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a  b  s  t  r  a  c  t

Water  is now  considered  the most  important  but  vulnerable  resource  in the  Mediterranean  region.  Nev-
ertheless,  irrigation  expanded  fast in  the  region  (e.g.  South  Portugal  and  Spain)  to  mitigate  environmental
stress  and  to guarantee  stable  grape  yield  and  quality.  Sustainable  wine  production  depends  on sustain-
able  water  use in the  wine’s  supply  chain,  from  the  vine  to the  bottle.  Better  understanding  of  grapevine
stress  physiology  (e.g.  water  relations,  temperature  regulation,  water  use  efficiency),  more  robust  crop
monitoring/phenotyping  and implementation  of best  water  management  practices  will  help  to  mitigate
climate  effects  and will enable  significant  water  savings  in the  vineyard  and  winery.  In this  paper,  we
focused  on  the  major  vulnerabilities  and  opportunities  of South  European  Mediterranean  viticulture  (e.g.
in Portugal  and  Spain)  and  present  a  multi-level  strategy  (from  plant  to the  consumer)  to  overcome
region’s  weaknesses  and  support  strategies  for adaptation  to water  scarcity,  promote  sustainable  water
use  and  minimize  the  environmental  impact  of the  sector.

©  2015  Published  by  Elsevier  B.V.

1. The wine grape industry in south Mediterranean Europe

World’s wine production are located in a wide geographicalQ2
and climatic range, often in mid-latitude regions characterized by
climate variability and stressful environments, such as the Mediter-
ranean region (Fraga et al., 2013; Lionello et al., 2014). The European
Union (EU-28), is the world’s leader in wine production with about
50% of world’s vine-growing area and about 60% of total volume
of production (USDA, 2014). France, Italy, Spain, Germany and
Portugal are the five leading EU wine producers and altogether
they represent 90% of EU production (USDA, 2014). Spain has the
largest vineyard area in the world (950,541 ha in 2014) with an
increasing irrigated area (36% of the total, in 2014) (MAGRAMA,
2014) (Fig. 1). Portugal is the EU’s 5th largest wine producer with
a total of 6.7 Mhl  in 2013 and it has a cultivated area estimated to
be about 224,000 ha (IVV, 2015). In 2010, the irrigated area was
estimated in 15% of the total area of vineyards (INE, 2010). How-
ever, irrigation continued expanding in the recent years in Portugal,
in particular in the Alentejo region, and presently, the percent-
age of irrigated vines should be slightly higher and around 20%.

∗ Corresponding author.
E-mail address: miguelc@itqb.unl.pt (J.M. Costa).

Mediterranean fresh water resources are under high pressure due
to fast-growing population, increased water scarcity, extreme cli-
mate variability and intensive water use in agriculture, industry
and tourism activities (Lange et al., 2005; Costa et al., 2007; EEA,
2012a,b; Lereboullet et al., 2013a,b; Blum, 2014). Water is now
considered by EU experts as the most important but vulnerable
resource in the Mediterranean region (EU-ERANETMED, 2014). In
addition, climate scenarios for South Mediterranean Europe are
not favourable for agriculture. The predicted lower precipitation,
higher air and soil temperatures, more frequent and longer extreme
climate events (e.g. heat waves, extreme drought) (IPCC, 2013)
will negatively affect viticulture in the region (Chaves et al., 2010;
Rogiers and Clarke, 2013; Teskey et al., 2014; Lionello et al., 2014). Q3

In Europe, irrigation of vineyards is below 10% of the total
area, but the tendency towards irrigation is increasing to miti-
gate the effects of climate change and more stressful environment.
Irrigation has therefore expanded in dry regions of France, Spain,
Portugal and Italy (Intrigliolo and Castel, 2008; Seguin, 2010; USDA,
2013; Fraga et al., 2013; Barisan et al., 2014; De Leo et al., 2015).
Meanwhile, agriculture in South Mediterranean Europe is increas-
ingly subjected to more restrictive legislation at both EU and
individual country levels namely in terms of water use regula-
tion and water conservation. Next we present some of the major
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Fig. 1. Total cultivated area (ha) and irrigated area (ha) of Spanish vineyards from 2004 to 2014.
Source: “Encuesta sobre Superficies y Rendimientos de cultivos en España, ESYRCE, Spanish Agriculture Ministry 2014.

constrains and opportunities experienced by South European wine
industry, focusing on Spain and Portugal.

1.1. Constraints (environment and socio-economic)

An important vulnerability of rainfed agriculture in the Mediter-
ranean is the combination of high air temperature and water deficit
coupled to marked inter-annual and intra-annual climate variabil-
ity and scarce water resources (Costa et al., 2007; Lopes et al., 2014;
Rogiers and Clarke, 2013; Valverde et al., 2015). In the case of Vitis
vinifera, Mediterranean climate may  limit yield and berry qual-
ity because most of the berry growth and ripening period occurs
under conditions of high air temperature and soil water deficit
(Medrano et al., 2003; Chaves et al., 2007, 2010; Lereboullet et al.,
2013a,b; 2014). In rainfed Mediterranean viticulture, water stress
can be particularly severe during summer mainly if previous win-
ter and spring seasons are dry just. This situation is often reported
for the Mediterranean zones of the Iberian Peninsula (e.g. Alen-
tejo wine region in years 2003 and 2005). Moreover, Mediterranean
viticulture is increasingly exposed to climate extremes (e.g. max-
imum temperatures and heat waves) (EASAC, 2013; Fraga et al.,
2013; Hannah et al., 2013; Lereboullet et al., 2013a,b; Lionello et al.,
2014). Not only extreme air temperatures but also high soil tem-
peratures can be potentially negative for berry and leaf/canopy
physiology. In fact, soil temperature (Ts) in Southern European
countries can easily reach values above 50 ◦C along the day (Fig. 2).
High soil temperature not only influences root activity and root
growth but also negatively impacts leaf/canopy photosynthesis,
as well as diurnal and nocturnal stomatal conductance (Rogiers
and Clarke, 2013). Temperature determines berry composition and
quality by influencing the ripening process, berry biochemistry and
synthesis/degradation of certain compounds such as anthocyanins
or polyphenols (Mori et al., 2007; Teixeira et al., 2013; Zarrouk
et al., 2014). High berry temperatures (>35 ◦C) may  inhibit antho-
cyanins synthesis and induce their degradation (Bergqvist et al.,
2001; Spayd et al., 2002).

Portugal is relatively well endowed in terms of water resources.
However, these resources are unevenly distributed with marked
difference between the rainy and cooler North and central Atlantic
regions of the country and the dry and warmer South, inland regions
(e.g. Alentejo). The same occurs with Spain which presents large
differences in terms of water reserves and precipitation between
the Atlantic and Northern regions and the southern Mediter-

ranean regions. In Portugal, irrigated viticulture expanded mostly
in the southern part of the country (Península de Setúbal, Alentejo,
Algarve) but now other wine regions (e.g. Tejo, Douro Superior) are
also now being punctually irrigated to face more stressful summer
conditions (Fraga et al., 2013; Lopes et al., 2014). Spanish vineyards
have been traditionally dry-farmed because irrigation was forbid-
den by law until 1996. Nowadays, irrigation is still not permitted
in most of the “Denominaciones de Origen (DO)”, and just like in
Portugal, irrigation is only allowed under specific circumstances
and after the technical allowance from Regional wine Commis-
sions. However, vineyards in areas out of the DO control can be
irrigated without any restriction. Although irrigation has increased
dramatically in Spanish viticulture (Fig. 1), there are still authors
questioning whether this is an environmentally sustainable trend
in semi-arid areas such as regions of central and southern Spain
(Intrigliolo and Castel, 2008; Romero et al., 2010; Medrano et al.,
2015).

Ground water resources in the Mediterranean also deserve more
attention. Indeed, they contribute to 20–100% of the water used in
European irrigated farms, depending on the region and country.
Besides the ongoing climate change is expected to limit recharge
of aquifers due to reduced precipitation and to increased water
abstraction to support larger irrigation needs and to minimize
the problem of lower quality surface waters (Costa et al., 2007;
Goderniaux et al., 2009; Stigter, 2012; Baudron et al., 2014; Carreira
et al., 2014). Also, in most of the EU countries, groundwater users
pay no tariff to water authorities and only few countries (France,
Netherlands, Denmark, England and Wales) do charge a water
abstraction fee (OECD, 2010).

Vulnerability and adaptive capacity of the Mediterranean viti-
culture is also linked to socio-economical aspects (Strano et al.,
2013; Lereboullet et al., 2012; 2013a,b). For example, the small size
of most of the companies results in limited budgets and restricted
innovation with limited capacity to accommodate new legislation
requirements for environment or new market trends related to
quality (ECOPROWINE, 2014). In addition, fluctuations in the wine
markets poses a limitation to Mediterranean viticulture and affect
mostly smaller companies. Another limitation is the lack of infor-
mation and perception of risks by growers and managers of smaller
companies which restrict changes in terms of adoption of novel
agronomic strategies or technologies to mitigate climate change
and respond to changes in consumer demand and to more restric-
tive legislation on water use.
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Fig. 2. Visible (on the left) and false colored IR thermal image (on the right) from two rows and the inter row (3m wide) of 12 year-old vines of the variety Aragonez
(Syn.  Tempranillo), in a commercial vineyard, in Reguengos de Monsaraz, southern Portugal (38◦23′55.00′′N, 7◦32′46.00′′W).  Measurements were done at around 14.30 h
on  24 July 2014, by using a Flir ThermaCAM B20, 240 × 320 pixels (� = 0.96) under the following environmental conditions: Tair = 28.3 ◦C, Air RH = 40%, VPD = 2.8 KPa;
Wind  speed = 2.8 ms−1; Global radiation = 800 Wm−2. Temperature of selected area 1 (A1) (Tc sunlit side) = 27.4 ± 1.1 ◦C, Temperature of selected area 2 (A2) (Tc shadow
side)  = 26.8 ± 1.1 ◦C, Temperature of selected area 3 (A3) (soil surface) = 37.1 ± 2.5 ◦C.

The lack of labour force can also be a problem in certain Mediter-
ranean wine regions and therefore the use of emigrant labour
force became common in Spain, Portugal or France following the
trends observed in other intensive production agricultural sys-
tems (greenhouse horticulture) (FAO, 2013; Costa et al., 2014). Lack
of statistical information concerning water use and management
in the Mediterranean hinders proper policy decision on aquifer
management, irrigation, pollution emissions from either surface or
subsurface (Albiac, 2005; EEA, 2012a). In fact, we may  still find data
collections and assessments with large data gaps, lack of harmo-
nization in estimation and data quality assurance methodologies
(EEA, 2012a).

1.2. Opportunities

Regarding the opportunities for Mediterranean viticulture, the
large historical and cultural relevance of the crop and related activ-
ities is particularly visible in Spain and Portugal, where the crop is
being cultivated for centuries. This results in a large cultural tra-
dition, available empirical knowledge, variety selection and large
diversity of autochthonous varieties (Tapia et al., 2007; Gonç alves
and Martins, 2015; Fraga et al., 2015). Portugal has a large genetic
variability which has been stored in a network of both commer-
cial and public vineyards. Recent set of actions were taken by the
Portuguese Association for Grapevine Diversity (PORVID) to safe-
guard such genetic heritage and organize Portuguese biodiversity.
A prospection and conservation project has been carried out with
the principal objective of building a full-diversity in vivo library of
the Portuguese grapevine heritage (Martins, 2011; Gonç alves and
Martins, 2015). Similarly over the last few years, many regions of
Spain have developed several projects focused on the prospection,
characterisation and conservation of autochthonous varieties. The
“Instituto Madrileño de Desarrolo Agrario” (IMIDRA) takes care of
the official ampelographic collection of grapevines in Spain, and
coordinates most of these projects.

The production of premium and super-premium wines give an
Iberian viticulture a competitive advantage over other worldwide
competitors. The multiplicity of genotypes and “terroirs” makes
the Iberia Peninsula a unique region for wine production and has
generated a large number of high quality vintage wines that had
won several accolades worldwide. The multiple South European
Mediterranean “terroirs” (e.g. Vinhos Verdes, Douro, Dão, Alentejo,
Rias Baixas, Rioja, Ribera de Duero, Balearic Islands) and specific
varieties (e.g. the Touriga Nacional, or the “Tempranillo”) make
it possible to create unique monovarietal wines or novel blends

with particular tastes and aromas, which gives major competitive
advantage to the Mediterranean wine sector.

Wine industry is one of the most innovative sub sectors of the
EU agribusiness and there is a strong commitment of the EU trans-
lated into major investments in research and technology with a
clear focus on sustainable viticulture. This is the case of major EU
financed projects related to the wine sector such as EU-INNOVINE
or ECOPROWINE. Additionally, cooperation between the Universi-
ties and private companies is also being promoted by EU projects.
In parallel, Portuguese and Spanish authorities are promoting the
image of Iberian wines abroad which permitted to increase exports
and guarantee higher financial income for both countries (USDA,
2013; MAGRAMA, 2014; IVV, 2015). Finally, the increase in mul-
tiple and more demanding export markets is putting pressure on
Portuguese and Spanish wine industry forcing local vineyards and
wineries to a higher commitment on more environmentally sus-
tainable practices, similarly to what is occurring in other important
wine regions worldwide (Sinha and Akoorie, 2010; Berghoef and
Dodds, 2011; CWSA, 2011; Retallack 2012, 2013; Gerling 2015;
De Leo et al., 2015; Radke et al., 2015) or to other horticultural
commodities (Torrellas et al., 2013; FAO, 2013).

2. Advances in the understanding of grapevine responses to
heat stress and drought

2.1. Stomata, leaf temperature and water use efficiency

Tolerance/resistance to drought and heat stress involves
combination of several traits and mechanisms that can be morpho-
anatomical, physiological and hydraulic (Chaves et al., 2010;
Carvalho et al., 2015). Understanding the physiology and biochem-
istry related to stomatal regulation and their response to abiotic
stress (e.g. drought) is crucial to understand plant responses to
the environment and to improve plant water relations and WUE
(Roelfsema and Kollist, 2013; Tsegay et al., 2014). Besides, stomatal
regulation in grapevine varies with the genotype (Costa et al., 2012;
Tomás et al., 2014a) and identically, we find large intra-specific
variability for intrinsic WUE  (Bota et al., 2001; Gaudillère et al.,
2002; Koundouras et al., 2008; Rogiers et al., 2011; Tomás et al.,
2012).

Improved WUE  can result in water savings at both plant and
crop levels, but scaling-up from single leaves to crop is not a
straightforward process (Medrano et al., 2015). In fact, previous
research showed that improvements in leaf-level WUE  may not
always translate into higher crop WUE  or higher yield (Condon
et al., 2004). Actually, WUE  is a complex multi-trait phenotype
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related with stomatal control and also with leaf structure, leaf
biochemistry and leaf diffusive properties (e.g. mesophyll conduc-
tance) (Tomás et al., 2014b; Gago et al., 2015). Differences in WUE
behaviour between grapevine genotypes/varieties depend on other
traits such as hydraulic and hormones as reported for model and
crops species (Matzner and Comstock, 2001; Pantin et al., 2013;
Torrez Ruiz et al., 2014).

In parallel with studies on WUE, a better comprehension of how
plants regulate their leaf/canopy temperature in relation to stoma-
tal behavior is equally relevant to improve adaptation/resistance
to longer periods of heat and drought stress. Grapevine is con-
sidered a drought resistant species due to an efficient control of
stomatal aperture in response to soil and air water deficits (Chaves
et al., 2010; Costa et al., 2012). This behavior can be a protec-
tive strategy against excessive water loss and xylem cavitation
(Chaves et al., 2010; Lovisolo et al., 2010) but such stomatal pheno-
type can also result in reduced evaporative cooling and consequent
abnormal increase of leaf temperature (Tleaf) under extreme condi-
tions (high air temperatures and soil water deficits). In fact, under
typical South Europe Mediterranean conditions (e.g. Alentejo Por-
tuguese wine region, South Portugal), canopy temperatures can
easily reach values largely above the range considered optimum
for grapevine photosynthesis (25–30 ◦C) (Costa et al., unpublished
results). Extended periods of supra-optimal temperatures can give
rise to damage in the photosynthetic apparatus with negative
effects on WUE  (Sinclair et al., 1975; Tambussi et al., 2007). Accord-
ing to Sinclair et al. (1975) this may  occur via: (1) an increase in
transpiration due to the exponential increase in saturated water
vapor density inside the leaf that increases water vapor gradient
between the leaf and the outside air; (2) an increase in leaf res-
piration rates as Tleaf increases, with negative effect on net CO2
assimilation. Tambussi et al. (2007) states that for cereal crops
a potential gain in instantaneous WUE  (WUEinstantaneous = AN/E)
at leaf level may  be less marked when the decrease in stomatal
conductance to water vapour is linked to higher Tleaf and thus
increased transpiration per stomatal conductance unit (Condon
et al., 2002). Tambussi et al. (2007) also states that an increased Tleaf
could induce penalties in yield and eventually in WUEyield in situa-
tions where evaporative cooling effect of transpiration is important
(Reynolds et al., 2001). Therefore, higher Tleaf and boundary layer
effect may  pose limitations to the ‘scaling-up’ of WUE  from leaf
to crop level. For instance, it has been pointed out that modern
irrigation systems in which mild to moderate water stress is applied
(improving WUE  by partial stomatal closing) could have a lower
effect than expected in crops with dense canopies (Kang and Zhang,
2004), this can partly apply in the case of V. vinifera.

Finally, high Tleaf can result in accelerated leaf senescence with
accelerated leaf abscission, which in the case of grapevines grown
in hot climates could end in quality and yield losses due to over-
exposure of berries to light. Therefore, breeding and selection of
grapevine for typical Mediterranean semi-arid conditions should
focus on a compromise between high WUE  and leaf cooling (Chaves
et al., 2010; Costa et al., 2012).

2.2. Morpho-hydraulics and water transport

Leaf hydraulics is a key component of plants adaptation strat-
egy in response to the environment. Recent studies in grapevine
showed that hydraulic conductivity of leaves (Kleaf) and of stem
(Kstem) contributes to variation among varieties regarding their
response to soil water deficit and the recovery response to drought
(Schultz and Stoll, 2010; Coupel-Ledru et al., 2014; Hochberg et al.,
2015; Martorell et al., 2015). The observed intra-specific variation
in Kleaf can reflect differences in leaf morpho-anatomy (Nardini
et al., 2012) and in water pathways through the outside xylem to
the water evaporation sites. Contrary to water transport systems,

leaf vein systems show great variation in arrangement, density, vas-
cular bundle features and xylem conduits within the bundles (Sack
and Scoffoni, 2012). In grapevine, leaf water movement suggested
to be influenced by mesophyll architecture which contributes to
water flux in the mesophyll and water evaporation at the cell
wall surface (Tomás, 2012; Flexas et al., 2013). On the other hand,
Martorell et al. (2015) found in two  V. vinifera cultivars (Tempranillo
and Grenache) that leaf vulnerability at 50 % and 80% loss of Kleaf
(P50 and P80) as well as the maximum Kleaf decreased seasonally
by more than 20%. However, Kleaf plasticity along leaf lifespan was
different between the two cvs. Only the cv Tempranillo showed an
increase of Kleaf at −2 MPa  in the months of June and July, while Q4
Jones and Grant (2015) osmotic potential at full turgor was  lower
in Tempranillo than in Grenache. They showed as well that leaf
resistance to hydraulic dysfunction is cultivar dependent and also
a seasonal plastic trait that can be mediated by osmotic adjustment
(Martorell, 2014; Martorell et al., 2015).

Regarding root traits, root hydraulics and morphology are two
determinant traits influencing grapevine water relations. Higher
hydraulic conductivity correlates well with higher drought toler-
ance of grapevine rootstocks (Schultz, 2003; Zufferey et al., 2011;
Tramontini et al., 2013; Serra et al., 2014). Vigorous rootstocks
showed larger hydraulic conductivity of fine roots, which is partly
attributed to aquaporin expression and activity (Gambetta et al.,
2013).

Root system morphology (root distribution and depth) depends
on the interaction between the rootstock genotype and the sur-
rounding environment (soil texture, bulk density and salinity,
water and nitrogen availability, planting density and climatic con-
ditions) (Koundouras, 2008). Grapevine roots have larger xylem
vessels than those of stems, which causes them to be more prone
to xylem cavitation (Lovisolo et al., 2008). It has been suggested
that the adjusting capacity of roots to supply water relative to
shoot transpiration demand is a major means for woody peren-
nial plants to tolerate drought and it is often expressed as changes
in leaf to root area ratio (Alsina et al., 2011). Different combina-
tions of xylem vulnerability to cavitation with stomatal kinetics
results in multiple degrees of isohydry/anisohydry in various plant
species/cultivars (Tombesi et al., 2014). These authors suggest that
V. vinifera near-isohydric and anisohydric genotypes differ in terms
of xylem vulnerability to cavitation as well as in terms of peti-
ole hydraulic conductivity, and that coordination of these traits
results in different stomatal responses under water stress condi-
tions. More recent findings on roots point out to the contribution
of root-associated bacterial microbiome to grapevine adaptation
to water stress by via increased root biomass and improved water
absorption capacity (Rolli et al., 2014). This alternative way to pro-
mote drought resistance in grapevine demands more research to
better comprehend the effects of soil microbiology on grapevine
performance against stress.

2.3. Hormones and metabolites

Contrary to hydraulic signals, the role of biochemical signals
in stomatal regulation is well described (Schroeder et al., 2001;
Chaves et al., 2003; Pantin et al., 2013; Carvalho et al., 2015).
Chemical signals with origin in roots are particularly important for
grapevine adaptation to water especially at the early stages of stress
(Schachtman and Goodger, 2008; Dodd, 2009; Tsegay et al., 2014;
Tardieu et al., 2015). Cultivar-specific differences in stomatal con-
trol in response to drought have been attributed to differences in
abscisic acid signaling and perception machinery (Soar et al., 2006;
Perrone et al., 2012) and/or as a consequence of different patterns
of aquaporins expression and/or activation (Vandeleur et al., 2009;
Perrone et al., 2012; Pou et al., 2013).
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More recent studies point out the relevance of certain metabo-
lites (e.g. polyols) in the adaptation to drought in grapevine. The
impact of polyols on grape berry composition and plant response
to water deficit was described for the variety Tempranillo grown in
greenhouse and field conditions (Conde et al., 2015). Both sorbitol
and mannitol limited size reduction of berry cells under drought
(Conde et al., 2015). The authors suggested that grapevine cultivars
which accumulate polyols as a tolerance mechanism to drought
stress might have adaptive advantages under unfavourable grow-
ing conditions as they would require less water along the season to
sustain yield and berry quality (Conde et al., 2015). It was  also sug-
gested that synthesis, transport and accumulation of sugar alcohols
may  work as bioindicators of plant health and acclimation and can
be used as potential biomarkers in crop breeding (Merchant and
Richter, 2011; Conde et al., 2015).

2.4. Stress-recovery responses

An important component of the studies on plant stress
responses is the analysis and comprehension of the efficacy and
related underlying mechanisms involved in recovery from water
stress following rehydration (Flexas et al., 2009; Bondada and
Shutthanandan, 2012; Pou et al., 2012; Sapeta et al., 2013). Fast
and efficient recovery from water stress is a key characteristic of
the species/genotype adaptation to changing soil and air meteoro-
logical conditions (Perrone et al., 2012; Torrez Ruiz et al., 2014).
This is highly relevant to understand grapevine capacity to over-
come/recover from water stress after a rainfall event and when
subjected to deficit irrigation in which successive cycles of water
stress/recovery are imposed to vines (Pou et al., 2008; Lopes et al.,
2014). Plant’s carbon balance during water stress and recovery
cycles depends on the velocity and degree of photosynthetic recov-
ery as well as on the degree and velocity of the photosynthetic
decline during water depletion (Flexas et al., 2006). Plants subjected
to severe water stress recover only 40–60% of their maximum
photosynthesis rate during the first day after re-watering and maxi-
mum  photosynthesis rates are often not recovered (Gallé and Feller,
2007; Pou et al., 2008). The severity of the previous water stress
was shown to have a major influence on the velocity and extent
of photosynthesis recovery in different species (Miyashita et al.,
2005) including grapevine (Gómez-del-Campo et al., 2007; Pou
et al., 2008; Flexas et al., 2009). Recovery of photosynthetic capac-
ity after drought depends on restored xylem function although
few data on grapevine exist to elucidate this type of coordination
(Martorell, 2014). Knipfer et al. (2014) showed that responses to
drought and recovery capacity involved the maintenance/recovery
of xylem transport capacity in coordination with root pressure as
well as leaf gas exchange responses. More research at molecular
level on water stress recovery in grapevine is needed to explain
grapevines’ genetical variability on hydraulic and leaf gas exchange
traits in response to drought stress (Perrone et al., 2012; Coupel-
Ledru et al., 2014).

3. Agronomic strategies in modern viticulture in dry areas

3.1. Water saving strategies

Irrigation is one of the most effective tools to manipulate berry
yield and quality in dry areas (Costa et al., 2007; Romero et al.,
2010; Forbes et al., 2009; Flexas et al., 2009, 2010). Deficit irrigation
(DI) based on the application of water below the water losses
by the crop, has been largely pointed out as a reliable technique
to improve water savings and productivity in grapevine (Santos
et al., 2003; Chaves et al., 2007; Medrano et al., 2003, 2015). The
strategy involves soil drying and re-wetting cycles with varying

frequencies and intensities during the growing cycle and is delib-
erately used to enhance crop WUE  (Dodd et al., 2009). A specific
case of deficit irrigation is partial root drying (PRD). Typically, in
the PRD strategy one part of the root zone is irrigated at a time,
with the wet  and dry parts of the root system being periodically
alternated to increase ABA signalling transiently and/or prevent
excessive soil drying diminishing the transport of chemical signals
to the shoot (Kang and Zhang, 2004; Dodd, 2009). PRD resulted in
higher WUE, water savings and improved berry quality in grapevine
(Santos et al., 2003; Souza et al., 2005). However, the PRD strategy
involves more complex management and higher installation costs
(e.g. double amount of irrigation tubes), making it less adequate
for commercial use. Besides literature presents contrasting results
for PRD, as function of the soil characteristics and genotype (Santos Q5
et al., 2003; Romero et al., 2012) Table 1.

Although the general effects of deficit irrigation are well
described in literature (Chaves et al., 2007; Dodd, 2009; Flexas et al.,
2010), it is still not fully covered how different genotypes perform
in response to mild to severe water stress in combination with par-
ticular soil and atmospheric conditions. Genotypic heterogeneity
of V. vinifera species forces growers and farm managers to look
more carefully to the water use traits of the cultivars growing in
their farms in order to tune water irrigation volumes in the dif-
ferent plots of the vineyard. In addition, the interaction between
genotype and the rootstock and their compatibility is a highly rele-
vant issue with major consequences for plant hydraulics and water
transport, and thus, for stress resistance (Gökbayrak et al., 2007;
Serra et al., 2014).

The water reuse option can be considered as a cost-effective
solution for Mediterranean agriculture. Water reuse reduces the
need to develop new water resources and provides an adaptive
solution to climate change and it has the advantage of valoris-
ing the social and environmental value of water by enhancing
water resources availability and minimising wastewater outflow
with additional environmental benefits (Lazarova et al., 2001;
MED-EUWI, 2007; Raso, 2013). In many of the arid and semi-arid
regions of the Mediterranean, recycled wastewater is being used
as an affordable alternative resource for agricultural, industrial
and urban non-potable purposes (Lazarova et al., 2001; Angelakis
and Gikas, 2014). In countries like Australia and Israel, the use of
recycled water is proving to be a viable alternate source of water
for irrigation of crops (Angelakis and Gikas, 2014). The poten-
tial benefit can even be larger in case the wastewater treatment
facilities are also expanded and optimized. Currently in Spain,
408 hm3/year are reused (13% of total available water) of which
79% are for agricultural irrigation (320 hm3/year). Waste water
use might be employed to mitigate drought stress, but the short
and mid-term detrimental effects of salt stress should be quanti-
fied. Non-conventional waters are source of nutrients, particularly
nitrogen and phosphorous which may  potentially modify berry
composition and plant’s WUE  (Bell and Henschke, 2005). Imple-
menting effluent reuse projects results in extra applied loads of
nutrients that must be carefully accounted for, due to the poten-
tial harmful effects on environment and/or plant performance
(Paranychianakis et al., 2006). Together with environmental risks,
the risks for human health must be also be studied and demand
strict guidance and quality control (MED-EUWI, 2007). The use of
recycled water needs to be better studied in viticulture (SARDI,
2009).

3.2. Canopy and soil management

It has been shown that warming conditions results in an advance
of phenological stages with flowering and veraison occurring ear-
lier with respect to the baseline and in a shorter inter-phase time
(Palliotti et al., 2014). There are also situations in which occurs a
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Table 1
Non-exhaustive list of water saving, best water management practices and water conservation strategies to be implemented at different scales, the vineyard, the winery and
the  region.

Water saving & conservation strategies Physical site

Vineyard Winery Region

Install flow meters on wells or at the pump or down individual rows to
estimate water use (in the vineyard and winery); Record data
regularly, set a standard value and search for discrepancies

X X X

Guarantee maintenance of the irrigation system (filters, flow meters,
gutters, lines) by periodic checking pipe connections and taps for leaks

X X

Deficit irrigation, use well adapted variety/rootstock, proper soil
characterization (profile, water capacity, fertility)

X X

Precise crop/soil monitoring (measure periodically soil and plant
water status (e.g. leaf water potential), measure vineyard’s
evapotranspiration)

X

Implement “Good Environmental Management Practices” for water,
biocide and fertilizer management, soil management and machinery
and vehicle management

X X

Use  pond process water for vineyard and/or landscaping irrigation;
Use drought tolerant species for landscape purposes

X X

Reduce water use in the winery cellar by using water saving
alternatives (e.g. install an ozone system for winery equipment
cleaning/sanitation), monitor water use in washing/soaking of barrels,
install specific flow meter(s) to assess water use in cleaning operations
along the vinification procedures

X

Improve waste management and treatment by adapting and
implementing more cost effective treatment technologies for winery
effluents and solid residues

X X

Promote and guarantee staff training (crop management, irrigation
water use, winery cleaning, environmental risk assessment and
general management)

X X X

Optimize technical assistance and support to wine producers to meet
environmental regulations, improve their image near consumers and
their sales

X X X

Water use benchmarking to set reference values. Develop “water
performance” indicators for both the vineyard and winery, Set targets
and implement auditing, and reporting

X X X

Quantify market benefits by adopting environmental management
systems and by promoting environmental credentials to guarantee a
good environmental management

X X X

Sources: (Skewes, 1998; COTR-ATEVA, 2009; CWSA, 2011, 2012; CRCV, 2015; Retallack, 2012, 2013; SUSTAVINO, 2012; WATERWIKI, 2015; Radke et al., 2015).

decoupling between anthocyanins and sugars accumulation. Grape
ripening is generally accelerated as per increment of sugar accu-
mulation into the berries which in turn can lead to higher alcohol
content in the wine if harvest is not anticipated. Moreover, ele-
vated temperatures are also known to induce negative effects on
wine colour as a consequence of thermal decoupling of berry antho-
cyanins and sugars accumulation (Sadras and Moran 2012). There
is an increasing number of domestic and foreign consumers prefer-
ring wines with moderate alcohol content.

For wine making, significant benefits were described from com-
prehensive approaches to control shoot vigour through the use
of different methods of winter pruning and canopy management
such as shoot trimming or thinning (Smart, 1985). Shoot thinning
is one of the most widely applied practices in vigorous vineyards
to reduce canopy density, optimize sunlight interception, photo-
synthetic capacity, and fruit microclimate and ultimately improve
fruit yield and wine quality. Soil management strategies (tillage
vs non-tillage) can also induce changes in the canopy microcli-
mate via indirect effects of water and nutrients competition on
vine vegetative growth (Monteiro and Lopes, 2007). The aims of
soil surface management in a typical Mediterranean vineyard are
multiple encompassing improved weed management and soil con-
servation, the reduction of soil resource availability to control vine
vigour and thus influencing berry composition and in wine qual-
ity (Monteiro and Lopes, 2007; Lopes et al., 2011; Guerra and
Steenwerth, 2012). In Mediterranean conditions the most widely
used soil management practices are soil cultivation in the inter-row
combined with herbicides in the row or other control strategies
more recommended in biological/organic vineyards. Living green

ground covers (grass cover, sown or natural) are also used but
not so often because of the concern of excessive water and nutri-
ents competition between the swards and vines (Prichard, 1998;
Celette et al., 2008; Lopes et al., 2011, 2015). Indeed when using
cover crops in semi-arid areas, favourable effects can be counter-
balanced by excessive water competition (Medrano et al., 2014;
Lopes et al., 2011) especially if winter and spring periods are dry
and/or irrigation water is scarce.

The dual strategies involving soil tillage and the use of cover
crops is still matter of debate and solutions are greatly linked to the
concept of “terroir” (Pou et al., 2011; Lopes et al., 2014; Medrano
et al., 2014). The effects of cover crops on grapevine vigour, yield
and berry composition depend on the “terroir”, being either (i) ben-
eficial to control vegetative growth and increase berry colour in
the case of vigorous genotypes/varieties combined with high spring
rainfall or (ii) detrimental, in case of low vigour genotypes/varieties
and/or of semi-arid and/or extreme environments because they
can result in an excessive reduction in vigour and yield (Pou et al.,
2011). Since the impact of the competition between swards and
vines changes along the season (Lopes et al., 2008), extended tri-
als are needed (Peterson et al., 2012) to assess the consequences
of such type of management approach on vine longevity and in a
specific ‘terroir’.

3.3. Selection of rootstocks and varieties resistant to drought and
heat

Among the possible adaptive agronomic measures to use in
modern viticulture under the ongoing climate change conditions
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is the selection and cultivation of the best adapted rootstocks and
varieties based on differences in temperature requirements for
their cultivation (Jones et al., 2005) and WUE  characteristics (Costa
et al., 2012; Chaves et al., 2010; Tomás et al., 2014a). The right
combination of variety/rootstock for a certain environment can
determine drought and heat tolerance. Rootstocks influence vigour
and drought tolerance via differences in root growth, root hydraulic
capacity and also stomatal behaviour (Tandonnet et al., 2010;
Cookson and Ollat, 2013; Pavloušek, 2013; Serra et al., 2014). Dif-
ferent rootstocks show varying capacities to extract soil water and
transfer it to the scion (Soar et al., 2006), which can be attributed
to different efficiency on water transport due to variable xylem
vessels anatomy (De Herralde et al., 2006). Different rootstock
genotypes show also different root traits (e.g. density and depth);
deep and bushy root system permit larger uptake of water and
nutrient and a more adequate response to drought and heat stress
(Paranychianakis et al., 2006; Koundouras et al., 2008; Pavloušek,
2013; Tramontini et al., 2013). On the other hand, roots have large
carbon requirements (e.g. high respiration represents 70–80% of
the total carbon losses (Serra et al., 2014)). Therefore, genotypes
with more efficient root systems would be a comparative advan-
tage for dry regions and thinner soils as they would enable a more
effective exploitation of soil resources with smaller carbon losses.

3.4. Precise plant monitoring and phenotyping

Modern Precision Viticulture involves the use of technologies in
which imaging, artificial vision and robotization/automation have
a central role and can help to decrease costs and improve input use
efficiency such as of water, fertilizers, biocides and energy.

Precision Viticulture is based on technologies that are able to
detect spatial heterogeneity of vineyards either due to intrinsic fac-
tors (soil and crop management) and/or external variables (climate)
and that ultimately will determine inter-annual and intra-vineyard
variability with regards to yield and quality output (Mazzeto
et al., 2010; Matese et al., 2015; Jones and Grant, 2015). Manual
ground-based and aerial manned and unmanned remote sensing
measurements are being progressively implemented in modern
viticulture not only in research but also in commercial vineyards
to monitor plant stress and or to assess canopy and/or berry traits
(Costa et al., 2010; Grant et al., 2007; Grant, 2012; Fuentes et al.,
2014; Fernández et al., 2013; Jones and Grant, 2015). These new
approaches combine the use of different types of detectors and
spectral wavelengths ranging from visible (red, green, blue) (RGB)
and infrared thermal imaging to multispectral and tomography
measurements (Leionen et al., 2006; Diago et al., 2012; Fuentes
et al., 2012; Costa et al., 2013; Jones and Grant, 2015; Rustioni et al.,
2014). Robots and unmanned Aerial Vehicles (UAVs) have been
recently applied in precision viticulture (Baluja et al., 2012; Zarco-
Tejada et al., 2009, 2012; Gago et al., 2015). UAVs offer advantages
relatively to ground based measurements. UAVs have high flexibil-
ity of use, low operational costs and a very high spatial resolution,
that can be down to 1 cm (Matese et al., 2015; Gago et al., 2015).
However, the legislation regulating their use in certain EU countries
demands still clarification for a broader use in agriculture (Costa
et al., 2013). Satellite imaging has also been used in grapevine stud-
ies namely to assess water stress (Consoli and Barbagallo, 2012) and
intra-variability in vigour and leaf expansion (Matese et al., 2015;
Jones and Grant, 2015)

Soil monitoring is another relevant aspect of remote sensing.
Assessment of soil water in field conditions must be accurate espe-
cially over large and heterogeneous surfaces. Electrical Resistivity
Tomography meets these requirements for applications in plant
sciences, agriculture and ecology (Brillante et al., 2014). Also the
combined use of aerial and ground based thermal imaging per-
mits to monitor soil water in vineyards (Soliman et al., 2013).

These authors found that spatial patterns of soil moisture correlated
better with thermal inertia data than with measured surface tem-
perature and suggested to use it as a potential indicator for vineyard
irrigation management. Optimizing the use of thermal and vegeta-
tion indexes as means to gather more robust information on crop
water stress is another important component of crop monitoring
based on thermography.

Regarding plant phenotyping, since grapevine is a perennial
field crop, acquisition of phenotypic data is almost restricted to
the field and is usually carried out by visual estimation. This is
time consuming and can be affected by subjectivity. Consequently,
fully and/or partially automated phenotyping is needed to increase
the number of samples monitored to manage grapevine reposito-
ries, to enable genetic research of novel phenotypic characteristics
and ultimately to increase efficiency in grapevine phenotypy-
ing and breeding (Kicherer et al., 2015). Moreover, the available
high-throughput phenotyping platforms can contribute to improve
grapevine phenotyping and breeding (Kicherer et al., 2015). Phen-
otyping canopy traits can be simpler to perform by imaging than
fruits and roots. Recent results in grapevine showed that visible
RGB images permit to assess bunch compactness (Cubero et al.,
2015) and a high-throughput image interpretation tool to acquire
the number, diameter and volume of grapevine berries (Berry Anal-
ysis Tool—BAT) has been recently developed (Kicherer et al., 2013).
Finally, cheaper and more user friendly technologies for crop mon-
itoring and phenotyping are on demand. As an example, Fuentes
et al. (2014) have recently proposed an inexpensive but robust
automated computational method to obtain leaf area index and
canopy vigour parameters from grapevines based on RGB imaging
and video analysis with MATLAB.

4. Sustainable water use

4.1. Sustainability standards and water use indicators

The wine industry, just like any other intensive agribusiness
activity or sector’s of industry has an environmental impact that
must be obligatorily taken into account for consideration. Although
wine production is one of the most innovative and competitive
industries at global scale, the environmental issues remain over-
all poorly perceived (Barber et al., 2009; Marshall et al., 2005;
Christ and Burritt, 2013). Therefore a more objective quantifica-
tion of its environmental impact is crucial particularly in terms
of water use. Water performance metrics involves a precise quan-
tification of water inputs and outputs in the vineyard and winery
making it easier to assess their environmental and economical per-
formance (CWSA, 2011). Performance metrics also contributes to
predict future water needs and expenses which is particularly rele-
vant under unfavourable scenarios (stressful environments, water
scarcity) and stricter environmental rules (CWSA, 2011). Unfortu-
nately, numerous indexes available to classify “sustainability” of
the wine sector shows that there are differences among countries
which makes it more difficult to classify companies because of the
differences in index composition and in the trait of sustainability
under observation (Santini et al., 2013). In California, the use of
metrics permitted the use of natural resources (water, energy) and
helped to optimize vineyard operations, reduce costs and increase
sustainability (CWSA, 2011). In New Zealand, vineyards and winer-
ies can report water use per vineyard and per winery annually
to the Sustainable Winegrowing New Zealand and this informa-
tion will be used to establish benchmarks for members (www.
nzwine.com). Australia in turn has been promoting for a long time,
water use benchmarking of vineyards (Skewes, 1998; Walker and
Boland 2004) and in Portugal, the same approach was  was carried
out for Alentejo’s wine region (COTR-ATEVA, 2009). Skewes (1998)
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suggests a set of potential indicators for water use such as: (1)
Yield (ton/ha); (2) Crop WUE  (ton/water use); (3) Return per water
applied; (4) Cost of water per tonne of fruit; (5) Irrigation efficiency;
(6) Yield per volume of drainage (Ton/m3 of water) or (7) Cost of
drainage per tonne of fruit (Euros/ton). In addition, the relation-
ship of these water use indicators with major berry/wine quality
attributes (e.g. sugar content, colour, flavour and aroma compo-
nents) should be also considered in future audits. Benchmarking
approaches would help to improve efficiency by setting a standard
and a reference. However, we may  have also to consider that some
small farms and businesses are not willing to present their own
results nor being evaluated by their counterparts. The use of more
objective parameters and performance metrics are also needed for
South European Mediterranean regions such as in Portugal and
Spain.

4.2. Water foot print (WFP) and Life cycle analysis (LCA)

The strong and growing trend towards industry certification in
terms of environmental sustainability is being translated into con-
cepts such as ecological footprint (Hoekstra et al., 2011; Ene et al.,
2013; Lamastra et al., 2014). The concept of water footprint (WFP)
emerged as a basic, theoretical, consumption-based indicator of
water use and looks at both direct and indirect water use by a con-
sumer or producer (Hoekstra et al., 2011). It is calculated by the
volume of fresh water used to produce the product, measured over
the various steps of the production chain (Hoekstra et al., 2011).
For food crops, the WFP  concept includes all the fresh water con-
sumed per unit of product (e.g. per litre of wine), namely to grow
the crop, the water used in post-harvest processing and also the
polluted water produced (volume of freshwater required to assim-
ilate the pollutants load). The WFP  is being used to indicate the
impacts of water use by production systems and there have been
an increasing number of governments/companies recognising that
reducing WFP  is part of the country/corporation environmental
strategy (Hoekstra and Mekonen, 2012; Herath et al., 2013).

An important recent development is the fact that the
International Organization for Standardization (ISO) developed
the International Standard ISO 14046, “Environmental manage-
ment—Water footprint—Principles, requirements and guidelines”,
which aims at providing decision makers in industry, government
and non-governmental organizations with the means to estimate
the potential impact of water use and pollution, based on a life-
cycle assessment (http://www.iso.org/iso/iso14046 briefing note.
pdf). This has enlarged the set of indicators related to environ-
ment sustainability and water use and protection that ISO makes
available for the industry.

However, there are some authors arguing on the effectiveness of
WFP  as neither WFP  is as accurate as a hydrological based approach
nor a helpful indicator of water use and water management in
agriculture (Perry, 2014). Therefore, the classical WFP  requires
more refinement for food groups, especially in the case of grapes
and wine. In fact WFP  should incorporate large regional/temporal
variation for agricultural products due to the variable environmen-
tal context (Hoekstra et al., 2011; Maes et al., 2009; Berger and
Finkbeiner, 2011; Vanham and Bidoglio, 2013), different agronomic
strategies (e.g. irrigation vs non irrigated) or different growth and
water use performance of genotypes which generates variation in
evapotranspiration. This seems not to be sufficiently accounted in
the classical calculations of WFP. Moreover, generalized values for
WFP  for a certain commodity can hide differences between regions
and may  mislead consumers and authorities (Maes et al., 2009;
Perry, 2014). In addition, the classic WFP  estimation has also lim-
itations in the assessment of relevant water issues such as water
quality and water pollution.

Together with the WFP, the Life Cycle Assessment (LCA)
methodology provides a possible framework to evaluate environ-
mental impacts of products and production systems across their
entire lifespan and can be applied to durable, disposable or edible
goods including food products (Notarnicola et al., 2012; Gazulla
et al., 2010; Arzoumanidis et al., 2013, 2014; Torrellas et al., 2013).
The LCA is a standardized method which is in accordance to the ISO
rules (ISO 14040:2006 and ISO14044:2006) (ISO, 2006; Barjoveanu
et al., 2010; Finnveden et al., 2009; Teodosiu et al., 2012).

There are still few literature studies on the environmental
effects of wine production on a complete lifecycle perspective
(Gazulla et al., 2010; Benedetto 2013). These studies have shown
that the major bottlenecks and environmental impacts in wine
production refer to the viticulture phase and also to glass produc-
tion for bottles. In fact, the largest percentage of water use in the
wine supply chain relates to the cultivation phase whereas a minor
percentage resides in the vinification and production of packag-
ing materials (Ene et al., 2013). To guarantee a wider use of LCA
information, there is a need to simplify LCA methodology and deter-
mination (Torrellas et al., 2013). This is especially true if we consider
the characteristics of the wine sector in the Mediterranean charac-
terised by a large number of small- and medium-sized Enterprises
(SMEs) with limited knowledge or resources to implement the con-
ventional full LCAs (Arzoumanidis et al., 2014). A simplified LCA tool
is now available online, the eVerdEE tool (http://www.ecosmes.
net/everdee/login2 (accessed on 10 July 2014)) that allows its users
to directly fill it in and obtain results with regard to the environ-
mental performance of a product. This tool can be accessed for free,
after registration (Arzoumanidis et al., 2014).

4.3. Legislation and statistics for sustainable water use

Legislation and statistics on water use and management is
essential to guarantee the optimal use of scarce resources. Five
major categories of tools can help to implement and guaran-
tee a proper management of water at regional and national
levels: regulatory, enforcement, economic, participative and inte-
grated (Medellín-Azuara et al., 2013) (See Table 2). In the case
of EU, the main policy objectives in relation to water use
and water stress were set out in the 6th Environment Action
Programme (EAP) (1600/2002/EC) and the Water Framework
Directive (WFD,2000/60/EC) whose major aim is to ensure the
sustainable use of water resources. The more recent policy doc-
ument is the ‘Blueprint to safeguard Europe’s water resources’
(COM/2012/0673) which aims at ensuring that good quality water
of sufficient quantity, is available for all legitimate uses (EUROSTAT,
2015). The “Blueprint” is a new strategy to reinforce water manage-
ment in the EU and is closely related to the Europe 2020 strategy, in
particular, to the roadmap for resource efficiency (EU Commission,
2014a,b; EUROSTAT, 2015). Concerning this topic, the EU Commis-
sion had already issued in 2007 a Communication on Water Scarcity
and Droughts, establishing five pillars: (1) put right price tag on
water, (2) promote more efficient water related technologies and
practices, (3) improve drought risk management, (4) enhancing a
water-saving culture and (5) improve knowledge and statistical
data collection (EEA, 2012a,b). However, EU’s architecture can be
problematic for down-scaling water policies to national, regional
and local levels, resulting in not common objectives among dif-
ferent EU members (Villarejo and Lopez, 2014). In Portugal, an
implementation program for legislation on water issues has been
implemented (“Plano Português para Uso Eficiente de Água”) and
Spain, in turn, put in place the so called “Plan Nacional del Agua”.

Accurate statistics and estimation of water use and irrigation
demands is a key requirement for precise water management
(Maton et al., 2005) and a large scale overview on European water
use can contribute to developing more correct water management
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Table  2
Indicative list of resources and policy tools to govern water management and water
conservation.

Resources and measures Description of the tools

Water statistics • Water statistics are crucial to
report obligations to international
organizations (UNSD/UNEP,
Eurostat/OECD) and to support EU
and national management of
environmental and
socio–economic conditions for a
more sustainable development
•  Robust water statistics will
support a more correct use and
implementation of different
measures (regulatory,
enforcement, economic,
participative)

Regulatory measures • Contains the instruments to
conserve overexploited
basins/aquifers by implementing
prohibitions, reserves and
regulations

Enforcement measures • Involves enforcement regulations
to control and manage the use of
water and water discharge
• Implementation based on field
inspections, quality monitoring,
auditing, sanctions for misconduct

Economic measures • Use economic instruments
(incentives) to implement novel
water policies and regulations
following the principle of “water
user pays” and “polluter pays”
•  Use incentives that may  include
lower taxes for growers/wineries
showing higher water use
efficiency and more sustainable
practices. The use of incentives to
promote efficiency should be
considered by both regional and
central governments
• Water pricing/charges applied on
a  volumetric basis

Participative and integrative measures • It is a policy tool to promote
community participation in
planning, policy development and
water management. It involves
participation of water user
associations, technical committees
for water resources,
representatives of different sectors
(e.g. tourism, agribusiness, national
and regional water management
authorities).
• Involves awareness-raising by
stakeholders and dissemination of
information/statistics concerning
water.

Sources: (EEA, 2012a,b; EU Commission, 2014a,b; D’Amore, 2005; Medellin-Azuara
et  al., 2013; Radke et al., 2015).

policies and strategies. However, there is still a significant lack of
water related statistical information for policy decision on aspects
such as aquifer recharge, water abstraction by farmers, irrigation
pollution emissions from either surface or subsurface water, soils
(Albiac et al., 2005; EEA, 2012a,b; Ferreira et al., 2015). In fact,
Portugal lacks up-to-date statistics related to water and there is
large discontinuity of data related to water uses and water masses
(Ferreira et al., 2015). Unfortunately, the problem of scarcity, non
homogeneous and disaggregated statistical data seems to be expe-
rienced by other Southern European countries as well (Albiac et al.,
2005; EEA 2012a,b).

5. Consumer perspectives and marketing

Consumer awareness of sustainable winegrowing and wine-
making remains low and the concepts such as “sustainable product”
or “sustainable processes” are confounded with vague terms e.g.
“organic” and “green” (Zucca et al., 2009). However, the perception
on the assessment of environmental and economic sustainability
of wine’s supply chain by stakeholders is increasing and becom-
ing a concern for growers, entrepreneurs, consumers and public
decision makers (Point et al., 2012; Strano et al., 2013; Dawson
et al., 2011; Fountain and Tompkins, 2011; Pullman et al., 2010;
Radke et al., 2015). The wine industry should develop appropriate
marketing strategies to help consumers to identify and distinguish
between sustainable and non sustainable products (Zuca et al.,
2009) and avoid any type of marketing practices that may mis-
lead consumers about firm environmental performance or benefits
of a certain product or service (so called “greenwashing”) (Delmas
and Cuerel Burbano, 2011). This has the negative effect on con-
sumers and investors’ confidence in environmentally friendly firms
and products (Delmas and Cuerel Burbano, 2011) and jeopardizes
efforts of stakeholders to build up a true and effective sustaina-
bility concept. In a recent transnational study, wineries have also
complained about the lack of information existing among relevant
organizations, producers and consumers in terms of environmental
sustainability (Szolnoki, 2013). This requires increased cooperation
between organizations/associations to optimize the flow of infor-
mation in the wine supply chain (Christ and Burritt, 2013; Broome
and Warner 2008; Santini et al., 2013).

6. Final considerations

Future scenarios for the Mediterranean viticulture encompasses
approaches at different levels (from plant physiology to consumer
behaviour) to guarantee a more economically and environmen-
tally sustainable wine production. The sustainable use of water is
of outmost importance and must be guaranteed at the vineyard,
winery and regional levels. Therefore, future strategies to optimize
the environmental performance of the wine sector in the Mediter-
ranean must be focused on water. This starts in the breeding for
improved plant adaptation to heat and drought stress and ends in
strategies to save water in the vinery and winery. Robust water
use statistics at both EU and national levels are needed. Also the
correct use of indicators (WFP, LCA, ISO norms) coupled to effec-
tive water policies will help make the Mediterranean wine industry
more efficient in terms of water use minimizing its environmental
impact.

Improved crop performance under more stressful conditions of
water by controlling grapevine water relations and canopy temper-
ature should take place in parallel with optimized deficit irrigation
and water reuse. Soil maintenance influencing soil and plant water
relations as well as soil fertility and temperature will have impact
on plant performance and berry quality. Nowadays, a large set of
technologies is available for ground and aerial sensing but novel
technologies must be better integrated and properly validated for
different genotypes and for different strategies of plant and soil
management. Low cost but effective remote sensing technologies
would help to generalise their use by an increasing number of small
companies and growers.

Water statistics and improved performance metrics at the vine-
yard and winery are required to optimize water use along the
supply chain. Proper audit programs to water use should be pro-
moted by authorities, association or organizations related to wine
supply chain. Consumer perception on wine industry impact on
the environment tends to increase and requires novel approaches
to operate in the wine supply chain. New concepts have been
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emerging in the modern viticulture namely the ecological foot-
print (water, carbon, social) and “vinecology”, which emphasises
the need to integrate ecological and viticultural practices to guaran-
tee nature conservation, landscape protection and diversity (Viers
et al., 2013). In addition, wine tourism is now an important com-
plement of wine production worldwide (Barber et al., 2009, 2010)
including Portugal and Spain (Radke et al., 2015; Gómez and Molina,
2011). Landscape scenery and the environmental attractiveness
have become major components of the wine tourism and must
be also protected (Bruwer and Alant, 2009; Leddy, 2013; Dawson
et al., 2011; Fountain and Tompkins, 2011). Therefore, tourism can
be an extra trigger for farme and winery managers to implement
best management practices in the vineyard and winery, and ulti-
mately contribute to minimize the environmental impact of the
wine industry.
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