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Abstract 

Complex flow systems such as the vascular and respiratory trees are made of large and 
small ducts in series. While the literature has reported extensively cases that are in 
agreement with Hess-Murray law, there are also branching patterns of natural systems 
that deviate from this law. Is it this deviation to Hess-Murray law possible to predict? In 
this study, a numerical analysis was carried out to investigate laminar fluid flow of 
Newtonian and non-Newtonian fluids in T-shaped flow structures with different ratios 
between the sizes of parent and daughter ducts. The performance of the branching 
systems was evaluated in terms of total hydraulic resistance and distribution of shear 
stresses. We showed that the optimal design of a bifurcating ducts not always match a 
constant reduction factor of 2-1/3 for the duct sizes. The results were compared with 
analytical results obtained based on constructal law. 

Keywords: tree flow networks, optimal design, Newtonian and non-Newtonian fluids, 
Hess-Murray law, power-law fluids, numerical study, constructal law. 

1. Introduction

Tree-shaped flow networks have been the subject of numerous investigations 
owing to its importance in understanding the behaviour of natural systems, and for 
the design of manmade systems [1-4]. Blood vessels supply cellular tissues with 
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cells, nutrients and oxygen, and remove waste products of cellular activity, 
through branching vascular networks [5]. The respiratory tree supplies oxygen 
necessary for tissue metabolism and removes the produced carbon dioxide [6]. 
Tissues, which make up the respiratory zone of this tree, support a very large gas 
exchange surface between air and blood that is ventilated and perfused with blood. 
For a fluid transport system the best flow configuration, that connects a point-to-
volume or volume-to-point are tree-shaped, and a compromise must be found 
between large and small ducts [1-3,7]. For the vascular system, assuming a 
Hagen–Poiseuille flow through the vessels, Hess [8] and Murray [9] state that the 
volumetric flow rate must be proportional to the cube of the diameter in a duct 
optimized to require the minimum work to drive and maintain the fluid. Therefore, 
the optimal branching is achieved when the cube of the diameter of a parent vessel 
equals the sum of the cubes of the diameters of the daughters. For symmetric 
vessels, the ratio between diameters of daughters and parent vessels is 2-1/3 (Hess-
Murray law). This optimum way to connect large and small vessels together 
having rigid and impermeable walls is only valid as long as the flow is laminar, 
Newtonian, steady, incompressible and fully developed [5,6,10]. Hess-Murray law 
has also been shown to describe diverse range of biological networks such as 
capillaries and many small arteries and veins, airways of conducting zone of the 
respiratory tract, leaf veins of plants, etc.. Larger arteries and veins, and airways of 
respiratory zone of the lungs, among others, seem do not follow this 2-1/3 rule. 
Besides, turbulent flows would not also be expected to obey to law. In fact, 
Uylings [11] and Bejan et al. [12] showed that turbulent flows require an 
optimally 2-3/7 rule. However, fluid flow in living organisms is essentially laminar 
and evidences suggest that the exposure to turbulent flows might pose some health 
risk [6]. 
Blood includes erythrocytes (red blood cells), leukocytes (white blood cells) and 
thrombocytes (platelets) in an aqueous solution (plasma). Its rheology is largely 
influenced by the behaviour of the erythrocytes, mainly due to high concentration 
[5,13]. Blood flow may be considered as steady or pulsatile, Newtonian or non-
Newtonian. In small vessels distant from the heart, the flow may be approached as 
steady. In larger vessels, the flow is pulsatile due to pumping characteristics 
induced by the heart. Experimental studies suggest that if vessels experiences high 
shear rates (higher than 100 s-1), it is reasonable to consider blood flow as a 
Newtonian fluid [5,13]. However, non-Newtonian effects show up at smaller shear 
rates in vessels such as the capillaries, small arteries and veins. At shear rates 
lower than 100 s-1, blood displays shear-thinning behaviour since its viscosity 
decreases with increasing shear rate. Revellin et al. [14] and Miguel [5] 
incorporate in their studies non-Newtonian rheology to achieve the optimum way 
to connect large and small vessels together.  
Fåhræus and Lindqvist [15] observed a significant decrease of apparent blood 
viscosity in tubes with diameters in the range of 50 – 500 μm (Fåhræus-Lindqvist 
effect). The reason behind this effect is the formation of a cell-free layer near the 
wall of the tube, which has a reduced local viscosity (the core of the tube has a 
higher local viscosity). Blood vessels exhibit diameters from 3 μm to 3 cm, and 
studies considering this effect on bifurcating design would be needed. Miguel [13] 
investigated how the optimal branching of parent to daughter vessels is affected by 
occurrence of Fåhræus-Lindqvist effect. 

445



Although first derived from the principle of minimum work, Hess-Murray law can 
be obtained in the light of the constructal law [1-3]. This law is grounded on the 
idea that flow systems are not purposeless (the ultimate target is to persist) and are 
free to morph in time (evolve), under global constraints. Shape (structure) is the 
constructal path to carry fluid, heat, mass, etc., to accomplish their purpose. The 
constructal laws of vessel´s arrangements were derived based on the demand for 
easier movement, to achieve greater flow access through the generation of a 
particular design (configuration). Bejan et al. [12] showed that the way to connect 
large and small vessels together requires a ratio between diameters of daughters 
and parent vessels of 2-1/3 (Hess-Murray law) and 2-3/7 for laminar and turbulent 
flows, respectively. These authors also derived expressions for the branching 
angles of vessels that facilitate flow access. Relying on the constructal law, and on 
analytical approaches, the rules of design for flows of non-Newtonian fluids 
through bifurcating vessels, and for porous-walled vessels were also predicted 
[5,6]. These rules for connecting large to small vessels together also depend on 
fluid behaviour index and on wall permeability. Despite its ubiquity in nature, 
Hess-Murray’s law as a 2-1/3 rule only maximizes access for Newtonian fluids 
under laminar flows. Notice that, the rules of design obtained based both on 
principle of minimum work and on constructal law are based on 1D and 2D 
analytical approaches. These studies involve many assumptions and 
simplifications, which are based on justifiable and approximations, listed in [10].     
This study aims to obtain new insights into the dynamics of Newtonian and non-
Newtonian flows in bifurcating vessels. A 3D numerical study is performed to 
illustrate fluid flow through T-shaped flow structures. Besides providing a 
possibility for testing design parameters over a large range of values, the 
numerical modelling also offers detailed information about the way that the fluid 
and solid structure interaction occurs.  We combine the constructal approach with 
numerical simulation to analyse these features and to capture the differences 
between flows profiles in different T-structures. Here, we chart these differences, 
with the ultimate aim of explaining the features inherent to an easy access to fluid 
flow. 

2. Mathematical Formulation

2.1. Constructal law of design and extremum principles of entropy production 

It becomes apparent that the emergence of configuration, defined by the 
constructal law, requires that the entropy changes, rather than staying the same [1-
3,16]. Consider that the fluid flow raised to the power of n is proportional to the 
pressure difference. The rate of entropy generated, Sg, is 

n
gdS Q p

dt T



 (1) 
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Here p is the pressure difference (i.e, the potential), Q is the fluid flow (i.e., the 
current), and T is the absolute temperature. For a Newtonian fluid n=1, the flow is 
proportional to the pressure difference. In terms of flow resistance R, Eq. 1 may be 
rewritten as 

2
gdS p

dt RT



      or 

 

2

g

pR
dS dt T




 (2) 

2n
gdS RQ

dt T


      or         

 g
2n

T dS dt
R

Q


 (3) 

Maximum flow access means minimum resistance under constraints: constraint of 
constant p or constraint of constant Q. According to the Eq. 2, minimizing the 
flow resistance for a specified potential (pressure difference), p, corresponds to 
maximization of the entropy generation rate. On the other hand, minimizing the 
flow resistance under a constant current (fluid flow), Q, corresponds to minimizing 
the entropy generation rate (Eq. 3).  

2.2. Problem description 

Here we consider a T-shaped flow system composed by symmetrical cylindrical 
ducts. Parent duct bifurcate and its size changes by a certain factor according to 

2
D

1

D =a
D          and          

2
L

1

L =a
L    (4) 

where D is the diameter, L is the length, and the subscripts 1 and 2 mean parent 
and daughter tubes. Here we consider geometries with aD and aL factors between 
0.1 to 1.0. The following geometric constraints are taken into account [12] 

2 2
1 1 2 2

π D L +2D L =const
4
   (5) 

1 22L L =const (6) 

The meaning of Eqs. 5 and 6 is that the total volume occupied by the tubes and the 
total space occupied by the planar assembly of tubes are fixed.  
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2.3. Governing equations 

The flow is considered to be laminar, steady and incompressible. This 3D flow is 
governed by the continuity equation, 

v 0      (7) 
and the momentum equation 

v( v) P       (8) 

where v is the velocity,  is the density,  is stress and P is the pressure. The 
power-law model is used, and an extra-stress tensor is considered 

ij ij   (9) 

Here Z is the rate of deformation tensor, and the viscosity is 

n 1 0Tk exp
T

  
(10) 

where T is the temperature, T0 is the reference temperature,  is the viscosity,  k is 
the consistency index, and n is the power-law index. For n=1 this equation 
becomes the constitutive equation of a Newtonian fluid. For n<1 the fluid exhibits 
shear-thinning properties, and for n>1 the fluid has shear-thickening properties.  
The Reynolds number for these power-law fluid flows is defined as [16]  

4 3

4 3n 2 n

Dn n
2 n

1

4Re =
3n 1KD

4n
 

 





 
  

             (11) 

where ReDn is the generalized Metzner–Reed Reynolds. 

2.4. Numerical procedure 

The governing Eqs. 7–9 are solved using a finite volume method and employing 
the segregated method with implicit formulation. The SIMPLE algorithm with 
under-relaxation was selected for the pressure–velocity coupling. At the inlet a 
constant mass flow rate is assumed. At the outlet, outflow boundary conditions are 
used to model flow exits where the details of the flow velocity and pressure are 
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not known prior to solution of the flow problem, the outflow boundary condition 
assumes a zero normal gradient for all flow variables except pressure. 
On the walls no-slip boundary conditions are applied. For Eq. 8, the convective 
term is discretized using second-order-upwind scheme in order to obtain 
sufficiently accurate solutions. In order to obtain a stable and accurate iterative 
process, the relaxation factors for momentum and pressure were set to 0.70 and 
0.30, respectively. The residual values of the governing Eqs. 7 and 8 were all set 
to 10-4 and 10-6, respectively. 

3. Results and discussion

In this section we present a comprehensive set of results to a wider range of 
power-law indices (i.e., n=0.776, n=1.000 and n=1.100). The generalized 
Metzner–Reed Reynolds obtained based on Eq. 11 is 100  (i.e., laminar flow). The 
numerical study was carried out using the following fluids  

- Newtonian (n=1):  = 1.1405 kg/m3,  = 1.9043×10-5 Pa.s (air) 
 = 998 kg/m3,  = 8.91×10-4 Pa.s (water) 
 = 1259.9 kg/m3,  = 7.99×10-1 Pa.s (glycerin) 

- non-Newtonian: shear-thinning (n=0.776)  = 1060 kg/m3;  
k = 1.47×10-4 Pa.sn (blood); shear-thickening 
(n=1.100)  = 1260 kg/m3; k = 6.60×10-3 Pa.sn. 

Figure 1.1 Velocity contours (middle plane) for 
air ( = 1.1405 kg/m3;  = 1.9043×10-5 Pa.s) 
across a T-shaped flow structure designed 
according to D2/D1 = L2/L1= 2-1/3  

Figure 1.2 Velocity contours (middle plane) 
water ( = 998 kg/m3;  = 8.91×10-4 Pa.s) 
across a T-shaped flow structure designed 
according to D2/D1 = L2/L1= 2-1/3 
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Figure 1.3 Velocity contours (middle plane) 
glycerin ( = 1259.9 kg/m3;  = 7.99×10-1 Pa.s) 
across a T-shaped flow structure designed 
according to D2/D1 = L2/L1= 2-1/3 

Figure 2.1 Shear stress contours (top plane) for 
air ( = 1.1405 kg/m3;  = 1.9043×10-5 Pa.s) in 
a T-shaped flow structure designed according to 
D2/D1 = L2/L1= 2-1/3 

Figure 2.2 Shear stress contours (top plane) 
water ( = 998 kg/m3;  = 8.91×10-4 Pa.s) in a 
T-shaped flow structure designed according to 
D2/D1 = L2/L1= 2-1/3 

Figure 2.3 Shear stress contours (top plane) 
glycerin ( = 1259.9 kg/m3;  = 7.99×10-1 Pa.s) 
in a T-shaped flow structure designed according 
to D2/D1 = L2/L1= 2-1/3 

Figure 3 Velocity contours (middle plane) for a 
shear-thinning fluid (n=0.776,  = 1060 kg/m3; 
k = 1.47×10-4 Pa.sn ) across a T-shaped flow 
structure designed according to D2/D1 = L2/L1= 
2-1/3

Figure 4 Shear stress contours (top plane) for a 
shear-thinning fluid (n=0.776,  = 1060 kg/m3; 
k = 1.47×10-4 Pa.sn ) in a T-shaped flow 
structure designed according to D2/D1 = L2/L1= 
2-1/3
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Figure 5 Velocity contours (middle plane) for a 
shear-thickening fluid (n=1.100,  = 1260 
kg/m3; k = 6.60×10-3 Pa.sn ) across a T-shaped 
flow structure designed according to D2/D1 = 
L2/L1= 2-1/3 

Figure 6 Shear stress contours (top plane) for a 
shear-thickening fluid (n=1.100,  = 1260 
kg/m3; k = 6.60×10-3 Pa.sn ) in a T-shaped flow 
structure designed according to D2/D1 = L2/L1= 
2-1/3

Figures 1 and 2 show the velocity and shear stress contours for the Newtonian 
fluids. Although air, water and glycerine have different viscosities and densities, 
the velocity and the shear stress profiles are similar. We also find that the flow 
distribution throughout the T-structure is not uniform. This means that for a 
symmetric bifurcation the flow distribution is asymmetric. This is in agreement 
with the findings presented in the studies conducted by Andrade Jr et al. [17], and 
Pepe et al. [10]. The distribution of shearing stress is also significantly 
heterogeneous in the structure.  
Velocity and shear stress contours taken for power law fluids, which include shear 
thinning and shear thickening, in T-shaped flow geometries are depicted in Figs. 3 
to 6.  Velocity and shear stress profiles are different for both fluids, and are also 
different from the profiles observed for Newtonian fluids. In addition, shear 
thickening fluid flow has in common with Newtonian flows a heterogeneous flow 
distribution in a symmetric branched assembly of tubes. On the other hand, fluid 
flow and shear stress distributions are homogeneous for shear thinning flow. It has 
been found a dependence of flow asymmetric on Reynolds number [10]. Ours 
study suggest that, for a given Reynolds number, the flow distribution depends on 
power-law index n. 
It would be interesting to study the flow resistance for the T-assembly of ducts. 
According to Eq. 3, maximum flow access means minimizing the flow resistance 
under a constant current that corresponds to minimizing the entropy generation 
rate.  
Figure 7 show the total dimensionless flow resistance, R*, for flows of Newtonian 
and non-Newtonian flow through T-shaped structures. The dimensionless 
resistance R* is defined as form according to 

1/3D L 2

RR*
R  


   (12) 

where R is total flow resistance defined as the ratio between the pressure 
difference and the mass flow rate through the T-structure, and R 1/3D L 2   is the 
total flow resistance in a T-shaped assembly of ducts designed according to D2/D1 
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= L2/L1 = 2-1/3. Based on Fig. 7, the geometry that allows the minimum system-
resistance is obtained. Table 1 shows these optimal values and the values 
predicted analytically by Revellin et al. [14] and Miguel [5].  

Figure 7. Dimensionless flow 
resistance, R*,  for a T-shaped 
structure with impervious walls 
(K=0 m2): (a) air ( = 1.1405 
kg/m3;  = 1.9043×10-5 Pa.s), 
(b) water ( = 998 kg/m3;  = 
8.91×10-4 Pa.s), (c) glycerin ( 
= 1259.9 kg/m3;  = 7.99×10-1 
Pa.s), (d) non-Newtonian fluid 
( = 1060 kg/m3; k = 1.47×10-4 
Pa.s, n=0.776), (e) non- 
Newtonian fluid ( = 1260 
kg/m3; k = 6.60×10-34 Pa.s, 
n=1.1) 

Table 1. Optimal branching sizes for a T-shaped assembly of ducts 

power-law index 
n 

Optimal assembly of ducts 
based on Fig.7 

Optimal assembly of ducts based on analytical 
models of Revellin et al. [14] and Miguel [5] 

D2/D1 L2/L1 D2/D1 L2/L1 

0.776 0.71 1.00 0.77 0.84 

1.000 0.79 0.79 0.79 0.79 

1.100 0.70 1.00 0.80 0.78 

According to Table 1, there is a difference between results obtained based on 
analytical models and on our numerical study. In an attempt to understand these 
discrepancies, our numerical results are used to estimate the flow resistance in 
different location of the T-assembly of ducts (Table 2). 
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Table 2. Flow resistance per length for T-shaped assembly of ducts 

Total Flow 
Resistance 
(Pa.sn/kg) 

D2/D1 = L2/L1= 0.8 D2/D1 =0.7  L2/L1= 1.0 
Power-law index n Power-law index n 

0.776 1.000 1.100 0.776 1.000 1.100 
Parent duct 0.0031696 0.0069743 0.0013718 0.0023109 0.0051059 0.0009587 

Daughter duct 1 0.0010482 0.0026487 0.0005035 0.0015061 0.0036656 0.0006791 

Daughter duct 2 0.0010499 0.0026613 0.0005065 0.0015034 0.0037740 0.0006932 

Connection 
parent-daughter 

ducts 
0.0003489 0.0014065 0.0002629 0.0004579 0.0015127 0.0002694 

Total 0.0045675 0.0110359 0.0021397 0.0042735 0.0103379 0.0019141 

Notice that, analytical approaches developed by Revellin et al. [14] and Miguel [5] 
consider that the losses on the connection of large and small vessels together are 
negligible compared with friction losses through the vessels. Besides, they also 
assume a homogeneous flow distribution occurring in symmetric branched 
structures. According to Table 2, it is remarkable to notice that, the resistance in 
each daughter duct is not the same. This is a direct consequence of heterogeneous 
flow distribution in the branched structure. Besides, the flow resistance at the 
connection between parent and daughter ducts is not negligible as compared to the 
resistances of parent and daughter tubes. Higher resistance occurs for Newtonian 
fluids, and lower resistances for shear-thickening fluids. Although, they are of the 
same order of magnitude, the total resistance of T-assembly of D2/D1 =0.7 and 
L2/L1= 1.0 ducts is slightly lower than the T-assembly of D2/D1 =L2/L1= 0.8 ducts 
but the resistance of daughter ducts is higher. This is an interesting result and 
deserves a further analysis.  
To explain these results, it is quite intuitive to consider the fluid flow like the flow 
of electric charges (electric current). For any system (fluid or electric charges), the 
total flowrate must be the same (principle of continuity). In our flow system, 
parent duct and the duct that connects parent-daughter ducts are resistors 
connected in series, and the daughter ducts are resistors connected in parallel. The 
total equivalent resistance of the resistors is 

d1 d2
t p c

d1 d2

R RR ~R R
R R

 
    (13) 

where R is the resistance and the subscripts t, p, c, d1 and d2 mean total 
equivalent, parent duct, connection parent-daughter ducts, d1 daughter duct 1 and 
d2 daughter duct 2, respectively. Eq. 13 reproduces rather well the numerical 
values depicted in Table 2. Notice that Rd1 and Rd2 are much lower than 1 
Pa.sn/kg. Examination values depicted in Table 1 and Eq. 13, suggests that the 
resistance of daughter ducts play a critical role on total equivalent resistance. A 
small increase of the resistance of daughter ducts causes a decrease of the total 
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equivalent resistance of the flow system. 

4. Conclusions

From the findings presented in this study, the following main conclusions can be 
drawn 

i) The flow is strongly dependent on the power-law index.
ii) Asymmetric flow occurs in symmetric T-branched structures.
iii) Different flow resistances occur in each daughter duct.
iv) Losses on the connection of large and small vessels together are not

negligible.
v) Optimal branching sizes for T-shaped assemblies of ducts obtained in this

numerical study do not agree completely with the results obtained with
analytical models.
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