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Abstract

Allee effects on population growth are quite common in nature, usually stud-

ied through deterministic models with a specific growth rate function.

In order to seek the qualitative behaviour of populations induced by such

effects, one should avoid model-specific behaviours. So, we use as a basis a gen-

eral deterministic model, i.e. a model with a general growth rate function, to

which we add the effect on the growth rate of the random fluctuations in envi-

ronmental conditions. The resulting model is the general stochastic differential

equation (SDE) model that we propose here.

We consider two possible cases, weak Allee effects and strong Allee effects,

which lead to different qualitative behaviours of the model.

We will study the model properties for both cases in terms of existence and

uniqueness of the solution, extinction and stationary behaviour of the popula-

tion. The two cases will be compared with each other and with the general
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density-dependent SDE model without Allee effects.

We then consider as an example the particular case of the classic logistic

model and an Allee effect version of it.

Keywords: Allee effects, Population growth, Random environments,

Extinction times

2010 MSC: 92D25, 60H10

1. Introduction

Let X(t) be the population size at time t ≥ 0 and f(X) the per capita

growth rate when the population has size X. Assume the initial population size

X(0) = x > 0 is known.

Allee effects, named after Warder Clyde Allee, are exhibited by some pop-5

ulations when its density X is low due, for instance, to the difficulty of finding

mating partners or the inefficiency of group defence against predators. When

Allee effects are absent, we expect f to be a decreasing function of population

size. When, however, such effects are present, we witness an unexpected be-

haviour of f , namely its increase with X at low densities (see [1]), when the10

Allee effects are felt by the population, while at higher densities f still follows

the expected decreasing behaviour. There are two kind of Allee effects, strong

Allee effects (when the growth rate is even negative for very low densities) and

weak Allee effects (when the growth rate, although depressed, is still positive

for low densities).15

In this work we consider environmental stochasticity, i.e. we assume the

environment is subjected to random fluctuations that affect the growth rate.

So, we will use as a basis a deterministic model to which we add the effect on

the growth rate of such environmental fluctuations.

Deterministic models of Allee effects have been proposed in the literature20

(see, for instance, [2], [3] and [4]), but they consider specific forms for the per

capita growth rate function f . A commonly used model, which we illustrate on

Figure 1, is a variation of the classical logistic model. However, no one knows the
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Figure 1: Example (logistic or logistic-like deterministic models) of the (per capita) growth

rate 1
X

dX
dt

(on the left) and the total population growth rate dX/dt (on the right) as a function

of population size. The solid line represents a model with no Allee effects, the dashed line

represents a model with strong Allee effects and the dotted line represents a model with weak

Allee effects.

specific form that f really takes and so we want to obtain properties concerning

the qualitative behaviour of populations subjected to Allee effects that are not25

model-specific. We rather seek for properties that are robust with respect to

model choice. So, we are going to consider as a basis a general deterministic

model of the form

1

X(t)

dX(t)

dt
= f(X(t)), X(0) = x > 0, (1)

where the per capita growth rate f is any function satisfying appropriate con-

ditions dictated by biological considerations. We will also assume from now on30

that f(X), defined for X > 0, satisfies some mild technical conditions, namely

that it is a function of class C1 such that f(0+) is finite and different from zero.

Let us look at the biologically dictated assumptions.
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Whether or not there are Allee effects, the environment cannot sustain an

infinitely large population. So, f should have negative values for very large35

population sizes since then resources would be insufficient to keep the birth rate

above the death rate. We therefore assume from now on that f(+∞) < 0.

The above assumptions are common to all cases, whether there are Allee

effects, either strong or weak, or not. Let us now look at assumptions that

depend on the case we are considering.40

If there are no Allee effects, one expects that, as the population size X

gets larger, the resources available for an individual to survive and reproduce

become shorter and therefore the per capita growth rate f(X) should be a

strictly decreasing function of X. This, of course, will fail for low population

sizes if there are Allee effects since other factors (like for instance, inefficiency45

of group defence against predators or difficulty in finding mating partners) will

depress the per capita growth rate, in which case different appropriate biological

assumptions will be considered.

We also assume that, in the absence of Allee effects, when population size

is low, resources available for individuals are sufficiently abundant for the birth50

rate to exceed the death rate and so f(0+) > 0. This is still the case for weak

Allee effects, but, of course, it fails if there are strong Allee effects, in which

case we have f(0+) < 0.

We will now incorporate the effect of the random environmental fluctuations

on the per capita growth rate (environmental stochasticity), assuming they can55

be approximated by a white noise of the form σε(t), where ε(t) is the standard

white noise and σ > 0 is a parameter measuring the intensity of the fluctuations.

We obtain the stochastic differential equation (SDE) general model

1

X(t)

dX(t)

dt
= f(X(t)) + σε(t), X(0) = x > 0. (2)

Since the accumulated noise up to time t is given by σW (t), where W (t) =∫ t
0
ε(s)ds is the standard Wiener process, it can be written in the standard60

format

dX(t) = f(X(t))X(t)dt+ σX(t)dW (t), X(0) = x > 0, (3)
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where we take f as being the geometric average per capita growth rate (working

with geometric averages is more natural since we are dealing with a growth pro-

cess). Having chosen the geometric average, we should and will use Stratonovich

calculus in the study of the SDE (3). If one prefers to use Itô calculus, only65

slight adaptations to our treatment are required and one should bear in mind

that, for Itô calculus, f represents the arithmetic average per capita growth

rate; the results are identical if one takes into account the difference between

the geometric and the arithmetic averages. More details on this issue can be

found in [5].70

Notice that the deterministic model (1) corresponds to σ = 0.

In Section 2 we look at some general information useful in the study of our

stochastic models.

The study of general SDE population models without Allee effects can be

found in [5], [6]. Section 3 gives a brief account of the main results concerning75

existence and uniqueness of the solution, extinction and stationary behaviour

of the population.

Section 4 considers similar issues for the strong Alee effects case and com-

pares the results with the corresponding results of the model without Allee

effects. Section 5 will consider the case of weak Allee effects and compares re-80

sults with the model without Allee effects and with the model with strong Allee

effects. Preliminary results on specific and the general Allee effects models can

be found in [7] for the strong case and in [8] for the weak case. Stochastic models

with Allee effects, using specific growth functions f or looking at demographic

stochasticity (effect of sampling variations on births and deaths, a phenomenon85

quite different from environmental stochasticity, which is the object of this pa-

per) were studied, for instance, in [3], [9] and [10].

In Section 6, we illustrate the results with an example, namely a SDE logistic-

like weak Allee effects model. We chose a parametrization of f slightly different

from the one commonly used in order to make model comparisons meaningful.90

Section 7 presents the conclusions.
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2. General treatment of SDE models

For the autonomous SDE models of the form (3) (see, for instance, [11]), the

diffusion coefficient b(x) (also known as the infinitesimal variance since it is the

speed at which the variance changes when population size is X) is the square95

of the stochastic term

b(X) = σ2X2 (4)

and the drift coefficient a(x) (also known as infinitesimal mean since it is the

speed at which the mean changes) is

a(X) = X

(
f(X) +

σ2

2

)
, (5)

which equals the deterministic term plus a correction term (due to the use of

the Stratonovich calculus) 1
4
db(X)
dX = σ2

2 X.100

The state space for models of type (3) should be (0,+∞), with boundaries

X = 0 and X = +∞. Since a(X) and b(X) are both of class C1, the solution

X(t) exists and is unique up to a possible explosion time and is a homogeneous

diffusion process with drift coefficient a(X) and diffusion coefficient b(X) (see,

for instance, [12]). With the assumptions we will make, we will show that the105

boundaries are unattainable (not reachable in finite time), so that, if one starts

with an initial positive population size X(0) = x > 0, the solution X(t) of the

SDE remains in the state space for all time t ≥ 0, as it is required for a proper

model of population size. In particular, explosions (i.e. solutions that reach the

value +∞ in finite time) are not possible, which guarantees the existence and110

uniqueness of the solutions for all t ≥ 0.

To study the qualitative behaviour of population size, it is important to

examine the behaviour of the two boundaries in terms of being attractive or

non-attractive. When the population size reaches the vicinity of a boundary,

there is a tendency to move closer to the boundary if it is attractive and to115

move away if it is non-attractive. Formal definitions can be found, for instance,

in [11]. Non-attractive boundaries cannot be reached in finite time (so they

are unattainable) nor in infinite time. The behaviour of the boundary 0 is

particularly important to study extinction.
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A good way of determining whether a boundary is attractive or non-attractive120

is to look at the behaviour of the scale measure in a neighbourhood of the bound-

ary. The scale measure of X is defined on (0,+∞) by the scale density (see, for

instance, [11])

s(y) := exp

(
−
∫ y

n

2a(θ)

b(θ)
dθ

)
=
n

y
exp

(
− 2

σ2

∫ y

n

f(θ)

θ
dθ

)
, (6)

where n is an arbitrary (but fixed) point in the interior of the state space. The

corresponding ”distribution” function is the scale function S(z) =
∫ z
c
s(y)dy,125

where c is an arbitrary (but fixed) point in the interior of the state space. The

scale measures is defined for intervals (a, b) by S(a, b) = S(b)− S(a).

When both boundaries are non-attractive, we may have a kind of asymp-

totic stochastic equilibrium in the sense that the probability distribution of the

population size converges, as t → +∞, to an equilibrium distribution having a130

probability density function (p.d.f.) p(y), the so-called stationary density.

To determine whether this is the case or not, we will use the speed measure

of X, which is defined on the interior of the state space by the speed density

(see, for instance, [11])

m(y) :=
1

b(y)s(y)
=

1

nσ2y
exp

(
2

σ2

∫ y

n

f(θ)

θ
dθ

)
. (7)

The corresponding ”distribution” function is the speed functionM(z) =
∫ z
c
m(y)dy.135

The speed measure of an interval (a, b) is M(a, b) = M(b)−M(a).

The speed measure has nothing to do with speed, but rather is proportional

to the occupation time of the trajectories. I.e., the speed measure of a Borel set

of population sizes C is proportional to the time population trajectories spend

taking values in C. Should the speed measure be finite, this is proportional to140

the equilibrium probability (i.e. the long-term probability as t → +∞) of the

population size being in C and the p.d.f. of such probability distribution, the

stationary density p(y), is proportional to the speed density m(y). If the speed

measure is not finite, there is no stationary density.
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3. General stochastic model without Allee effects145

We will now consider the general model [model (1) for the deterministic

situation σ = 0 or model (3) for the stochastic situation σ > 0] for the case

where Allee effects are absent.

For this case, we assume that f(X) is a strictly decreasing function and

f(0+) > 0.150

Since f(+∞) < 0, there is one and only one non-extinction deterministic

equilibrium population K > 0 such that f(K) = 0, f(X) > 0 for X < K

and f(X) < 0 for X > K. In the deterministic case (σ = 0), there are two

equilibrium points (points where dX/dt = 0), namely X = 0 and X = K, the

first being unstable and the second being globally asymptotically stable. So,155

X(t)→ K as t→ +∞ and K is called the carrying capacity. Of course, in this

situation, population extinction cannot occur. We should be more precise and

say that ”mathematical” extinction cannot occur.

By ”mathematical” extinction we mean the classical concept of extinction for

these models, namely that the population size either reaches zero at a finite time160

or converges to zero as t → +∞. However, for mathematical convenience, we

use differential equation models (both deterministic and stochastic) in which the

number of individuals X is a continuous state variable, while real populations

must have an integer number of individuals. A population of, say, 0.4 individuals

should be considered extinct or not? So, this concept of extinction is not very165

realistic. A more ”realistic” extinction concept would say that the population

becomes extinct whenever it drops below a prescribed extinction threshold a > 0

(one can choose a = 1 individual) and we shall assume that a is smaller that

the initial population size X(0) = x. If ”realistic” extinction would occur, the

”realistic” extinction time would be the first passage time of X(t) through a.170

One can see that, in this deterministic case, ”realistic” extinction does not occur

either, but the situation is different for the stochastic case.

For the stochastic models, one can see (for instance, in [11]) that a boundary

is attractive or non-attractive according to whether the scale measure S of a
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small neighbourhood of the boundary is finite or not.175

The study of the general SDE population models without Allee effects can

be found in [5] and [6].

In this case, it is shown there that S(0, x0) =
∫ x0

0
s(y)dy = +∞ for x0 in the

interior of the state space. Therefore, the boundary X = 0 is non-attracting,

which implies that ”mathematical” extinction has zero probability of occurring180

since the boundary cannot be reached in finite or infinite time (see [11]).

It is also shown that S(x0,+∞) =
∫ +∞
x0

s(y)dy = +∞ for x0 in the interior

of the state space. Therefore, the boundary X = +∞ is also non-attracting,

which implies that explosions have zero probability of occurring.

Since both boundaries are non-attracting, and so unattainable, the solution185

exists and is unique for all t ≥ 0, and stays in the state space (0,+∞).

We have seen that, in the deterministic case, the population size settles down

as t → +∞ to a non-extinction equilibrium value K > 0 such that f(K) = 0.

The same does not happen in the stochastic case since the random environmental

fluctuations will keep the population size fluctuating. However, the p.d.f. p(t, y)190

of X(t) may settle down as t→ +∞ to an equilibrium p.d.f. p(y), the so-called

stationary density. So, we may have a kind of stochastic equilibrium instead of

a deterministic one.

One can see (for instance in [11]) that, when both boundaries are non-

attractive, the stationary density exists if and only if the speed measure is195

finite, which means that the speed density is integrable in the state space:

M =

∫ +∞

0

m(z)dz < +∞. (8)

If that happens, the stationary density is given by

p(y) =
m(y)

M
, 0 < y < +∞, (9)

and, moreover, X(t) is an ergodic process. This implies that X(t) will reach

any point in the interior of the state space infinitely often. Further, for large t

and any Borel set C ⊂ (0,+∞), the probability that X(t) ∈ C is approximately200 ∫
C
p(y)dy.
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It can be found in [5], [6] that, for the general SDE model without Allee

effects, we indeed have M < +∞.

Taking into account (7), (8) and (9), the stationary density is given by

p(y) =
1

D

1

σ2y
exp

(
2

σ2

∫ y

n

f(θ)

θ
dθ

)
(0 < y < +∞), (10)

where D is a constant such that
∫ +∞
0

py(y)dy = 1, namely205

D =

∫ +∞

0

1

σ2y
exp

(
2

σ2

∫ y

n

f(θ)

θ
dθ

)
dy. (11)

Consider the case of small σ. We have f(K) = 0 and f is strictly decreasing,

so df(y)/dy is negative in the neighbourhood of K. Therefore, for small enough

σ, there is one and only one solution y = B of f(y) = σ2/2 and that solution

should be close to K, but smaller than K. Furthermore, dp(B)/dy = 0 and

d2p(B)/dy2 < 0 (easy computations show that d2p(B)/dy2 has the same sign210

as Bdf(B)/dy, which is negative). Therefore, B is a maximum of the stationary

density, i.e. a mode of the stationary distribution. So, when the intensity of

the environmental fluctuations is small, the stationary distribution has a single

mode, which is smaller than the carrying capacity but very close to it.

In conclusion, for the general SDE model without Allee effects, the solution215

exists and is unique, ”mathematical” extinction has zero probability of occurring

and there is a stochastic equilibrium with stationary density given by (10), (11).

We also conclude that the process is ergodic.

We end this section with a final comment on extinction. For the deterministic

model, both ”mathematical” and ”realistic” extinction cannot occur. However,220

in the stochastic case, although ”mathematical” extinction has a zero proba-

bility of occurring, ”realistic” extinction occurs with probability one because

the process is ergodic and will, sooner or later, cross the ”realistic” extinction

threshold a.

Under the stationary regimen (i.e., for large t), a large deviation argument for225

large K shows that the population will randomly fluctuate in a neighbourhood

of K for long periods, after which it leaves that region to visit other regions of

the state space and later come back to the neighbourhood of K. Such visits will
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sometimes be to a neighbourhood of zero but the non-attractivity of the zero

boundary will tend to push population size away from that neighbourhood and230

”mathematical” extinction will not occur. If, however, one considers ”realistic”

extinction and the (0, a) neighbourhood, one visit to such neighbourhood will

result in ”realistic” extinction. Since, for large K, such visit would typically

happen after one or several of the long periods of stay in the neighbourhood

of K, the ”realistic” extinction time will typically be very large for such large235

values of K (but not so for small values of K).

This paper does not deal with the issue of ”realistic” extinction. For the

general SDE model without Allee effects, one can see that issue treated and the

extinction time studied in [6], [13], [14], [15]. For the Allee effects models, the

issue will be addressed in a further paper.240

4. General stochastic model with strong Allee effects

When we have Allee effects, either strong or weak, we assume that there are

positive constants L and K with L < K, such that f(X) < 0 for X > K, f

is strictly increasing for X < L and strictly decreasing for X > L. Figure 1

illustrates these constants.245

In the case of strong Allee effects, we have f(0+) < 0. In the case of weak

Allee effects, we have f(0+) > 0.

In this Section, we consider the case of strong Allee effects.

It is easy to show that f(L) > 0 and therefore there is another equilib-

rium point A (with 0 < A < L) of the deterministic model (see Figure 1 for250

illustration). The equilibrium X = A is unstable and the equilibria X = 0

(extinction) and X = K are stable. So, if the initial population size is below

A, the population will become extinct since X(t)→ 0 as t→ +∞. However, if

the initial population size is above A, then the population size will approach K

since X(t)→ K as t→ +∞.255

For the stochastic model, the boundary X = 0 is attracting but unattain-

able, so there is no finite t such that X(t) = 0; however, it may happen that
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X(t)→ 0 when t→ +∞ and so ”mathematical” extinction can occur in infinite

time. In fact, that will happen with probability one since the other boundary

is non-attracting and any small neighbourhood of the attracting boundary zero260

is reachable with positive probability.

To show that X = 0 is an attracting boundary, it suffices to notice that,

for 0 < x0 < n < A and 0 < y ≤ x0, we have, with h(y) = − 2
σ2

∫ y
n
f(θ)
θ dθ and

noticing that h(0+) < 0,

S(0, x0] =

∫ x0

0

n

y
exp

(
− 2

σ2

∫ y

n

f(θ)

θ
dθ

)
dy

≤
∫ x0

0

− σ2n

2f(x0)

d
(

exp
(
− 2
σ2

∫ y
n
f(θ)
θ dθ

))
dy

dy

= c1
(
exp (h(x0))− exp

(
h(0+)

))
< +∞,

where c1 > 0 is a constant.265

For the stochastic models, one can see (for instance, in [11]) that a boundary

is attainable or unattainable according to whether Σ(0, x0] =
∫ x0

0
S(0, z)m(z)dz

is finite or not. In this case, we have

Σ(0, x0] =
1

σ2

∫ x0

0

1

z

∫ z

0

1

y
exp

(
2

σ2

∫ z

y

f(θ)

θ
dθ

)
dydz

≥ 1

σ2

∫ x0

0

1

z

∫ z

0

1

y
exp

(
2

σ2

∫ z

y

f(y)

θ
dθ

)
dydz

=
1

σ2

∫ x0

0

1

z

∫ z

0

1

y

(
z

y

) 2
σ2
f(y)

dydz

=
1

σ2

∫ x0

0

y−
2
σ2
f(y)−1

∫ x0

y

z
2
σ2
f(y)−1dzdy

=

∫ x0

0

1−
(
y
x0

) 2
σ2
|f(y)|

2y|f(y)|
dy.

Since we have assumed f(0+) finite, for x0 small enough we have f(0+) − ε <

f(y) < f(0+) + ε, with ε < |f(0+)|
2 . So, |f(0+)| − ε < |f(y)| < |f(0+)| + ε.270

Therefore,

Σ(0, x0] ≥
∫ x0

0

1−
(
y
x0

) 2
σ2

(|f(0+)|−ε)

2y (|f(0+)|+ ε)
dy

12



=

∫ x0

0
1
ydy

2 (|f(0+)|+ ε)
−

∫ x0

0
y

2
σ2

(|f(0+)|−ε)−1

2 (|f(0+)|+ ε)x
2
σ2

(|f(0+)|−ε)
0

dy = +∞,

since the first integral is divergent with value +∞ and the second integral is

convergent. This shows that X = 0 is an unattainable boundary.

For the stochastic model, the boundary X = +∞ is non-attracting. This is

indeed the case, since, for 0 < n < x0 and K < x0 ≤ y < +∞, we have

S[x0,+∞) ≥ exp

(
− 2

σ2

∫ x0

n

f(θ)

θ
dθ

)∫ +∞

x0

n

y
dy = +∞.

Since both boundaries are unattainable, the solution exists and is unique for

all t ≥ 0, and stays in the state space (0,+∞).275

The stationary density p(y), when it exists, must satisfy the Kolmogorov

forward equation
d(a(y)p(y))

dy
− 1

2

d2(b(y)p(y))

d2y
= 0, (12)

We can show that every non-negative solution is not integrable
(∫ +∞

0
p(y)dy=+∞

)
and, consequently, contrary to the corresponding stochastic model without Allee

effects, there is no stationary density.280

The solution of the differential equation (12) is

p(y) = m(y) (CS(y) +D) . (13)

We can write

p(y) = m(y) (CS(0, y) +D∗) , (14)

with D∗ = D + CS(0) constant (notice that S(0) is finite since X = 0 is

attractive).

Since the X = 0 boundary is unattainable, we have285 ∫ +∞

0

S(0, z)m(z)dz = Σ(0, x0] +

∫ +∞

x0

S(0, z)m(z)dz = +∞, (15)

because the first integral is divergent and the integrand in the second integral

is positive.

We now show that M =
∫ +∞
0

m(y)dy = +∞. Let 0 < y1 < A < K < +∞

and y1 < n. Consider the case n < A < K; the proof in the other case is similar

13



and so will not be shown here. Let us break the integration interval:

M = M1 +M2 =

∫ y1

0

m(y)dy +

∫ +∞

y1

m(y)dy.

We first show that M1 is infinite. If y ∈ (0, y1] and θ ∈ [y, n], then

M1 ≥
∫ y1

0

1

nσ2y
exp

(
− 2

σ2
f(n)

∫ n

y

1

θ
dθ

)
dy

= c1

∫ y1

0

y
2
σ2
f(n)−1dy = +∞,

with c1 > 0 constant, because n < A and so f(n) < 0. Since M2 is non-negative

because its integrand is non-negative, we conclude that M = +∞.290

If C = 0 and D∗ 6= 0, since
∫ +∞
0

m(y)dy = +∞, we have
∫ +∞
0

p(y)dy = +∞.

If C 6= 0 and D∗ = 0, since
∫ +∞
0

m(y)S(0, y)dy = +∞, we have
∫ +∞
0

p(y)dy =

+∞. If C = 0 and D∗ = 0, then
∫ +∞
0

p(y)dy = 0. Therefore, for p(y) to be a

probability density, it is necessary that C and D∗ are both non-zero.

In order to get p(y) ≥ 0, as required to be a probability density, we need295

CS(0, y)+D∗ ≥ 0 for all y ≥ 0, and since S(0, 0) = 0, we need D∗ ≥ 0; however,

we have shown that D∗ = 0 is not compatible with p(y) being a probability

density. So we conclude that, for p(y) to be a probability density, it is necessary

that D∗ > 0.

As S(0,+∞) = +∞, if C < 0, p(y) would have negative values for some300

values of y. Therefore, in order for p(y) to be a probability density, we must

have C > 0. So, we must have both C > 0 and D∗ > 0. But, for C > 0

and D∗ > 0, we have
∫ +∞
0

p(y)dy = +∞ and p(y) would not be a probability

density. Therefore, we conclude that there is no stationary density.

In conclusion, for the stochastic situation, ”mathematical” extinction will oc-305

cur with probability one and there is no stationary density, contrary to models

without Allee effects. As for the deterministic situation, the limiting behaviour

also differs from models without Allee effects, for which the population size al-

ways approaches the carrying capacity; with strong Allee effects, the limiting

behaviour depends on the initial condition and the population will become ex-310

tinct or will converge to the carrying capacity according to whether the initial
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population size is below or above A. Notice that existence and uniqueness of

solutions are insured with the mild assumptions on f that we have made.

5. General stochastic model with weak Allee effects

In this Section, we consider the case of weak Allee effects.315

The asumptions on f are exactly the same as in Section 4, except that now

f(0+) > 0. You can see Figure 1 for illustration.

It is easy to show that f(X) > 0 for X < K and f(X) < 0 for X > K.

So, the only deterministic equilibria are X = 0, which is unstable, and X = K,

which is globally asymptotically stable. Therefore, for the deterministic model,320

the population size will converge to the carrying capacity K as t→ +∞.

For the stochastic model (σ > 0), the boundary X = 0 is non-attracting.

This is indeed the case, since, for 0 < x0 < n and 0 < y ≤ x0 < L, we have

S(0, x0] ≥
∫ x0

0

n

y
dy = +∞.

Therefore, ”mathematical” extinction has zero probability of occurring.

Using an argument identical to the one used in the previous Section, one can

show that the boundary X = +∞ is non-attractive.

Since both boundaries are non-attracting, and so unattainable, the solution325

exists and is unique for all t ≥ 0, and stays in the state space (0,+∞).

We have seen that, in the deterministic case, the population size settles down

as t → +∞ to a non-extinction equilibrium value, K > 0. We know that the

same does not happen in the stochastic case since the random environmental

fluctuations will keep the population size fluctuating. However, as we know, a330

stochastic equilibrium with a stationary distribution may be possible, in which

case the process is ergodic.

We now show that this is indeed the case, by proving that M , given by (8),

is finite.

Let y1 < K < y2 be such that 0 < y1 < n < y2 < +∞: Assume that n < L

(the proof for n > L is similar and will not be shown here). So 0 < y1 < n <

15



L < K < y2. Let us break the integration interval as follows:

M = M1 +M2 +M3 =

∫ y1

0

m(y)dy +

∫ y2

y1

m(y)dy +

∫ +∞

y2

m(y)dy.

We first show that M1 is finite. Let y ∈ (0, y1] and θ ∈ [y, n]. Since 0 <335

f(0+) < +∞, we have

m(y) =
1

nσ2y
exp

(
− 2

σ2

∫ n

y

f(θ)

θ
dθ

)
≤ 1

nσ2y
exp

(
− 2

σ2

∫ n

y

f(0+)

θ
dθ

)
=

1

n2σ2

( y
n

) 2
σ2
f(0+)−1

,

because f is increasing. Therefore M1 < +∞.

We now prove that M3 < +∞. Let y ∈ [y2,+∞) and θ ∈ [n, y]. Decompose

2

σ2

∫ y

n

f(θ)

θ
dθ =

2

σ2

∫ y2

n

f(θ)

θ
dθ +

2

σ2

∫ y

y2

f(θ)

θ
dθ = B + C(y).

Then

m(y) ≤ 1

nσ2y
exp(B) exp

(
2

σ2
f(y2) ln

y

y2

)
.

Therefore, since K < y2 and f(y2) < 0, we get

M3 ≤ c1
∫ +∞

y2

y
2
σ2
f(y2)−1dy < +∞,

with c1 constant.

Finally, it is easy to see that M2 < +∞ because it is the integral of a

continuous function in a closed interval.340

The stationary density is given by (10) and (11). Like in the models without

Allee effects, for a small environmental noise intensity σ > 0, the stationary

density has a mode B < K close to K, which is the solution of f(B) = σ2/2.

We conclude that the weak Allee effects models have the same qualitative

behaviour as the models with no Allee effects.345

Weak Allee effects models have, however, a qualitative behaviour quite dif-

ferent from the strong Allee effects models. In the deterministic situation, we

have convergence to the carrying capacity, while in the strong Allee effects case

we have a limiting behaviour that depends on the initial condition (extinction or

convergence to the carrying capacity according to whether the initial population350
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size is below or above A). In the stochastic situation, there is no mathemat-

ical extinction and there is a stochastic equilibrium with a stationary density,

while in the strong Allee effects case ”mathematical” extinction will occur with

probability one and there is no stationary density.

In terms of the population size at any time t > 0, assuming the same initial355

condition X(0) = x > 0, the same carrying capacity, the same environmental

conditions (i.e., the same random trajectory of the Wiener process W (t)), and

everything else equal, what would happen if we compare three different scenar-

ios for the population, one without Allee effects, the second with weak Allee

effects and the third with strong Allee effects? Of course, in this hypotheti-360

cal experiment, Allee effects would depress the per capita growth rate at low

population densities, more so if they were strong effects. So, we could assume

that the per capita growth rates for the three scenarios, respectively f , fw and

fs, satisfy the relation f(X) ≥ fw(X) ≥ fs(X) with strict inequalities at least

for low population sizes X. The comparison theorems for SDE (see [16] and365

[17]) show that the population size would be the largest in the first scenario and

the smallest in the third scenario, with the population of the second scenario

in between. The same is true for the deterministic models. So, as should be

expected, Allee effects have consequences on population sizes, depressing their

values compared to the case where Allee effects are absent.370

6. SDE logistic-like Allee effects model

As an illustration, we will consider the particular case of a logistic-like Allee

effect model that has been considered in the deterministic literature, where

f is now a second-degree polynomial. However, we present the model with a

slightly different parametrization in order to allow comparisons with the classical375

logistic model without Allee effects. Notice that there are no substantive reasons

to believe this model is an appropriate description of population growth under

Allee effects, and that is why we rather worked before with very general models

in order to obtain properties that are model-robust.
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The classical logistic model with no Allee effects corresponds to380

f(X) = r

(
1− X

K

)
(16)

with r > 0 (intrinsic growth rate) and K > 0.

We are going to use a logistic-like model with Allee effects having the same

carrying capacity K and with f(X) having the same slope −r/K when X = K.

This model has the form

f(X) = r

(
1− X

K

)
X −A
K −A

, (17)

with an extra parameter A such that A 6= 0 (to satisfy the condition that385

f(0+) 6= 0).

In order to have Allee effects, we need f to have a maximum at a point L

with 0 < L < K, so that f(X) will strictly increase for X < L and strictly

decrease for X > L. To achieve that, we need to assume that −K < A < K

and, with that assumption, L = (K +A)/2.390

When 0 < A < K, we have f(0+) = −rA/(K − A) < 0 and a strong

Allee effects. In this case, the parameter A is precisely the value in the (0, L)

interval for which f(A) = 0 mentioned in Section 4. In Figure 1, the dashed line

corresponds to the value A = 0.15K (labelled on the Figure) and L is labelled

as Lstrong.395

When −K < A < 0, we have f(0+) = −rA/(K − A) > 0 and a weak Allee

effect. In Figure 1, the dotted line corresponds to the value A = −0.15K (not

labelled on the Figure) and L is labelled as Lweak.

Actually, A is a measure of the strength of the Allee effects; the larger it is,

the stronger are the Allee effects.400

If we would consider values A > K, the model would be nonsensical since f

would take positive values for very large population sizes. The case A = K is

obviously not possible. So, we exclude such possibilities.

However, we can consider values of A ≤ −K. The only problem is that

they are not of the Allee effects type, since f will not have a maximum L in405

the interval (0,K); of course, if we use as a basis for comparison the logistic
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model without Allee effects, a model with A ≤ −K will have a smaller per capita

growth rate at low population densities, but not small enough to be classified

as an Allee effects model.

It is quite interesting that, when A→ −∞, we retrieve the classical logistic410

model without Allee effects (16). This allows us to compare the logistic-like

models with Allee effects, either weak (for −K < A < 0) or strong (for 0 <

A < K), among them and with the classical logistic model without Allee effects

(A = −∞).

The qualitative behaviour of the deterministic and stochastic models in this415

particular case of f given by (17) is as described in the previous Sections since f

satisfies their assumptions. Therefore existence and uniqueness of the solutions

are insured and we have:

• Case A < 0, which includes the logistic model (A = −∞) and weak

Allee effects models (−K < A < 0). For the deterministic model, there420

is no ”mathematical” extinction, K is a globally asymptotically stable

equilibrium and X(t) → K as t → +∞. For the stochastic model, the

boundary X = 0 is non-attracting, ”mathematical” extinction has zero

probability of occurring, there is a stochastic equilibrium with a stationary

density (we will give below its expression for this particular case) and the425

process is ergodic.

• Case 0 < A < K, which corresponds to strong Allee effects. For the

deterministic model, there is an unstable equilibrium A and the two other

equilibria, X = 0 and X = K, are stable. The population will become

extinct when the initial size x < A and will converge to K when the initial430

size x > A. For the stochastic model, the boundary X = 0 is attracting

(but unattainable in finite time), ”mathematical” extinction will occur

with probability one and there is no stationary density.

We remind that, for the stochastic models with finite A < K, the solution

X(t) is a homogeneous diffusion process and, for this particular case, the drift435
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coefficient is

a(X) =

(
r

(
1− X

K

)
X −A
K −A

+
σ2

2

)
X, (18)

and the diffusion coefficient is

b2(X) = σ2X2. (19)

From (6) and (7), using (17), we obtain, after some algebra, the scale density

s(y) = Cy
2rA

σ2(K−A)
−1

exp

(
r

σ2K(K −A)
(y − (K +A))

2

)
(20)

and the speed density

m(y) =
1

Cσ2
y
− 2rA
σ2(K−A)

−1
exp

(
− r

σ2K(K −A)
(y − (K +A))

2

)
, (21)

with C > 0 constant.440

Of course, when A < 0 finite, the speed density is integrable and the sta-

tionary density exists and is given by

p(y) =
1

Dσ2
y
− 2rA
σ2(K−A)

−1
exp

(
− r

σ2K(K −A)
(y − (K +A))

2

)
(0 < y < +∞),

(22)

with

D =

∫ +∞

0

1

σ2
y
− 2rA
σ2(K−A)

−1
exp

(
− r

σ2K(K −A)
(y − (K +A))

2

)
dy. (23)

When 0 < A < K, the speed density is not integrable and there is no stationary

density.445

For the logistic model given by (16) (corresponding to A = −∞), we have

a(X) =

(
r

(
1− X

K

)
+
σ2

2

)
X (24)

b(X) = σ2X2 (25)

s(y) = Dy−
2r
σ2
−1 exp

(
2r

σ2K
y

)
(0 < y < +∞) (26)

m(y) =
1

Cσ2
y

2r
σ2
−1 exp

(
− 2r

σ2K
y

)
, (27)
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with C > 0 constant. Since the speed density is integrable, the stationary450

density is given by

p(y) =
1

Dσ2
y

2r
σ2
−1 exp

(
− 2r

σ2K
y

)
(0 < y < +∞), (28)

with

D =

∫ +∞

0

1

σ2
y

2r
σ2
−1 exp

(
− 2r

σ2K
y

)
dy =

1

σ2

(
2r

σ2K

)−2r/σ2

Γ

(
2r

σ2

)
. (29)

So, the stationary distribution is a Gamma distribution; its expected value is

K, precisely the asymptotic value for the deterministic case.

7. Conclusions455

We have considered general SDE models for the growth of populations in a

randomly varying environment with strong and weak Allee effects. The reason

for which we have studied general models rather than the specific models com-

monly used in the literature is to enable us to obtain qualitative properties that

are robust with respect to model choice. Our general models use, as geometric460

average per capita growth rate function f , any function satisfying appropriate

assumptions dictated by biological considerations and some very mild technical

assumptions. We have also considered as a comparison basis general models

without Allee effects

We have shown existence and uniqueness of the solution of the general models465

proposed in this paper.

In the case of weak Allee effects and in the case of absence of Allee effects,

”mathematical” extinction does not occur, both for the deterministic models

(σ = 0) and for the stochastic models (σ > 0). For the deterministic models,

population size settles down to a non-extinction equilibrium value, the so-called470

carrying capacity K. The same does not happen for the stochastic models, since

the random environmental fluctuations will make the population size fluctuate

as well; however, we have shown that there is a stochastic equilibrium with a

stationary density p(y) (0 < y < +∞), which we have determined.
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In the case of strong Allee effects,”mathematical” extinction occurs with475

probability one for the stochastic model and no stationary density exists. For

the deterministic model, we can have two possible outcomes, extinction or con-

vergence to the carrying capacity, depending on whether the initial population

size is below or above a certain value A.

We have illustrated the results with an example, namely a SDE logistic-like480

Allee effects model.

We have proved existence of a stationary density and a zero probability of

”mathematical” extinction for the general stochastic models with weak Allee

effects model and without Allee effects. However, as we have shown, ”realistic”

extinction will occur with probability one for all our models. So, it is important485

to study the time for ”realistic” extinction of the population. We will do that

in a further paper, as well as compare the extinction times for the SDE models

without Allee effects, with strong Allee effects and with weak Allee effects.
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