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Abstract

In this work we present a system for information extraction from Learning Management Systems. This system
is ontology-based. It retrieves information according to the structure of the ontology to populate the ontology.
We graphically present statistics about the ontology data. These statistics present latent knowledge which is
difficult to see in the traditional Learning Management System. To answer questions about the ontology, a
question answering systemwas developed using Natural Language Processing in the conversion of the natural
language question into an ontology query language.

Keywords: Semantic Web, Learning Management Systems, Information Extraction, Ontology Population, Nat-
ural Language Processing, Question Answering Systems
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Sumário

Extração de Informação de Sistemas de Gestão
para Educação Usando Ontologias

Neste dissertação apresentamosumsistemade extracçãode informaçãode sistemas de gestãopara educação
(Learning Management Systems). Este sistema é baseado em ontologias e extrai informação de acordo com a
estrutura da ontologia para a popular. Também permite apresentar graficamente algumas estatísticas sobre
os dados da ontologia. Estas estatísticas revelam o conhecimento latente que é difícil de ver num sistema
tradicional de gestão para a educação. Para poder responder a perguntas sobre os dados da ontologia, um
sistema de resposta automática a perguntas em língua natural foi desenvolvido usando Processamento de
Língua Natural para converter as perguntas para linguagem de interrogação de ontologias.

Palavras chave:Web Semântica, Sistemas de Gestão para a Educação, Extração de Informação, População de
Ontologias, Processamento de Língua Natural, Sistemas de Resposta Automática a Perguntas
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1
Introduction

Learning Management Systems are applications which provide services like administration, reporting and do-
cumentation for online courses. The traditional Learning Management Systems which depend on relational
databases have limits in the information theyprovide to theuser. Improving the LearningManagement Systems
can be achieved by building other structures to store their data. Structures like ontologies can provide better
performance and more flexible way to access information. To achieve that, Information Extraction can help in
extracting thedata fromdatabases tobepopulated toontologies. Having theontology, we canexploit itmaking
question answering systemswhich can answer questions in natural language question using Natural Language
Processing to achieve that.

1.1 Objectives

The objectives of this work are: to build and populate an ontology with information extracted from the Moodle
Learning Management System, the data of the e-learning courses of the University of Évora. Then to build a
question answering system to answer natural language questions about the ontology data showing that these
questionwere not possible to answer in the traditional LearningManagement System. The systemshould allow
us to retrieve information on the courses and student performance.

1



2 CHAPTER 1. INTRODUCTION

1.2 Principal Contributions of This Dissertation

In this dissertation we developed an information extraction system that retrieves information from Learning
Management Systems(LMS) into an ontology. We present, graphically, some statistics about the ontology data
after populating it with the extracted information. We developed a question answering system to query the
ontology in natural language. It uses Natural Language Processing to convert the question to SPARQL.

1.3 Structure of The Dissertation

This dissertation is composed of five chapters:

Chapter 2: a state of the art about Semantic Web, Natural Language Processing, Information Extraction and
Ontology Population.

Chapter 3: a system of extracting educational information from the Moodle Learning Management System to
populate an ontology.

Chapter 4: graphical statistics about the content of the populated ontology. These graphs gives a general view
and an easy way to understand the content of the ontology andmake some conclusions.

Chapter 5, a question answering systemwhichanswers questions about theontology content. This systemuses
Natural Language Processing to convert the questions to SPARQL query to run on the ontology and shows the
answer graphically.

Chapter 6: a conclusion and future work.



2
State of the Art

In this state of the art we present the Semantic Web and the Web Ontology Language (OWL). This language
is used to build ontologies. We also present Ontology Population using Information Extraction and Natural
Language Processing.

2.1 Semantic Web

Semantic Web was proposed by Sir Tim Berners-Lee, the creator of the World Wide Web and the director of the
W3C (World Wide Web Consortium). So it can be best defined using his own words:

A new form of Web content that is meaningful to computers will unleash a revolution of new pos-
sibilities [BLHL+01]

Consider the text: “Obama is the president of the US”. Figure 2.1, presents graphically an interpretation of the
text using OWL in Protegé (to be presented in next sections).

• 1 and 2: are subclass relations.

3



4 CHAPTER 2. STATE OF THE ART

Figure 2.1: A graphical semantic representation for the sentence

Figure 2.2: RDF data model

• 3 and 4: are instance relations.

• 5,7 and 6,8: “hasPresident”, “isPresidentOf” relations (respectively).

So the textwasconverted intoastructurewithclasses (Thing, PresidentandCountry), individuals (Barack_Obama
and USA) and relations to build a meaningful structure.

2.1.1 Web Ontology Language (OWL), RDF & RDFS

OWL is built upon RDF. RDF (Resource Description Framework)[KC06], is a model for representing informa-
tion. This model defines a collection of connected triples. Each triple is (subject, predicate, object). Figure
2.2 presents this model. Each triple defines a relationship between a subject and an object. The subject like
“Barack Obama”, the predicate (attribute) like “isPresidentOf” and the Object like “USA”. This model has some
limitations. For example, it is not capable of defining two classes to be disjoint, like Female and Male classes.



2.1. SEMANTIC WEB 5

<owl:Class rdf:about="NS#Course"/>

Figure 2.3: Define a class in OWL

owl: http://www.w3.org/2002/07/owl#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#

Figure 2.4: Standard namespaces for OWL

RDFS (RDF Schema)1 “is a general-purpose language for representing simple RDF vocabularies on the Web”. For
example when defining a new class to be a subclass of another one, the subclass definition comes from the
RDFS namespace. And by defining this under the RDFS namespace it will be uniquely recognized.

OWL [AVH04] is a knowledge representation language for ontologies. Ontologies will be presented in the next
section. OWL has more expressive power than RDF. OWL has three types:

1. OWL Full: It is the more expressive type of OWL. It is fully compatible with RDF and RDF Schema. Some-
times it is undecidable and difficult to apply reasoning on it. Reasoning in owl is the process of extracting
facts that are not present in the ontology explicitly.

2. OWL DL: OWL Description Logic. It is a sublanguage of OWL Full. It allows better reasoning but it is not
fully compatible with RDF. An RDF document needs to be modified to be a legal OWL DL document but
every OWL DL document is a legal RDF document.

3. OWL Lite: It ismore restricted thanOWLDL. It has less expressive power but it is easier to understand and
to implement.

OWL Elements

1. Class: The class element is used to define an abstract concept. A class can refer to a person, location, etc.

Figure 2.3 presents an OWL definition for “Course” class. NS is the name space of the ontology. The name
space will make the ontology unique and recognized among other ontologies.

Some standard namespaces are “owl”, “rdf” and “rdfs”. They are presented in figure 2.4.

OWL can represent a hierarchy of classes. For example, a class “Man” is a subclass of the class “Person”.
This is presented in figure 2.5

2. Property: OWL has two type of properties:

1http://www.w3.org/2001/sw/wiki/RDFS

<rdf:Description rdf:about="NS#Man">
<rdf:type rdf:resource="owl#Class"/>
<rdfs:subClassOf rdf:resource="NS#Person"/>

</rdf:Description>

Figure 2.5: Defining class hierarchy in OWL
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<rdf:Description rdf:about="NS#inUniversity">
<rdfs:range rdf:resource="NS#University"/>
<rdfs:domain rdf:resource="NS#Course"/>
<rdf:type rdf:resource="owl#ObjectProperty"/>

</rdf:Description>

Figure 2.6: Object property in OWL

<rdf:Description rdf:about="NS#Economics_And_Finance">
<rdf:type rdf:resource="NS#Course"/>
<inUniversity rdf:resource="NS#University_of_Michigan"/>

</rdf:Description>

Figure 2.7: Object property in OWL relates two individuals

(a) Object Properties relate classes to each other. Considering the two classes “Course” and “Univer-
sity”, to represent that the course is taught in a university, we use the object property “inUniversity”.
Figure 2.6 presents this object property in OWL. Each object property has a domain class and a
range class. “Course” is the domain class of the object property “inUniversity” and “University” is
the range.
Figure 2.7 presents two individuals “Economics_And_Finance” and “University_of_Michigan” with
the classes “Course” and “University” respectively. The are related by the object property “inUniver-
sity”.

(b) Data typeproperties relate objects to literals. They allow to represent relationsbetween classes and
literals. For example, figure 2.8 presents a data type property “hasID” for the individual “Chemistry”
of the class “Course”.

3. Individual: Individuals are the instances of the abstract concepts represented by classes in the ontology.
Figure 2.8 presents an individual “Chemistry” of the class “Course”.

In OWL it is possible to [HKR+04]:

• Define classes to be equivalent or to be disjoint.

• Make restrictions on object properties to range in specific domains.

• Make restrictions on data property to have specific values.

• Restrict object properties to be “functional”, “inverseOf”, “transitive” or “symmetric”.

• Define properties to be sub properties from others.

<rdf:Description rdf:about="NSChemistry">
<rdf:type rdf:resource="NSCourse"/>
<hasID>1678</hasID>

</rdf:Description>

Figure 2.8: Data type property in OWL
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2.1.2 Ontology

In philosophy, “ontology is the part which is concerned in understanding the nature of existence”.

In computer science, ontology is defined as[Gru93]:

“A specification of a representational vocabulary for a shared domain of discourse — definitions of classes, rela-
tions, functions, and other objects — is called an ontology”

And formally [SM01]:

A (core) ontology is a tuple Ω := (C, is_a,R, σ) where C is a set whose elements are called concepts, is_a is
a partial order on C (i.e., a binary relation is_a ⊆ C × C which is reflexive, transitive, and anti-symmetric),R
is a set whose elements are called relation names (or relations for short), and σ : R → C+ is a function which
assigns to each relation name its arity.

Some of the ontologies advantages are2:

• To share common understanding of the structure of information among people or software agents.

• To enable reuse of domain knowledge:

• To make domain assumptions explicit.

• To separate domain knowledge from the operational knowledge.

• To analyse domain knowledge.

Some available ontologies are:

• DBPedia3:

“It is a crowd-sourced community effort to extract structured information from Wikipedia and make this in-
formation available on theWeb. DBpedia allows you to ask sophisticated queries against Wikipedia, and to
link the different data sets on theWeb toWikipedia data........Altogether the DBpedia 2014 release consists of
3 billion pieces of information (RDF triples) out of which 580 million were extracted from the English edition
of Wikipedia”.

• Gene Ontology4:

“It isacollaborativeeffort toaddress theneed for consistentdescriptionsofgeneproductsacrossdatabases”.

• WordNet5:

“It is a large lexical database of English. Nouns, verbs, adjectives andadverbs are grouped into sets of cogni-
tive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked bymeans of conceptual-
semantic and lexical relations”.

In this work an ontology for Moodle Learning Management System was built.

2http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
3http://wiki.dbpedia.org/about
4http://geneontology.org/page/documentation
5https://wordnet.princeton.edu/
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S1 P1 O1.
S2 P2 O2.
....
....

SELECT ?var WHERE {S1 P1 ?var}

Figure 2.9: A SPARQL query and RDF file

2.1.3 Simple Protocol and RDF Query Language (SPARQL)

SPARQL is an RDF query language. It wasmade a standard by the RDFData AccessWorking Group (DAWG) of the
WorldWideWeb Consortium6. As RDF represents knowledge by triples (subject, predicate and object), SPARQL
depends in its search methodology on matching these triples. Figure 2.9 presents an RDF file and a SPARQL
query. By running this SPARQL query on this file, the query will match all the triples which have S1 and P1 as
subject and predicate and return the value of the object. It can retrieve zero or more matches.

SPARQL has features like:

• It allows matching literals with language tags (matching literals in English language for example).

• It allows matching literals with numerical types and arbitrary data types.

• It allows restricting the values of strings like applying filters (regular expressions for example).

• It allows restricting the numeric values like applying filters which can restrict on arithmetic expressions.

• It allows optional values.

• It can query more than one ontology at the same time. This gives the ability to retrieve information from
different sources.

Jena API7 is “a free and open source Java framework for building Semantic Web and Linked Data applications”. It
is used in this work to run SPARQL queries to retrieve information from the ontology.

Some ontologies like DBPedia have “SPARQL Endpoints” which enables us to run SPARQL queries online.

2.1.4 Protégé

Protégé8 “is a free, open-source ontology editor and framework for building intelligent systems”. It was developed
by the Stanford Center for Biomedical Informatics Research at the Stanford University School of Medicine. It
fully supports the latest OWL 2 Web Ontology Language and RDF specifications from the World Wide Web Con-
sortium. It provides a graphical interface to build and edit ontologies. It enables reasoning on the ontology
to make sure of its consistency. It accepts many plugins to provide more functionalities like OntoGraf9 which
provides a graphical representation for the ontology.

Protégé is used in this work to build and edit the ontology. OntoGraf is used to present the ontology graphically.
6https://www.w3.org/
7https://jena.apache.org/
8http://protege.stanford.edu/
9http://protegewiki.stanford.edu/wiki/OntoGraf
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2.2 Natural Language Processing(NLP)

Natural Language Processing is an area of research considered as a subfield of Artificial Intelligence. This area
is concerned about making the computer understand natural language text and its meaning. It is an interdis-
ciplinary such that it depends on many disciplines like machine learning, linguistics, mathematics, artificial
intelligence, information science and psychology. In order to achieve its tasks, understanding of phonetics,
morphology, grammar, lexicology and semantics should be present. Some reasons why NLP is difficult are:

• Ambiguity: consider the sentence :“I sawmy friend in the classroomwith a laptop.” This sentence can be
interpreted in many different ways:

– I sawmy friend. He was in the classroom. My laptop was with me.

– I sawmy friend. I was in the classroom. My laptop was with me.

– I sawmy friend. He was in the classroom. His laptop was with him.

– I sawmy friend. We were in the classroom. My laptop was with me.

– I sawmy friend. We were in the classroom. His laptop was with him.

• Natural language is related to the psychological state of the human. We can say exactly the same word
in different ways to mean different things.

NLP has many tasks, tools and applications. This will be presented in the next sections.

2.2.1 Major Tasks in NLP

NLP has tasks like Part-of-Speech(POS)-tagging, Named Entity Recognition (NER) and Syntactic Analysis (Pars-
ing). These tasks can be achieved using many approaches, for example, rule-based and machine learning ap-
proaches.

Part-of-Speech(POS) Tagging

It is assigning the syntactical part of speech for each word in a sentence. For example, it tags a word as a verb,
noun, adjective, etc. This task is useful for other tasks like Named Entity Extraction(NER)whichwill be explained
in the next section. POS Tagging can be achieved by many approaches[KJ15]:

• Supervised Taggers:

– Rule-Based: Brill Tagger

– Stochastic: Hidden Markov Model(HMM)

– Neural Network

• Unsupervised Taggers:

– Rule-Based: Brill Tagger

– Transformation-Based: User Baum-welch

– Neural Network

In this work, Stanford POS-tagger[TM00, TKMS03] was used. This will be presented in the next sections.
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Figure 2.10: Location detection by looking up a gazetteer

Named Entity Recognition NER

Named entity refers to an entity like place, organization, person, date, etc. NER works on defining the named
entities in the textual context. It defines the boundaries on the named entity (some entities can be more than
one word like “New York”, for example).

A basic approach for recognizing these named entities is to use a gazetteer which contains a comprehensive list
of the possible entities in a specific domain. This approachmay give wrong results. For example [BKL09], figure
2.10 presents the result of identifying all the locations in a text. It shows the gerund “Reading” as a city in the
UK. Actually, Reading is a town in the county of Berkshire in England. As the gazetteer is rich enough to contain
the name of this city, it is naive enough to take that decision. It does not matter how rich the gazetteer is, it will
not be comprehensive like in case of names of people and in case of organizations, we always have new names
appearing.

Machine Learning is used to achieve NER. There are three approaches: supervised learning, semi-supervised
learning and unsupervised learning:

• Supervised Learning:

This method needs an annotated corpus to learn the rules of detecting entities. The supervised learning
method includes: HiddenMarkovModels (HMM)[ZS02], DecisionTrees [SFK06], MaximumEntropyModels
[CN02], Support Vector Machines (SVM) [Mic13], and Conditional Random Fields (CRF) [Set04].

• Unsupervised Learning:

This method depends on clustering and does not need any training data. Clustering is the process of
grouping all the similar objects in a group called a cluster. Some examples are: E. Alfonseca and Man-
andhar study [AM02] and Y. Shinyama and Sekine [SS04]

• Semi-supervised Learning:

Semi-supervised learning is halfway between supervised and unsupervised learning. In this method, the
system has some training examples but it does not cover all the possibilities or even a small portion of
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Figure 2.11: Two parsing trees for an ambiguous sentence

them. Someof the approacheswhich uses thismethod are: S. Brin [Bri99] and E. Riloff and Jones [RJ+99]

Syntactic Analysis(Parsing)

Syntactic Analysis determines the parsing tree of the sentence. As natural language is ambiguous, some sen-
tences can have more than one parsing tree. Figure 2.11 shows two possible parsing trees for this sentence “I
ate milk with a fork”.

An approach to achieve the syntactic analysis is the Probabilistic Context Free Grammar(PCFG) [KM03].

Dependency Parsing

Dependency parsing determines the syntactic relations between words in the sentence. It resolves ambiguity.
For example, an ambiguous sentence “I sawmy friend with glasses”. This sentence has two possible meanings:

• I sawmy friend, I was using glasses.

• I sawmy friend, he was using glasses.

Using the Stanford Dependency Parser Online Demo10, figure 2.12 presents the dependency parsing of the sen-
tence. This dependency parsing shows that the sentence has the second meaning removing the ambiguity.

Some dependency parsing approaches are:

• Shift-reduce [ST08].

• Spanning tree [MPRH05].

10http://nlp.stanford.edu:8080/corenlp/
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Figure 2.12: Dependency parsing example

Figure 2.13: Stanford CoreNLP Online Demo example

• Cascaded chunking [KM02].

In this work, the Stanford Dependency Parser [CM14] was used.

2.2.2 NLP Tools and Applications

There are many tools for NLP, Stanford NLP tools11, Apche OpenNLP12 and NLTK13. In this work, Stanford NLP
was used with the GATE framework which will be presented in the next sections. Stanford NLP14 “is a set of
natural language analysis tools which can take raw text input and give the base forms of words, their parts of
speech, whether they are names of companies, people, etc., normalize dates, times, and numeric quantities, and
mark up the structure of sentences in terms of phrases andword dependencies, indicate which noun phrases refer
to the same entities, indicate sentiment, etc”.

Figure 2.13 presents an example of the Stanford CoreNLP online demo15. The sentence used as an example:
“Portugal won the last European championship against France”. Some of the Stanford NLP tools are:

• Stanford POS-Tagger: is an implementation of the log-linear part-of-speech taggers described in [TM00,
TKMS03].

• Stanford NER: is an implementation of linear chain Conditional Random Field (CRF) sequence models
[FGM05].

11http://nlp.stanford.edu/
12https://opennlp.apache.org/
13http://www.nltk.org/
14http://nlp.stanford.edu/
15http://nlp.stanford.edu:8080/corenlp/
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team1: Juventus
country1: Italy
team2: Barcelona
country2: Spain
year: 2015
result: 3-1 (Barcelona-Juventus)

Figure 2.14: Information extraction result example

• Stanford Dependency Parser: presented in [CM14], uses Neural Network approach.

Some NLP applications are:

• Spell checking: like chat mobile applications which correct the spelling automatically.

• Question answering systems: these systems works on extracting understandable machine commands
from a natural language question.

• Machine Translation: like google translate.

• Sentimental Analysis: like determining the opinion of the writer.

• Speech Recognition: is the translation of spoken language into textual one.

• Intelligent Web Searching.

2.3 Information Extraction(IE)

Information extraction is the process of extracting structured information from unstructured, semi-structured
or structured information. Information extraction systems are domain-dependent such that to achieve good
testing results they should be trained and tested on corpora of the same domain.

Information extraction system produces a structured result of the extracted information. It fills information in a
predefined structure. Consider a text taken fromsport report about the final in theEuropeanchampions league:
“Juventus from Italy and Barcelona fromSpain played the final of the European champions league for 2015 and
the result was 3-1 for the Spanish team”. Figure2.14 presents the result of information extraction from this text
depending on an information extraction system in the domain of “sport reports about the European champions
league”.

2.3.1 IE Sources, Structures, Methods and Tools

Information Extraction Systems can extract information from data sources like:

• Structured: like databases.

• Semi-structured: like xml files.

• Unstructured: like texts.
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They can extract:

• Entities: like person, organization, location, etc.

• Relationships: between the entities extracted like an organization which is located in a place.

Methods of Extraction: [Sar08]

• Hand-coded or Learning-based: “A hand-coded system requires human experts to define rules or regular
expressions or program snippets for performing the extraction. That person needs to be a domain expert
and a programmer, and possess descent linguistic understanding to be able to develop robust extraction
rules. In contrast, learning-based systems require manually labelled unstructured examples to train ma-
chine learning models of extraction”.

• Rule-basedorStatistical: “Rule-basedextractionmethodsaredrivenbyhardpredicates,whereas statistical
methods make decisions based on a weighted sum of predicate firings. Rule-based methods are easier to
interpret and develop, whereas statistical methods are more robust to noise in the unstructured data”.

IE systems still facemany challenges like accuracy such that they are not highly accurate, high running time and
being dependant on specific domains.

Some Information Extraction tools:

• GATE [Cun02]

• NLTK

• OpenNLP

• Stanford NLP

NLTK, OpenNLP and Stanford NLP are NLP tools but they can be adapted to achieve Information Extraction.
They all do NER which is considered also as an IE task. GATE is an Information Extraction framework but it can
be used as an NLP framework.

In this work, the system extract information from a structured data source which is the database of the Moodle
Learning Management System. This will be presented in the next chapters. GATE [Cun02] framework was used
to achieve the information extraction.

2.3.2 IE Applications

Information Extraction systems are useful in many areas [Sar08]:

• Enterprise applications like:

– Customer care, where it generatesmany structured forms from customer interactions. These forms
are used for achieving better management.

– Data cleaning, like in the process of data warehouse cleaning. It is necessary to convert the ad-
dresses which are represented using plain texts into structured forms. This is useful for organiza-
tions which have millions of addresses like banks and telephone companies.
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• Personal Information Management: organizing personal data in structured format.

• Scientific Applications: bio-informatics.

• Web Oriented Applications: like the comparison between shopping websites.

2.3.3 GATE IE System

GATE [Cun02] is an information extraction framework. GATE is a Hand-coded IE systemwhich depends on rules
written in JAPE16. It can include NLP tools as plugins to benefit them in the extraction process. In this work,
Stanford NLP tools were included in the GATE framework to achieve NLP. GATE was used in this work to process
natural language questions to convert them to SPARQL queries. This will be explained in the chapter 5.

Information extraction can be based on an ontology. Thismeans that the extraction processwill extract entities
to fill inside the predefined ontology structure such that the ontology guides the extraction process. This will
be presented in the next section.

2.4 Ontology Information Extraction Systems from Text

A general structure of an ontology information extraction system from text is proposed. The following terms
denote, roughly, the same concept in the literature: Ontology Population (OP), Ontology-Based Information
Extraction (OBIE) and Ontology-Driven Information Extraction (ODIE). State-of-the-art systems with different
techniques to achieve the ontology population from text are presented. A comparison between these systems
according to some proposed criteria is discussed.

2.4.1 Ontology Population System Architecture

In figure 2.15 we present a general structure of a System of Ontology Population from Text. Themainmodules of
this system are:

Corpus The data set from which the information will be extracted. The web is a good source to build corpora
for a specific domain by crawling and collecting information. Many corpora were built by crawling the
web in many domains like tourism Ruiz-Martínez et al. [RMMGCN+11] and sport [BCRS06].

Input Ontology The empty input ontology which will be populated by the information extracted. The on-
tology could be built manually or automatically. The process of obtaining the ontology from a specific
domain is called Ontology Learning [WLB12]. The ontology leads the extraction process such that the
information extracted should correspond to the ontology terms.

Preprocessing & Extraction Module Preprocessing the input corpus facilitates the extraction task. Tok-
enizing and stemming are common preprocessing tasks. Information Extraction is presented in section
2.3.

Population Module The information extracted will be classified and populated the corresponding concepts
and relations represented in the ontology. Entity Disambiguation and Synonymy Resolution are used in
this process.

16https://gate.ac.uk/sale/tao/splitch8.html
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Figure 2.15: A General Architecture for a System of Ontology Population from Text

Populated Ontology The populated ontology with the information extracted.

In the next section, we present some Ontology Population Systems.

2.4.2 Ontology Population Systems

The presented systems populate ontologies with information extracted from text. Some of these system build
the ontology automatically and some of them have manually built ontologies.

SOBA [BCRS06] TheSmartWebOntology-BasedAnnotation (SOBA) system isa sub-componentof theSmartWeb
system. This system was developed to populate the SWInto (SmartWeb Integrated Ontology) ontology
[OAH+07]. This system can extract instances and relations between them from free text (sport reports
and image captions) and tables (semi-structured) from theweb. It was applied for the sport domain from
the FIFA and UEFA websites covering matches of the world cup 2002 and 2006. This system uses Part-Of-
Speech Tagging and NER techniques to build grammar to achieve the extraction process. It exploits the
SProUT system [DKP+04] to build the extraction grammar. SProUT is able to extract entities like persons,
locations, numerals anddate and time expressions. The rule set of SProUTwas extendedwith gazetteers,
part-of-speechandmorphological information. More grammarweredeveloped to extract entities related
to the sport domain like players, referees, etc. SOBA uses the OntoBroker system [DEFS99] as a reasoner.

Text-To-Onto [MS00] This system was developed to learn and populate its own ontology for the German
language in a specific domain. It uses many techniques like POS tagging, NER, chunk parsing and ma-
chine learning.

Faria and Girardi [FG11] This systemwas applied ona corpus of the Family Lawdomain 17. It uses linguistic
17http://family.findlaw.com/
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rules to extract instances and relations to populate the LawFamily ontology which was built manually
using Protégé [NFM00]. It exploits GATE [Cun02] and JAPE rules to achieve the task. Mainly, it does Part-
Of-Speech Tagging and Named Entity Recognition.

Ruiz-Martínez et al. [RMMGCN+11] This system is applied in theeTourismdomain for Spanish language
in Spain. It uses GATE [Cun02] and JAPE grammar to achieve the task. Itmainly uses NamedEntity Recog-
nition. This system has a reasoning phase during and after the process of Ontology Population to main-
tain the consistency of the information integrated into the ontology. It uses the HermiT reasoner18. This
system was developed for Spanish Language but it can be adaptable to other languages and other do-
mains. The ontology used for this system is travel.owlwhich ismanually built using Protégé [NFM00]. This
ontology was enriched with some more classes about Spanish Hotel Industry from the OnTour ontology
[Pra04].

Ontopop [TL12] This system provides a plug-in for Protégé [NFM00]. It takes as an input an ontology which
was developed by the GETESS project [SBB+99]. It is in the tourism domain and it has 682 concepts with
no instances. It was populatedwith some training instances from the YAGO ontology [SKW08]. The ontol-
ogy population in this systemdepends on the training instances to retrieve sentences from thewikipedia
database. These retrieved sentences are used to extract some syntactic features for the instances. The
syntactic features are extracted using dependency parsing by exploiting the Stanford Parser19. Named
Entity Recognition is then applied. Then it exploits the Latent Semantic Analysis to detect polysemy and
synonymy. Its performance was tested on 30 corpora collected from the internet20.

Sadoun et al. [SDGDG13] This system was developed for the smart space domain. The corpus was col-
lected from ebooks from the Gutenberg Project21. The input ontology was developed manually using
Protégé [NFM00]. This ontology is described in [SDGDG11]. This system exploits dependency parsing in
the acquisition of extracting rules to be used in the ontology population process.

FRED [PDG12], LODifier [APR12] & ASKNet [HC07] These use the Discourse Representation The-
ory (DRT) [Kam81] to achieve the task of Ontology Population. They use the Boxer tool [Bos08] to get the
DRT representation of the text. They are open-domain. They learn the ontology then populate it.

OwlExporter [WKR10] This system is a plug-in for the GATE system [Cun02]. It exports GATE linguistic an-
notations to owl format.

In the next section we propose a criteria to classify these system.

2.4.3 Classification Criteria

Weproposesomecriteria toclassify the systemspresented in section2.4.2. Somecriteria is taken from[RMMGCN+11].

• Elements Learnt: In the Ontology Population, instances of concepts and instances of relations are ex-
tracted. Some systems extract only instances of concepts like [MC06] and Ontopop [TL12] and some sys-
tems extract only instances of relations like ontoX [YM07] and [DBVSW07]. Some systems extract both like
Ruiz-Martínez et al. [RMMGCN+11].

18http://hermit-reasoner.com/
19http://nlp.stanford.edu/software/lex-parser.html
20http://www.lonelyplanet.com/
21http://www.gutenberg.us/
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• Degree of Automation: Some systems need the intervention of the user or the domain expert like ontoX
[YM07]. Some other systems are fully automated like Ruiz-Martínez et al. [RMMGCN+11].

• Domain Portability: Some systems were designed to work with a specific domain and can not be ap-
plied on other domains like Faria and Girardi [FG11] for the FamilyLaw domain. Some systems are open-
domain like Ruiz-Martínez et al. [RMMGCN+11], FRED [PDG12], LODifier [APR12] and ASKNet [HC07].

• Consistency Maintenance: Ontology Population needs reasoning to maintain the ontology consistency
during the population process. SOBA [BCRS06] and [MNS03] do reasoning but Ontopop [TL12] and Faria
and Girardi [FG11] do not.

• Language Dependency: Most of the systems were built for the English language like [Emb04]. Some
other systems were built for German language like [MNS03] and others for Spanish like Ruiz-Martínez et
al. [RMMGCN+11]. The systems which use NLP can be adapted to work with different languages as NLP
can be adapted for different languages.

• The Techniques Used:

SOBA [BCRS06], KIM [PKO+04], Ruiz-Martínez et al. [RMMGCN+11], Faria and Girardi [FG11], Ontopop
[TL12] and Sadoun et al. [SDGDG13] use NLP techniques.

FRED [PDG12], LODifier [APR12] and ASKNet [HC07] use the Discourse Representation Theory [Kam81].

[CV05] and [CDF+00] use Machine Learning.

Table 2.1makes a summary of some systems according to the criteria proposed adding two columns about the
domain type and the input ontology.
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Table 2.1: Classification Ontology Population Systems from Text

System Elements
Learnt

Degree of
Automation

Domain
Portability

Consistency
Mainte-
nance

Language
Depen-
dency

SOBA
[BCRS06]

Instances
of con-
cepts and
relations

Automatic Portable if
customized

The Hermit
reasoner

Language
Dependent

Text-To-
Onto [MS00]

Instances
of con-
cepts and
relations

Semi-
automatic

Domain-
specific

OntoBroker
reasoner
[DEFS99]

German only

Faria and Gi-
rardi [FG11]

Instances
of con-
cepts and
relations

Automatic Domain-
specific

No reason-
ing

English Only
but could be
adaptable

Ruiz-
Martínez
et al.
[RMMGCN+11]

Instances
of con-
cepts and
relations

Automatic Portable if
customized

The HermiT
reasoner

Language In-
dependent

Ontopop
[TL12]

Instances
of concepts
only

Semi-
automatic

Portable if
customized

No reason-
ing

Language in-
dependent

Sadounet al.
[SDGDG13]

Instances
of con-
cepts and
relations

Automatic Portable if
customized

Jena reason-
ing

Language in-
dependent

FRED
[PDG12],
LODifier
[APR12]
and ASKNet
[HC07]

Instances
of con-
cepts and
relations

Automatic Portable No reason-
ing

Language in-
dependent if
customized

OwlExporter
[WKR10]

Instances
of con-
cepts and
relations

Automatic Portable Any descrip-
tion logic
reasoner

Language in-
dependent
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Table 2.1: Classification Ontology Population Systems from Text...Continuation

System The Techniques Used Domain
Type

The Ontol-
ogy

SOBA
[BCRS06]

NER, POS Tagging The Sport
Domain

The SWInto
ontology
[OAH+07]

Text-To-
Onto [MS00]

Tokenization, Morpho-
logical Analysis, POS
Tagging, NER, Chunk
Parsing, Machine Learn-
ing

A specific
domain

It bootstraps
its own on-
tology

Faria and Gi-
rardi [FG11]

NER, POS Tagging and
Morpho-lexical Analysis

The Family
Law domain

An ad hoc
manually
constructed
ontology

Ruiz-
Martínez
et al.
[RMMGCN+11]

Tokenization, POS Tag-
ging, Lemmatisation,
Parsing and NER

E-Toursim
Domain

travel.owl

Ontopop
[TL12]

NER, LSA, Dependency
Parsing

Tourism The GETESS
Ontology
[SBB+99]

Sadounet al.
[SDGDG13]

Dependency Parsing The smart
space do-
main

[SDGDG11]

FRED
[PDG12],
LODifier
[APR12]
and ASKNet
[HC07]

DRT Open do-
main

They learn
and popu-
late

OwlExporter
[WKR10]

GAPE annotations (POS
Tagging, NER, Tokeniza-
tion,...)

Open do-
main

Any ad hoc
ontology

In the next section we present a system for extracting educational information.



3
A System for Extracting Educational

Information

In this chapter, we present the system developed for extracting information from Learning Management Sys-
tems(LMS) into an ontology. The University of Évora Moodle is the LMS [WW07a] used for the tests. An OWL
ontology was drawn to represent the information extracted from the LMS. After extraction, the learning man-
agement system will be ontology-based system which will give it more flexibility in making statistics about its
content informationwhichwill be presented in chapter 4. It will also be possible to create a question answering
system to answer natural language questions and this will be presented in chapter 5.

The architecture of the system is presented in figure 3.1.

In this system:

• SQL Queries: are used to retrieve the information from the moodle database.

• Ontology: is populatedwith the information retrieved frommoodle. This ontologywas constructedman-
ually in order to represent the information of the moodle courses.

21
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Figure 3.1: System Architecture

• Preparation Module: prepares the retrieved information to populate the ontology. the sql queries results
are rewritten.

• PopulationModule: updates theontologywith instancesof classes, objectproperties anddata typeprop-
erties.

• Question answering system: is the user interface to the ontology, it translates a user natural language
query into a SPARQL query andwill be presented in chapter 5. But the system enables the use of SPARQL
queries directly by the users as we show in chapter 4.

Figure 3.2 shows a flowchart for extracting a specific course information. The course attributes are retrieved
and its content is processed to populate the ontology with a new class instance and some data properties (id,
name,..). The relations between the course and its users are retrieved (such as the users enrolled in the course
and their roles, teacher, student, ..) and represented as object properties in the ontology.

In next sections we present the modules of this system.

3.1 Moodle

Moodle has a relational databasewith 358 tables. In thisworkweuse the tables that contain information about:
courses, users, contexts, user roles, activities, resourcesanduser activities. Thedata fromtheUniversityof Evora
e-learning courses is used in this work. In table 3.1, some of the Moodle tables with some of their attributes are
presented.

3.1.1 SQL Queries

A set of sql queries were written to retrieve the information to populate the ontology taking into account the
Moodle database structure. Someof the sql queries which retrieve the information are presented. For example,
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Figure 3.2: A system case to extract a specific course and its users

Table name Columns
mdl_course ID Short name Full name Summary Category
mdl_user ID User name First name
mdl_role ID shortname archetype

mdl_role_assignments ID Role ID Context ID User ID
mdl_assign ID Course ID

mdl_assign_submission ID Assignment ID User ID Status
mdl_quiz ID Course ID Name
mdl_files ID Source File name Content hash
mdl_page ID Course Name Content

mdl_grade_items ID Course ID Item Instance Item module
mdl_logstore_standard_log ID Course ID User ID Activity type

mdl_context ID Context level Instance ID
mdl_enrol ID Course ID

mdl_user_enrolments ID Enrol ID User ID

Table 3.1: Some of the tables used with some of their columns
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select c.shortname course, u.username username
from mdl_course c, mdl_enrol e, mdl_user_enrolments ue, mdl_user u
where

c.id = 6 and
e.courseid = c.id and
e.id = ue.enrolid and
ue.userid = u.id

Figure 3.3: A sql query to get all the students enrolled in a specific course

Course Username
course1 user1
course1 user2

... ...

Table 3.2: sql query (figure 3.3) result

a sql query to get all the students which are enrolled in a specific course (course id is 6) is presented in figure3.3.
This query retrieves information from four different tables related to each other by a primary key-foreign key
relations. Figure 3.4 presents the relations between these four tables. For example, the table mdl_course is
related to the table mdl_enrol by one-to-many relation. This query result is presented in table 3.2.

Figure 3.4: A relation diagram between the four tables

Thequeries cangetmorenested ifweare looking formore specific information. Thequery in figure 3.5 is used to
get the actions done by users according to their different roles (student, editing-teacher, non-editing teacher).
This query uses four tables, one of them is themdl_logstore table. This table records all the actions done by all
the users like viewing or updating. The result of this query is presented in the table 3.3.

In figures 3.6, 3.7, 3.8 we present more sql queries:

• 3.6 to retrieve the users who took quizzes in a specific course (with id=6).

• 3.7 to retrieve all the users who passed a specific quiz in a specific course (course id=6, quiz id=19).

• 3.8 to retrieve all the files for a specific course (course id=5).
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select r.shortname as role, l.action, count( l.userid ) as usersNumber
from mdl_logstore_standard_log as l
join mdl_context as context on

context.instanceid = l.courseid
and context.contextlevel = 50

join mdl_role_assignments as ra on
l.userid = ra.userid
and ra.contextid = context.id

join mdl_role as r on
ra.roleid = r.id

where ra.roleid in ( 3,4,5 )
group by roleid, l.action, r.shortname

Figure 3.5: A sql query to get the actions of the users with different roles

Role Action UsersNumber
student updated num1
student created num2

editingteacher viewed num3
... ... ...

Table 3.3: sql query (figure 3.5) result

select u.username
from

mdl_quiz q, mdl_quiz_attempts qa, mdl_user u, mdl_course c
where

q.id = qa.quiz and qa.userid = u.id and qa.state = 'finished'
and q.course = c.id and c.id = 6

Figure 3.6: A sql query to get all the users which took quizzes in a specific course

select u.username
from

mdl_quiz q, mdl_quiz_attempts qa, mdl_user u, mdl_course c
where

q.id = qa.quiz and qa.userid = u.id and qa.state = 'finished'
and q.course = c.id and c.id = 6 and q.id = 19 and
qa.sumgrades >=
(select gi.gradepass

from
mdl_course c, mdl_quiz q, mdl_grade_items gi

where
c.id = q.course and c.id = gi.courseid
and q.id = gi.iteminstance
and c.id = 6 and q.id = 19 and
gi.itemmodule = 'quiz'

)

Figure 3.7: A sql query to get all the users who passed a specific quiz in a specific course
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select
mdl_files.source,
mdl_files.filename,
mdl_context.path,
mdl_resource.course,
mdl_resource.name,
mdl_course.fullname,
mdl_course.shortname

from
mdl_files
inner join mdl_context on mdl_files.contextid = mdl_context.id
inner join mdl_resource on mdl_context.instanceid = mdl_resource.id
inner join mdl_course on mdl_resource.course = mdl_course.id

where (mdl_course.id = 5)

Figure 3.8: A sql query to get all the files of a specific course

Class Object Property Domain Range

Course hasActivity Course CourseActivity
hasUser Course User

User
isStudentOf User Course
isTeacherOf User Course
doActivity User CourseActivity

UserActivity activityByUser UserActivity User
activityInCourse UserActivity Course

Table 3.4: Ontology classes with their object properties

3.2 Ontology

In this work, the ontology was built manually and inspired from the structure of the moodle database. It was
built using protégé [NFM00]. Moodle database tables give rise to classes or object properties. The attributes of
the tables give rise to data type properties or object properties.

Table 3.4 shows someof theontology classes and their object properties. “Course”, “User” and “UserActivity” are
classes. The object properties are relations between the classes such that each object property has a domain
class and a range class. For example, the “hasActivity” object property has the domain “Course” and the range
“CourseActivity”. That means each course (each instance of the class “Course”) in the ontology can be related
to one or more activities which are instances from the class “CourseActivity”.

In table 3.5 we present some data type properties. Data type properties are relations between classes and
values. For example, the data type property “CourseID” is a property of the class “Course” (has this class as a
domain) which means that each instance of the class “Course” can have a “CourseID” property. This property
has the range “int” which means that its value should be an integer number.

Figure 3.9 presents a part of the ontology structure using the OntoGraf utility of protégé. It contains some of the
classes of the ontology and the arrows between them refer to the object properties between these classes. The
arrow starts from the domain class and goes to the range class.

Some examples of the ontology classes are:

• Each course in the moodle has activities and resources. Activities in moodle are things like quizzes, as-
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Class Data Property Domain Range

Course Course ID Course xsd:int
Full name Course xsd:string

User
User ID User xsd:int

First name User xsd:string
Last name User xsd:string

UserActivity Activity type UserActivity xsd:string
Week number UserActivity xsd:int

Table 3.5: Ontology classes with their data properties

Figure 3.9: The Ontology View, OntoGraf
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Figure 3.10: The Course and CourseActivity relation

signments, forums, etc; resources are things like URLs, files, etc. The ontology will have classes and sub-
classes to represent the information retrieved from moodle about course, activities and resources and
relationships between them. The ontology has the class “CourseActivity” which has subclasses to repre-
sent the different types of the course activities. The class “Course” is related to the class “CourseActivity”
by an object property “hasActivity”. Figure 3.10 presents how the two classes are related. The arrow with
thenumber 1 represents the “hasActivity” object property. Thedirectionof the arrow refers to thedomain
of this relation which is the “Course” class and the range of it which is the “CourseActivity” class. The ar-
rows with the numbers 2, 3, 4, 5, 6 represent the “hasSubclass” or “isA” object property. This refers that
the classes “Workshop”, “Quiz”, “Forum”, “Lesson”, “Assignment” are subclasses of the class “CourseActiv-
ity”. Having this object property in the ontology with the these subclasses make it possible to know the
activities of a specific course with their types.

• The “User” class represents the user and the “UserActivity” class represents the activities of the user in
the course like viewing or deleting some thing in this course. They are related by object properties like
“activityByUser” which represents the user who does the activity. The object property “activityInCourse”
represents inwhichcourse theactivity tookplace. Theobjectproperty “hasUser” refers thata specificuser
is enrolled in a specific course. 3.11 shows how these classes are related. The arrow with the number 1
represents the “activityByUser” object property. The arrow with the number 2 represents the “activityIn-
Course” object property. The arrow with the number 3 represents the “hasUser” object property. Having
these three object properties in the ontologymake it possible to knowwhich user does a specific activity
in a specific course.

3.3 Preparation Module

This module processes the sql results to create triples to be added to the ontology. For example, to populate a
course into the ontology, this module prepare triples with the course id, its short name and its duration. These
triples, (Course, id, short name), (Course, id, course duration) are the input of the population module where
they will be used to populate the ontology.
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Figure 3.11: The Course, User and UserActivity relations

Number of classes Number of instances of classes
25 26234

Number of object properties Number of data type properties
15 37

Table 3.6: Ontology statistics after population

3.4 Population Module

This module will populate the ontology with the triples produced by the preparation module. For example,
figure 3.12 shows the flowchart diagram of adding two triples, first one is a course instance with its id and short
nameand the secondone is auser activitywhich tookplace in this coursewith its id and type. Thecourse should
be added as an instance of the class “Course” in the ontology and the user activity as an instance of the class
“UserActivity”. Then the “activityInCourse” object property between the two individuals should be added to say
that this activity took place in this course. It is always checked for the individual existence in the ontology before
adding it. In jena API, when adding an individual which has the same name of an already existed individual, the
latterwill smash the former. This causes some loss of informationas some individualsmayhave the samename
but they may be distinct objects.

Another example is presented in figure 3.13. The ontology is populated with new instances of the classes
“Course” and “User” and the relations (object properties) between these instances. Users can have different
roles in the course like student, teacher, editing teacher, etc. If the user is a student in the course then the “is-
StudentOf” object property is added between the two instances. If the user is a teacher in the course then the
“isTeacherOf” object property is added between the two instances.

Table 3.6 shows some statistics about the ontology after population:

The ontology will be prepared to be queried using sparql to answer questions about its content. This will be
presented in the next chapters.
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Figure 3.12: Adding two instances and an object property to the ontology

Figure 3.13: Adding users and their roles in a specific course



4
Learning Analysis

In this chapter we present some examples of how the populated ontology can be exploited to get information
and statistics about its content. The ontology is queried using SPARQL query language. The Java JENA API is
used to run SPARQL queries.

The SPARQL result is then processed to visualize the answer as a chart. The JFreeChart1 Java chart library is
used to achieve that. The architecture of this system is presented in Figure 4.1.

In this system:

• SPARQL Query: SPARQL query is the query that the user writes.

An example of a SPARQL query to get all the instances of the Course class from the ontology is presented
in figure 4.2. This query has rdf prefix which is a standard name space and ns prefix which is the chosen
name space of the ontology. ?x is a variable of the type Course.

• Query the ontology: Java Jena API is used to query the ontology using SPARQL.

Jena code presented in figure 4.3. queryString is the SPARQL query. ontModel is the ontology model.
1http://www.jfree.org/jfreechart/

31
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Figure 4.1: The Learning Analysis System Architecture

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ns: <http://www.semanticweb.org/courses-ontology-57#>
select ?x
where {

?x rdf:type ns:Course.
}

Figure 4.2: A SPARQL query example

Query query = QueryFactory.create(queryString);
QueryExecution qe = QueryExecutionFactory.create(query, ontModel);
com.hp.hpl.jena.query.ResultSet results = qe.execSelect();

Figure 4.3: Jena code to query the ontology using SPARQL
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{
"head": {
"vars": [ "x" ]

} ,
"results": {
"bindings": [
{
"x": { "type": "uri" , "value": "http://www.semanticweb.org/courses-ontology-57#COURSE1" }
} ,
{
"x": { "type": "uri" , "value": "http://www.semanticweb.org/courses-ontology-57#COURSE2" }
} ,
{
"x": { "type": "uri" , "value": "http://www.semanticweb.org/courses-ontology-57#COURSE3" }
} ,
{
"x": { "type": "uri" , "value": "http://www.semanticweb.org/courses-ontology-57#COURSE4" }
} ,...

Figure 4.4: The result of SPARQL query in json format

• SPARQL result set: it is obtained and stored in a json file. For example, the result of the query (see figure
4.2) is presented in figure 4.4.

• Visualize the answer: it will process the json file and present a graph as a result. Java JFreeChart chart
library is used to achieve that. This will be presented in next sections.

• A visual chart: the visual result. Examples are given in the next sections.

Three use cases of this system are demonstrated in the next sections.

4.1 Use Case 1

Use case 1 is an example of how to retrieve statistics about all the courses in the ontology. These statistics are:

• The number of activities in the course

• The number of resources in the course

• The number of the reading activities of the students in the course

• The number of the reading activities of the teachers in the course

• The number of the submission activities of the students in the course

• The number of the submission activities of the teachers in the course

• The number of students registered in siiue in the course

• The number of students of the course

• The number of the teachers of the course
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• The number of students who passed the course

The SPARQL query in figure 4.5 is used to retrieve this information.

This query is composed by a first part where the rdfs prefix is standard prefix and in the where clause we have:

• (1), (9), (11), (13) and (15) define variables of the classes Course, User and Grade.

• (10), (12), (14), (16) and (17) define object property constraints.

• (2), (3), (4), (5), (6), (7), (8) and (18) define data type property constraints.

• The keyword “optional” merges all the subqueries when the variable course is equal for all.

The json result (only one entry) of this SPARQL query is presented in figure 4.6.

In tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, SPARQL query result is presented.

Course 1 2 3 4 5 6 7 8 9 10
#Activities 14 2 9 8 13 10 2 19 15 3
#Resources 13 31 57 38 67 8 14 103 42 24

#Read of students 1160 6216 828 1296 5642 1406 799 12415 5131 788
#Read of teachers 578 3538 336 420 1518 633 233 3645 1687 340

#Submissions of students 112 358 67 236 1004 204 61 4166 472 21
#Submissions of teachers 207 836 398 245 618 136 127 2259 453 164

#Students in SIIUE 4 11 4 33 36 3 34 36 15 4
#Students of course 3 24 3 12 26 3 9 46 9 4
#Teachers of course 2 5 1 1 3 1 1 3 1 1

#Students passed the course 3 20 2 0 13 3 0 0 6 3

Table 4.1: Statistics of the courses

Course 11 12 13 14 15 16 17 18 19 20
#Activities 19 16 19 3 2 10 18 11 20 10
#Resources 33 54 54 24 5 56 27 84 47 16

#Read of students 3693 3270 1830 455 254 4666 1870 2280 9350 4155
#Read of teachers 1760 913 358 167 251 1210 738 1209 3121 1140

#Submissions of students 512 442 179 10 37 214 175 214 921 410
#Submissions of teachers 1118 448 342 45 65 452 485 310 2146 462

#Students in SIIUE 30 30 34 5 6 12 3 2 31 15
#Students of course 17 18 8 5 5 11 3 2 22 15
#Teachers of course 1 2 1 1 1 1 1 1 1 1

#Students passed the course 3 0 0 3 5 11 3 2 9 7

Table 4.2: Statistics of the courses
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ns: <http://www.semanticweb.org/courses-ontology-57#>
select *
where {

{
select *
where{

?course rdf:type ns:Course. (1)
?course ns:courseActivityNum ?courseActivityNum. (2)
?course ns:courseResourcesNum ?courseResourcesNum. (3)
?course ns:studentReadNum ?studentReadNum. (4)
?course ns:teacherReadNum ?teacherReadNum. (5)
?course ns:studentSubmissionsNum ?studentSubNum. (6)
?course ns:teacherSubmissionsNum ?teacherSubNum. (7)
?course ns:studentsSIIUENum ?studentsSIIUENum. (8)
}

}
optional

{
select ?course (count(?student) as ?studentsNum)
where{

?student rdf:type ns:User. (9)
?student ns:isStudentOf ?course. (10)
} group by ?course

}
optional

{
select ?course (count(?teacher) as ?teachersNum)
where{

?teacher rdf:type ns:User. (11)
?teacher ns:isTeacherOf ?course. (12)
} group by ?course

}
optional

{
select ?course (count(?student) as ?passedStudents)
where{

?student rdf:type ns:User. (13)
?student ns:isStudentOf ?course. (14)
?grade rdf:type ?Grade. (15)
?grade ns:gradeInCourse ?course. (16)
?grade ns:gradeObtainedBy ?student. (17)
?grade ns:gradePassed 'S' (18)
} group by ?course

}}

Figure 4.5: Statistics of all the courses
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{
"head": {
"vars": [ "course" , "courseActivityNum" , "courseResourcesNum" ,

"studentReadNum" , "teacherReadNum" , "studentSubmissionsNum" ,
"teacherSubmissionsNum" , "studentsSIIUENum" , "studentsNum" ,
"teachersNum" , "passedStudents" ]

} ,
"results": {
"bindings": [
{
"course": { "type": "uri" , "value": "http://www.semanticweb.org/courses-ontology-57#COURSE" } ,

"courseActivityNum": { "type": "literal" , "value": "14" } ,
"courseResourcesNum": { "type": "literal" , "value": "13" } ,
"studentReadNum": { "type": "literal" , "value": "1160" } ,
"teacherReadNum": { "type": "literal" , "value": "578" } ,
"studentSubmissionsNum": { "type": "literal" , "value": "112" } ,
"teacherSubmissionsNum": { "type": "literal" , "value": "207" } ,
"studentsSIIUENum": { "type": "literal" , "value": "4" } ,
"studentsNum": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" ,

"type": "typed-literal" , "value": "3" } ,
"teachersNum": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" ,

"type": "typed-literal" , "value": "2" } ,
"passedStudents": { "datatype": "http://www.w3.org/2001/XMLSchema#integer" ,

"type": "typed-literal" , "value": "3" }
} , ...

Figure 4.6: The result of SPARQL query

Course 21 22 23 24 25 26 27 28 29 30
#Activities 15 39 12 10 11 14 10 12 1 12
#Resources 81 107 1 48 16 14 60 50 4 17

#Read of students 5086 6409 1715 902 2466 429 5625 4231 5281 2482
#Read of teachers 1262 4105 265 1273 502 457 1623 1221 2674 450

#Submissions of students 1345 1760 142 46 193 7 2298 322 740 211
#Submissions of teachers 1090 1264 106 893 261 115 753 471 1029 242

#Students in SIIUE 28 12 30 6 30 5 6 29 26 15
#Students of course 12 14 13 4 9 4 7 18 19 11
#Teachers of course 1 1 1 1 1 1 1 1 1 1

#Students passed the course 0 0 0 3 12 4 3 0 3 8

Table 4.3: Statistics of the courses
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Course 31 32 33 34 35 36 37 38 39 40
#Activities 16 11 3 25 1 14 19 19 13 7
#Resources 27 27 22 31 10 22 103 52 48 56

#Read of students 1518 2279 1374 1910 736 1896 3540 4216 9317 2029
#Read of teachers 1176 417 865 514 360 443 1002 1243 1012 548

#Submissions of students 192 205 106 177 72 140 1201 410 1279 197
#Submissions of teachers 681 460 289 246 72 191 644 703 518 507

#Students in SIIUE 4 33 3 34 5 3 36 29 30 34
#Students of course 4 23 3 6 4 3 17 22 23 11
#Teachers of course 1 1 1 1 1 1 5 1 1 1

#Students passed the course 3 5 3 0 3 3 0 8 10 0

Table 4.4: Statistics of the courses

Course 41 42 43 44 45 46 47 48 49 50
#Activities 22 9 3 15 2 23 8 7 12 9
#Resources 64 1 23 4 7 37 29 19 2 19

#Read of students 1917 2844 1816 996 477 1581 1055 3353 2027 1378
#Read of teachers 672 831 471 604 252 333 629 1089 257 588

#Submissions of students 269 352 128 83 15 137 111 500 116 99
#Submissions of teachers 386 287 202 158 61 209 121 779 159 343

#Students in SIIUE 33 16 15 4 4 34 3 30 30 2
#Students of course 9 9 9 5 4 8 3 20 24 2
#Teachers of course 1 1 1 1 2 1 1 2 1 1

#Students passed the course 0 6 7 3 4 0 3 0 3 2

Table 4.5: Statistics of the courses

Course 51 52 53 54 55 56 57 58 59 60
#Activities 24 9 15 19 13 21 13 13 1 11
#Resources 80 18 67 35 69 23 29 78 15 53

#Read of students 5726 1409 1222 5453 1823 5650 3869 3113 324 2891
#Read of teachers 1631 488 452 2899 488 2730 763 1554 146 1466

#Submissions of students 335 173 52 393 267 809 445 262 14 274
#Submissions of teachers 795 134 311 1013 422 1603 259 1227 57 578

#Students in SIIUE 15 3 4 15 34 31 15 28 5 4
#Students of course 14 3 4 13 5 10 9 11 5 4
#Teachers of course 1 1 1 1 1 1 1 1 4 1

#Students passed the course 8 3 2 6 3 0 6 2 0 4

Table 4.6: Statistics of the courses

In figures4.7, 4.8, 4.9, 4.10, 4.11, 4.12wepresent the tableasachart. These figuresaregeneratedusingJFreeChart
library after processing the json file result. Two scales are created due to the differences in the numbers values.
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In the graph legend, the labels marked with an asterisk belong to the second scale. The horizontal axis repre-
sents the courses.

Figure 4.7: Statistics of the courses

Figure 4.8: Statistics of the courses

Figure 4.9: Statistics of the courses
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Figure 4.10: Statistics of the courses

Figure 4.11: Statistics of the courses

Figure 4.12: Statistics of the courses

These figures provide a general view about all the courses and an easyway to look at their characteristics (num-
ber of activities, resources or students...) and understand the differences between them tomake some conclu-
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ns: <http://www.semanticweb.org/courses-ontology-57#>
select ?user ?week ?grade ?gValue ?gPassed (sum(?num) as ?numActWeek)
where {

?user rdf:type ns:User. (1)
?course rdf:type ns:Course. (2)
?userActivity rdf:type ns:UserActivity. (3)
?userActivity ns:activityInCourse ?course. (4)
?user ns:isStudentOf ?course. (5)
?userActivity ns:activityByUser ?user. (6)
?userActivity ns:week ?week. (7)
?userActivity ns:num ?num. (8)
?course ns:c_id '1545'. (9)
?grade rdf:type ns:Grade. (10)
?grade ns:gradeObtainedBy ?user. (11)
?grade ns:gradeInCourse ?course. (12)
?grade ns:gradeValue ?gValue. (13)
?grade ns:gradePassed ?gPassed. (14)

} group by ?user ?week ?grade ?gValue ?gPassed
order by asc(UCASE(str(?user)))

Figure 4.13: The activities by week of students in course ‘x’

sions. For example, the courses6and7havea similar numberof activities and resources (18and16) respectively
and they have (3 and 9) students respectively. The number of reads of students in course 7 (which has the bigger
number of students) is less than the number of reads of course 6 (which has less students). We can conclude
that the students in the course 6weremore active than in course 7 andwe see than no one passed in the course
7 but all the students in course 6 passed the course.

4.2 Use Case 2

Some questions which are not possible to answer by the system which is based on a relational database, can
be possible to answer using the ontology-based system.

In use case 2 we present an example for finding all the activities of the student by week and their grades in a
specific course.

For a course “x” with the id=1545, by the ontology-based system, this question can be answered using the
SPARQL query presented in figure 4.13. To explain this query:

• (1), (2), (3) and(10) define variables of the classes User, Course, UserActivity and Grade respectively.

• (4), (5), (6), (11), (12) define object property constraints.

• (7), (8), (9), (13), (14) define data type property constraints.

Table 4.7 shows the result of SPARQL query in figure 4.13.



4.2. USE CASE 2 41

Student 1 2 3 4 5 6 7 8 9

Nu
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nt

sa
ct
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tie

sb
y

we
ek

Week1 12 14 10 0 6 2 3 0 0
Week2 2 14 26 0 10 39 4 0 1
Week3 4 0 10 0 17 7 1 0 0
Week4 3 3 21 0 6 0 9 0 2
Week5 10 0 24 0 2 2 2 0 0
Week6 6 7 29 0 0 2 0 0 0
Week7 45 0 52 0 0 2 14 4 0
Week8 32 1 20 1 31 29 0 3 0
Week9 4 0 11 0 3 5 82 0 0
Week10 8 8 18 0 7 22 11 0 0
Week11 6 24 26 0 0 0 5 0 0
Week12 39 0 7 0 1 4 1 0 0
Week13 18 0 8 0 1 23 37 0 2
Week14 8 36 21 0 31 61 3 0 0
Week15 25 3 5 0 2 0 3 0 0
Week16 8 0 13 0 1 3 24 0 0
Week17 8 29 8 0 2 7 4 1 0
Week18 6 2 16 0 1 2 40 0 0
Week19 4 1 25 0 0 16 4 1 0
Week20 7 10 8 0 1 6 10 0 0
Week21 5 1 13 0 1 3 28 1 1
Week22 7 22 18 0 0 4 14 0 0
Week23 5 0 11 0 5 1 8 1 0
Week24 5 4 12 0 9 0 11 2 0
Week25 8 0 17 0 0 7 16 0 0
Week26 27 0 42 0 1 11 10 3 0
Week27 5 12 33 0 19 9 0 0 0
Week28 8 0 16 0 16 18 10 0 0
Week29 4 9 10 0 9 8 2 0 0
Week30 12 0 6 0 3 2 5 3 0
Grade 16 16 17 0 15 14 14 0 14

Table 4.7: SPARQL result for course x

Figure 4.14 visualizes the result of this query. It has two scales: first scale is for the number of activities and
second one is for the grade. The horizontal axis represents the students of the course. It is observed from this
graph that the more the activities the better the grade. It is also observed that students tend to have more
activities in the first weeks than the last weeks.
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ns: <http://www.semanticweb.org/courses-ontology-57#>
select ?user ?gValue ?gPassed (sum(?num) as ?numAct)
where {

?user rdf:type ns:User. (1)
?course rdf:type ns:Course. (2)
?course ns:c_id '1545'. (3)
?userActivity rdf:type ns:UserActivity. (4)
?grade rdf:type ns:Grade. (5)
?userActivity ns:activityInCourse ?course. (6)
?user ns:isStudentOf ?course. (7)
?userActivity ns:activityByUser ?user. (8)
?userActivity ns:num ?num. (9)
?grade ns:gradeObtainedBy ?user. (10)
?grade ns:gradeInCourse ?course. (11)
?grade ns:gradeValue ?gValue. (12)
?grade ns:gradePassed ?gPassed. (13)

} group by ?user ?gValue ?gPassed
order by asc(UCASE(str(?user)))

Figure 4.15: Correlation(activities-grades) in course ’x’

Student 1 2 3 4 5 6 7 8 9
#Activities 341 200 536 1 185 295 361 19 6

Grade 16 16 17 0 15 14 14 0 14
Correlation 0.69

Table 4.8: SPARQL result for course ‘x’

4.3 Use Case 3

Consider the example:

• I want to know the correlation between the number of activities each user does in a specific course and
his grade in this course

For a course “x” with the id=1545, this question can be answered using the SPARQL query presented in figure
4.15. To explain this query:

• (1), (2), (4) and (5) define variables of the classes User, Course, UserActivity and Grade respectively.

• (6), (7), (8), (10) and (11) define object property constraints.

• (3), (9), (12) and (13) define data type property constraints.

Table 4.8 shows the result of SPARQL query of figure 4.15

Figure 4.16 shows the information of the table 4.8 The first scale in the chart is for the number of activities and
the second scale is for the grade. The horizontal axis represents the students of the course. The positive value of
the correlation indicates that the two variables are positively related. Whichmeans, whenmore activities done



44 CHAPTER 4. LEARNING ANALYSIS

Figure 4.16: The correlation (activities, grades) of students in course ‘x’

by a student then his grade is better.

Consider another course “y” with the id = 919.
Table 4.9 shows the result of SPARQL query of figure 4.15 after changing the line (3) to:

?course ns:c_id '919'.

Student 1 2 3 4 5 6 7 8
#Activities 69 726 2190 243 511 781 1458 203

Grade 0 13 12 10 10 0 12 0
Student 9 10 11 12 13 14 15 16

#Activities 95 1437 331 1183 352 137 6 51
Grade 0 14 11 18 11 0 0 0

Correlation 0.66

Table 4.9: SPARQL result for course ‘y’

Figure 4.17 shows the information of the table 4.9.

In this course also, the positive correlation says that students with more activities have better grades.

In the next chapter we explain how to convert natural language questions to SPARQL using Natural Language
Processing tools and we propose an algorithm for the conversion process.
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Figure 4.17: The correlation (activities, grades) of students in course ‘y’





5
Question Answering System

This systemwas created to convert natural language questions to SPARQL queries. The structure of this system
is presented in figure 5.1.

Figure 5.1: Question Answering System Architecture

47
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The “NLP Module” processes the natural language question and produces annotations as a result. The “Build
SPARQL query” module takes the annotations generated by the previous module and generates the SPARQL
query. These twomodules are explained in the next sections in this chapter.

5.1 NLP Module

Natural language questions are processed using the natural language tools in GATE [Cun02]. GATE is a natu-
ral language processing framework that includes tools to produce annotations for the sentence tokens. Stan-
ford POS tagger and stanford dependency parser are included in this framework as tools. The annotations are
passed into a JAPE transducer to be stored in a file. The algorithm which generates SPARQL uses these anno-
tations.
Figure 5.2 shows the processing pipeline, each process is a tool included in the GATE framework:

Figure 5.2: Processing pipeline

Consider question (1):

Question(1): “What is the total number of activities for each student in the course 1545”.

This sentence will pass through the pipeline process producing a set of annotations. The steps of this pipeline
are (see figure 5.2):

• Document reset: clears all the annotations in the sentence.

• Regular expression sentence splitter: it splits the text into sentences.

• Stanford PTB tokenizer: it annotates tokens with the following information:

– Type: a token



5.2. BUILDING SPARQL QUERY 49

– Start: the index of the first character of the word.

– End: the index of the last character of the word.

– Id: the identifier of the token

– Features: some attributes of the word such as: kind, length, orth and string.

For example, the word “What” is tokenized as: type=Token, start=0, end= 4, Id=4, Features={kind=word,
length=4, orth=upperInitial, string=What}.

• Stanford POS tagger: it will add the feature “category” to the token. For example, the token 4 will have
the feature category=WP which means “Wh-pronoun”.

• Stanford dependency parser: it will add the feature “dependencies” to the token. For example, the token
13will have the feature dependencies=[pobj(15)] whichmeans that the token 15 is a prepositional object
of the token 13.

• JAPE transducer: JAPE rules to extract the annotations from the GATE framework and store them in a file.
JAPE (Java Annotation Patterns Engine) instructions are regular expressions on annotations.

Figure 5.3 presents the annotations generated for Question(1), in figure 5.4 we present a graphical representa-
tion of these annotations1.

In the next section we present the algorithm to convert the annotations to a SPARQL query.

Figure 5.4: POS-tags and dependencies of Question(1)

5.2 Building SPARQL query

An algorithmwas created to convert the generated annotations from the previous step to a SPARQL query. The
algorithm is presented in figure 5.5.

1This graph was obtained using Stanford CoreNLP Online Demo
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AnnotationImpl: id=4; type=Token;
features={string=What, category=WP, dependencies=[cop(5), nsubj(11)]}

AnnotationImpl: id=5; type=Token; features={string=is, category=VBZ}

AnnotationImpl: id=7; type=Token; features={string=the, category=DT}

AnnotationImpl: id=9; type=Token; features={string=total, category=JJ}

AnnotationImpl: id=11; type=Token;
features={string=number, category=NN, dependencies=[det(7), amod(9), prep(13), nmod(15)]}

AnnotationImpl: id=13; type=Token;
features={string=of, category=IN, dependencies=[pobj(15)]}

AnnotationImpl: id=15; type=Token;
features={string=activities, category=NNS, dependencies=[prep(17), nmod(21)]}

AnnotationImpl: id=17; type=Token;
features={string=for, category=IN, dependencies=[pobj(21)]}

AnnotationImpl: id=19; type=Token; features={string=each, category=DT}

AnnotationImpl: id=21; type=Token;
features={string=student, category=NN, dependencies=[det(19), prep(23), nmod(27)]}

AnnotationImpl: id=23; type=Token;
features={string=in, category=IN, dependencies=[pobj(27)]}

AnnotationImpl: id=25; type=Token; features={string=the, category=DT}

AnnotationImpl: id=27; type=Token;
features={string=course, category=NN, dependencies=[det(25), num(29)]}

AnnotationImpl: id=29; type=Token; features={string=1545, category=CD}

Figure 5.3: annotations for Question (1)
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Figure 5.5: The SPARQL-query-builder algorithm

In the next subsections we explain the steps to interpret Question(1) as an example.

5.2.1 Discourse entities

Discourse entities are recognized in the process “Extract tokens which meet ontology classes”. The algorithm
will check all the nouns in the sentence. All the tokens marked as “NN” or “NNS” are nouns. The discourse are
candidates tomatch ontology classes. The tokensmarked as “NNS” are in plural form so theywere lemmatized
to get the singular form. Then they are searched for in the ontology classes to find a match. For Question(1),
the result is the following discourse entities:

• (A, 4, What, Wh).

• (X, 21, student, each)

• (Y, 27, course, the)

• (Z, 15, activities, -)

• (W, 11, number, the)

• (B, 29, 1545, -)

Then this module will try to match each discourse entity with ontology classes like following:

• The “student” token meets the “User” class: (X, 21, student, User)



52 CHAPTER 5. QUESTION ANSWERING SYSTEM

• The “course” token meets the “Course” class: (Y, 27, course, Course)

• The “activities” token meets the “UserActivity” or the “CourseActivity” classes: (Z, 15, activities, [UserAc-
tivities, CourseActivities])

• the “number” token meets no class: (W, 11, number, null)

5.2.2 DRS conditions

The discourse representation conditions are obtained by extracting the dependencies of prepositional phrases,
verbs and adjectives.

The algorithm loops through all the annotations to extract conditions. For each dependency in the tokens fea-
tures it will get the head and dependent of it. The discourse conditions for Question(1) are:

• of(number-11, activities-15) -> of(W, Z)

• for(activities-15, student-21) -> for(Z, X)

• in(student-21, course-27) -> in(X, Y)

• is(What-4, number-11) -> is(A, W)

• total(number-11) -> total(W)

• num(course,1545) -> num(Y,B)

These conditions will be interpreted in the ontology in order to be translated into ontology properties.

5.2.3 Determine object and data type properties

The DRS will be used to determine the object and data type properties from the ontology.

• for(Z, X) will produce the “activityByUser” object property. It will be obtained by searching for the object
properties between the two classes. This is achieved using Jena reasoner.

• in(X, Y) will produce the “isStudentOf” object property.

• of(W, Z) will produce the “num” data type property.

• num(Y, B) will produce the “c_id” data type property.

5.2.4 Generating SPARQL query

A SPARQL query is built using the DRS.

1. each discourse entity that wasmatchedwith a class will give rise to a variable definition in SPARQL query.

(1), (2), (3) were generated by the tokens X, Y, Z respectively.
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX ns: <http://www.semanticweb.org/courses-ontology-57#>
select ?x (sum(?num) as ?numAct)
where {

?x rdf:type ns:User. (1)
?y rdf:type ns:Course. (2)
?z rdf:type ns:UserActivity. (3)
?z ns:activityInCourse ?y. (4)
?x ns:isStudentOf ?y. (5)
?z ns:activityByUser ?x. (6)
?z ns:num ?num. (7)
?y ns:c_id `1545'. (8)

} group by ?x

Figure 5.6: the activities of students in course ‘1545’

2. each object property or data type property will generate a constraint.

(4), (5), (6) were generated using the object properties.

(7) was generated using the data type property.

(8) was generated using the num(Y, B) from DRS.

3. the select statement in SPARQL is built by collecting all the discourse variables with the “each” quantifier
followed by variables that have “Wh” as a quantifier. So it was generated using total(W), each(X).

4. The variables which have the quantifier “each” will be presented in the group by clause. Group by was
generated using each(X).

Figure 5.6 presents the SPARQL query generated as a result.

Figure 5.7 shows the result of the generated SPARQL query.

Figure 5.7: Students activities in course ‘x’





6
Conclusion and Future Work

As presented in chapter 3, it was possible to achieve an information extraction system to extract information
from the database of Moodle and populate it into an ontology.

As presented in chapter 4, it was possible to query the ontology to show statistics about the courses. This was
not possible in the traditional Learning Management System.

As presented in chapter 5, it was possible to build a question answering system to answer natural language
questions using Natural Language Processing o convert the natural language into a query language for the
ontology (SPARQL).

As a future work:

• We can apply thiswork for another LearningManagement System. Building ontologies formany Learning
Management Systems make it possible to merge these ontologies into one comprehensive ontology in
the domain.

• Natural Language Processing can be used to extract information from textual contexts of the courses
resources. Achieving that make it possible to extract all the information of the Learning Management
System and not only from the database of it.
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• The question answering system can be improved to answer more questions with more accuracy. This
can be achieved by improving the proposed algorithm which depends on Natural Language Processing.
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