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A B S T R A C T

We describe the growth dynamics of a harvested fish population in a random environment using a stochastic
differential equation logistic model, where the harvest term depends on a constant or a variable fishing effort.
We consider revenues to be proportional to the yield and costs to be quadratic in terms of effort. We compare the
optimal expected profit obtained with two types of harvesting policies, one based on variable effort, which is
inapplicable, and the other based on a constant effort, which is applicable and sustainable. We answer two new
questions: (a) What is the constant effort that optimizes the expected profit per unit time? (b) How do the two
policies compare in terms of performance? We show that, in a realistic situation, there is only a slight reduction
in profit when choosing the applicable constant effort policy instead of the inapplicable policy with variable
effort.

1. Introduction

In a deterministic environment, the logistic growth model for a
harvested population can be described, in terms of the per capita growth
rate, by the ordinary differential equation (ODE)
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where X(t) is the population size at time t, measured as biomass or as
number of individuals, r > 0 is the intrinsic growth rate of the popu-
lation, K > 0 is the carrying capacity of the environment, q> 0 is the
catchability coefficient, E(t) ≥ 0 is the fishing effort and X(0) = x> 0
represents the population size at time 0. The yield per unit time from
harvesting is denoted by H(t) = qE(t)X(t).

However, the environment is subject to significant random fluc-
tuations that affect the population per capita natural growth rate. The
effect of these fluctuations can be approximated by a white noise σε(t),
where ε(t) is a standard white noise and σ > 0 measures the strength of
environmental fluctuations. Therefore, the above ODE Eq. (1) must be
updated to the stochastic differential equation (SDE)
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which can be written in the standard format
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where ∫=W t ε s ds( ) ( )t
0 is a standard Wiener process. We will assume

that r > σ2/2, otherwise the population will rendered extinct, even in
the absence of harvesting (see Braumann, 1985).

Stochastic differential equations have been studied as a way to ex-
plain many physical, biological, economic and social phenomena. A
particular case is the application (starting with the pioneering work of
Beddington and May (1977)) to the growth dynamics of a harvested
population subject to a randomly varying environment, with the pur-
pose of obtaining optimal harvesting policies. Such policies usually are
intended to maximize the expected yield or profit over a finite or in-
finite time horizon T. Since population size depends on the fishing ef-
fort, it seems natural to consider E(t) as a control and apply optimal
control techniques to achieve either yield or profit optimization, dis-
counted by a social rate.

The profit per unit time can be defined as the difference between
sales revenue and fishing costs, i.e.,

≔ −P t R t C t( ) ( ) ( ),

where R(t) and C(t) are respectively the revenue and cost per unit time.
We consider the revenue per unit time to be proportional to the yield,

=R t pH t( ) ( ),
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where p > 0 is the price per unit of yield. The cost of harvest per unit
time is assumed to depend on effort and to have a quadratic form given
by

= = +C t c E t E t c E t c c E t( ) ( ( )) ( ), with ( ( )) ( ),1 2

where c(E(t)) is the cost per unit effort and c1, c2 > 0 are constants. The
quadratic cost structure incorporates the case where the fishermen need
to use less efficient vessels and fishing technologies or pay higher
overtime wages to implement an extraordinary high effort (see Clark,
1976, 1990). However, other more complicated profit structures can be
used, as well as other population growth models (for instance, the
Gompertz model instead of the logistic). The methodology would be
similar to the one we use in this paper.

In the deterministic case, there is a quite comprehensive account of
optimal harvesting policies regarding yield or profit optimization
(Clark, 1976, 1990). Under general assumptions, unless we are close to
the end of a finite time horizon T, the optimal policy is to harvest with
maximum intensity (which can be limited to a maximum harvesting
effort or be unlimited) when the population is above a critical threshold
and stop harvesting (zero effort) when the population is below that
threshold. Once the threshold is reached, one just needs to keep the
harvesting rate constant at an appropriate value so that the population
remains at the threshold size. However, when the population is below
the threshold, the fishery should be closed until the threshold is
reached, which may take a while.

Stochastic optimal control methods were also applied to derive
optimal harvesting strategies in a randomly varying environment (e.g.
Alvarez, 2000a,b; Alvarez and Shepp, 1998; Arnason et al., 2004;
Hanson and Ryan, 1998; Lande et al., 1994, 1995; Lungu and Øksendal,
1996; Suri, 2008). The optimal policy is similar to the deterministic
case, i.e., harvest with maximum intensity when the population is
above a critical threshold (not necessarily the same as in the determi-
nistic case) and stop harvesting when below the threshold. However,
after the threshold size is attained, due to random fluctuations of the
environment, population size will keep varying. In this case, fishing
effort must be adjusted at every instant, so that the size of the popu-
lation does not go above the equilibrium value. Such policies imply that
the effort changes frequently and abruptly, according to the random
fluctuations of the population. Sudden frequent transitions between
quite variable effort levels are not compatible with the logistics of
fisheries. Besides, the period of low or no harvesting poses social and
economical undesirable implications. In addition to such shortcomings,
these optimal policies require the knowledge of the population size at
every instant, to define the appropriate level of effort. The estimation of
the population size is a difficult, costly, time consuming and inaccurate
task and, for these reasons, and the others pointed above, these policies
should be considered unacceptable and inapplicable.

In Braumann, 1981, 1985, 2008, a constant fishing effort, E(t) ≡ E,
was assumed, providing an alternative approach to optimal harvesting.
For a large class of models (including the logistic), it was found that,
taking a constant effort in Eq. (2), there is, under mild conditions, a
stochastic sustainable behaviour. Namely, the probability distribution
of the population size at time t will converge, as t→ +∞, to an equi-
librium probability distribution (the so-called stationary or steady-state
distribution) having a probability density function (the so-called sta-
tionary density). For the logistic model, the stationary density function
was found, and the effort E that optimizes the steady-state yield was
determined. The issue of profit optimization, however, was not ad-
dressed.

This paper considers this issue of profit optimization for the sus-
tainable constant effort harvesting policy. This policy, rather than
switching between large and small or null fishing effort, keeps a con-
stant effort and is therefore compatible with the logistics of fisheries.
Furthermore, this alternative policy does not require knowledge of the
population size. However, it will result in a reduction of the profit when
we compare it with the inapplicable optimal policy. We will examine if

such reduction is appreciable or negligible.
Section 2 presents the approach to solve the optimization variable

effort problem through a dynamic programming method. In Section 3
we present the alternative sustainable approach based on constant ef-
fort. Section 4 shows an application with realistic biological and fishing
parameters in which the two policies are compared using numerical and
Monte Carlo methods. We end up, in Section 5, with the conclusions.

Computations were carried out with R (http://r-project.org) and the
code is available as supplementary material.

2. Variable effort optimal policy

This section will summarize the variable effort optimal policy under
a randomly varying environment. We will start the optimization at time
t= 0. Let X(0) = x be the corresponding population size. Furthermore,
harvesting continues up to the time horizon T <+∞ and we work with
the profit present value, i.e., future profits are discounted by a rate
δ > 0 accounting for interest rate and cost of opportunity losses and for
other social rates. For a time t in the horizon [0, T], we define
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= ⎤
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t

T δ τ t( )
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which is, at time t, the expected discounted future profits when the
population size at that time is y.

We want to optimize the expected accumulated discounted profit
earned by the harvester in the interval [0, T],
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where we denote  ⋯ =X x[ | (0) ] by  ⋯[ ]x .
Given that E(t) is used as a control, the optimization is carried out

with respect to E(t). A very important issue emerges when dealing with
fishing effort: should one consider any constraints on effort? In practice,
the effort is always non-negative, hence we must consider E(t) ≥ 0. On
the other hand, the number of tools, gears, hours, vessels and man-
power is finite and limited, so we will consider effort to be constrained
as

≤ ≤ < ∞E t E0 ( ) .max (4)

The optimization problem can be solved by stochastic dynamic
programming theory through Bellman's principle of optimality (see
Bellman, 1957). In terms of optimization theory, our problem is to find
the effort that maximizes V, subject to the growth dynamics given by
Eq. (2) and to the constrains on effort given by Eq. (4). In addition, from
Eq. (3) we get J(X(T), T) = 0, which is a boundary condition. Summing
up, the stochastic optimal control problem is to determine
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s.t.
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The maximizer, i.e., the effort function E(t) that leads to the max-
imum V*, will be called the optimal variable effort and will be denoted
by E*(t).

To solve Eq. (5), one can employ stochastic dynamic programming
to derive the Hamilton-Jacobi-Bellman (HJB) equation (see Hanson,
2007)
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being the unconstrained effort (see Hanson and Ryan, 1998).
Eq. (6) does not have an explicit solution and needs to be solved

numerically. This was done (see Appendix A) by discretizing Eq. (6)
according to a Crank-Nicolson scheme (as in Thomas, 1995).

3. Constant effort optimal policy

To apply a constant effort policy, one considers the particular case
of Eq. (2) where E(t) ≡ E:

= − − + =dX t rX t X t K dt qEX t dt σX t dW t X x( ) ( )(1 ( )/ ) ( ) ( ) ( ), (0) .
(7)

The solution of Eq. (7) is (e.g. Øksendal, 2003) a homogeneous diffu-
sion process with drift and diffusion coefficients given, respectively, by

= − − =a X rX X K qEX b X σ X( ) (1 / ) and ( ) .2 2

As before, to avoid extinction, we will assume that r− qE > σ2/2 (see
Braumann, 1985). The boundaries of the state space are X= 0 and X=
+∞ and, from Braumann (1985), one can see that they are both non-
attractive and thus the solution X(t) exists, is unique and will stay inside
the interval (0, + ∞) for all t≥ 0. It also shows that there exists a
stationary distribution for the population size. In other words, there
exists an equilibrium probability distribution, with probability density
function

∫
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is the speed density (x* > 0 is an arbitrary constant). The speed density
is proportional to the time the population trajectories spend near the
population size X (see Karlin and Taylor, 1981). For our model Eq. (7), f
is given by (see Braumann, 1985)
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Kσ
2

2 .
Let us be clear that this is a stochastic equilibrium, not a determi-

nistic one. In fact, the population size X(t), due to the environmental
fluctuations, does not stabilize into an equilibrium size as in the de-
terministic case. It is the probability distribution of X(t) that stabilizes
into an equilibrium distribution with probability density function given
by f(X), the stationary density. For small values of the noise intensity σ,
the mode of the stationary distribution is close to the stable equilibrium
size of the deterministic model (σ= 0).

The existence of the stationary density plays a central role when
defining the sustainable optimal policy that we are going to study
below, allowing us to take a steady-state approach. We denote by X∞

the random variable with density f, i.e., the random variable exhibiting
the steady-state probabilistic behaviour. Therefore, the expected value
of X∞ is
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This is a good approximation of the expected size of the population
 X[ ]t for large t.

The steady-state structure of the profit per unit time is given by

= − = − −∞ ∞ ∞P R C pqX c c E E( ) ,1 2

where R∞ = pH∞ = pqEX∞ is the sale price and C = c(E)E =
(c1 + c2E)E is the fishing cost. The steady-state optimization problem
consists in maximizing the expected sustainable profit per unit time,
i.e.,
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This is a second degree polynomial and its maximum with respect to E is
obtained by the root of the first derivative. The resulting optimal sus-
tainable effort, E**, and the optimal expected sustainable profit per unit
time,  ≔∞

≥
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Note that the first factor r/(2q) in the expression of E** is the effort that
leads to the MSY (Maximum Sustainable Yield) rK/4 in the determi-
nistic case (σ= 0). The second factor in the expression of E** corrects
that value to account for the profit structure and the intensity σ of
environmental fluctuations.

From expressions (8) and (9) one can see that an increase of the
environmental fluctuations (large σ) will reduce both the optimal sus-
tainable effort and the optimal expected sustainable profit per unit
time. Regarding the economic parameters, one can see from these
equations that an increase of p leads to an increase of both effort and
profit. In contrast, an increase of costs, i.e., an increase on c1 or on c2,
reduces the effort and the profit, as one would expect.

To determine the optimal effort E** using expression (8), we just
need estimates of the population and fishing parameters (from some
stock assessment, e.g. Prager (1994)) and of the economic parameters
(from an economic database collection). The quality of the estimate of
E** depends on the quality of the parameters estimates. This is a diffi-
cult problem, not specific to our models, but of deterministic models as
well and is beyond the scope of this paper.

4. Comparison of policies

The comparison between the optimal harvesting policy (variable
effort) and the sustainable optimal policy (constant effort) cannot be
done directly, since the first one yields the optimal expected accumu-
lated discounted profit over a finite time horizon, V*, and the latter
yields the optimal expected profit per unit time,  ∞P[ **], for a large time
horizon T → +∞. Even so, both policies can be compared if one uses
Monte Carlo simulations. Let

≔ − −
≔ − −

P t pqX t c c E t E t
P t pqX t c c E E

* ( ) ( ( ) * ( )) * ( )
** ( ) ( ( ) **) **

1 2

1 2

be the profit per unit time for the two policies. We can compute, for
both policies, four comparable quantities of interest (* refers to the
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optimal policy and ** refers to the optimal sustainable policy):

1. Expected accumulated discounted profit in the interval [0, T]:
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Since we cannot obtain the expectations [·] analytically nor the integrals
∫ −e P τ dτ* ( )T δτ

0 and ∫ −e P τ dτ** ( )T δτ
0 , we use numerical methods. We ap-

proximate the integrals by discretizing time. The expectations are approxi-
mated by the average of 1000 Monte Carlo simulated trajectories. In the
case of V*, the integral for a trajectory can also be estimated by the value
corresponding to T=0 of the numerical solution J* of the HJB equation.
We did not use that method (which gives numerical values almost indis-
tinguishable from the method we use) since we want a full comparability
with V**, for which such method is not possible.

2. Expected accumulated undiscounted profit in the interval [0,
T]:
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the discount factors):
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Note, for the constant effort optimal policy, that we determine the
constant effort E** that maximizes  ∞P[ ], thus obtaining the optimal
expected profit per unit time at the steady-state  ∞P[ **] given by Eq. (9).
This quantity is, due to the ergodicity of X(t), also the limit as T → +∞
of both the time-average expected profit  ∫=P P τ dτ T** [ ** ( ) ]/u x

T
0 and

(with probability 1) of the observed time-average profit ∫ P τ dτ T** ( ) /T
0

actually experienced by harvesters.

4.1. Basic scenario

The determination of the expected profit values Eqs. (10)–(13) requires
numerical computations. Thus, instead of arbitrary parameters values, we
have decided to set up a basic scenario S0 using realistic values. We found
a quite complete set of parameter values (namely r, K, q, p, c1 and c2) for
the Pacific halibut (Hippoglossus hippoglossus) in Clark (1990) and Hanson
and Ryan (1998) and these are the ones chosen for S0. The other para-
meters, for which we had no information (Emax, σ, x and δ), where chosen
at reasonable values and the time horizon was set at T=50 years. The
complete set of parameter values is listed in Table 1.

The resulting profit values Eqs. (10)–(13) for this basic scenario are
shown in Table 2, where the first column refers to the optimal variable
effort policy, the second column refers to the optimal constant effort
policy, and the third column indicates the percent loss in the profit
value when using the second policy instead of the first.

The first line of Table 2 compares the expected accumulated dis-
counted profit Eq. (10) over the time horizon T= 50 years, V* or V**

according to the policy used. One can see that the second policy implies
a reduction in the expected profit of only 3.2% compared to the first
policy. If one forgets depreciation and looks at the expected accumu-
lated undiscounted profit Eq. (11), it shows a 4.9% expected profit
reduction when comparing the second policy with the first. Obviously,
the percent reductions are the same for the corresponding profits per
year Eqs. (12) and (13), obtained by taking time averages of these
quantities over the 50 year horizon. Therefore, the profit reductions
that occur when considering a constant effort instead of a variable ef-
fort are quite small and, with a constant effort, the fishery manager
does not need to worry about changes on the number of vessels, number
of hooks or number of hours worked (just to name a few possibilities).
This is extremely advantageous in terms of implementation and avoids
out-of-model costs such as the purchase of new equipment to sustain
increased effort periods or payment of unemployment benefits during
effort reduction periods.

Besides the average profits, it is also interesting to look at their
standard deviations, which measure the variability across the simulated
trajectories. The variability of both policies is very similar (Table 2),
with the optimal sustainable policy having a slightly lower variability.

Fig. 1 shows, for scenario S0, what will happen when applying the
optimal variable effort harvesting policy (left side) and the optimal
constant effort sustainable policy (right side), in terms of the evolution,
from time t = 0 to time t = T = 50 years, of the following quantities:

• Population size X(t), on top;

• Optimal effort, in the middle: E*(t) (left) and E** (right);

• Profit per unit time, at the bottom: P*(t) (left) and P**(t) (right).

The thin lines of Fig. 1 show one randomly chosen trajectory, cor-
responding to a possible particular environmental behaviour. It shows
what the harvester would typically observe. The figure also presents the
expected values of the variables, which are averages taken over all
possible environmental behaviours (the one effectively seen and all the
others that might have occurred); dashed lines show the exact values
(only available for the constant effort policy) and solid lines show good
approximations (based on averaging over a 1000 simulated trajec-
tories). Looking at what the harvester typically experiences (thin lines
in Fig. 1), one can see that the two policies behave quite differently.
While for the constant effort policy, we apply the same effort E** irre-
spective of the population size path and of the environmental condi-
tions (middle right, where, of course, we cannot distinguish between
the solid, the thin and the dashed lines), in the optimal policy the effort
E*(t) changes quite frequently and abruptly (thin line on the middle
left). We see that its values depend on time and on the fish population
size (which is influenced by the random fluctuations of environmental

Table 1
Parameter values used in the simulations of the basic scenario S0. The Standardized
Fishing Unit (SFU) measure is defined in Hanson and Ryan (1998).

Item Description Values Units

r Intrinsic growth rate 0.71 year−1

K Carrying capacity 80.5 · 106 kg
q Catchability coefficient 3.30 · 10−6 SFU−1 year−1

Emax Maximum fishing effort 0.7r/q SFU
σ Strength of environmental fluctuations 0.2 year−1/2

x Initial population size 0.5K kg
δ Discount factor 0.05 year−1

p Price per unit yield 1.59 $kg−1

c1 Linear cost parameter 96 · 10−6 $SFU−1 year−1

c2 Quadratic cost parameter 0.10 · 10−6 $SFU−2 year−1

T Time horizon 50 years

Table 2
Numerical comparison between policies of the expected profits 1. to 4. (see expressions
(10)–(13)) for the basic scenario S0. The percent relative difference between the two
policies is denoted by Δ. Besides the expected values, we also present the standard de-
viations (sd). Units are in million dollars for 1. and 2. and in million dollars per year for 3.
and 4.

Optimal policy Optimal sustainable policy Δ (%)

1. V* ≃ 413.586 (sd = 38.32) V** ≃ 400.313 (sd = 35.24) −3.2
2. ≃V * 1129.130u (sd = 88.63) ≃**V 1073.867u (sd = 88.54) −4.9

3. ≃P* 22.529u (sd = 2.09) ≃**P 21.806 (sd = 1.92) −3.2

4. ≃P* 22.583u (sd = 1.77) ≃**P 21.477u (sd = 1.77) −4.9
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conditions), requiring constant evaluation of the fish stock. Further-
more, it exhibits periods of no or low harvesting, posing social burdens
and possible extra costs of unemployment compensation (not con-
sidered in our cost structure), and periods of harvesting at the max-
imum effort Emax, which may also involve extra costs (e.g. investment in
backup equipment or hiring of extra employees not trained in fishing).

Besides looking at the variation of the effort over time, it is also
interesting to look at the time variability experienced by the harvester
on the profit per unit time. For the basic scenario S0, if we look at the
thin lines at the bottom of Fig. 1 (corresponding to the environmental
conditions randomly selected), we see that the optimal policy has fre-
quent periods of zero profit (the periods of zero effort) and a much
larger profit variability over time. A good measure of this variability for
the chosen trajectory is the sample standard deviation of the profit per

unit time values observed at the time instants of the simulations. Such
standard deviation is 13.79 million dollars per year for the optimal
policy and only 4.34 million dollars per year for the optimal sustainable
policy, which provides the harvester with a much steadier profit. Si-
milar results hold when we select other trajectories.

One can also see in Fig. 1 (left side) that the optimal variable effort
policy exhibits a possibly dangerous effect near the time horizon, con-
sisting in a considerable drop of the average population size (see solid
line on top left), corresponding to an increase on the average effort (see
solid line on middle left). This final effort increase is quite natural.
Since “there is no tomorrow”, it is better profitwise to harvest as much
as is profitable “now”, without worrying about stock preservation for
near future fishing.

With the optimal sustainable policy, population size is driven to an
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Fig. 1. Basic scenario S0: mean and randomly chosen sample path for the population, the effort and the profit per unit time. The optimal variable effort policy is on the left side and the
optimal constant effort sustainable policy is on the right side.
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equilibrium probability distribution with an average population size
higher than the one of the variable effort policy. This expected size at
equilibrium is the mean value of the stationary distribution referred in
Section 3. With the constant effort policy, there is no decay of the ex-
pected population size near the end of the time horizon.

4.2. Alternative scenarios

We will now evaluate the influence of the parameters, by con-
sidering alternative values, usually one lower and one higher than those
in Table 1 for S0. For r and T, since S0 values are high, we consider as
alternatives two lower values. Since x and K can be scaled together, we
choose only to change x. The same applies to r and q, so we did not
study changes in q.

This leads to alternative scenarios S1 to S18 (Table 3). For each
scenario, we have computed the profit values as in Table 2 and a similar
set of images as in Fig. 1. The profit values are shown in Table 3 and the
figures are presented as supplementary material. The figures for sce-
narios S15, S16, S17 and S18 are not shown since they are almost un-
distinguishable from Fig. 1 of scenario S0.

A general comment concerning Table 3 is that, for almost all the
scenarios, the percent reduction of profit Δ incurred by using the op-
timal constant effort policy instead of the optimal variable effort policy
is quite small, of the order of 0% to 6% for discounted profits and of 2%
to 7% for undiscounted profits. The exceptions are the scenarios S7, S10,
and, in a quite more attenuated way, S11, which exhibit quite higher Δ
values. S7 corresponds to a substantially lower value of r than in the
basic scenario. S10 corresponds to a quite higher value of the intensity
of environmental fluctuations. S11 has a very short time horizon
(T = 10 years), far away from the steady-state for which the constant
effort policies were designed. Actually, designing non-sustainable po-
licies, like the optimal variable effort policies considered here, for such
short time horizons is ill-advised since these policies care not about
future preservation of the stock.

To check the effect of changes in a given parameter, we can com-
pare the results for the basic scenario S0 with the results of the scenarios
corresponding to alternative values of such parameter, using Table 3
and the figures (shown as supplementary material) associated to those
scenarios.

Changing the initial population x (scenarios S1 and S2) affects, for
the optimal variable effort policy, the expected values of population
size, harvesting effort and profit per unit time. This happens only at the
start of the projection period and is due to the longer time it takes for
these expected values to approach their main trends (compare the left
side of Fig. 1 with the left sides of Supplementary Figures 1 and 2). As
for the constant effort policy, since the effort is designed assuming a
steady-state, x has no effect on effort. However, like in the variable
effort policy, it has an effect on the expected population size and on the
expected profit per unit time at the beginning (before the approach to
the mean trend), but, since the process is ergodic, has no effect in the
long-term (as T→ ∞).

Constraining the maximum effort to 0.5 r/q (scenario S3), which
is very close to E**, almost mimics the behaviour of the constant
effort policy. In fact, in this scenario, the difference between V* and
V** is very small. On Supplementary Figure 3 we can confirm the
similarities between the two policies. Raising the maximum effort
to 0.9 r/q (scenario S4) gives, for the optimal variable effort policy,
similar results to the ones in scenario S0, although with slightly
higher profit due to the fact that the restriction on effort is milder.
Obviously, for the optimal constant effort policy, if Emax ≥ E**, the
value of Emax is irrelevant.

Changing δ (scenarios S5 and S6) will, of course, not change the
undiscounted profits for the optimal constant effort policy since this
policy is designed to optimize the steady-state undiscounted profit per
unit time. It has, however, a large effect on the accumulated discounted
profit of both constant effort and variable effort policies, but has little
effect on average profits per unit time (both discounted and un-
discounted). It is also slight the effect, under the variable effort optimal

Table 3
Profit values for the different scenarios Si (i= 1, …, 18). The parameters are the same as those indicated in Table 1 for the base scenario S0, with the exception of the parameter indicated
in the second column, which has the value shown there (using the units of Table 1). The profit values are in million dollars for V*, V**, V *u and **Vu and in million dollars per year for P*,

**P , P*u and **Pu . The Δ columns indicate the percent relative difference between the two policies.

Si Changed parameter V* V** P* **P Δ (%) V *u **Vu P*u **Pu Δ (%)

S0 413.586 400.313 22.529 21.806 −3.2 1129.130 1073.867 22.583 21.477 −4.9

S1 x = 0.25K 378.677 362.817 20.627 19.763 −4.2 1092.856 1030.569 21.857 20.611 −5.7
S2 x = 0.75K 440.168 422.449 23.977 23.011 −4.0 1157.066 1098.360 23.141 21.967 −5.1
S3 Emax = 0.5r/q 400.383 400.313 21.809 21.806 0.0 1092.263 1073.867 21.845 21.477 −1.7
S4 Emax = 0.9r/q 415.555 400.313 22.636 21.806 −3.7 1139.690 1073.867 22.794 21.477 −5.8
S5 δ = 0.00 1130.837 1081.011 22.617 21.620 −4.4 1130.837 1073.867 22.617 21.477 −5.0
S6 δ = 0.10 226.805 219.400 22.834 22.089 −3.3 1113.768 1073.867 22.275 21.477 −3.6
S7 r= 0.10 62.853 46.925 3.424 2.556 −25.3 148.820 122.197 2.976 2.444 −17.9
S8 r= 0.40 233.516 218.961 12.720 11.927 −6.2 628.749 582.937 12.575 11.659 −7.3
S9 σ = 0.10 418.497 416.128 22.796 22.667 −0.6 1138.575 1120.752 22.772 22.415 −1.6
S10 σ = 0.40 379.404 337.350 20.667 18.376 −11.1 1026.306 887.617 20.526 17.752 −13.5
S11 T = 10 187.693 173.281 23.851 22.020 −7.7 238.555 218.376 23.855 21.838 −8.5
S12 T = 25 326.509 311.682 22.881 21.842 −4.5 574.000 539.991 22.960 21.600 −5.9
S13 p = 1.19 310.182 300.229 16.896 16.354 −3.2 846.828 805.385 16.937 16.108 −4.9
S14 p = 1.99 516.990 500.397 28.161 27.257 −3.2 1411.431 1342.348 28.229 26.847 −4.9
S15 c1 = 72 · 10−6 413.586 400.313 22.529 21.806 −3.2 1129.130 1073.867 22.583 21.477 −4.9
S16 c1 = 120 · 10−6 413.586 400.313 22.529 21.806 −3.2 1129.130 1073.866 22.583 21.477 −4.9
S17 c2 = 0.75 · 10−7 413.593 400.319 22.529 21.806 −3.2 1129.149 1073.881 22.583 21.478 −4.9
S18 c2 = 1.25 · 10−7 413.579 400.307 22.528 21.805 −3.2 1129.111 1073.852 22.582 21.477 −4.9

N.M. Brites, C.A. Braumann Fisheries Research 195 (2017) 238–246

243



policy, on the time evolution of the expected values of population size,
optimal variable effort and profit per unit time (see left sides of Fig. 1
and Supplementary Figures 5 and 6).

Intrinsic growth rates lower than 0.7 (scenarios S7 and S8) imply
lower biomass growth and, consequently, also lower profit values,
since the optimal harvesting rates will be smaller for both policy
types.

Comparing scenarios S9 and S10 with S0 shows that a higher intensity of
environmental fluctuations reduces the expected profit for both types of
policies, although the effect is quite mild. Contrary to the average, the in-
fluence on sample trajectories (which is what is experienced) of population
size is quite profound. Although averages do not change much, fluctuations
of the population size about its average will be more intense when σ is high
and will almost fade away as σ approaches zero (deterministic environ-
ment). Obviously, sample paths of the profit per unit time will respond to
changes in population size and, in the case of the variable effort policy, the
same happens to the effort. For the sustainable policy, we had already seen
on Section 3, from the steady-state expressions (8) and (9) of the optimal
effort E** and the optimal profit per unit time  ∞P[ **], that these quantities
decrease with a higher σ.

As already mentioned, when the terminal time T decreases (sce-
narios S11 and S12), the differences between the two policies are more
pronounced. In fact, the optimal sustainable policy ‘needs more time’ to
get close to the stochastic steady-state. The accumulated profits are, in
relation to the base scenario, much smaller since we are talking about
shorter periods of time. However, the average profits per unit time are
very close to the ones in the S0 scenario.

A decrease of 25% (scenario S13) or increase of 25% (scenario S14)
in the unit price p will have an effect of similar magnitude in profit. This
is due to the fact that profit is dominated by the effect of price p, since
the cost parameters c1 and c2 have, in this case, a low magnitude. For
the same reason, variations in the cost parameters, c1 and c2, have very
little influence on profit values.

5. Conclusions

Fish populations live in randomly varying environments and the
effect of that variability on fish dynamics has to be taken into account
when choosing optimal harvesting policies. For that reason, the use of a
stochastic differential equation version of the classical logistic model
with harvesting is appropriate.

The typical approach in the literature is, as for deterministic models,
to use control theory (the harvesting effort being the control) to max-
imize the expected accumulated discounted profit over some time
horizon T. We have used a profit structure where revenues per unit time
are proportional to the yield and costs per unit time are quadratic
functions of the effort.

In the stochastic case, the population fluctuations induced by
the randomly varying environment lead to optimal policies with a
highly variable effort (with frequent periods of no or low har-
vesting, or of harvesting at the maximum possible rate). This is not
compatible with the logistics of fishing and causes social and eco-
nomical problems (intermittent unemployment is just one of them).
Besides, since population size has random fluctuations, knowledge
of the population size at all times is required to determine the op-
timal effort and this is not feasible.

So, we consider as an alternative, sustainable constant effort fishing

policies, which are extremely easy to implement and lead to a stochastic
steady-state. We determine the constant effort that maximizes the ex-
pected profit per unit time at the steady-state. One might think that a
constant effort policy would result in a substantial profit reduction
compared with the optimal variable effort policy, but we have shown
this is not the case.

In order to compare the two harvesting policies, we have considered
four ways of evaluating the expected profit (discounted or not dis-
counted and, for each case, the total accumulated value over a time
horizon or the value per year).

We set up a basic scenario S0 using a 50 year time horizon and
parameter values based on the Pacific halibut (Hippoglossus hippo-
glossus) data. To compute expected profits with good accuracy, we si-
mulated 1000 trajectories of the fish population size. We have also
considered alternative scenarios corresponding to changes of the dif-
ferent parameter values used in scenario S0, to see the influence of such
parameters.

For the basic scenario, the constant effort policy implies a slight
reduction in the average expected accumulated discounted profit of
only 3.2% compared to the variable effort policy. In terms of the un-
discouted profit, the reduction is 4.9%. The corresponding profits per
year present, obviously, the same percent reductions. For the alter-
native scenarios, the percent reduction in the expected profits ranges
from 0% to 7%, except in some extreme scenarios.

So, optimal constant effort policies will typically involve a slight
reduction in profit compared to the optimal variable effort policies, but
are quite easy to implement and do not have the shortcomings of the
optimal variable effort policies.

Fishery managers/regulators do not have to worry about logistic
problems of effort changes and equipment requirements and employ-
ment are kept at a constant level. In contrast, optimal variable effort
policies have frequent strong changes in effort, including frequent
closings of the fishery, posing logistic applicability problems, producing
social burdens and out-of-model costs (such as unemployment com-
pensations) and leading to a great instability in the profit earned by the
harvester.

Furthermore, unlike optimal variable effort policies, in the optimal
constant effort policies there is no need to keep adjusting the effort to
the randomly varying population size, and so there is no need to de-
termine the size of the population at all times. Constant effort policies
also lead the probability distribution of population size to a sustainable
equilibrium with an average population size higher than the final
average size of the optimal harvesting policy.

These methodologies can be applied to similar comparison studies
and other fishery models. This will be the subject of a further paper.
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Appendix A. Crank-Nicolson numerical solution of Eq. (6)

To discretize equation Eq. (6), we consider that:

• the optimization starts at time t = 0 and ends at time t= T <+∞;

• the time interval is uniformly partitioned as

= < < … < =t t t T0 ,n0 1

with − = = = … −+t t t T n j nΔ / , 0, 1, , 1;j j1

• the state variable takes values within the interval [0, 2K], which is
uniformly partitioned as

= < < … < =X X X K0 2 ,m0 1

with − = = = … −+X X X K m i mΔ 2 / , 0, 1, , 1;i i1

• since we have a boundary condition J*(X(T), T) = 0, which is
terminal instead of initial, the computation uses time moving
backwards from T to 0;

• ≔ ≔J J X t E E X t* * ( , ), * * ( , )i j i j i j i j, , , with 0≤ i≤ m and 0 ≤ j≤ n.

The following derivatives are discretized using a Crank-Nicolson
scheme (as in Thomas, 1995 and Suri, 2008):
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Therefore, the discretized version of Eq. (6) is:
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We first compute the free optimal effort using the following dis-
cretization:

• For 1 ≤ i ≤ m− 1 and 0≤ j≤ n − 1,
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In each iteration, we then correct the free optimal effort to obtain the
constrained optimal effort. Namely, for 1 ≤ i ≤ m and 0≤ j ≤ n:
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The discretized version of the HJB equation can be written as a
system of M equations:
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The system can be written, using appropriate matrices A, B and C, in
the form

= +J* J*A B C,− +

with

= ⋯ ≤ ≤J J J J j n* [ * * * ] , 0 ,j j j m j
T

0, 1, ,

where T is the transpose operator. The optimal solution when the
system is at a given value x0 at time t0 is obtained by linear inter-
polation.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.fishres.2017.07.016.
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