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Abstract 
 

The aim of this work was in first place to define a methodology for the use of Py-GC/MS as 

a characterization technique for the organic compounds present in paper samples containing foxing 

stains, paper have a complex structure and mostly consist with cellulose fibers. Additionally, it was 

intent to characterize paper samples containing foxing stains with a batch of non-destructive 

analytical techniques. The work intent to deepen our knowledge on foxing stains, its chemical 

nature and morphological aspects.  For characterization of the morphology of paper samples and 

foxing stains was used photography under different illuminations and optical microscopy. The 

presence of fibers disruption was observed with scanning electron microscopy coupled with energy 

dispersive spectroscopy (SEM-EDS), and also the nature of the fillers that is present in different 

areas. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used for 

identification of the sizing agents, determination of the chemical composition of additives that were 

used for production of paper, and comparison between foxing stains and unfoxed areas was 

allowed. Micro X-ray diffraction was used to evaluate the crystalline fillers in the sample. 

Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS was used for chemical analysis to 

identify the organic components and different classes of organic compounds. 
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Resumo 

 
O objetivo deste trabalho foi definir, em primeiro lugar, uma metodologia para o uso de Py-

GC / MS como técnica de caracterização dos compostos orgânicos presentes em amostras de papel 

contendo manchas de foxing, o papel tem uma estrutura complexa e consiste principalmente com 

fibras de celulose. Além disso, pretendia caracterizar amostras de papel contendo manchas de 

raposas com técnicas analíticas não destrutivas. Para a caracterização da morfologia das amostras de 

papel e das manchas de foxing foi usada fotografia sob diferentes iluminações e microscopia óptica. 

A presença de fibras de ruptura foi observada por microscopia electrónica de varrimento juntamente 

com espectroscopia dispersiva de energia (EDS-SEM), assim como a natureza dos materiais de 

enchimento que está presente em diferentes áreas. Espectroscopia de infravermelho com 

transformada de Fourier em modo de reflexão total atenuada (ATR-FTIR) foi utilizada na 

identificação dos agentes de colagem, e na determinação da composição química de aditivos usados 

na produção de papel, e a comparação entre foxing manchas e áreas unfoxed foi deixada. Micro 

difracção de raios X foi usada para avaliar o enchimentos cristalinos na amostra. Cromatografia 

pirólise-gasosa / espectrometria de massa (Py-GC / MS) foi utilizada para análise química para 

identificar os componentes orgânicos e diferentes classes de compostos orgânicos.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1.INTRODUCTION
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1.1 The invention of paper and evolution 
 

People had always tried to find out something easier to write on than papyrus or parchment, 

that at the same time, should be easier and cheaper to make. People used various ways to express 

through writing in particular palm leaves, whale bone, seal teeth, shells, turtle shell, and more 

subsequently, silk and bamboo. It was also common to use stone, clay and even tree bark (Reis 

2009). It required long time to come up with paper. The mankind has used different writing material 

for a long time, but paper has become one of the most used materials of all times. From the earliest 

time, paper has retained the main characteristic and today offering different usages.  The process of 

papermaking spread all over the world and originally intended purely for writing and printing 

purposes.  

Paper is an essential element to everyday life; it is the basic material written communication most 

used and has a rich and colorful history and has been playing essential role in the development of 

cultures all over the world (Manso et al., 2009). 

105 A.D. is often cited as the year in which papermaking was invented by Ts'ai Lun and was 

reported to the Chinese Emperor the process for papermaking with specific reference to its use for 

writing and record keeping. Nevertheless, the manufacture of paper seemed to have occurred in 

China before the date, around the second century BC, during the ancient Han Dynasty, 200 years 

before the official historic records (Manso et al., 2008, 2009 & 2011; Enami et al., 2010).  

Originally, paper seemed to be made with a wide variety of materials by mixing plants and 

trees, as hemp and bamboo, old fish nets and textile waste, and also other sources of fiber were used 

to assist in refining (Williams 2006). The procedure consisted of disintegrating the fibers by 

fractionation and removal of the water; the operation was repeated with the new leaves and then 

pressed and placed in the heated drying walls.  

Progressive improvements were made for obtaining better paper quality with the use of soft 

material on wooden mold coating, rice straw, seaweed, and starch as a sizing agent (Williams 

2006). 
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The Chinese have guarded the secret of the production process for a long time and tried to 

eliminate other centers for manufacturing of paper. From China the manufacturing process was later 

taken to Korea in the year 600 and in 610 a Korean monk named Don-Cho shared his knowledge 

about this technique in Japan (Williams 2006) and they quickly introduced innovations for 

manufacturing of the paper. 

The techniques that were used in China and Japan were similarly, the technique used for the 

pulping process was giving a characteristic appearance and excellent quality to the produced paper, 

because the long fibers were not cut but simply prepared by beating. 

In the year 751 the Chinese were at war with the Arabs and were defeated, the secret spread 

quickly through different places in the world. Some Chinese prisoners who fell into Arab hands, 

were artisan knowledgeable in papermaking technique, they were taken to Samarkand and 

transmitted their knowledge of papermaking. From there, this secret spread rapidly in Baghdad 

about forty years later and in Egypt in the year 900 (Enami et al., 2010). 

The techniques for producing paper changed depending what kind of materials they were 

adding for making paper. In Europe the process of papermaking arrived 12th century, it had become 

the most common writing material in Europe, since Europeans learned this art from the Arabs 

(Manso et al., 2008; Williams 2006). 

In Europe, rag fibers used as raw materials were flax, hemp and jute. The rags were 

subjected to a fermentation process, essential for obtaining paper with good quality. The process 

was so long and difficult, others techniques were performed and the technology has improved over 

time. With the improving of the techniques, there was a large increase for paper demand, which led 

to a considerable shortage of raw materials, rags, thus beginning to be used plant fibers (Enami 

2010). 

Major changes in paper production were made in the second half of the 19th century, when 

rags were replaced by wood. The production became fully automated in all its stages from the 

preparation of pulp, the formation of the paper sheet, to the use of additives and finishes (Celpa, 

1993).  

Paper production consists of three main steps: preparation of pulp, sheet formation and 

drying.  During the production process it is important to consider some factors such as dyeing, 

sizing, pH correction and additives. The first phase of production consists in defibrations of fibers, 

intended to keep pulp free of impurities that will provide the required qualities to the paper by 

milling the fibers. 
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The second production stage is the formation of the sheet. The cellulose fibers are 

suspended in water and placed on a wire screen. The water flowing through this and the fibers are 

retained, forming a sort of fabric, with small yarns and drawn slightly each other. The third and 

final step is drying, in which the sheet is pressed to remove all the water and then passed through 

heated iron cylinders, occurring water evaporation. 

 

 

1.2. Paper production and paper components 
 

For many centuries paper has been used for documenting different historical events that are 

important for our history and recording the cultural achievements all over the world. The 

decomposition of paper is one inevitable process. The time that takes to paper decompose depends 

from several factors, still under study, namely, the production technology and environment factors 

(Strlič et al., 2008). 

Protection and preservation are important issues for the cultural heritage safeguard. 

Documents with different information as books, manuscripts, prints, and paintings are archives and 

museums’ responsibility, and they need to have safe storage, care and conservation treatment for 

long life. Degradation process and factors that have effect in duration and stability of paper are 

important factors (Strlič et al., 2005). For better protection of the paper is good to know the nature 

and production process of the paper.  

When wood pulp entered in the papermaking process the quality of the paper has been 

reduced. Depending from the mechanical or chemical process, paper made with wood pulp was 

more or less well purified. Depend from process, the difference with the papers that are produced 

previously is that the wood pulp is sized with rosin in an acidic medium and the paper will be 

yellowed and loses its original flexibility. During the process of papermaking, gelatin as an external 

sizing agent and very stable agent was used before the internal sizing with rosin and later this was 

replaced with the process of alkaline neutral sizing (Song et al., 2011). 
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Different papers documents that are printed in 19th and 20th century are in bad condition and 

not possible to read them. With the increased production of the paper there were also changes in the 

machinery, and new pulping processes were introduced, and as well new fillers, dyes, coatings, and 

sizing products. The paper that was produced in this period was with low stability. With an 

increased concern for the environment, the use of neutral sizing became a norm only in the 1990s 

(Strlič et al., 2005; Proniewicz et al., 2002). In the second half of the 20th century, the different 

fillers and china clay that was one of the most usual fillers were replaced with the use of calcium 

carbonate, that is consistent with the alkaline neutral sizing (Bazley et al., 1991). 

Paper is made from cellulose fibers, and in medieval times, the production of paper was 

from linen, hemp and cotton rags and at that time the cellulose material was of high quality, but the 

papermaking fiber depend also from the technique that is used. The pulping process has developed 

in different way in different countries, different changes were made on fibrous and non-fibrous 

materials as cellulose (Udriştioiu 2012), hemicelluloses and lignin, wood pulp, sizing agents, fillers 

and coatings.  

The composition of paper changed from almost pure cellulose to cellulose and significant amounts 

of hemicellulose and lignin. Paper made with wood pulp was well purified, according to chemical 

or mechanical processes (Manso et al., 2005). These fibers can be hold together in the plant from 

the bonding material that is called lignin, which is a complex natural organic polymer. 

 

1.2.1. Cellulose 
 

Cellulose is the most abundant biopolymer on Earth and people have used it for 

thousands of years in various forms as an indispensable material for human civilization, such as 

clothing, housing and application in building materials and as writing medium, textile, paper 

(Corsaro et al., 2013; Watkins, 2015). Figure 1.1 shows the molecular structure of cellulose as a 

carbohydrate polymer of glucose generated from repeating β-D-glucopyranose molecules that are 

covalently linked through acetal functions between the equatorials OH group of C4 and C1 carbon 

atom of β-1,4-glucan (Klemm et al., 2005; Park et al., 2010; Cristina 2011). Hydroxyl groups forms 

hydrogen bonding between cellulose chains holding them together to form fibrils, from which the 

cellulose fibers will be formed. The structure of cellulose is mainly due to the presence of covalent 

bonds, hydrogen bonds (Ratanakhanokchai 2013). The molecule of cellulose has many hydroxyl 

groups that interact strongly with water. Through drying and pressing the remaining water is 

removed, which bonds the fibers together into a sheet (Daniels 1996). The rest consist from 

amorphous form. 
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Mechanical properties of the cellulose have strong influence from the physical properties of 

cellulose, including solubility, hydroxyl reactivity and crystallinity that comes from the formation 

of intra- and inter-molecular hydrogen bonds in the cellulose (Fan 2012). The length of cellulose 

chain can vary from between 2,000 to 12,000 glucose units, this depend on the source, however the 

majority of cellulose molecules are from 8,000 to 12,000 units in length (Carr 2012). The 

polymerization degree of cellulose from the wood is up to 10,000, while the polymerization degree 

of cellulose from cotton reaches up to 15,000.  

The ability of strong intramolecular hydrogen bonds held the cellulose chains together into 

fiber that give strength to mechanical properties and chemical stability to cellulose (Laguardia 

2005). The strength of cellulose depends from the degree of polymerisation, so chemical and 

physical factors are the major contributors to paper deterioration.  

Cellulose fibers have weak points for chemical attack and mechanical forces; they contain 

various defect such as pores, crack, nodes, compression, failure and other site of damage (Ioelovich 

2008). Cellulose is found also in cotton plants or as combination of lignin and with other 

polysaccharides, so-called hemicelluloses in the cell wall of woody plants (Corsaro 2013).  

Other source of fibers are rags and silk, even hemp rope, old sails, old fishing, and certain amounts 

of additives, e.g., fillers, pigments and metal ions (Laguardia 2005). 

 

 

Figure 1.1 Molecular structure of cellulose (n=DP, degree of polymerization) (Klemm et. al., 2005) 

 

1.2.2. Hemicellulose 
 

Hemicellulose is a group of complex carbohydrates and is the second most abundant 

renewable organic material and with cellulose they are not chemically homogeneous. Hemicellulose 

makes up 25–30% of total wood dry weight. It is a polysaccharide which can be made from 

different monosaccharides, with a lower molecular weight than cellulose (Ratanakhanokchai 2013). 
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Hemicelluloses includes different polysaccharides that contain many of sugars monomers 

like: D-xylose, L-arabinose, D-mannose, D-glucose, D-galactose, L-rhamnose, and acetyled sugars. 

The type of hemicellulose varies depending on monomer composition (Xiaoa 2001). Hemicellulose 

consist of shorter chains sugars units that are linked together by β-1,4- and occasionally by β-1,3-

glycosidic bonds. 

The main component of hardwood trees that is found in hemicellulose is glucuronoxylan, while 

glucomannan is predominant in softwood. In contrast to cellulose, hemicellulose it is easily 

hydrolyzed. Hemicelluloses are bound in the plant cell walls, sometimes with different chains to 

cellulose to form a network of cross-linked fibers. They do not form aggregates; they have 

amorphous structure (Pe´rez 2002). 

Hemicelluloses are also covalently united to lignin, together with cellulose they are forming a 

highly complex structure (Ratanakhanokchai 2013).  

 

 

1.2.3. Lignin 
 

Lignin is class of complex polymer that is present in plant cell walls and wood tissues, they 

are particularly important in the cell walls, especially in wood and bark and is one of less 

characterized molecular group between the wood components (Ratanakhanokchai et al., 2013; 

Derkacheva 2008; Xiaoa 2001).  

After cellulose, is one of the most abundant natural polymer that is found and it is covalently 

linked to cellulose and hemicellulose in the cell wall of almost all plants used in paper industry, is 

insoluble in water and stable in nature (Heldt et al., 2005). Lignin show a certain variation in the 

chemical composition because of its complex macromolecule (Figure 1.2) and it is widely accepted 

that are different pathway for the biosynthesis of lignin that begin with the reaction of the cytosol 

with the synthesis of glycosylated monolignols from the amino acid phenylalanine -this is 

phenylpropanoid pathway- and the enzymatic polymerization of three types of phenols (Figure 1.3), 

which include coniferyl, sinapyl, and p-coumaryl alcohols joined together by different types of 

functional groups and linkages (Lisperguer et al., 2009; Watkins 2015). 

Lignin is composed from three monomers that are derived from phenylpropanoid units, p-

coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, they are joined through alkyl–aryl, alkyl–

alkyl and aryl–aryl ether bonds. The primary purpose is to give strength and water permeability to 

plants, but also to protect plants from pathogen infections (Ratanakhanokchai et al., 2013; Xiaoa 

2001).  

 

https://en.wikipedia.org/wiki/Glycosylated
https://en.wikipedia.org/wiki/Amino_acid
https://en.wikipedia.org/wiki/Phenylalanine
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The main component of softwood lignin is coniferyl alcoholis, while guaiacyl and syringyl alcohols 

are the main components of hardwood lignin (Pérez et al., 2002; Derkacheva 2008). They are 

numerous sources available of lignin and cellulose: hemp, cotton, jute, silk and wood pulp. The 

areas in which lignin is applicable include: emulsifiers, dyes, synthetic floorings, sequestering, 

binding, thermosets, dispersal agents, paints and fuels (Watkins 2015). 

 

 

Figure 1.2. Schematic representation of the structure of lignin (Watkins et. al., 2015) 

 

 

 

Figure 1.3. Precursors of lignin (Watkins et. al., 2015) 
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1.3. Paper degradation 
 

The deterioration of paper in books and archival materials because of the degradation of its 

cellulosic substrate has been recognized for many years. It is alarming that many materials in 

libraries are prone to rapid degradation, also most of the materials that are produced between 1850 

and 1950 are now fragile. The major changes in paper degradation include, biological, physical and 

chemical changes. When paper degradation is at the beginning is more easy to control than when 

the changes are more developed (Bronzato et al., 2013; Lin 2006).  

The paper degradation is a process of physical and chemical changes, conditioned by 

internal and external agents. Internal agents are directly related to the composition of paper, the type 

of fibers, chemical residues and metal ions present. External agents are physical and biological 

agents, in particular, temperature, relative humidity, ultraviolet radiation, atmospheric pollution and 

microorganisms (Pinzari et al., 2006). 

Within the external factors can be considered as more harmful, light source (natural or 

artificial), temperature and relative humidity, presence of microorganisms, packaging and 

inappropriate handling. The high temperature combined with high humidity lead to contraction and 

elongation of paper fibers and favor the proliferation of biological agents. The brightness is another 

source of paper degradation. Natural or artificial radiation is harmful for the paper, therefore the 

action of ultraviolet radiation is irreversible and extends even after the irradiation period has ended, 

thus contributing to the oxidation of cellulose (Manso et al., 2006; Proniewicz et al., 2001; Porck 

2000; Zou 1994).   

One external or environmental factor is, among others, the effect of moisture in paper, leading to 

the subsequent growth of fungi and bacteria. The growth of fungi will destroy the paper sizing and 

cause stains, and can be responsible for the loss of paper strength (Vohrer et al., 2001).  

Paper often contains traces of ions metal, in particular transition metals from the production 

process or contamination. These metal ions may be responsible for other process of deterioration of 

paper: the oxidative degradation of cellulose. Among the transition metal ions, copper appears to be 

catalytically active, followed by iron, cobalt and chromium (Šelih et al., 2007; Malešič et al., 2012; 

Laguardia et al., 2005). 
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The presence of oxide groups is one of the reasons for the degradation of the cellulose 

macromolecules. The degree of polymerization of the cellulose is reduced and reducing free end-

groups that are formed, which can easily be oxidized to carboxyl groups which induce 

autohydrolytic breakdown of cellulose (Fellers et al., 1989). Internal components of acidic 

hydrolysis can form hydronium cations (H3O
+) that can catalyze the cleavage of the glycosidic 

bond or by the action of cellulolytic enzymes (Corsaro et al., 2013).   

A decrease in the degree of polymerization directly affects mechanical properties of paper, 

such as tensile, tear, bursting strength and folding endurance (Jong et al., 2012). Long storage of 

different documents in archives will cause acidic paper to become delicate and brittle until it finally 

disintegrates, and because of this the writing in the documents also will be destroyed (Dabrowski 

2003).   

Several millions of books in the world suffer from the effects of acid degradation, i.e. the 

atmospheric hydrolysis of the inorganic salts resulting in the formation of acids, which attack 

cellulose fibers of paper.  Paper conservators have difficult job and they are making a lot of studies 

to find solutions about the deacidification but the chemical agents that are applied are in small 

amounts. They try to find appropriate method that would protect the documents that are in archives, 

museums and those with historical value (Kiuberis 2005).  

Deacidification is performed as a basic paper conservation technique, either manually or as a 

mass treatment. In manual techniques, water solutions of calcium or magnesium bicarbonate or of 

calcium hydroxide are most often used. Mass deacidification is carried out in batches with organic 

solvents and several procedures are available (Strlič et al., 2005).  

Oxidation process, the degree of polymerization of the cellulose is reduced and carboxyl 

groups (aldehydes and ketones) are formed (Fellers et al., 1989). Oxidation of cellulose, is process 

that usually run through the radical mechanism initiated by active oxygen species, with this 

process, the steps of the reactions are consecutive and numerous. The units of  β-D-

glucopyranose can be converted to an unstable oxidized derivative, with this the ring will open 

and in this way start the oxidative degradation (Corsaro 2013).  
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During the oxidation of paper can occur different phenomenon, the tideline phenomenon is 

one of the phenomenon and is of relevance to the conservation of paper, they are brown lines in 

paper and can affect the degradation of cellulose in the brown area itself and in neighboring areas 

(Jong et al., 2012). This phenomenon can occur when the paper is exposed to moisture. 

Possibly, hydrogen peroxide, water-soluble alkyl hydroperoxides and free radical species, such as 

peroxy, alkoxy, and hydroxyl radicals, present in the sheet, accumulate in the tideline area, where 

they meet with oxygen and rapidly multiply as a result of free radical chain reactions, leading to 

colored and other degradation products (Souguir et al.,2008). 

The phenomenon of discoloration that occur in different papers, including foxing stains, is 

associated with the oxidation of cellulose, it can occur as a result of reactions at the wet-dry 

interface (Souguir 2008). 

 

1.4. Discoloration of the paper 
 

The discoloration and weakness of paper over time can be as result of the spontaneous 

phenomena of cellulose degradation. To understand deterioration pathways and improving stability 

of papers and documents in cultural heritage, is essential to have detailed knowledge of products 

arising from cellulose degradation (Corsaro 2013).  

For paper, a common symptom of natural ageing is yellowing. Yellowing of paper has been 

attributed to photochemical reactions, which can be especially problematic for paper containing 

lignin. Discoloration of paper is effect used in historical documents that can also be due to a type of 

stain known as foxing. The foxing has been studied since 1930 by scientists and conservationists to 

elucidate the causes and establish protocols for the detection, prevention and treatment (Choi, 

2007). Foxing stains can be seen on different types of documents dating from the early sixteenth to 

the twentieth century (Manso et al., 2009; Buzio 2004). Foxing stains are considered to be damage 

for historical documents, newsprint, old books and manuscripts (Peters 2000).  

Foxing is a term that is used to describe stains that occur in form of small isolated patches of 

discoloration, stains often have an orange coloration or shades between yellow and dark brown 

(Manso et al., 2009; Bukova, 2008), usually they are limited in size, which are generally of small 

dimensions to relatively large stains and shape (Missori et al., 2004; Peters 2000). Paper that have 

high quality usually have dark foxing stains. Paper with low quality like newsprint, stains are with 

light color and having a critic shade. 

 

 



 

11 
 

To determine if certain stain need to be considered as foxing stain is hard because of the absence of 

specific criteria for definition of foxing stains (Goltz et al., 2010; Choi 2007). Foxing is a complex 

phenomenon and a lot of researchers working to understand the cause of foxing, because is not yet 

completely understood (Buzio et al., 2004).  

The presence of metal ions has been considered as a major cause of foxing. Metal 

contamination can result from the papermaking process or dust in the air. The dust in the air can 

contain up to 15% iron (Rebrikova and Manturovskaya 2000). Cellulose is directly oxidized 

catalytically in the presence of iron, copper and cobalt compounds and the reaction is faster at high 

relative humidity values (Katherine 1992). Iron plays an important role in accelerating the foxing 

and may lead to its appearance in a short time because its acidity is very high (Katherine, 2013).  

Bicchieri (2002) also states that the iron ion displaces calcium ions causing the weakening of the 

cellulose polymer. Copper is also responsible for stains that have a dark brown color and may have 

sometimes a bluish green ring to delimit the spot. It was found that copper is corroded by the 

presence of chloride and this corrosion migrate to surrounding areas, which may form stains (Choi, 

2007). Besides these metallic ions, other species may be related to the appearance of foxing. For 

example, hydrogen sulfide emitted from environmental pollution induces black spots (Choi, 2007). 

Another very important factor in the appearance of foxing is the relative humidity (RH). 

Nevertheless, foxing stains are characterized by a three-dimensional structure considering 

that foxing stains can penetrate into paper, and even move through successive pages, when 

increases the distance from the center of infestation their intensity decreases (Buzio et al., 2004). 

The foxing appearance depends on: technology of the paper production, level of dust and dirt on 

books, level of light exposure and the microclimate conditions during storage (Rebrikova and 

Manturovskaya 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 
 

1.5. Sizing of the paper 
 

The process of sizing is applied to the paper to act as a protective filler. Early oriental paper 

was unsized, soft, pliant, and absorbent. The Chinese have used a procedure similar to the coating, 

they apply in the surface of the paper gypsum and after a period they start to use an adhesive made 

from lichen. The Arabic papers were familiar to parchment, they were glazed to produce a highly 

polished surface, this process was after they were sized with starch (Garlick et al., 2013). 

In the 13th century gelatin was introduced as sizing agent in replacement of the starch paste, 

this method was used until 18th century, different additives such as alum were added to the gelatin 

and started to became more widespread (Missori et al., 2006). The use of this protein has additional 

advantages such as to improve their surface in terms of writing, to increase the physical and 

chemical strength of paper by decreasing the degradation of cellulose, to avoid discoloration of 

paper, to protect from environmental contaminants and may promote paper stability (Ormsby et al., 

2011; Barrett, 2011). The main problem with the generated sizing gelatin was their rapid 

deterioration in liquid medium during the manufacturing process, especially when weather was hot 

(Barrett et al.,2011; Garlick, 1986).  

Gelatin is the outcome of the somewhat random breakage of chemical bonds in collagen to form 

shorter chains of amino acids, the length of these peptide chains can vary, which affects properties 

of gelatin (Missori et al., 2006; Kolbe, 2004). 

In the 19th century for production of the papers animal glue was used for sizing, and it was 

substituted by rosin and alum, and more lately by others synthetic products (Laguardia 2005).  

The deterioration of the physicochemical properties of paper continued into the 20th century 

with the invention of the chemical wood pulp and the introduction of calcium carbonate as a filler 

(Adams et al., 2011).  

The process of sizing can be realized in two main ways: internal sizing and surface sizing. 

With internal sizing, very small amounts of sizing compounds are needed and it depends heavily on 

fiber hydrophobicity (Bajapi et al., 2005), in this way the sizing is possible at very low levels of 

added chemicals (Lindström 2008). Internal sizing agents are used in the paper industry to 

accomplish resistance against fluids, improving paper properties like wet strength and printability 

(Hundhausen et al., 2009). 
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Different compounds are available to make the sizing of paper to be more effective, but 

three chemical compounds dominate internal sizing commercially: alkyl ketene dimer (AKD), 

alkenyl succinic anhydride (ASA) and rosin.  

Alkyl ketene dimer (AKD) is one of paper sizing agent that is most widely used in natural 

papermaking (Song et al., 2012) and theoretically esterify wood compounds and result in a surface 

modification (Hundhausen et al., 2009). Alkyl ketene dimer (AKD) is a wax-like solid that 

produces extreme degrees of sizing, and is thought to bond in cellulose covalently (Bajapi et al., 

2005).  

Alkenyl succinic anhydride (ASA), is not so hydrophobic as AKDs, is in liquid form, oily 

material, and forms unstable emulsions in water. Alkyl ketene dimer (AKD) are less reactive types 

of sizing agents and enough stable toward hydrolysis, while alkenyl succinic anhydride (ASA) are 

very reactive sizing agents towards cellulose, but also very sensitive to hydrolysis, form this is 

concluded that these sizing agents are at the opposite in terms of stability of hydrolysis and 

reactivity toward cellulose (Lindström 2008).  

Internal sizing can be categorized into three types regarding the pH: acid sizing, neutral sizing, 

alkaline sizing.  

Surface sizing is old operation that includes the application of some hydrophobic chemicals 

to the areas of already formed paper at the convenient place at the dry end of the paper machine. 

The main surface sizing solutions consist of mainly modified starch. To have special effects 

sometimes others agent may include, such as polyvinyl alcohol, animal glue, wax chemicals, 

methylcellulose and carboxymethyl cellulose (Bajpai et al., 2005).  
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1.6. Analytical techniques used to analyses papers samples and the description of 

their methodology  
 

The characterization of papers with analytical techniques are an essential prerequisite in this 

field and can provide different information about the paper samples that are under investigation.  

Spectroscopy and optical based techniques were used to study paper degradation, some of its 

special characteristics make it an excellent tool for studying paper in a simple and non-destructive 

way (Missori et al., 2005).  

In this thesis, samples were analyzed by various analytical techniques for their 

characterization. The purpose of the examination with in-situ and non-destructive techniques is to 

get as much as possible information about the characteristic of paper without destroying the original 

sample.  

 We will do short review of the techniques that were used to characterize and analyzed the 

paper samples. With these techniques we manage to have different information, by examining the 

paper under various illuminations and with different magnifications. More informative techniques 

were used like X-ray diffraction, ATR-Fourier transform infrared spectroscopy, scanning electron 

microscopy/energy dispersive X-Ray spectroscopy (SEM/EDS) and pyrolysis gas chromotography 

(Py-GC/MS).  

 

i. Technical photography 
 

Imaging is an important technique and its main use has been for visual documentation. This 

method is use for direct observation and is considered to be starting point of every visual and 

scientific examination. Images have been used to document condition of the objects and 

microscopic examinations. Images are used rarely as an analytical tool to relate the physical 

properties of one art object (Berns et al., 2005).   

From the photography a lot of information can be obtained and those information, can give deep 

knowledge about the history of display and storage, its condition, color of paper, presence and 

degree of deterioration. With this technique is possible to have large field of view and complete 

depth of focus. Different examination can be performed using different types of illumination as 

standard, transmitted, and raking light and ultraviolet (UV) radiation.  
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ii. Optical microscopy 
 

Optical microscopy is fast method that has been used for many years to identify historical 

objects and a broad range of materials, including minerals, metals, ceramics, fibers and paints. With 

optical microscopy is possible to magnify small objects or particular areas, optical microscopy 

provides information on the structure and morphology of the object that with naked eye is not 

possible to have that information (Stuart et al., 2007; Murphy, 2012). Some of its special 

characteristics make it an excellent tool for studying paper in a simple and non-destructive way.  

This technique involves the variety of the light from the microscope to examine the 

materials. In fact, samples can be examined by transmitted or reflected light, where a single three-

dimensional image is obtained. The microscope can be also in different mode, normal mode 

operation in optical microscopy is bright field, and in the dark field mode is possible to have phase 

contrast, fluorescence and ultraviolet (Stuart et al., 2007; Leng, 2008). 

The microscope basically consists of two optical systems, the optical part, and mechanical 

part that have two objectives. The focus of the microscope systems is in the same area of the object 

but at an angle from each other. The lens has an essential optical characteristic that is expansion and 

is determined from the magnification of the objective and eyepiece.  

The stereomicroscope can work with different range of magnification, in low and high 

magnification, but also changes the quality and complexity. Maximum significant magnification is 

about x 140 (Stuart et al., 2007; Murphy et al., 2012).  
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iii. Scanning electron microscopy/energy dispersive X-ray spectroscopy- 

SEM/EDS 
 

Scanning electron microscopy is a powerful technique for the examinations of materials. 

SEM uses a beam of electrons and through this is possible to obtain images with high magnification 

and good depth of the field (Stuart et al., 2005). SEM equipment involve backscattered electrons 

(BSE) that provide information about elemental distribution and secondary electrons (SE) that 

produce an image that shows the morphology and the characteristic of the sample (Stuart et al., 

2005; Leng, 2008). SEM analysis allows to investigate and magnify the typical paper morphology, 

microstructure examination and characterization of fibers, also comparison of physical differences 

on paper artifacts (Ferreira et al., 2010), whereas information on the nature of the inorganic fillers 

(Castro et al., 2008) may be obtained from several analytical techniques, matching the qualitative 

results of EDS with those coming from the infrared studies (Castro et al., 2008; Kiuberis, 2005). 

The results of the elemental composition and the nature of fillers that is present in different areas 

are determined and spectra generated when SEM is coupled with energy dispersive X-ray 

spectrometer (EDS) (Manso et al., 2011). 

The scanning electron microscope operates in high vacuum, while recent studies have development 

that for biological samples is possible low pressure (Stuart et al., 2005) 

 

iv. Fourier transform infrared spectroscopy (FT-IR) 
 

Infrared spectroscopy is suitable technique for analysis of historical artefacts, taking into 

consideration the huge number of objects surveyed to establish the state of preservation (Manso et 

al., 2009). Shows big capacity to study material surface in conservation and restoration. Infrared 

spectroscopy offers a potential for the assignment of absorbance bands to specific molecular 

structures and to determine a variety of chemical and mechanical properties, also is used for 

characterization of the morphology (Weinstock 1993).   

Infrared spectroscopy has great importance for the characterization of the paper, and is 

possible to analyses paper in different fields of application, yields information about paper 

deterioration and ageing products in paper samples (Johansson 2000). This spectroscopic method 

was applied for identification of the origin of cellulosic fiber structure, and the degradation process, 

also the determination of the chemical composition of additives used in the process of papermaking, 

in order to identify the primary components of paper and to estimate the presence of other 

compounds (Udriştioiu 2012).  



 

17 
 

 
 

Figure 1.4. Scheme of Fourier transform infrared spectrometer (Barth et al., 2007) 

 

Considering that the instrument is portable, it can safely be used in an archival, library or 

museum and the application of analytical techniques free of chemicals or solvents is mandatory 

(Strlič et al., 2008; Manso, 2009; Kavkler, 2012).  

Attenuated total reflection Fourier transform infrared spectrometry (ATR-FT-IR) was used 

to differentiate the foxing stains from the unfoxed areas of the samples, this technique uses the 

internal reflectance of an infrared beam within ATR crystal (Skoog 1998).   

An infrared spectrometer can be operated in different ways, with attenuated total reflection 

(ATR) spectroscopy being the most adequate for the analysis of paper sheets. During reflection, the 

infrared radiation penetrates a short distance into the sample before being reflected back. The 

intensity of the radiation that penetrates the sample decays exponentially with the distance from the 

surface, giving the analysis a very short ability of penetration. Therefore, ATR is particularly 

effective for the analysis of surfaces and most suited for the purposes of this study (Ferreira et al., 

2009).   

 

 

 

 

 



 

18 
 

v. Micro X-ray diffraction 

 

X-ray diffraction technique is a good tool for the non-destructive characterization of 

crystalline and non-crystalline materials and is perhaps one of the most widely used analytical 

techniques (Pandian 2014).  The X-rays are generated by a cathode ray tube, filtered to produce 

monochromatic radiation, collimated to concentrate, and directed toward the sample (Dutrow et al., 

2016).  

X-ray diffraction (XRD), is used for the determination of the structure of crystalline 

materials. The distance between the crystalline plans satisfies Brag’s law, equation 1: 

 

𝑑𝑠𝑖𝑛𝜃 = 𝜆𝑚 

 

the atoms can be hit from the X-ray beam of the wavelength (𝜆), where d present the distance 

between the crystal planes from the rays that are reflected from the atoms that are located in two 

parallel planes, 𝜃 present the angle between the plane and the diffracted beam (Figure 1.5) (Howell 

2007). 

 

 

Figure 1.5. Diffraction of the x-rays from the parallel planes (Howel et al., 2007) 

The XRD provides information about the arrangement of the atoms and composition of the 

crystalline materials. Paper is composed of a matrix of cellulose, and to confer to paper the desired 

physical–mechanical properties, cellulose is added with a variety of inorganic fillers, the quantity 

and nature of which are characteristic of each manufacturer. The analysis with the X-ray diffraction 

allows to investigate the polymeric matrix and the inorganic formulation of paper composition 

(Causin et al., 2010).   
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vi. Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) 
 

Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) is destructive method and is 

used for chemical analysis to identify the organic components. The samples that can be analyzed 

with this method are in very small amounts (Keheyan et al., 2009), some of the samples were 

analyzed without any manipulation, but with one part of the samples we did some manipulation. 

With this method samples are thermally decomposed in the absence of oxygen (in an inert 

atmosphere) into volatile and semi volatile molecules, separated by gas chromatography and 

detected using mass spectrometry, so with the combination of gas chromatography and mass 

spectrometry (GC/MC) those molecules can be analyzed (Keheyan et al., 2008; Adams 2011). For 

identifying the individual peaks in pyrogram, mass spectroscopy is used. During the process of 

decomposition of the samples in high temperature the chemical bonds will break in a reproducible 

way, which depends on the structure of the molecule and the thermal energy available at a given 

pyrolysis temperature (Keheyan et al., 2008).   

Different review articles deal with the application of Py-GC/MS for analyses of historical papers 

and various wood type (Keheyan et al., 2008; Gao et al., 2013; Lin et al., 2009; Gu et al., 2013; 

Schwarzinger et al., 2010). 

Pyrolysis of the samples has been done also in presence of teramethylammonium hydroxide 

(TMAH) and the aim of this study is to characterize the organic components, as well to identify 

different classes of organic substances (Keheyan et al., 2009; Río et al., 2005).  
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2.1. Selection of the samples 
 

For this study two groups of samples were used: samples S1, S2 and S3 are presented in figure 

2.1, already characterized by non-destructive techniques in a previous work (Relvas et al., 2015). S1 

and S2 are music papers and sample S3 is a manuscript dating from 1862. Evaluation of fillers in 

sample S1 and S2, showed the presence of Al and Si, suggesting the use of an aluminum silicate. On 

sample S2 were found particles rich in Ca and S, pointing out the presence of calcium sulphate. In 

sample S3, particles rich in Ca in a much lesser extent than in the samples S1 and S2. μ-XRD showed 

the presence of kaolinite on both samples S1 and S2, while the presence of muscovite, was detected 

particularly on sample S2. The presence of kaolinite and muscovite was confirmed also by FT-IR 

analysis. Sample S2 showed the presence of lignin, suggesting that paper is composed from 

mechanichal wood, while sample S1 suggest the use of resinaceous sizing, and sample S3 the presence 

of amide I and II, suggesting the use of proteinaceous sizing (Relvas et al., 2015). These samples were 

used in this study for development of a methodology to analyze organic compounds by Py-GC/MS 

used in paper production. Additionally, this group of samples was used for the evaluation of the organic 

nature of foxing stains.  

The second group of samples was collected from stationary shops in Lisbon, from different 

manufactures. Paper conservator selected the samples by visual observation, based on the color of the 

foxing stains, and morphology of the papers. Samples were labeled as NB (new book) dating from 

1931, OB (old book) dating from 1951 and P (print). 

Samples that were analyzed in this study does not have historical value and they have a 

variations of composition. 

 

 

 

 

 

 



 

22 
 

a)     b)     c)  

          

 

 

 

 

 

 

 

                                                                    

   d)                                                  e)                                                      f)  

Figure 2.1 Photographic images of paper samples S1, S2, S3 and P, NB, OB obtained under standard 

light; Legend: a)S1, b)S2, c)S3, d)P, e)NB and f)OB 
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2.2. Technical photography  
 

Photographic imaging was used as a first step for the visual characterization of the samples. It is 

frequently used in documentation and evaluation of the surface morphology and chromatic description 

of the paper samples. Ultraviolet radiation was used to define details of the paper samples which may 

not be observed under standard light as fluorescence. In fact, some foxed stains present fluorescence 

under UV radiation.  

The images of the paper samples were obtained using a Nikon Coolpix P520 camera located on 

a column stand under different types of illumination as standard, raking, and transmitted light. The 

images captured in macro mode with film sensitivity (ISO 400) and using the same focal distance. The 

same conditions were used to capture the images under UV radiation, except for the film sensitivity 

(ISO 800), using an Waldmann W portable lamp with two TL4W/08 F4T5/BLB Philips lamps.  

For the photographic imaging under different illuminations different conditions were used: 

under standard light two sources of equal intensity equidistant from the object were used, while in the 

raking light mode, the light source was positioned at a low angle, located in one side of the paper 

sample and the light was projected across the surface. Under transmitted light a light box was used for 

the study. 

 

2.3. Optical microscopy 
 

The samples were observed by optical microscopy to obtain morphological information. Optical 

microscopy is a rapid method that provides information that is not visible to the naked eye. A Leica 

M205C microscope lens (maximum numerical aperture of 0.075 with 1.0× achromatic objective) was 

used for the analyses coupled to a Leica CLS × 100 light spot (Leica Microsystems). The incorporated 

digital camera Leica DFC 295 (Leica Microsystems) was used for image capturing.  

 

2.4. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-

EDS) 
 

Scanning electron microscopy (SEM) was used to observe the surface of the paper samples in 

high resolution, on the foxed and unfoxed areas. SEM-EDS is a technique frequently used for 

determination of elemental composition of different types of materials. SEM-EDS enabled detailed 

profiling of the elements present on the surface of the samples, elemental composition mapping, 

element point analysis and semi-quantitative analysis beside from morphological information. 

Samples were cut is small pieces from the foxed and unfoxed areas and placed face-up on two-

sided sticky tapes on aluminum SEM specimen holders. 
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Analyses were performed using a Hitachi S-3700N SEM coupled with a Brüker XFlash 5010 

Silicon Drift Detector-SDD energy dispersive X-ray-EDX spectrometer. 

The analyses were done in the variable pressure mode under a pressure of 20 Pa, avoiding 

coating the samples. Accelerating voltages of 20 kV was used for chemical analyses, while SEM 

imaging in the backscattered mode was used with accelerating voltages of 15 kV or 10 kV. The EDS 

detector have resolution of 123 eV at the Mn Kα line energy. The system allows reliable chemical 

mapping and point analysis from Na Kα X-ray emission energy up to the L emissions of the heaviest 

elements. Data was analyzed with Esprit1.9 software from Brüker Corporation.  

 

2.5. Fourier transform infrared spectroscopy (FT-IR) 
 

The samples were analyzed in ATR mode which allowed in-situ and non-destructive analysis. 

To reduce the effect of carbon dioxide and water vapor, background measurements were performed 

before sample analysis.  

The samples were in direct contact with the diamond crystal, positioned on the surface of the 

sample holder and pressure was subjected to the samples. The analyses were carried at room 

temperature and ambient humidity. The FT-IR spectra were obtained in ATR mode with a single-

reflection diamond ATR module using a Brüker Alpha spectrometer. 

 The spectra were acquired in the absorbance mode, in the range of 4000 to 375 cm-1 with 128 

scans and spectral resolution of 4 cm-1. They were recorded and analyzed using OPUS/Mentor software 

(version 6.5). 

The components of the paper were identified by comparing the main features of the obtained 

spectra with articles that have work in similar method and samples. 

 

2.6. Micro -X-ray Diffraction- (μ-XRD) 
 

X-ray diffraction is a technique used to identify and study materials with crystalline structure. 

The analyses were performed direct on the samples using a Brüker AXS D8 Advance diffractometer 

with a DAVINCI design, equipped with a Cu Kα radiation source, a Göbel mirror assembly and a 

LynxEye 1D detector, and operating with a DIFFRAC.SUITE software package. The analyses were 

carried out with a 0.3 mm diameter pinhole collimator. The diffraction patterns were collected from 3º 

to 75º 2θ at a step size of 0.05º 2θ, with a time per step of 1s and a working voltage and current of 40 

kV and 40 mA, respectively. The identification was performed with DIFFRAC.EVA software package 

using the ICDD PDF X ray pattern database. 
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2.7.  Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) 
 

2.7.1. Sample preparation 
 

For better sample homogenization, paper samples were finely grounded using liquid 

nitrogen. Samples of approximately -200 μg were weighted in stainless steel Eco-cup capsules and 

3 μL of derivatizing agent, tetramethylammonium hydroxide (TMAH, 25% in methanol), were 

added. Samples were left to dry for a while and then pyrolysed. Several replicates were made for 

each type of paper, foxing and non-foxing areas. 

 

2.7.2. Analysis by Py-GC / MS 
 

The pyrolyzer- system used was a double-shot PY-3030D from Frontier Lab. The interface 

was maintained at a temperature of 280 ° C. The pyrolyzer was coupled to a Shimadzu GC2010 gas 

chromatograph, also coupled to a GCMS-QP2010 Plus mass spectrometer. A capillary column 

Phenomenex Zebron ZB-5HT (30 m length, 0.25 mm internal diameter, 0.50 μm film thickness) 

was used for separation, with helium as carrier gas, and adjusted to a flow rate of 1.5 mL-/- min. 

The splitless injector operated at a temperature of 250 ° -C. The GC temperature program was: 40 ° 

-C for 5 minutes, then ramp until 300 ° -C at 5 ° -C -/- minute, followed by an isothermal period of 

13 minutes. Source temperature was set at 240 ° -C and the temperature of the interface was kept at 

280 ° -C. The mass spectrometer was programmed to acquire data between 40 and 850 m -/- z. 

Sample were placed in a 50 uL Eco-cup capsule, and transferred to the double-shot pyrolyzer with 

the aid of an Eco-stick. The capsule was placed in the pyrolysis interface, where it was purged with 

helium for 2 minutes. Sample were pyrolyzed using a single-shot method with a temperature of 500 

° -C for 12 seconds and then analyzed on the GC/MS system. Identification of compounds was 

performed using the software AMDIS and NIST database. To avoid contamination between 

samples, blank runs were inserted between each Py-GC/MS analysis. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.RESULT AND DISCUSSION 
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3.1 Morphological characterization of paper samples 
 

In this section the results of the second group of samples, NB (new book), OB (old book) 

and P (print) are presented in the first place since they included the analytical characterization of the 

paper samples by different techniques. After that, the Py-GC/MS results from the first group of 

samples S1, S2 and S3 which include the methodology designed for the analysis with this technique 

will be presented followed by Py-GC/MS the results from the second group of samples. 

Paper is a complex matrix, being the main components cellulose, hemicellulose and lignin, 

eventually in significant amounts. It also contains others components such as non-fibrous materials, 

like fillers, coatings and sizing materials. Material characterization was done to evaluate the 

morphology and chemical composition of the paper samples under study and compare degraded 

areas due to foxing stains with non-degraded areas to contribute to a better understanding of this 

specific degradation process.  

 

3.1.1 Description of paper samples and foxing stains (second group of samples) 
 

Paper samples photographed under different illumination are presented in the table 3.1. 

Sample that is labeled with P is a lithography, with white color and very smooth surface, without 

gloss on the surface, printed on medium thickness. It is a translucent paper and it contains rag 

fibers. The foxing stains are agglomerated, with irregular shape, and colored with is brown/grey 

hues. They present, fluorescence under UV radiation. The back of the paper samples present larger 

intensity of the foxing stains. 

The paper sample NB (page 63) is paper with crema color, velino, roofless, slight surface 

texture, the paper is printed in medium thickness. The paper and the foxing stains are translucent. 

The paper sample contains mainly mechanical soft-wood (70%) and chemical soft-wood. The 

foxing stains have an orange coloration, with irregular shape and diffuse contour.  

The paper sample OB is a paper with off white color, the texture is very smooth like 

coucheé, and it is a translucent paper. The paper is printed in a medium thickness. Foxing stains in 

the page that is analyzed are not visible to the naked eye but visible under UV radiation. The paper 

sample contains a mixture of rag fibers (20%) and chemical soft-wood (70%) fibers and a little bit 

of mechanical wood (10%). 

Table 3.1 present a descriptive summary of each sample. 
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Table 3.1 General description of the paper samples 

Samples Texture Color Presence of foxing 

P Smooth  White/without 

gloss 

Irregular spots and high concentration 

on its entire structure, particularly the 

verso part 

NB Slight surface texture Crema Uniform spots on the entire surface 

OB Very smooth like coucheé Off white not visible to the naked eye but 

visible under UV radiation 

 

    

3.2 Photographic imaging 
  

 The first evaluation of morphological characterization of the paper samples was done by 

photographic imaging under different illuminations. 

Photographic images (Table 3.2) were used to record the natural tones of the paper samples, 

the foxing stains and the conservation state of the samples. The paper samples have different 

characteristics such as texture, thickness and color. The foxing stains have different morphological 

aspects. Images with raking light were done in macro mode. Standard light was used to obtain 

information about color, deformations, and damages on the paper, while transmitted light was used 

for better visualization of the foxing stains and paper structure. Transmitted light can give 

information about the paper structure, thickness and opacity. The verso of the samples was also 

evaluated and the gathered information showed that the paper sample P presented more foxing 

stains on it. Sample NB showed the presence of foxing stains also on the back of the page, while 

sample OB do not present foxing stains because they are not visible to naked eye.  

The samples were also observed under UV radiation (Table 3.2) that according to Rakotonirainy et 

al., 2015 is the adequate method to analyze the ultraviolet induced visible fluorescence of the paper. 

Fluorescence is not observed when the discoloration of the foxing stains has developed into dark-

brown but can be observed before discoloration. UV fluorescence, in the early stage of the foxing 

stains is more easily detected than in the colored stains. 
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Some studies (Manso et al., 2009; Rakotonirainy et al., 2015) reported that some foxing stains 

fluoresce under UV radiation. That is the case with the paper samples P, NB and OB that under UV 

radiation, the foxing stains are fluorescent, also fluorescence can occur in some clear areas. The 

foxing stains on the paper sample OB with naked eye were not visible but when the paper was under 

UV radiation the foxing stains were visible. Some studies (Bicchieri et al., 2002) suggested that 

fluorescence can occur in intermediate stage of degradation process of paper. 

The use of raking light reveals detailed characteristic and topography of the paper, including surface 

texture like irregularities and planar deformations.  

 

 

 

 

 

 

Table 3.2. Photographic Images of the Paper Samples under different illuminations 

Sample Standard light Transmitted light UV radiation Raking light 

P  

 

 

 

 

 

 

     

NB 

 

 

 

 

 

 

 

 

    

OB  

 

 

 

  



 

30 
 

3.3 Optical microscopy 
 

 For a more detailed view, the paper samples were observed by optical microscopy with 

different magnifications (Table 3.3) which allowed a better morphological discription of the foxing 

stains. In the table 3.3 is presented also the paper sample OB only for the unfoxed areas because 

foxing stains in the page that is analyzed are not visible to the naked eye but visible under UV 

radiation.   

Throught the observation it becomes easier to differentiate the texture of paper samples and 

it was possible to see the color of the foxing stains. The observation under a stereomicroscope 

showed differences in the morphology between the different paper samples.   

The magnification of 7.8x is the lowest and is possible to distinguish the spots, color and vary in 

size. The paper sample P has a hight concentration of foxing stains in one place, with irregular 

shape and with brown/grey color, while the paper sample NB has a cream color and the foxing 

stains are uniform, foxing stains are not visible with naked eye in the paper sample OB. The 20x 

magnification can distinguish better the shape and size of the foxing stains, while the 63x 

magnification becomes quite useful in order to differentiate the roles for texture and themselves 

spots of foxing. 
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Table 3.3. Optical microscopy observation 

Magnification 

Sample 7.8x 20x 63x 

 

P-foxed 

areas 

 

 

 

 

 

 

P-

unfoxed 

areas 

   

NB-

foxed 

areas 

 

 

 

 

 

 

NB-

unfoxed 

area 

   

OB 
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3.4 Scanning electron microscopy coupled with energy dispersive X-ray 

spectroscopy – SEM-EDS 
 

The scanning electron microscopy (SEM) analysis allowed to observe the surfaces of paper 

samples in the foxed and unfoxed areas at high resolution in the backscattered electron imaging 

mode and also to determine the main elemental components by EDS analysis. 

Three different areas of analysis were selected in the paper sample P (Figure 3.1) for morphological 

examination and elemental analysis: an area containing darker stains (1), an area from the whitish 

stains (2) and an unfoxed area (3). 

 

 

  

Figure 3.1. Areas of analysis selected for the SEM-EDS study; Legend: 1- area containing darker 

stains, 2- area from the whitish stains, 3-unfoxed area 

 

Images of unfoxed and foxed areas of paper P are presented in table 3.5. These results are 

representative of other analyses that were done but are not presented. The comparison of the images 

from three different regions showed no differences from a morphological point of view for the 

unfoxed and foxed areas. Contrary to what was observed with other samples (Relvas et al., 2015), 

and namely with S2 and S3 samples (Relvas et al., 2015). The unfoxed areas do not present 

disruption of the fibers or accumulation of particles.  The samples’ surface was structurally 

organized, paper fibers seem to be in good condition, without any visible disturbance. A similar 

behavior was observed by sample S1 (Relvas et al., 2015). Sample P does not present a large 

amount of fillers contrary to samples NB and OB.  
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Images of the unfoxed and foxed areas of paper samples NB and OB are presented in table 

3.5. Images of the unfoxed and foxed areas show accumulation of dirt, do not present disruption of 

fibers, without any visible damage. Samples NB and OB present large amount of fillers and do not 

show presence of fibers. The foxed areas in paper sample NB exhibit the presence of more particles 

than unfoxed area. Samples observed with SEM do not show substantial degradation of the 

cellulose fibers. Analyses in paper sample OB were performed in foxed and unfoxed areas that were 

invisible to the naked eye but visible under UV radiation. The chemical analysis gives the same 

information the difference is only in the physical view.  

Filler materials and impurities of heavier elements were observed in the backscattered 

electron images for more detailed information.  

 

Table 3.5 Scanning electron microscopy micrographs of foxed and unfoxed areas in 

paper samples P, NB and OB 

 

Unfoxed area 

(sample P) 

 

   

 

Foxed area 

(sample P, 

darker stains) 

  

Foxed area 

(sample P, 

whitish stains) 
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Unfoxed area  

(sample NB) 

  

Foxed area  

(sample NB) 

  

Unfoxed area  

(sample OB) 

  

Foxed area 

 (sample OB) 
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EDS analysis was used to obtain information on the elemental composition of paper 

samples. Elemental mapping (Table 3.6) and point analysis (Figure 3.2) of unfoxed area in paper 

sample P revealed the presence of silicon (Si), aluminum (Al) and calcium (Ca), the paper is 

homogenous and elements are not spread. Particles rich in calcium indicate the presence of CaCO3 

(Manso et al., 2011; Manente et al., 2012; Nunes et al., 2015) that can be produced when lime 

easily reacts with atmospheric carbon dioxide (Dąbrovski et al., 2003). Lime was used during the 

production of paper for the beating process of rag fibers (Dąbrovski et al., 2003). The presence of 

aluminum (Al) and silicon (Si) was detected in this sample, suggesting the use of aluminum silicate 

as filler during the production of paper or more probably resulting from some type of 

contamination, like dust (Manso et al., 2011). Point analysis also detected the presence of iron (Fe) 

that can be associated with the process of paper production (Manso et al., 2015).  

 

Table 3.6 EDS elemental mapping for the unfoxed area of paper sample P 

 

 

 

 

 

 
 

 

 

 

 

 

 

             
 

Figure 3.2. Point analysis of unfoxed area in paper sample P 

EDS mapping (Table 3.7) of foxed area (darker stains, area 1) in paper P revealed the 

Ca 
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presence of calcium (Ca), potassium (K), silicon (Si), and sulfur (S). These elements were detected 

also by point analysis (Figure 3.3) and elemental area analysis (Figure 3.4). 

Particles rich in calcium indicate the presence of CaCO3 (Manso et al., 2011; Manente et al., 2012; 

Nunes et al., 2015).  

 

 

Table 3.7. EDS elemental mapping for the foxed area (darker stains, area 1) in paper sample P 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

    

 

Figure 3.3 Point analyses of foxed area (darker stains, area 1) in paper sample P 
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Figure 3.4 Area analyses of foxed area (darker stains, area 1) in paper sample P 

 

 

EDS mapping of a foxed area (whitish stains, area 2) in sample P is presented in table 3.8. 

EDS analysis detected calcium (Ca) and phosphorus (P) as the main elements in particles, and small 

amounts of aluminum (Al) and silicon (Si). Particles rich in calcium indicate the presence of CaCO3 

(Manso et al., 2011; Manente et al., 2012; Nunes et al., 2015) which is the basic constituent of 

paper. The presence of silicon (Si) and aluminum (Al) was also detected in different particles but in 

small amounts, suggesting the use of aluminum silicate as filler.  

The EDS analysis from the darker stains (area 1, figure 3.1) and whitish stains (area 2, 

figure 3.1) do not show differences between darker and whitish stains, they indicate the presence of 

the same elements, also the SEM analysis do not show differences between them. 

 

 

Table 3.8. EDS elemental mapping for the foxed area (whitish stains, area2) in paper sample P 
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Figure 3.5 Point analysis of foxed area (whitish stains, area 2) in paper sample P 

 

EDS mapping (Table 3.9) and point analysis (Figure 3.6) of unfoxed area in paper sample 

NB revealed the presence of silicon (Si), aluminum (Al) and potassium (K), and small amounts of 

iron (Fe), sulfur (S) and zinc (Zn). Elemental composition inferred that paper contain aluminum 

silicate as filler with potassium that can be from muscovite. The presence of kaolin was also 

observed, kaolin is most widely used filler in paper manufacture to improve paper performance, to 

increase opacity, brightness and paper gloss (Wilson et al., 2006). 

The presence of zinc and iron could be associated with contamination from the papermaking 

process (Nunes et al., 2015). 

 

Table 3.9. EDS elemental mapping for the unfoxed area in paper sample NB 
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Figure 3.6 Point analysis of unfoxed area in sample NB 

 

 

EDS mapping (Table 3.10) and point analysis (Figure 3.7) of foxed area in sample NB 

indicate the presence of aluminum (Al), silicon (Si) and potassium (K), and small amounts of iron 

(Fe) and magnesium (Mg). The elements were also identified by the elemental area analysis (Figure 

3.7) indicates the presence of same elements. The chemical composition of unfoxed and foxed areas 

of sample NB are the same, foxed area also contain aluminum silicate with potassium that can be 

from muscovite.  

 

Table 3.10. EDS elemental mapping for the foxed area in paper sample NB 
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Figure 3.7 Point (top) and area (bottom) analysis of foxed area in sample NB 

 

EDS mapping (Table 3.11) and point analysis (Figure 3.8) in the unfoxed area in paper 

sample OB indicate particles that contain aluminum (Al), silicon (Si), potassium (K), calcium (Ca) 

and sulfur (S) and small amounts of iron (Fe), magnesium (Mg), and phosphorus (P). The elements 

were also identified by area analysis (Figure 3.8). It can be inferred from the elemental composition 

that paper contain aluminum silicate with potassium that would probably be related to muscovite 

(Bazely et al., 1991).  
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Table 3.11. EDS elemental mapping for the unfoxed area in paper sample OB  
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Figure 3.8 Point (top) and area (bottom) analysis for the unfoxed area in sample OB 

 

 

EDS mapping analysis (Table 3.12) and point analysis (Figure 3.9) of foxed area in sample 

OB indicate the presence of aluminum (Al) and silicon (Si) as the main elements, and in small 

amounts calcium (Ca), magnesium (Mg), and iron (Fe). The area analysis (Figure 3.10) detected the 

same elements as the point analysis. Kaolin is one of the most versatile industrial mineral and is 

mostly used as filler for paper (Sengeputa 2008) and has platy morphology, is preferable for fiber 

coverage and paper gloss (Wilson 2006). Kaolin filler, a hydrated aluminum silicate (Al2O3. 

SiO2.2H2O), was very common and may be found in most grades of 19th -century papers (Beazley 

et al., 1991; Nunes et al., 2015).  
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Table 3.12. EDS elemental mapping for the foxed area in paper sample OB 

 

 

 

 

 

 

 

 

 

 

 

 

       

Figure 3.9 Point analysis of foxed area in sample OB 

 

       
 

Figure 3.10 Area analysis of foxed area in sample OB 
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3.5 Fourier transform infrared spectroscopy (FT-IR) 
 

ATR-FT-IR analysis is used to identify organic and inorganic constituent of the paper as 

organic coating and others materials of interest that are present on unfoxed and foxed areas of the 

paper samples.  

ATR-FT-IR aspectra showed in all the samples the absortion bands of cellulose in the region 

between 1500-850 cm-1. Usually cellulose bands are recognized in the fingerprint region, being the 

vibrational pattern of cellulose very complex in this range (Manente et al., 2012; Nunes et al., 

2015). Cellulose is a long chain polymer of glucose and the main component of paper materials 

(Udriştioiu et.al., 2012). A band at about 3330 cm-1 corresponds to the O–H stretching mode of 

cellulose/water molecules, while a band in the region of 3000-2900 cm-1 corresponds to the C–H 

stretching vibrations of cellulose (Brandt et al., 2009; Manente et al., 2012; Derrick et al., 1999). 

The range between 1200 and 900 cm-1 covers the C-O and C-C stretching, anti-symmetric bridge C-

O-C, as well as C-C-H and O-C-H deformation vibrations (Proniewicz et al., 2002; Nunes et al., 

2015; Rakotonirainy et al., 2015). C-O-H in-plane bendings, C-C-H, O-C-H, and C-C-H 

deformation stretching, as well as H-C-H bending and wagging are observed in range of 1500 and 

1200 cm-1 (Proniewicz et al., 2001; Nunes et al.,2015).  

In figure 3.11 is presented the AT-FT-IR spectra of sample P. The spectra are representative 

of several analyses done in the non-foxed areas and in the foxing stains with darker color and not so 

dark (whitish) color. AT-FT-IR spectra for the foxing dark stains and whitish stains is presented in 

figure 3.3, the spectra of both stains are identical and do not show differences between the dark and 

whitish stains of the paper.   

In the figure 3.12 is presented the AT-FT-IR spectra of the sample P. In sample P of 

unfoxed area were observed bands at 1427 and 900 cm-1 which were due to calcium carbonate 

(Manete et al., 2012; Nunes et al., 2015). Two bands of unfoxed area in sample P can be assigned at 

around 1630 cm-1 and 1561 cm-1, these bands are attributable to amide I and II of a proteinaceous 

material used in sizing (Manente et al., 2012; Derrick et al., 1999), but the bands increase more in 

the foxed areas that can be due to the presence of fungi in the paper sample. 
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Figure 3.11. Attenuated total reflection Fourier transform infrared spectra of foxed dark stains 

(blue line) and foxed whitish stains (red line) of paper sample P  

 

 

Figure 3.12. Attenuated total reflection Fourier transform infrared spectra of unfoxed (red line) 

and foxed darker areas (blue line) of paper sample P 
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Figure 3.13 show the spectra corresponding to paper sample NB obtained for the unfoxed 

and foxed areas. Two characteristic bands in the foxed area at 3680 cm-1 and 3618 cm-1 are due to 

the presence of kaolin, inorganic filler (Udriştioiu et al., 2012; Saikia et al., 2010).  

Paper sample has in its composition lignin, visible by the characteristics bands at 1504 cm-1, and 

793 cm-1 (Manente et al., 2012; Bordȋlau et al., 2009; Nunes et al., 2015, Derkacheva et al., 2008), 

this suggest that paper is composed of mechanical wood. 

In unfoxed area of sample NB was observed one band at 1729 cm-1, characteristic for resinaceous 

materials, as rosin (Manente et al., 2012; Derrick et al., 1999). Rosin was used as a sizing agent for 

many years, extracted from coniferous trees, as a soap or an emulsion was added to the fiber 

suspension and fixed to cellulose (Bazley et al., 1991). 

The characteristic bands of amide I and II, at 1560 and 1648 cm-1 is notorious in the spectrum of the 

foxed area. These visible protein bands can be attributed to the presence of fungi (Nunes et al., 

2015). Decomposition of cellulosic material by fungi depends on the chemical composition of the 

materials (Manente et al., 2012; Abdel-Maksoud et al., 2011). The presence of fungi in the paper 

can cause discoloration of the paper and physical disruption (Manente et al., 2012). 

 

 

 

Figure 3.13. Attenuated total reflection Fourier transform infrared spectra of unfoxed (red line) 

and foxed areas (blue line) of paper sample NB 
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Figure 3.14 shows the spectra corresponding to paper sample OB obtained for foxed and 

unfoxed areas. The bands in the unfoxed area at 3680 cm-1 and 3618 cm-1 are due to the presence of 

kaolin, inorganic filler that was added to paper to confer good physical-mechanical properties, and 

one small band of kaolin was observed at 1114 cm-1 (Udriştioiu et al., 2012; Saikia et al., 2010). 

The bands at range 529 and 461 cm-1 indicate also the presence of kaolin (Proniewicz et al., 2002; 

Nunes et al., 2015). Kaolin filler, a hydrated aluminum silicate (Al2O3. 2SiO2. 2H2O) and as a filler 

may be found in papers that are produced after 19th century. Primary clay of kaolin may contain 

some percent of muscovite that contain potassium (Beazley et al., 1991). The presence of aluminum 

silicate with potassium was observed also by EDS analysis.  

In the range at 1700-1250 cm-1 were observed the main spectral differences of foxed and unfoxed 

areas. The bands at 1621 cm-1 and 1545 cm-1 on the paper OB are due to amide I and II of peptide 

groups, and were more intense in the foxed area (Manente et al., 2012; Nunes et al., 2015).  

 

 

Figure 3.14. Attenuated total reflection Fourier transform infrared spectra of unfoxed (red line) 

and foxed areas (blue line) of paper sample OB 

 

Differences in intensity and appearance of bands assigned to the vibration of C-H and O-H 

groups, and to the fingerprint region of cellulose, were due to the surface modification of the 

morphology of paper. The most important band wave numbers, possible assignment and 

interpretation of paper samples are presented in the table 3.13.  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

300800130018002300280033003800

A
b
so

rb
an

ce
 

wavenumber cm-1

unvisible foxing

unvisible unfoxing

kaolin
kaolin

amide I and II

fingerprint region
(cellulose)

kaolin



 

48 
 

Table 3.13   Band Wave numbers (cm-1), Tentative Assignment, and Interpretation of ATR-FTIR spectra  

of sample NB, P and OB  

Wavenumber (cm-1) 

      

        Books         Print 

 

NB OB Pd Tentative Assignment Interpretation 

3,680 3,680  Si-O-Al stretching Kaolin 

3,618 3,618  Si-O-Al stretching Kaolin 

3,330 3,325 3,327 O-H stretching Hydroxyl group of cellulose, 

water in cellulose 

2,916 2,914 2,899 C-H stretching Aliphatic hydrocarbons 

1,729   C     O stretching Resinaceous sizing 

  1,630 C     O stretching Amide I (proteinaceous sizing) 

1648 1,621  C     O stretching Amide I (presence of fungi) 

1560 1,545  C-N stretching Amide II (presence of fungi) 

  1,561 C-N-H bending Amide II (proteinaceous sizing) 

1,504   C     O stretching Lignin 

1,431  1,427 CO3
2- stretching Calcium carbonate 

 1,114  Si-O-Al stretching; C-O-C symmetric stretching Kaolin; cellulose 

900  900 O-C-O; skeletal vibrations Calcium carbonate; cellulose 

793   C-H deformation out of plane, aromatic ring Lignin 

 529  Si-O-Al stretching Kaolin 

 461  Si-O-Si bending Kaolin 

 

Rows in grey refer to the foxed area spectra. Other results were obtained from the unfoxed area 

spectra (Udriştioiu et al., 2012; Manente at al., 2012; Nunes et al., 2015) 

Attenuated total reflection Fourier transform infrared spectroscopy 
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3.6 Micro X-ray diffraction (μ-XRD) 
 

Micro XRD analysis on the paper samples P, NB and OB was carried out in order to 

evaluate cristalline fillers in the sample. 

μ-XRD analysis of paper sample P showed the presence of type I cellulose with peak at 

14.98˚, 16.48˚ and 22.78˚ 2θ, (Figure 3.15). The X-ray diffraction patterns confirmed the SEM 

visuallization of the amount of fillers: sample P almost does not present fillers while NB and OB 

contain huge amonts of them with less amounts of fibers. The presence of others minerals, kaolinite 

and among others muscovite was observed in paper samples NB and OB, the assignment has been 

made on the basis of results reported in figure 3.16 and 3.17. Muscovite was noticed in larger 

quantities in the paper sample OB. Kaolin minerals frequently include small amounts of K, Mg, Fe 

and Ti and are most comon developed from muscovite., the presence of those elements was 

confirmed also by EDS analysis.  

The presence of Aluminium magnesium hydroxide silicate (18.78˚ 2θ) was observed in the 

paper sample OB. In the appendix 1 is presented table 1.1 for the diffraction peak list, identified for 

the paper samples P, NB, OB. 

 

 

 

Figure 3.15 Micro-XRD diffractogram of paper sample P; C-cellulose 
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Figure 3.16 Micro-XRD diffractogram of paper sample NB; M-muscovite, K-kaolinite, C-cellulose 

 

 

 

Figure 3.17 Micro-XRD diffractogram of paper sample OB; M-muscovite, K-kaolinite, Al- 

Aluminium Magnesium Hydroxide Silicate, C-cellulose 
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3.7 Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) 

 

3.7.1 Evaluation of Py-GC/MS to access paper foxing 

 
Py-GC/MS is an analytical technique widely used for characterization of paper (Odermatt 

et- al., 2003), and in this work it was used to study the different papers and investigate possible 

differences in the composition of the foxing stains and unfoxed areas. 

Paper S1 and S2 were sampled in the foxed and unfoxed areas and figures 3.18 and 3.19 show 

representative pyrograms of these samples. A variety of products is released from the pyrolysis of 

the samples (compounds from sample S1 are listed in the table 3.13 and for the sample S2 in table 

2.1, appendix 2), but there also no significant differences in terms of composition between foxed 

and unfoxed areas.  

As the major difference observed between the samples was the peak area, the reproducibility of the 

pyrograms became a very important issue. If the peak areas are not reproducible, the observed 

differences became irrelevant for the purpose of comparing the chemical composition of foxed and 

unfoxed areas. 

 

Figure 3.18. Py-GC/MS pyrogram of sample S1, Legend: S1F-01 sample from a foxing stain; 

S1-01, sample from the unfoxed area of the sample 
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Figure 3.19. Py-GC/MS pyrogram of sample S2, Legend: S2-F01, sample from a foxing stain; 

S2-01, sample from the unfoxed area of the sample 
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Table 3.13. Compound obtained from the Py-GC/MS from the foxed and unfoxed area of the 

sample S1 

 

 

Rt (min) Chemical name Intensity Structure S1 S1F Source 

2.6867 Acetic acid, methoxy-, 

methyl ester  

2 

 

- + hemicellulose 

2.8558 1-Hydroxy-2-butanone  1 

 

- + cellulose 

3.0500 Dimethylsilanol  2 

 

- + unknown 

3.1608 2-Propanone, 1-hydroxy-  1 

 

- + cellulose 

3.7250 Succindialdehyde  2 

 

- + unknown 

4.4892 Propanoic acid, 2-oxo-, 

methyl ester  

1 

 

- + sugar 

4.7017 Propanoic acid, 2-methoxy-

, methyl ester 

1 

 

- + sugar 

5.0025 1,4-dioxadiene 1 

 

- + unknown 

7.5158 Furfural 2 

 

- + cellulose 

9.0933 2-Butanone  1 

 

- + Carbon 

Selectvity 

(sugar) 

9.8817 2-Propanone, 1-

(acetyloxy)-  

1 

 

- + sugar 

11.5350 Ethanone, 1-(2-furanyl)-  1 

 

+ - cellulose 

11.6658 2-Cyclopenten-1-one, 2-

methyl-  

1 

 

- + cellulose 

11.9275 Butyrolactone  

 

 

1 

 

- + cellulose 
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Rt (min) Chemical name Intensity Structure S1 S1F Source 

12.5383 2-Cyclopenten-1-one, 2-

hydroxy-  

2 

 

- + Cellulose 

14.3442 5 METHYL FURFURAL  1 

 

- + Cellulose 

14.9825 3-Methyl-5-methyliden-

2(5H)-furanone  

1 

 

- + hemicellulose 

16.1533 Butanoic acid, anhydride  a)1 b)2 

 

+ + unknown 

16.7533 2-Cyclopenten-1-one, 2-

hydroxy-3-methyl-  

1 

 

+ - cellulose 

17.9975 Phenol, 2-methyl-  1 

 

- + lignin 

18.7033 2-Cyclopenten-1-one, 3-

ethyl-2-hydroxy-  

3 

 

+ - cellulose 

19.2350 Phenol, 2-methoxy-  2 

 

- + lignin 

19.3683 2-Cyclopenten-1-one, 2-

hydroxy-3-methyl-  

3 

 

+ - cellulose 

20.0133 Maltol  1 

 

- + cellulose 

20.2342 2-Cyclopenten-1-one, 3-

ethyl-2-hydroxy-  

1 

 

- + cellulose 

20.4517 2-Tridecanone 1 

 

+ - unknown 

20.5517 1H-Tetrazaborole, 4,5-

dihydro-1,4,5-trimethyl-  

1 

 

+ - unknown 

21.0842 Benzene, 1,2-dimethoxy-  2 

 

+ - lignin 

21.2967 7-methyl-1,4-

dioxaspiro[2.4]heptan-5-

one 

3 

 

- + lignin 
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Rt (min) Chemical name Intensity Structure S1 S1F Source 

21.3933 Hepta-2,4-dienoic acid, 

methyl ester 

3 

 

- + unknown 

21.6608 Benzene, 1,4-dimethoxy-  2 

 

+ - lignin 

22.2208 2-Methoxy-5-methylphenol  2 

 

- + lignin 

22.5317 7-Tetradecene  1 

 

- + unknown 

22.8817 Benzaldehyde, 3-methoxy-  1 

 

- + lignin 

23.2017 1,4:3,6-Dianhydro-à-d-

glucopyranose  

1 

 

- + cellulose 

23.5450 4-methoxy-2,5-dimethyl-

3(2H)-furanone 

5 

 

- + hemicellulose 

23.6742 2-Furancarboxaldehyde, 5-

(hydroxymethyl)-  

1 

 

- + cellulose 

23.7725 2-Pentenoic acid, 3,4-

dimethyl-, ethyl ester 

2 

 

- + unknown 

24.2508 Phenol, 3,5-dimethoxy- 4 (74) 

 

+ - lignin 

24.3850 2,5-Dimethoxytoluene  1 

 

- + lignin 

24.8625 1,3-Dioxane  1 

 

+ - unknown 

25.5825 4-Hydroxy-3-

methoxybenzyl alcohol  

3 (70) 

 

+ - lignin 

26.1725 1,2,3-Trimethoxybenzene  1 

 

+ - lignin 

26.6158 Phenol, 3,4-dimethoxy-  a)1 b)1 

 

+ + lignin 

26.9833 Benzoic acid, 3-methoxy-, 

methyl ester  

1 

 

+ - lignin 
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Rt (min) Chemical name Intensity Structure S1 S1F Source 

27.785 1,2,4-Trimethoxybenzene  a)3 b)2 

 

+ + lignin 

27.8692 1,3-diaza-4-imino-

cyclohexane-2,6-dione 

2 C4H5N3O2 - + unknown 

27.9717 6-(Methylthio)hex-5-en-3-

ol 

2 

 

+ - unknown 

27.9933 Methyl 3-(cis-2,3-

Epoxybutanoxy)propanoate 

3 C8H14O4 - + unknown 

28.2942 2,3,4-

Trimethyllevoglucosan 

2 

 

- + cellulose 

28.4325 2-O-Methyl-D-

mannopyranosa 

4 

 

- + hemicellulose 

29.2758 2-Thiophenecarboxylic 

acid, 4-hydroxy-5-methyl-, 

ethyl ester 

1 

 

+ - unknown 

29.4242 Benzene, 1,2,3-trimethoxy-

5-methyl- 

2 

 

- + lignin 

29.5317 4-O-Methylmannose 2 

 

- + hemicellulose 

29.8050 1,2,3,4-

Tetramethoxybenzene  

1 

 

+ - lignin 

30.6867 Benzaldehyde, 3,4-

dimethoxy-  

a)1 b)3 

 

+ + lignin 

31.2350 1,4-Benzenedicarboxylic 

acid, dimethyl ester  

1 

 

+ - lignin 

31.3325 3,7-Dimethyl-2,6-

nonadien-1-ol 

1 

 

+ - unknown 

31.9525 3,3'-Dimethoxybenzil  1 

 

- + lignin 

40.1383 9-Hexadecenoic acid, 

methyl ester, (Z)-  

a)1 b)1 

 

+ + unknown 

40.5858 Hexadecanoic acid, methyl 

ester  

1 

 

+ - unknown 
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Rt (min) Chemical name Intensity Structure S1 S1F Source 

43.9850 9-Octadecenoic acid (Z)-, 

methyl ester  

a)1 b)1 

 

+ + unknown 

44.4375 Octadecanoic acid, methyl 

ester  

a)1 b)1 

 

+ + unknown 

46.8783 3-Hexenoic acid, 5-

hydroxy-2-methyl-, methyl 

ester, [r@,R@-(E)]- 

1 

 

+ - unknown 

46.9650 1-Phenanthrenecarboxylic 

acid, 7-ethenyl-

1,2,3,4,4a,4b,5,6,7,9,10 

,10a-dod ecahydro-1,4a,7-

trimethyl-, methyl ester, 

[1R-(1à,4aá,4bà,7à ,10aà)]- 

a)1 b)1 

 

+ + resin 

48.6275 Methyl dehydroabietate  a)2 b)2 

 

+ + resin 

49.4175 Methyl abietate  1 

 

- + resin 

49.9158 α-Methyl tetramethyl-d-

mannoside 

1 C11H22O6 + - hemicellulose 

50.8125 α-D-Mannopyranoside, 

methyl 2,3,4,6-tetra-O-

methyl- 

1 

 

- + sugar 

51.5475 α-Methyl 4-

methylmannoside 

3 C8H16O6 - + sugar 

51.6883 15-Hydroxydehydroabietic 

acid, methyl ester  

1 

 

+ - resin 

52.4667 7-Oxodehydroabietic acid, 

methyl ester  

1 

 

+ - resin 

52.8017 α-D-Glucofuranose, 1,2-O-

(1-methylethylidene)- 

1 

 

- + cellulose 

54.2558 Tetracosanoic acid, methyl 

ester  

1 

 

+ - unknown 

55.1883 15-Hydroxy-7-

oxodehydroabietic acid, 

methyl ester 

a)1 b)1 

 

+ + resin 

 

Notes: Intensity with a is for S1 and b is for S1F, the lowest intensity is with 1 and the highest is 

with 5; the sign + means that the compound is present in the sample and sign – means that the 

compound is absent from the sample. 
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In order to investigate the pyrograms’ reproducibility, two samples of an unfoxed area of 

paper S2 were analyzed (figure 3.20). As it can be seen in the pyrograms the same compounds are 

released from the samples but the peak areas are different. The lack of reproducibility was initially 

attributed to heterogeneity of paper S2 and small amounts of sample pyrolyzed.  

 

 
 

Figure 3.20. Py-GC/MS pyrogram of sample S2, Legend: S2-01 and S2-02, sample from the 

unfoxed area from two different areas of the sample 
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Paper S3, dating from 1862, was previously characterized, it was found to be rich in fibers, 

with a small amounts of paper furnishing materials (Relvas et al., 2014). It is a more homogenous 

paper with less inorganic compounds, making it a more suitable sample to investigate organic 

composition and therefore more appropriate to access the reproducibility of the GC signals. Paper 

S3 was sampled in different foxed and unfoxed areas in order to increase sample size and 

representativeness. Liquid nitrogen was used to grind the foxed and unfoxed paper samples and, 

from these larger samples, several sub-samples were removed for pyrolysis in order to evaluate 

signal reproducibility. In figure 3.21, the pyrograms of two replicates from unfoxed areas are 

presented (compounds identified in table 3, appendix 3.1), and again we observe that the list of 

compounds eluting from the column is similar, but the peak areas of all the compounds are different 

in both chromatograms. The same behavior was found in the foxed area (data not shown). 

 

 

Figure 3.21. Py-GC/MS pyrogram of sample S3-powder, Legend: S3-Powder-01 and S3-Powder-

02, samples from different unfoxed areas of the paper 

 

From the experiments done we concluded that we cannot use this analytical technique to 

evaluate any chemical differences between foxed and unfoxed areas of the papers studied. 

However, Py-GC/MS can be used to investigate paper composition.  
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3.7.2 Composition of papers using Py-GC/MS 
 

Paper samples, S1, S2, and S3 were already characterized using several analytical 

techniques (Relvas et al., 2014). For this part of the study we intend to characterize the composition 

of paper with Py-GC/MS technique. 

Pyrolysis of sample S1 originated several products, most of them originating from 

carbohydrates (table 3.11 in the section 3.7.1). Cellulose, hemicellulose and lignin are components 

of wood. Unprotected wood is degraded under several environmental, conditions, being the 

presence of water the prerequisite for most degradation processes, due to the strong attraction by the 

hydrophilic hydroxyl and carboxyl groups (Schwarzinger et al., 2010). The possible pathways of 

the pyrolysis mechanism of cellulose, hemicellulose and lignin are presented in figure 3.22.  

The analysis of the sample S1 also showed typical long chain hydrocarbons pyrolysis 

products. Pyrolysis products also included many other aromatic derivatives such as, 1,4-dimethoxy-

benzene, benzaldehyde, 3,4-dimethoxy-benzene, 1,2,4-trimethoxy-benzene and other aromatic 

products that are derived from lignin. This suggests that the paper sample consists of a mixture of 

rag fibers and mechanical wood (Relvas et al., 2014). Several small, often superimposed, peaks of 

resin-derived compounds can be found, such as 15-hydroxydehydroabietic acid-, methyl ester-; 7-

oxodehydroabietic acid-, methyl ester; 15-hydroxy-7-oxodehydroabietic acid-, methyl ester; methyl 

abietate, and methyl dehydroabietate. The presence of resin had already been identified with FT-IR 

analysis (Relvas et al., 2014).  
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a) Cellulose  

 

b) Hemicellulose  

 

c) Lignin  

Figure 3.22. Possible pathways of pyrolysis mechanism of cellulose, hemicellulose and lignin (Lin 

et al., 2009; Gu et al., 2013; Triantafyllidis et al., 2013) 



 

62 
 

Paper sample S2 was pyrolyzed and the Py-GC/MS analyses revealed the formation of large 

amounts of carbonyls, such as aldehydes, ketones and acids, furans, such as furfural, and phenols 

(table 2, appendix 2).  

Phenolic compounds such as 3-methoxy- benzoic acid-, methyl ester, 1,2,3-trimethoxy- 

benzene, 3,5-dimethoxy- phenol-, and 1,2-dimethoxy- benzene were produced by lignin 

deconstruction. 

Lignin is a renewable resource of aromatics in nature, from which high-value aromatic 

molecules can potentially be obtained. Lignin is a complex, heterogeneous, three-dimensional 

polymer consisting of an irregular array of differently bonded hydroxyl- and methoxy-substitued 

phenyl-propane units. (Gu et al., 2013).  

The compounds that were identified from the pyrolysis of the paper sample S3 show the 

presence of methoxy- acetic acid-, methyl ester, succindialdehyde, furfural and 1,2-

cyclopentanedione. Acetic acid is formed in the pyrolysis of carbohydrates which are present in the 

wood (Schwarzinger et al., 2010). The others products beside acetic acid are also derived from 

carbohydrates. 

Breakdown of glucosidic bonds and rearrangement of cellulose monomer results in the 

formation of 1,4:3,6-Dianhydro-à-d-glucopyranose, a compound also identified in the sample S3 

(Gao et al., 2013). 

Compounds such as 3,4-dimethoxy- benzaldehyde, 1,2,3-trimethoxybenzene, 3,5-

dimethoxy- phenol, 2-methoxy- phenol and 1,2-dimethoxy- benzene, were formed by lignin 

deconstruction (table 3.1, appendix3).  

Concerning paper sample P (figure 3.23), the identified compounds derived mainly from 

cellulose, such as 2-hydroxy-3-methyl-2-cyclopenten-1-one, 3,5-dimethoxy- cyclopentene, 3-

methyl-1,2-cyclopentanedione, fructofuranose, 2,6-anhydro-1,3,4-tri-O-methyl-, 3,4,6-tri-O-methyl-

d-glucose; α-D-mannopyranoside and methyl 2,3,4,6-tetra-O-methyl-. These compound were 

formed by breaking the molecule bonds between C2 and C3 of glucose monomer and by opening 

the hemiacetal groups (Gao et al., 2013). 

Lignin related pyrolysis products include 2-methoxy- phenol, 1,4-dimethoxy- benzene, 3-

methoxy- benzaldehyde, 3,5-dimethoxy- phenol, 2,6-dimethoxy- phenol and also long chain 

hydrocarbons (table 4.1, appendix 4). 
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Figure 3.23. Py-GC/MS pyrogram of sample P 

 

The products that were identified in paper sample NB (figure 3.24) show the presence of 

carbohydrates such as 3,5-dimethoxy- cyclopentene, 3-ethyl-2-hydroxy-2-cyclopenten-1-one and 

lignin related pyrolysis products such as 2-methoxy- phenol, 3,5-dimethoxy-phenol, 1,2-dimethoxy- 

benzene, 1,4-dimethoxy- benzene, 2-methoxy-5-methylphenol, 3,4 dimethoxytoluene, 1,2,4-

trimethoxybenzene, 3,4-dimethoxy- benzaldehyde and 1,2-dimethoxy-4-(2methoxyethenyl) 

benzene. Analysis of the sample also showed the presence of protein derived product, 1-

propanamine, the presence of long-chain hydrocarbons and resin-related compounds derived from 

methyl dehydroabietate (table 5.1, appendix 5). The presence of proteins and resin was also 

identified during this study with the help of AT-FT-IR analysis. 
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Figure 3.24. Py-GC/MS pyrogram of sample NB 

 

Carbohydrate degradation products such as methyl 2,3,4-tri-O-methyl- α-D-glucopyranoside 

and 3-ethyl-2-hydroxy-2-cyclopenten-1-one were identified after pyrolysis of paper sample OB 

(figure 3.25). Some lignin derived pyrolysis products were also identified, such 1,2-dimethoxy- 

benzene, 3,5-dimethoxy- phenol, 2,6-dimethoxy- phenol, 1,2,4-trimethoxybenzene and 4-methoxy- 

benzoic acid-methyl ester. The analysis of the sample also showed the presence of resin-related 

compounds methyl dehydroabietate, methyl abietate and long-chain hydrocarbons (table 6.1, 

appendix 6). 

 

Figure 3.25. Py-GC/MS pyrogram of sample OB 
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In this work two groups of samples were selected for the study: samples S1, S2 and S3 

already characterized by non-destructive techniques in a previous work, and used in this study for 

development of a methodology to analyze organic compounds by Py-GC/MS used in paper 

production. The second group of samples, labeled NB (new book) dating from 1931, OB (old book) 

dating from 1951 and P (print), were collected from stationary shops in Lisbon, from different 

manufactures. Paper conservator selected the samples by visual observation, based on the color of 

the foxing stains, and morphology of the papers.  

The materials used in production of paper and foxing stains, a type of degradation process, 

were evaluated for the second group of investigated samples. Detailed investigation of the 

composition of each paper sample was done based on a non-invasive approach described in the 

section of materials and methods. The first part focused on the visual and photographic description 

of paper samples, with the objective to characterize as much as possible. Texture and color of each 

sample as well as description of size and shape of foxing stains were evaluated by optical 

microscopy and photography under different illumination.  

Images of the unfoxed and foxed areas of paper samples P, NB and OB showed no 

differences from a morphological point of view. The unfoxed areas do not present disruption of 

fibers or accumulation of particles.  The sample’ surface was structurally organized, paper fibers 

seem to be in good condition, without any visible disturbance. Sample P do not present a large 

amount of fillers contrary to samples NB and OB.  

EDS analyses indicate the presence of different elements such as calcium, aluminum, 

silicon, potassium, iron, magnesium and phosphorus among others. Basically constituent of paper 

sample P was calcium carbonate and was produced when lime react with atmospheric carbon 

dioxide, while aluminum silicate is related with papermaking process and intended to assure a more 

stable physical structure.  

AT-FT-IR spectra of the sample P showed the presence of amide I and II of a proteinaceous 

materials used in sizing. Paper sample NB has in its composition lignin this suggest that the paper is 

composed of mechanical wood. The presence of rosin of a resinaceous materials was also observed, 

rosin was used as a sizing agent for many years. AT-FT-IR analysis noticed the presence of kaolin 

in paper samples NB and OB, this was also confirmed by XRD analysis.   

μ-XRD analysis of paper sample P showed the presence of cellulose. The presence of others 

minerals, kaolin and muscovite were observed in paper samples NB and OB, muscovite was in 

larger quantities in paper sample OB. In the paper sample OB, aluminium magnesium hydroxide 

silicate was also present. 
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Paper samples were analyzed also with Py-GC/MS, this technique is widely used for 

characterization of paper. The first group of samples S1 and S2 were pyrolysed in unfoxed and 

foxed area in order to investigate the difference in composition of foxing stains and unfoxed areas. 

The analysis shows a variety of products but no significant difference in terms of composition 

between the unfoxed and foxed area. Sample S2 was analyzed in two replicates from the unfoxed 

area, the results shown the same compounds but the peak areas are different.  

Paper sample S3 is a more homogenous paper with less inorganic compounds, making it a 

more suitable sample to investigate organic composition. The obtained results show the presence of 

the same compounds but also in this paper sample as in the paper sample S2 the peak areas are 

different in both chromatograms.  

From the studied papers we concluded that we cannot use this analytical technique to 

evaluate any chemical difference between foxed and unfoxed areas. However, Py-GC/MS was used 

to investigate paper composition. 

The obtained results of paper sample S1 showed the presence of several products, most of 

the identified products were from carbohydrates. The presence of typical long chain hydrocarbons 

pyrolysis products was observed, also products that contain aromatic derivatives that can be from 

lignin.  

Analysis of the paper sample S2 showed the presence of large amounts of carbonyls, such as 

aldehydes, ketones and acids, furans such as furfural and phenols, and phenolic compounds.  

Compounds that were identified from the pyrolysis of the paper sample S3 showed the presence of 

different compounds as acetic acid, methoxy-, methyl ester; succindialdehyde, furfural, 1,2-

cyclopentanedione.  

Concerning paper sample P, the identified compounds derived mainly from cellulose but 

also other compounds were present as lignin and hydrocarbons. 

In the paper sample NB and OB were identified compounds from carbohydrates, lignin, 

hydrocarbons, protein and resin.  

The combination of several non-destructive techniques allowed the characterization of paper 

composition and the evaluation of morphological aspects. 
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Appendix 1. Micro-X-ray diffraction 

 

Table 1.1 Present the diffraction peak list identified for the paper samples P, NB, OB 

 

Diffraction peaks 

Compound name/ Sample P NB OB 

 Pos. (˚2Th.) Pos. (˚2Th.) Pos. (˚2Th.) 

Cellulose 14.988 

16.487  

22.782 

14.988 

16.487 

22.782 

22.782 

Kaolinite  12.365 

24.877 

38.303 

12.365 

24.877 

38.303 

Muscovite  8.844 

26.641 

8.844 

26.749 

28.758 

31.036 

Aluminium Magnesium 

Hydroxide Silicate 

  18.784 

 
 

 

Appendix 2. Py-GC/MS 
 

Table 2.1 with the compounds that are present in foxing stains and unfoxed area of the sample S2 

 
Rt (min) Chemical name Intensity Structure S2 S2F Source 

2.7533 >Methoxypropionaldehyde  1 

 

+ - unknown 

3.4642 >Succindialdehyde  1 

 

+ - unknown 

4.3992 >Propanoic acid, 2-methoxy-

, methyl ester  

1 

 

+ - sugar 

5.9658 >Furfural  1 

 

- + cellullose 

15.9425 >Butanoic acid, anhydride 1 

 

- + unknown 

16.8775 >2-Cyclopenten-1-one, 2-

hydroxy-3-methyl-  

 

1 

 

+ - cellulose 

16.7317 >2-Cyclopenten-1-one, 2-

hydroxy-3-methyl-  

1 

 

- + cellulose 

17.64 >Cyclopentene, 3,5-

dimethoxy-  

1 

 

+ - cellulose 



 

78 
 

Rt (min) Chemical name Intensity Structure S2 S2F Source 

18.6708 >2-Cyclopenten-1-one, 3-

ethyl-2-hydroxy-  

 

2 

 

- + cellulose 

18.7683 >2-Cyclopenten-1-one, 3-

ethyl-2-hydroxy-  

2 

 

+ - cellulose 

19.1358 >Phenol, 2-methoxy-  2 

 

- + lignin 

19.4258 >2-Cyclopenten-1-one, 2-

hydroxy-3-methyl- 

a)2 b)2 

 

+ + cellulose 

21.1117 >Benzene, 1,2-dimethoxy-  a)1 b)1 

 

+ + lignin 

21.6675 >Benzene, 1,4-dimethoxy-  1 

 

- + lignin 

22.1808 >Creosol  1 

 

- + lignin 

23.1642 >1,4:3,6-Dianhydro-à-d-

glucopyranose  

1 

 

- + cellulose 

23.5325 3(2H)-Furanone, 4-methoxy-

2,5-dimethyl- 

4 

 

+ - cellulose 

23.7592 Flamenol 2 

 

- + lignin 

24.2708 >Phenol, 3,5-dimethoxy-  

 

a)3 (74) 

b)3 (74) 

 

+ + lignin 

25.5975 Furan, 4,5-diethyl-2,3-

dihydro-2,3-dimethyl- 

3 

 

+ - cellulose 

26.1733 >Benzene, 1,2,3-trimethoxy-  

 

1 

 

- + lignin 

26.8892 >Phenol, 3,4-dimethoxy- a)1 b)1 

 

+ + lignin 

26.9883 >Benzoic acid, 3-methoxy-, 

methyl ester  

 

1 

 

+ - lignin 
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Rt (min) Chemical name Intensity Structure S2 S2F Source 

27.7917 >1,2,4-Trimethoxybenzene  a)3 b)3 

 

+ + lignin 

27.98 >Benzoic acid, 2-methoxy-, 

methyl ester  

3 

 

- + lignin 

28.4308 >2-O-Methyl-D-

mannopyranosa  

3 

 

- + hemicellulose 

29.805 >1,2,3,4-

Tetramethoxybenzene  

a)2 b)3 

 

+ + lignin 

30.685 >Benzaldehyde, 3,4-

dimethoxy-  

a)2 b)3 

 

+ + lignin 

32.2492 >Nonanedioic acid, dimethyl 

ester  

1 

 

+ - unknown 

32.7733 >Ethanone, 1-(3,4-

dimethoxyphenyl)-  

1 

 

+ - lignin 

33.4067 >Benzoic acid, 3,4-

dimethoxy-, methyl ester  

a)2 b)3 

 

+ + lignin 

34.2542 >1,2-Dimethoxy-4-(2-

methoxyethenyl)benzene  

1 

 

+ - lignin 

34.515 >1,2-Dimethoxy-4-(2-

methoxyethenyl)benzene  

1  + - lignin 

39.8325 >2-Propenoic acid, 3-(3,4-

dimethoxyphenyl)-, methyl 

ester  

1 

 

+ - lignin 

40.1417 >9-Hexadecenoic acid, 

methyl ester, (Z)-  

1 

 

- + unknown 

40.5892 >Hexadecanoic acid, methyl 

ester  

1 

 

- + unknown 

49.9275 α-D-Mannopyranoside, 

methyl 2,3,4,6-tetra-O-

methyl- 

a)2 b)2 

 

+ + hemicellulose 

50.8258 α-D-Mannopyranoside, 

methyl 2,3,4,6-tetra-O-

methyl- 

3 

 

- + hemicellulose 
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51.2033 2-O-Acetyl-1,4-anhydro-3,5-

di-O-methyl-D-ribitol 

2 

 

- + hemicellulose 

51.5842 Methyl 7β-hydroxyabieta-

8,11,13-trien-18-oate 

2 

 

- + resin 

 

Note: Intensity with a is for S2 and b is for S2F, the lowest intensity is with 1 and the highest is 

with 3; the sign + means that the compound is present in the sample and sign – means that the 

compound is absent from the sample 

 

Appendix 3. Py-GC/MS 

 Table 3.1 with the compounds that are present in the unfoxed area of the powder sample S3 

 

Table 3. Compounds that are present in the unfoxed area of the powder sample S3 

Rt (min) Chemical name Intensity Structure S3-

Powder

TMAH

-01 

S3-

Powder

TMAH

-02 

Source 

2.5708 Acetic acid, 

methoxy-, methyl 

ester 

2 

 

- + sugar 

2.8175 Methoxypropionald

ehyde 
1  + - sugar 

3.4925  Succindialdehyde 

 
1 

 

+ - unknown 

3.6200   Succindialdehyde 2  - + unknown 
7.3708 Furfural  

 
1 

 

+ - cellulose 

7.4408   Furfural 1  - + cellulose 
12.4700 1,2-

Cyclopentanedione 
 

1 

 

+ - cellulose 

16.1342   Butanoic acid, 

anhydride 
1 

 

- + unknown 

16.8608  2-Cyclopenten-1-

one, 2-hydroxy-3-

methyl- 

a)1 b)1 

 

+ + hemicellu

lose 

17.2858 Cyclopentene, 3,5-

dimethoxy- 
a)5 b)1 

 

+ + cellulose 

17.6242  Cyclopentene, 3,5-

dimethoxy- 
a)4(78) 

b)1(79) 

 + + cellulose 
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Rt (min) Chemical name Intensity Structure S3-

Powder

TMAH

-01 

S3-

Powder

TMAH

-02 

Source 

18.6367  4-methoxy-3-

buten-2-one 
1 

 

+ - cellulose 

18.7617   2-Cyclopenten-1-

one, 3-ethyl-2-

hydroxy- 

2 

 

- + cellulose 

19.2042  

 

Phenol, 2-methoxy- 

 

 

1 

 

+ - lignin 

19.4075 2-Cyclopenten-1-

one, 2-hydroxy-3-

methyl- 

4 

 

+ - cellulose 

19.4158   1,2-

Cyclopentanedione, 

3-methyl- 

2 

 

- + cellulose 

20.0833 5-Methoxy-pent-4-

enoic acid, methyl 

ester 

4(72)  + - unknown 

20.3133 5-Methoxy-pent-4-

enoic acid, methyl 

ester 

3(71)  + - unknown 

21.0492 Furan, 2,5-dihydro-

2,5-dimethoxy- 
1 

 

+ - cellulose 

21.0983  Benzene, 1,2-

dimethoxy- 
1 

 

- + lignin 

21.1508 3-METHOXY-

2(5H)-

FURANONE 

1  + - cellulose 

21.2083 1-Methoxy-1-

cyclopropylpentane 
1 

 

+ - unknown 

21.6933   Benzene, 1,4-

dimethoxy- 
1 

 

- + lignin 

21.9417 4-Methoxy-

methyl-hex-2-yn-

1-ol 

3  + - unknown 

22.6017 (S)-4-Hexanolide 2  + - unknown 
22.8525 Benzaldehyde, 3-

methoxy- 
a)1 b)1 

 

+ + lignin 

23.4950 2-Hexenoic acid, 

3-methyl-, methyl 

ester 

4 

 

+ - unknown 



 

82 
 

Rt (min) Chemical name Intensity Structure S3-

Powder

TMAH

-01 

S3-

Powder

TMAH

-02 

Source 

23.5083 3(2H)-Furanone, 

4-methoxy-2,5-

dimethyl- 

4 

 

- + hemicellu

lose 

24.2350 Phenol, 3,5-

dimethoxy- 

 

a)3 b)3 

 

+ + lignin 

24.8575 1,3-Dioxane a)4 b)2 

 

+ + unknown 

25.5742   Phenol, 2,6-

dimethoxy- 
2 

 

- + lignin 

26.1575  1,2,3-

Trimethoxybenzene 

 

1 

 

- + lignin 

26.8642 Phenol, 2,6-

dimethoxy- 
3 

 

+ - lignin 

26.8675  Phenol, 3,4-

dimethoxy- 
1 

 

- + lignin 

27.7600 1,2,4-

Trimethoxybenzene 
a)3 b)3 

 

+ + lignin 

27.8392 1,3-diaza-4-imino-

cyclohexane-2,6-

dione 

1  + - unknown 

29.7833   1,2,3,4-

Tetramethoxybenze

ne 

1 

 

- + lignin 

30.6658   Benzaldehyde, 3,4-

dimethoxy- 

 

1 

 

- + lignin 

30.6800 2,4-Hexadienedioic 

acid, dimethyl 

ester, (E,E)- 

1 

 

+ - unknown 

35.6983 α-D-

Mannopyranoside

, methyl 2,3,4,6-

tetra-O-methyl- 

3 

 

+ - cellulose 

36.4092 Methyl-2-O-

methylàd-

glucopyranoside 

1 

 

+ - cellulose 
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Rt (min) Chemical name Intensity Structure S3-

Powder

TMAH

-01 

S3-

Powder

TMAH

-02 

Source 

39.8317 1,2,3,4-

Tetramethylmann

ose 

2 

 

+ - cellulose 

40.5608 Hexadecanoic acid, 

methyl ester 
a)3 b)2 

 

+ + unknown 

44.4117 Methyl stearate a)2 b)2 

 

+ + unknown 

46.8608 α-D-

Glucopyranoside, 

methyl 2,3,4-tri-

O-methyl- 

a)3 b)2 

 

+ + cellulose 

47.7567 1,2,3,4-

Tetramethylmann

ose 

2 

 

+ - cellulose 

48.5992 

 

1-

Phenanthrenecarbo

xylic acid, 

1,2,3,4,4a,9,10,10a-

octahydro-

1,4adimethyl- 

7-(1-methylethyl)-, 

methyl ester, [1R-

(1à,4aá,10aà)]- ( 

1 

 

+ - resin 

49.8950 α-D-

Glucopyranoside, 

methyl 2,3,4-tri-

O-methyl- 

a)2 b)2 

 

+ + cellulose 

50.1867 α-D-

Mannopyranoside

, methyl 2,3,4,6-

tetra-O-methyl- 

1  - + cellulose 

50.5933 α-D-

Mannopyranoside

, methyl 2,3,4,6-

tetra-O-methyl- 

2 

 

+ - cellulose 

50.7850 α-D-

Mannopyranoside

, methyl 2,3,4,6-

tetra-O-methyl- 

a)3 b)2  + + cellulose 

53.0842 α-D-

Mannopyranoside

, methyl 2,3,4,6-

tetra-O-methyl- 

2  + - cellulose 

54.4650 1,2,3,4-

Tetramethylmann

ose 

2 

 

+ - cellulose 
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Note: Intensity with a is for S3-P-TMAH-01 and b is for S3-P-TMAH-02, the lowest intensity is 

with 1 and the highest is with 5; the sign + means that the compound is present in the sample and 

sign – means that the compound is absent from the sample 

 

Appendix 4. Py-GC/MS 
 

Table 4.1 with the compounds that are present in the paper sample P 

 

Rt(time) Chemical name Intensity  Structure Source 

2.5633   Acetic acid, methoxy-, methyl 
ester 

1 

 

sugar 

2.8842  Methoxypropionaldehyde 2   

3.5567   Succindialdehyde 2 

 

unknown 

16.8958   2-Cyclopenten-1-one, 2-
hydroxy-3-methyl- 

1 

 

cellulose 

17.3067   Cyclopentene, 3,5-
dimethoxy- 

 

4 

 

cellulose 

17.6450   Cyclopentene, 3,5-
dimethoxy- 

3  cellulose 

19.2167  Phenol, 2-methoxy- 2 

 

lignin 

19.4308   1,2-Cyclopentanedione, 3-
methyl- 
 

3 

 

cellulose 

21.6983   Benzene, 1,4-dimethoxy- 
 

1  lignin 

22.6258   (S)-4-Hexanolide 1   

22.8617  Benzaldehyde, 3-methoxy- 
 

1 

 

lignin 

23.5133 3(2H)-Furanone, 4-

methoxy-2,5-dimethyl- 

5 

 

cellulose 

24.2492   Phenol, 3,5-dimethoxy- 
 
 

3 (72) 

 

lignin 

24.8700   1,3-Dioxane 3 

 

unknown 
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Rt(time) Chemical name Intensity  Structure Source 

26.1625   1,2,3-Trimethoxybenzene 
 

1 

 

lignin 

26.8733   Phenol, 2,6-dimethoxy- 
 

 

2 

 

lignin 

27.7700  1,2,4-Trimethoxybenzene 3 

 

lignin 

27.9658 Propanoic acid, 3-methoxy-

, methyl ester 

2 

 

sugar 

28.2742 Fructofuranose, 2,6-

anhydro-1,3,4-tri-O-

methyl-, 

 

2 

 

cellulose 

32.3358 3,4,6-Tri-O-methyl-d-

glucose 

 

1 C9H18O6 cellulose 

39.8375 1,2,3,4-

Tetramethylmannose 

1 

 

cellulose 

40.5658   Hexadecanoic acid, methyl 
ester 

3 

 

unknown 

44.4183   Methyl stearate 3 

 

unknown 

46.8633 1,2,3,4-

Tetramethylmannose 

3 

 

cellulose 

47.7567 α-D-Mannopyranoside, 

methyl 2,3,4,6-tetra-O-

methyl- 

 

2 

 

cellulose 

49.8983 α-D-Mannopyranoside, 

methyl 2,3,4,6-tetra-O-

methyl- 

2 

 

cellulose 

50.7875 1,2,3,4-

Tetramethylmannose 

2 

 

cellulose 

51.5133 α-Methyl 4-O-methyl-D-

mannoside 

2 

 

cellulose 
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Appendix 5. Py-GC/MS 
 

Table 5.1 with the compounds that are present in paper sample NB 

 

Rt(min) Chemical name Intensity Structure Source 

3.9708  1-Propanamine 1 

 

protein 

4.0667   2(3H)-Furanone, dihydro-3-
methyl- 

1(70) 

 

cellulose 

16.0850   Butanoic acid, anhydride 1 

 

unknown 

17.2642   Cyclopentene, 3,5-
dimethoxy- 

1(78) 

 

cellulose 

17.6058   Cyclopentene, 3,5-
dimethoxy- 

1  cellulose 

18.7383  2-Cyclopenten-1-one, 3-
ethyl-2-hydroxy- 

 

1 

 

cellulose 

19.1850  Phenol, 2-methoxy- 1 

 

lignin 

19.4050   2-Cyclopenten-1-one, 2-
hydroxy-3-methyl- 

1 

 

cellulose 

20.0808   1-methoxycarbonyl-2-
methylaminoethene 

1  
C5H9NO2 

 

21.0850   Benzene, 1,2-dimethoxy- 
 
 

1 

 

lignin 

21.6792   Benzene, 1,4-dimethoxy- 
 

 

1 

 

lignin 

22.1942   2-Methoxy-5-methylphenol 
 

 

1 

 

lignin 

23.9867   3,4-Dimethoxytoluene 
 

 

1 

 

lignin 
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Rt(min) Chemical name Intensity Structure Source 

24.2350   Phenol, 3,5-dimethoxy- 
 
 

3(75) 

 

lignin 

24.8567   1,3-Dioxane 1 

 

unknown 

27.7650   1,2,4-Trimethoxybenzene 
 
 

2 

 

lignin 

30.6675  Benzaldehyde, 3,4-
dimethoxy- 

 

3 

 

lignin 

32.7575  Ethanone, 1-(3,4-
dimethoxyphenyl)- 

1 

 

lignin 

33.3875 Benzoic acid, 3,4-dimethoxy-, 
methyl ester 

3 

 

lignin 

34.2325   1,2-Dimethoxy-4-(2-
methoxyethenyl)benzene 
 

1 

 

lignin 

34.4942   1,2-Dimethoxy-4-(2-
methoxyethenyl)benzene 

1  lignin 

39.8167  2-Propenoic acid, 3-(3,4-
dimethoxyphenyl)-, methyl 
ester 

1 

 

lignin 

40.5608  Hexadecanoic acid, methyl 
ester 

1 

 

unknown 

44.4133  Methyl stearate 1 

 

unknown 

48.5975   Methyl dehydroabietate 1 

 

resin 
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Appendix 6. Py-GC/MS 
 

Table 6.1 with the compounds that are present in the paper sample OB 

 

Rt (min) Chemical name Intensity Structure Source 

2.5425   Acetic acid, methoxy-, 
methyl ester 

2 

 

sugar 

16.1450   Butanoic acid, anhydride 1 

 

unknown 

18.7742   2-Cyclopenten-1-one, 3-
ethyl-2-hydroxy- 

1 

 

cellulose 

21.1058   Benzene, 1,2-
dimethoxy- 

1 

 

lignin 

23.5167 3(2H)-Furanone, 4-

methoxy-2,5-dimethyl- 

3 

 

hemicellulose 

24.2475   Phenol, 3,5-dimethoxy- 

 
2 (73) 

 

lignin 

25.5808   Phenol, 2,6-dimethoxy- 

 

 

1 (72) 

 

lignin 

27.7767   1,2,4-
Trimethoxybenzene 

 

1 

 

lignin 

27.9717   Benzoic acid, 4-
methoxy-, methyl ester 

 

4 

 

lignin 

40.5675   Hexadecanoic acid, 
methyl ester 

2 

 

unknown 

44.4192   Methyl stearate 2 

 

unknown 

48.6075  Methyl dehydroabietate 1 

 

resin 

49.3975   Methyl abietate 
 

1 

 

resin 

49.9175 α-D-Glucopyranoside, 

methyl 2,3,4-tri-O-

methyl- 

5 

 

Cellulose 

 

 


