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A coruja-das-torres (Tyto alba) como biomonitor de contaminação ambiental 

com mercúrio e compostos organoclorados 

Resumo 

 Numerosos químicos de origem industrial e natural estão a aumentar a nível global, 

enquanto os seus efeitos de longo-termo permanecem desconhecidos. A coruja-da-torres é 

um bom bioindicador de poluição ambiental e as suas penas podem ser utilizadas como 

ferramentas de biomonitorização minimamente invasivas. A variação intra-individual das 

concentrações de mercúrio pode ser minimizada através do cálculo de uma média a partir 

de várias penas do indivíduo, independentemente do tipo de pena. Várias penas do mesmo 

ninho podem ser combinadas para obter uma melhor estimativa da contaminação no 

território. Penas de indivíduos atropelados são representativas da contaminação ao nível 

regional. Menor bioacumulação está relacionada com culturas irrigadas e paisagens agrícolas 

heterogéneas. O habitat parece mediar a transferências de mercúrio do solo para as presas, 

e da cadeia trófica até à coruja-das-torres. As penas podem ser particularmente úteis para 

detetar pesticidas organoclorados em desuso, que geralmente ocorrem em concentrações 

residuais, embora a contaminação externa deva ser avaliada. 

 

Palavras-chave: coruja-das-torres, mercúrio, pesticidas organoclorados, biomonitorização, 

penas 
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Summary 

 Numerous industrial and natural chemicals are increasing worldwide, while their 

long-term effects on wildlife and human health remain unknown. Barn owls are good 

biondicators of environmental pollution and their feathers may be used as minimally 

invasive monitoring tools. Intra-individual variation in mercury concentrations can be 

minimized by calculating an average from several feathers from an individual, regardless of 

feather type. Several feathers from the same nest may be pooled to better represent the 

average mercury contamination in the territory. Feathers from road-killed barn owls are 

representative of contamination at a regional level. Lower bioaccumulation in the barn owl 

is linked with irrigated crops and heterogeneous agricultural landscapes. Habitat seems to 

mediate the transfer of mercury from the soil to the prey, and along the food web to the 

barn owl. Feathers may be particularly suitable to detect legacy organochlorine pesticides 

which generally occur in residual concentrations, but external contamination should be 

assessed. 

 

Keywords: barn owl, mercury, organochlorine pesticides, biomonitoring, feathers 
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1 General introduction 

1.1 The underlying principles of this thesis 

 Thousand of industrial and natural chemical compounds are increasing worldwide, 

while their long-term effects on wildlife and on human health remain largely unknown, 

which represents one of the key environmental problems facing humanity (Schwarzenbach 

et al. 2006). The increase in pesticide use as a consequence of the demands of human 

population growth and the ongoing increasing trend in mercury (Hg) emissions, represent a 

current challenge for ecotoxicological research (1.2 The ecotoxicological importance of 

mercury and organochlorine pesticides), because the understanding of the molecular actions 

of pesticides and a causal link to their possible interference with biological processes is 

needed, in order to develop reliable predictions about the consequences of such 

contaminants in a rapidly changing world (Sundseth et al. 2010; Köhler and Triebskorn 

2013). Approximate estimates on the economic impact of contaminants has been of 8.0 

billion US dollars annually for pesticides in developing countries (in non-target species, 

including humans; Aktar et al. 2009); and 8.7 billion US dollars annually in United States for 

methyl mercury toxicity (linked to diminished economic productivity; Trasande et al. 2005). 

 The highest concentrations of these pollutants have been found in top predators like 

raptors and seabirds, which respond sensitively to toxic chemicals (Becker 2003). The 

conspicuous decrease in raptor populations during the 1960s, in the industrialised world, 

alarmed ornithologists and induced research into the possible causes (1.3 Early contribution 

of raptors for ecotoxicology). Signs of change in bird populations (e.g. eggshell thinning, 

reproductive failure) were recognised as warning signs and were subsequently associated to 

pesticide use (Becker 2003). Raptors therefore performed as sentinel organisms (1.4 

Ecotoxicological concepts), raising concern for environmental contamination with 

organochlorine pesticides (OCPs). As a consequence, the use of many of these contaminants 

was regulated, resulting in a decrease in their environmental levels and in a consequent 

recovery of the bird populations (Becker 2003; Rattner 2009; Gómez-Ramírez et al. 2014). 

 Despite the major role of ornithology in the rise of ecotoxicology (Carson 1962), 

when compared with other organisms, there is a disproportionate underrepresentation of 

birds in bioindicators literature, in opposition to a clear emphasis on plants (Burger 2006a). 
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 Nonetheless, raptors are in general charismatic species, what reinforces their role as 

biomonitors: to ensure the implementation and maintenance of monitoring schemes (1.5 

Raptors as biomonitors of environmental pollutants), including funding, analysis, and 

corrective actions, institutional compromise is essential and raptors provide sustained public 

and governmental interest (Burger et al. 1994; Burger and Gochfeld 2004; Gómez-Ramírez et 

al. 2014). 

 Hence, there is an urgent need of studies integrating environmental chemistry and 

toxicology in curricula of life sciences (Schwarzenbach et al. 2006). This thesis aims at 

contributing with information on Hg and OCPs for raptors, and more specifically in Portugal, 

where these studies have been rare. The overall perspective of this thesis relies on 

integrating the ecology of the species with matrix, individual and species specific variation in 

Hg and OCPs concentrations, emphasizing feathers as minimally invasive biomonitoring tools 

(1.6 Feathers as biomonitoring tools), in order to better understand how to control for 

confounding effects in opportunistic sampling procedures. Moreover, it is an attempt to 

understanding the importance of the barn owl (Tyto alba) as a biomonitor, which is 

associated to farmland habitats and therefore is a potential bioindicator of contamination 

from agricultural sources (1.7 The contribution of the barn owl).  

1.2 Ecotoxicological concepts 

 A few ecotoxicological concepts are used in this thesis, for which it is important to 

have a clear definition. A bioindicator is a species or group of species that readily reflects the 

abiotic or biotic state of an environment, represents the impact of environmental change on 

a habitat, community or ecosystem or is indicative of the diversity of a subset of taxa or the 

whole diversity within an area (Gerhardt 2002). A reliable bioindicator needs to accomplish 

some requirements regarding its sensitiveness and its specificity to the correspondent 

impact. A good indicator (1) must display alterations in response to a stressor, but should 

not be so sensitive that changes arise when there is no cause, indicating biologically 

irrelevant variations, or simply varying arbitrarily; and (2) the alterations must be originated 

by a particular stressor (or series of stressors), which should be as well important to the 

welfare of the organism (Linthurst et al. 1995). Additionally, the alterations being measured 

should reflect impairment also to populations, communities and ecosystems (EPA 1997). A 
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good bioindicator should be easy to measure, which includes clear objectives, connection to 

the problem, straightforwardness of identification of important characteristics, and easiness 

of data collection and analysis (Burger 2006). In order to provide evaluation of populations, 

to give indication for management or species conservation, data on bioindicators must be 

collected repeatedly, i.e. under biomonitoring schemes. In this context, bioindicators are 

interchangeably designated as biomonitors. A particular type of bioindicators, which 

respond predictably to environmental disturbance or change, is named sentinel species 

(Gerhardt 2002). Their role as models for environmental exposures can derive from 

intentionally placing sentinel animals in specific environments or from observational studies 

of spontaneous animal disease in populations (Van Der Schalie et al. 1999; Reif 2011). A 

sentinel should (1) produce a quantifiable response (including accumulation of tissue 

residues) to the agent in question, (2) have a territory or home range that overlaps the 

monitored area; (3) be easily enumerated and captured; and (4) have sufficient population 

size and density to permit enumeration (National Research Council 1991).  

 The process by which contaminants are absorbed and undergo enrichment in 

organisms relative to that in environment, as a result of all uptake and loss processes (e.g. 

dietary and environmental uptake, fecal egestion, transfer to offspring, metabolic 

biotransformation and growth dilution) is named bioaccumulation (Arnot and Gobas 2006; 

Jorgensen 2010; Borgå et al. 2012). It consequently comprises the more specific processes of 

bioconcentration (i.e. direct portioning of chemicals between the medium and an organism) 

and biomagnification (i.e. uptake from the diet leading to higher concentrations in the 

organism than in its prey, resulting in increased chemical concentration with higher trophic 

position in the food chain; Gobas and Morrisson 2000; Jorgensen 2010).  

1.3 The ecotoxicological importance of mercury and organochlorine 

pesticides 

 Mercury and organochlorine pesticides (OCPs) are ubiquitous chemicals susceptible 

to bioaccumulation, therefore representing a potential health risk to humans and wildlife 

(UNEP 2011; Bouland et al. 2012). Mercury and OCPs as dichlorodiphenyltrichloroethane 

(DDT) and cyclodiene insecticides (e.g. aldrin, dieldrin, endrin) are in the list of priority 

substances for which environmental quality standards were set in 2008 (Directive 



General introduction 

21 
 

2008/105/EC). Accordingly, they can be considered emerging contaminants (EC), i.e. harmful 

environmental agents whose identity, occurrence, hazards, and effects are not effectively 

recognized (Halden 2015). Despite Hg and most OCPs are legacy contaminants, their 

presence in trace concentrations in freshwater environments, in the nanogram (ng) or 

microgram per liter (µg L-1), has recently been detected and is believed to adversely affect 

human health or the environment (Murray et al. 2010). The recently adopted Minamata 

Convention on Hg (in 2013), with the objective of protecting the human health and the 

environment from anthropogenic emissions and releases of Hg and its compounds validates 

the classification of Hg as an EC, given the existing risk of exposure (UNEP 2013). 

Additionally, some of the nine OCPs listed in the 2001 Stockholm Convention on Persistent 

Organic Pollutants, which called for a ban on the production, import, export, use, and 

disposal guidelines for most of these pollutants (The Secretariat of the Stockholm 

Convention 2010), can reveal a pattern of emergence, as is the case of DDT, which had its 

first peak of emergency concern in 1972 and a second in 2008 (Halden 2015). The 

multifactorial and dynamic emergence process is therefore not restricted to new substances, 

as a result of development and mass consumption of novel products, but may also be 

determined by the development of scientific methods and shifts in scientific paradigm 

(Halden 2015). 

 Mercury is a metal naturally present in the environment (prolific in coal and metal-

rich geologic deposits) and also an introduced contaminant—its main anthropogenic sources 

are mining and fossil fuel combustion (Krabbenhoft and Sunderland 2013). In recent years, 

deposition is mostly derived from legacy anthropogenic Hg re-emitted from surface 

reservoirs (60% mainly from ocean and terrestrial soils), but also from primary 

anthropogenic emissions (27% mainly from mining and fossil fuel combustion) and from 

natural sources (13% e.g. from volcanoes; Amos et al. 2013). Terrestrial soils are the largest 

Hg reservoirs and its rising concentrations pose risks to the ecosystems because of the 

formation of the toxic methylmercury (MeHg) (Amos et al. 2013; Krabbenhoft and 

Sunderland 2013). Widespread poisoning of birds and mammals by organomercury seed 

dressings was also noted by the late 1960s (Rattner 2009). Methylmercury is harmful both to 

humans and wildlife, mainly due to neurological and immunological effects, and 

reproductive impairment (Burger and Gochfeld 1997; Scheuhammer et al. 2007). 

Methylation of the element can occur in aquatic environments, and so Hg ecotoxicological 
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studies have been focused mainly in aquatic organisms (Seewagen 2010). Nevertheless, 

toxicity thresholds have also been reported in terrestrial organisms in agricultural wetlands 

(Ackerman et al. 2010; Ackerman and Eagles-Smith 2010). Despite Hg compounds were 

banned as plant protection products in Europe since 1991 (Commission Directive 

91/188/EEC), Hg availability appears to be increasing globally through atmospheric 

deposition (Windam-Meyers 2014). 

 The OCPs include the most prevalent synthetic pesticides that have been broadly 

used in agriculture in the second half of the 20th century (Barr and Needham 2002; Barr 

2008). Insecticides and fungicides were in common use in the 1950s, and wildlife mortality 

was noted following pesticide use in agricultural and forest habitat (e.g. seed dressings for 

cereal crops and in insect control programs; Rattner 2009). These can be classified in three 

groups: (1) DDT and related compounds, (2) cyclodiene insecticides (aldrin, dieldrin, endrin, 

heptachlor and endosulfan) and (3) isomers of hexachlorocyclohexane (HCH) (Mitra et al. 

2011). The known impact of these substances on humans includes neurotoxic, endocrine 

disruptive and carcinogenic effects (Ritter et al. 1995; Jaga and Dharmani 2003; Wasi et al. 

2013). Despite OCPs concentrations detected in wildlife are infrequently considered to be a 

direct cause of death, these are often reported as a cause of immunosuppression, hormone 

disruption and disorder of the nervous and reproductive systems (Denneman and Douben 

1993; Furness et al. 1993; Martínez-López, 2005). Moreover, the accumulation of OCPs 

residues in body fat reserves as a result of a long term exposure to low concentrations, is 

also of concern: under stressful conditions (e.g. migration, food shortage, etc.) resulting in a 

rapid depletion of fat reserves, OCPs residues are released into the bloodstream and 

mobilized to different organs such as the brain, where they may attain toxic levels and cause 

acute poisoning (Friend and Franson 1999). Despite most OCPs were banned as plant 

protection products in Europe between 1979 and 1988 (Directive 79/117/CEE and Ordinance 

660/88), these substances are still detected decades after in the physical environment 

(Cerejeira et al. 2003; Villaverde et al. 2008; Cardoso et al. 2009; Carvalho et al. 2009), in 

food products (Correia-Sá et al. 2013; Blasco et al. 2004), in wildlife (Antunes-Maderia and 

Maderia 1989; Antunes and Gil 2004; Mathias et al. 2007; Van den Steen et al. 2009; 

Guimaraes et al. 2010) and in humans (Ferreira et al. 1990; Cruz et al. 2003; Lino and da 

Silveira 2006; Lopes et al. 2014).  
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1.4 Early contribution of raptors for ecotoxicology 

 Raptors have had a key role in finding the impact on wildlife of environmental 

chemicals, with strong repercussions in their regulation (Rattner 2009; Gómez-Ramírez et al. 

2014). First major ecotoxicological findings with raptors occurred in the 1960s, almost three 

decades after the discovery of the insecticidal properties of DDT and following its 

exponentially increased use after the World War II (Hayes 1991). DDT was first associated to 

eggshell thinning in peregrine falcon (Falco peregrinus), sparrowhawk (Accipiter nisus) and 

golden eagle (Aquila chrysaëtos) in Britain (Ratcliffe 1967, 1970), followed by reports of 

pronounced declines in raptorial and fish-eating birds related with DDT in North America 

(Hickey and Anderson 1968) and of reproductive effects of DDT and dieldrin in feeding trials 

with raptors (Porter and Wiemeyer 1969). Also in the decade of 1960, there were the first 

studies relating mercury contamination in feathers of peregrine falcon, white-tailed sea 

eagle, long-eared owl (Asio otus), tawny owl (Strix aluco), common buzzard (Buteo buteo) 

and hen harrier (Circus cyaneus) with alkyl-Hg compounds used for seed dressing (Berg et al. 

1966), and the first experiments with secondary poisoning with methyl mercury in the 

northern goshawk (Accipiter gentilis; Borg et al. 1970). Mercury was proved to have an 

accelerated accumulation along the terrestrial food web and a pronounced accumulation in 

the muscle of goshawks, which could result in fatal secondary poisoning (Borg et al. 1970). 

 In the subsequent decades, striking population declines observed in raptors in 

different countries – e.g. the above referred species in Britain; bald eagle (Haliaeetus 

leucocephalus) and osprey (Pandion haliaetus) in the USA; and white-tailed sea eagle 

(Haliaeetus albicilla) in Sweden – raised awareness for the need for a regulation on the 

release to the environment of OCPs as DDT, dichlorodiphenyldichloroethylene (DDE), 

dieldrintype insecticides and polychlorinated biphenyls (PCBs) (Ratcliffe 1970; Wiemeyer et 

al. 1993; Bowerman et al. 1994; Krone et al. 2006). Moreover, mercury was associated with 

reproductive impairment in golden eagles from Scotland and in bald eagles from USA  

(Wiemayer et al. 1984; Furness et al. 1989; Newton and Galbraith 1991). Adverse effects of 

other metals like lead were also focus of concern regarding populations of Californian 

condors (Gymnogyps californianus) in USA and marsh harriers (Circus aeruginosus) in Spain 

(Wiemeyer et al. 1998; Mateo et al. 1999). The literature regarding exposure and effects in 

raptors served in some measure as the foundation for the current ban under the Stockholm 



Chapter 1 

24 
 

Convention on persistent organic pollutants (Rattner 2009; Gómez-Ramírez et al. 2014). 

Moreover, raptors are considered under the ecological benefits of reducing mercury 

pollution by the United Nations Global Mercury Partnership, which assists implementation 

of the Minamata Convention (United Nations Environmental Programme 2002).     

1.5 Raptors as biomonitors of environmental pollutants1 

 Raptors have been used for biomonitoring metals like Hg and OCPs in terrestrial 

environments, because in addition to their high trophic level (i.e. susceptible to 

biomagnification), they are long-lived (i.e. susceptible to bioaccumulation), widespread, 

territorial and many are sedentary, therefore also allowing for cross-habitat comparisons 

and linking measured concentrations to a source area (Esselink et al. 1995; Jager et al. 1996; 

Becker 2003; Evers et al. 2005). Moreover, raptors ecology features their populations as 

more vulnerable than other bird groups to some changes in ecosystems (Newton 1979). 

Since raptors are medium/large body sized birds, they have broader vital areas, therefore 

existing in relatively low densities. They also include species which reproductive strategy 

implies the production of a reduced number of offspring in each nesting event, and present 

long reproductive periods (i.e. k-strategy; e.g. Croxall and Rothery 1991). Species with larger 

body size have slower renewal rates, higher superposition between generations and a more 

stable age structure. Their population changes occur delayed but indicate environmental 

changes more conspicuously than species with r-strategy (Becker 2003). Also, reduced 

variations in abundance hinder a population recovery after a decline (Newton 1979). For 

these reasons raptor populations are sensitive to perturbation, since the loss of a territory 

has a great quantitative impact. Consequently, raptors include several threatened species, 

what reinforces their importance for the conservation of ecosystems (Birdlife International 

2015), and their presence is considered an indicator of balanced ecosystems, which features 

them as barometers of ecological quality (Hardey et al. 2006). Raptors are vulnerable to 

reproductive and neurologic effects from elevated contaminant concentrations (Solonen and 

                                                           
1
 This section was partly based in the work published as: Pereira P, Godinho C, Roque I & Rabaça JE (2015) As aves de rapina e a gestão 

florestal do montado. In: O montado e as aves: boas práticas para uma gestão sustentável. LabOr – Laboratório de Ornitologia/ICAAM, 

Universidade de Évora, Câmara Municipal de Coruche, Coruche 
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Lodenius 1984; Eisler 1988; Wiemeyer et al. 1989; Evers et al. 2005) and they are often 

under various anthropogenic stressors (Strasser and Heath 2013). 

 Until recently, the coverage of the biomonitoring activities with raptors in Europe 

was unknown: a first compilation, in order to assess the potential for EU-wide coordinated 

monitoring, was recently made by the European Science Foundation Research Network 

EURAPMON (Research and Monitoring for and with Raptors in Europe; 

http://www.eurapmon.net). Only four European countries run national biomonitoring 

programmes: Sweden (National Environment Monitoring Programme; Helander et al. 2008), 

United Kingdom (Predatory Bird Monitoring Scheme; Walker et al. 2008), Finland (Bird 

Monitoring Programme; Koskimies 1989) and Norway (Monitoring Programme for Terrestrial 

Ecosystems; Gjershaug et al. 2008). Yet, these schemes operate independently, and 

therefore do not reveal trends in contamination at the European scale. Nevertheless, the 

potential for using raptors to monitor the effectiveness of EU directives at a pan-European 

scale seems to exist, given an extensive competence in this field of research supported by 

several isolated studies conducted in other EU countries (e.g. Portugal, Spain, Germany, 

Belgium, Italy, The Netherlands (Kenntner et al. 2003; Van Den Brink et al. 2003; Palma et al. 

2005; Jaspers et al. 2006; Gómez-Ramírez et al. 2011). Over the last 50 years, 52 

contaminants have been reported in 44 European countries. In the 15 active monitoring 

schemes, OCPs, PCBs, and metals/metalloids were monitored. In six of these countries, 

fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently 

monitored. The raptor species most commonly monitored were common buzzard, common 

kestrel (Falco tinnunculus), golden eagle, white-tailed sea eagle, peregrine falcon, tawny owl 

and barn owl. The most widely analysed matrices were feathers and eggs, along with 

internal tissues (Gómez-Ramírez et al. 2014). 

 Regarding Portugal, information on contamination in raptors is scarse (Table 1.1). 

First contaminant being detected in Portuguese raptors in high concentrations was DDE in 

eggs of black-winged kite (Elanus caeruleus: 7.10–24.2 ppm; Palma 1985). Most data is 

centred in the griffon vulture (Gyps fulvus: 11 metals in blood, liver and kidney), in the 

common buzzard (four metals in blood, liver and kidney), and in the black kite (Milvus 

milvus; three metals in blood). For a group of five other species only Hg concentrations in 

feathers have been reported (Table 1.1). Zinc was the metal detected in highest 
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concentrations in Portuguese raptors (up to 378 µg dl-1 in blood) followed by Pb (up to 300 

µg dl-1 in blood). In both cases the species affected was the griffon vulture (Carneiro 2015; 

Carneiro et al. 2015). Regarding the barn owl, existing information is restricted to Hg 

concentrations in feathers (1.22 ± 1.11 mg kg-1; Lourenço et al. 2011), which are close to the 

average levels for the sampled Portuguese raptors (1.25 mg kg-1). However, the existing 

information was gathered in the scope of academic studies, which were projects limited in 

geographic area and in time, and there is not an established biomonitoring programme with 

raptors. 

 

Table 1.1 Overview of the environmental contaminants monitoring with Portuguese raptors 
 

Cont. Matrix Species N Mean SD Med. Range Unit Reference 

DDE eggs Black-winged kite  3 - - - 7.10–24.2 ppm Palma 1985 

As blood Common buzzard  93 1.49 1.46 1.39 nd–8.51 µg dl
-1

  Carneiro et al. 2014 

  

Black kite 31 4.52  5.7
 
 2.44 nd–22.6 

 

Carneiro 2015 

  

Griffon vulture 2 - - - nd–0.300 

  

 

kidney Common buzzard  36 0.041 0.026 0.036 nd–0.112 μg g
-1

 w.w. Carneiro et al. 2014 

 

liver 

 

56 0.029 0.039 0.022 nd–0.281 

  Cd blood Common buzzard 93 0.201 0.567 0.102 nd–4.45 µg dl
-1

  Carneiro et al. 2014 

  

Griffon vulture  2 7.28 6.93 - nd–12.2 

 

Carneiro et al. 2015 

 

kidney Common buzzard  36 0.373 0.381 0.216 0.009–1.70 μg g
-1

 w.w. Carneiro et al. 2014 

 

liver 

 

56 0.089 0.097 0.050 nd–0.450 

  Hg blood Common buzzard 93 20.9 26.7 12.6 nd–165 µg dl
-1

  Carneiro et al. 2014 

  

Griffon vulture  6 2.31 1.25 - nd–4.39 

 

Carneiro et al. 2015 

  

Black kite  31 7.49  8.46
 
 4.13 nd–31.3 

 

Carneiro 2015 

 

feathers Bonelli's eagle  21 1.94 1.54 1.31 0.253–5.42 μg g
-1

 w.w. Figueira et al. 2009 

   

21 1.94 1.54 - 0.250–5.42 

 

Palma et al. 2005 

  

Barn owl  13 1.22 1.11 - 0.090–3.29 mg kg
-1 

f.w. Lourenço et al. 2011 

  

Eagle owl  61 1.29 2.54 - 0.030–12.8 

  

  

Little owl  15 0.640 0.510 - 0.100–2.27 

  

  

Tawny owl  3 0.480 0.440 - 0.180–0.980 

  

 

kidney Common buzzard  36 0.503 0.310 0.448 nd–1.4 μg g
-1

 w.w. Carneiro et al. 2014 

 

liver 

 

56 0.389 0.346 0.319 nd–1.48 
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Table 1.1 Overview of the environmental contaminants monitoring with Portuguese raptors (continued) 
 

Cont. Matrix Species N Mean SD Med. Range Unit Reference 

Pb blood Common buzzard 93 14.7 65.1 5.86 nd–631 µg dl
-1

  Carneiro et al. 2014 

  

Griffon vulture  24 29.7 13.19 - 4.97–300 

 

Carneiro et al. 2015 

  

Black kite 31 19.4 29.3 10.4 1.67–184 

  

 

kidney Common buzzard  36 0.245 0.364 0.102 nd–1.39 

μg g
-1

 

w.w. Carneiro et al. 2014 

 

liver 

 

56 0.152 0.152 0.079 nd–0.949 

  Mn blood Griffon vulture  2 6.13 3.23 - 3.84–8.41 µg dl
-1

  Carneiro 2015 

 

liver 

 

3 13.7 0.757 13.4 13.2–14.6 

μg g
-1

 

d.w. 

 

 

kidney 

 

3 7.95 1.65 8.43 6.11–9.31 

  Mo blood Griffon vulture 2 - - - - µg dl
-1

  Carneiro 2015 

 

liver 

 

3 0.703 0.116 0.720 0.580-0.810 

μg g
-1

 

d.w. 

 

 

kidney 

 

3 0.693 0.181 0.720 0.500-0.860 

  Zn blood Griffon vulture 2 366 16.9 - 354-378 µg dl
-1

  Carneiro 2015 

 

liver 

 

3 169 76.5 141 110-255 

μg g
-1

 

d.w. 

 

 

kidney 

 

3 83.8 7.82 86.0 71.1-90.2 

  Cu blood Griffon vulture 2 49.1 21.4 - 33.9-64.3 µg dl
-1

  Carneiro 2015 

 

liver 

 

3 29.5 13.4 23.0 20.6-44.9 

μg g
-1

 

d.w. 

 

 

kidney 

 

3 26.0 5.82 28.2 19.4-30.3 

  Co blood Griffon vulture 2 - - - - µg dl
-1

  Carneiro 2015 

 

liver 

 

3 0.137 0.0208 0.130 0.12-0.16 

μg g
-1

 

d.w. 

 

 

kidney 

 

3 0.337 0.131 0.350 0.20-0.26 

  Se blood Griffon vulture 2 18.0 0.0282 - 18.0-18.1 µg dl
-1

  Carneiro 2015 

 

liver 

 

3 2.36 0.946 1.88 1.75-3.45 

μg g
-1

 

d.w. 

 

 

kidney 

 

3 4.16 0.595 4.18 3.55-4.74 

  Ba blood Griffon vulture 2 1.01 0.559 - 0.610-1.40 µg dl
-1

  Carneiro 2015 

 

liver 

 

3 0.127 0.142 0.100 nd-0.280 

μg g
-1

 

d.w. 

 

 

kidney 

 

3 1.20 1.33 0.580 0.290-2.73 
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1.6 Feathers as biomonitoring tools 

 Collecting biological samples from raptors raises ethical issues and therefore feathers 

have been broadly used as minimally-invasive monitoring tools for several contaminants 

(Solonen and Lodenius 1990; Dauwe et al. 2003; Martínez et al. 2012; Gómez-Ramírez et al. 

2014). Feathers are the key excretory pathway for contaminants like Hg and OCPs and in 

some cases (e.g. Hg) they can hold up to 90% of the body burden (Honda et al. 1986; Braune 

1987; Lewis and Furness 1991; Agusa et al. 2005). Concentrations in feathers result mostly 

from endogenous deposition of blood-circulating contaminants. Since the transfer of blood-

circulating substances in feathers is interrupted after total feather growth, contaminants are 

trapped and remain stable, bonded to keratin fibbers (Furness et al. 1986). However, the 

biological meaning of the observed between-feathers variation is still unclear and therefore, 

criteria for feather selection in sampling procedures are not well established. Some authors 

recommend the use of smaller body feathers (Furness et al. 1986; Solonen and Lodenius 

1990), while others recommend the use of consistently located flight feathers (Bortolotti 

2010). Because body feathers are possible to collect without causing harmful effects to the 

bird, they have the advantage of being collected in both live birds and dead individuals, 

being good candidates for a standard assessment of environmental contamination levels. 

However, considering that many ecotoxicological studies rely mostly on opportunistic 

sampling, i.e. with access to a limited number and/or type of tissue samples, it is important 

to understand how the characteristics of the available samples affect the accuracy of the 

results and thus the quality of the conclusions. 

 Concentrations of contaminants in feathers and internal tissues can be affected by 

several factors (see García-Fernández et al. 2013) and there are ambiguous evidences in 

literature documenting strong (Jaspers et al. 2007a; Eulaers et al. 2011; Jaspers et al. 2011; 

Rajaei et al. 2011) and low significant correlations (Dauwe et al. 2005; Jaspers et al. 2007b; 

Jaspers et al. 2009; Espín et al. 2010; Espín et al. 2014) between contaminant levels in 

feathers and internal tissues. Since feathers reflect blood concentrations at the time of 

feather formation, the time elapsed until sampling should be considered when interpreting 

concentrations, particularly in comparisons with internal tissues (Espín et al. 2012; García-

Fernández et al. 2013). Additionally, concentrations in feathers may also be affected by 

external contamination (Espín et al. 2014, 2016), which for some contaminants is negligible 
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(e.g. Hg; Burger and Gochfeld 1997; Dauwe et al. 2003) but in other cases may be an 

important source of variation (e.g. Pb; Cardiel et al. 2011). 

1.7 The contribution of the barn owl  

 The ecological requirements of the barn owl and its closeness to humans make the 

species a potentially a good sentinel of environmental contamination, particularly in 

farmland habitats. This owl is an opportunistic predator that hunts in open farmland, feeding 

mostly on small mammals, and in many regions using man-made structures (e.g. barns, 

sheds, old houses) as nesting sites (Bunn et al. 1982; Roulin 2002). Because the same nests 

may be continuously monitored for long time periods, these sites are good sources of 

samples in the context of environmental monitoring. At nest sites, minimally-invasive 

biological samples (feathers and blood) can be collected from nestlings and sometimes shed 

flight feathers (from adults’ moult) are also available. Moreover, during breeding season 

adults can also be captured in or near nest sites to collect this type of samples. Another 

straightforward source of barn owl samples for ecotoxicological studies is carcasses collected 

on roadsides. Owls are frequent victims of collision with vehicles, with road-killing estimates 

of 0.35–0.49 owls/km/year for Southern Portugal (Silva et al. 2008; Gomes et al. 2009; Grilo 

et al. 2014). Barn owls in particular are very susceptible to road-kill mortality, and near 

favourable hunting habitats may suffer traffic collisions in much higher proportion than 

other owl species (e.g. 50:1 long-eared owl, 38:1 little owl and 11:1 tawny owl; I. Roque, A. 

Marques, R. Lourenço, J.E. Rabaça unpublished data). This makes the barn owl a particularly 

prolific source of samples. Since both feathers (including wing feathers) and internal tissues 

may be collected from carcasses, the evaluationof intra-individual variation in contaminant 

concentrations may also be facilitated in the species.  

1.8 Aims 

 This thesis results from a multidisciplinary collaboration between people working on 

ecology and conservation, environmental chemistry and veterinary sciences. The broad aim 

of this work is contributing with information on Hg and OCPs contamination in raptors, 

following two main lines: 
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 A) Examine sources of variation in sampling procedures regarding raptor ecology, in 

order to better distinguish meaningful from redundant variation, and to propose solutions to 

minimize confounding effects on Hg concentrations in feathers. 

 A1) Verify if feathers of different types and also flight feathers varying in size and 

position in the wing show considerable variation in Hg concentrations, independently of 

feather age, in order to determine the best criteria for feather collection for biomonitoring 

Hg with the barn owl.  

 A2) Evaluate within-brood and within-territory age-associated variations in Hg 

concentrations, as well as those related with mixing samples with origin in nests and road-    

-killed raptors, and assess representativeness of samples from road-killed barn and eagle 

owls at the regional level, in order to determine the best criteria to minimize possible 

confounding effects of feather age in Hg biomonitoring with the barn owl and the eagle owl.  

 B) Evaluate the suitability of the barn owl as a biomonitor of Hg and OCPs, given its 

association to farmland habitats and therefore its potential as bioindicator of contamination 

from agricultural sources.  

 B1) Characterize Hg bioaccumulation in a terrestrial ecosystem by comparing Hg 

concentrations in barn owl feathers with those in soil, in order to identify spatial patterns, 

assess the effect of diet composition, and assess the effect of possible habitat-related and 

industrial Hg sources in barn owl bioaccumulation. 

 B2) Evaluate the use of feathers as a non-destructive biomonitoring tool comparing 

OCPs concentrations with those measured in livers, and checking relative abundance and 

temporal trends in OCPs concentrations in two distinct regions in Portugal with differences 

in agricultural land uses. 
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2 Barn owl feathers as biomonitors of mercury: sources of variation in 

sampling procedures 

2.1 Abstract 

 Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird 

feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is 

still questioned as a result of a poor knowledge of feather physiology and mechanisms 

affecting Hg deposition. Given the constraints of feather availability to ecotoxicological 

studies, we tested the effect of intra-individual differences in Hg concentrations according to 

feather type (body versus flight feathers), position in the wing and size (mass and length) in 

order to understand how these factors could affect Hg estimates. We measured Hg 

concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on 

roadsides. Median Hg concentration was 0.45 (0.076–4.5) mg kg-1 in body feathers, 0.44 

(0.040–4.9) mg kg-1 in primary and 0.60 (0.042–4.7) mg kg-1 in secondary feathers, and we 

found a poor effect of feather type on intra-individual Hg levels. We also found a negative 

effect of wing feather mass on Hg concentration but not of feather length and of its position 

in the wing. We hypothesize that differences in feather growth rate may be the main driver 

of between-feather differences in Hg concentrations, which can have implications in the 

interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever 

possible, several feathers from the same individual should be analysed. The five innermost 

primaries have lowest mean deviations to both between-feather and intra-individual mean 

Hg concentration and thus should be selected under restrictive sampling scenarios. 

2.2 Introduction 

 Mercury (Hg) is a metal naturally present in the environment (prolific in coal and 

metal-rich geologic deposits) and also an introduced contaminant – its main anthropogenic 

sources are mining and fossil fuel combustion (Krabbenhoft and Sunderland 2013). Hg is 

mostly available to living organisms after conversion in its toxic organic form of 

methylmercury (MeHg), which is reported to be harmful both to humans and wildlife, mainly 

due to neurological and immunological effects, and reproductive impairment (Evans et al. 

1982; Burger and Gochfeld 1997; Scheuhammer et al. 2007). Methylation of the element can 
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occur in aquatic environments, and so Hg ecotoxicological studies have been focused mainly 

in aquatic organisms (Seewagen 2010). Nevertheless, toxicity thresholds have also been 

reported in terrestrial organisms in agricultural wetlands (Ackerman and Eagles-Smith 2010; 

Ackerman et al. 2010). Despite Hg compounds were banned as plant protection products in 

Europe since 1991 (Commission Directive 91/188/EEC), Hg availability appears to be 

increasing globally through atmospheric deposition (Windham-Myers 2014), highlighting the 

urgent need for Hg contamination biomonitors in farmlands, for ecological and food safety 

concerns. 

 Given the pronounced bioaccumulation and biomagnification of Hg in food chains, 

the highest concentrations are often attained in top predator species (Lindberg and Odsjö 

1983; Dietz et al. 2000; Lourenço et al. 2011). Both owls (Strigiformes) and diurnal raptors 

(Accipitriformes, Falconiformes) have been used as sentinels of environmental 

contamination in Europe since the late 1950’s (Gómez-Ramírez et al. 2014), and most 

monitoring schemes used feathers as a non-invasive sampling method for several 

contaminants, including metals. Since feathers can be collected from both live and dead 

individuals, they are extremely versatile as reservoirs of contaminants, allowing for 

monitoring direct effects in contemporary populations, as well as for studying long time 

trends, using for instance specimens stored in museum collections (Bustnes et al. 2013; 

Gómez-Ramírez et al. 2014). 

 Feathers are the key excretory pathway for Hg in birds because they hold from 50% 

to more than 90% of the body Hg burden (Honda et al. 1986; Braune 1987; Lewis and 

Furness 1991; Agusa et al. 2005). Mercury levels in feathers result mostly from endogenous 

deposition of blood-circulating Hg and are not or slightly affected by external deposition 

(Burger and Gochfeld 1997; Dauwe et al. 2003). Since the transfer of blood-circulating 

substances in feathers is interrupted after total feather growth, Hg is trapped and remains 

stable, bonded to keratin fibbers, mainly in the form of MeHg (Furness et al. 1986).  

 However, the interpretation of Hg concentrations in feathers for biomonitoring 

purposes is not straightforward. There is no general agreement on which factors influence 

Hg deposition, and the biological meaning of the observed between-feathers variation is still 

unclear. While some authors recommend the use of smaller body feathers for Hg 
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quantification (Furness et al. 1986; Solonen and Lodenius 1990), others state that feathers 

cannot be indiscriminately selected and therefore flight feathers (remiges) should be used, 

given they can be consistently located (Bortolotti 2010). The correlations found in many bird 

species between Hg concentration in primary feathers and species-specific moulting 

sequence (i.e. feathers replaced earlier have higher Hg concentrations) are generally 

interpreted as a cause-effect pattern linked to Hg deposition: (1) circulating Hg levels drop as 

this metal is retained in growing feathers (Lindberg and Odsjö 1983; Furness et al. 1986; 

Dauwe et al. 2003); or (2) individuals select less contaminated prey during than before the 

moult (Lindberg and Odsjö 1983). However, it is also hypothesized that this pattern is an 

artefact of variation in feather mass for elements whose incorporation is time dependent, 

such as Hg. Thus heavier (and often longer) feathers show a more diluted concentration 

since they have a wider growth period (Bortolotti 2010). Moreover, there is evidence that 

the decrease in Hg concentrations along with the moult sequence is not generalized to all 

species: a study with barn owl (Tyto alba) primaries did not show any relationship between 

the two (Dauwe et al. 2003). 

 Owing to its ecological requirements and its closeness to humans, the barn owl is 

potentially a good sentinel of environmental Hg contamination, particularly in farmland 

habitats. This owl is a generalist and opportunistic predator that hunts in open farmland, 

feeding mostly on small mammals, and in many regions using man-made structures (e.g. 

barns, sheds, old houses) as nesting sites (Bunn et al. 1982; Roulin 2002). The same nests 

may be continuously monitored for long time periods: at nest sites, feathers can be collected 

from nestlings and sometimes shed flight feathers (from adults’ moult) are also available 

(adults can also be easily captured to take feather samples). Another straightforward source 

of barn owl feathers for ecotoxicological analysis is collecting carcasses on roadsides. Owls 

are frequent victims of collision with vehicles, as shown for example by the road-killing 

estimates of 0.35 to 0.49 owls/km/year for Southern Portugal (Silva et al. 2008; Gomes et al. 

2009; Grilo et al. 2014). Literature reporting Hg levels measured in owl feathers is still 

modest (see review in Espin et al. 2014), and to the best of our knowledge only a few studies 

have analysed Hg in barn owl feathers (Westermark et al. 1975; Denneman and Douben 

1993; Dauwe et al. 2003; Lourenço et al. 2011). None of these studies examined the problem 

of feather sampling methods. 
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 For ethical and legal reasons sampling live birds requires the use of non-invasive 

methods. Body feathers from the breast are therefore frequently used, since they are easy 

to pluck and it is possible to collect a few without causing harmful effects to the bird. Also, 

since body feathers can be collected from both live and dead individuals (while not possible 

for blood samples) these tissues are good candidates for a standard assessment of 

environmental contamination levels. Therefore, considering that many ecotoxicological 

studies rely mostly on opportunistic sampling, i.e. with access to a limited number and/or 

type of tissue samples, it is important to understand how the characteristics of the available 

samples affect the accuracy of the results and thus the quality of the conclusions.  

 Our main goal in this study is to verify if feathers of different types and also flight 

feathers (remiges) varying in size and position in the wing show considerable variation in Hg 

levels, independently of feather age, with implications in the use of barn owl feathers as 

biomonitors and in sampling procedures. We focused on feathers collected from road killed 

un-moulted barn owls (moult starts in the 2nd calendar year; Martínez et al. 2002), thus 

restricting the analysis to feathers from the same generation, which were simultaneously 

developed while the birds were nestlings (i.e. in each individual the available Hg in blood 

during growth is identical for all feathers). We tackled the following issues: (1) is the 

variation in Hg concentration between body and flight feathers small, so that these feather 

types can be interchangeably used to compare contamination levels in different sites?; and 

(2) is the Hg concentration in flight feathers similar despite feather length, mass and position 

in the wing, so that remiges (primary and secondary feathers) can be indiscriminately used 

to assess environmental Hg contamination?  

2.3 Methods 

2.3.1 Study area 

 Samples were collected along roads in central Portugal, between Vila Franca de Xira 

and Évora (7°53'–8°59'W; 38°32–38°59'N). The climate in the study area is Mediterranean, 

with mild winters and hot dry summers, and the rain period mainly concentrated in winter. 

Landscape is mostly plain or undulating and is dominated by cork oak Quercus suber and 

holm oak Quercus rotundifolia traditional woodland systems named ‘montados’, with 

varying tree density. ‘Montados’ are managed for different uses (e.g. cork extraction, 
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grazing, cereals), resulting in a multifunctional landscape. Agricultural areas occupy 10 to 

30% of the study area and consist mainly of irrigated annual cultures, rice fields, rainfed 

cereal crops, vineyards and olive groves.  

2.3.2 Sampling procedures 

 A total of 154 feathers were plucked from 28 barn owl carcasses collected on 

roadsides from 2009 to 2012: 28 samples of body feathers, 62 primary feathers and 64 

secondary feathers. Whenever possible, five feather samples were collected from each 

individual: (1) at least three body feathers from the breast, and (2) one primary feather from 

the outermost group (P10 to P6), (3) one primary feather from the innermost group (P5 to 

P1), (4) one secondary feather from the outermost group (S1 to S6) and (5) another 

secondary feather from the innermost group (S7 to S12), in order to represent all the wing 

length. Feathers were stored in transparent plastic bags until analysis. We followed the 

feather numbering system of Martínez et al. (2002). Regarding position in the wing, flight 

feathers were numbered from 1 to 24 from the outermost primary (P10) to the innermost 

secondary (S14). Feather mean mass and length were obtained by weighing and measuring 

all flight feathers from the right wing of two barn owls in the range of extreme wing lengths 

for the species (277 and 296 mm; range in Martínez et al. 2002: 270–300 mm). Prior to 

weighing, feathers were dried in an oven for 2 hours at 35 °C. Feathers were weighed on a 

precision scale (0.1 mg) and measured with a wing ruler (1 mm). 

2.3.3 Mercury analysis  

 Total Hg concentration in feather samples was determined by thermal atomization 

followed by atomic absorption spectroscopy, using an AMA-254 spectrophotometer (LECO, 

Czech Republic). The accuracy of the method was within 10% (95% confidence interval), and 

the quality control of the results was made using reference material (TORT-2). 

Reproducibility was checked by performing successive measurements on the same sample, 

which resulted in relative standard deviations always lower than 5%. For a 100 mg sample 

the detection limit was 0.01 ng. Given the reduced mass of a single body feather, for 

analytical reasons mean Hg concentration was calculated analysing a pool of body feathers 

per individual. Concerning single flight feathers, Hg concentration was determined using the 



Barn owl feathers as biomonitors of mercury 

37 
 

mean of the measurements in successive cuts starting from the distal part of the feather. All 

Hg concentrations are presented in mg kg-1 on a fresh weight basis. 

2.3.4 Statistical analysis 

 The data were screened to detect outliers and check distribution normality of the 

variables (Quinn and Keough 2002), and a logarithmic transformation was applied to the 

variable Hg concentration. Linear mixed-effects models (Pinheiro and Bates 2000) were used 

in order to evaluate the variation of the mean Hg concentration (1) between body and flight 

feathers (sample size = 154 feathers, from 28 individuals) and (2) according to position on 

the wing and mass of flight feathers (sample size = 125 feathers, from 28 individuals). We 

included the individual as random effect in all models, since for each individual we had 

several feather samples. In a first analysis, feather type (body (B), primary (P) and secondary 

(S)) was used as the fixed factor; and in a second analysis feather position in the wing, 

feather mean length and feather mean mass were used as fixed effects. Since the three 

variables used in the second analysis were highly correlated (Pearson r > 0.7), competing 

models with one fixed effect only were built. Information-theoretic methods were used for 

model inference based in AICc values – second-order Akaike's information criterion 

(Burnham and Anderson 2002; Burnham et al. 2011). This criterion measures the 

contribution of each candidate model to explain the variation in Hg concentration, with a 

lower AICc scoring a best fitting model (Burnham and Anderson 2002). For each model it was 

calculated the number of parameters (degrees of freedom), log-likelihood value, AICc 

difference (ΔAICc), Akaike weight (wi; i.e. the probability of each model given the data and 

the models considered), and evidence ratio. The random effects model (i.e. a model with 

intercept and random effects, but without fixed effects) was included in model selection to 

provide inferential information (Burnham et al. 2011). Model diagnostic plots were used to 

validate model results (Pinheiro and Bates 2000). All statistical analyses were conducted 

using R software 3.1.1 (R Core Team 2014) with packages gplots (Warnes et al. 2015), 

MuMIn (Barton 2015) and nlme (Pinheiro et al. 2015). 
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2.4 Results  

2.4.1 Inter and intra-individual mercury variation 

 Median Hg concentration measured in 154 feather samples from 28 un-moulted barn 

owls, was 0.47 mg kg-1 (range: 0.040–4.9 mg kg-1). Corresponding mean (± standard 

deviation; SD) Hg concentration was 0.62 ± 0.76 mg kg-1. Mean Hg per individual ranged 

between 0.054 and 3.7 mg kg-1, with a corresponding inter-individual SD of 0.70 mg kg-1. 

Intra-individual SD in Hg concentration (i.e. Hg measurements in different feathers from a 

same individual) ranged between 0.013 and 1.7 mg kg-1, with a mean intra-individual SD of 

0.21 mg kg-1. These results indicate that inter-individual variation in mean Hg concentration 

is in general higher than intra-individual variation in Hg measurements (Fig. 2.1).  

2.4.2 Effect of feather type on mercury concentration 

 Median Hg concentration was 0.45 mg kg-1 in body feathers (range: 0.076–4.5; n = 

29), 0.44 mg kg-1 in primary feathers (range: 0.040–4.9; n = 62) and 0.60 mg kg-1 in secondary 

feathers (range: 0.042–4.7; n = 63). Corresponding mean Hg concentration was 0.72 ± 0.94 

mg kg-1 in body feathers, 0.59 ± 0.77 mg kg-1 in primary feathers and 0.60 ± 0.66 mg kg-1 in 

secondary feathers. Our data supported best the random effects model (wi = 0.95) compared 

to the model testing the effect of feather type on Hg concentration (wi = 0.05; Table 2.1). 

The evidence ratio for the two models indicated that the empirical support for the random 

effects model was 2.6 times that of the model including the variable feather type. These 

results suggest that the feather type did not have a strong effect on Hg concentration. 

2.4.3 Effect of flight feather mass, length, and position in the wing on mercury 

concentration 

 Feathers with highest and lower median Hg concentration were P5 (0.78 mg kg-1; 

range: 0.63–0.92) and P9 (0.19 mg kg-1; range: 0.097–0.59), respectively. Considering mean 

Hg concentrations, feathers with highest and lower values were P6 (1.4 ± 1.5 mg kg-1) and P9 

(0.22 ± 0.14 mg kg-1), respectively. Mercury concentrations apparently followed no order 

from inner to outer position in the wing and did not reflect a consistent between-feather 

pattern, i.e. the difference in Hg concentration between each feather and the previous one 
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was not systematically positive or negative regarding position in the wing (Table 2.2, Fig. 

2.2). The information-theoretic analysis of the effects of feather mass, length and position in 

the wing on Hg concentration, showed that our data supported best the model with feather 

mass (wi = 0.69; evidence ratio to second best model = 2.2; Table 2.3). However, the random 

effects model also received some support, with a probability (wi) of 0.31 of being the best 

model (∆AICc = 1.62). The models with feather length and position in the wing were little 

supported by our data. These results suggest that when analysing flight feathers from the 

same barn owl individual, feathers with lower mass may often show higher Hg 

concentration, however mass does not seem to have a very strong and clear effect (Table 

2.4). On the other hand, both feather length and its position in the wing have no strong 

linear relationship with Hg concentration in barn owls. 

 

 

 

Figure 2.1 Mercury concentration (mg kg
-1

) measurements in all barn owl individuals by feather type: body 

feathers (circles); primary feathers (triangles); secondary feathers (crosses) 
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Table 2.1 Information-theoretic model selection results for the analysis of the effect of feather type on mercury 

concentration in un-moulted barn owls 

Model df log-likelihood AICc ΔAICc 
Akaike 

weight (wi) 

Random effects model (intercept + random effect) 3 -90.96 188.07 0.00 0.95 

Feather type + random effect 5 -91.77 193.95 5.88 0.05 

 

 

Table 2.2 Mercury concentration (mean ± standad deviation, median and range), mean mass and mean length 

for primary (P10–P1) and secondary (S1–S13) feathers of un-moulted barn owls, ordered from the outermost 

to the innermost feather 

 

Feather Hg (mg kg
-1

) Mean mass (g) Mean length (mm) Sample size 

P10 
0.52±0.27 
0.51 (0.20–0.97) 

0.4600 226 6 

P9 
0.24±0.18 
0.19 (0.097–0.59) 

0.4518 238 6 

P8 
0.37±0.27 
0.37 (0.040–0.78) 

0.4261 237 9 

P7 
0.44±0.22 
0.38 (0.23–0.81) 

0.3627 221 7 

P6 
1.4±1.5 
0.72 (0.43–4.0) 

0.3091 209 5 

P5 
0.78±0.21 
0.78 (0.63–0.92) 

0.2709 194 2 

P4 
0.43±0.22 
0.45 (0.11–0.68) 

0.2251 180 7 

P3 
1.1±1.6 
0.56 (0.10–4.8) 

0.2007 171 8 

P2 
0.42±0.32 
0.34 (0.042–0.83) 

0.1861 165 8 

P1 
0.45±0.30 
0.48 (0.12–0.71) 

0.1772 157 4 

S1 
0.52±0.34 
0.68 (0.042–0.88) 

0.1493 152 5 
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Table 2.2 Mercury concentration (mean ± standad deviation, median and range), mean mass and mean length 

for primary (P10–P1) and secondary (S1–S13) feathers of un-moulted barn owls, ordered from the outermost 

to the innermost feather (continued) 

 

Feather Hg (mg kg
-1

) Mean mass (g) Mean length (mm) Sample size 

S2 
0.26±0.15 
0.25 (0.096–0.52) 

0.1542 153 7 

S3 
1.1±1.6 
0.71 (0.13–4.7) 

0.1502 153 7 

S4 
0.58±0.21 
0.61 (0.20–0.83) 

0.1396 146 6 

S5 
0.42±0.19 
0.32 (0.26–0.62) 

0.1321 144 3 

S6 
0.55±0.29 
0.55 (0.35–0.76) 

0.1222 141 2 

S7 
0.73±0.086 
0.73 (0.65–0.82) 

0.1150 137 3 

S8 
0.66±0.79 
0.39 (0.13–2.2) 

0.1118 135 6 

S9 
0.41±0.33 
0.28 (0.067–0.89) 

0.1047 137 9 

S10 
0.67±0.078 
0.66 (0.60–0.75) 

0.0979 127 4 

S11 
0.85±0.88 
0.70 (0.082–2.3) 

0.0881 124 5 

S12 
0.57±0.32 
0.73 (0.15–0.85) 

0.0733 117 5 

S13 0.639 0.0493 102 1 
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Figure 2.2 Mercury concentration (mg kg
-1

) in barn owl feathers with different position in the wing, from 

outermost primary feather – P10 (1) to innermost secondary feather – S13 (23). Box and whisker plots show 

the median, 25% quartiles and range 

 

 

Table 2.3 Information-theoretic model selection results for the analysis of the effect of feather mass, length 

and position in the wing on mercury concentration in un-moulted barn owls 

 

Model Df log-likelihood AICc ΔAICc 
Akaike weight 

(wi) 

Feather mass + random effect 4 -60.29 128.91 0.00 0.69 

Random effects model (intercept + random effect) 3 -62.17 130.53 1.62 0.31 

Feather position + random effect 4 -64.80 137.93 9.02 0.01 

Feather length + random effect 4 -66.43 141.20 12.28 0.00 
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Table 2.4 Model results for the analysis on the effect of feather mass on mercury concentration in un-moulted 

barn owls 

 

Fixed effect Estimate SE df t P 

Intercept -0.92 0.17 96 -5.29 <0.001 

Feather mass -0.43 0.18 96 -2.32 0.022 

Random effect 
SD – intercept 

(between-individual variation) 
SD – residuals 

(within-individual variation) 

Individual 0.882 0.252 

 

 

2.5 Discussion 

2.5.1 Mercury contamination in barn owl feathers 

 In general, the Hg concentrations we measured in barn owl feathers (0.62 ± 0.76 mg 

kg-1) were below the levels previously detected for this species in the Iberian Peninsula (1.2 ± 

1.1 mg kg-1 in body and flight feathers, n = 13; Lourenço et al. 2011), in Belgium (0.77 ± 0.44 

to 0.90 ± 0.53 mg kg-1 in primary feathers, n = 5; Dauwe 2003), in the Netherlands (1.8 ± 0.93 

mg kg-1 in primary feather P4, n = 3; Denneman and Douben 1993) and in Sweden (15 ± 32 

mg kg-1 in indiscriminate feathers, range 0.4–6.0 mg kg-1 during alkyl Hg ban and 0.19–126 

mg kg-1 during alkyl Hg use in agriculture, n = 16; Westermark et al. 1975). The toxicity 

threshold for Hg is highly variable among bird species and reported sub-lethal effects are 

mainly associated with reproductive impairment (Scheuhamer et al. 2007). Concentrations 

from 2.4 mg kg-1 in body feathers have been reported to cause a reduction in nest success by 

10% in songbirds (Jackson et al. 2011), whereas concentrations over 40 mg kg-1 are 

associated with sterility in the white-tailed eagle Haliaaetus albicilla (Berg et al. 1966). In our 

data set, 3% of samples (five samples from two individuals) showed Hg concentrations in the 

range of the values reported to produce negative effects on terrestrial birds (between 2.8 

and 4.9 mg kg-1). Therefore, despite in our study area barn owls are in general not exposed 

to very high Hg contamination, we should consider some of our values as sufficiently high to 

potentially impair reproduction. Nevertheless, we cannot completely exclude the possibility 
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that the highest values reported in this study could have resulted from sporadic external 

contamination, such as small particles retained in feathers.  

2.5.2 Mercury contamination in body feathers versus flight feathers 

 Our results suggest that either body feathers from the breast, primaries and 

secondaries are adequate to evaluate Hg levels in first-year barn owls, since no consistent 

differences between these three feather types were observed. Thus, opportunistic 

sampling should be applicable provided mean concentrations are calculated from several 

feathers: given the considerable variation in Hg levels between different feathers, 

irrespectively of feather type, it is advisable to use more than one feather to estimate an Hg 

value per individual. If this procedure is adopted, it is expected that Hg concentration 

measured in a juvenile could be considered a reliable indicator of local contamination (i.e. 

the area surrounding the nest site).  

2.5.3 Mercury concentration in flight feathers: variations with position in the 

wing, feather mass and length 

 The effect of feather position in the wing seems to be small as it showed no linear 

relationship with Hg variation in our data set. However, the widest range in Hg concentration 

was found between P9 and P5–P6, and hence we recommend caution when using the 

outermost primaries to estimate and compare Hg contamination in barn owls, particularly in 

studies with small sample sizes. Given the negative effect of feather mass on Hg 

concentration (due to dilution), the largest outermost primaries, being the heaviest feathers 

in the barn owl wing, might contain lower Hg concentrations when compared to smaller 

feathers. However, while feather length and mass in general decreases inwards (P10–S13; 

with exception of an increase in length in P10–P9 and in both mass and length in S1–S2), our 

results did not show a comparable trend inwards-outwards in Hg concentration in barn owl 

remiges, contradicting the general pattern described in the literature (see Bortolotti 2010 

and references therein). 

 Bortolotti (2010) has demonstrated that the relationship between the position of a 

primary and its relative mass is the inverse of the relationship between the position of a 

primary and its relative Hg concentration. Based on this finding he proposed that Hg 
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concentration in primaries is confounded by a variation in feather mass. In his data (n = 5 

individuals; adapted from Furness et al. 1986), Hg concentrations followed the general 

pattern of contaminant concentrations found in several studies: a decrease from P1 to P8 or 

P9 and then an increase in P10. In our study, although the relationship between the position 

of barn owl primaries and their relative mass and length followed a pattern similar to that 

found by Bortolotti (2010), the relative Hg concentrations in primaries showed a very 

different pattern (Fig. 2.3 a), thus supporting independence from relative feather mass and 

length. Despite the current poor understanding of feather physiology, Bortolotti (2010) also 

hypothesized that Hg passively accumulates in the feather in a time-dependent manner, i.e. 

the length of time growing cells are exposed while Hg passes from the circulation to the 

growing feather is critical. Hence, differences in the growth rate, i.e. in daily increase in 

feather mass and/or length, should be determinant to differences in Hg concentrations 

between feathers. Therefore, the pattern found by Bortolotti may not illustrate a cause-        

-effect relationship between feather mass and Hg concentration but is eventually a 

consequence of the position of the primaries in his data set being correlated with the growth 

rates of individual feathers. 

 The post-moult growth of the outermost primaries was described for barn owl by 

Lenton (1984), and their daily increase in length and mass can be calculated from his data. 

The pattern of mean Hg concentration we found among the outermost primary feathers is 

concurrent with Hg deposition being influenced by differences in daily increase in mass and 

length during feather growth: both increase from P10 to P8, then decrease to P6 and rise 

again in P5 (Fig. 2.3 b). Mean Hg concentration showed an opposite trend, with its highest 

value in P6, which is the primary with the lowest daily increase in mass and length. Our data 

is in agreement with this rationale, since feather mass and not length showed a stronger 

effect on Hg concentration, and accordingly differences between feathers are more 

pronounced in the daily increase in mass than in length (Fig. 2.3 b). Moreover, feather mass 

and length do not seem to fully explain the total Hg excreted in the feather (mean Hg 

concentration multiplied by feather mass), since relative excreted Hg follows the pattern of 

Hg concentration irrespectively of feather size (Fig. 2.4). Differences in Hg concentrations 

can be so accentuated that a smaller and lighter feather could excrete more Hg (see for 

example P6 and P9). Therefore, the contribution of a single feather to Hg elimination may be 

more dependent on its susceptibility to incorporate Hg due to its growth rate than on its 
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size, suggesting that besides mass and length other factors can be determinant to the 

process of Hg deposition in feathers. 

 

 

 

Figure 2.3 Patterns of variation in Hg concentration (circles and solid line) in barn owl primary feathers versus 

feather size (a) and growth rate (b). Squares and dashed lines represent feather mass (a) and daily increase in 

feather mass (b); triangles and dotted lines represent feather length (a) and daily increase in feather length (b). 

All values are expressed in % deviation from the sample mean. Daily increase in mass and length (b) was 

adapted from Lenton (1984) and was only available for the six outermost primaries (P5-P10). Lines joining 

points are for visual emphasis 
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 Although in our study the feather with the lowest Hg concentration is simultaneously 

the longest feather in the barn owl wing (P9), in Lenton (1984) P8 was the longest feather 

and had the highest daily increase both in mass and length (most likely this reflects the 

deviation to the pattern in Fig. 3b). Since feather morphogenesis is genetically determined 

(Yu et al. 2002), we assume that feather growth pattern is equivalent in juveniles and adults. 

Nevertheless, further detailed studies on feather development in barn owl nestlings are 

needed. 

 Our study seems to support the hypothesis that Hg deposition is time dependent as 

stated by Bortolotti (2010). However, our results suggest that feather growth rate is possibly 

the main determinant of differences in Hg concentration found in flight feathers. Future 

studies with detailed data on growth rate of all flight feathers in barn owl nestlings are 

needed to confirm this hypothesis. As a consequence of this conclusion, the correction 

method suggested by Bortolotti (2010) of using length as a proxy of time for quantifying Hg 

in feathers (instead of concentration calculated as Hg mass divided by sample mass) may not 

be valid for the barn owl (and possibly for other bird species as well), since differences in 

feather length do not fully represent differences in feather growth rate.  

 

 

Figure 2.4 Variation in the relative estimated amount of Hg excreted (circles and solid line) in barn owl flight 

feathers versus relative feather mass (squares and dashed lines) and length (triangles and dotted lines). All 

values are expressed in % deviation from the sample mean. Lines joining points are for visual emphasis. 

Feathers are ordered from outermost primary feather – P10 (1) to innermost secondary feather – S13 (23) 
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2.5.4 Implications to sampling procedures 

 The use of barn owl feathers to biomonitor Hg contamination, as in raptors in 

general, is often subjected to sampling and analytical constraints. If researchers are sampling 

live birds, the most ethical option is to collect a few body feathers. On the other hand, in 

studies relying on bird carcasses or shed feathers found in nest sites and perches, the 

limitations are related to feather availability and the sample size that can be analysed. Such 

opportunistic sampling implies that for some individuals or sites only a certain type or 

number of feathers can be used. Sampling constraints are particularly restrictive when 

relying on shed feathers, because the barn owl has a complex moult and can shed a small 

number of feathers in some years (1–2 feathers, Martínez et al. 2002). Moreover, the exact 

position in the wing is seldom identifiable in shed feathers (exception to P10, owing to its 

particular structure) and also age is undetermined, meaning additional variability is 

introduced by possible differences in bioaccumulation when using moulted feathers. 

 Our results suggest that it is not crucial to discriminate between feather type, 

position in the wing and length, since these characteristics seem to have little importance on 

the feather ability to accumulate Hg. Considering that simultaneously-grown remiges (i.e. 

with equal Hg concentration available in the blood) differ in their ability to incorporate Hg 

because they have different growth rates, then the best estimate of individual Hg level 

should overcome between-feather variation. To accomplish this, a mean value should be 

obtained by using several feathers from the same individual. Moreover, in obtaining the best 

estimate possible of the individual mean Hg concentration, intra-individual variation should 

also be considered. Since mass has a dilution effect in Hg concentration in remiges, we 

grouped these feathers in four classes by decreasing mean mass, in order to examine the 

effect of mass in the deviations to mean Hg concentrations: the five outermost primaries 

(OP–0.40 g), the five innermost primaries (IP–0.21 g), the seven outermost secondaries (OS–

0.14 g) and the six innermost secondaries (IS–0.088 g). The group that contributes to 

minimise both inter-feather and intra-individual variations includes the five innermost 

primaries (Fig. 2.5). Accordingly, under a restrictive scenario, i.e. when choices must be done 

on which feathers to analyse, feathers from this group seem the best possible option (i.e. 

primaries 5 to 1). Its average deviations from sample and individual mean Hg concentration 

are low (respectively -0.019 and -0.009 mg kg-1). This roughly corresponds to remiges in the 
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range of length of 157 to 194 cm. Although this criterion is by principle applicable to adult 

birds, the increasing trend in Hg with age and the complex stepwise moult of the barn owl 

are probably more relevant to explain differences in Hg concentrations between feathers in 

adults than feather growth rate. 

 

Figure 2.5 Inter-feather (a) and intra-individual (b) deviations to mean Hg concentration. B – body feathers. 

Remiges are grouped in mass classes: OP – mean mass 0.402 g (5 outermost primaries); IP – mean mass 0.212 g 

(5 innermost primaries); OS – mean mass 0.138 g (7 outermost secondaries); IS – mean mass 0.088 g (6 

innermost secondaries). Dots represent mean and error lines represent 95% confidence intervals. The line 

adjoining dots is for visual emphasis 
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3 Biomonitoring mercury with owl feathers from nests and road-kills: age 

effects at local and regional levels 

3.1 Abstract 

 Raptor feathers have been widely used as non-invasive monitoring tools for several 

contaminants in terrestrial environments – including Hg – in part because raptor ecology 

allows the linkage of measured concentrations to a source area. Feather samples are mainly 

available from nests and road-killed birds, but these two sources may imply age-related 

confounding effects on Hg concentrations. To analyse age variations in Hg concentrations at 

local and regional levels, we used 112 feather samples from nest sites (57 barn owl feathers 

from 25 nests, 32 eagle owl feathers from 29 nests), and 156 feathers from 37 barn owls 

carcasses) collected in South Portugal between 2004 and 2012.  At the local (nest-site) level, 

Hg concentrations were on average significantly higher in body feathers from the older barn 

owl sibling (0.555 ± 0.594 ng g-1) than from their siblings (0.263 ± 0.189 ng g-1) that were on 

average 7.46 ± 7.47 days younger. There were no significant differences between age classes 

(nestlings and adults) in barn owls and eagle owls. Our results suggest that feathers of 

different nestlings from the same brood, or nestlings and adult moulted feathers from the 

same territory may provide similar indication of Hg contamination. None of the comparisons 

between barn owl feathers from nests and road-killed individuals with regard to age showed 

significant differences. To reduce possible body mass-effects on Hg concentrations 

measured at the territory level (particularly in nestlings), an average should be calculated 

from more than one individual per nest, regardless of age class. Feathers from road-killed 

barn owls can apparently be collected irrespectively of age, since Hg concentrations are 

comparable to those measured in feathers collected in owl territories in the same area. The 

similarity of Hg levels between age classes may result from our study species being resident 

but also from most samples corresponding to feathers formed in the nest, showing no 

bioaccumulation effect despite differences in individuals’ age. Because of the moult strategy 

and higher mortality of juveniles in both owl species, there is a greater likelihood of 

obtaining first year feathers in an opportunistic sampling scenario. Therefore, the higher 

variability in Hg concentrations in barn owl and eagle owl feathers from nests, and road-

killed birds may likely represent local environmental contamination. 
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3.2 Introduction 

 Metals and pesticides are among the major pollutants for which a warning of 

increasing environmental concentrations is important (Esselink et al. 1995). Metal pollution 

is often derived from anthropogenic activities, especially in terrestrial environments (Castro 

et al. 2011). Mercury is a widespread metal apparently increasing worldwide through 

atmospheric deposition (Windham-Myers 2014). In recent years, deposition is mostly 

derived from legacy anthropogenic Hg re-emitted from surface reservoirs (60% mainly from 

ocean and terrestrial soils), but also from primary anthropogenic emissions (27% mainly 

from mining and fossil fuel combustion) and from natural sources (13% e.g. from volcanoes; 

Amos et al. 2013). 

 Raptors have been used for biomonitoring metals like Hg in terrestrial environments, 

because in addition to their high trophic level (i.e. susceptible to biomagnification), they are 

long-lived (i.e. susceptible to bioaccumulation), widespread, territorial and many species are 

sedentary, thus also allowing for cross-habitat comparisons and linking measured 

concentrations to a source area (Esselink et al. 1995; Jager et al. 1996; Becker 2003; Evers et 

al. 2005). Raptors are vulnerable to reproductive and neurologic effects from elevated Hg 

concentrations (Solonen and Lodenius 1984; Eisler 1988; Wiemeyer et al. 1989; Evers et al. 

2005) and they are often under several anthropogenic stressors (Strasser and Heath 2013). 

Many raptor species have an unfavourable conservation status (Birdlife International 2015), 

and thus ethical issues are decisive regarding the selection of sampling methods. 

Consequently, raptor feathers have been broadly used as non-invasive monitoring tools for 

several contaminants (Solonen and Lodenius 1990; Dauwe et al. 2003; Martínez et al. 2012; 

Gómez-Ramírez et al. 2014). 

 Mercury is excreted in feathers and its concentrations reflect endogenous deposition 

of the blood-circulating metal at time of feather formation (Burger and Gochfeld 1997; 

Dauwe et al. 2003). After total feather growth, the transport of substances from blood to 

keratine fibers is blocked and Hg remains stable in the feather, mostly in the form of 

methylmercury (MeHg; Furness et al. 1986). Mercury concentrations in feathers are much 

higher than those measured in eggs, blood or muscle, despite they may be higher or lower 

than liver storage concentrations (DesGranges et al. 1998; Evers et al. 2005). Feathers are 
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considered valuable biomonitors of Hg contamination because (1) they are sampled non-               

-destructively, (2) have chemical and physical stability, and (3) accumulate higher Hg levels 

than other tissues. 

 Apart from museum collections and birds that enter rescue centres (on which basic 

information is generally uncontrolled by researchers), feather samples for ecotoxicological 

studies may be collected at nests (either plucked from nestlings and adults or found shed) or 

plucked from road-killed birds. In resident species, feather samples collected at nests are 

allocated to a specific site, where birds have nested and fed, and can therefore reflect local 

contamination. On the other hand, the original nest site/territory of samples collected from 

road-killed individuals is not certain, although it can often coincide with the collection site. 

Collection site should theoretically differ more from feather-growth site in the case of first 

year individuals, which are most frequently found dead on road sides, mainly during post-     

-natal dispersal (Massemin et al. 1998; Borda-de-Água et al. 2014). However, regardless of 

age, the bird may also be a floater, i.e. a non-territorial individual (Penteriani 2006; Delgado 

and Penteriani 2008), in which cases the collection site may also be quite far from feather-    

-growth site. Moreover, samples from road-killed birds are often collected from degraded 

carcasses, where little information on the individual may be available, including age. As a 

consequence, in resident species, samples from road-killed birds may only be securely 

related to contamination at a broader regional level. 

 Inherently, age influences sample availability, because nestlings are easier to capture 

and handle, while sampling adults may depend on the access to shed feathers. Also, first 

year owls are more likely to die on road sides than adults (de Bruijn 1994; Massemin et al. 

1998). Samples are often considered homogeneous to facilitate the analysis, with a 

consequent risk of error in the results (Castro et al. 2011). Metal concentrations can vary in 

samples from individuals of different age, which in turn may influence the validity of results 

by creating discrepant outcomes on the effect of age in Hg contamination. Many studies 

report higher Hg concentrations in feathers from adults than nestlings or sub-adults (Furness 

1990; Furness et al. 1991; Stewart et al. 1994; Monteiro et al. 1995; Wenzel and Gabrielsen 

1995; Gochfeld et al. 1996). However, other studies support similar concentrations between 

nestlings and adults (Burger et al. 1994; Monteiro and Furness 1995) or higher concentration 

in nestlings than adults (Monteiro and Furness 1995). Bioaccumulation in internal tissues can 
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change with age, leading to different Hg levels in blood circulation at the time of feather 

growth (Burger 1993). This may be responsible for age-related differences in Hg levels 

between feathers of juvenile and adult birds. Since a continuous sequestration in internal 

tissues is presumed, part of this accumulation could be mobilized into blood circulation, 

increasing concentrations derived from recent food (Burger 1993), and possibly resulting in 

adults having higher Hg concentrations in feathers. On the other hand, associations between 

age classes in body weight and prey-type selection (e.g. smaller younger juveniles foraging 

on smaller prey than older juveniles and/or adults) may also contribute to age-related 

differences in Hg exposure (Evers et al. 2005).  

 We used two resident owl species as case studies to analyse age-effects in Hg 

concentrations at local and regional levels. The barn owl (Tyto alba) is a medium-sized 

opportunistic meso-predator that hunts in open farmlands (Bunn et al. 1982; Roulin 2002). 

The eagle owl (Bubo bubo) is a large-sized generalist super-predator associated to 

undisturbed and often steep and scrubby areas (Cramp 1985). Since these species have 

distinct habitat requirements and have a different trophic position in the food web, they 

represent ecological variations within the owl group. 

 We explored within-brood and within-territory variations in Hg concentrations 

associated with age, as well as those related to sample-type and representativeness of road-

-killed samples. Accordingly, we posed four sampling-related questions: (1) Are Hg 

concentrations similar among siblings, so that feathers from nestlings of the same brood can 

be indiscriminately collected to measure Hg concentrations at the territory level? (2) Are Hg 

concentrations similar among age classes in related individuals, so that feathers from 

nestlings and adults can be interchangeably used to characterize Hg levels in a territory? (3) 

Are Hg concentrations similar among age classes in unrelated individuals, so that feathers 

from different proveniences (nests and road-killed individuals) can be indiscriminately used 

to measure Hg concentration in a certain region? (4) Are Hg concentrations similar between 

road-killed and nest barn owls with different ages, so that feathers from road-killed 

individuals can be used to represent a certain region, irrespectively of age of sampled 

individuals? 
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3.3 Materials and methods 

 The analysed feathers were collected at nest sites (either plucked from the bodies of 

live barn owls and eagle owls or found shed), and from dead barn owls collected on road 

sides in Ribatejo and Alentejo regions (South Portugal), between 2004 and 2012. A total of 

112 samples were obtained in nests: 57 barn owl feathers (collected at 25 nest sites; 43 

feathers from nestlings and 14 feathers from adults) and 32 eagle owl feathers (collected at 

29 nest sites; 13 feathers from nestlings and 19 feathers from adults). Road killed barn owls 

were frozen stored at -20 °C until processing and age was determined by plumage moult 

according with Martínez et al. (2002): 156 feather samples were collected from 37 carcasses 

(96 feathers from 20 first year owls and 60 feathers from 17 adults). All feathers were stored 

in transparent plastic bags until chemical analysis.  

 Total Hg concentrations were measured by thermal atomization atomic absorption 

spectroscopy, following the same method as described in Roque et al. (2016). The quality 

control of the results was assured using reference material (TORT-2), which delivered an 

accuracy of 10% with 95% confidence intervals. Reproducibility was inspected by succeeding 

measurements on the same sample, which delivered standard deviations lower than 5%; and 

detection limit was 0.01 ng for a 100 mg sample. Hg concentrations are presented in ng g-1 

on a fresh weight basis. 

 For Hg contamination assessment at local level, data were grouped by nest site. Non-

-parametric statistical tests were used because data showed a non-normal distribution that 

could not be normalized by transformation. Paired Wilcoxon tests were used to compare Hg 

concentrations in older versus younger barn owl siblings (i.e. within-brood variations) and in 

parents versus offspring in barn owls and eagle owls (i.e. within-territory variations). 

 For Hg contamination assessment at regional level, mean Hg concentration in barn 

owl feathers from carcasses was calculated using either four or five flight or body feathers 

per individual, in order to minimize intra-individual variation driven by differences in feather 

mass (Roque et al. 2016). Data normality was achieved by log-transformation. Data were 

also inspected for homogeneity of variances. In order to determine if different sample types 

(age-associated) could be indiscriminately collected to measure Hg concentration in a certain 

region ANOVA tests were used to compare nestlings versus road-killed sub-adults (1 year) 
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versus adults (2 or more years) in barn owls, and nestlings versus unrelated breeding adults 

in eagle owls. In order to determine if Hg concentrations in feathers from road-killed 

individuals are comparable with those from nests in the same region, irrespectively of the 

age of sampled feathers, Student’s t-tests were used to compare barn owl feathers from 

nests (nestlings and nestlings plus adults) with road-killed individuals with one year and two 

or more years. All statistical analyses were conducted using R software 3.1.1 (R Core Team 

2014). 

3.4 Results 

3.4.1 Age effect in Hg concentrations at the territory level in the barn owl and 

eagle owl 

 Within the same brood, mean difference in age of the older and younger barn owl 

nestling was 7.46 ± 7.47 days (range: 1–26 days) and mean difference in Hg concentration in 

body feathers was 0.364 ± 0.524 ng g-1 (range: 0.007–1.96 ng g-1). Overall, Hg concentrations 

were significantly higher in body feathers from the older nestling (0.555 ± 0.594 ng g-1) than 

from the younger nestling (0.263 ± 0.189 ng g-1; v = 16, p= 0.04; Table 3.1). However, in two 

broods (13% of the clutches) the younger nestling presented a higher Hg concentration than 

the older nestling (difference: 0.101 ± 0.040 ng g-1). Accordingly, Hg concentrations in body 

feathers were marginally correlated with body mass (t-test: t = -1.9351, df = 34, p = 0.061) 

but the latter was not correlated with age (t-test: t = -1.2903; df = 34; p = 0.206).  In each owl 

nest the pooled mean of Hg concentrations in nestlings (barn owl: 0.549 ± 0.435 ng g-1; eagle 

owl: 0.777 ± 1.12 ng g-1) did not differ from the concentrations in adult moulted flight 

feathers (barn owl: 0.766 ± 0.504 ng g-1; v = 15, p = 0.23; eagle owl: 1.31 ± 1.41 ng g-1; v = 16, 

p = 0.16; Table 3.1).  

3.4.2 Age-related differences in Hg concentration at the regional level in barn 

owl and eagle owl 

 Considering the total sample from barn owl collected in our study area, mean Hg 

concentrations were 0.514 ± 0.381 ng g-1 in nestlings (median: 0.408, range: 0.117–1.65 ng g-

1), 0.652 ± 0.755 ng g-1 in first year road-killed individuals (median: 0.483, range:  0.054–3.63 

ng g-1) and 0.712 ± 0.456 ng g-1 in adults, i.e. individuals with two or more years (median: 
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0.558, range: 0.105–1.83 ng g-1; Fig. 3.1). Regarding eagle owl, mean Hg concentrations were 

0.819 ± 1.03 ng g-1 in nestlings (median: 0.443, range: 0.043–3.46 ng g-1) and 1.30 ± 1.78 ng 

g-1 in adults (median: 0.636, range: 0.145–7.28 ng g-1; Fig. 3.2). Mercury levels showed no 

significant differences between age classes both in barn owls (F = 1.187, p = 0.31; Table 3.2) 

and in eagle owls (F = 1.707, p = 0.20; Table 3.2). 

 

Table 3.1 Variations with age in mercury concentration (ng g
-1

) in owl feathers from nests (mean, standard 

deviation, median and range). Results from Wilcoxon test for matched samples are given for comparison 

between siblings (brood) and adults versus progeny (nest). Species (Sp): BO – barn owl, EO – eagle owl  

 

Source Sp N Age Hg concentration v p 

       

Brood 

BO 13 Younger nestling 
0.263 ± 0.189 

16 0.04 

0.215 [0.099-0.801] 

    

BO 13 Older nestling 
0.555 ± 0.594 

0.308 [0.084-2.07] 

      

Nest 

 

 

BO 10 Nestlings 
0.549 ± 0.435 

15 0.23 

0.486 [0.135-1.64] 

    

BO 10 Breeding adults 
0.766 ± 0.504 

0.561 [0.316-1.83] 

      

EO 10 Nestlings 
0.777 ± 1.12 

16 0.16 

0.327 [0.043-3.46] 

    

EO 10 Breeding adults 
1.31 ± 1.41 

0.662 [0.113-4.04] 
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Figure 3.1 Mercury concentration (ng g
-1

) in barn owl feathers with different age classes. Box and whisker plots 

show the median, 25% quartiles and range 

 

 

 

Figure 3.2 Mercury concentration (ng g
-1

) in eagle owl feathers with different age classes. Box and whisker plots 

show the median, 25% quartiles and range 
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Table 3.2 ANOVA results for the analysis of the effect of age on Hg concentration in barn owl feathers collected 

in nests and road-killed individuals, and in eagle owl feathers collected from nests (unrelated individuals) in 

south Portugal 

 

 DF Sum Sq. Mean Sq. F p 

      

Barn owl      

Age 2 1.55 0.773 1.187 0.31 

Residuals 57 37.11 0.651   

      

Eagle Owl      

Age 1 2.64 2.635 1.707 0.20 

Residuals 30 46.32 1.544   

 

3.4.3 Age-related differences in Hg concentration in barn owl feathers 

collected in nests versus road-killed individuals 

 None of the comparisons between barn owl feather samples from nests and road-      

-killed individuals with regard to age showed significant differences: (1) comparing feathers 

from nestlings and first year road-killed owls (t = 0.774, df = 32, p = 0.45); (2) comparing 

feathers from nestlings with adult road-killed owls (t = 1.966, df = 32, p = 0.058); (3) 

comparing feather of adults and first year road-killed owls (t = 0.197, df = 32,  p = 0.85); and 

(4) comparing a pool of nestling and adult feathers with adult road-killed owls (t = 1.295, df = 

32, p = 0.20; Table 3.3). 
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Table 3.3 Variations with age in mercury concentration (ng g
-1

) in barn owl feathers from nests and road-   -

killed individuals (mean, standard deviation, median and range). T-test results are given for comparison 

between sample types and age classes 

 

 Road-killed individuals 
 

Feather origin/age 1 year  2 years +  

 0.638 ± 0.674 0.681 ± 0.453 

Nests 
0.520 [0.076–2.78] 0.558 [0.105–1.51] 

  

Nestlings only   

0.464 ± 0.287 t = 0.774, df = 32 t = 1.966, df = 32 

0.390 [0.117–1.03] p = 0.45 p = 0.058 

   

Nestlings and breeding adults   

0.396 ± 0.245 t = 0.197, df = 32 t = 1.295, df=32 

0.333 [0.117–1.03] p = 0.85 p = 0.20 

   

 

 

3.5 Discussion 

3.5.1 Age effect in Hg concentrations at the territory level in the barn owl and 

eagle owl 

 The first laid egg of a clutch most likely contains more Hg than subsequent eggs, 

corresponding to a decontamination of the female body burden (Becker 1992), and 

consequently a larger amount of Hg is deposited during embryonic development in older 

chicks (Becker et al. 1994). However, since egg mass represents only 2-8% of a completely 

grown chick, egg contamination is considered to be negligible (Monteiro and Furness 1995). 

Instead, variation in age-related trends of Hg concentrations in nestling feathers should 

depend on the balance between Hg inputs by food intake and dilution by large body mass 

increments during chick development (Tavares et al. 2005). The dilution effect occurs when 

the mass increase rate exceeds the Hg deposition rate in internal tissues, and thus higher Hg 

concentrations have been associated to slower growth rates in nestlings (Goutner et al. 
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2001). The combination of an increase in exposure to Hg as nestlings grow, along with an 

increase in body-size (which may decrease Hg inputs to plumage due to metal dilution into 

growing internal organs; Thompson et al. 1991; Monteiro et al. 1995), may determine that 

Hg accumulation patterns are mostly associated with body mass, and not so much with age. 

Barn owl nestlings have a bell-shaped curve in mass distribution with age, since there is an 

overshoot in body mass at ca. 40 days old, followed by a decrease until fledging, at ca. 60 

days old (Durant and Handrich 1998). This is caused by a spontaneous decrease of food 

intake preceding fledging, probably representing an advantage in terms of food resources 

portioning between siblings with hatching asynchrony – i.e. the spontaneous decrease in 

food intake in older siblings allows for transferring food resources to the younger ones 

(Durant and Handrich 1998). Also, feather growth seem to be another factor determining Hg 

concentration in fledglings feathers (Becker et al. 1994; Tavares et al. 2005). Since the period 

when chicks may start using their body reserves is concurrent with the completion of 50% 

feather growth (Durant and Handrich 1998), it is possible that the higher Hg concentrations 

in older nestlings result from Hg increase in blood due to lipid mobilization (Lewis and 

Furness 1991; Castro et al. 2011). Concluding, siblings sampled at younger ages (before 40 

days old) would possibly be in the ascending phase of the body mass curve and therefore Hg 

concentrations in their body feathers may be under influence of the above mentioned 

dilution effect (Becker et al. 1994; Tavares et al. 2005), thus resulting in lower levels of 

contamination.  

  Our results suggest that pooling feathers of different nestlings from the same brood, 

or nestlings and adult moulted feathers from the same nest give similar results, at least in 

these two owl species. Although some studies have reported differences between nestlings 

and adults in feather Hg concentrations, these were not always consistent, possibly due to 

differences across age classes in body weight, prey-size selection and trophic level, resulting 

in age-related differences in Hg intake or accumulation (Evers et al. 2005; Burgess and 

Hobson 2006; Keller et al. 2014). In opposition, our results suggest similarity between age 

classes in the two sampled owl species, although we do not exclude the possibility that a 

larger sample size could yield a different output. All considered, in order to reduce possible 

body mass-effects on Hg concentrations measured at the territory level (particularly in 

nestlings), we suggest that whenever possible the mean Hg contamination for a given owl 



Biomonitoring mercury with owl feathers from nests and road-kills 

63 
 

territory should be calculated from more than one individual per nest, regardless of age 

class. 

3.5.2 Age-related differences in Hg concentration at the regional level in barn 

owl and eagle owl 

 The barn owl and eagle owl are resident species (Cramp 1985), thus we expected that 

road-killed individuals were collected near their territory (territorial adults) or during post-    

-fledging dispersal. In resident species both juveniles and adults are contemporaneously 

subjected to the same background contamination, at the breeding territory. However, adults 

may have been exposed to different Hg levels during the life history stages, i.e. 

bioaccumulation resulting from Hg intake at natal territory, plus the post-fledging dispersal 

areas, and the current territory. Both owl species have a complex moult, shading only few 

feathers each year (Martinez et al. 2002; Solheim 2011), therefore we assume some feathers 

used in the analysis corresponded to firstly shaded feathers, i.e. reflecting Hg intake during 

feather formation while nestlings at the natal territory. However, we have no possibility of 

determining age for most shed feathers collected in nests for these two species. Regarding 

road-killed birds, in a sample of 157 feathers from 37 individuals, only 5.8% corresponded to 

adult flight feathers. Since mean Hg concentration was calculated using 4–5 feathers from 

each individual, eventual age-effects were most likely diluted by the calculation (Roque et al. 

2016).  

 Age-related differences in Hg concentrations are frequently associated with 

differences in Hg intake between nesting and wintering grounds in migratory species 

(Monteiro et al. 1995; Becker et al. 2002). However, rather than geographically dependent, 

age-related differences may result mostly from the time elapsed between exposure and 

sample collection, which reflects a time-trend in bioaccumulation. The lack of differences in 

Hg contamination with age in barn owls and eagle owls most likely results from both species 

being resident and having similar diet in adults and nestlings, which should result in similar 

Hg concentrations in blood of both age classes at time of feather growth. In the case of first 

year road-killed owls, feathers were formed in the nest; therefore, Hg concentration will 

reflect local contamination at the natal site, but not necessarily at the collection site. 



Chapter 3 

64 
 

 Although a few barn owl feather samples may not be considered independent as they 

belong to adults and juveniles from the same nest-site, we assumed that the contribution of 

increasing sample size to be more relevant than increasing the probability of type II error. 

The validity of the results obtained for the barn owl was supported by the concordant results 

found for eagle owls, which included only un-related individuals. 

3.5.3 Age-related differences in Hg concentration in barn owl feathers 

collected in nests versus road-killed individuals 

 Our results suggest that feathers from road-killed barn owls can be collected 

irrespectively of age, since Hg concentrations are comparable with those measured in 

feathers collected in owl territories in the same area. First year barn owls were more 

frequently found dead on roads than adults, thus our comparisons were mostly based on Hg 

concentrations in feathers formed in the first three months after hatching. In practice, 

feathers from nestlings and first-year owls represent the contamination at the natal site, 

therefore, Hg concentration should be influenced mostly by site-dependent effects (local 

contamination and owl diet) and not by age-related effects. In an opportunistic sampling 

scenario, in which there is a higher likelihood of sampling first-year feathers, Hg 

concentrations in barn owl feathers from nests and road-killed birds will most likely 

represent environmental variation. Barn owls are known to disperse mostly within a distance 

of 50 km from their natal sites (Bunn et al. 1982; de Bruijn 1994) and in our study area 

maximum recovery distance was ca. 60 km (I. Roque, A. Marques, R. Lourenço, J.E. Rabaça 

unpublished data). Breeding adults are probably road-killed inside their home range, 

estimated to be 763 ± 665 ha in South Portugal (Grilo et al. 2012). Accordingly, we can 

roughly estimate an area around the sampling site that is characterized by the Hg 

concentrations found in road killed barn owl feathers, which is likely to be more restricted in 

older birds. This error margin should be less relevant as many monitoring programs have a 

broad scale approach. Moreover, the effect of external contamination in Hg concentrations 

in barn owl feathers seems negligible, considering we found no differences in Hg levels 

between nest-formed feathers with different age (i.e. a proxy of the time feathers were 

exposed to external contamination). 
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3.6 Conclusions 

 The use of owl feathers for biomonitoring Hg is challenging because of the possible 

confounding effects, including feather mass (Roque et al. 2016) and age. In barn owls and 

eagle owls, Hg levels do not seem to be largely affected by the age of the sampled 

individuals. However, in an opportunistic sampling scenario feathers from different age 

classes can also be associated to spatial variation, since they may represent contamination in 

different locations, even if no differences in Hg concentration are found. Feathers from 

nestlings only represent Hg contamination at the natal site, which coincides with the 

sampling site. Feathers from first year road-killed birds represent Hg contamination at the 

natal site, which may not coincide with the sampling site. Finally, Hg concentration 

measured in adult feathers collected in nest sites and in feathers collected from most adult 

road-killed birds should represent contamination at sampling site, but may be influenced 

also by contamination in other locations where the individuals spent time in earlier life 

stages (e.g. natal site, dispersal areas). Consequently, using as many feather samples as 

possible seems the most effective way of obtaining a reliable estimate of local Hg 

contamination, by controlling the variation resulting from confounding effects. 
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4 Effect of diet, habitat and industrial emissions in biota-soil mercury 

accumulation factors in the barn owl (Tyto alba) 

4.1 Abstract 

 The toxicological impact of Hg depends on how it is distributed between exposure 

medium and biota. The relation between environmental levels and Hg contamination in top 

predators is rarely addressed in toxicological studies because of the complex trophic effects 

in the bioaccumulation of pollutants along food chains. We explored the biota-soil 

accumulation factors (BSAF), in order to inspect the influence of diet, habitat and industrial 

emissions in Hg dynamics in barn owl (Tyto alba) territories. We measured Hg 

concentrations of 69 soil samples and 56 barn owl feathers from 23 nest sites. Median BSAF 

was 36.8 times (5.81–938 times) with a large variability in the relation between Hg 

concentrations in soil and feathers among nest sites, suggesting local variation in the factors 

affecting bioaccumulation. There was no clear effect of diet on BSAF. Biological Hg exposure 

seems to be detached from industrial Hg emissions, which also did not show a relation with 

soil concentrations.  

 Agricultural land uses seemed to best explain bioaccumulation in the barn owl, 

particularly, permanently irrigated and heterogeneous agricultural areas. These land uses 

were associated with lower Hg concentrations in soil and feathers, which may be 

cumulatively influenced by different factors, probably related with watering regime and 

landscape heterogeneity. Lower Hg concentrations in irrigated soils may be associated with 

lower Hg agricultural input and/or faster Hg decontamination. Habitat may influence Hg 

bioaccumulation in barn owls by determining Hg levels in prey but also by affecting diet 

composition in barn owls (via prey abundance and availability). Land use may produce 

effects in both concentrations in feathers and soil but still not affect BSAF (i.e. show no 

obvious trend in Hg bioaccumulation from soil to feathers). Thus, BSAF should be analyzed 

together with Hg concentrations in biota and soil. Biota-soil accumulation factors in raptors 

seem to be useful indicators of habitat-related contaminant dynamics in terrestrial 

environment. 
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Keywords: Barn owl, bioaccumulation, diet effects, industrial emissions, mercury, soil 

contamination 

4.2 Introduction 

 Mercury is a widespread pollutant that is likely to increase globally through 

atmospheric deposition (Costa et al. 2006; Windham-Myers 2014). Terrestrial soils are the 

largest Hg reservoirs and the risk of rising concentrations of this metal threats ecosystems 

because of the formation of the toxic  methylmercury (MeHg; Amos et al. 2013; Krabbenhoft 

and Sunderland 2013). Half of the atmospheric Hg derived from anthropogenic emissions is 

removed by local and regional-scale processes such as dry deposition and precipitation 

scavenging of the scarce and short-resident atmospheric particulate Hg (Monteiro et al. 

1999). Consequently, high spatial variation in Hg concentrations is expected in terrestrial 

ecosystems. The potential for exposure of terrestrial  biota to a chemical depends on a 

complex interaction of several factors, including the chemical’s environmental fate, the 

physical and chemical characteristics of the chemical and the soil, and a series of abiotic and 

biotic processes (such as hydrolysis, photolysis, biodegradation, soil adsorption and mobility, 

volatilization from water or soil, biodegradation, etc.), which ultimately influence 

bioavailability (Hoke et al. 2016). Bioaccumulation is the process by which contaminants as 

Hg are absorbed in organisms and undergo enrichment in relation to the environment, as a 

result of all uptake and loss processes, e.g. dietary and environmental uptake, feacal 

egestion, transfer to offspring, metabolic biotransformation and growth dilution (Arnot and 

Gobas 2006; Jorgensen 2010; Borgå et al. 2012). Bioaccumulation comprises the more 

specific processes of bioconcentration (i.e. direct portioning of chemicals between the 

medium and the organism) and biomagnification (i.e. uptake from the diet leading to higher 

concentrations in the organism than in its prey, resulting in increased chemical 

concentration with higher trophic position in the food chain; Gobas and Morrisson 2000; 

Jorgensen 2010). 

 Bioaccumulation is often reported by biota-soil accumulation factors (BSAFs), which 

in a broad context are interchangeably referred to as bioconcentration factors (BCFs; Walker 

et al. 2012; Pereira et al. 2006; Falusi and Olanipekun 2007) and bioaccumulation factors 

(BAFs; e.g. ; Mason and Lawrence 1999; Hoffman et al. 2003). Bioaccumulation factors are 
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typically measured under field conditions that include the total chemical concentration in 

the water phase (for aquatic environments), but also in sediment or soil (McGeer et al. 2003; 

Arnot and Gobas 2006). Some authors consider BCFs to describe the exposure exclusively 

from the abiotic environment, excluding food uptake (Gobas et al. 2009; Jorgensen 2010). In 

this sense, BCF is considered as laboratory-derived and BAF as field-derived (McGeer et al. 

2003). Additionally, some authors assume as BAFs what others assume as biomagnification 

factors (BMFs), by calculating the ratio between concentrations in an organism and 

concentrations in its food (e.g. Jongbloed et al. 1994; Dietz et al. 2000). We considered BSAF 

(concentration in biota divided by concentration in the medium) as an unit-less number 

between zero and infinity (Hoffman et al. 2003) representing a single-compartment model 

that predicts partitioning between exposure medium and biota, showing the potential 

toxicological impact of Hg (McGeer et al. 2003). 

 Raptors (birds of prey and owls) are among the groups of vertebrates exposed to the 

highest levels of toxicants due to bioaccumulation and biomagnification along food chains 

(Lindberg and Odsjö 1983; Lourenço et al. 2011). As a result, raptors are broadly used for 

biomonitoring metals like Hg in terrestrial environments (Espín et al. 2016). Since many 

species are widespread, territorial and mostly sedentary, metal concentrations in these birds 

may be related to metal contamination in a source area, allowing spatial variation 

assessment (Esselink et al. 1995; Jager et al. 1996; Becker 2003; Evers et al. 2005). Given the 

ethical issues involved in using these organisms as biomonitors, raptor feathers are often 

selected as non-invasive monitoring tools (Solonen and Lodenius 1990; Dauwe et al. 2003; 

Martínez et al. 2012; Gómez-Ramírez et al. 2014). Deposition in feathers is the main 

excretory pathway for Hg (Lewis and Furness 1991) and its concentrations reflect 

endogenous deposition of the blood-circulating metal during the feather growth phase 

(Denneman and Douben 1993; Dauwe et al. 2003). After full formation, the blood vessels 

irrigating follicles undergo atrophy and Hg remains stable in the feather, mostly in the form 

of MeHg (Furness et al. 1986; J. Burger 1993). 

 We studied the effect of diet composition in BSAFs in a medium sized opportunistic 

predator that typically feeds in open farmlands – the barn owl (Tyto alba; Bunn et al. 1982; 

Roulin 2002). This species has a widespread distribution in Portugal, being more abundant 

south to the Tagus River (Lourenço et al. 2015). In the Tagus valley the species has an 
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estimated population density between 0.05 and 0.07 pairs km-2, which compared to other 

regional estimates suggests a great importance of the area for the barn owl (Roque and 

Tomé 2004). Moreover, the Tagus estuary is a relevant hunting area for the species during 

post-fledging dispersal, with abundance index reaching 2.5 owls km-1 in mid-autumn (Tomé 

and Valkama 2001). 

 The Tagus Estuary is one of the largest wetlands in Europe (320 km2) and has been 

classified as one of the most polluted with Hg (Figuéres et al.1985), with estimated inputs of 

5 t year-1 in the 1980s (Canário 2004). High Hg concentrations have been detected in physical 

samples like suspended particles (Figuéres et al.1985; Canário et al. 2003), but also in 

organisms like algae (Ferreira 1988) and fish (Lima et al. 1982). A study with an aquatic bird, 

the black-winged stilt (Himantopus himantopus), also revealed elevated Hg contamination in 

the Tagus compared to other Portuguese estuaries (up to 3.4 ± 1.5 µg g-1 in feathers; Tavares 

et al. 2004). Nevertheless, there is no information on Hg contamination in terrestrial 

ecosystems in the vicinity of the estuary. In this study we analyzed the potential toxicological 

impact of Hg contamination and interpreted accumulation mechanisms in terrestrial 

ecosystem by comparing Hg concentrations in barn owl feathers with those in soil in the 

southwest Tagus basin, and in Sado and Guadiana basins. Our main goals were (1) to 

characterize bioaccumulation in a terrestrial predator associated to agricultural landscapes; 

(2) to identify spatial patterns in bioaccumulation, (3) to assess the effect of diet 

composition and diversity in Hg bioaccumulation in the barn owl, and (4) to assess the effect 

of habitat and main industrial Hg sources in bioaccumulation. 

4.3 Materials and methods 

4.3.1 Study area 

 The study area is located in South Portugal, comprising the southwest Tagus basin 

and the western part of Sado and Guadiana basins (Fig. 1). The Tagus area includes the Tagus 

estuary, enclosed by north by the metropolitan area of Lisbon. The climate is Mediterranean 

with hot and dry summers and mild winters, and the rain fall is generally concentrated in the 

cold season. Landscape is characterized by plain or undulating lowlands dominated by 

agricultural land uses (48%) in Tagus and by forests (55%) in Sado and Guadiana basins. Main 
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agricultural land uses are permanently irrigated cultures (19%) in the Tagus area and non-      

-irrigated arable land (23%) in Sado and Guadiana (European Environment Agency 2007).  

Some of the industries located in the study area report releases above the threshold for Hg 

in air (10 kg year-1; Regulation No. 166/2006 of the European Parliament and of the Council). 

These include coal-burning power plant located in the municipality of Abrantes (A); a 

chemical and metal industrial complex in Barreiro (B); a thermal power station (fuel-oil-         

-powered, closed in 2012), a cement industry and a manufacture of pulp and paper in 

Setúbal (C); and the most potent thermal plant (coal-powered) in Portugal, and also an 

industrial complex for manufacture of refined petroleum products in Sines (D). These 

industries are monitored under the European Pollutant Release and Transfer Register (E-

PRTR; European Commission 2006). 

4.3.2 Sample collection 

 Samples were collected at 23 barn owl territories located in the southern part of the 

Tagus basin (n = 18) and western part of Sado and Guadiana basins (n = 5) (Fig. 4.1). A total 

of 56 feather samples (2.4 ± 1.1 feathers per nest) were obtained between 2010 and 2012, 

either plucked from the bodies of live barn owls or found shed. In the same visits to nests, 

three superficial soil samples with 100 g were collected. Additionally, barn owl diet was 

characterized using a total of 1 188 pellets collected in nests (51.5 ± 25.0 pellets per nest). All 

feathers and soil samples were stored in transparent plastic bags until chemical analysis. 

Pellets were freeze stored in plastic bags until diet analysis. 

4.3.3 Diet analysis  

 Prey were identified whenever possible to species level using identification keys for 

bones. The minimum number of individuals in each prey category was determined for every 

diet sample. For each sampling site we calculated the percentage in terms of number of 

individuals (PON; number of individuals of the prey group divided by the total number of 

individuals in the sample) for each prey category for the two trophic levels considered: 

primary consumers (Apodemus sylvaticus and Microtus spp.) and secondary consumers 

(Crocidura spp., Talpa occidentalis, Mus spp. and Rattus spp.). Diet diversity was estimated 

by Shannon’s diversity index calculated with logarithm of base 10 at the genus taxonomic 

level for rodents, and at class taxonomic level for other prey types. 
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Figure 4.1 Study area and location of sampling sites (black dots). 1 – Tagus basin, 2 – Sado basin, 3 – Guadiana 

basin; Hg sources: A – Abrantes (coal-burning power plant), B – Barreiro (metal industrial complex), C – Setúbal 

(cement industry, pulp and paper manufacturer); D – Sines (thermal plant, refined petroleum products 

manufacturer) 

 

4.3.4 Mercury analysis  

  Soil samples were sieved to remove coarse particles. Total Hg concentrations were 

measured by thermal atomization atomic absorption spectroscopy, following the same 

method as described in Roque et al. (2016). The quality control of results was assured using 

reference material (TORT-2), which delivered an accuracy of 10 % with 95 % confidence 

intervals. Reproducibility was inspected by succeeding measurements on the same sample, 

which delivered standard deviations lower than 5 %; and detection limit was 0.01 ng for a 

100 mg sample. Hg concentrations are presented in ng g-1 on a fresh weight basis. 

4.3.5 Statistical analysis 

 We calculated BSAF by dividing the Hg concentration in the barn owl for each 

territory (mean value for all feathers collected in the nest site) by the Hg concentration in 
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the soil of that territory (mean value for all soil samples in the territory). As explanatory 

variables we used (1) diet variables (PON of four prey groups - Microtus spp, Apodemus 

sylvaticus, Mus sp., insectivores; and diet diversity); (2) dominant land use (agricultural, 

forest or mixed) in the barn owl territory (2-km buffer centred in the nest site); (3) area of 

the four main agricultural land uses in each territory (2-km buffer) – permanently irrigated 

land, non-irrigated arable land, heterogeneous agricultural areas (i.e. juxtaposition of small 

parcels of diverse annual crops, pasture and/or permanent crops, and areas principally 

occupied by agriculture, interspersed with natural areas; Néry 2007), and permanent 

cultures; (4) distance of each nest site to the four main sources of industrial emissions (A, B, 

C, D). 

 Data were inspected for outliers and distribution normality of the variables (e.g. 

Quinn and Keough 2002), and a logarithmic transformation was applied to BSAF, and Hg 

concentrations in feathers and soil. Linear regression models were used to evaluate the 

variation of BSAF with diet variables, land use variables and distance to the four main 

sources of industrial emissions. Information-theoretic methods were used for multimodel 

inference based in AICc values – second-order Akaike’s information criterion (Burnham and 

Anderson 2002). We considered an AICc difference (ΔAICc) of 2.0 to define the set of 

competing models (Burnham and Anderson 2002). We used model diagnostic plots to 

validate model results. All statistical analyses were conducted using R software 3.1.1 (R Core 

Team 2014) with the package MuMIn (Barton 2014). 

4.4 Results  

4.4.1 Mercury bioaccumulation in the barn owl  

 Mean Hg concentration was 0.022 ± 0.026 ng g-1 (median: 0.014 ng g-1; range: 0.001–

0.104 ng g-1) in soil and 0.630 ± 0.497 ng g-1 (median: 0.414 ng g-1, range 0.117–1.87 ng g-1) in 

barn owl feathers, resulting in a mean BSAF of 93.7 ± 192 times (median: 36.8, range: 5.81–

938 times). There was a great variation in BSAFs in barn owls (from only 6 to more than 900 

times more Hg in owls than in the soil), with similar median values in Tagus and Sado-

Guadiana basins (45.4 and 36.8, respectively; Table 4.1). Nevertheless, Hg concentrations in 

both soils and barn owl feathers were higher in Sado-Guadiana (0.032 and 1.16, respectively; 
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Table 4.1), suggesting that higher environmental contamination with Hg produces higher 

contamination in the barn owl and the relation between Hg levels in the environment and in 

feathers may be comparable between regions with different background contamination. 

However, at a smaller-scale analysis, territories located along the Sorraia River (n = 3), a 

tributary of Tagus River, showed the highest BSAF values in BSAFs in this basin, and also a 

great range (Fig. 4.2). Barn owl territories in Sorraia showed a relatively low Hg 

concentration in soil (Fig. 4.3) and a relatively high Hg concentration in barn owl feathers 

(Fig. 4.4). A different pattern was patent in Alviela (n = 1), with the lowest BSAFs and the 

highest Hg concentration in soil, and in the range of lower values of Hg concentration for the 

basin in feathers. High variation in Hg bioaccumulation at small scale (i.e. nest site) seemed 

strongly influenced both by variations in environmental levels and by factors affecting Hg 

concentrations in feathers.  

 

 

Table 4.1 Regional variation in Hg concentrations (ng g
-1

) in soil and feathers, and respective biota-soil 

accumulation factors (mean ± standard deviation, median, range, and linear regression results) 

 

Basin Soil* Feathers* Biomagnification 

    

Tagus 

(n = 18) 

0.013 ± 0.012 

0.009 [0.001–0.042] 

0.479 ± 0.341 

0.362 [0.117–1.26]  

107 ± 216 

45.4 [6.22–938] 

     

Sado-Guadiana  

(n = 5) 

0.053 ± 0.038 

0.032 [0.015–0.105] 

1.17 ± 0.626 

1. 16 [0.488–1.87] 

44.7 ± 47.5 

36.8 [5.81–121] 

    

Difference 

between river 

basins 

F = 11.14;  p = 0.003 F = 8.902; p = 0.007 F = 0.984; p = 0.332 
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Figure 4.2 Variation in bioaccumulation factors (BSAF) in barn owl in five areas of the Tagus basin. Box and 

whisker plots show the median, 25% quartiles and range 

 

Figure 4.3 Variation in mercury concentrations (ng g
-1

) in soil from barn owl territories in five areas of the Tagus 

basin. Box and whisker plots show the median, 25% quartiles and range 
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Figure 4.4 Variation in mercury concentrations (ng g
-1

) in barn owl feathers in five areas of the Tagus basin. Box 

and whisker plots show the median, 25% quartiles and range 

 

4.4.2 Effect of diet composition and diversity in mercury bioaccumulation 

 Barn owl diet in south Portugal was almost evenly composed by primary (47.2 ± 

20.4%) and secondary consumers (53.9 ± 19.2%), with a dominance of Mus spp. (30.5 ± 

19.9%) among the secondary consumers, and Apodemus sylvaticus (23.9 ± 12.1%) and 

Microtus spp. (21.8 ± 12.7%) among the primary consumers. Mean diet diversity was 0.586 ± 

0.119 (median: 0.614, range: 0.219–0.730). Two models were included in the set of best 

models, the random effects model and the model including the variable diet diversity (Table 

4.2). Our data supported best the random effects model (wi = 0.31) compared to the models 

testing the effects of diet diversity (wi = 0.19), prey trophic level (wi = 0.08) and main prey 

types (wi = 0.08 and 0.09; Table 4.2). The evidence ratio for the two best models indicated 

that the empirical support for the random effects model was 1.6 times that of the model 

including the variable Shannon diversity index. Therefore, variations in barn owl diet do not 

have a considerable influence in BSAFs. Although not strongly supported by our data, greater 

diet diversity could be associated with lower bioaccumulation in the barn owl (Table 4.3). 
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Diet diversity was similar between basins (linear regression: F = 0.796, p = 0.382) and 

frequency of insectivores was the only diet-related variable which differed between Tagus 

and Sado-Guadiana basins (linear regression: F = 0.51, p = 0.019). 

 

Table 4.2 Information-theoretic model selection results for the analysis of the effect of diet diversity (Shannon 

index), prey trophic level (primary and secondary consumers) and main prey types (Insectivorous, Mus spp., 

Apodemus sylvaticus and Microtus spp.) in biota-soil accumulation factors in the barn owl 

 

Model df Log-likelihood AICc ∆AICc wi 

Null  model 2 -37.27 79.13 0.00 0.31 

Shannon diversity 3 -36.42 80.10 0.97 0.19 

Microtus spp. 3 -37.12 81.50 2.37 0.09 

Apodemus sylvaticus 3 -37.18 81.63 2.49 0.09 

Secondary consumers 3 -37.25 81.77 2.64 0.08 

Mus spp. 3 -37.27 81.80 2.66 0.08 

Insectivores 3 -37.27 81.80 2.66 0.08 

Primary consumers 3 -37.27 81.80 2.66 0.08 

 

Table 4.3 Model results for the analysis of the effect of diet diversity on BSAFs in the barn owl 

 Coefficient SE z p 

Intercept 5.313 1.317 4.034 0.0006 

Diet diversity -2.795 2.205 -1.267 0.219 

 

4.4.3 Habitat-related effects in mercury bioaccumulation 

 The information-theoretic analysis of the effects of habitat on BSAFs showed that our 

data supported best the model with heterogeneous agricultural areas (wi = 0.70; evidence 

ratio to second best model = 3.3; Table 4.4). The second best model, which included the 

variable permanent crops, received considerably less support, with a probability (wi) of 0.21 

of being the best model (∆AICc = 2.44). These results suggest that Hg bioaccumulation in the 

barn owl is higher in territories with a greater area occupied by heterogeneous agriculture 
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(Table 4.5). To a lesser extent, Hg bioaccumulation seemed lower in territories with more 

area occupied by permanent crops. 

 Regarding Hg concentrations in soil, our data supported best the model with 

permanently irrigated areas (wi = 0.49; evidence ratio to second best model = 2.6; Table 4.4). 

Some support was also set to the model with heterogeneous agricultural areas, with a 

probability of 0.19 of being the best model (∆AICc = 1.92). These results suggest that Hg 

concentration in soil is lower in barn owl territories with morearea occupied by permanently 

irrigated agriculture and to a lesser extent with more area of heterogeneous agriculture 

(Table 4.5). For Hg concentrations in barn owl feathers, the model with permanently 

irrigated areas (wi = 0.46; evidence ratio to second best model = 3.1; Table 4.4) was best 

supported by our data. The models with permanent crops and heterogeneous agricultural 

areas also received some support, each with a probability of 0.15 of being the best model 

(∆AICc = 2.19 and 2.30, respectively). These results suggest that Hg concentrations in barn 

owl feathers are lower in territories with more area occupied by permanently irrigated 

agriculture. Although with a smaller effect, Hg concentrations in barn owl feathers also seem 

to be lower in territories with more area with permanent crops and higher in territories with 

more area of heterogeneous agriculture (Table 4.5). 

 Overall, the models with variables non-irrigated arable land and main land use 

(categorical) were lightly supported by our data. This seems to indicate that the dominance 

of agricultural or forest areas in barn owl territories has a small effect in Hg contamination in 

the species, suggesting that variations in Hg concentrations in soil and in feathers, thus in 

bioaccumulation, are most likely influenced at a smaller-scale by agricultural land uses. 
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Table 4.4 Results of information-theoretic model selection for the analysis on the effect of dominant land use 

and four agricultural land uses in biota-soil accumulation factors, and in mercury concentrations in soil and in 

barn owl feathers 

 

Model df Log-likelihood AICc ∆AICc wi 

Bioaccumulation      

Heterogeneous agric. areas 3 -33.37 73.99 0.00 0.70 

Permanent crops 3 -34.59 76.44 2.44 0.21 

Null model 2 -37.27 79.13 5. 14 0.05 

Perman. irrigated areas 3 -37.10 81.47 7.48 0.02 

Non-irrigated arable land 3 -37.16 81.58 7.59 0.01 

Dominant land use 4 -36.16 82.55 8.55 0.01 

Hg in soil      

Perman. irrigated areas 3 -32.81 72.89 0.00 0.49 

Heterogeneous agric. areas 3 -33.77 74.81 1.92 0.19 

Null model 2 -35.23 75.06 2.17 0.17 

Permanent crops 3 -34.47 76.19 3.30 0.09 

Non-irrigated arable land 3 -35.23 77.72 4.83 0.04 

Dominant land use 4 -34.82 79.87 6.98 0.01 

Hg in feathers      

Perman. irrigated areas 3 -22.69 52.64 0.00 0.46 

Permanent crops 3 -23.78 54.83 2.19 0.15 

Heterogeneous agric. areas 3 -23.84 54.94 2.30 0.15 

Null model 2 -25.51 55.61 2.98 0.10 

Dominant land use 4 -22.84 55.90 3.26 0.09 

Non-irrigated arable land 3 -25.10 57.47 4.83 0.04 
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Table 4.5 Averaged-model results for the analysis on the effect of dominant land use and four agricultural land 

uses in biota-soil accumulation factors, and in mercury concentrations in soil and in barn owl feathers  

 

Fixed effect Estimate SE Adjusted SE Z p Relative 

importance 

Bioaccumulation       

Intercept 3.232 0.633 0.644 5.018 0.000  

Heterogeneous agric. 

areas 

0.814 0.279 0.296 2.745 0.006 0.70 

Permanent crops -0.704 0.300 0.318 2.213 0.027 0.21 

Perman. irrigated areas 0.171 0.311 0.331 0.517 0.605 0.02 

Non-irrigated arable land 0.145 0.329 0.350 0.416 0.677 0.02 

Dominant (forest) 0.544 0.561 0.598 0.909 0.363 0.02 

Dominant (mixed) 1.169 0.950 1.011 1.157 0.247 0.02 

Hg in soil       

Intercept -4.105 0.418 0.433 9.483 0.000  

Perman. irrigated areas -0.574 0.259 0.275 2.089 0.037 0.49 

Heterogeneous agric. 

areas 

-0.479 0.284 0.302 1.589 0.112 0.19 

Permanent crops 0.358 0.298 0.316 1.133 0.257 0.09 

Non-irrigated arable land 0.024 0.303 0.321 0.073 0.942 0.04 

Dominant (forest) 0.157 0.530 0.564 0.279 0.781 0.01 

Dominant (mixed) -0.633 0.896 0.953 0.664 0.507 0.01 

Hg in feathers       

Intercept -0.613 0.342 0.350 1.752 0.080  

Perman. irrigated areas -0.403 0.167 0.177 2.277 0.023 0.46 

Permanent crops -0.346 0.187 0.199 1.737 0.082 0.15 

Heterogeneous agric. 

areas  

0.334 0.185 0.196 1.707 0.088 0.15 

Dominant (forest) 0.701 0.315 0.335 2.092 0.037 0.09 

Dominant (mixed) 0.536 0.532 0.566 0.946 0.344 0.09 

Non-irrigated arable land 0.169 0.195 0.207 0.816 0.414 0.04 
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4.4.4 Effect of potential industrial sources in mercury bioaccumulation 

 Our data supported best the null model compared to the models testing the effects 

of distance to main industrial sources in BSAF (wi = 0.44), in Hg concentrations in soil (wi = 

0.37) and in Hg concentrations in barn owl feathers (wi = 0.18; Table 4.6). The evidence ratio 

for the two best models indicated that the empirical support for the null model was 2.8 

times higher for BSAF, 1.5 for Hg concentrations in soil and 1.0 for Hg concentrations in 

feathers. These results suggest that the distance of barn owl territories to main industrial 

sources could not clearly explain the variation in BSAFs, and neither on Hg levels in soil or 

feathers. Nevertheless, among the four contamination sources, distance to Abrantes power 

plant is the one that better explains the variations in Hg concentrations in soil and feathers, 

which decrease with distance (Table 4.7). 

 

Table 4.6 Results of information-theoretic model selection for the analysis on the effect of distance to the main 

industrial sources of atmospheric Hg in biota-soil accumulation factors, and in mercury concentrations in soil 

and in barn owl feathers 

 

Model df Log-likelihood AICc ∆AICc  wi 

Bioaccumulation      

Null model 2 -37.27 79.13 0.00 0.44 

Barreiro 3 -36.95 81.16 2.03 0.16 

Setúbal 3 -37.00 81.26 2.13 0.15 

Sines 3 -37.14 81.55 2.41 0.13 

Abrantes 3 -37.23 81.72 2. 58 0.12 

Hg in soil      

Null model  2 -35.23 75.06 0.00 0.37 

Abrantes 3 -34.31 76.88 0.82 0.25 

Sines 3 -34.85 76.96 1.90 0.14 

Barreiro 3 -34.93 77. 12 2.05 0.13 

Setúbal 3 -35.13 77.53 2.47 0.11 
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Table 4.6 Results of information-theoretic model selection for the analysis on the effect of distance to the main 

industrial sources of atmospheric Hg in biota-soil accumulation factors, and in mercury concentrations in soil 

and in barn owl feathers (continued) 

 

Model df Log-likelihood AICc ∆AICc  wi 

Hg in feathers      

Null model 2 -25.51 55.61 0.00 0.35 

Abrantes 3 -24.22 55.71 0.09 0.34 

Setúbal 3 -25.36 57.98 2.37 0.11 

Sines 3 -25.38 58.03 2.42 0.11 

Barreiro 3 -25.50 58.26 2.64 0.09 

 

4.5 Discussion 

4.5.1 Mercury bioaccumulation in the barn owl  

 Mercury bioaccumulation in barn owl feathers is much higher than in most reported 

organisms (Table 4.7). In general, BSAFs are calculated for organisms in which the main 

contamination source is absorption from the medium, being therefore generally applied to 

aquatic organisms (McGeer et al. 2003; Arnot and Gobas 2006). For organisms on or after 

the second level in the food web the uptake occurs mainly via the food, therefore BMFs or 

biomagnification trophic factors (BTFs) are instead calculated, in order to include 

biomagnification as a factor of bioaccumulation (Walker et al. 2010; Borgå et al. 2012). 

Nevertheless, BSAFs at high levels in terrestrial organisms can help to find organisms 

susceptible to bioaccumulation and to interpret the mechanism of accumulation (UNEP 

2011). The relatively high values of BSAF in the barn owl compared with those recorded in 

terrestrial invertebrates which are closer to the bottom of  its food web (up to 303 times the 

maximum BSAF in earthworms; Burton et al. 2006; Zhang et al. 2009), and the closeness to 

values detected in Hg-tolerant plants in a contaminated mining area (up to 0.75 times BSAF 

in Rumex induratus, Moreno-Jiménez et al. 2006) raise concern on the possible barn owl 

suceptibility to environmental Hg contamination. These comparisons are merely indicative 

because they refer to varying biotic and abiotic exposure conditions, but they are here 

considered to frame the barn owl in the known range of field-derived BSAFs.  
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 We observed overall concurrent patterns in Hg concentrations in soil and feathers, 

i.e. suggesting that areas with higher background Hg contamination in general result in 

higher contamination in barn owls. However, at a more local scale, the relation between Hg 

contamination in soils and in barn owls was not always as clear. Soils with low Hg 

contamination may be associated with high Hg concentrations in feathers (e.g. Sorraia), and 

soils with high Hg concentrations may be associated with concentrations is feathers in the 

range of the values for the overall area (e.g. Alviela). This variability suggests that factors 

affecting bioaccumulation are diverse and probably entangled. Consequently, Hg 

concentrations in soil may be a poor indicator of potential local effects in wildlife, chiefly if 

results are derived from small sample sizes. This variation in bioaccumulation may occur at 

inter-compartment transfer and/or at food web transfer. Differences in BSAFs may be 

affected by (1) variations in the bioaccessibility of Hg, because higher proportions of MeHg 

may not always occur in the most contaminated sediments (Canário et al. 2005) and (2) 

variations in barn owl diet, because this is the main source of Hg intake to the organism 

(Lewis and Furness 1991; Monteiro and Furness 1997; Thompson et al. 1998). 

  

Table 4.7 Biota-soil accumulation factors (BSAF) for mercury calculated as concentration in biota divided by 

concentration available in sediments (aquatic organisms) or soil (terrestrial organisms) 

Organism Species BAF Sampling area Source 

Aquatic     

Macrophytes Codium 

amplivesciculatum 

0.136 Gulf of California (USA) (Green-Ruiz et al. 2005) 

 Enteromorpha 

clathrata 

0.184   

 Gracilaria clathrata 0.130 Gulf of California (USA) (Green-Ruiz et al. 2005) 

 Ulva lactuca 0.079   

 Ulva sp. 0.14 Sado Estuary (Portugal) (Lillebo et al. 2011) 

Aquatic     

Plants Halimione 

portulacoides 

0.10–2.20 Portuguese coast (Válega et al. 2008) 

  0.16-0.22 Ria de Aveiro (Portugal) (Castro et al. 2009) 

 Triglochin maritima 0.13–0.34   

 Juncus maritimus 0.05-0.15   
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Table 4.7 Biota-soil accumulation factors (BSAF) for mercury calculated as concentration in biota divided by 

concentration available in sediments (aquatic organisms) or soil (terrestrial organisms) (continued) 

 

Organism Species BAF Sampling area Source 

Aquatic     

 Juncus maritimus 0.05-0.15   

 Sarcocornia perennis 0.05-0.07   

Worms Hediste diversicolor 0.23 Sado Estuary (Portugal) (Lillebo et al. 2011) 

  0.00–0.08 Portuguese coast (Cardoso et al. 2009) 

Molluscs Scrobicularia plana 0.40–1.14  (Coelho et al. 2014) 

  0.00–0.03  (Cardoso et al. 2009) 

 Chione subrugosa 0.086 Gulf of California (USA) (Green-Ruiz et al. 2005) 

     

Molluscs Crassostrea gigas 0.314   

Benthic org. Not specified 0.03–2.14
a)

  Bay of Biscay (France) (Monperrus et al. 

2005) 

Crabs Carcinus maenas 0.32–8.20 Ria de Aveiro 

(Portugal) 

(Pereira et al. 2006) 

  1.56 Sado Estuary (Portugal) (Lillebo et al. 2011) 

 Carcinus sp. 0.50–0.83 River Aponwe (Nigeria) (Falusi and Olanipekun 

2007) 

Fish Not specified 0.20–0.98 East coast (USA) (Mason and Lawrence 

1999) 

Amphibians Rana sphenocephala 0.67–1.51 South Carolina (USA) (Unrine and Jagoe 

2004) 

Terrestrial     

Funghi Cantharellus cibarius 0.20–3.80 Poland (Falandysz et al. 2012) 

 Amanita rubescens 0.83–24.0  Poland (Drewnowska et al. 

2012) 

 Xerocomus 

chrysenteron 

25.7–33.9  Lugo (Spain) (Melgar et al. 2009) 

 Boletus pinophilus 324–491    

Plants Oriza sativa 4.20 Guizhou (China) (Meng et al. 2010) 

 Rumex induratus 1231 Almadén (Spain) (Moreno-Jiménez et 

al. 2006) 

 Mimosa pudica 0.16–2.33 Sagua la Grande (Cuba) (Gonzalez 1991) 

 Marrubium vulgare 131   

a) corrected for soil organic matter content  
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Table 4.7 Biota-soil accumulation factors (BSAF) for mercury calculated as concentration in biota divided by 

concentration available in sediments (aquatic organisms) or soil (terrestrial organisms) (continued) 

 

Organism Species BAF Sampling area Source 

Terrestrial     

Earthworms Drawida sp. 

Allolobophora sp. 

Limnodrilus sp. 

0.04 – 0.54 Huludao City (China) (Zhang et al. 2009) 

 Eisenia fetida 0.60–3.10 Maryland (USA) (Burton et al. 2006) 

 

4.5.2 Diet-related effects in mercury bioaccumulation 

 Our data did not provide a clear relationship between diet and BSAF, most likely 

because of the combination of a great variability in BSAF (5.81–938) and a limited sample 

size. Because complex relationships require very large data sets to detect them, we cannot 

exclude that an increase in the number of sampled barn owl territories could have revealed 

a stronger relationship between diet and bioaccumulation. Several studies have shown that 

diet composition can influence concentration of contaminants in top predators (Lindberg 

and Odsjö 1983; Elliott et al. 1996; Anthony et al. 1999; Mañosa et al. 2003), which  also 

specifically applies to Hg in raptors (Palma et al. 2005) and owls (Lourenço et al. 2011) from 

south Portugal.  

 The highest Hg concentrations were associated with Bonelli’s eagles (Hieraaetus 

fasciatus) feeding on higher proportion of secondary consumers, whereas lower Hg 

concentrations were associated with diets mostly based on herbivores (Palma et al. 2005). 

Higher trophic level of prey also influenced Hg concentrations in the eagle owl (Bubo bubo); 

however, concentrations in primary consumers (herbivores) showed little variation and were 

not related with Hg concentrations in this predator (Lourenço et al. 2011). These studies 

suggest food web length may be a major source of variation in Hg contamination in 

terrestrial food webs, and therefore an effect of diet in BSAF should be expected. 

 In our study area diet diversity was similar between basins not showing any particular 

spatial variation patterns. Nevertheless, insectivore prey were more frequent in the Tagus 

basin, most likely resulting in a less contaminated area  having BSAF values comparable to 
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those in a more contaminated area (Sado and Guadiana basins). The frequency of 

insectivores in barn owl diet seems to be lower in the Tagus basin compared with other 

areas in Portugal, where Crocidura spp. can be the main prey type (see Roque 2003 and 

references herein). This suggests diet-related effects in Hg concentrations in barn owl 

feathers could be determinant for spatial patterns in bioaccumulation, despite we could not 

find an overall relation with BSAFs variation. Wildlife exposure to metal contamination may 

vary considerably  in species with an opportunistic feeding strategy as the barn owl (Taylor 

1994; Roulin 2002), for instance due to spatial and temporal variation in the availability of 

different prey items (Schipper et al. 2012). Prey availability can in turn be influenced by the 

hunting habitats (Tomé et al. 2011). Moreover, seasonal variations may also occur: in the 

Tagus basin, diet diversity in April–August is higher in terms of prey frequency (1.04) but 

lower in terms of biomass (0.10), meaning that barn owls hunt more types of prey during the 

period they are feeding their nestlings, but apparently select prey items with similar body 

size (Roque 2003). These factors could probably also affect Hg bioaccumulation, introducing 

temporal variation. A possible underestimate of local and perhaps discontinuous peaks in 

metal contamination may also have resulted from aggregation of spatial and temporal 

variation (Schipper et al. 2012). In order to understand potential relationships between diet, 

Hg concentrations in the predator, and their effects in bioaccumulation, further studies 

should be conducted, including (1) a larger sample size, (2) spatio-temporal variation in barn 

owl diet, and (3) a quantification of Hg concentrations in prey. 

4.5.3 Habitat-related effects in mercury bioaccumulation 

 Land uses that better explain variation in Hg concentrations in feathers and soil are 

permanently irrigated land (e.g. rice fields, corn fields) and heterogeneous agricultural areas 

(mosaic of small plots with annual crops, pasture and/or permanent crops), suggesting a 

relevant effect of irrigation and landscape structure in the processes affecting Hg 

distribution. Despite the similar relationship between both land uses and Hg in soil and 

feathers (increasing area occupied by each land use was associated with lower Hg 

concentrations), land uses do not affect BSAFs equally. Therefore, land use seems to 

influence the magnitude of bioaccumulation from Hg concentrations in soil to Hg 

concentrations in feathers. Permanently irrigated land did not produce an assessable 

outcome in BSAFs, suggesting that there is no obvious trend in Hg bioaccumulation from soil 
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to feathers in this land use. Although Hg concentrations in soil and feathers in permanently 

irrigated lands are lower than in other land uses, this apparently does not lead to Hg 

bioaccumulation below the average. The low contamination in permanently irrigated land is 

compatible, for instance, with this land use receiving lower load of Hg-containing agricultural 

inputs (including chemicals, bio-solids, manures and compost) and/or promoting a faster Hg 

elimination (e.g. by leaching, crop harvest, surface runoff and volatilization; Chang and Page 

2000). This outcome could seem unanticipated, since irrigation is a possible source of 

contamination (Ackerman and Eagles-Smith 2010). Moreover, intermittent wetting and 

drying of wetland habitats – including rice fields – is frequently associated with increased 

MeHg production and bioaccumulation (Hall et al. 2008; Ackerman et al. 2010). On the 

contrary, irrigation may result in the elimination of elemental Hg, when below the water 

saturation of soil surface. This could be caused by competition of the more polar water 

molecule with Hg for binding sites, which are desorbed from soil particles into soil gas and 

dissolved in the soil water. Then, the process of evaporation facilitates movement of Hg to 

the soil surface where it is subsequently released (Gustin and Stamenkovic 2005). In 

agreement, studies with invertebrates and fish suggested that inorganic Hg became 

methylated, concentrated, and transported in the direction of water flow in wetlands 

(Ackerman et al. 2010; Ackerman and Eagles-Smith 2010). This metal has a strong tendency 

to adsorb to soil complexes, increasing the probability of off-site contamination due to 

transportation to aquatic systems in surface water runoff and between water bodies in 

suspended solids (Matthews et al. 1995). Therefore, it is possible that permanently irrigated 

areas may instead be increasing off-site Hg contamination. Areas with higher proportion of 

permanently irrigated land were also hypothesised to be related with lower contamination 

with organochlorine compounds in the barn owl, because of a faster decontamination 

related with higher variation in soil mobilization and humidity patterns (I. Roque, R. 

Lourenço, A. Marques, E. Martínez-López, S. Espín, S.A. García-Fernández, J. Rabaça, A. 

Roulin unpublished data). Regarding the effects of this land use in Hg concentration in 

feathers, there are evidences that bioaccumulation pathways in wetlands are complex, 

underlining the importance of using several taxa at different trophic levels to examine MeHg 

bioaccumulation (Ackerman et al. 2010; Ackerman and Eagles-Smith 2010). One effect could 

be, for instance, the different bioaccumulation in specific prey types that may be in the base 
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of the barn owl food web, since Hg concentrations of different invertebrates collected at the 

same locations and time periods may not be correlated (Ackerman et al. 2010). 

 On the other hand, heterogeneous agricultural areas seem to increase 

bioaccumulation in barn owls. These systems are characterized by small-scale land use 

heterogeneity, with a mix of small parcels with diverse annual crops, pasture and/or 

permanent crops, including areas mainly occupied by agriculture, interspersed with natural 

areas (Néry 2007). At a wider scale, vegetation patterns are known to influence Hg retention 

in soil due to the binding of Hg with the functional groups of soil organic matter (Eagles-

Smith et al. 2016). Also Hg concentrations are largely influenced by plant productivity, driven 

by water availability (Obrist et al. 2016). Therefore, it is possible that similar processes 

influence Hg distribution at a smaller scale. Alike, we hypothesize that in a similar way that 

precipitation gradients and geomorphic variation create diverse landscapes with influence 

on terrestrial Hg pools (Eagles-Smith et al. 2016; Obrist et al. 2016), a similar smaller-scale 

process dependent on irrigation (as for rainfall deposition) and soil physical-chemical 

properties (as for geomorphic variation) could create small-scale patterns in soil Hg 

concentrations, with consequences in Hg bioaccumulation. How the resulting heterogeneous 

Hg distribution could influence BSAF is complex, since barn owls show lower Hg 

concentrations in territories with more heterogeneous agricultural areas but still there is an 

increasing effect in BSAF of this land use. This could possibly depend on the influence of 

small-scale landscape diversity in diet, influencing diet composition in barn owls by 

mediating prey abundance and availability. This suggests complex relations that are not 

explainable by univariate models. Further studies with larger sample size are needed in 

order to explore the effect of landscape diversity in Hg and relationships with 

bioaccumulation along the food web structure. The prospect of a complex pattern related 

with diet is also reinforced by the marginal influence of permanent crops in BSAF and in Hg 

concentrations in feathers, suggesting lower bioaccumulation in barn owl territories with a 

larger area with permanent cultures should be influenced by the food web (which in turn 

determines barn owl diet composition). 
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4.5.4 Effect of industrial emissions in mercury bioaccumulation 

 The absence of a relationship among industrial Hg emissions and BSAF and Hg 

concentrations in feathers is in agreement with the finding that biological mercury exposure 

is decoupled from inorganic mercury sources, highlighting the importance of local processes 

driving MeHg concentrations (Eagles-Smith et al. 2016), which is the key bioaccumulative 

form of Hg. Regarding Hg concentrations in soil, the absence of a pattern is possibly related 

with the sampling sites being too distant from the power plants to show a direct effect of 

their emissions. Enriched Hg contamination in soils has been reported within 15 km from 

coal-burning power plants (Rodríguez Martín and Nanos 2016). Our sampling sites have a 

mean minimum distance of 35.9 ± 26.0 km to the nearest power plant and only 8.7% are in 

the range of 15 km. Additionally, industrial sources of atmospheric Hg are also reported to 

cause increased concentrations in soils in the main wind direction (Biester et al. 2002). 

Higher soil contamination in the southernmost Sado-Guadiana basin is in accordance with an 

effect of atmospheric dispersion and long distance transport, since main wind direction is 

NW-S or NW-SE (Costa et al. 2006). Therefore, contamination in the area is likely to result 

from a cumulative effect of several industrial sources, which is agreeing with the absence of 

a clear spatial pattern. Most of our sampling sites are located in an wide area where 

airborne Hg concentrations – detected in lichens – range between 0.3 and 0.6 µg g-1 (Freitas 

1999), also supporting a broad regional-scale impact of industrial emissions.   

4.6 Conclusions 

 There is great variation in BSAFs in the barn owl, possibly linked with different 

agricultural land uses, apparently affected by factors influencing both Hg concentrations in 

soil and in feathers. Irrigated and heterogeneous agricultural areas, which are associated 

with lower soil and barn owl contamination, can possibly be used as proxy of lower Hg 

agricultural input and/or faster Hg decontamination (in case of permanently irrigated areas). 

Irrigated and heterogeneous agricultural areas, and permanent crops, associated with lower 

Hg contamination in feathers, should be further inspected for food web-related effects, 

because of potential variations in prey features: species-specific Hg bioaccumulation, 

diversity, abundance and/or accessibility. A specific land use may not affect BSAF and still 

produce effects in both concentrations in feathers and soil (i.e. show no obvious trend in Hg 
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bioaccumulation from soil to feathers). Therefore, as tools for interpreting the factors 

affecting bioaccumulation, BSAF should be analyzed together with Hg concentrations in 

biota and soil. Biota-soil accumulation factors in raptors seem to be useful indicators of 

contaminant dynamics in terrestrial systems, since they allow for raising specific hypothesis 

in terms of the environmental fate of contaminants like Hg. 
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5 Organochlorine pesticides in barn owl (Tyto alba) feathers and livers: 

matrix-related variation, spatial patterns and time trends 

5.1 Abstract 

 The organochlorine compounds (OC) include the most prevalent synthetic pesticides 

that have been historically used in agriculture and which are still detected in the 

environment decades after their restriction. Wildlife biomonitoring studies may help 

evaluating organochlorine pesticides (OCPs) exposure and associated effects. Since the barn 

owl (Tyto alba) is a widespread raptor associated with farmland where OCPs may be 

particularly prevalent, we used this species as a case-study to evaluate feathers as a non-      

-destructive biomonitoring tool translating OCPs in livers of raptors, and also to check 

possible relations with land uses. We measured the concentrations of 16 OCPs in 15 primary 

feathers and 15 livers from barn owl carcasses collected on roadsides in Tagus and Évora 

regions in south Portugal. Total OCPs mean concentration was 8 003 ng g-1 in feathers and 

178 ng g-1 in livers. All compounds were detected in feathers while in livers δ-HCH, 

endosulfan sulphate, DDT and DDD were not detected. The high β-HCH and heptachlor 

concentrations found in feathers (4 587 and 2 530 ng g-1, respectively) most likely derived 

from external contamination. The DDT metabolite DDE (45.4 ng g-1) was the OCP with the 

highest concentration in livers. Possibly there has been continuous contamination by lindane 

over the last 30 years, and an accentuated decrease in heptachlor epoxide, DDT and aldrin. 

However, both matrices suggested an exposure to recently released heptachlor, which may 

have an industrial source. In general, our results suggest a similar temporal use and dosage 

between areas. However, the absence of some OCPs in Tagus which are present in Évora and 

a trend for lower OCPs concentrations in the former, suggest that the Tagus area is in a more 

advanced stage of decontamination. This may be due to a faster OCPs degradation 

facilitated by a more intensive fluctuation of soil humidity in the Tagus area. Our results 

suggest the barn owl may be a good biomonitor of environmental contamination with OCPs. 

Feathers may be particularly suitable as biomonitoring tools to detect legacy environmental 

contaminants, because these may not accumulate in liver while still present in the 

environment in low concentrations. 
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5.2 Introduction 

 Persistent organic pollutants (POPs) are ubiquitous chemicals, highly resistant to 

degradation and susceptible to bioaccumulation, therefore representing a potential health 

risk to humans and wildlife (UNEP 2011). A particular group of POPs, the organochlorine 

compounds (OCs), includes the most prevalent synthetic pesticides that have been broadly 

used in agriculture in the second half of the 20th century (Barr and Needham 2002; Barr 

2008). These organochlorine pesticides (OCPs) can be classified in three groups: (1) 

dichlorodiphenyltrichloroethane (DDT) and related compounds, (2) cyclodiene insecticides 

(aldrin, dieldrin, endrin, heptachlor and endosulfan) and (3) isomers of 

hexachlorocyclohexane (HCH) (Mitra et al. 2011). The known impact of these substances on 

humans includes neurotoxic, endocrine disruptive and carcinogenic effects (Ritter et al. 

1995; Jaga and Dharmani 2003; Wasi et al. 2013). Despite OCPs concentrations detected in 

wildlife are infrequently considered to be a direct cause of death, these are often reported 

as a cause of immunosuppression, hormone disruption and disorder of the nervous and 

reproductive systems (Denneman and Douben 1993; Furness et al. 1993;  Martínez-López, 

2005). Moreover, the accumulation of OCPs residues in body fat reserves as a result of a long 

term exposure to low concentrations, is also of concern: under stressful conditions (e.g. 

migration, food shortage, etc.) resulting in a rapid depletion of fat reserves, OCPs residues 

are released into the bloodstream and mobilized to different organs such as the brain, 

where they may attain toxic levels and cause acute poisoning (Friend and Franson 1999). 

 Given their hazardous effects, OCPs were interdicted in developed countries and 

replaced by less persistent pesticides. In Portugal the use of OCPs was regulated for the first 

time in 1988 (Decree-Law 347/88), after agreement between the government and the 

pesticide companies restricting the trade of dieldrin, heptachlor and DDT in 1974, and of 

aldrin, endrin, hexachlorobenzene and toxaphene in 1986 (APA 2010). In concurrence with 

the European Directive 79/117/CEE nine OCPs were restricted by decree, including DDT, the 

‘drins’ (aldrin, dieldrin and endrin), heptachlor, and HCH (Ordinance 660/88). However, 

these substances are still detected decades after in the physical environment (Cerejeira et al. 

2003; Villaverde et al. 2008; Cardoso et al. 2009; Carvalho et al. 2009), in food products 

(Correia-Sá et al. 2013; Blasco et al. 2004), in wildlife (Antunes-Maderia and Maderia 1989; 

Antunes and Gil 2004; Mathias et al. 2007; Van den Steen et al. 2009; Guimarães et al. 2010) 
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and in humans (Ferreira et al. 1990; Cruz et al. 2003; Lino and da Silveira 2006; Lopes et al. 

2014).  

 Over the last 50 years, Portuguese agriculture has evolved from the free use of 

pesticides to the Integrated Pest Management (IPM), which became mandatory for 

professional agriculture with the latest reform of the Common Agricultural Policy (CAP) in 

2014 (Decree-Law 256/2009). Accordingly, the sale of OCPs decreased 99.5% between 2002 

and 2008 (Vieira 2004; DGADR 2009a; DGADR 2010a). Nevertheless, information related to 

the pesticides used in Portugal is not available, and assessment of environmental indicators 

to weigh up the effects of pesticides in the environment is lacking (Costa and Godinho 2012). 

 Wildlife biomonitoring studies are useful to assess spatial and temporal trends in 

concentrations of environmental chemicals and investigate related effects on populations: 

consequently, they can provide early warning of potential impacts in humans and protected 

wildlife species (van der Schalie et al. 1999; Burger and Gochfeld 2004; Reif 2011; Gómez-

Ramírez et al. 2014; Espín et al. 2016). Birds of prey are susceptible to contaminant 

bioaccumulation and biomagnification due to their position at the top of food chains, often 

with complex trophic links connecting aquatic and terrestrial ecosystems (van Drooge et al. 

2008; Mateo et al. 2012). As a result, measurable OCPs concentrations in tissue residues can 

be used to evaluate exposure and effects (Martínez-López et al. 2009; Gómez-Ramírez et al. 

2012; Gómez-Ramírez et al. 2014; Espín et al. 2016). A widespread and common resident 

species, the barn owl (Tyto alba), can often be associated with man-made structures and is 

known for its fidelity to nest sites (Taylor 1994, BOT 2012, Dreiss and Roulin 2014), allowing 

for monitoring the same territories for long time periods using minimally invasive methods 

(e.g. feathers, blood). Moreover, a great number of carcasses can be collected on road sides 

(Massemin and Zorn 1998; Silva et al. 2008), also allowing for access to internal tissues that 

otherwise would be unattainable for ethical and legal reasons. The barn owl therefore meets 

the characteristics for a sentinel species, as required by the National Research Council 

(1991). 

As an opportunistic meso-predator that hunts in open farmland (Bunn et al. 1982; Roulin 

2002), the species is most likely associated with contamination from agricultural source, 

which includes OCPs. Concentrations of these contaminants in feathers and internal tissues 
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can be affected by several factors (see García-Fernández et al. 2013) and there are 

ambiguous evidences in literature documenting strong (Jaspers et al. 2007a; Eulaers et al. 

2011; Jaspers et al. 2011; Rajaei et al. 2011) and low significant correlations (Dauwe et al. 

2005; Jaspers et al. 2007b; Jaspers et al. 2009; Espín et al. 2010a; Espín et al. 2014) between 

OCPs levels in feathers and internal tissues. OCPs bind to keratin structure during the feather 

growth period, after which vascular connections undergo atrophy and compound 

concentrations remain stable (García-Fernández et al. 2013). Since feathers reflect blood 

concentrations at the time of feather formation, the time elapsed until sampling should be 

considered when interpreting concentrations, particularly in comparisons with internal 

tissues (Espín et al. 2012; García-Fernández et al. 2013). Given the lipophilic nature of OCPs, 

the highest internal concentrations of these contaminants are expected to be found in 

adipose tissue, followed by liver and muscle (García-Fernández et al. 2013). For this reason, 

concentrations are often higher in internal tissues than in feathers (Espín et al. 2010a; 

Jaspers et al. 2011; Rajaei et al. 2011). However, less persistent compounds that are more 

easily metabolized may be found at lower concentrations in fat or liver and in higher levels in 

the bloodstream for a limited time, due to lipid mobilization (García-Fernández et al. 2013). 

If this temporary shift occurs during feather formation, feathers can show proportionally 

higher concentrations than internal tissues (Dauwe et al. 2005; Jaspers et al. 2007b; Rajaei et 

al. 2011). Additionally, concentrations in feathers may also be affected by external 

contamination, which is a topic in need of further research (Espin et al. 2014).  

 Considering the easy access to barn owl feather and internal tissue samples, the lack 

of clear information in the literature on the relationship between contaminant 

concentrations in those matrices, and the diversity of agricultural land uses in central and 

south Portugal, we conducted a study aiming to: (1) evaluate feathers as a non-destructive 

biomonitoring tool comparing OCPs concentrations with those measured in livers; (2) check 

differences in OCPs accordingly in two distinct regions in Portugal; and (3) evaluate the 

suitability of the barn owl, a widespread raptor associated with agricultural uses, as a 

biomonitor for OCPs. 
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5.3 Methods 

5.3.1 Study areas  

 Samples were collected along roads in two areas in central Portugal with different 

farmland uses: lower Tagus River (hereafter Tagus; 38°56’N–8°55’W) and Évora (38°33’N–

7°54’W), with a mean distance of 82 km. The climate is Mediterranean, with rains 

concentrated in winter, and characterized by hot dry summers and mild winters. Landscape 

is mostly plain or undulating. The Tagus area encloses the left margin of the Tagus River in 

the vicinity of its estuary, located in the metropolitan area of Lisbon. Based on the land uses 

of CORINE Land Cover 2006 (European Environment Agency 2007), farmland and forest uses 

roughly allocate half of the area each, both in Tagus and Évora (farmland: 47% in Tagus and 

46% in Évora; forest: 43% in Tagus and 40% in Évora). In Tagus, dominant land use is 

production forests (32%), followed by complex cultivation patterns (15%) and irrigated lands, 

including rice fields (13%). Vineyards and olive groves occupy ca. 12% of the area. In Évora, 

dominant land use is non-irrigated arable land (34%) followed by agro-forestry areas (29%). 

Here, production forests also occupy ca. 18% of the area.  

5.3.2 Collection of samples 

 Barn owl feathers and livers were collected from 15 road-killed birds found on 

roadsides between 2009 and 2012. Six individuals were found in the Tagus area and nine in 

Évora. According with plumage moult (Martínez et al. 2002) sample owls were one (n = 2), 

two (n = 6) and three years old (n = 3). A primary feather was randomly plucked from each 

bird, resulting in 15 samples with different positions in the wing. Liver was excised from each 

owl. Feather and liver samples were stored in individual transparent plastic bags and in 

aluminium foil, respectively, and kept frozen at -20°C until analysis.  

5.3.4 Organochlorine analysis 

 Primary feather and liver samples were analysed for 16 OCPs: four HCH isomers (α-    

-HCH, β-HCH, γ-HCH – or lindane – and δ-HCH), three endosulfan related compounds 

(endosulfan I, endosulfan II and endosulfan sulphate), four ‘drins’ (aldrin, dieldrin, endrin 

and endrin aldehyde), three DDT related compounds (p,p’-DDT, p,p’-DDD and p,p’-DDE) and 
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two heptachlor related compounds (heptachlor and heptachlor-epoxide). The analytical 

procedures were based on the method described by Espín et al. (2010b; 2012) for feathers 

and Espín et al. (2010a) for liver samples. In order to remove external contamination from 

the feather surface, prior to the analytical determination, a brief washing process was 

performed with tap water, distilled water and Milli-Q water, and two pairs of tweezers were 

used to separate the barbs of the vane. Identification and quantification was based on an 

external standard (EPA Pesticide Mix 48858, Supelco, USA), and methoxychlor (1 mg mL-1) 

supplied by PolyScience® was used as an internal standard. In order to compare results and 

check the repeatability in the chromatograms a volume of 10 µL of methoxychlor was added 

to samples and standards. Spiked samples mean recoveries ranged from 46% to 146% 

depending on the compound and matrix. Detection limits ranged from 0.03 to 0.54 ng g-1. 

OCPc concentrations were expressed as ng g-1. 

5.3.5 Statistical analysis  

 Reported OCPs values represent the mean concentration ± standard deviation, 

median and range, and frequency of detection. Total concentrations of OCPs groups (ΣOCP) 

were calculated as the sum of individual compound concentrations: DDT and metabolites 

(ΣDDT) corresponded to the sum of p,p´-DDE, p,p´-DDD and p,p´-DDT; 

hexaclorocyclohexanes (ΣHCH) incorporated α, β, δ and γ-isomers; heptachlor group 

(ΣHeptachlor) included heptachlor and its epoxide; ΣDrins represented the sum of endrin, 

aldrin and dieldrin; and ΣEndosulfan included endosulfan I and II. The percentage of 

individual compound concentrations in their group was also calculated for feathers and 

livers. 

 Since our data were not normally distributed even following several transformation 

trials, the non-parametric paired samples Wilcoxon test was used in order to detect 

differences between sampling matrices and Spearman correlations between feather and 

liver concentrations were also performed. The Mann–Whitney test was used in order to 

detect differences between areas in both feather and liver concentrations. The level of 

significance (two tailed) for these tests was set at p<0.05. All statistical analyses were 

conducted using R software 3.1.1 (R Core Team 2014). 
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5.4 Results  

5.4.1 General outline in organochlorine pesticides concentrations in barn owls 

 All the monitored OCPs were detected in barn owl samples: the 16 compounds were 

detected in feathers while in livers four OCPs were not detected (δ-HCH, endosulfan 

sulphate, DDT and DDD, Table 5.1). Total OCPs mean concentration was 8 120 ± 6 432 ng g-1 

in feathers and 178 ± 112 ng g-1 in livers (Table 5.1). ƩHCH and ƩHeptachlor were measured 

in feathers in particularly high concentrations when compared to the other OCP groups (5 

274 ± 4 484 ng g-1 and 2 555 ± 2 439 ng g-1, respectively, Table 5.1), representing together 

96% of the ƩOCP in feathers. This difference was not observed in livers, in which ƩHCH (30%), 

ƩDrins (26%) and ƩDDT (26%) represented a similar burden (Table 5.1). 

 First year barn owls showed significantly higher mean concentrations of heptachlor 

epoxide than second year birds both in livers (1.22 ± 1.16 ng g-1 and 0.093 ± 0.246 ng g-1, 

respectively; w = 36; p = 0.024; N = 15) and un-moulted feathers (40.1 ± 39.0 ng g-1and 9.13 

± 9.81 ng g-1, respectively; w = 36; p = 0.037; N = 13 – two moulted feathers were excluded 

from this test). 

 

Table 5.1 Concentrations of organochlorine pesticides (ng g
-1

) in livers (wet weight) and feathers (dry weight) of 

barn owls from Portugal in 2009-2012. Values are presented as mean ± standard deviation, median and range, 

and frequency of detection (%). Paired sample Wilcoxon test results on differences in concentration of 

organochlorine pesticides between matrices and Spearman correlations are also presented 

 

Organochlorine Feathers (n=15) Livers (n=15) Wilcoxon  Spearman 

     

α-HCH 121 ± 95.1 

81.7 [29.3–398] 

100 

3.90 ± 7.48 

1.37 [nd–30.1] 

87 

v = 0 

p < 0.001  

 = -0.084 

p = 0.766 

 

     

β-HCH 4 587 ± 4 375 

2 882 [1 076–18 693] 

100 

15.3 ± 33.0 

nd [nd–109] 

27 

v = 0 

p < 0.001  

 = 0.073 

p = 0.795 
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Table 5.1 Concentrations of organochlorine pesticides (ng g
-1

) in livers (wet weight) and feathers (dry weight) of 

barn owls from Portugal in 2009-2012. Values are presented as mean ± standard deviation, median and range, 

and frequency of detection (%). Paired sample Wilcoxon test results on differences in concentration of 

organochlorine pesticides between matrices and Spearman correlations are also presented (continued I) 

 

Organochlorine Feathers (n=15) Livers (n=15) Wilcoxon  Spearman 

     

δ-HCH 501 ± 423 

339 [76.8–1679] 

100 

nd 

 

v = 0 

p < 0.001  

- 

 

     

Lindane 64.2 ± 58.7 

37.0 [8.34–222] 

100 

33.3 ± 56.5 

9.45 [3.65–230] 

100 

v = 33 

p = 0.135 

 = -0.018 

p = 0.954 

 

     

Heptachlor 2 531 ± 2 417 

1 268 [177–7 854] 

100 

20.2 ± 29.3 

4.41 [nd–75.0] 

80 

v = 0 

p < 0.001 

 = 0.272 

p = 0.326 

 

     

Heptachlor epoxide 24.2 ± 29.5 

11.8 [nd–93.0] 

73 

0.61 ± 0.89 

nd [nd–2.98] 

47 

v = 0 

p = 0.004 

 = 0.719 

p = 0.002 

 

     

Aldrin 28.2 ± 46.4 

11.6 [nd–189] 

67 

0.12 ± 0.46 

nd [nd–1.86] 

7 

v = 0 

p = 0.006 

 = 0.441 

p = 0.100 

 

     

Dieldrin 16.1 ± 28.0 

4.70 [nd–93.9] 

60 

16.9 ± 46.6 

2.88 [nd–189] 

67 

v = 39 

p = 0.414 

 = -0.015 

p = 0.978 

 

     

Endrin 128 ± 475 

nd [nd–1 907] 

13 

12.8 ± 35.2 

nd [nd–137] 

33 

v = 17 

p = 0.673 

 = -0.270 

p = 0.331 

 

     

Endrin aldehyde 15.6 ± 58.4 

nd [nd–234] 

7 

16.6 ± 33.5 

nd [nd–116] 

27 

v = 10 

p = 0.590 

 = -0.159 

p = 0.572 
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Table 5.1 Concentrations of organochlorine pesticides (ng g
-1

) in livers (wet weight) and feathers (dry weight) of 

barn owls from Portugal in 2009-2012. Values are presented as mean ± standard deviation, median and range, 

and frequency of detection (%). Paired sample Wilcoxon test results on differences in concentration of 

organochlorine pesticides between matrices and Spearman correlations are also presented (continued II) 

 

Organochlorine Feathers (n=15) Livers (n=15) Wilcoxon  Spearman 

     

Endosulfan I 10.5 ± 26.8 

nd [nd–82.2] 

13 

12.3 ± 19.2 

3.78 [nd–64.4] 

53 

v = 29 

p = 0.477 

 = 0.076 

p = 0.787 

 

     

Endosulfan II 32.3 ± 58.8 

nd [nd–220] 

47 

0.53 ± 1.07 

nd [nd–3.99] 

27 

v = 3 

p = 0.024 

 = -0.067 

p = 0.812 

 

     

Endosulfan  sulphate 7.45 ± 10.8 

nd [nd–29.9] 

40 

nd v = 0 

p = 0.036 

- 

 

     

p.p’-DDT 45.9 ± 66.9 

nd [nd–231] 

47 

nd 

 

v = 0 

p = 0.022 

- 

 

     

p.p’-DDD 0.78 

nd [nd–11.7] 

7 

nd v = 0 

p = 1 

- 

 

     

p.p’-DDE 6.43 ± 16.1 

nd [nd–64.1] 

33 

45.4 ± 48.7 

25.4 [1.93–162] 

100 

v = 107 

p = 0.005 

 = 0 

p = 1 

 

     

Σ HCH 5 274 ± 4 484 

3 476 [1 219–

19 430] 

100 

52.5 ± 59.2 

31.2 [6.30–231] 

100 

v = 0 

p < 0.001 

 = -0.107 

p = 0.705 
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Table 5.1 Concentrations of organochlorine pesticides (ng g
-1

) in livers (wet weight) and feathers (dry weight) of 

barn owls from Portugal in 2009-2012. Values are presented as mean ± standard deviation, median and range, 

and frequency of detection (%). Paired sample Wilcoxon test results on differences in concentration of 

organochlorine pesticides between matrices and Spearman correlations are also presented (continued III) 

 

Organochlorine Feathers (n=15) Livers (n=15) Wilcoxon  Spearman 

     

Σ DDT 53.2 ± 73.3 

8.26 [nd–247] 

67   

45.4 ± 48.7 

25.4 [1.93–162] 

100 

v = 56 

p = 0.85 

 = 0.011 

p = 0.969 

 

     

Σ Drins 188±490 

22.6 [nd–2 001] 

87 

46.4±82.6 

10.1 [nd–328] 

80 

v = 47 

p = 0.49 

Rho=-0.118 

P=0.674 

 

     

Σ Endosulfan 50.3 ± 85. 

23.0 [nd–324.9] 

53 

1 289 ± 20.0 

3.78 [nd–68.4] 

53 

v = 16 

p = 0.14 

 = -0.111 

p = 0.693 

 

     

Σ Heptachlor 2 555±2 525 

1 268 [189–7 940] 

100 

20.8±29.0 

4.65 [nd–75.0] 

93 

v = 0 

p < 0.001 

 = 0.371 

p = 0.174 

 

     

Σ OCPs 8 120 ± 6 432 

5 508 [1 605–

27 424] 

100 

178 ± 112 

192 [22.0–448] 

100 

v = 0 

p < 0.001 

 = -0.179 

p = 0.524 

 

 

5.4.2 Differences in organochlorine pesticides contamination between barn 

owl feathers and livers 

 The compounds with the highest mean concentration in feathers were β-HCH (4 587 

± 4 375 ng g-1) and heptachlor (2 531 ± 2 417 ng g-1; Fig. 5.1 A, Table 5.1), while DDE (45.4 ± 

48.7 ng g-1) was the compound with the highest mean concentration in liver (Fig. 5.1 B, Table 

5.1). The four HCH isomers and heptachlor were the most frequently detected compounds in 

feather samples (all individuals), and lindane (i.e. γ-HCH), α-HCH, DDE and heptachlor were 
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the most frequently detected in liver samples (80–100%, Table 5.1). The least prevalent 

family of compounds was endosulfan, detected in ca. half of the samples, both in livers and 

feathers (Table 5.1). Mean ƩOCP concentration was 46 times superior in feathers than in 

liver and median ƩOCP concentration was 29 times higher in feathers than in livers. 

Nevertheless, the concentrations of six compounds were similar in both matrices:  lindane, 

dieldrin, endrin, endrin aldehide, endosulfan I and DDD (Table 5.1). Significant positive 

correlation between feather and liver concentrations were found only for heptachlor 

epoxide ( = 0.719; p = 0.002; Table 5.1). While β-HCH represents the highest percentage 

among the ƩHCH in feathers (87%), lindane is the isomer most accumulated in liver (64%; 

Fig. 5.2). Heptachlor represents 97–99% of its family in feathers and livers, while its epoxide 

represents only 1–3% (Fig. 5.2). Among ƩDrins, endrin is the most represented in feathers 

(68%), followed by aldrin (15%), while in livers dieldrin (37%) and endrin aldehide (36%) 

prevail over endrin (28%; Fig. 5.2). Endosulfan II is the most abundant compound of its 

family in feathers (64%) while in livers endosulfan I (96%) is the most represented (Fig. 5.2). 

Among ƩDDT, DDT has the highest percentage in feathers (86%) while DDE prevails in liver 

(100%; Fig. 5.2). 

5.4.3 Organochlorine pesticides contamination in the two study areas 

 The compounds with the greatest mean concentration in feathers were the same in 

Évora and Tagus: β-HCH (3 873 ± 2 940 ng g-1 and 5 658 ± 6 426 ng g-1, respectively; Table 

5.2) and heptachlor (2 831 ± 2 383 ng g-1 and 2 081 ± 2 835 ng g-1, respectively). In livers, the 

compound with the greatest mean concentration in both areas was DDE (49.3 ± 55.6 ng g-1 

and 39.5 ± 45.8 ng g-1, respectively in Évora and Tagus). The compound with the second 

greatest concentration differed between areas: lindane in Évora (47.9 ± 72.7 ng g-1) and 

endrin aldehyde in Tagus (29.3 ± 45.6 ng g-1). Five compounds were found in samples from 

Évora but not in Tagus: four compounds in feathers (endosulfan I, endrin and endrin 

aldehyde and DDD), and one in livers (aldrin) (Table 5.2). The four HCH isomers and 

heptachlor were the most frequently detected compounds in feather samples from both 

areas (in all individuals, except α-HCH; Table 5.2). Lindane was detected in all liver samples 

from both areas, but in Tagus dieldrin had also 100% frequency of detection while in Évora 

its prevalence was 44% (Table 5.2). There was a general trend for mean OCPs concentrations 

to be higher in Évora, except for β-HCH in feathers and livers, and heptachlor epoxide and 
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endrin aldehyde in livers. However, none of the isolated OCP mean concentrations differed 

significantly between study areas, ƩDrins in feathers was significantly higher in Évora than in 

Tagus (Table 5.2).   

 

Figure 5.1 Concentration (ng g
-1

) of 15 organochlorine pesticides (OCPs) in barn owl primary feathers (A) and 

livers (B). Box and whisker plots show the median, 25% quartiles and range 

 

 

A 

B 
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Figure 5.2 Relative concentrations of 15 organochlorine pesticides (OCPs) expressed as percentage of total 

concentrations of OCPs groups (ΣHCH, ΣHeptachlor, ΣDrins, ΣEndosulfan and ΣDDT) in barn owl primary 

feathers and livers from Portugal in 2009–2012 

 

 

Table 5.2 Concentrations of organochlorine pesticides (ng g
-1

) in feathers (dry weight) and livers (wet weight) of 

barn owls from Évora and Tagus (Portugal) in 2009-2012. Values are presented as mean ± standard deviation, 

median, range and frequency of detection (%). Mann-Whitney test results on differences in concentrations of 

organochlorine pesticides between areas are also presented 

 

Organochlorine Feathers (n = 15) Livers (n = 15) 

 Évora (n = 9) Tejo (n = 6) Évora (n = 9) Tejo (n = 6) 

α-HCH 

124 ± 114 

72.3 [29.3–398] 

100 

117 ± 78.7 

91.6 [56.0–273] 

100 

6.02 ± 9.60 

1.81 [nd–30.1] 

89 

0.72 ± 0.60 

0.76 [nd–1.49] 

83   

w = 24; p = 0.78  w = 43.5; p = 0.06 

β-HCH 

3 873 ± 2 940 

2 838 [1 076–9 877] 

100 

5 658 ± 6 426 

2 997 [2 265–18 693] 

100 

14.4 ± 36.1 

nd [nd–109] 

22 

16.6 ± 34.5 

nd [nd–86.2] 

33 

w = 21; p = 0.53 w = 25; p = 0.82 
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Table 5.2 Concentrations of organochlorine pesticides (ng g
-1

) in feathers (dry weight) and livers (wet weight) of 

barn owls from Évora and Tagus (Portugal) in 2009-2012. Values are presented as mean ± standard deviation, 

median, range and frequency of detection (%). Mann-Whitney test results on differences in concentrations of 

organochlorine pesticides between areas are also presented (continued I) 

 

Organochlorine Feathers (n = 15) Livers (n = 15) 

 Évora (n = 9) Tejo (n = 6) Évora (n = 9) Tejo (n = 6) 

δ-HCH 

620 ± 531 

482 [96.0–1 679] 

100 

324 ± 148 

333 [76.8–483] 

100 

nd 

nd 

0 

nd 

nd 

0 

w = 35; p = 0.39 - 

 Lindane 

69.3 ± 66.9 

44.0 [8.34–222] 

100 

56.7 ± 55.4 

27.1 [13.7–130] 

100 

47.9 ± 72.7 

11.14 [7.31–230] 

100 

11.5 ± 12.1 

7.56 [3.65–35.7] 

100  

w = 31; p = 0.69 w = 43; p = 0.07 

Heptachlor 

2 830 ± 2 383 

1 743 [177–6 963] 

100 

2 081 ± 2 835 

1 008 [720–7 854] 

100 

25.8 ± 34.7 

4.65 [nd–75.0] 

78 

11.9 ± 22.9 

3.04 [nd–58.4] 

83 

w = 37 p = 0.27 w = 34;  p =0.44 

Heptachlor 

epoxide 

25.8 ± 31.1 

11.8 [nd–93.0] 

78 

21.9 ± 32.5 

11.9 [nd–86.0] 

67 

0.57 ± 0.80 

nd [nd–2.12] 

44 

0.67 ± 1.16 

0.20 [nd–2.98] 

50 

w = 29; p = 0.86 w = 26.5 p = 1.0 

Aldrin 

39.3 ± 58.6 

18.3 [nd–189] 

78  

11.6 ± 20.6 

3.28 [nd–52.6] 

50 

0.21 ± 0.62 

nd [nd–1.86] 

11 

nd 

nd 

0 

w = 30; p = 0.17 w = 30; p = 0.50 

Dieldrin 

23.5 ± 35.7 

7.12 [nd–93.9] 

78 

5.03 ± 8.03 

nd [nd–18.2] 

33 

22.6 ± 62.6 

nd [nd–189] 

44 

8.41 ± 10.1 

3.87 [1.66–28.1] 

100 

w = 37; p = 0.25 w = 14; p = 0.13 

Endrin 

213 ± 635 

nd [ nd–1 907] 

22   

nd 

nd 

0 

20.8 ± 46.3 

nd [nd–137] 

33 

0.63 ± 1.02 

nd [nd–2.32] 

33 

w = 32; p = 0.27 w = 30; p = 0.73 
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Table 5.2 Concentrations of organochlorine pesticides (ng g
-1

) in feathers (dry weight) and livers (wet weight) of 

barn owls from Évora and Tagus (Portugal) in 2009-2012. Values are presented as mean ± standard deviation, 

median, range and frequency of detection (%). Mann-Whitney test results on differences in concentrations of 

organochlorine pesticides between areas are also presented (continued II) 

 

Organochlorine Feathers (n = 15) Livers (n = 15) 

 Évora (n = 9) Tejo (n = 6) Évora (n = 9) Tejo (n = 6) 

Endrin aldehyde 

26.0 ± 78.0 

nd [nd–234] 

11 

nd 

nd 

0 

8.16 ± 24.5 

nd [nd–73.4] 

11 

29.3 ± 45.6 

8.73 [nd–116] 

50 

w = 30; p = 0.50 w = 17; p = 0.15 

Endosulfan I 

17.5 ± 34.8 

nd [nd–82.2] 

22 

nd 

nd 

0 

16.1 ± 25.0 

nd [nd–64.4] 

44 

6.54 ± 6.78 

5.40 [nd–17.3] 

67 

w = 33; p = 0.27 w = 26; p = 0.95 

Endosulfan II 

34.7 ± 73.7 

nd [nd–220] 

44 

28.7 ± 40.7 

7.74 [nd–97.0] 

50 

0.62 ± 1.37 

nd [nd–3.99] 

22 

0.39 ± 0.64 

nd [nd–1.50] 

33 

w = 24.5; p = 0.80 w = 26; p = 0.94 

Endosulfan  

sulphate 

10.5 ± 13.3 

nd [nd–29.9] 

44 

2.89 ± 5.18 

nd [nd–12.8] 

50  

nd 

nd 

0 

nd 

nd 

0 

w = 34; p = 0.39 w = 26; p = 0.94 

p.p’-DDT 

71.7 ± 79.9 

81.5 [nd–231] 

56 

7.26 ± 14.1 

nd [nd–35.3] 

33 

nd 

nd 

0 

nd 

nd 

0 

w = 38; p = 0.18 - 

p.p’-DDD 

1.30 ± 3.91 

nd [nd–11.7] 

11 

nd 

nd 

0 

nd 

nd 

0 

nd 

nd 

0 

w = 30 p = 0.50 - 

p.p’-DDE 

10.2 ± 21.0 

nd [nd – 64.1] 

44 

0.79 ± 1.94 

nd [nd–4.74] 

17 

49.3 ± 55.6 

34.1 [1.93–162] 

100 

39.53 ± 45.78 

19.71 [2.615–123.6] 

100 

w = 35.5; p = 0.26 w = 3; p = 0.69 
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Table 5.2 Concentrations of organochlorine pesticides (ng g
-1

) in feathers (dry weight) and livers (wet weight) of 

barn owls from Évora and Tagus (Portugal) in 2009-2012. Values are presented as mean ± standard deviation, 

median, range and frequency of detection (%). Mann-Whitney test results on differences in concentrations of 

organochlorine pesticides between areas are also presented (continued III) 

 

Organochlorine Feathers (n = 15) Livers (n = 15) 

 Évora (n = 9) Tejo (n = 6) Évora (n = 9) Tejo (n = 6) 

Σ HCH 

4 685 ± 3 160 

3 022 [1 219–10 

808] 

100 

6 156 ± 6 541 

3 571 [2 600–19 430] 

100 

68.3 ± 71.4 

39.4 [8.69–231] 

100 

28.8 ± 35.2 

13.4 [6.30–97.1] 

100 

w = 23.5; p = 0.69 w = 40.5; p = 0.14 

Σ DDT 

83.2 ± 86.1 

81.5 [nd–247] 

78 

8.05 ± 13.8 

2.37 [nd–35.3] 

50 

49.3 ± 55.6 

34.1 [1.93–162] 

100 

39.5 ± 45.8 

 19.7[2.62–124] 

100 

w = 41; p = 0.11 w = 31; p = 0.96 

Σ Drins 

302 ± 643 

52.7 [11.6–2 001] 

100 

16.7 ± 24.5 

8.55 [nd–64.6] 

67 

51.8 ± 108 

2.84 [nd–328] 

67 

38.4 ± 42.4 

25.1 [3.14–119] 

100 

w = 47; p = 0.02* w = 16; p = 0.21 

Σ Endosulfan 

62.7 ± 106 

23.0 [nd–325] 

56 

31.6 ± 40.9 

14.1 [nd–97.0] 

50 

16.7 ± 26.0 

nd [nd–68.4] 

44 

6.93 ± 6.95 

6.15 [nd–17.3] 

67 

w = 29; p = 0.85 w = 26; p = 0.95 

Σ Heptachlor 

2 857 ± 2 401 

1 751 [189–7 056] 

100 

2 103 ± 2 866 

1 015 [720–7 940] 

100 

26.3 ± 34.2 

4.65 [nd–75.0] 

89 

12.6 ± 22.6 

3.72 [0.65–58.4] 

100 

w = 37; p = 0.27 w = 32; p = 0.61 

Σ OCPs 

7 990 ± 4 743 

6 272 [1 605–15 

541] 

100 

8 315 ± 9 382 

4 609 [3 858–27 424] 

100 

212 ± 121 

209 [22.0–448] 

100 

126 ± 95.0 

125 [23.3–246] 

100 

w = 34; p = 0.46 w = 39; p = 0.18 
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5.5 Discussion  

5.5.1 Organochlorine pesticides in feathers and livers of Portuguese barn owls 

 Two contaminants are of special concern in our study: β-HCH and heptachlor (4 587 

ng g-1 and 2 530 ng g-1, respectively, in feathers). Their concentrations were approximately 

twofold the maximum concentrations reported to date in raptor feathers (2 250 ng g-1 and 1 

450 ng g-1, respectively, in Argentinean scavengers;  Martínez-López et al. 2015). When 

compared with other European raptors, our results suggest a very high exposure of 

Portuguese barn owls to ƩHCH (5 274 ng g-1) and heptachlor: mean concentrations in 

feathers were 19.8 and 9.6 times higher than the maximum value reported to date in this 

continent, respectively (ƩHCHmax = 266 ng g-1 in western marsh harrier (Circus aeruginosus) 

feathers from Greece; heptachlormax = 263 ng g-1 in European honey buzzard (Pernis 

apivorus) from Spain; van Drooge et al. 2008; Hela et al. 2006). Comparisons between HCH 

and heptachlor concentrations in feathers and liver are scarce. In Spanish razorbills (Alca 

torda) the ratio feather:liver of mean ƩHCH and ƩHeptachlor concentrations was 

approximately two (Espín et al. 2010, 2012). However, in Portuguese barn owl the ratio is 

100 for ƩHCH and 123 for ƩHeptachlor, suggesting a possible effect of external 

contamination on feathers by these compounds. Differences in exposure and accumulation 

between barn owl and razorbill are possible due to differences in their ecology (e.g. diet, 

migratory behaviour, habitat, moult pattern; García-Fernández et al. 2013) and/or 

metabolization capacity (Dybing et al. 2002). However, we considered this extreme variation 

as an argument for further exploration on the possible effect of external contamination on 

the concentration measured in feathers. Unwashed feathers may show higher 

concentrations of certain compounds (i.e. lindane, heptachlor epoxide, DDE, endrin and 

endrin aldehyde) than washed feathers, suggesting that external contamination may affect 

the OCPs levels found in feathers (Espín et al. 2010). The washing techniques tested to date 

may not be effective in removing all external contamination by organic compounds  (Espín et 

al. 2016). 

 Interpreting feather concentrations is complex because of the potential effect of 

external contamination, which is closely related with the moult strategy. Barn owls have a 

complex moult, replacing only 1-2 flight feathers in some years (Martínez et al. 2002; Hardey 
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et al. 2006). This protracted moult increases inter-feather variability because of age 

differences and its associated external contamination (Espín et al. 2016). All but two of the 

feathers we analyzed were first grown primaries, thus indicating contamination levels of 

individuals as nestlings, in the natal territory. Accordingly, feather samples in our study 

reflect mostly the exposure during growth as fledglings (1–2 months old), plus the potential 

external contamination. In contrast, liver concentrations reflect recent dietary exposure 

(Espín et al., 2016), in this case at the moment of death (3–36 months old). Therefore, the 

interval between feather growth (and associated deposition of pollutant in the feather) and 

collection of liver samples may sometimes be considerably large. During this period, post 

feather-growth changes in diet, spatial displacements (from nest sites to dispersal areas), 

and/or fat mobilization may alter liver OCPs concentrations. This may explain why we mostly 

found no correlation between concentrations in feathers and livers (a single positive 

significant correlation was found between feathers and livers for heptachlor epoxide). 

Therefore, the time elapsed between feather growth and the date of internal tissue 

sampling, seem to affect the associations between OCPs concentrations in feathers and 

internal tissues. 

 External contamination, which interferes with feather–liver correlations, has two 

main sources: (1) it can result from atmospheric deposition (i.e. exogenous) on feathers; and 

(2) it can have origin in preen gland oil (i.e. endogenous), which birds spread on feathers. In 

this last case it may improve correlations, since a part of the external contamination 

depends on internal concentrations (Jaspers et al. 2008; García-Fernández et al. 2013). The 

positive significant correlation we found  in heptachlor epoxide concentrations between 

feathers and livers, may suggest no effect of external contamination in this OCP. Still, this 

correlation may be just a consequence of a parallel negative trend with age in feather and 

liver OCPs concentrations, rather than having a direct relation between matrices. In addition, 

as heptachlor epoxide is the main metabolite of heptachlor and is more stable than the 

parent compound (Xiao et al. 2011; Purnomo et al. 2013), it may not decrease with age. 

  At least two factors may reduce OCPs concentrations along time, thus explaining 

differences between barn owl un-moulted feathers. The first is mechanical abrasion and 

washing, which may alter feather structure (e.g. reduction in feather surface and pigment 

fade; Figuerola and Senar 2005; Surmacki et al. 2011; Flinks and Salewski 2012), and 
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consequently cause a noticeable decrease in OCPs concentration. The second explanation is 

a depletion of surface OCPs with bathing. Despite bathing is rarely observed in wild barn 

owls, it is frequent in captive owls (Bunn et al. 1982), and it is also considered to be the 

major cause of drowning (Shawyer 1987; Barn Owl Trust 2012). Bathing is more likely to 

reduce OCPs concentrations originated by external contamination associated with airborne 

particles and dust deposited in feather surface, as these can be more easily washed away 

with water than preen gland oil (Jaspers et al. 2008). 

  Within the HCH compounds, β-HCH was the dominant isomer in feathers while 

lindane had the highest concentration of the group in livers. Moreover, lindane 

concentrations were similar in feathers and livers, suggesting that being a polar compound 

did not facilitate its deposition during feather formation, as reported in literature (Espín et 

al. 2012; García-Fernández et al. 2013). Lindane was also the most common compound 

detected in river sediments in Portugal, with maximum levels near our study area (Villaverde 

et al. 2008; Carvalho et al. 2009). Although we found no comparable data for environmental 

concentrations of β-HCH, lindane showed greater concentrations than β-HCH in small 

mammals – the main prey of barn owls – from Central Portugal (Mathias et al. 2007). 

Therefore, the high concentrations of the β-isomer in feathers may have derived from 

external contamination. 

 The low concentrations of heptachlor epoxide in Portuguese barn owl feathers and 

livers compared with the parent compound could result from exposure to recently released 

heptachlor, and/or from a poor ability of the species to metabolize it. The decreasing trend 

with age could give some support to the second, if resulting from interferences in the 

mechanism of heptachlor epoxidation, occurring at hepatic microsomal epoxidases (Gillett 

and Chan 1968).  The mechanism is common to other cyclodiene insecticides (e.g. 

conversion of aldrin and isodrin in their epoxides – dieldrin and endrin, respectively; Gillett 

and Chan 1968). Therefore, the decrease with age in endrin and dieldrin concentrations, and 

the concurrent increase in heptachlor could possibly be explained by the interaction 

between different products and substrates. Other mechanisms could also affect microsomal 

peroxidases producing a decrease in heptachlor epoxide with age (e.g. increase in lipid 

peroxidation with age; Oropesa et al. 2013), therefore the interpretation of its 

concentrations is difficult in the light of present knowledge. 



Organochlorine pesticides in barn owl feathers and livers 

113 
 

 The interpretation of matrix- and age-related differences in contaminants in low 

concentrations requires caution, as these may be subjected to concentration-dependent 

effects. When a contaminant is present in low concentrations (e.g. heptachlor epoxide), then 

feather–liver significant correlations originated by a similar trend may occur irrespectively of 

the existence of a true relationship in concentrations between matrices. Concentrations of 

heptachlor in feathers and livers (31% and 11% of ƩOCP, respectively) are much higher than 

those of heptachlor epoxide (0.2% and 0.3% of ƩOCP). Both contaminants are part of the 

same metabolic pathway and show similar distributions in feather and liver, but only 

heptachlor epoxide concentrations showed a significant feather–liver correlation. 

5.5.2 Regional variation in organochlorine pesticides concentrations 

 The high concentrations and ubiquity of HCHs in feathers (mainly β-HCH) in Évora 

and Tagus is most likely associated with the generalized recent application of lindane in 

agriculture. Waters draining from farmland soils often contain higher concentrations of this 

contaminant compared to those draining from forestry soils (Villaverde et al. 2008). The 

presence of lindane in Portuguese sediments has been linked to agricultural areas where 

historical land use has been rice, wheat or grape crops, and its maximum value (450 ng g-1) 

has been reported in coastal sediments in an estuary close to our study areas (Villaverde et 

al. 2008). Additionally, concentrations of HCH in terrestrial environment may also be 

increased by atmospheric transport after volatilization from oceans (Newton et al. 2014). 

Heptachlor is also more abundant in agricultural than forest soils (ATSDR 2007), but since it 

was banned decades earlier than lindane, the elevated concentrations of the parent 

contaminant in the barn owl may not result from historical agricultural use. Carvalho et al. 

(2009) reported high concentrations of heptachlor epoxide in sediments of the north bank of 

the mouth of Sado Estuary, which was conditioned by industrial activity. This estuary is 

relatively close to our study areas, therefore, we cannot exclude industrial sources as a 

possible environmental input in our study.   

 Since there are no significant differences in OCPs concentrations between areas, 

our results suggest similar temporal use and dosage in Évora and Tagus, despite differences 

in land uses. Nevertheless, the absence of some OCPs in Tagus which are present in Évora, 

jointly with a trend for lower OCPs concentrations in Tagus, suggests that this area is in a 
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more advanced stage of decontamination. This is also supported by the dominance of the 

parent compound in the ratio DDT:DDE found in estuarine sediments from Sado (partly 

draining agricultural lands from Évora; 0.21) compared to Tagus (0.18; calculated from Gil 

and Vale 1999). This may be due to faster degradation of some compounds (such as DDTs) in 

Tagus, which is favoured by anaerobic conditions such as those encountered in soils that are 

either periodically or permanently flooded (Wang et al. 2007; Hao et al. 2008). In opposition, 

degradation of the ubiquitous HCH isomers is not improved by flooded conditions, and 

specially β-HCH is apparently not degraded by farming activity (Rubinos et al. 2007), which 

may have contributed to the observed high concentrations. 

 Among the OCPs detected in Évora but not in Tagus, only ƩDrins concentrations in 

feathers differed significantly from zero. Differences in individual compounds were probably 

not significant because only a small number of feather samples were contaminated with 

some Drins, particularly endrin (22%) and endrin aldehyde (11%). One individual from Évora 

showed a very high concentration in feather of endrin (1907 ng g-1) and another individual of 

endrin aldehyde (234 ng g-1). These high values most likely caused ƩDrins to be significantly 

higher in Évora. Since these individuals were not contaminated with the same compounds in 

liver, our results suggest episodic current exposure in the area, perhaps resulting from 

external contamination. This would be possible, for instance, in the presence of obsolete 

pesticide stocks, kept in such a manner that owls, but eventually not their prey, would have 

access to endrin and its aldehyde. 

5.5.3 Exploring trends in organochlorine pesticides using barn owl feathers 

and livers 

 Using as a reference the OCPs concentrations reported by Sierra and Santiago (1987) 

for barn owl livers from Spain in the 1980s, our results suggest continuous contamination by 

lindane over the last 30 years, along with an accentuated decrease in heptachlor epoxide, 

DDT and aldrin. Because lindane was being used as a pesticide at the time of that study, our 

finding of similar mean concentrations in barn owl liver (36.0 ng g-1; Sierra and Santiago 

1987) may be because lindane was one of the latest OCPs banned in Portuguese agriculture, 

being legally used up to three years before our sampling (Regulation CE 850/2004). β-HCH is 

a product of degradation of lindane with a great prevalence in agricultural soils, which 
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accumulates in fat tissue 10–30 times more than the parent compound (Heeschen et al. 

1980). β-HCH also has been demonstrated as having the lowest degradation ratio of the HCH 

group (WHO 1992). Therefore, liver concentrations of lindane twice as high those of β-HCH 

suggest exposure to recently released lindane in Portuguese barn owls. On the other hand, 

although endosulfan was the most recently banned contaminant in Portugal (two years 

before sampling; Directive 2006/507/CE), it was the compound detected in lowest 

concentration and frequency in our study. The faster degradation of endosulfan and its 

derivates (Kaur et al. 1998; Sethunathan et al. 2002) is most likely contributing to its low 

concentrations in barn owls. Endosulfan and lindane were the OCPs most frequently 

reported above the maximum residue limit in food in Portugal until our sampling (DGPC 

2005, 2006; DGADR 2008, 2009b, 2010b, 2011a, 2011b; Fernandes et al. 2011; DGAV 2012, 

2013, 2014, 2015). However, further conclusions are limited because there is no prior 

assessment of endosulfan concentrations in barn owl liver, nor information on pesticide use.  

 Heptachlor epoxide concentrations represent only 0.4% of those reported for the 

species in Spain in the 1980s (161 ng g-1; Sierra and Santiago 1987), suggesting an 

accentuated decline. Nevertheless, the great relative percentage of the parent compound in 

feathers (99%) and livers (97%; Fig. 5.2), and its extremely high concentrations in feathers 

suggests exposure to recently released heptachlor. Attention should be given to this OCP, 

which has been excluded from some studies assuming it was no longer emitted in Europe 

(van der Gon et al. 2007), because it may still be present in industrial wastes as, for example, 

wastewater from coal mining, foundries and nonferrous metals manufacturing (EPA 1995). 

 In our study DDT was not detected in liver as it was in Spain in the 1980s (50.0 ng g-1; 

Sierra and Santiago 1987), close to the time of DDT ban in agriculture (Order of 21 May 

1976). Half-life of DDT is reported to reach up to 35 years in agricultural soils (Nash and 

Woolson 1967), therefore it is possible that DDT is available in soil beyond the interval 

elapsed between its restriction and our sampling. DDT was still allowed in Europe for specific 

forestry and agricultural uses until 2004, and until 2014 as an intermediate industrial 

product (Directive 79/17 CEE; Regulation CE 850/2004). Present contamination of 

Portuguese barn owls with DDT and derivates is most likely due to their great persistence in 

the environment, since DDE (26% of ƩOCP) was the main compound in terms of relative 

concentration in liver, comparable with hepatic accumulation of ƩHCH (30% of ƩOCP). 
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Aldrin was detected in only one individual in concentration representing 3.5% of 

those reported in Spain  (59.0 ng g-1; Sierra and Santiago 1987). In contrast, dieldrin mean 

concentration in our study doubled that reported 30 years ago (9.00 ng g-1; Sierra and 

Santiago 1987). These results concur with a decreasing trend of aldrin and a corresponding 

increasing trend of dieldrin. Dieldrin is much more resistant to biodegradation than aldrin 

(generally quickly degraded to endrin and dieldrin through epoxidation; Ritter et al. 1995), 

and for that reason aldrin bioaccumulates and biomagnifies mainly in the form of its 

conversion products (WHO 1989). Therefore, our detection of aldrin in both liver and 

feathers raises concern, since the compound has been restricted in Portugal ca. 20 years 

before sampling. Aldrin is still detected in concentrations up to 0.013 µg dm-3 in natural 

springs waters (Cardoso et al. 2009), 2.5 ng g-1 in estuary sediments (Carvalho et al. 2009) 

and 1.38 µg kg-1 in fruits (Fernandes et al. 2011), indicating a great persistence of this OCP.  

5.6 Conclusions 

 Our study fills a lack of information on OCPs in Portuguese raptors, showing that the 

more prominent contaminant groups in barn owl feathers were ƩHCH and ƩHeptachlor, 

while in livers there was an equitable dominance of ƩHCH, ƩDrins and ƩDDT. Heptachlor, β-   

-HCH, and DDE deserve further attention as we found relatively high concentrations, but 

aldrin, DDT and derivates also raise some concern due to their persistence. 

 All the analysed OCPs were detected in the barn owl, suggesting the species may be a 

good biomonitor of environmental contamination with OCPs. However, interpretations 

should consider that the high concentrations of β-HCH and heptachlor in feathers may be 

influenced by external contamination. Feathers may be particularly suitable as 

biomonitoring tools to detect legacy environmental contaminants which generally occur in 

residual concentrations (e.g. aldrin, DDT), because these may not accumulate in liver while 

still present in the environment in low concentrations. 
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6 Conclusions 

 The use of raptors as biomonitors requires that several factors of variation of 

contamination levels should be considered, so that researchers may discriminate 

confounding effects and thus identify meaningful patterns of pollutant concentrations. The 

first part of this thesis focused on confounding sources of Hg variation, mostly linked with 

access to samples. The second part addressed spatial and temporal patterns in 

contamination, and examined factors affecting bioaccumulation in the barn owl.   

6.1 Sources of variation in sampling procedures 

 This thesis addressed confounding effects in contamination at two levels: intra-           

-individual and inter-individual variation. Within the individual, we looked at effects of 

between-feather variation and of time lapse between contamination and feather collection 

(i.e. feather age). At the inter-individual level, we explored the effects of age (i.e. variation in 

accumulation or in exposure to external contamination), spatial variation (i.e. variation in 

exposure) and also revealed OCPs that require further research on their propensity to 

produce external contamination in feathers. 

6.1.1 Intra-individual confounding effects  

 Feather growth rates, more specifically, the daily increase in mass of a feather, seem 

to have a negative effect in Hg accumulation. Barn owl feathers show a greater variation in 

daily increase in mass than in length, and Hg concentrations in primary feathers are better 

explained by between-feather differences in mass. Therefore, a feather with a slower mass 

increase will incorporate more Hg per day. Our data with barn owl feathers (Chapter 2) 

supported that Hg deposition is time-dependent, as suggested by Bortolotti (2010). 

Nevertheless, the feather-dependent confounding effect is not caused by variation in 

feather mass, nor has a direct relation with position in the wing, as previously thought. In 

the barn owl, feather mass and length decrease with inward position in the wing, but Hg 

concentrations show a different pattern (Chapter 2). Despite there is not a linear relation 

with position in the wing, further exploitation of our data revealed a different pattern: we 

could roughly identify the species complex moult pattern in the average Hg concentrations 

and also in the average excreted Hg amongst primary feathers – starting in P6 and 
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proceeding sequentially to the inner and outer ends of the wing (Hg is maximum in P6, i.e. 

the first feather to moult, and decreases following the same order). However, a cause-effect 

relationship between moult pattern and Hg content in these feathers does not exist, since 

this pattern is observed in first year barn owls (i.e. in feathers of the same generation, 

formed contemporaneously in birds with the same age, without moults). The most plausible 

explanation is that feather growth rates in the barn owl somehow reflect the species’ moult 

sequence. If this is a characteristic of other bird species, then the growth rate hypothesis is 

possibly the main explanation to some significant correlations described in the literature 

between Hg concentrations in feathers and moult sequences (Bortolotti 2010). 

 Intra-individual differences in feather growth rates, apparently replicating the moult 

sequence in the barn owl, may also cause a confounding effect related with position in the 

wing. When analysing relations between Hg concentrations and moult sequences, the 

interpretation may also be influenced by variations with feather age (intra-individual 

variation), in addition to the effect of the individuals’ age (see 6.1.2 Inter-individual 

confounding effects). The barn owl has protracted feather replacement (Baker 1993, 

Martínez et al. 2012, Demongin 2016). Consider a barn owl on its second year, which had 

already moulted P6: this feather is expected to contain a high Hg concentration, both 

because it has grown slower and because it may reflect enhanced bioaccumulation 

compared to the other unshed primary feathers. However, when the same owl is on its 

fourth year, it shed P6 two years before, P7 and P8 one year before and may have recently 

shed P9. Since Hg concentrations decrease outwards from P6 (possibly owing to increasing 

feather growth rates), it is possible that the raise in the same direction in Hg concentration 

following moult (i.e. caused by a yearly accumulation in the Hg body burden that may result 

from a yearly raise in the Hg available in blood to deposition in feathers) is such that 

concentrations between primaries become more even. Thus, it is possible that the moult is 

actually masking differences among feathers rather than accentuating them. This could be 

the reason why Dauwe et al. (2003) found no relation between Hg concentrations in barn 

owl feathers and the moult sequence.  

 Feather age represents the time lapse between contaminant incorporation and 

sampling. For that reason, it may have a confounding effect in comparisons with the internal 

levels of the individual. Contrarily to internal tissues, concentrations in feathers remain 
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stable from the moment feather reaches its full length and circulation is interrupted (Furness 

et al. 1986). Therefore, the timing of sampling may not correspond to the timing of 

contaminant uptake in feathers, what may increase differences with internal organs/tissues. 

This should be the explanation why only one in sixteen OCPs analyzed in this thesis 

(heptachlor epoxide) showed a positive significant correlation between feathers and livers 

(Chapter 5). Nevertheless, the interpretation of this correlation is complex and our results 

suggest a possible concentration-dependent effect: (1) concentrations of heptachlor in 

feathers and livers are much higher than those of heptachlor epoxide, (2) both contaminants 

are part of the same metabolic pathway – heptachlor being degraded in the more stable 

heptachlor epoxide – and show similar distributions in feather and liver, and (3) only 

heptachlor epoxide concentrations showed a significant feather-liver correlation. Feather-

liver significant correlations may therefore have been originated by a similar negative trend 

with age, resulting in similarities between concentrations in the two matrices with 

independent causes.  

 All considered, confounding effects in intra-individual variation in Hg and OCPs 

concentrations should be taken into account when interpreting correlations between 

feather concentrations and matrix-related variables. This thesis provided evidence that 

redundant variation may create similar trends that may be deprived of a biological meaning, 

and in such cases may mislead conclusions in between-feather and between-matrix 

comparisons. 

6.1.2 Inter-individual confounding effects  

 The time lapse between contamination and sampling in one individual, measured as 

feather age, may also increase inter-individual variation if feathers with different ages are 

used to compare different individuals. Collection of barn owl feathers in opportunistic 

sampling is age-biased towards un-moulted feathers, because there is an easier access to 

nestlings and first-year road-killed individuals. Moreover, individuals in the second calendar 

year can still show no moults and older individuals may still conserve several un-moulted 

feathers. Thus, many of the collected barn owl feathers do not reflect the age of the 

individual and the collection of an adequate amount of recently grown feathers may be 

challenging (Chapter 3). For this reason, research on age-related variation in the barn owl 
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should not rely on opportunistic sampling. Nonetheless, this thesis provided evidence that 

opportunistic sampling of barn owl feathers most likely contributes to minimize the 

confounding effect of redundant age-related variation. Moreover, when several feathers per 

territory (mixing nestlings and adults) were used to calculate the mean Hg concentration, 

age-effects resulted to be negligible (Chapter 3).  

 Beyond differences in bioaccumulation, age may also represent spatial variation, i.e. 

displacement from sampling site and contamination site, which depends on the life-history 

of the individuals. Road-kill mortality is higher in the barn owl during post-fledging dispersal, 

and carcasses are often collected several kilometres away from their places of birth 

(progenitors’ territories). In a radio-tracking study carried out on our study area, 5 of 13 owls 

that died during dispersal were collected 8 to 60 km away from their natal site (I. Roque, A. 

Marques, T. Marques, R. Lourenço, J. E. Rabaça, unpublished data). Despite the chance of 

locating a dispersing owl near its birth place should be much higher than far from it, this 

study gives evidence that a feather collected from road-killed first year barn owls has a 

probability of at least 38% of not representing Hg contamination at the collection site. In an 

adult bird, this probability should be much higher: from a total of 120 broods, monitored 

during 9 years in a total of 52 nests, none of the 376 owls ringed as nestlings was found 

breeding at the original territory (I. Roque, A. Marques, R. Lourenço, J. E. Rabaça, 

unpublished data). Despite breeding adults are expected to be collected near their 

territories, feathers from the first moult do not represent contamination in collection site. 

Nevertheless, this thesis provided evidence that when several feathers per territory and per 

road-killed individual are used to calculate a mean Hg concentration, results are comparable 

among age classes in feathers collected in nests and in road-killed owls in a same region. So, 

road-killed barn owls apparently provide useful information to characterize Hg 

contamination at a regional scale, despite their disconnection to specific contamination 

sites, thus suggesting that neither age nor spatial variation produce relevant confounding 

effects at the regional level (Chapter 3), provided that: (1) sample size is relatively large, (2) 

landscape and land uses are similar, and (3) the limit should not extended beyond 60 km 

apart from the sampling sites of the road-killed barn owls, however this distance may vary in 

other regions. 



Chapter 6 

122 
 

 Another factor that may increase inter-individual redundant variation is external 

contamination. Despite this confounding effect is in general negligible in Hg (Burger and 

Gochfeld 1997; Dauwe et al. 2003), there is not a total agreement on its relevance in OCPs, 

given the relative novelty of the use of feathers for monitoring these contaminants (Espín et 

al. 2016). Further research is needed on the susceptibility of several OCPs to producing 

external contamination in feathers. In this regard, this thesis prompted interest in a few 

OCPs: β-HCH, heptachlor, endrin and endrin aldehyde. The high concentrations of β-HCH 

could result from external contamination, because this OCP is apparently less abundant than 

lindane (γ-HCH, which can be its parent compound) in the environment and in food 

(Villaverde et al. 2008; Mathias et al. 2007). For heptachlor, there is no equivalent 

information, and an alternative (or possibly cumulative) explanation for the high 

concentrations in feathers could be a poor ability of the barn owl to metabolize this OCP 

(e.g. interferences of different products and substrates in the mechanism of heptachlor 

epoxidation, occurring at hepatic microsomal epoxidases; Gillett and Chan 1968). On the 

other hand, endrin and endrin aldehyde were detected in high concentrations in feathers 

(each OCP in only one individual), while not concurrently present in livers of the same 

individuals. These findings were restricted to a particular region (Évora), suggesting 

occasional exposure. One possible explanation could be the existence of obsolete pesticide 

stocks, providing access of owls (but apparently not their prey) to endrin and its aldehyde 

(Chapter 5).  

6.1.3 Recommendations to sampling procedures 

 A sound knowledge of the species biology and ecology, in order to understand how 

these can influence intra- and inter-individual variability, is crucial in biomonitoring 

contaminants with raptors. This thesis provides evidence that different feather types (body 

and flight feathers) may be interchangeably collected to estimate Hg concentrations in un-    

-moulted barn owls, regardless of feather size and position in the wing for remiges. The best 

criterion for minimizing redundant variation is calculating an average concentration from 

several feathers from the same individual. Under a restrictive sampling scenario in which 

only one flight feather could be analysed, this should be selected among the five innermost 

primaries (P1–P5). Based on mean feather mass (because feather mass affects Hg 

concentrations), this group showed the lowest average deviations from sample and 
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individual mean Hg concentrations. In case the position of remiges cannot be identified, this 

group roughly corresponds to the range of length of 157–194 cm. 

 If several feathers are combined to calculate a mean value for the brood or for the 

territory, calculating an average concentration from several feathers from different 

individuals also results in the attenuation of age-related redundant differences in Hg 

concentrations. Feather samples collected from road-killed barn owls and in nest sites may 

be mixed to characterize background Hg contamination in a broader area because samples 

from road-killed owls are apparently representative of Hg contamination in territories, 

possibly in the range of 60 km from collection sites. Opportunistic sampling of barn owl 

feathers apparently contributes to reduce redundant variation of age-related confounding 

effects in Hg concentrations, because it is biased towards un-moulted feathers. For this 

reason research or applied studies focused on age-related variation in the barn owl should 

require directed sampling. In this regard, we suggest the collection of body feathers from 

nestlings and also the capture of adults in or near nests for collection of body feathers, 

which should be moulted every year, usually between July and September (Bunn et al. 

1982). Plucking recently grown flight feathers (from the tail or wing, be it a primary, 

secondary or rectrix feather) should be avoided, since in raptors those feathers may not be 

readily replaced nor grow normally in the next moult (Delnatte 2014). Moreover, plucking 

these feathers apparently has significant post-sampling costs on flight performance 

(McDonald and Griffith 2011). 

 Most likely the criterion of calculating average concentrations from several feathers 

is also applicable to other contaminants besides Hg, including OCPs. Nevertheless, the 

sources of variation in sampling procedures in OCPs were not in the scope of this thesis, and 

despite the effort to examine patterns in OCPs contamination, we have not established a 

basis for recommendations to sampling procedures. 

6.2 The barn owl as biomonitor of environmental contamination 

 This thesis also addressed the suitability of the barn owl as a biomonitor of 

environmental contamination, evaluating variation patterns in Hg and OCPs with regard to: 

(1) identifying contaminants of concern (Hg and OCPs) and (2) inspecting factors affecting 

variation in bioaccumulation (Hg).  



Chapter 6 

124 
 

6.2.1 Contaminants of concern in barn owls 

 All the contaminants evaluated in this thesis were detected in barn owl feathers, and 

therefore this matrix seems to be a good biomonitoring tool for Hg and OCPs. Heptachlor, β-

-HCH, and DDE (the latter revealed by liver concentrations) deserve further attention as we 

found relatively high concentrations, but DDT (detected only in feathers) and aldrin/dieldrin 

also raise some concern due to their persistence. We cannot exclude the possibility of 

external contamination from the two contaminants that produced the most accentuated 

contamination in feathers (β-HCH and heptachlor), meaning it is not clear if these may result 

in adverse effects. However, this information is still relevant in terms of environmental 

contamination, showing that: (1) the most resistant isomer of the HCH family of compounds 

(β-HCH) is present in extremely high concentrations in south Portugal; and (2) heptachlor, a 

contaminant that has not received much attention, because it was banned in Europe, is likely 

to have a current impact in Portugal. Lindane was among the latest contaminants banned in 

Portuguese agriculture; consequently, its concentrations in barn owls most likely result from 

recent exposure. In contrast, the DDT family of compounds raises concern for barn owls for 

its persistence. DDE showed the major relative concentrations in liver, similar to those of 

total HCH. This means that legacy compounds, usually present in trace concentrations in the 

environment, may represent a burden similar to that of recently banned OCPs in barn owl 

internal tissues. The great propensity of legacy OCPs for bioaccumulation is worrying, 

because the extent of adverse effects caused by sub-lethal contamination remains unknown, 

and these compounds are potentially more toxic than more recently used pesticides. 

Additionally, the detection of aldrin and related compounds in both feathers and livers might 

also be of concern. Because dieldrin (the product of aldrin epoxidation) was associated with 

a greater impact on raptor mortality (resulting from high concentrations; Table 6.1) than on 

reproduction (Newton et al. 1991), the current trace environmental concentrations of DDT-   

-related compounds are probably more harmful for barn owls than those of aldrin-like OCPs. 

Nevertheless, dieldrin might have been increasing in Iberian barn owls in the last three 

decades (Sierra and Santiago 1987; Chapter 5), what was not expected because these 

cyclodien insecticides were banned in Portugal ca. 20 years before sampling (Ordinance 

660/88). Despite the maximum hepatic concentrations of some contaminants of concern in 

barn owls are currently much lower than the lower limit of lethal range for the species (Table 
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6.1), the range of concentrations that may impair reproduction in barn owls is still unknown. 

Impaired reproduction in barn owls, which may be causing significant eggshell thinning, egg 

breakage, embryo mortality, and reduced production per pair, has been associated with 

legacy contaminants like DDE (Mendenhall et al. 1983). Moreover, considering the negative 

trend that was recently revealed for the Portuguese barn owl population (Lourenço et al. 

2015) and the evidence provided by this thesis on the accumulation in liver of considerable 

concentrations of some legacy OCPs (mainly DDE), further investigation is needed with 

regarding the effect assessment of legacy OCPs in the species, and in particular in the 

Portuguese barn owls.  

 Mercury concentrations in barn owls were lower than those previously reported for 

the species in Portugal (1.20 mg kg-1; Chapter 2) and for Portuguese raptors (1.25 mg kg-1; 

Chapter 1). Nevertheless, effect assessment is lacking and therefore the potential toxicity of 

the measured concentrations for the barn owl is still unknown. Since Hg is probably the 

metal of most concern for adverse biological effects (Walker et al. 2001), its increasing trend 

in biota (Froslie et al. 1986) reinforces the need for assessment of effects at sub-lethal levels. 

In our data set, five samples from two individuals showed Hg concentrations in the range of 

the values reported to produce negative effects on terrestrial birds (2.8–4.9 mg kg-1). 

Therefore, despite in our study area barn owls are in general not exposed to very high Hg 

contamination, we should consider some of our values as sufficiently high to potentially 

impair reproduction. 

Table 6.1 Maximum hepatic concentrations in Portuguese barn owls (this thesis) and lethal range of hepatic 

concentrations for the species (Newton et al. 1991) 

Contaminant Maximum hepatic concentrations  

(ng g
-1

) in Portuguese barn owls 

Lethal range of hepatic concentrations 

(ppm) 

Heptachlor epoxide 2.98 ng g
-1 

Máx. ƩHeptachlor: 7 940 ng g
-1

 

14.4–26.0 ppm 

(i.e. from 14 400 ng g
-1

) 

HEOD 

(aldrin and dieldrin) 

Aldrin: 198 ng g
-1 

Dieldrin:
 
93.9 ng g

-1 

Máx. ƩDrins: 2 001 ng g
-1

 

6.00–44.0 ppm 

(i.e. from 6 000 ng g
-1

) 

DDE 162 ng g
-1 

Máx. ƩDDT: 247 ng g
-1

 

130–270 ppm 

(i.e. from 130 000 ng g
-1

) 
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6.2.2 Factors affecting bioaccumulation in the barn owl 

 This thesis provided evidence that biota-soil accumulation factors (BSAFs) in raptors 

may be helpful tools for understanding contaminant dynamics in terrestrial systems, 

allowing for detaching diet-related variation in bioaccumulation while visualizing spatial 

patterns. Biota-soil accumulation factors simulate a one-compartment model, excluding the 

effect of biomagnification in bioaccumulation, which is known to be of major importance in 

top predators. For this reason, BSAFs have never been used in terrestrial ecotoxicological 

studies for other organisms than invertebrates, fungi and plants (Chapter 4). However, we 

address that isolating the variability inherent to the habitat facilitates general patterns that 

may be useful to raise hypothesis regarding habitat effects on bioaccumulation, through 

possible effects on diet-related variation in raptors. 

 Bioaccumulation in the barn owl seems to be affected by agricultural land uses, 

which interfere with both concentrations in soil and in feathers, but also on Hg transfer 

pathways along the food web. This thesis provided evidence that permanently irrigated and 

patchy agricultural areas may possibly be used as proxy of lower Hg agricultural input and/or 

faster Hg decontamination. These, and also areas with permanent crops (which were 

associated with lower Hg contamination in feathers) should be further inspected for 

variations in food webs, because of potential variations in prey Hg bioaccumulation, 

diversity, abundance and/or accessibility (Chapter 4). Habitat may therefore be a mediator 

of bioaccumulation along the food web, because it determines plant composition and 

distribution, and prey availability, which in turn may affect Hg distribution in soil, and induce 

variability in the way the contaminant is transferred to the barn owl. In other words, habitat 

may possibly be a surrogate of the pathways leading Hg from the soil to the barn owl. 

 Spatial patterns in other contaminants also seem to support the possible influence of 

land uses in exposure. Lower concentrations of parent compounds in relation to their 

degradation products (DDT:DDE) were previously reported in sediments from the Tagus 

estuary, draining agricultural soils from our study area where less contaminants were 

detected in barn owl feathers (Gil and Vale 1999; Chapter 5). We hypothesized that this 

possibly corresponds to a decontamination effect, because faster degradation of some 

compounds (such as DDTs) is favoured by anaerobic conditions in soils that are periodically 
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or permanently flooded (Wang et al. 2007; Hao et al. 2008). Permanently irrigated 

agricultural areas are more abundant in the Tagus area than in Évora. Additionally, irrigation 

may increase elimination of elemental Hg (Gustin and Stamenkovic 2005; Chapter 4). Since 

inorganic Hg is methylated, concentrated, and transported in the direction of water flow in 

wetlands (Ackerman et al. 2010; Ackerman and Eagles-Smith 2010), this may correspond to 

an increased probability of off-site contamination. In opposition, degradation of the 

ubiquitous HCH isomers, is not improved by flooded conditions, and specially β-HCH is 

apparently not degraded by farming activity (Rubinos et al. 2007), which may have 

contributed to high concentrations in barn owl feathers (see 6.2.1 Contaminants of concern 

in barn owls).  

 Landscape diversity, here characterized by small-scale land use heterogeneity, seems 

to affect bioaccumulation, mainly by influencing small-scale Hg distribution. We 

hypothesised that small-scale soil conditions and vegetation patterns may influence Hg 

retention in soil, mimicking the wider-scale effect of plant productivity driven by water 

availability (Obrist et al. 2016; Chapter 4). More specifically, a small-scale process dependent 

on irrigation (as for rainfall deposition) and soil physical-chemical properties (as for 

geomorphic variation) may create small-scale patterns in soil Hg concentrations, with 

consequences in Hg bioaccumulation (Eagles-Smith et al. 2016; Obrist et al. 2016). 

 Complementary, greater landscape diversity may be associated with more diverse 

plant and animal communities, which may create a larger number of pathways for Hg to 

reach top predators, such as the barn owl. Nevertheless, interpreting how the resulting 

heterogeneous Hg distribution could influence bioaccumulation is complex, requiring further 

studies with larger sample size (i.e. multivariate models) in order to explore the effect of 

landscape diversity in Hg and its relations with food web structure. 

6.2.3 Is the barn owl a good biomonitor species? 

 The barn owl adequately meets the requirements of a biomonitor species, according 

with Becker (2003), by contributing  to: (1) little risk of monitoring being confounded by 

uncertainties or misinterpretations (i.e. is easy to identify and has a well known biology and 

ecology); (2) representing contamination by biomagnification (i.e. is at top positions in the 

food webs); (3) relatively easy access to non-destructive or minimally-invasive sampling 
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procedures (i.e. blood, feathers); (4) distinctly representing changes in the environment (i.e. 

has a low reproductive output); (5) allowing comparisons between different ecosystems, 

countries and continents (i.e. has a widespread distribution). Moreover, the barn owl is a 

charismatic species, capable of raising public interest, therefore being a good candidate to 

becoming a sentinel species. Its diet is also very well studied, because of access to pellets 

containing a larger number of undigested prey remains than in other owl species, potentially 

allowing for the application of correction factors to variation in biomagnification. Based on 

its diet, the barn owl has been considered one of the most appropriate raptor species for 

monitoring the risk of secondary poisoning of strongly bioaccumulative contaminants, 

including DDT, dieldrin, lindane and MeHg (Jongbloed et al. 1994). This thesis added several 

advantages for using the barn owl with respect to access to samples and to control 

redundant variation (e.g. feather type and age in Hg concentrations) in opportunistic 

sampling procedures, and also to potentially correct possible habitat-related effects in 

bioaccumulation. 

 Similarly to barn owls, other raptor species should be good biomonitors, which could 

be used worldwide to study local contamination, and above all, the potential effects of 

contaminants on the environment. However, as highlighted throughout this thesis, using 

raptors as biomonitors requires that researchers have a good background information and 

knowledge on several factors (Table 6.2). This comprehensive approach will allow stronger 

and breakthrough conclusions based on contaminant concentrations in raptors. 

 

Table 6.2 Factors to take into account when using raptors as biomonitor species 

Factor Rationale 

Raptor species The biology, ecology, behaviour, and abundance of each species may have strong 

implications on accessibility to samples (feathers, blood, etc.), spatial distribution, 

migratory behaviour, etc. 

Diet Intra-specific diet variations influence biomagnification, having implications on 

the measured differences in contamination among trophic levels and in the 

environment (soil, water) 
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Table 6.2 Factors to take into account when using raptors as biomonitor species (continued) 

Factor Rationale 

Age and sex Individuals of different ages and sexes may differ in concentration due to 

variations in diet and movement ecology (home range size, dispersal, migration) 

Matrix Contaminant concentrations in feathers (as excretory pathways) and internal 

tissues, (with different bioaccumulation and biotransformation capability) are 

subjected to variations that should be inspected for meaningful relationships with 

effects  

Feather type In an analysis based in a single feather, intra- and inter-individual variation should 

be minimized because there are factors affecting contaminant concentrations 

that may result in differences between feather types (e.g. mass dilution, probably 

caused by variation in growth rates, in Hg concentrations) 

Contaminants Depending on which compound the study is directed to, all the above information 

should be considered to maximise results 

 

 Using raptors as biomonitors may also have some limitations, depending on the 

biomonitoring aims: (1) raptors may not reflect site-specific contamination (given their 

mobility, which may result in displacement of sampling and contamination sites); (2) it may 

be difficult to isolate specific factors affecting contamination (given the large number of 

factors regulating their populations); and (3) collection of invasive samples and laboratory 

studies are difficult (because of ethic, legal and conservation constraints). The advantages 

and limitations of using raptors in a monitoring study should be clearly identified and 

assessed in advance, so that sampling design is planned to reduce or eliminate the possible 

disadvantages (Becker 2003).  

6.3 Recommendations to further research 

 Feathers have been used in exposure assessment for several contaminants. However, 

in order to leverage the potential use of these biomonitoring tools, the interpretation of 

concentrations needs further research on (1) understanding the effect of feather growth 

rates on contaminant deposition, (2) discerning external contamination and (2) linking 

exposure to effects. The latter involves a complex and resource demanding integrated 

analysis (Figure 6.1). Therefore, the selection of species and contaminants should minimize 
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redundant variation, maximize access to samples and benefit from the existing body of 

knowledge. We advocate that the barn owl and the compounds evaluated in this thesis are 

good candidates. For major environmental contaminants like dieldrin, DDE and Hg, minimum 

critical levels for raptors reproductive effect in eggs, and for acute effects on internal organs 

are available (Noble and Elliot 1990; Peakall et al. 1990; Newton et al. 1992). The assessment 

of minimum critical concentrations in feathers should include measurement of 

concentrations in blood at time of feather formation and corresponding levels in target 

organs (which depend on the contaminant being analyzed). This would only be possible 

during feather formation in nestlings, or during moult in adult birds. Then, it should be 

examined if concentrations in feathers could possibly be used as proxy of concentrations in 

target organs for specific contaminants in effect assessments. If this is feasible, the use of 

nestlings as a standard would allow for excluding age-related confounding effects. 

Moreover, since the access to samples would involve nest monitoring, breeding parameters 

could be collected simultaneously, facilitating effect assessment in the population. In order 

to access effects in individuals, the blood collected for examine feather-internal tissue 

relations could also be used for identifying biomarkers. For instance, DDE concentrations of 

16 ppm in barn owl eggs were associated with nest failure (Klaas et al. 1978): could a 

correspondence be made with feather concentrations? Several blood clinical-chemical 

parameters were correlated with DDE concentrations in raptors, including albumin and total 

protein, which reflect health and homeostasis of liver (Sonne et al. 2012), a target organ for 

DDT-like OCPs (Jongbloed et al. 1994; Chapter 5): could the inclusion of such biomarkers 

reveal potential health effects, that could also be related with feather concentrations? 

 Additionally, factors affecting bioaccumulation should be inspected, in order to 

access if there is a need for applying correction factors to feather concentrations. Correction 

factors are normally used to apply laboratory-based concentrations to field estimation, in 

order to improve reliability of risk assessment. The high variation in contaminant 

concentrations in the soil within territories of raptors also hampers risk assessment (Traas et 

al. 1996). Therefore, diet, land use and landscape diversity are good candidates to correction 

factors. However, the relevant source of variation that requires correction should be 

identified in advance. For instance, differences within and between  species  in  sensitivity  to 



Conclusions 

131 
 

 

Figure 6.1 Model proposed for an integrated analysis of the relationship between exposure and effects of 

environmental persistent contaminants, based on raptor feather concentrations  

 

lipophilic contaminants may be explained by differences in total fat content. For that reason, 

the previously suggested correction for caloric content, assimilation of food types and 

metabolic rates may be of minor importance in assessing species sensitiveness (i.e. no-           

-observed-effect concentrations). Sensitiveness of raptors to DDT can be used, for instance, 

for derivation of soil quality criteria (i.e. maximum permissible concentration) based on 

bioaccumulation of soil contaminants in terrestrial food webs (Traas et al. 1996). Considering 

that the barn owl may have considerable variation in diet, depending on food supply, which 

in turn depends on the habitat (de Bruijn 1994; Chapter 4), further investigation on these 

sources of variation and their inter-relation should provide a good basis for assessing the 

need of correction factors for feather concentrations. 

 Given the considerable complexity of the ecological models, which still cannot 

accurately represent reality, the assessment of entangled patterns may be facilitated by 

partitioning the variation, in order to observe simpler relationships. Compartmenting 

variation in ecotoxicological studies may raise new hypotheses, facilitating the assessment of 

the relevance of specific issues for representing the whole system. Likewise, in the use of 

feathers as biomonitoring tools, it is important to isolate factors that contribute to 

redundant variation, in order to identify patterns with biological meaning. 
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