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We modelled the distributions of two toads (Bufo bufo and Epidalea calamita) in the Iberian Peninsula using the favourability
function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate
different models. The fuzzy intersection between individual models, representing favourability for the presence of both species
simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union
between individual models, representing favourability for the presence of any of the two species, was compared with another
favourability model based on the presences of either or both of them. The fuzzy intersections between favourability for each species
and the complementary of favourability for the other (corresponding to the logical operation “A and not B”) were compared with
models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species
data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability
function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of
combining distribution models, including the possibility to combine multiple species models for management and conservation
planning.

1. Introduction

Comparative distribution modelling (i.e., building models
that combine or compare the distributions of different
species) is a useful tool to assess differences and similarities
between species’ distribution areas and environmental cor-
relates. It has been applied, for example, to species with par-
tially overlapping distributions [1], genetically differentiated
subspecific forms [2], cryptic species whose distribution data
are difficult to assign [3, 4], and species linked by close biotic
interactions [5].

Comparative modelling has mostly been done in pairs,
by regressing presences of one taxon against presences of
the other [1–4]. However, this poses clear limitations to the
modelling procedure: sample size may become considerably
smaller than the whole study sample, because only localities

with presence of either one or the other taxon (not sites
where both are either present or absent) can be used, and
only two taxa can be directly compared at a time.

Relatively recent developments in distribution modelling
[6] provided tools to obtain environmental favourability val-
ues that can be directly compared among species, even when
these have different prevalence (i.e., proportion of presences)
within the study area. Environmental favourability models
have the additional advantage of allowing operations of fuzzy
logic (a form of multivalued logic where the truth value may
range in degree between 0 and 1) between the predictions
for different species [6], opening a range of possibilities for
comparative distribution modelling [5, 7].

In this paper, we test fuzzy logic operations as a tool in
comparative modelling using two amphibians with partially
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overlapping distributions, the common toad (Bufo bufo)
and the natterjack toad (Epidalea calamita, formerly Bufo
calamita), in the Iberian Peninsula (SW Europe). Both
species have widespread distributions in the study area, but
with local differences that have been related to macroenvi-
ronmental factors [1, 8]. We modelled the Iberian distri-
butions of these species, both individually and in different
combinations, and then compared the results of these
combination models with those of fuzzy logic operations
between the two initial individual models. We illustrate
and discuss the applicability of fuzzy logic in comparative
distribution modelling.

2. Materials and Methods

The study area was the Iberian Peninsula, at the south-
western edge of Europe (Figure 1). It is a nearly 600,000 km2

heterogeneous region comprising the mainland territories
of Portugal and Spain and linked to the continent by a
narrow and mountainous isthmus. It thus constitutes a
discrete biogeographical unit appropriate for studies on
species distributions [5, 9].

Species distribution data, consisting of presences and
absences on Universal Transverse Mercator (UTM) 10 ×
10 km grid cells (Figure 1), were taken from the herpetologi-
cal atlases of Portugal [10] and Spain [11] and were collected
in a roughly similar way. Although some of the absences
may result from insufficient surveying effort (false absences),
many others are due to ecological or historical reasons, all of
which are relevant factors in biogeography. As long as false
absences are not spatially structured due to geographically
biased sampling effort, they do not reduce model reliability
[12]. In any case, false absences are the same as missing true
presences, so they affect presence-only models as well.

The UTM 10 × 10 km grid and the limits of the study
area were downloaded from the EDIT Geoplatform [13].
We used Quantum GIS 1.7 [14] and its GRASS (Geographic
Resources Analysis Support System) plugin [15] to clip the
grids with the limits of the study area. Predictor variables,
representative of physiography, climate, and human activity
(Table 1), were digitized and interpolated in previous studies
[16, 17]. We corrected the values of solar radiation [18]. Data
management and statistical analyses were carried out in R
2.11 [19] except where otherwise stated.

We built generalized linear models with a binomial
distribution and the logit link of the favourability function
[6], which may be written as follows:

F = ey

n1/n0 + ey
, (1)

where F is predicted favourability, n1 and n0 are the numbers
of presences and absences, respectively, e is the basis of the
natural logarithm, and y is a logit function combining several
variables and obtained using logistic regression. Basically, it
is a generalized linear model that assesses the local variations
in presence probability with respect to the overall species
prevalence. This makes the models independent of the
species’ presence/absence ratio in the study area, enabling

direct model comparison and combination when more than
one species are involved [5, 7].

To avoid a spurious effect of surface area on the
probability of the species being present, only complete UTM
cells, and not those that are cut by the study area borders or
the unions between UTM zones, were used for the inductive
stage of the modelling. Models were then applied to the
whole study area [5, 17].

Variables were included in the models using a forward-
backward stepwise procedure [4, 20, 21]. Stepwise selection
is a useful and effective tool to infer distribution patterns
inductively from observed data, when no theory or previous
hypotheses exist about the importance of each variable [5,
22]. Variable selection was based on Akaike’s Information
Criterion (AIC [23]), and we checked that the same models
were obtained when using AIC corrected for large numbers
of predictors relative to sample size (AICc [24]). In case
any nonsignificant variables remained in a model after AIC-
based selection, the model was further updated by removing
them step by step, starting with the least significant variable
[25]. The following models were built:

(A) a favourability model for B. bufo, with 1 = presence
and 0 = absence of this species as target data,

(B) a favourability model for E. calamita, with 1 = pres-
ence and 0 = absence,

(C1) a favourability model for the occurrence of both
species together, where 1 = presence of both and 0 =
absence of at least one of them,

(D1) a model of favourability for either of the two species,
where 1 = presence of at least one and 0 = absence of
both species,

(E1) a model of favourability for the presence of B. bufo
instead of E. calamita, where 1 = presence of B. bufo
only, 0 = presence of E. calamita only, and cells where
both species are either present or absent were left out
of the analysis,

(F1) a model of favourability for the presence of E. calami-
ta instead of B. bufo, where 1 = presence of E. calamita
only, 0 = presence of B. bufo only, and cells where
both species are either present or absent were left out.

Models C1 to F1 were compared, respectively, with their
fuzzy logic counterparts from C2 to F2, resulting from the
following operations between models A and B:

(C2) fuzzy intersection between the individual models
(logic “A and B”),

(D2) fuzzy union of the individual models (logic “A or B”),

(E2) fuzzy intersection between model A and the comple-
mentary of model B (logic “A and (not B)”),

(F2) fuzzy intersection between model B and the comple-
mentary of model A (logic “B and (not A)”).

Note that models E1 and F1, which use presence-only
data, are bound to be the same with contrary signs of the
variables’ coefficients, but their counterparts E2 and F2 will
probably be different. This is why we built both models.
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Figure 1: Location of the study area, recorded distributions (black dots: presences on UTM 10× 10 km squares, after Loureiro et al. [10] for
Portugal and Pleguezuelos et al. [1] for Spain), and environmental favourability values predicted for Bufo bufo and Epidalea calamita across
the Iberian Peninsula.

The capacity of each model to discriminate between the
modelled events (i.e., presence versus absence or presence of
one species versus presence of the other) was assessed with
the Area Under the receiver operating characteristic (ROC)
Curve (AUC). This is a widely used model evaluation mea-
sure that provides a single-number discrimination measure
across all possible classification thresholds for each model,
thus avoiding the subjective selection of one threshold [26].
We must keep in mind that, as any discrimination measure,
the AUC depends on thresholds (just not on one particular
threshold) to convert continuous model predictions into
binary classifications, and is strongly conditioned by species
prevalence or relative occurrence area [27]. However, this
does not affect our pair wise comparisons between models
based on combined distribution data and those based on

fuzzy logic operations, as the set of data used to assess the
AUC is the same in each comparison.

We also compared the favourability values predicted
by the models of combined species data and the corre-
sponding fuzzy logic operations between individual species
models, using two different measures: Spearman’s non-
parametric rank correlation between favourability values,
with Dutilleul’s [28] sample size adjustment for spatial
autocorrelation, implemented in the SAM software [29],
and the average overall similarity between maps, calculated
with the Map Comparison Kit 3.2.2 (Geonamica/RIKS,
The Netherlands), which performs pattern recognition
considering logical coherence, local and global similarities
[30]. As predictions were numerical, we used the fuzzy
numerical comparison, which considers fuzziness of location
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Figure 2: Comparison of predicted environmental favourability for Bufo bufo and Epidalea calamita given by the models of combined
presence/absence data and by fuzzy logic operations between the individual species models. Distribution data (black dots: presences on
UTM 10× 10 km squares) combined from Loureiro et al. [10] for Portugal and from Pleguezuelos et al. [11] for Spain.
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Table 1: Factors and their related variables used to model the distributions of Bufo bufo, Epidalea calamita, and the combined presences
of the two species. Sources: (1)U. S. Geological Survey (1996); (2)Font (1983, 2000); (3)I.G.N. (1999); data on the number of inhabitants
of urban centres taken from Enciclopédia Universal (http://www.universal.pt) for Portugal and from the Instituto Nacional de Estadı́stica
(http://www.ine.es/) for Spain, both in 1999.

Factor Variable Code

Topography
Mean altitude (m)(1) alti

Mean slope (degrees) (calculated from Alti) slop

Water availability
Mean annual precipitation (mm)(2) prec

Mean relative air humidity in January at 07:00 hours (%)(2) hjan

Mean relative air humidity in July at 07:00 hours (%)(2) hjul

Environmental energy

Mean annual insolation (hours/year)(2) inso

Mean annual solar radiation (kwh/m2/day)(2) srad

Mean temperature in January (◦C)(2) tjan

Mean temperature in July (◦C)(2) tjul

Mean annual temperature (◦C)(2) temp

Mean annual number of frost days (min. temperature ≤ 0◦C)(2) dfro

Mean annual potential evapotranspiration (mm)(2) pet

Productivity Mean annual actual evapotranspiration (mm) (=min [PET, Prec]) aet

Environmental disturbance
Maximum precipitation in 24 hours (mm)(2) mp24

Relative maximum precipitation (=MP24/Prec) rmp

Climatic variability
Mean annual number of days with precipitation ≥ 0,1 mm(2) dpre

Annual temperature range (◦C) (=TJul-TJan) tran

Annual relative air humidity range (%) (=|HJan-HJul|) hran

Human activity
Distance to a highway (km)(3) dhi

Distance to a town with more than 100,000 inhabitants (km)(3) u100

Distance to a town with more than 500,000 inhabitants (km)(3) u500

Table 2: Number of analysed presences and absences and measures of the overall similarity between the predictions produced by modelling
combined species distribution data and by fuzzy logic operations between individual species models. For model abbreviations, please see
Section 2. Spearman’s correlations (with Dutilleul’s correction for spatial autocorrelation) were all highly significant (P < 0.001).

Model comparison N events N nonevents Spearman’s correlation Fuzzy numerical comparison

C1 versus C2 (favourability for presence of both) 2412 3052 0.873 0.830

D1 versus D2 (favourability for presence of any) 4273 1191 0.840 0.855

E1 versus E2 (favourability for B. bufo instead of E. calamita) 1142 719 0.788 0.724

F1 versus F2 (favourability for E. calamita instead of B. bufo) 719 1142 0.861 0.676

(the notion that the representation of a cell depends on
the cell itself and, to a lesser extent, also the cells in its
neighbourhood) in the same manner as the Fuzzy Kappa [29]
but is applied to numerical maps, without using a categorical
similarity matrix. The following formula was employed to
find the fuzzy similarity (FS) of two values a and b [31]:

FS(a,b) = 1− |a− b|
max(|a|, |b|) . (2)

We used the default values for neighbourhood radius and
decay, although we tried also a few different values to check
that the results were robust.

3. Results

There were 3554 presences of B. bufo and 3131 presences of E.
calamita (Figure 1) in the 5464 complete UTM cells used for
building models A to D (see also Figure 2 for the distribution
of the presences of both species together and the presences
of either of the two species). For models E and F, based on
complete UTM cells where one and only one of the two
species was present, the number of analysed cases dropped to
1861. The ratios between the compared events varied among
models (Table 2).

The individual models obtained for B. bufo and E.
calamita reflect some areas of general agreement between
environmental favourability for the two species, in line with
the substantial overlap in their distributions; however, there
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Table 3: Bufo bufo.

Estimate Std. Error z value P

(Intercept) −0.6473339 0.9170176 −0.706 0.480243

aet 0.0034684 0.0003854 8.999 <2e-16∗∗∗

slop 0.1376538 0.0200160 6.877 6.10e-12∗∗∗

d500 −0.0046584 0.0005789 −8.046 8.53e-16∗∗∗

icon −0.0278620 0.0103935 −2.681 0.007346∗∗

dhi 0.0087021 0.0015335 5.675 1.39e-08∗∗∗

prec −0.0003706 0.0001746 −2.122 0.033810∗

temp −0.2663412 0.0481650 −5.530 3.21e-08∗∗∗

rmp 1.6677263 0.4787252 3.484 0.000495∗∗∗

tjan 0.0798147 0.0416233 1.918 0.055168.

hjul 0.0239101 0.0057019 4.193 2.75e-05∗∗∗

dsno −0.0173457 0.0067807 −2.558 0.010524∗

srad 0.3948201 0.1512332 2.611 0.009036∗∗

alti −0.0005184 0.0002357 −2.200 0.027810∗

Table 4: Bufo calamita.

Estimate Std. Error z value P

(Intercept) −1.4461972 0.5215066 −2.773 0.005552∗∗

Prec −0.0004168 0.0001974 −2.112 0.034706∗

d500 −0.0032900 0.0005710 −5.762 8.33e-09∗∗∗

Dhi 0.0070846 0.0015043 4.710 2.48e-06∗∗∗

Aet 0.0028592 0.0004159 6.874 6.24e-12∗∗∗

d100 −0.0042235 0.0010702 −3.947 7.93e-05∗∗∗

Alti 0.0003358 0.0001139 2.949 0.003189∗∗

Inso 0.0006156 0.0001559 3.948 7.88e-05∗∗∗

Rmp 3.9730635 0.8842854 4.493 7.02e-06∗∗∗

pm24 −0.0055301 0.0016745 −3.302 0.000958∗∗∗

Pet −0.0014127 0.0005897 −2.396 0.016584∗

are also areas of disagreement, where one of the two species is
clearly more favoured than the other (Figures 1 and 2). The
variables included in the models, their coefficient estimates
and associated statistics are shown in the Appendix.

The B. bufo model had an AUC of 0.711, while the
E. calamita model scored a slightly lower 0.629. Spatial
autocorrelation in model residuals was negligible (maximum
absolute Moran’s I was 0.003 for B. bufo and 0.002 for E.
calamita). The models of combined species data and the cor-
responding fuzzy logic operations between individual species
models produced similarly shaped ROC curves and largely
overlapping AUC in all four comparisons (Figure 3(a)).

The predicted values derived from modelling combined
species distribution data were also generally similar to the
results of fuzzy logic operations between the two single-
species models (Figure 2). The similarity between these
map pairs is also attested, in all four cases, by both rank
correlation and fuzzy numerical comparison of predicted
values (Table 2 and Figure 3(b)). For the models of presence
of one species against the other, fuzzy logic operations

generated less dispersed predictions, with a smaller variation
interval (Figure 3(c)).

4. Discussion

The relatively low AUC values obtained for both B. bufo
and E. calamita are in line with those generally obtained for
species with widespread distributions in the study area [5], as
the AUC is known to correlate negatively with species preva-
lence [27]. Expanding the study area to include the complete
distributions of both species could allow obtaining models
with larger AUC. However, this would require distribution
data at the same resolution from the rest of the distribution
areas of both species, which are not available. In addition,
higher AUC values do not necessarily mean better calibrated
models; they simply reflect the fact that the modelled species
does not distinguish so clearly between “good” and “bad”
habitat within the studied region. Moreover, as we have
pointed out before, this does not affect the pair wise model
comparisons, which were the focus of this paper.
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Table 5: B. bufo and B. calamita.

Estimate Std. Error z value P

(Intercept) −0.2758076 0.4732180 −0.583 0.56001

d500 −0.0034426 0.0005547 −6.207 5.41e-10∗∗∗

Dhi 0.0074735 0.0014794 5.052 4.38e-07∗∗∗

Aet 0.0036445 0.0003296 11.057 <2e-16∗∗∗

Prec −0.0009242 0.0001282 −7.211 5.56e-13∗∗∗

Alti 0.0002249 0.0001106 2.034 0.04197∗

Rmp 2.2063901 0.3935660 5.606 2.07e-08∗∗∗

Pet −0.0018473 0.0004894 −3.775 0.00016∗∗∗

d100 −0.0032504 0.0010754 −3.022 0.00251∗∗

Perm −0.0969069 0.0381119 −2.543 0.01100∗

Table 6: B. bufo or B. calamita.

Estimate Std. Error z value P

(Intercept) 4.1342959 0.4957333 8.340 <2e-16∗∗∗

aet 0.0019913 0.0003558 5.597 2.19e-08∗∗∗

d500 −0.0055607 0.0006259 −8.884 <2e-16∗∗∗

slop 0.1132909 0.0174535 6.491 8.53e-11∗∗∗

vtem −0.0950495 0.0281901 −3.372 0.000747∗∗∗

dhi 0.0078209 0.0016820 4.650 3.32e-06∗∗∗

prec −0.0008682 0.0001658 −5.237 1.64e-07∗∗∗

temp −0.1793878 0.0530935 −3.379 0.000728∗∗∗

tjan 0.1432213 0.0534457 2.680 0.007368∗∗

Table 7: B. bufo and not B. calamita.

Estimate Std. Error z value P

(Intercept) −3.6158776 0.9141552 −3.955 7.64e-05∗∗∗

prec 0.0014185 0.0003948 3.593 0.000327∗∗∗

slop 0.1728488 0.0274526 6.296 3.05e-10∗∗∗

icon −0.0640986 0.0130270 −4.920 8.63e-07∗∗∗

d100 0.0083717 0.0019799 4.228 2.35e-05∗∗∗

hjul 0.0403393 0.0096243 4.191 2.77e-05∗∗∗

aet 0.0014935 0.0006798 2.197 0.028022∗

Table 8: B. calamita and not B. bufo.

Estimate Std. Error z value P

(Intercept) 3.6158776 0.9141552 3.955 7.64e-05∗∗∗

Prec −0.0014185 0.0003948 −3.593 0.000327∗∗∗

Slop −0.1728488 0.0274526 −6.296 3.05e-10∗∗∗

Icon 0.0640986 0.0130270 4.920 8.63e-07∗∗∗

d100 −0.0083717 0.0019799 −4.228 2.35e-05∗∗∗

Hjul −0.0403393 0.0096243 −4.191 2.77e-05∗∗∗

Aet −0.0014935 0.0006798 −2.197 0.028022∗
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Figure 3: Top row: Comparison of the receiver operating characteristic (ROC) curves and the areas under them (AUC) for models of
combined species data and the corresponding fuzzy logic operations between individual species models. Middle row: Scatter plots and
linear regression lines comparing favourability values given by combined models and those given by fuzzy logic operations between
individual species models. Bottom row: Box plots showing median, upper, and lower quartiles, and extreme values for favourability given by
combination models and the corresponding fuzzy operations.

Models confronting the presence of B. bufo and E.
calamita have been built previously, on a narrower spatial
scale, in Southern Spain [1]. Analogous models have also
been built for other amphibian pairs, such as cryptic species
of frogs (Discoglossus galganoi and D. jeanneae [3]) and newts
(Triturus marmoratus and T. pygmaeus [4]) and genetically
differentiated forms of a salamander (Chioglossa lusitanica
[2]). This may be the adequate approach when the aim of
modelling is to assess which environmental parameters dis-
tinguish the distribution areas of two organisms. But when
the prediction of their potential distributions is the main
aim, fuzzy logic operations between the single-species mod-
els may be preferable, as they present a series of advantages.

(1) They avoid the need to build additional models:
the single-species models are enough.

(2) They allow using all distribution data available, that
is, all the localities in the study area, and not only
those with exclusive presence of one of the species.
This increase in sample size allows a better model

calibration and thus can enhance the predictive
power of the models.

(3) They allow the possibility of simultaneous multi-
species comparisons, instead of comparing species
only two by two; models such as C1 may be imprac-
ticable when applied to many species, as the number
of localities where all the species have been recorded
decreases with the number of species analysed,
whereas models such a C2 are not affected by this.

(4) Modelling the presence of any of two species (as
in model D1 in our study) gives greater weight to
the species with higher number of presences, while
combining individual species models with fuzzy logic
gives the same importance to all species involved.

Our results showed that favourability models for two
species combined by means of fuzzy logic operations
perform similarly to models of combined data for these
species. Although we have not tested this specifically, we
may assume that the method will work in other situations,
differing, for example, in number of species, the magnitude
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of the differences between their distribution areas, species
prevalence, or the geographical extent of the study area.
The modelling method, however, should provide directly
comparable numerical predictions, as is the case with the
favourability function [6].

A fuzzy classification technique (fuzzy envelope model,
FEM) has been applied [32] for predicting species’ distribu-
tions by using presence-only records, although recognizing
that when absence records are available, models built using
presence-absence data may perform better than presence-
only models. In any case, our conclusions are likely applicable
to the use of fuzzy logic operations to their fuzzy models,
although this needs to be specifically tested.

Favourability values are here considered as the degree
of membership to the fuzzy set of localities favourable to
the analysed event (presence of one species, of any of them,
of both together, and of one instead of the other). Degrees
of membership are sometimes confused with probability
values, in part because both take values between 0 and
1. However, the conceptual consequences of this difference
between degree of membership and probability are relevant.
Local favourability denotes a measure of the degree to which
local conditions cause local probability to differ from the
probability expected at random, that is, from that expected
according to the prevalence of the event [6]. Consequently,
favourability values should not be taken as probability values
independent of sample prevalence. Local probability depends
both on the response of the analysed event to the predictors
and on the prevalence of the event [33], whereas favourability
depends only on the response to the predictors in the study
area [6]. Thus, favourability is aimed at complementing
probability, by providing a comparable measure of the
response of the event to the predictors for events differing
in prevalence.

The mathematical consequences of this difference
between degree of membership and probability are also
relevant. The probability of simultaneous occurrence of
several events is calculated by multiplying the individual
probabilities of each event, which inevitably yields increas-
ingly lower output values as more events are taken into
account. The use of fuzzy logic operations avoids this
mathematical problem, as favourability for the simultaneous
occurrence of several events is computed as the favourability
for the least favourable event [34]. This is important when
the aim is to identify areas that are simultaneously favourable
for groups of several species, as it is the case, for example,
in the identification of favourability hotspots [7]. This is
especially relevant at a time when distribution modelling of
multiple species is increasingly necessary to design effective
conservation strategies for both present and future scenarios.

Appendix

Variables included in each environmental favourability
model, their parameter estimates (coefficients) and asso-
ciated standard error, z test, and significance (P) values.
Variable codes as in Table 1. ∗∗∗P < 0.001; ∗∗P < 0.01;
∗P < 0.05; .P < 0.1. (See Tables 3, 4, 5, 6, 7, and 8).
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