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Abstract In this paper, we describe one of the approaches of the participation
of Universidade de Evora. Our approach is similar to usual methods where text
is preprocessed, features are extracted, and then used in SVMs with cross val-
idation. The main difference is that features used come from averages of word
embeddings, specifically word2vec vectors. Using PAN 2016 dataset, we were
able to achieve 44.8% and 68.2% for English age and gender classification re-
spectively. We were also able to achieve 51.3% and 67.1% accuracy for Spanish
age and gender classification. Finally, we report 71.9% accuracy for Dutch age
classification.

1 Introduction

The specific problem associated with PAN 2016’s task of author profiling involves the
use of training data from a specific corpus and evaluated on a different corpus. The pro-
filing was done in two different dimensions - age and gender classification. The training
sets are also available in three different languages - English, Spanish, and Dutch. This
is given in full detail in [17]. As with the previous editions of PAN, evaluation is done
through the TIRA software as described in [4], and [13].

In previous author profiling research, most of the work is centered on hand crafted
features as well as that which are content-based and style-based. For instance, in the
work of Argamon et al. in [3] where texts were categorized based on gender, age, na-
tive language, and personality, different content-based features and style-based features
were used. In another example of Schler et al. in [20] wherein age and gender are related
to a specific genre which are blogs, through writing styles. Stylistic and content features
were extracted from 71,000 different blogs and a Multi-Class Real Winnow was used to
learn the models to classify the blogs. Stylistic features included parts-of-speech tags,
function words, hyperlinks, and non-dictionary words. Content features included word
unigrams with high information gain.

This can also be seen in the previous PAN editions. In the first edition of PAN [16] in
2013, the genre focused on was blogs. The task was age and gender profiling for English
and Spanish. There were a variety of methods used. One set includes content-based fea-
tures such as bag of words, named entities, dictionary words, slang words, contractions,



sentiment words, and emotion words. Another would be stylistic features such as fre-
quencies, punctuations, POS, HTML use, readability measures, and other various statis-
tics. There are also features that are n-grams based, IR-based, and collocations-based.
Named entities, sentiment words, emotion words, and slang, contractions and words
with character flooding were also considered. The work of Lopez-Monroy in [7] was
considered the winner for the task although they placed second for both English and
Spanish where they used second order representation based on relationships between
documents and profiles. The work of Meina et al. [10] used collocations and placed
first for English while the work of Santosh et al. in [19] worked well with Spanish
using POS features.

In PAN 2014 [15], the task was profiling authors with text from four different gen-
res - social media, twitter, blogs, and hotel reviews. Most of the approaches used in this
edition are similar to the previous year. In [6], the method used to represent terms in a
space of profiles and then represent the documents in the space of profiles and subpro-
files were built using expectation maximization clustering. This is the same method as
in 2013 in [7]. In [8], n-grams were used with stopwords, punctuations, and emoticons
retained, and then idf count was also used before placed into a classifier. Liblinear lo-
gistic regression returned with the best result. In [22], different features were used that
were related to length (number of characters, words, sentences), information retrieval
(cosine similarity, okapi BM25), and readability (Flesch-Kincaid readability, correct-
ness, style). Another approach is to use term vector model representation as in [21]. For
the work of Marquardt et al. in [9], they used a combination of content-based features
(MRC, LIWC, sentiments) and stylistic features (readability, html tags, spelling and
grammatical error, emoticons, total number of posts, number of capitalized letters num-
ber of capitalized words). Classifiers also varied for this edition. There was the use of
logistic regression, multinomial Naive Bayes, liblinear, random forests, Support Vector
Machines, and decision tables. The method of Lopez-Monroy in [6] gave the best result
with an average accuracy of 28.95% on all corpus-types and languages.

In PAN 2015 [14], the task was limited to tweets but expanded to different languages
with age and gender classification and a personality dimension. The different languages
include English, Spanish, Italian, and Dutch. There were 5 different personality dimen-
sions - extroversion, stability, agreeableness, conscientiousness, and openness. And in
this edition, the work of Alvarez-Carmona et al. [2] gave the best results on English,
Spanish, and Dutch. Their work used second order profiles as in the previous years as
well as LSA. On the other hand, the work of Gonzales-Gallardo et al. [5] gave the better
result for Italian. This used stylistic features represented by character n-grams and POS
n-grams.

Since the current task is to train on one type of corpus and test on another type of
corpus, we decided to try an approach that uses word embeddings. We used word2vec
in particular as described in [11] [12]. Such embeddings were trained not on the corpus
given by PAN but by Wikipedia dumps so there is a possibility that using such embed-
dings which work on one corpus type could work on another corpus type. Our approach
also uses these embeddings in conjunction with Support Vector Machines.



2 Methodology

The methodology is illustrated by the figure 3. It mainly consists of three parts - word
embedding creation, training, and evaluation. These will be further discussed in the
subsequent subsections.

2.1 Word Embeddings Creation

To represent words by a vector, word embeddings have to be created. These vectors
capture some semantic information between words. One way to do such embeddings
are with word2vec as proposed by Mikolov in [11] and [12]. Essentially, words in a
dictionary by a given corpus are initially represented with a vector of random numbers.
A word’s vector representation is learned by predicting it through its adjacent words.
The basis for the order of the words is in a large corpus. This is illustrated in figure 1.
The implementation can be two different ways - skip grams and continuous bag of
words (CBOW). In CBOW, the word vector is predicted given the context of adjacent
words. In skip grams, the context words are predicted given a word.

For our problem, we used wikipedia dumps as an input to the word2vec implemen-
tation of gensim [18]. The wikipedia dump used for the following experiments were
that of 05-02-2016. As for word2vec parameters, no lemmatization was done, the win-
dow size used was 5, and the output dimensions used was 100. The default continuous
bag of words was also used. For further details, please refer to the tutorial given in [1].
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Figure 1. Diagram for word2vec implementations



Figure 2. Overview of word2vec flow.

Figure 3. Overview of the system



2.2 Training and Evaluation

After obtaining word2vec representations for each word as illustrated in figure 2, each
xml document of one twitter user is converted into word2vec representations. To do this,
the texts were first extracted from the file. Then it was converted to lower case. After
the conversion, the words are checked against the dictionary of all the words that have
word2vec representations. If the words exists in the dictionary, the vector representation
is pulled out and accumulated, and later normalized by the number of words that could
be found in the dictionary. If the word does not exist in the dictionary, a zero vector is
returned.

After representing each twitter user, the vectors are then used as features. Support
Vector Machines were then trained using those features. Different kernels and parame-
ters were also checked. This includes polynomial kernel and a radial basis function. For
the polynomial kernel, the degrees were restricted to 1, 2, and 3. The C parameter was
restricted to 0.01, 1, 100. For the radial basis function, the gammas and C parameters
were restricted to 0.01, 1, 100.

The performance of the system was evaluated using the accuracy measure and 10
fold cross validation was used. The parameters that gave the highest accuracies were
noted and used in the system deployed in the TIRA server.

3 Results and Discussion

The tables 1- 5 give the all the results for English, Spanish, and Dutch on age and gender
using cross validation. Looking at table 1 for age classification in English, the highest
accuracy obtained is 44.8%. The SVM parameter that gave the best classification is the
one with the radial basis function kernel with C to be 1 and gamma to be 100 although
most of the other values are close. In gender classification however, the highest accuracy
obtained was 68.2% using a polynomial kernel with the degree to be 3 and C to be 100.
There is more variety from these results given that the lowest is around 50.0%.

Table 1. Age Classification Results for English using cross validation

poly rbf
degree gamma
C 1 2 3 0.01 1 100

0.01 | 0.418 0416 0.416 0414 0414 0414
1 0418 0416 0416 0414 0418 0.448
100 | 0.418 0.423 0.393 0416 0.409 0.426

The results for Spanish tweets are given below. In table 3, the highest accuracy for
age classification is 51.3%. This is given by a classifier with a radial basis function
kernel with gamma to be 1 and C to be 100. In table 4, the highest accuracy for gender



Table 2. Gender Classification Results for English using cross validation

poly rbf
degree gamma
C 1 2 3 0.01 1 100
0.01 | 0.534 0.495 0.495 0.498 0.500 0.512
1 0534 0561 0.579 0.498 0.563 0.643
100 | 0.534 0.677 0.682 0.548 0.672 0.643

Table 3. Age Classification Results for Spanish using cross validation

poly
degree
1 2 3

rbf
gamma

0.01 1 100

0.01

100

0.506 0.506 0.506
0.506 0.511 0.511
0.506 0.513 0415

0.506 0.506 0.506
0.506 0.506 0.496
0.506 0.513 0.422

Table 4. Gender Classification Results for Spanish using cross validation

poly
degree
1 2 3

rbf
gamma

0.01 1 100

0.01

100

0.504 0.504 0.504
0.504 0.546 0.577
0.504 0.663 0.654

0.504 0.557 0.565
0.504 0.573 0.638
0.568 0.671 0.621




classification is 67.1%. This was given by the classifier that used a radial basis function
kernel with gamma to be 1 and C to be 100.

Dutch gave the highest accuracy of 71.9% using an SVM with a radial basis function
with a gamma of 1 and C of 100. This is further illustrated in table 5.

Table 5. Age Classification Results for Dutch using cross validation

poly rbf
degree gamma
C 1 2 3 0.01 1 100

0.01 | 0.547 0.513 0.513 0.516 0.589 0.654
1 0542 0.641 0.649 0.516 0.644 0.717
100 | 0.539 0.719 0.685 0.646 0.719 0.658

Finally, we also add the last table 6 which shows the results given by PAN after
using the classifier on a different corpus type. We can see that there is a drop in accuracy
between the one tested on tweets and the one on unknown corpus type. For English age
classification, we started with 44.8% which dropped to 35.9%.

For Spanish age classification, we started with 51.3% which dropped to 48.2%,
which doesnt seem to be too drastic. For Spanish gender classification, we started with
67.1% but dropped to 58.9%. Finally for Dutch, we started with 71.9% and dropped to
56.8%.

Table 6. PAN 2016 Results

Age Gender Joint

English 0.3590 0.6282 0.2179
Spanish  0.4821 0.5893 0.3036
Dutch  0.5680 - -

It should also be noted that the parameters used in the submitted system differs a
bit from the system given here. The system submitted has English to use a radial basis
function with gamma and C to be 100. For Dutch and Spanish, the kernel is also a
radial basis function with gamma to be equal to 1 and C to be 100. The reason for this
difference is that the initial results from previous runs gave these values.

4 Conclusion and Recommendations

The use of word embeddings has some merits since the operation is in terms of vector
representation and it could be a richer representation. We were able to use this approach



to the current domain of twitter text with modest results. The highest accuracy for age
and gender classification for English is 44.8% and 68.2%. For Spanish, age classifica-
tion yielded 51.3% while gender classification gave 67.1%.

The interesting thing however is that these results came from something simple as
not fully preprocessing the input text, as well as using averages of word vectors, and
just discarding words that are not in the dictionary, and then just using a Support Vector
Machine. The dimensions used were also modest, a mere 100.

There is a lot of room for improvement. One, higher dimension representation could
also be used. Word2vec representations trained on twitter data could also yield a better
result, and further preprocessing that incorporates twitter specific attributes could be
done. Using word vectors also opens the possibility of using deep learning methods
with recurrent neural networks and convolutional neural networks.
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