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• Low precipitation and increasing water
demands in the EU-Med area have cre-
ated artificial non-perennial rivers and
streams.

• NPRS are particularly vulnerable since
they lack adequate protection and man-
agement.

• To combat artificial drying, we need to
define alternatives to existing irrigated
farming practices for EU-Med countries.
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Editor: D. Barcelo
Non-perennial rivers and streams (NPRS) cover N50% of the global river network. They are particularly predom-
inant in Mediterranean Europe as a result of dry climate conditions, climate change and land use development.
Historically, both scientists and policy makers underestimated the importance of NRPS for nature and humans
alike, mainly because they have been considered as systems of low ecological and economic value. During the
past decades, diminishing water resources have increased the spatial and temporal extent of artificial NPRS as
well as their exposure tomultiple stressors, which threatening their ecological integrity, biodiversity and ecosys-
tem services. In this paper, we provide a comprehensive overview of the structural and functional characteristics
of NPRS in the European Mediterranean, and discuss gaps and problems in their management, concerning their
typology, ecological assessment, legislative and policy protection, and incorporation in River Basin Management
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Plans. Because NPRS comprise highly unstable ecosystems, with strong and often unpredictable temporal and
spatial variability – at least as far as it is possible to assess –we outline the future research needs required to bet-
ter understand, manage and conserve them as highly valuable and sensitive ecosystems. Efficient collaborative
activities among multidisciplinary research groups aiming to create innovative knowledge, water managers
and policy makers are urgently needed in order to establish an appropriate methodological and legislative back-
ground. The incorporation of NPRS in EU-Med River Basin Management Plans in combination with the applica-
tion of ecological flows is a first step towards enhancing NPRS management and conservation in order to
effectively safeguard these highly valuable albeit threatened ecosystems.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Lotic freshwaters are either perennial or temporary (or non-peren-
nial), according to surface flow conditions. Perennial rivers and streams
(herein PRS) flow throughout the year, whereas temporary systems
(herein non-perennial rivers and streams, NPRS) cease to flow at the
surface for some time of the year. Depending on the specific flow re-
gime, NPRS can be classified, according to the most common percep-
tions, as intermittent, ephemeral or episodic. Intermittent rivers cease
to flow seasonally or occasionally (usually for weeks to months);
Ephemeral streams flow only in response to precipitation or snowmelt
events (days to weeks); Episodic streams carry surface water only dur-
ing very short periods (hours to days), primarily after heavy rainfall
events (McDonοugh et al., 2011; Arthington et al., 2014).

NPRS are among themost dynamic, complex and diverse freshwater
systems (Larned et al., 2010; Acuña et al., 2014). They are located in all
regions worldwide, and they are by far themost dominant river type in
arid and semi-arid areas (Larned et al., 2010; McDonοugh et al., 2011;
Acuña et al., 2014). NPRS may account for N50% of the total lenght of
the global river network, including low order streams (Datry et al.,
2014a). In Mediterranean regions, NPRS are the dominant freshwater
type (Tockner et al., 2009; Bonada and Resh, 2013). They encompass re-
markable hydrogeomorphological diversity, including snow-melt and
rain-fed headwater streams, spring-fed karstic rivers and streams,
braided channel networks, as well as single-thread upland streams
and lowland rivers.

NPRS provide habitat for a diverse and unique flora and fauna
(Meyer et al., 2007; Larned et al., 2010; Bonada and Resh, 2013; Acuña
et al., 2014). They function as biogeochemical hotspots that retain,
transform, and transfer carbon, nutrients and particulate matter
(Larned et al., 2010; McDonοugh et al., 2011; Bernal et al., 2013; Datry
et al., 2014a). In Mediterranean cultures, “dry rivers” are very well-
known in society, reflected by various popular names: ribeiras in Portu-
gal, arroyos, cañadas or ramblas in Spain, and rambles, torrents, rieres and
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rierols in the eastern part of the Iberian Peninsula and Balearic Islands
(Vidal-Abarca, 1990), cours d’ eau intermittent or ravines in France,
torrenti, rii and fiumare in Italy, and xiropotamos, xeropotamos or xeros
potamos in Greece and Cyprus.

TheMediterranean region is considered a global hotspot of biodiver-
sity, endemism, and related ecosystem services (Cowling et al., 1996;
Myers et al., 2000; Bonada et al., 2007a; Cuttelod et al., 2008; Tierno
de Figueroa et al., 2013). At the same time, it contains the highest pro-
portion of threatened freshwater species in Europe (Tockner et al.,
2009) which are among the most endangered species worldwide
(Myers et al., 2000; Cooper et al., 2013; Darwall et al., 2014).

Water use and management practices in the Mediterranean region
were historically adapted to natural water scarcity (Grantham et al.,
2013). However, rising water demand for agricultural, industrial,
urban and touristic development have exerted widespread pressures
on water resources (Bradford, 2000), which fundamentally affect the
natural flow regime (Smith, 1997; UNEP/MAP, 2003; Ludwig et al.,
2009; Skoulikidis, 2009). Τhe natural seasonal dryness regime is exacer-
bated by human activities, and natural PRS are converted into NPRS
(Datry et al., 2014a). These rivers and streams are considered “artificial-
ly dry” or “artificially intermittent” (Benejam et al., 2010; Skoulikidis et
al., 2011). On the other hand, natural NPRSmay be transformed into PRS
after receiving effluents fromWastewater Treatmennt Plants (WWTPs)
or urban and industrial discharges (Hassan and Egozi, 2001). Artificial
flow regime alterations enhance the risk of unanticipated ecological
changes (Poff and Zimmerman, 2010; Sabater and Tockner, 2010).

Historically, European Mediterranean (EU-Med) NPRS have been
undervalued by both water managers and ecologists (Larned et al.,
2010; Nikolaidis et al., 2013), and they remain among the least studied
freshwater ecosystems worldwide (Uys and O'Keeffe, 1997; Jacobson et
al., 2004; Ryder and Boulton, 2005; TempQsim Consortium, 2006;
Acuña et al., 2014; Datry et al., 2014a). This corresponds to the wide-
spread societal view that, according to Sabater et al. (2009) “People in
arid and semi-arid regions have the least respect towards rivers, since the riv-
ers are often dry or have catastrophic floods, and are therefore viewed more
as a danger than as a natural resource to be preserved”. This is particularly
evident in urban areas, where they have been frequently covered by
roads, with some NPRS being today important avenues of EU-Med cities
(e.g. the “Ramblas” in Barcelona, Spain, the Ilissos and Iridanos streams
in Athens, Greece, etc). In addition, NPRS in the EU-Med countries have
beenused, and are still beingused, aswastedisposal sites, drains for sewage
effluents, roads, car parking areas and quarries for sand and gravel. More-
over, legal and illegal constructions along NPRS courses, especially along
episodic ones, are common. The subsequent destructive consequences of
these practices are perceived by the public only after catastrophic floods.

Recently, however, NPRS research has emerged as a multidisciplin-
ary domain that integrates biology, ecology, biogeochemistry, hydrolo-
gy, geomorphology, and river management (Larned et al., 2010; Leigh
et al., 2015a). Several special issues have been published on this topic
in scientific journals (e.g. Nadeau and Rains, 2007; Datry et al., 2011;
Bonada and Resh, 2013), thereby advancing the perception and under-
standing of NPRS.

Targeting the EU-Med NPRS, the present article focuses on climatic
and anthropogenic pressures, as well as the related hydrological and
ecological impacts, outlines the evolution and current state of research,
presents management achievements and problems, identifies knowl-
edge gaps and research needs, and proposes future avenues for research
and management to safeguard these pivotal albeit undervalued and
threatened ecosystems.

2. Pressures and impacts in non-perennial EU-med streams

2.1. Climatic pressures

The Mediterranean area is characterized by high temporal climate
variation, with low precipitation during summer. When applying the
“Mediterranean climate” classification scheme, according to the global
climate assessment approach developed by Köppen (1936), the EU-
Med area fits into the dry sub-humid (0.50 b P/PET b 0.65) and semi-
arid (0.20 b P/PET b 0.50) climate zones (P/PET: Precipitation/Potential
Evaportanspiration), (UNEP, 1992; Fig. 1).

Under these climatic conditions, many Mediterranean rivers natu-
rally exhibit a non-perennial flow regime, with a distinct seasonal,
inter-annual and spatial heterogeneity (Bonada and Resh, 2013). At
the same time, theMediterranean river basins are turning drier (annual
precipitation decreased up to 20% during the 20th century), with more
extreme events than a century ago (EC-JRC, 2005; EEA, 2008;
García-Ruiz et al., 2011).

In Southern Portugal, river basins exhibit an average annual rainfall
of b700mm.Due to the lack ofmajor aquifers, the average summer run-
off is b10% of the average annual runoff (Afonso, 2007). There, NPRS are
by far themost dominantwatercourse type, with up to four drymonths
per year (INAG, 2001). Only large rivers, such as Guadiana, Sado and
Mira, are perennial. The increasing frequency and intensity of droughts
during the past 70 years has amplified the extent of artificial NPRS in the
region (Afonso, 2007; Costa and Soares, 2009).

The south-eastern part of Spain belongs to the driest regions in Eu-
rope, with a mean precipitation of 120 mm year−1, and summer tem-
peratures reaching up to 47 °C (Estrela and Vargas, 2012). As a result,
approximately 98% of themappedwater courses in the province ofMur-
cia, which covers the driest part of the Iberian Peninsula, are NPRS
(Gómez et al., 2005). Flow intermittency is further triggered by extend-
ed periods of low rainfall (Esteban-Parra et al., 1998) and high air tem-
perature (De Castro et al., 2005).

In France, NPRS represent 20% to 39% of the river network. NPRS are
common in regions with low annual rainfall, high air temperature and
steep, small and elongated catchments, which are not restricted to the
dry Mediterranean region (Snelder et al., 2013). In some areas a strong
decrease of the groundwater table has caused surface drying of entire
river sections (EEA, 2009).

In Italy, the mean annual precipitation drops to below
500 mm year−1 in areas such as Puglia, Sicily, and Sardinia (Gumiero
et al., 2009). In Sardinia and Sicily, up to 90% of all rivers are NPRS
(Mulas et al., 2009; Regione Siciliana, 2010; Fig. 2).

Greece exhibits a strongN\\S gradient, with increasing temperature
and evapotranspiration and decreasing precipitation towards the W–E
and S–SE (Dalezios et al., 2002). There, the mean annual precipitation
drops to 400 mm. Thus, in large parts of southeastern (Attika, Eastern
Peloponnese and Crete) and eastern (Aegean Islands) Greece, semi-
arid conditions prevail (Yassoglou et al., 1964). Though difficult to as-
sess with accuracy, it has been stated that only 45 out of the 765 record-
ed rivers and streams are permanently flowing (Ministry for
Development, 2003), with NPRS catchments covering approximately
40% of the entire country (Fig. 2). This proportion may rise further be-
cause droughts are becoming longer and more intense (Livada and
Asimakopoulos, 2005).

Cyprus is the most arid country in the European Union, with an av-
erage annual precipitation of 460 mm (Department of Meteorology of
Cyprus, 2014). During the past century, average annual precipitation
has decreased by 17%, and from 1976 to 2006, evapotranspiration has
increased by 60–80 mm (Petrakis et al., 2012). Perennial river reaches
in Cyprus are restricted to the upland areas of the central Troodos mas-
sif, while there is not a single river on the island with perennial flow
along its entire course. Only 14% of the total river length is perennial,
whereas 48% of the total length exhibits an intermittent and 38% an
ephemeral/episodic flow regime (ENVECO S.A. and I.A.CO Ltd., 2013).

2.2. Anthropogenic pressures

Long-lasting human activities and rapid urban and agricultural de-
velopments have led to a large-scale conversion of riparian areas into
agricultural land, massive booms in reservoir and flood control
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constructions, and an extensive use of water for irrigation. Today, agri-
cultural land covers vast areas of the EU-Med region, ranging from
30% in Greece to 48% in Italy, with most farmlands being now irrigated
(http://ec.europa.eu/eurostat/statistics-explained/index.php/Main_
Page). Irrigated agriculture accounts for N60% of total water abstraction,
with up to 89% in Greece (INAG, 2001). In most EU-Med countries, irri-
gation water is mainly obtained from rivers and streams, covering 64%
(France) to 100% (Portugal) of the demand. In Cyprus, however,
groundwater abstraction is the dominant water source for irrigation
(81%; Zoumides et al., 2013).

Groundwater abstraction also contributes to surface water desicca-
tion, through the lowering of groundwater tables,while seawater intru-
sion in groundwater aquifers at coastal areasmay affect the salt content
of surface runoff. Over the last 40 years, groundwater overexploitation
in the southern part of Spain has had an enormous ecological impact
Fig. 2.Maps of Italy (mainly based onMulas et al., 2009; Regione Siciliana, 2010; Regione Auton
tentative distribution of NPRS basin areas.
(Ibáñez and Carola, 2010), related to significant lowering of groundwa-
ter tables, drying out of springs, degradation of wells and boreholes, and
salt-water intrusion. For example, in the Guadiana basin since the
1960s, groundwater aquifers were overexploited for irrigation, with
regulations on abstraction being only partially enforced, because of re-
sistance by farmers (Sabater et al., 2009). In the Pinios River basin (Cen-
tral Greece), intensive agriculture has caused the lowering of the
groundwater tables by tens of meters (Loukas et al., 2007), facilitating
the widespread desiccation of entire river sections (Stefanidis et al.,
2016). In France, there are chronic imbalances between withdrawals
and water resources available in a number of river basins (EEA, 2009),
also very common in several coastal aquifers of Italy (Antonellini et al.,
2008). In coastal areas of Sardinia, Apulia, the Catanian Plain of Sicily,
the Tiber Delta, Versilia, and the Po Plain, groundwater resources are be-
coming scarcer due to drought, overexploitation and salinization (EEA,
oma Friuli Venezia Giulia, 2014; ARPA Emilia-Romagna, 2015) and Greece presenting the

http://ec.europa.eu/eurostat/statistics-explained/index.php/Main_Page
http://ec.europa.eu/eurostat/statistics-explained/index.php/Main_Page
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2012). Similarly, the majority of important aquifers in the coastal areas
of Greece are subject to salinization by seawater encroachment, due to
physical mechanisms and overexploitation, and large quantities of
groundwater have deteriorated. In Cyprus, too, the majority of aquifers
are overexploited (Georgiou, 2002), with 57% of them being in bad
quantitative status (LDK Consultants S.A. and Ecos Consulting S.A.,
2015), with seawater intrusion occuring since the early 1980s (Milnes
and Renard, 2004; Milnes, 2011). Finally, long dry periods impair fur-
ther groundwater quality (Lambrakis and Marinos, 2005).

At the same time, coastal economic and touristic development con-
tributes to an increasing water use, particularly in water scarce areas
and during specific seasons.

To compensate for the decrease in water resources and to secure
water supply during summer, numerous reservoirs have been con-
structed in the EU-Med during the past decades, favoured by the high
topographic relief of the area (Conacher and Sala, 1998). However,
this has led to the fragmentation of most rivers entering theMediterra-
nean Sea (Tockner et al., 2009). In Cyprus, for example, 67% of the over-
all mean annual surface runoff discharges into reservoirs (Rossel, 2002).
Spain has the highest number of large dams of all EU-Med countries, Cy-
prus has the highest density (Table 1), whereas the highest dams are lo-
cated in Italy and Greece. Some reservoirs that are currently at the
planning stage are facing considerable resistance by the civil society.
The Portuguese plan for hydropower development (PNBEPH)will entail
the loss of several rivers in the northern part of the country. The
Mesochora Dam, located in the Upper Acheloos River (Greece), com-
prises one of the largest and most controversial river diversion projects
in the EU-Med. The Acheloos already contains six reservoirs, which
cover a total surface area of up to 150 km2. The total storage capacity
is ~6.6 km3, corresponding to ~1.5 times the total annual river discharge
(Skoulikidis, 2009).

Inadequate ecological flows together with vast hydromorphological
alterations commonly amplify the effects of a variety of other stressors,
such as organic and inorganic pollution, pathogens and invasive species
(Vörösmarty et al., 2010), where reduced dilution plays a pivotal role
(Petrovic et al., 2011). This results in the simultaneous exposure of
EU-MedNPRS ecosystems inmulti-stress situationswhichmayproduce
novel and unfamiliar synergies and, most likely, very pronounced ef-
fects of unknown consequence (Navarro-Ortega et al., 2015).

2.3. Climate and anthropogenic impacts

2.3.1. Hydrological impacts
A combination of extensive water abstraction, river fragmentation,

and climate change has dramatically reduced river runoff in most EU-
Med rivers during the past decades (UNEP/MAP, 2003). The majority
of the rivers of the Balkan Peninsula, for example, experienced on aver-
age a 22% reduction in initial river discharge (data: Skoulikidis, 2009). At
the same time, the long-term decrease of flow in NPRS is alarming (Fig.
3; see Fig. 4 for an outline of themost common anthropogenic causes of
flow regime alteration in the EU-Med region). This decrease favours the
creation of disconnected pools and increases the number and extent of
NPRS stretches (e.g. Benejam et al., 2010; Skoulikidis et al., 2011; Datry
et al., 2014a).
Table 1
Number and density of large dams in the EU-Med countries (source: ICOLD - International
Commission on Large Dams, 2015).

Country Number of large dams (N15 m) Number of dams/1000 km2area

Portugal 217 2.35
Spain 1082 2.14
France 713 1.30
Italy 542 1.80
Greece 164 1.24
Cyprus 57 6.16
EU 7000 1.75
In Spain, the mean annual flow of the Ebro River has decreased by
40% during the past 50 years, mainly as a result of climate and land
use changes, as well as of increased water abstraction, mainly for irriga-
tion (Gallart and Llorens, 2004). Similarly, surface flow of the Guadiana
River has sharply decreased during the past 30 years, causing the drying
of headwater sections. In some areas, the groundwater table has
dropped by 30–40 m (Sabater et al., 2009).

In Greece, unsustainable water resources management, together
with a progressive decline in precipitation, has altered the natural
flow regime of most rivers (Skoulikidis, 2009). Many farmers face seri-
ous water shortage during very dry summers (Isendahl and Schmidt,
2006). As a consequence, they construct provisional weirs along river
courses for surface water abstraction, which often leads to artificial des-
iccation and the conversion of PRS into NPRS (e.g. Chadzichristidi et al.,
1991; Economou et al., 1999; Bobori and Economidis, 2006). In the
Pinios River basin intensively irrigated agriculture causes the artificial
desiccation of entire river stretches during particularly dry years. In
the Evrotas basin (SouthernGreece), discharge has declined by84% dur-
ing the past three decades, mainly due to water overexploitation for ir-
rigation. During very dry years, such as 2007, up to 80% of the river
network dried up completely, limiting available water for irrigation
and threatening the endemic freshwater fish fauna (Skoulikidis et al.,
2011).

Cyprus exhibits clear evidence of climate change, which in combina-
tion with unsustainable water management practices, has resulted in
the recent transformation of PRS into NPRS. In addition, the slogan
“Not a drop of water to the sea” has determined Cyprus water policy
since the 1960s (Water Development Department, 2014). It impacted
the flow regime of river sections downstream of dams and shifted
them from intermittent to ephemeral and from ephemeral to episodic
states. The impact of dams, the overexploitation of aquifers, the de-
crease in rainfall observed after 1970 and the reforestation of several
mountainous areas have resulted in a 20–60% decrease in surface flow
(Rossel, 2002). The flow of the Kouris river downstream of Kouris
Dam, for example, decreased by 90% during the post-dam period, caus-
ing a deterioration of the delta as well as degradation of the ecosystem
services provided by the aquifer (Tzoraki et al., 2014).

On the other hand, reservoir operation for hydropower production,
which is particularly required in the summer for cooling purposes, can
reverse the seasonal flow regime of impounded and fragmented rivers.
Today, large dammed rivers in Greece, such as the Acheloos, Nestos and
Aliakmon Rivers, exhibit high to maximum discharge in summer
(Skoulikidis, 2009). In the Acheloos River, for example, 30% of the annu-
al runoff occurs during the summer months, compared to 11% prior to
dam construction (Skoulikidis, 2002). Furthermore, WWTPs' effluents
and releases from agricultural, industrial and mining operations, as
well as inter-basin transfers lead to an increase in summer flow,
transforming some NPRS into perennial watercourses (Hassan and
Egozi, 2001).

2.3.2. Ecological impacts
Artificial alterations of the hydrological regime affect the health, sus-

tainability and biodiversity of fluvial ecosystems. While native species
exhibit physiological, behavioral and life-history adaptations to natural
drought events (Williams, 1996; Poff et al., 1997; Gasith andResh, 1999;
Magoulick and Kobza, 2003;Matthews andMatthews, 2003), the artifi-
cial increase in the frequency and severity of water stress may be con-
sidered a disturbance to which species are evolutionarily not adapted
(Bunn and Arthington, 2002; Stanley et al., 2004; Magalhães et al.,
2007; Belmar et al., 2012; Datry et al., 2014b). Artificial intermittence
may lead to a decline of freshwater species richness and abundances
and to a loss of migratory pathways for many fish species (Larned et
al., 2010). A major decline in native fish diversity has been already re-
ported in many Iberian rivers, closely linked to unsustainable water
management (Aparicio et al., 2000; Benejam et al., 2010; Clavero et al.,
2010).



Fig. 3. Long-term flowdiminishing inNPRS fromSouthern Portugal (Vendihna R.), SouthernGreece (Evrotas R.) and Cyprus (Diarizos R. and Vasilikos R.). Significant regressions (p b 0.05)
are denoted with an asterisk.
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Water management infrastructures and practices alter key hydro-
logical processes that maintain riverine habitat diversity, longitudinal,
lateral and vertical connectivity gradients, and good water quality con-
ditions (Prat and Ward, 1994; Bunn and Arthington, 2002; Pringle,
2003). The vast seasonal decline of river flow in NPRS makes them par-
ticularly sensitive to anthropogenic pressures, especially regarding
water quality (Morais et al., 2009; Rosado and Morais, 2010; Rosado
et al., 2012; Lopez-Doval et al., 2013). As a result, many NPRS suffer
from eutrophication, hypoxia and high concentrations of industrial
and agricultural contaminants (Cooper et al., 2013; Lopez-Doval et al.,
2013).

Water stress and pollution may have cumulative impacts on aquatic
biotic assemblages, because habitats shrink, water quality deteriorates,
and predation and competition increase, as space and basic resources
become even more limited (Magoulick and Kobza, 2003; Magalhães et
al., 2002; Robson et al., 2011). Hence, specieswith low tolerance tomul-
tiple stressors are eliminated from artificial NPRS, and habitat fragmen-
tation constrains recolonization pathways (Phillipsen and Lytle, 2013;
Datry et al., 2016b). Chemical pollution derived from agricultural
Fig. 4. Schematic presentation of the causes of flow regime alterations in the EU-Med
region. Anthropogenic causes include water and land use management. Climate change
is considered separately. Dam operation for hydropower production is more intense
during summer than during winter due to cooling purposes, leading to an increase of
summer runoff. Afforestation, contrary to deforestation, causes a decrease of surface
runoff (e.g. Buendia et al., 2015) as a result of higher evapotranspiration and infiltration
rates. NP: non-perennial; WWTP: Waste Water Treatment Plant.
activity may have caused the observed decline of amphibian popula-
tions in NPRS (e.g. Sparling et al., 2001). At the same time, some aquatic
and semi-aquatic bird species are also affected by water pollution, pri-
marily due to declining abundances of pollution-intolerantmacroinver-
tebrate prey (Sorace et al., 2002). Apart from pollution, NPRS are also
subject to salinization. Increased salt concentrations, caused by reduced
runoff and irrigation water evaporation (Cañedo-Argüelles et al., 2012,
2016), affect invertebrates, diatoms and fungal biomass as well as key
ecosystem processes (Cañedo-Argüelles et al., 2014).

At the same time, knowledge about the ecological consequences of
artificial perennialization remains very poor (Datry et al., 2014a).
While habitat availability for lotic and lentic species increases with
perennialization, habitat availability for terrestrial and semi-aquatic
species declines. Although perennial flow may be sustained by effluent
discharge, pollution can be detrimental for aquatic assemblages, as
BOD5, dissolved oxygen, and nutrient concentrations frequently exceed
the threshold of “good” water quality due to limited dilution (De
Girolamo et al., 2015a). Also, in artificially sustained perrenial stream
streches downstreamof dams, a spreadof alienfish species has beenob-
served inmany insular basinswhere NPSR dominate, such as in Corsica,
Cyprus and Sicily among other Mediterranean islands (Blondel et al.,
2010; Zogaris et al., 2012).

3. Evolution and current state of EU-Med NPRS research and
management

3.1. An update of research on EU-Med NPRS

Until recently, NPRS have been considered as impoverished or even
biologically-inactive ecosystems (e.g. Poff and Ward, 1989; Stanley et
al., 1997; Larned et al., 2010). Therefore, we have scant information
about their spatial extent (Meyer and Wallace, 2001; Benstead and
Leigh, 2012; Datry et al., 2014a), hydrological regime (Acuña et al.,
2014; Datry et al., 2014a) and, as they have been excluded from bioas-
sessment programs (e.g., Hall et al., 1998; Peck et al., 2006; Acuña et
al., 2014), and about their ecology (Williams, 2008; Larned et al.,
2010; Datry et al., 2014a). Thus, as stated in Mazor et al. (2014),
“many surveys of ambient streamconditions are incomplete, biomonitoring
programs do not provide comprehensive evaluations of stream health or
complete assessments of watershed or regional conditions, and water-
shed-management and resource-protection programs based on these as-
sessments might be compromised”.

Also at a European scale, research andmanagement of NPRS are lag-
ging behind, compared to other freshwater ecosystems. Reasons include
the low economic value attributed to NPRS, the complexity of the
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Mediterranean biogeography coupled with political and societal issues,
the poor planning of effective environmental policies, the inadequacy of
legislation and its ineffective enforcement, the lack of political commit-
ment, and the inadequate knowledge of NPRS' hydrology, ecology and
biogeochemistry (Vogiatzakis et al., 2006; Acuña et al., 2014).

Limited knowledge and ineffective conservation and management
of NPRS in the EU-Med are also related to the limited availability of re-
sources for research anddevelopment (R&D) inmost EU-Med countries.
The average R&D expenditure (as percentage of Gross Domestic Prod-
uct, GDP) for EU-Med countries amounts to 1.05%, compared to an EU
average value of 2.1% (World Bank data for 2012). This imbalance is
even more pronounced if one considers the relatively low average
GDP per capita for the EU-Med countries (20,130 US$) compared to
the EU average (36,320 US$, World Bank data for 2014).

During the past 15 years several EU-Med research institutions have
started to consider NPRS, stimulated by a number of European projects,
supporting the implementation of the WFD. Projects included AQEM
(http://www.aqem.de/), STREAMES (http://www.streames.org/),
STAR (http://www.eu-star.at/), INHABIT (http://www.life-inhabit.it/),
REFORM (http://www.reformrivers.eu/) and MARS (http://www.
mars-project.eu/). Gradually, the EC funded a number of projects that
focused exclusively on NPRS, such as tempQsim (http://www.
tempqsim.net/), MIRAGE (http://www.mirage-project.eu/) and more
recently GLOBAQUA (http://www.globaqua-project.eu/), LIFE+
TRivers (http://www.lifetrivers.eu/) and SMIRES (COST Action
CA15113). The tempQsim project addressed the dynamics of NPRS
and the integrated water management in semiarid Mediterranean
river catchments. The MIRAGE project focused on the development of
knowledge and tools required for a sound management of NPRS. Re-
cently, the REFORM project addressed a number of important issues in-
cluding hydromorphological aspects, directly or indirectly related to
NPRS, in order to support adequate restoration and management activ-
ities. The current GLOBAQUA andMARS projects apply a multidisciplin-
ary approach in order to study the interaction of multiple stressors,
includingwater stress conditions. The specific aims are to better under-
stand how current management practices and policies could be im-
proved by identifying main drawbacks and developing alternative
opportunities (Navarro-Ortega et al., 2015). The LIFE+ TRivers project
aims to create new tools in order to improve the management of
NPRS, according to the WFD. Finally, SMIRES (www.smires.eu), a con-
sortium of natural, social and economic scientists, aims at compiling
and synthesizing knowledge andmanagement practices on NPRS across
all biomes in Europe, in order to produce organised data bases on hy-
drology, biogeochemistry and biodiversity and to provide uniform and
innovative management tools at the EU scale. To date 40 researchers
and 25 managers from 23 European countries are participating in this
program. Furthermore, an international teamof ecologists is attempting
to synthesise and analyse biodiversity patterns (including plants, fish,
invertebrates) across NPRS in Europe and worldwide (IRBAS, http://
irbas.cesab.org/; Datry et al., 2014a; Leigh et al., 2015a, 2015b). This
research initiative aims to better understand andmanage NPRS. Recent-
ly, another relevant international initiative, the 1000 NPRS project,
started (http://1000_intermittent_rivers_project.irstea.fr/), involving
N120 researchers from 32 countries (Datry et al., 2016c). The aim is to
conduct synoptic sampling campaigns and experiments in hundreds
of NPRS in all parts of the world, thereby advancing the understanding
of fundamental biogeochemical and ecological processes in NPRS.

Simultaneously to the implementation of European research pro-
jects related to NPRS, and despite the slow progress in incorporating
them into national legislation frameworks, regional and national re-
search projects have started to better integrate NPRS into management
practices and schemes; these projects are briefly presented below.

In Portugal, the Foundation for Science and Technology (FCT) sup-
ported a number of related projects. The Portuguese Environmental
Agency (APA) is implementing a Program of Surveillance and Warning
of Droughts that closely follows the spatiotemporal variations in
precipitation. In 2001, APA started implementing a national monitoring
network that includes NPRS too (SNIRH, http://www.snirh.pt/).

In Spain, several NPRS research projects were initiated in the last
15 years, such as the GUADALMED project (1998–2005) that aimed to
assess the ecological status of Mediterranean rivers and streams in ac-
cordance with the WFD (Prat, 2002). More recently, the Consolider-
Ingenio SCARCE project “Assessing and predicting effects on water
quantity and quality in Iberian rivers caused by global change (2009–
2014)” specifically addressed the relevance of water scarcity for water
quality, water availability, the ecological status and the related services
of NPRS (Navarro-Ortega et al., 2012).

In France, during the last 10 years five regional and national research
programs have been conducted on NPRS. One project specifically ad-
dressed biological assemblages and physico-chemical conditions in the
Rhône-Alpes Region (Datry et al., 2014b). A second project attempted
to model the distribution of NPRS reaches across the national hydrolog-
ical network (Datry, 2012; Snelder et al., 2013). Another program pre-
dicted the effects of climate change on flow intermittency and
biodiversity in two rivers located in the Mediterranean region of France
(https://r2d2-2050.cemagref.fr/). An on-going project examines the re-
silience of river assemblages to drying in relation to the spatial distribu-
tion of drying events across river networks (Vander Vorste et al., 2015a,
2015b). Finally, a project that is now currently running (2015–2019)
explores how fragmentation by drying in headwaters alters beta diver-
sity patterns and metacommunity dynamics of fish and invertebrates,
using morphological and molecular approaches.

In Italy too, NPRS have been the focus of a number of national re-
search projects, funded by the Italian Ministry of Research and the EU,
such as MICARI, INHABIT and AQUASTRESS (FP6 IP 511231–2, 2004–
2008 - http://www.aquastress.net/) (e.g. Amalfitano et al., 2008; De
Girolamo et al., 2012; Giordano et al., 2013). Within the MICARI project
(MIUR, D.M. 408 Ric. 20.03.2002 – Settore “RISORSE IDRICHE”, 2003–
2005), the concept of lentic-lotic character of rivers was developed
(Buffagni et al., 2009, 2010). Later on, the INHABIT project (LIFE08
ENV/IT/000,413, 2010–2014 - www.life-inhabit.it) dealt explicitly
with NPRS of Sardinia, focusing on lentic-lotic riverine habitat compo-
nents, so that they can be effectively consideredwhen classifying rivers,
as well as planning and checking the effect of RBMP Program of Mea-
sures (PoMs).

In Greece, the rapid implementation of the WFD, which has lagged
behind in the past, has not yet allowed state authorities to particularly
focus on NPRS research and management. However, the WFD national
monitoring network already includes a number of NPRS.

In Cyprus finally, NPRS research has also lagged behind due to a lack
of competent research institutions. Nonetheless, due to obligations
stemming from the WFD, Cyprus has progressively introduced a water
status assessment based on biological quality elements such as benthic
invertebrates, benthic diatoms and aquatic macrophytes (e.g.,
Karavokyris et al., 2011). The outcome of these assessments, coupled
with a re-examination of hydrological data and classification, may ad-
vance the development of adequate management strategies.

Globally, the number of scientific publications focusing on NPRS has
increased exponentially in the past 20 years; with an average of 20–25
papers published annually in the last years, half of them in the fields
of biology and ecology (Datry et al., 2011). To estimate the recent re-
search activities on EU-Med NPRS, a query was performed to compare
scientific publications worldwide and at the Mediterranean basin level
(Table 2).

Publications onMediterranean temporary or intermittent rivers and
streams comprise about 10% of the total number of related papers
worldwide (Table 2). For ephemeral rivers and streams, the relative
proportion is lower (6%). These numbers are deemed high, considering
the surface area and the population of the EU-Med region (i.e. 1.56% and
2.97% of the total human population and area, respectively; data: http://
data.worldbank.org/), but also considering the low research expendi-
ture of EU-Med countries compared to the world average. The majority
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Table 2
Scientific publications on NPRS globally, and the relative proportion of publications on Mediterranean NPRS.
(sources: Web of Science and ProQuest, period: 1900–2015, accessed: October 2015).

Term WEB OF SCIENCE PROQUEST

# of publications
worldwide

% publications Med # of publications worldwide % publications Med

“temporary river” 1319 1564
“Temporary stream” 1128 834
“Mediterranean temporary river” 126 9.6 102 6.5
“Mediterranean temporary stream” 125 11.1 88 10.6
“Intermittent river” 1114 1336
“Intermittent stream” 1653 1206
“Mediterranean intermittent river” 129 11.6 115 8.6
“Mediterranean intermittent stream” 149 9.0 121 10.0
“Ephemeral river” 1017 1082
“Ephemeral stream” 1095 873
“Mediterranean ephemeral river” 66 6.5 67 6.2
“Mediterranean ephemeral stream” 62 5.7 52 6.0
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of publications (37%) refer to macroinvertebrates, followed by biogeo-
chemistry (14%), pollution (9%) and diatoms (5%). Domains such as hy-
drology, ecology,fish, biology-other, microbiology andmanagement are
less represented (1.6–3.7% each).

3.2. Specific research achievements in EU-Med NPRS

Many European and national projects advanced our knowledge
about EU-Med NPRS regarding their geographical extent, pressures
and impacts, hydrological character and the relationship with biotic as-
semblages aswell aswith biogeochemical and ecological processes. This
increasing knowledge is facilitating the development of adequate man-
agement strategies for NPRS.

3.2.1. Geographical distribution of NPRS
Efforts have been made to estimate the spatial distribution and ex-

tent of NPRS at the country (Snelder et al., 2013; Mulas et al., 2009;
Regione Siciliana, 2010; Fig. 2), regional (Gómez et al., 2005) and river
basin scales (Skoulikidis et al., 2011; Rosado et al., 2012), though over-
lap in definition of intermittent, ephememeral and episodic systems is
an issue.

3.2.2. Pressures and impacts
A fundamental research topic has been the assessment of the im-

pacts of anthropogenic pressures on EU-Med NPRS. Pressures include
agricultural land use, alien species, grazing, rubbish disposal, release of
effluents, and habitat destruction such as through the use of NPRS as
roads (Gómez et al., 2005; Suárez and Vidal-Abarca, 2008;
Sánchez-Montoya et al., 2009). The response of various macroinverte-
brate metrics tomultiple stressor gradients typical for EU-Med streams,
including NRPS ones, has been also studied (Munné and Prat, 2009;
Sánchez-Montoya et al., 2010). Cañedo-Argüelles et al. (2014, 2016) in-
vestigated the impacts of secondary salinization, which reduces aquatic
biodiversity and compromises the goods and services that rivers and
streams provide. Recently, Suárez et al. (2016) studied the functional re-
sponses of aquatic invertebrate assemblages along two natural stress
gradients, water salinity and flow intermittency, in Mediterranean
streams. They indicated that functional richness and redundancy de-
creased with increasing salinity and flow intermittency, with salinity
being the stronger environmental stressor. Wildfires, which frequently
occur during periods of extended drought, pose another major risk for
NPRS. Initial floods following wildfires enhance runoff and erosion
rates in burned terrains, causing elevated sediment and phosphorus
concentrations in receiving downstream water bodies (Blake et al.,
2010). Finally, studies that focused on the relative vulnerability of PRS
and NPRS to anthropogenic stress have shown that habitat changes
(García-Roger et al., 2011) and agro-industrial pressures (Karaouzas et
al., 2011; Karaouzas and Skoulikidis, 2011) exert severe effects on
aquatic macroinvertebrates in NPRS, more severe than in comparable
PRS.

3.2.3. Hydrological processes
Gallart et al. (2008) investigated the hydrological regimes in a set of

EU-Med NPRS basins and showed that these were depended on karstic
groundwater, human disturbance and winter temperatures. Later on, a
method has been developed (Gallart et al., 2012) for the analysis of
NPRS regimes based on the definition of six aquatic states (Hyperrheic,
Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic). Recently, a Europe-
an stream classification method, based on flow regime, has been pro-
posed by Bussettini et al. (2015), whereas Oueslati et al. (2015)
classified hydrological regime types using stream flow data from EU-
NPRS. At a local scale (e.g., Pardiela River basin, Portugal), the duration
of drought during a hydrological year has been quantified (Rosado et
al., 2012). Also, a hydrological classification of natural flow regimes in
the Segura River basin showed that NPRS are mainly restricted to the
southern, lowland basin (Belmar et al., 2011). Hydrological modeling
has been applied to estimate the temporal extent of desiccation in
broader and local scales. For example, Kirkby et al. (2011) addressed
the relative frequency of ecologically critical low flow stages in semi-
arid rivers across Europe. Moreover, using modeling approaches, it has
been shown that entire river reachesmay dry out as a result ofwater ab-
straction for agriculture (Skoulikidis et al., 2011; De Girolamo et al.,
2015a). Thus, De Girolamo et al. (2015b) developed a new approach
for evaluating the hydrological status of NPRS, in which the divergence
between the current (impacted) and the natural flow conditions are
assessed by using two hydrological indicators; the long-term annual
mean number of months with flow (MF) (Arscott et al., 2010), and the
six-month seasonal predictability of dry periods (SD6) (Gallart et al.,
2012). A method suitable to quantify hydrological alterations in the ab-
sence of stream flow data has also been tested (De Girolamo et al.,
2015b). Similarly, in order to estimate the flow regime of NPRS in the
absence of flow data, Gallart et al. (2016) have proposed alternative ap-
proaches based on historical aerial photographs and on interviews.

3.2.4. Biotic responses to flow intermittency
Recent research has led to a better inventory and understanding of

biotic assemblages in NPRS, including aquatic (Graça et al., 2004;
Datry, 2012; Bonada and Resh, 2013; García-Roger et al., 2013) and ter-
restrial invertebrates (Corti andDatry, 2012, 2015; Sánchez-Montoya et
al., 2016), diatoms (Novais et al., 2014; Barthès et al., 2014), microbial
and algal assemblages (Amalfitano et al., 2008; Romani et al., 2013) as
well as vertebrate assemblages, such as fish (Pires et al., 1999; Zogaris
et al., 2012; Vardakas et al., 2015) and semi-aquatic carnivores
(Clavero et al., 2003; Ruiz-Olmo et al., 2002, 2007). Other recent studies
focused on the mechanisms allowing species to cope with recurrent
drying as well as to produce quantitative relationships between drying
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duration and frequency (Datry et al., 2014b). In most cases, taxa rich-
ness of aquatic macroinvertebrates was lower in NPRS than in PRS
(Muñoz, 2003; Morais et al., 2004; Sánchez-Montoya et al., 2009,
2010; Belmar et al., 2012; Datry, 2012; Datry et al., 2014b), but see
Bonada et al. (2007b, 2008) and Skoulikidis et al. (2011). The seasonal
community composition differed between PRS and NPRS (Bonada et
al., 2008); in NPRS, invertebrates exhibiting low dissolved oxygen re-
quirements and pool-like strategies dominate during the contracting
phase (Pires et al., 2000; Acuña et al., 2005; Bonada et al., 2007b;
García-Roger et al., 2013), whereas resilient taxa and species with rif-
fle-like strategies dominate during the expansion phase (Bonada et al.,
2007b; Datry et al., 2014b). Overall, collectors are more abundant in
NPRS than in PRS and, in particular for NPRS, the number of predators
increases in remaining pools during the contracting phase (Sabater et
al., 2006; Bonada et al., 2007b).

Flow intermittency not only affects aquatic invertebrate assem-
blages but may also control terrestrial invertebrate assemblages in the
channel and in adjacent terrestrial habitats of NRPS. Recently,
Sánchez-Montoya et al. (2016), who studied two Mediterranean NRPS
streams, reported that not only river drying, but also the length of the
dry period, changes the composition of terrestrial arthropod assem-
blages, although taxonomic richness and total abundance were similar
between perennial and intermittent reaches.

The hydrological disturbance of NPRS affects species richness, densi-
ty, biomass, composition, and size (age) structure of fish assemblages
(Benejam et al., 2010; Skoulikidis et al., 2011). Several studies have in-
dicated significantly lower fish densities in NPRS (Mas-Martí et al.,
2010), while others reported higher densities due to crowding effects
(Pires et al., 1999; Skoulikidis et al., 2011). Species composition and
size structure shifts are also evident in many NPRS (Mas-Martí et al.,
2010; Skoulikidis et al., 2011), where the species remaining in non-pe-
rennial sites are usually small-sized tolerant species. However, harsh
conditions imposed by the dry period favour many exotic species, due
to their preference for limnophilic conditions (Vila-Gispert et al.,
2002). Species such as mosquitofish, pumpkinseed sunfish and com-
mon carp are well-known examples of exotic species common in
many EU-Med countries, mainly as a consequence of the large number
of reservoirs.

Regarding benthic diatom assemblages, Tornés and Ruhí (2013)
found that species in NPRS were less nested and more generalist than
those in PRS. Barthès et al. (2014) observed a significant and long-last-
ing impact of even short-term drought events on diatom assemblage
structure. On the contrary, Novais et al. (2014) found that diatom rich-
ness increased with flow intermittency.

There are only a few studies on vertebrates in EU-Med NPRS. These
have shown that desiccation influences the availability of prey such as
fish, which again may strongly affect the European otter (Lutra lutra)
(Clavero et al., 2003; Ruiz-Olmo and Jiménez, 2009). Consequently,
the mortality rate of otters increases, their abundance diminishes, and
breeding success declines (e.g., Ruiz-Olmo et al., 2001). Furthermore,
due to summer droughts, the breeding time of otters occurs earlier in
Mediterranean than in temperate streams (Ruiz-Olmo et al., 2002).

The species composition of the riparian vegetation is also deter-
mined by flow intermittency. Bruno et al. (2014), for example, detected
that drought duration is one of the most important environmental de-
terminants of the composition and variation of the herbaceous and
woody riparian vegetation in the Segura river basin (Southeastern
Spain). Drought duration leads to a reduction in functional redundancy
and thereby decreases ecosystem resistance and resilience to future dis-
turbances (Bruno et al., 2016).

3.2.5. Hydromorphology vs ecological quality
The relationship between hydrology and ecological or integrity in

NPRS has been frequently explored in various studies that showed
that the ecological status depends on the alteration of flow-related nat-
ural components (e.g. Coimbra et al., 1996; Buffagni et al., 2009, 2010).
Water abstraction, for example, favours lentic habitat conditions, there-
by affecting the structure and traits of aquatic assemblages (Buffagni et
al., 2010; García-Roger et al., 2013). Gallart et al. (2012) developed a
new approach to analyse the regime types of NPRS in relation to their
controls on the composition and structure of aquatic biota. Prat et al.
(2014) developed an integrated assessment strategy for NPRS (i.e. the
MIRAGE tool-box). Based on the aforementioned aquatic states, theMI-
RAGE tool-box entails a series of methodologies for determining and
analysing NPRS' aquatic regimes, and for relating the ecological and
chemical status to their specific hydrological status. Similarly, Cid et al.
(2016) developed a biological tool (BioASTool) to assessflowconnectiv-
ity in NPRS reference systems based on benthic invertebrates. This tool
can also be applied when hydrological data are missing, using the taxo-
nomic and biological trait composition of the macroinvertebrate com-
munity as predictors. Likewise, Buffagni et al. (2010) stressed that the
lentic-lotic character of rivers (e.g. quantified by proxies such as the
Lentic-lotic River Descriptor (LRD) score system, see Buffagni et al.,
2009) has to be taken into account when assessing their ecological
status.

Regarding morphological modifications of river channels and river
banks, it has been demonstrated that their impact on Sardinian NPRS
is well detected by the benthic metrics (Buffagni et al., 2016) that are
commonly used for monitoring PRS and NPRS. In the absence of water
pollution and/or water abstraction, the largemajority of stream reaches
that showed evident morphological alteration were correctly classified
as medium to low ecological status (Buffagni et al., 2016). Therefore,
even if the influence of the highly variable hydrological regime of
NPRS on benthic assemblages is undeniable, effects subtler than those
of pollution, such as morphological modifications, can be detected and
quantified.

3.2.6. Biogeochemical processes
NPRS are recognized as biogeochemical reactors (Larned et al.,

2010), and alternatingwetting and drying cycles create biogeochemical
hot spots and hot moments (McClain et al., 2003). Mineralisation,
demineralisation, nitrification, denitrification, and nitrate reduction
are among the processes that prevail during desiccation and rewetting
(Peterjohn and Schlessinger, 1991; Mummey et al., 1994; McDonοugh
et al., 2011).

Dry watercourses may cause substantial CO2 emissions, higher than
running or stagnant waters, which demonstrates the importance of
NPRS for the global carbon cycle (Von Schiller et al., 2014;
Gómez-Gener et al., 2016). In NPRS, coarse particulate organic matter
(CPOM) accumulates in standing pools and at the surface of dry habi-
tats, and as the river dries, the primary agents of CPOM decomposition
shift from leaching and processing by aquatic micro-organisms and in-
vertebrates to photo-degradation by UV and processing by terrestrial
micro-organisms and invertebrates (Corti et al., 2011; Dieter et al.,
2011). The decomposition rate decreases according to drying duration
and the progressive disappearance and inactivity of aquatic fungi and
shredders (e.g. Corti et al., 2011; Datry et al., 2011; Foulquier et al.,
2015). In dry habitats, the decomposition rate is reduced to almost
zero due to the low abundance of terrestrial shredders, low microbial
activity and absence of mechanical breakdown (Corti et al., 2011). Ex-
perimental desiccation in microcosms with sediments from different
EU-Med NPRS revealed a prompt decline of the initial bacterial carbon
production during desiccation, while complete desiccation led to a
delay in mineralization processes and synthesis of new biomass
(Amalfitano et al., 2008). These studies led to a better understanding
of how the tempos, rates and timing of organic matter processing differ
between PRS and NPRS (Datry et al., 2014a). Other studies focused on
stream metabolism by continuous oxygen measurements (Acuña et
al., 2004; Izagirre et al., 2008). Regarding the nutrient processes, von
Schiller et al. (2011) stressed that hypoxic conditions in disconnected
pools can cause rapid ammonium and phosphate release from sedi-
ments. Along gradients with increasing fragmentation, a decrease of
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nitrate accompanied by an increase in ammonium has been attributed
to both assimilation and heterotrophic activity, such as reduction of ni-
trate to ammonia and/or denitrification (Skoulikidis et al., 2017). Micro-
cosm experiments showed that drying increased the sediment nitrate
content (Arce et al., 2014) and that in the initial stages of desiccation,
N-mineralization and nitrification were stimulated (Τzoraki et al.,
2007; Gómez et al., 2012). Opposite trends in nitrogen processes are
probably related to hydrological and sediment moisture factors.

The decomposition of organicmatter (Corti and Datry, 2012; Rosado
et al., 2014) and its effects on nutrient variability during rewetting have
been also researched. Skoulikidis and Amaxidis (2009) and Ramos et al.
(2015) showed that annual nutrient concentrations and cycles, as well
as sediment transport during initial autumn floods were very dynamic
and extremely variable in space and time. This indicates the importance
of initial floods on water quality issues, particularly for nutrients. Upon
rewetting, rapid mineralization of organic matter and subsequent nitri-
fication controlled N species in river water (Skoulikidis and Amaxidis,
2009; Skoulikidis et al., 2017). Arce et al. (2015) conducted microcosm
experimentswhich provided evidence that during rewetting of dry sed-
iments, nitrate, favoured by anoxic conditions, can be rapidly
denitrified, suggesting an improvement of water quality in polluted
streams. To simulate the time response of NPR reaches on geochemical
and hydrologic mass balances, Tzoraki and Nikolaidis (2007) developed
a biogeochemical model. Finally, the crucial role of biofilm in recovering
ecosystem functions upon flow resumption has been also revealed
(Timoner, 2014; Timoner et al., 2014a, 2014b, 2014c).

3.3. Management in EU-Med NPRS

As a result of the inadequate involvement of EU-Med countries in the
development of the EU's Water Framework Directive 2000/60/EC
(WFD), coupled with a general undervaluation of NPRS systems, the
WFD does not specifically address NPRS (Nikolaidis et al., 2013). This
gap created several issues related to their typology, to ecological assess-
ment indices, as well as to minimum flow requirements and other pro-
tection measures to be incorporated in RBMPs.

3.3.1. Typology
In the framework of the application of the intercalibration (IC) exer-

cise (European Commission, 2013), the EC recognized the need to in-
clude NPRS (RM-5 type) in the common Mediterranean
intercalibration types. On this regard, data from RM-5 rivers on macro-
invertebrates and diatoms were successfully intercalibrated for five
Mediterranean countries (e.g. Feio et al., 2014a). The RM-5 IC type
judged from its description of simply “temporary streams” (European
Commission, 2013) is an ‘umbrella’ category designed to embrace all
of the NPRS present in Europe. In line with the whole IC process, this
helped results to be plainly understood and agreed, ready to be trans-
ferred at Member State (MS) scale to all national types corresponding
to NPRS. However, it must be noted that datasets selected for WFD IC
often refer to well-defined national types, i.e. normally a single type
out of thewhole range of types and conditions, for which data availabil-
ity is at least satisfactory (e.g. Erba et al., 2009; Feio et al., 2014b). Hence,
because the datasets used were from specific NPRS river types only, the
transferability to all Mediterranean NPRS, as suggested by the descrip-
tion of the type as “temporary streams”, is doubtful and it is unsure
with respect to ephemeral streams. From this it follows that MS had/
have to go into more depth on hydrology-related issues, so that NPRS
types finally adopted are hydrologically well defined and, as a result,
ecologically sound.

At a national scale, since institutions in the EU-Med countries have
traditionally focused on monitoring PRS, the approaches, methods and
relevant data to quantify, locate and classify NPRS are often missing. In
addition, according to the WFD, a NPRS may not be considered a
water body, and therefore may not be protected, depending on the ty-
pology applied and the water body classification method adopted in a
particular region (Munné and Prat, 2004). Up to recently, the different
criteria used in each river basin have fostered a patchy implementation
of theWFD throughout Europe, which has resulted in the recognition of
NP waterways in only a few river basin districts in the EU (Acuña et al.,
2014). In France, for example, NPRS have been initially classified as
“atypical” in the environmental flow legislation (Decret, 2007) thus,
no minimum flow management plans are required for these systems.
Even in Spain, with a much longer tradition in studying NPRS than in
other EU-Med countries, a national hydrological classification is still
missing (Belmar et al., 2011). According to the Spanishwater legislation
(“Instrucción de Planificación Hidrológica”, ORDEN ARM/2656/2008),
12 out of 32 WFD-ecotypes are termed as Mediterranean ecotypes,
but none of them specifically addresses NPRS. In addition, many NPRS
are potentially excluded from the assessment of the ecological status,
as only rivers with natural flows N0.1 m3 and catchment areas
N10 km2 are required to be assessed (i.e. are considered as “water bod-
ies”). To solve these problems, LIFE+ TRivers project in Spain aims to
provide Water Agencies with methodologies to adequate include
NPRS in the RBMPs. Italy formally included NPRS in standard monitor-
ing programs since the adoption of an official typology for the WFD,
but the WFD has primarily been implemented for catchments larger
than 10 km2 (MATTM, 2008), thus ignoring a large number of NPRS.
The separation of NPRS from perennial ones was set as the first key fac-
tor in the Italian river typology (Buffagni et al., 2006) to emphasize their
distinctiveness and theneed for incorporating hydrological information.
Three major categories of NP streams are recognized, being divided by
the observed/expected number of dry months per year: ‘intermittent’
(water N8 months), ‘ephemeral’ (water b8 months) and ‘episodic’
(water only present after intense precipitation events). Eventually,
four NPRS types are recognized for the aims of WFD monitoring, with
episodic streams being excluded. In all Italian regions where they are
present, the routinemonitoring of such types is bringing a rapid growth
in data availability and sharper focus on management options. In
Greece, the 1st River Basin Management Plans (RBMPs) refer to rivers
and streamswith a Strahler of class 4 and higher (EC, 2015), thus ignor-
ing a vast number of headwater NPRS. For the 2nd RBMPs, Greece is ap-
plying the RM-5 typology which includes two subcategories; natural or
artificial intermittent and ephemeral rivers and streams. As intermittent
are termed rivers and streams that cease to flow for weeks or months,
whereas as ephemeral are considered streamswith a hydroperiod rang-
ing from days to several weeks. In Cyprus, with few PRS, NPRS stream
flow data covering the whole gradient from perennial to episodic rivers
does exist. However, the spatial distribution of the differentflow regime
types has been quantified only very recently (Dörflinger in ENVECO S.A.
and I.A.CO Ltd., 2013). Still, only catchmentswith an area ≥ 10 km2were
considered and 1st order streamswere not taken into account. In the 1st
River Basin Management Plan of Cyprus, perennial and non-perennial
river types had been distinguished already (Karavokyris and Partners
Consulting Engineers S.A. and Kaimaki, 2011). However, further distinc-
tion between streams with intermittent and ephemeral flow regime
was not done and this hampered proper biological assessment. There-
fore, the Temporary Stream Regime Tool (TSR-Tool) described by
Gallart et al. (2012) was adopted as basis for the new stream typology
and thus the principle of flow continuity is introduced in the 2nd
River Basin Management Plan (Ministry of Agriculture, Natural
Resources and Environment, 2011). The new typology consists of four
types, three of which are NPRS, and there are separate types for inter-
mittent and ephemeral flow regimes. However, most ephemeral
streams are proposed to not be considered as water bodies any more,
in comparison with the 1st RBMP. Nevertheless, it is proposed to mon-
itor water and sediments of ephemeral streams and to publish annual
reports with the results.

3.3.2. Ecological classification
For the assessment of aquatic macrophytes, Papastergiadou and

Manolaki (2012) have developed the dedicated MMI index for Cyprus'
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R-M5 type streams. Specific macroinvertebrate indices, such as the Ibe-
rian Mediterranean Multimetric Index (IBMWP: Alba-Tercedor et al.,
2002), the multimetric IM9 for Portuguese rivers (Pinto et al., 2004)
and the STAR ICMi index (Buffagni et al., 2006b), which is applied in
Italy, Greece and Cyprus, have been developed to support the imple-
mentation of the WFD. However, these indexes depend on the hydro-
logical period (wet and dry), and therefore hydrological characteristics
should be considered in order to calculate reference conditions for
each period (Buffagni et al., 2009; Munné and Prat, 2009). If the hydro-
logical period is not considered, metrics such as IASPT or the IMMi-L
could be more appropriate because they are less sensitive to hydrolog-
ical variations (Munné and Prat, 2009; 2011; Sánchez-Montoya et al.,
2010). Furthermore, methodologies to guide managers on the timing
of macroinvertebrate sampling for the purpose of assessing the ecolog-
ical status have been also developed (Prat et al., 2014). For example,
when NPRS monitoring is applied during the flowing phase, standard
ecological assessment methods for perennial streams may be used
(Prat et al., 2014). One example is the IPS index (Cemagref, 1982)
which is the intercalibration index for the assessment of phytobenthos
in R-M5 rivers of Cyprus, Portugal and Spain (European Commission,
2013). Also, a combination of selectedmetrics and associated thresholds
were proposed in order to assess the aquatic state in reference NPRS, es-
pecially in the absence of hydrological data (Cid et al., 2016). However,
to sample NPRS only in suitable time periods (Prat et al., 2014) raises
problems for routine monitoring programs, since in many cases hydro-
logical information is missing. Even when long-term hydrographs are
available, it is almost impossible to predict the hydrological regime of
these systems so that planning of appropriate sampling timing becomes
unrealistic. In Italy, guidelines were provided on how to manage sam-
pling of e.g. aquatic macroinvertebrates in NPRS (Buffagni and Erba,
2014). Since the possibility to forecast hydrological conditions is limit-
ed, complementary approacheswere proposed to correct reference con-
ditions, based on the actual habitat conditions in the period when
sampling was performed (Buffagni et al., 2009). The exceptions to this
are intermittent rivers with a temporally stable wet period as is the
case of several streams in Cyprus. Still, even in these streams the short
period of suitable flow makes the implementation of routine monitor-
ing programs difficult. It should be also taken into account that the
large majority of existing metrics refer to intermittent rivers thus indi-
cating the lack of methods for the ecological classification of ephemeral
streams. Realistically, the potential adoption of new biological metrics
dedicated to NPRS will supplement the existing systems by providing
correction factors in classification.

3.3.3. Establishment of ecological flows and RBMPs
The EU-Med countries, acknowledging the adverse effects of inade-

quate water management on lotic ecosystems, started incorporating
ecological flow requirements into their national legislation. However,
minimum flow requirements and hydropeaking issues have been only
partly incorporated in previous RBMPs by the Member States (Benítez
and Schmidt, 2012). In Portugal, the Ordinance 1450/2007 made man-
datory a study defining an ecological flow regime downstream of
dams, and Law No 7/2008, although not yet implemented, states that
the owner must sustain a flow regime adapted to fish life cycles, with
the aim of maintaining ecosystem integrity (European Commission,
2015). In addition, the management and conservation of a NPR basin
(Pardiela) has been addressed (Rosado et al., 2012). The Spanish
Water Law (RDL 1/2001, L11/2005) imposes environmental flows for
the conservation of fish assemblages and riparian vegetation. Ecological
flow requirements were defined for over 400 water bodies, based on
hydrological and hydrobiological methods for target species (EEA,
2012). In France, regulation of water abstraction is implemented in
the RBMs in basins with quantitative water deficits, to ensure the
good functioning of aquatic ecosystems (European Commission,
2015). Environmental flows are also prescribed in the Italian national
legislation. As a general rule, at least 10% of the natural flow (yearly
average with possible adjustments for specific months and conditions)
should be preserved, but often this can be reduced to 5%, or in justified
cases can reach a status of complete surface desiccation. It is the respon-
sibility of the individual River Basin Authority to set up specific rules for
rivers under their jurisdiction, and in some cases this may lead to more
protective flow rates. In 2016, in the 1st Plan review and update (2nd
cycle planning River Basin Management Plan 2015–2021) of the
“Appennino Meridionale District”, the Apulia Region fixed ecological
flow requirements specific for NPRS, based on hydrological criteria. It
has been established that e-flow has to vary through the year following
the naturalflow regime and it can be zero during the natural dry period,
as it cannot be higher than natural streamflow. More in general, a re-
cently established working group chaired by the Italian Ministry of En-
vironment is currently drafting e-flows criteria to be transferred into a
national legislative decree, which will cover NPRS too. Similarly, in
Greece, a provisional law (Greek Official Gazette 2464/03.12.2008) de-
fines a minimum ecological flow requirements based on hydrological
criteria and a preliminary RBMP has been developed (Evrotas River
basin, Greece; see Nikolaidis et al., 2009; Vardakas et al., 2009;
Demetropoulou et al., 2010). In Cyprus, the Integrated Water Manage-
ment Law (N.79(Ι)/2010) provides guidelines to impose ecological
flows. The Cyprus River Basin Management Plan (RBMP) includes min-
imum flow thresholds for all major dams (Karavokyris et al., 2011).

In the course of the WFD implementation, technical reports (ETC/
ICM Technical Report 2/2012, EEA, 2012) indicated that habitat and
hydromorphological alterations are affecting almost 40% of river water
bodies in Europe, preventing them from reaching good ecological status.
In an effort to balance water allocation between human water needs
and aquatic ecosystems, the European Commission provided ecological
flows (e-flows) CIS Guidance (European Commission, 2015) to facilitate
the achievement of theWFD environmental objectives, ecosystem func-
tionality, and a sustainable use of the European water resources. In this
document, e-flows are considered within the context of the WFD as “a
hydrological regime consistent with the achievement of the environ-
mental objectives of the WFD in natural surface water bodies as men-
tioned in Article 4(1)”. Thus, in cases where hydrological alterations
are likely to prevent the achievement of theWFD environmental objec-
tives, an assessment of the gap between the currentflow regime and the
e-flows should be conducted. This is particularly important for artificial
NP water bodies where, if good status is not achieved, the restoration of
an appropriate, near-natural flow regime, should be ensured by the
PoMs within the RBMPs. It is thus expected that national legislations
on ecological-flows will be modified accordingly.

Specific measures for the efficient management and conservation of
NPRS ecosystems, include, among others, the restoration of flow re-
gimes for fragmented and artificially dry ones. Tomaintain their ecolog-
ical integrity the protection of refugia is essential (Pires et al., 1999;
Magoulick and Kobza, 2003). Riparian reforestation (Tzoraki et al.,
2014) and the increase of the quality and quantity of tree-related habi-
tats (Buffagni et al., 2016) are measures related to habitat conservation
and pollution abatement duringflood events. The application of floating
islands may be a technically and economically efficient method to de-
crease pollution, particularly during low flow periods (Pavlineri et al.,
2017).

However, with the exception of France, specific management and
conservation measures have not been yet applied for EU-Med NPRS. In
the existing Spanish RBMPs, NPRS have not been included. Neverthe-
less, some water agencies, such as the Júcar and the Catalan Water
Agency may benefit from their involvement in the TRivers project for
their future RBMPs. In Italy, the 1st RBMP and its review and update
identified a number of basic and supplementary measures to restore
river ecosystems and achieve the environmental objectives. Several
pilot projects focusing on water resources protection, habitat restora-
tion, and monitoring were sponsored and supported. However, the
measures, as well as the pilot projects, are not specifically oriented to
NPRS. Also in Greece the 1st RBMP does not include any measures
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particularly targetingNPRS, since the latter have not been considered as
a separate river type. The 2nd RBMP however may consider flow resto-
ration measures for artificially dry rivers and streams. Finally, in the
Draft of the 2nd Cyprus RBMP (LDK Consultants S.A. and Ecos
Consulting S.A., 2015), environmental flows targeted at reaches of
NPRS of special ecological importance are foreseen.

4. Future perspectives

4.1. Basic research priorities

4.1.1. Hydrological research needs (estimation and restoration of natural
flow regimes)

The general lack of long-term hydrological data impedes
reconstructing the “natural” flow regimeof NPRS, aswell as defining en-
vironmental flow regime requirements (e.g. European Commission,
2015), and developing adequate flow restoration measures to main-
tain/restore a good ecological status. Hydrological models have limita-
tions due to the highly unpredictable flow regime and the karstic
character of many NPRS in the EU-Med, the complex interactions with
and among anthropogenic pressures, and the lack of information on
the physiographic and environmental conditions of many catchments
(Singh andWoolhiser, 2002; De Girolamo et al., 2015b). Indeed, a com-
monmethodology to define the “natural” flow regime, in the absence of
historical hydrological data, is still missing. This is further complicated
by major knowledge and information gaps, notably on water abstrac-
tion for agriculture (WWF, 2003; Wriedt et al., 2009). In countries
such as Greece and Spain, the reported data on water abstraction most
probably underestimate the water uses for agriculture, mainly due to
a high percentage of illegal and unrecorded abstractions. In Spain, for
example, it is estimated that agriculture abstracts about 45% more
water than officially reported (Wriedt et al., 2009), whereas in Greece,
the scale of Illegal water abstraction is believed to be enormous and im-
possible to estimate under the current organisational status. Therefore,
the EU-Med state authorities must put much more effort into monitor-
ingflow conditions and groundwater levels, and into calculating the rel-
ative proportion ofwater resources that are abstracted for irrigation and
other uses. In the case of NPRS, modeling approaches cannot substitute
for real data gathering.

4.1.2. Biological research challenges

4.1.2.1. Diversity, metapopulation and metacommunity dynamics. Up to
now, most NPRS research has focused on the differences in taxonomic
and functional diversity between PRS and NPRS in the EU-Med coun-
tries. Less information is, however, available on the genetic diversity
and structure of populations and assemblages in NPRS (but see Múrria
et al., 2010). Moreover, most population and community-ecology stud-
ies in NPRS have focused on lotic habitats. Understanding the underly-
ing mechanisms of drying effects on metapopulation and
metacommunity dynamics remains also a major challenge (see Múrria
et al., 2010; Datry et al., 2016a), though it is critical for conservation
and restoration planning. Furthermore, thorough analyses of the eco-
logical consequences of artificial river drying on biodiversity require a
distinct aquatic–terrestrial perspective, both in space and time (Datry
et al., 2014a). Moreover, it remains unclear if assemblages from natural
and artificial NPRs are similar during flowing and non-flowing phases.
Finally, we know very little about the importance of the dry phase for
terrestrial organisms, despite commendable ongoing research efforts.

4.1.2.2. Seasonal dynamics of biotic assemblages. Limited information ex-
ists on the seasonal dynamics (including flood events) of invertebrate
and fish assemblages in Mediterranean NPRS (Hershkovitz and Gasith,
2013), due to the lack of adequate data. Hence, research on the natural
variation of these assemblages during the different water phases of the
NPRS, aswell as on habitat availability at various time scales, is urgently
needed (Robson et al., 2005). This will allow re-defining representative
reference conditions and metrics for the ecological classification of
NPRS.

4.1.2.3. Environmental requirements of biota. Natural drying and
rewetting cycles may enhance the resilience and adaptation of popula-
tions to future environmental changes (Datry et al., 2014a). However, a
further increase in artificial desiccation, in combination with a deterio-
ration in water quality and habitat conditions, makes imperative the re-
search on species-specific environmental linkages, feedbacks and
thresholds, such as flow requirements, temperature and salinity prefer-
ences, as well as on dispersal limitations of aquatic and terrestrial biota
(Hershkovitz and Gasith, 2013; Datry et al., 2014b).

4.1.2.4. Dry phase (dry river beds) and bioassessments. Despite recent
progress in understanding the role of dry channels as important habitats
for terrestrial arthropods (e.g. Wishart, 2000; Larned et al., 2007;
Steward et al., 2011; Steward et al., 2012; Corti and Datry, 2015; Corti
et al., 2013; Corti and Datry, 2014), the terrestrial phase is not yet inte-
grated into bioassessment strategies. We also need to consider the en-
tire hydrological cycle in order to allow a more comprehensive
assessment of the ecological status of Mediterranean NPRS (Prat et al.,
2014). The role of a dry river bed as a movement and dispersal corridor
for terrestrial vertebrates has only recently been explored (Sánchez-
Montoya et al., 2016). At the same time, the role of microbial assem-
blages during the dry phase has been studied more recently (Timoner,
2014; Timoner et al., 2014a, 2014b, 2014c), and has shown their rele-
vant resistance to drying and resilience to flow return of these assem-
blages. A major environmental tipping point is when PRS turn into
NPRS; therefore, we need to identify the areas that are most sensitive
to shifting from one environmental state to an alternate state (i.e.
early warning assessment).

4.1.3. Biogeochemical research needs
Understanding the role of intermittent rivers in catchment-, region-

al-, and global-scale biogeochemical cycles requires identifying the sin-
gularities of biogeochemical processes in NPRS. Organic matter and
nutrient storage and transfer rates may be higher in NPRS compared
to PRS due to their pulsed nature (Datry et al., 2014a), while in situ
transformation rates may be more important in PRS. Therefore, we
need to consider the spatial and temporal linkages of perennial and
non-perennial sections and periods within whole river networks. Even
small changes in the hydrological regime may turn a system from a
source to a sink, and vice versa, for nutrients and organic carbon. How-
ever, relevant empirical evidence is still lacking.

Thedrought-inducedhydrological disconnection inNPRS entails a dis-
tinct spatiotemporal heterogeneity along watercourses, which translates
into very different sources of dissolved organic matter, potentially to be
respired by the biota (Casas-Ruiz et al., 2016). Microbes in dry stream
beds exhibit a higher respiration capacity than those in flowing channels,
and reach similar microbial activity rates than in upland soils (Gómez-
Gener et al., 2016). The biogeochemical understanding of dry channels
is still at its infancy, and muchmore effort is needed to quantify their rele-
vance at the catchment and network scale. Furthermore, the ecological and
societal consequences of major organic and nutrient pulses from NPRS
during first flood events remain mostly unexplored (Bernal et al., 2013).
Also the impact offirst pulses on the transport and retentionof priority sub-
stances and specific pollutants remains unknown (Dahm et al., 2016).

Future research should take advantage of the achievements in hy-
drology, aquatic biogeochemistry and advanced sensor and information
technologies, to focus on in-situ monitoring and on targeted field and
mesocosm experiments. This should include surface/groundwater in-
teractions, as well as C, N and P metabolism and interactions at the
water/sediment interface. Moreover, the cause/effect relationships be-
tween pressures and biogeochemical processes on the onehand, and bi-
otic impacts on the other, are still unexplored. Thus, targeted



13N.T. Skoulikidis et al. / Science of the Total Environment 577 (2017) 1–18
experiments are required that can contribute to unravel short-termvar-
iability and “tipping points” of biogeochemical and ecological processes
during the desiccation phase and during flush flood events, as well as to
explore their effects on water quality and biota. Understanding these
processes may help quantifying particular pressures causing ecosystem
degradation, and thus contributing to the application of appropriate
measures to maintain/restore the remaining near-natural NPRS.

4.2. Applied research priorities

4.2.1. Definition and mapping
Wedo not know yet the detailed numbers, location, areal extent and

length of NPRS in the EU-Med area. Also definitions on the boundaries of
intermittent, ephemeral and episodic rivers and streams still remain
vague. Thus, the classification and surveying mechanisms must be re-
fined, validated and standardized. “Dotted lines” on topographic maps
are spatially inaccurate, and therefore unreliable in efforts to locate
and estimate numbers of NPRS. Moreover, EU-Med MS still have differ-
ent perceptions on how to defineNPRS; EU-Med countries use different
topographic mapping resolutions, which lead to very different estima-
tions of the total number and length of streams (McDonοugh et al.,
2011). Hence, many NPRS are excluded from assessments. It is obvious
that a Europe-wide definition and comprehensive classification of NPRS
is urgently required, as well as a common mapping and registration
strategy for the EU-Med basins, taking into consideration local varia-
tions. Since NRPS are often considered as possessing no economic
value, it is unlikely that managers are going to install flow gauging sta-
tions in these catchments; thus, mapping of NPRS could be, alternative-
ly, achieved through citizen-science projects. In some regions of France,
for example, fisher associations are mapping flow states across
N3500 km of river networks, by means of visual observation (Datry et
al., 2016b). Such efforts could be applied at the European scale, current-
ly one of the goals of the Cost Action SMIRES.

4.2.2. Monitoring
Pronounced hydrological variations of NPRS cause pulsed biogeo-

chemical and ecological processes that translate into short-term alter-
ations in ecosystem structures and functions. Thus, hydrological and
ecological monitoring schemes must consider and adapt to this varia-
tion, in order to capture short-term changes in hydromorphological,
ecological and biogeochemical processes, and to understand water
quality and biotic response variations.

4.2.3. Typological classification
The typological approach of Mediterranean rivers, especially of

NPRS, is inadequate, and improperly incorporated into the RBMPs.
Since, flow-gauging monitoring programs have generally ignored
NPRS, hydrological information is generally missing (Acuña et al.,
2014; Datry et al., 2014a). We thus lack the data required for assessing
hydrological regimes and quantifying zero-flow days, in order to define
the hydrological type of a given NPRS. A more dynamic typology,
compared to the existing ones, coupled with advanced hydrological
monitoring techniques, should be developed, considering
hydromorphological changes along the river continuum, seasonal and
inter-annual variability, as well as biological responses. When a river
typology has to be compatible with biology, e.g. for WFD monitoring
and classification, habitat variability and expected biological conditions
should be defined after identifying the actual habitat conditions experi-
enced by biota (e.g. Buffagni et al., 2009).

4.2.4. Development of appropriate metrics for ecological status assessment
High biological variability due to high hydrological instability of

NPRS, in particular under climate change conditions (e.g. Bonada and
Resh, 2013), pose a challenge in devising suitable approaches to assess
ecological status. The cumulative effects of hydrologic variability, ante-
cedent hydrologic conditions and drought events on biological
assessment systems currently used, are largely unknown. Setting refer-
ence conditions, that may vary seasonally, can be problematic (Feio et
al., 2014b; Cid et al., 2016), while classifying ecological status in periods
close to the dry season is also an issue, as biological assemblages can
show quite different attributes compared to those during other flowpe-
riods (García-Roger et al., 2013). In this latter circumstance, an increase
in lentic conditions is often associatedwith a decrease in the value of the
metrics normally applied, possibly causing a serious underestimation of
the ecological status. In altered water bodies, these hydrology-related
factors oftenmask pollution,water abstraction andmorphological alter-
ation, and make it arduous to disentangle the effects of different pres-
sures on benthic assemblages. As aforementioned, to sample NPRS
only in suitable timeperiods (Prat et al., 2014) is problematic for routine
monitoring programs, since it is almost impossible to predict the hydro-
logical regime of these systems. Thus, additional approaches should be
developed to assess the ecological status of NPRS.

A first step towards a successful and cost-effective ecological status
appraisal in NPRS would be to test the performance of existing classifica-
tion systems and, if necessary, refine them. Furthermore, in order to bet-
ter understand the differences in biotic assemblages between PRS and
NPRS and todevelop appropriatemetrics forNPRS, future research should
consider rivers and streams with similar typological and habitat charac-
teristics. Moreover, special focus has to be placed on detecting effects
other than those of pollution only, identifying the contribution of specific
causes and pressures in shaping NPRS assemblages (e.g. Buffagni et al.,
2016). Also, the ranking of the potential influence of different pressures
and the definition of the breadth of biological response gradients are
major issues of recent research activities (Gallart et al., 2012; Prat et al.,
2014). New approaches and metrics, or alternatively dedicated refine-
ments of existing classification systems, are required for NPRS, while re-
views of specific methodological aspects would be also highly valuable.
In fact, though there were some recent initiatives to improve the effec-
tiveness of ecological status assessment in NPRS (e.g. Prat et al., 2014;
Cid et al., 2016), more efforts are required in order to allow application
in ephemeral/episodic streams too (Argyroudi et al., 2009; Nikolaidis et
al., 2013). Finally, data use on physico-chemical elements and related
classification systems forNPRShas to be revised, since biogeochemical cy-
clesmay differ betweenNPRS and PRS, and organicmatter dynamicsmay
vary more distinctly in NPRS than in PRS (Datry et al., 2014a).

4.3. Conclusions

The current paper reviews the state-of-the-art of research andman-
agement efforts, achievements and gaps regarding EU-Med NPRS, and
proposes future research and management priorities. Major research
activities during the last 15 years have considerably improved our un-
derstanding of the various structural and functional aspects of NPRS.
However, NPRS still remain one of the least known aquatic ecosystems
globally. The Greek philosopher Heraclitus (c. 535–c. 475 BCE) stated
“Everything flows and nothing abides” and “Ever-newer waters flow
on those who step into the same rivers” emphasizing the perpetual
flux of all things. These famous aphorisms apply particularly to EU-
Med NPRS, which are characterized by complex and highly unstable
functions, driven by dynamic and often unpredictable hydro-meteoro-
logical and biogeochemical and ecological processes, further augmented
by human pressures and climate change.

NPRS are particularly vulnerable, because, despite some efforts to
that direction, they still lack adequate legislative and policy protection,
as well as appropriate management practices, especially witihin the
frame of RBMPs; indeed, within the EU-Med RBMPs developed up to
date, not all types of NPRS are included, while specific management
and conservation measures have not been yet applied though relevant
measures, such as flow restoration, have been identified in some more
recent RBMPs. It is thus vital to improve the legislative framework and
implement effective measures concerning appropriate monitoring, sus-
tainable management, as well as conservation and protection of EU-
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Med NPRS. Efficient management however, requires a better under-
standing of NPRS structural and functional attributes. For that purpose,
targeted interdisciplinary research is required. Therefore, a close coop-
eration among research groups actively involved in various disciplines
related to the study of NPRS, such as hydro(geo)logy, hydrobiology, bio-
geochemistry, ecology, and advanced monitoring technologies, is ur-
gently needed. The incorporation of social scientists and economists
will be also very fruitful in order to highlight the value of NPRS to society
from an ecosystem service point-of-view. Recent initiatives, such as the
SMIRES COST Action, may contribute to setting and implementing such
research and management priorities.

As our scientific understanding of NPRS is increasing, the importance
of including them in policy and management decisions of the EU-Med
states will be highly recognized. In fact, the translation of scientific
work to legislation in management and protection is crucial. Within
this frame, the MIRAGE project recommended specific additions to
WFD (Articles 2, 4, 5 and 11), by addressing the particular characteris-
tics of NPRS, ultimately aiming to their efficient management and pro-
tection. At the regional scale, the “Instrucción de Planificación
Hidrológica”, in Spain, includes guidelines for water management, fol-
lowing theWFD and the indices proposed to evaluate the ecological sta-
tus of Spanish rivers, mostly based on the work produced within the
GUADALMED project. In addition, the LIFE+ Trivers project can provide
useful information for managing NPRS in the EU-Med countries.

Currently, NPRS are increasingly beeing embeded in the national
RBMPs. The incorporation of the e-flows CIS Guidance (European
Comission, 2015) in forthcoming RBMPs, as well as the deterioration
principle of the EuropeanCourt of Justice (ECJ), may further promote ef-
forts for NPRS protection by securing the restoration of flow regimes.
However, in order to better integrate NPRS in forthcoming RBMPs and
apply appropriate management and conservation measures, a close co-
operation between scientists, EU and national policy makers, as well as
local management authorities is urgently required.

Concurrently to the implementation of specific conservation mea-
sures, there is anurgent need to define economic alternatives to existing
practices in irrigated farming at an EU-Med scale, in order to reduce
overall water consumption, in particular during the ecologically most
sensitive periods. This must coincide with the development of modern
planning instruments, more effective land use policies and the linking
of the current Common Agricultural Policy to the Horizon 2020 strategy
(Nikolaidis et al., 2013).
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