreasing energy bids are 

assumed. Hence, when wind power and thermal power bids are disjoint submitted 

implies that each bid has to be a non-decreasing one. While, only one joint non-

decreasing bid is submitted in the joint schedule.  



3   Case Study 

The simulations are carried out in Gams using the Cplex solver for MILP. The 

effectiveness of the stochastic MILP approach is illustrated by a case study using a set 

of data from the Iberian electricity market, comprising 10 days of June 2014 [21]. The 

scenarios for the energy prices and the energy availability for the wind power system 

are respectively in the left and right sides of Fig. 1. 

 
 

 
 

Fig 1. June 2014 (ten days); left: Iberian market price, right: wind energy.  

The producer owns a wind power system with an installed capacity of 360 MW 

and a thermal power system with 8 units and a total installed capacity of 1440 MW. 

The variable costs of the thermal units are modelled by three segments in the 

piecewise linear approximation. Firstly, the simulations are carried out with the 

previous values of the installed capacities in order to find the expected profit and the 

expected imbalance cost without joint schedule, i.e., for the wind power and for the 

thermal power systems standing alone, and with joint schedule. The expected profit 

and the expected imbalance cost without and with joint schedule are shown in 

Table 1. 

Table 1. Results without and with joint schedule 
Case Study Profit (€) Imbalance Cost (€) 

Wind system 119200 -17826 

Thermal system 516848 229398 

Disjoint wind and thermal systems 636047 … 

Wind-thermal system 642326 3643 

Gain (%) 0.99 … 

 

In Table 1, the expected profit of the joint schedule is 0.99% higher than the disjoint 

one and the processing is not a burden in computational resources in comparison with 

the disjoint one: the CPU time given by Gams is about the same for both schedules, 

since the wind power system schedule CPU time is irrelevant when compared with 

the thermal power system one in the disjoint schedule. Information for hour 15 

regarding the sum of the wind power with the thermal power bid without and with 

joint schedule is shown in Fig. 2. 



 
 

 
 

Fig 2. Bid of energy for hour 15; left: disjoint, right: joint.  

In Fig. 2, note that wind and thermal power do not have to be non-decreasing per se. 

The energy bids in scenario 3 for the disjoint and joint schedule are respectively in the 

left and right figures of Fig. 3. 

 
 

 
 

Fig 3. Bid of energy and committed in scenario 3; left: disjoint, right: joint. 

 

The wind parcel of the energy bid is higher for the joint schedule and the thermal bid 

behavior tends to be the opposite of the wind behavior: when the wind parcel 

increases, the thermal one decreases. The higher values of the wind parcel of the 

energy bid is compensated by the decreasing of the thermal parcel of the energy bid, 

implying a lower imbalance. Secondly, the simulations are carried keeping constant 

the thermal power installed capacity, i.e., 1440 MW, with same thermal units and the 

same scenarios of Fig. 1. The expected profits and the gains are shown in Table 2. 

Table 2. Gain in function of wind capacity 
Wind Power (MW) Profit Disjoint (€) Profit Joint (€) Gain(%) 

1440 993646 1012520 1.90 

2160 1232045 1257004 2.03 

2880 1470444 1499547 1.98 

3600 1708843 1741753 1.93 

 

Table 2 shows that the gain is dependent in a nonlinear manner of the ratio between 

the wind power system and the thermal power system installed capacity. The 

maximum gain, 2.03%, is achieved when the wind power system installed capacity is 

about 1.5 times the thermal power system installed capacity. 



Finally, consider that each thermal unit power capacities are scaled down by the 

ratio given by the quotient of the thermal units installed capacity given in the first 

column of Table 3 by the initial installed capacity of 1440 MW. An equivalent 

conversion are performed on the ramp up/down, start-up and shutdown costs. The 

expected profit as a function of the thermal power installed capacity, keeping constant 

the wind power installed capacity, i.e., 360 MW, are shown in Table 3. 

Table 3. Gain variation in function of thermal capacity 
Thermal Units (MW) Profit Disjoint (€) Profit Joint (€) Gain(%) 

940 351366 357749 1.82 

890 318697 326988 2.60 

840 287759 296958 3.20 

780 252500 257529 1.99 

 

Table 3 allows to conclude that the gain is dependent of the ratio between the wind 

power and the thermal power installed capacities. The maximum gain of 3.20% is 

achieved when the thermal power system installed capacity is about 2.3 times the 

wind power system installed capacity. Hence, there is not a fixed ratio between the 

wind power and the thermal power installed capacities that can be recommended 

independently of the power system total installed capacity. 

4   Conclusion 

Stochastic programming is a suitable approach to address parameter uncertainty in 

modelling via scenarios. Particularly, the stochastic MILP approach is well-known by 

being accurate and having greater computationally acceptance, since the CPU time 

scales up linearly with number of price scenarios, units and hours on the time horizon. 

The joint bid of thermal and wind power by a stochastic MILP approach proved to 

provide better expected profits than the disjoint bids. The expected profit is dependent 

in a nonlinear relation of the ratio between the wind power and the thermal power 

systems installed capacities.  

The joint schedule is not a burden in computational resources in comparison with 

the disjoint one: the CPU time is about the same for both schedules, since the wind 

power system schedule CPU time is irrelevant when compared with the thermal 

power system one. 
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