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Species  occurrence  and abundance  models  are  important  tools  that  can be  used  in biodiversity  conser-
vation,  and  can  be applied  to predict  or plan  actions  needed  to mitigate  the  environmental  impacts  of
hydropower  dams.  In this  study  our  objectives  were:  (i)  to model  the occurrence  and  abundance  of  threat-
ened plant  species,  (ii)  to verify  the  relationship  between  predicted  occurrence  and  true  abundance,  and
(iii) to assess  whether  models  based  on abundance  are more  effective  in  predicting  species  occurrence
than  those  based  on presence–absence  data. Individual  representatives  of  nine species  were  counted
within  388  randomly  georeferenced  plots  (10  m  ×  50  m)  around  the  Barra  Grande  hydropower  dam  reser-
voir  in  southern  Brazil.  We  modelled  their  relationship  with  15  environmental  variables  using  both
occurrence  (Generalised  Linear  Models)  and  abundance  data  (Hurdle  and  Zero-Inflated  models).  Overall,
occurrence  models  were  more  accurate  than  abundance  models.  For  all  species,  observed  abundance  was
significantly,  although  not  strongly,  correlated  with  the  probability  of occurrence.  This  correlation  lost  sig-
nificance  when  zero-abundance  (absence)  sites  were  excluded  from  analysis,  but  only  when  this  entailed
a substantial  drop  in sample  size.  The  same  occurred  when  analysing  relationships  between  abundance
and  probability  of  occurrence  from  previously  published  studies  on  a range  of  different  species,  sug-
gesting  that  future  studies  could  potentially  use probability  of  occurrence  as  an  approximate  indicator

of  abundance  when  the  latter  is  not  possible  to  obtain.  This  possibility  might,  however,  depend  on  life
history  traits  of  the  species  in question,  with  some  traits  favouring  a  relationship  between  occurrence
and  abundance.  Reconstructing  species  abundance  patterns  from  occurrence  could  be  an  important  tool
for conservation  planning  and  the management  of  threatened  species,  allowing  scientists  to  indicate  the
best areas  for collection  and  reintroduction  of  plant  germplasm  or  choose  conservation  areas  most  likely
to maintain  viable  populations.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

According to statistics from the Brazilian Electricity Regulatory
gency (ANEEL, 2008), more than 150 hydropower plants were in
peration in Brazil as of 2008, amounting to an operating capacity in
xcess of 74 GW.  Hydroelectric energy accounts for more than 70%
f the electricity consumed in Brazil, and this percentage is likely to
ncrease because Brazil possesses the world’s largest hydroelectric

otential, with more than 260 GW available. Some estimates indi-
ate that by the end of the twentieth century, more than 30,000 km2

f land were flooded by hydropower dam reservoirs in Brazil.

∗ Corresponding author. Current address: Embrapa Acre, Rodovia BR 364, km 14,
.O. Box 321, CEP 69908-970, Rio Branco, Brazil. Tel.: +55 5192273184.

E-mail address: esguarino@cpafac.embrapa.br (E.d.S.G. Guarino).

304-3800/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2012.01.007
However, few initiatives have been implemented to improve pro-
cedures for the mitigation and management of landscapes affected
by dam reservoirs.

Due to Brazil’s high biodiversity, it is almost impossible to define
sampling procedures that take into consideration every organism
affected by the development of an artificial reservoir. An insuffi-
cient number of field experts, time and money constraints, and
the large areas covered by hydropower dam reservoirs add to this
challenge. Thus, to overcome these obstacles, species distribution
models (SDMs) constitute a viable alternative that is effective in
predicting the occurrence of different organisms affected by dam
construction. The use of these models has greatly increased over

the last three decades due to the development and dissemination of
Geographic Information Systems (Guisan and Zimmermann, 2000).
Today, these models are essential tools within conservation biology
(Elith et al., 2006). Using different algorithms, species distribution

dx.doi.org/10.1016/j.ecolmodel.2012.01.007
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:esguarino@cpafac.embrapa.br
dx.doi.org/10.1016/j.ecolmodel.2012.01.007
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odels correlate species occurrence with environmental data (e.g.
limate, soil, topography) to predict species presence on a map
Soberón and Peterson, 2005).

Due to the need to find the highest quality areas for the con-
ervation of biodiversity (Pearce and Ferrier, 2001) and to improve
he statistical techniques used to predict species abundance, abun-
ance models are undergoing an expansion similar to that observed

n the beginning of the last decade. A search for papers in indexed
ournals on the ISI Web  of Science (performed on March 5, 2010;
ttp://www.isiknowledge.com), using the terms species abundance
odels and species distribution models, identified over 3700 papers

n this topic published in the last 30 years (1979–2009). More
han 50% of these articles were published in the last six years
2004–2009), indicating an increasing interest in understanding
atterns of species abundance. Information about the abundance
f a species provides the following intuitive idea: the greater the
umber of individuals of a certain species in one area, the greater
he probability of maintaining a viable population for that species
Araújo and Williams, 2000). However, this intuitive assumption
s a target of a broad discussion (i.e., Skagen and Yackel Adams,
011; Van Horne, 1983). According to Van Horne (1983), popula-
ion density is not a good direct measure of habitat quality. This
uthor suggests that habitat-quality assessment is based only on
imple estimations of total density and forgets to take into account
he demography of the species and of the factors influencing pop-
lation levels through their influence on survival and production.
lthough important, this information is expensive to collect and

ime demanding, undesirable factors when it comes to planning
onservation actions. In some circumstances there is no choice but
o assume that habitat quality is correlated with abundance (Pearce
nd Ferrier, 2001).

The positive relationship between occupancy and abundance is
ne of the most interesting topics within ecology (Brown, 1984;
aston et al., 2000; He and Gaston, 2007) and is the subject of
onstant discussion (Blackburn and Gaston, 2009; Komonen et al.,
009; Kotiaho et al., 2009). This macroecological pattern suggests
hat locally abundant species tend to be more widely distributed
han locally rare species, which tend to be of restricted occur-
ence (He and Gaston, 2000). This pattern can be attributed to the
elationship between the population density of a species with the
patial distribution of environmental factors which determine its
istribution. Both density (or abundance) and probability of occur-
ence are intuitive indicators of habitat quality, so we  can expect a
ositive relationship between them (e.g. Pearce and Ferrier, 2001).
owever, this relationship is not always observed. There is a large
umber of non-environmental controls of abundance, including
iotic interactions such as predation or interspecific competition
Holt et al., 2002; Van Horne, 1983), dispersal limitation (Holt et al.,
002; Pulliam, 2006; Verbek et al., 2010) and different species
etectability among habitats, seasons, weather conditions (Gu and
wihart, 2004; Pearce and Ferrier, 2001) and observers (Chen et al.,
009). This can lead to the population of a species reaching high
alues of abundance within low probability of occurrence areas.

Few studies have attempted to reproduce abundance patterns
sing probability of occurrence data generated by species distribu-
ion models, with different statistical approaches and inconsistent
esults (Jiménez-Valverde et al., 2009; Nielsen et al., 2005; Pearce
nd Ferrier, 2001; Real et al., 2009; VanDerWal et al., 2009). Work-
ng with a large number of species from different groups (arboreal

arsupials, small reptiles, diurnal birds, vascular plants and arthro-
ods), Pearce and Ferrier (2001) and Jiménez-Valverde et al. (2009)
howed that for a small number of species the probability of occur-

ence may  also serve as a proxy of abundance. Jiménez-Valverde
t al. (2009) suggest that this relationship tends to be more com-
on  for species with high dispersal ability. VanDerWal et al. (2009)

howed that probability of occurrence generated by presence-only
Modelling 230 (2012) 22– 33 23

species distribution models could predict upper limits of local
abundance for rain forest vertebrates in the Australian wet trop-
ics. Real et al. (2009) showed that abundance of Iberian lynx and
European rabbit correlates positively, although not strongly, with
probability of occurrence. Contrasting patterns were described by
Nielsen et al. (2005) for bracken fern and moose.

Regardless of geographical range or organism, species distri-
bution models have been successfully used in a large variety of
conservation biology studies (Cayuela et al., 2009; Rodríguez et al.,
2007). Good examples of application of species distribution models
in conservation biology problems are given by Alves and Fontoura
(2009) with fish in a hydrographic basin in southern Brazil; Barbosa
et al. (2003, 2010) and Real et al. (2009) with otters, lynx and rab-
bits, and desmans, respectively, in the Iberian Peninsula; Willis
et al. (2009) with birds in sub-Saharan Africa; Zhu et al. (2007)
with invasive plants in China; and Parolo et al. (2008) with plant
reintroduction in Alps. However, examples of species abundance
models applied to solve conservation problems are rare, probably
due to the difficulty to obtain and to analyse abundance or density
data.

In this study, we modelled both the occurrence and abundance
of a set of plant species in the surroundings of a power dam and
tested the following hypotheses: (i) there is a positive relationship
between predicted probability of occurrence and true abundance;
(ii) there is a positive relationship between a model’s discrimina-
tion capacity and its relationship with true abundance; and (iii)
models based on abundance are more effective in predicting species
occurrence than those based on presence–absence data. We dis-
cuss the application of our methods and the implications of our
results for the conservation of species affected by the construction
of hydroelectric power dams.

2. Materials and methods

2.1. Study area

The field survey was conducted around the Barra Grande dam
reservoir in southern Brazil (Fig. 1). Located in the Pelotas River
Basin between the states of Santa Catarina and Rio Grande do
Sul, this reservoir encompasses approximately 90 km2, and its
surroundings, delimited by watershed boundaries, cover an area
of roughly 4600 km2. Elevation ranges between 500 and 1200 m
above sea level, and the climate types range from Cfa (humid sub-
tropical) to Cfb (oceanic or marine temperate), depending on the
elevation quota (Köppen climate classification). Annual precipi-
tation is 1.412 mm,  and the mean temperature is 15.2 ◦C (Maluf,
2000). Topography varies from rolling highlands (Southern Brazil-
ian Plateau), where cambisol and alfisol are the most common soil
classes, to steep slopes near the Pelotas River, where lithosol is
the most frequent class (Potter et al., 2004; sensu Brazilian soil
classification system – SiBCS).

The vegetation is characterised by continuous areas of semi-
deciduous forests predominantly located close to the Pelotas River.
In the highlands (≥800 m),  Araucaria forests cover a large area that
is naturally fragmented by grasslands (Joly et al., 1999; Klein, 1975).

2.2. Target species

The time and resources available allowed the field sampling
of nine selected species: Araucaria angustifolia (Bertol.) Kuntze
(Araucariaceae), Butia eriospatha (Mart. ex Drude) Becc. (Are-

caceae), Clethra scabra Pers. (Clethraceae), Dicksonia sellowiana
(Presl.) Hook. (Dicksoniaceae), Erythrina falcata Benth. (Fabaceae),
Maytenus ilicifolia (Schrad.) Planch. (Celastraceae), Myrocarpus
frondosus Allemão (Fabaceae), Podocarpus lambertii Klotzsch ex

http://www.isiknowledge.com/
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Austin and Meyers, 1996) to predict the spatial distribution of the
target species (Table 1). All environmental maps had a spatial res-
olution of 30 m.  All spatial data were stored and analysed using the

Table 1
Environmental variables used to predict the spatial distribution of the target species.

Group Variable

Soil

pH H2O
Ca+2 + Mg2+*

H+ + Al3−*

K+

S2−

P+

Total nitrogen
Silt:clay ratio*

Bulk density

Topography

Elevation (m)*

Northness
Eastness
Topographical wetness index (TWI)

◦

Fig. 1. Location map  of the study area and sampling sites (Univer

ndl. (Podocarpaceae) and Trithrinax brasiliensis Mart (Arecaceae).
xcept for E. falcata,  all of these species possess threat categories,
oth globally (IUCN Red List) and locally (Rio Grande do Sul State list
f threatened species). Due to the intense commercial exploitation
f D. sellowiana,  this fern had its market regulated by the Conven-
ion on International Trade in Endangered Species of Wild Fauna
nd Flora (CITES,  Appendix II). All of these species are easily iden-
ified in the field, minimising sampling errors (false absences).

.3. Sampling

Past studies have used standardised abundance estimates
btained from different surveys or estimates of abundance from
ndirect methods (F-igueiredo and Grelle, 2009; He and Gaston,
007). These methods, according to Austin and Meyers (1996),  can
reate an unwanted bias. In contrast, our work was  based on reli-
ble occurrence and abundance data. These data were obtained by
onducting a detailed field survey and germplasm collection expe-
itions for the purpose of ex situ conservation of the target species.
e randomly sampled 388 georeferenced plots (10 m × 50 m)

round the Barra Grande hydropower dam reservoir. In each plot
e counted the number of individuals of each target species with
eight greater than 1.5 m.  To prevent or reduce the influence of
opography in sampling, plots were allocated along different topo-
raphic contour levels, similar to those described by Magnusson
t al. (2005) for rapid surveys of biodiversity.

To avoid any effects of spatial autocorrelation, the minimum

istance between plots was  50 m.  The value of this precaution was

ater validated by Moran’s I correlograms. All correlograms were
alculated using the software SAM v3.1 (Rangel et al., 2010). For all
arget species, the variation follows a random pattern with a small
ansverse Mercator coordinate system, Zone 22J, southern Brazil).

oscillation around the zero value, which represents the absence
of significant autocorrelation (Appendix A; Fortin and Dale, 2005;
Legendre and Legendre, 1998).

2.4. Environmental variables

We used 15 environmental variables (direct and indirect, sensu
Slope ( )

Current vegetation Normalised Difference Vegetation Index (NDVI)

* Variables excluded from analysis due to high Pearson correlation coefficient (r)
with one or more environmental variable (r ≥ 0.7; P < 0.01).
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oftware Quantum GIS v.1.5.0 (Quantum GIS Development Team,
009) and its interface to GRASS (GRASS Development Team, 2010).

.4.1. Topographic variables
Elevation values were obtained from a Digital Elevation Model

DEM) generated by the ASTER sensor (ASTER GDEM).  From this
EM, four new topographic variables were generated (northness,
astness, topographic wetness index and slope). (i) Northness and
astness (Roberts, 1986): the occurrence of different vegetation
hysiognomies is intimately connected to the amount of available
olar radiation. In the southern hemisphere, places with a north-
ast solar orientation have greater Sun exposure and consequently

 higher rate of evapotranspiration, resulting in the occurrence of
egetation with xerophytic characteristics. Conversely, slopes fac-
ng south–southeast, especially during the winter, are exposed to
ess sunlight (Kirkpatrick et al., 1988; Kirkpatrick and Nunez, 1980).
o explore this relationship, aspect-modified maps were created in
his study. The maps indicate a trend to the north (northness = cos
aspect]) and east (eastness = sin [aspect]). After this transforma-
ion, both variables reached values between 1 and −1, indicating

 gradient north to south and west to east. (ii) Topographic wet-
ess index (TWI) describes the spatial pattern of soil wetness and

s defined as a function of slope. TWI  is obtained using the function
n(A/tan ˇ), where A is the upslope draining through a determined
oint x grid cell size and  ̌ is the point slope (Neteler and Mitasova,
008; Sørensen et al., 2005). (iii) Slope was used to indicate soil
epth. A higher degree of slope corresponds to a shallower soil
epth (Penížek and Borůvka, 2006; Tsai et al., 2001).

.4.2. Soil variables
Due to the lack of soil maps at the spatial resolution adopted, we

ollected soil samples at 381 of our sampling plots (depth: 0–20 cm)
nd analysed their chemical and physical properties (Table 1).
wing to logistical problems we were not able to analyse soil sam-
les from the remaining seven sites. To overcome this problem,
e performed a spatial interpolation of the properties of our 381

oil samples, using the regularised spline with tension algorithm
RST; Mitasova and Hofierka, 1993; Mitasova and Mitas, 1993), to
over all the sites studied. RST is a robust and flexible method used
o select parameters that control the properties of the interpola-
ion (tension and smoothing). In addition, estimates generated by
ST have accuracy similar to traditional geostatistical methods (e.g.
rdinary and universal kriging; see Chaplot et al., 2006 for more
etails). The best interpolation control parameter combination was
elected iteratively using cross-validation (leave-one-out method;
omczak, 1998). To ensure accuracy, we examined the decrease in
oot mean square error (RMSE) and mean differences between the
bserved and predicted values (the closer to zero, the better the
stimate). In addition, our soil maps were validated using other,
oarser-scale soil maps available for this region.

.4.3. Current vegetation cover
To estimate current vegetation cover, we used the Normalised

ifference Vegetation Index (NDVI), obtained by dividing bands 3
visible red) and 4 (near infrared) of Landsat 5 TM.  NDVI values
ary between −1.0 and +1.0, and high pixel values represent plen-
iful vegetation. To avoid any effects of leaf phenology during the
ear (forest deciduousness), we used Landsat 5 TM images collected
uring summer in the southern hemisphere.

.5. Data analysis
Except for the Moran’s I correlograms described above, all other
tatistical analyses were carried out with R software (v. 2.10.0; R
evelopment Core Team, 2009).
Modelling 230 (2012) 22– 33 25

2.5.1. Presence–absence models
Generalised Linear Models (GLMs) are the most common

regression method used to predict species’ spatial distributions.
According to McCarthy and Elith (2002),  GLMs provide a rigorous
and statistically robust method to predict the occurrence (or abun-
dance) of species. We  modelled the observed presence–absence
of each target species with GLM (binomial distribution, logistic
link function) using the 15 environmental variables described in
Table 1 as predictors. The predictors were selected through a
forward–backward stepwise procedure based on small-sample-
size-corrected Akaike’s Information Criterion (AICc; Burnham and
Anderson, 2002), using a modified version of the stepAIC function
of the R MASS package. Variables were thus added to or removed
from the model according to how they changed its AICc; the best
(or minimal adequate) model for each species is achieved when
no variable can be added or removed without an increase in AICc.
Stepwise selection is a useful and effective tool to infer distribution
patterns inductively from observed data, when no theory or previ-
ous hypotheses exist about the importance of each variable (Guisan
and Zimmermann, 2000; Real et al., 2009).

We evaluated the models’ discrimination capacity (i.e., their
ability to distinguish presence from absence cases) using the Area
under the Receiver Operating Characteristic (ROC) curve (AUC;
Fielding and Bell, 1997). AUC values may  vary between 0 and 1. Val-
ues close to 0.5 indicate that model predictions are no better than
random, and AUC values equal to 1 indicate a 100% chance for the
model to correctly classify an event (in our case, species presence
or absence). AUC values lower than 0.5 indicate that the model is
discriminating presences from absences, but using the information
in a reversed way  (Fawcett, 2006). The null hypothesis that the area
under ROC curve is ≤0.5 was tested using a Mann–Whitney U-test
(Mason and Graham, 2002).

Model predictions were also compared with the abundance
data collected in the same sites. Using Spearman’s rank correlation
(rho), we  tested the relationship between observed species abun-
dance and the predicted probability of occurrence for each species.
We also tested the hypothesis that if a model correctly predicts
abundance, it has a high discrimination capacity (Jiménez-Valverde
et al., 2007). We  repeated this analysis using only locations with
observed abundance >0 as suggested by Pearce and Ferrier (2001).
We also verified the relationship between mean number of occu-
pied sites per species (which is the sample size for abundance >0)
and abundance using a Wilcoxon rank sum test (Zar, 1999).

2.5.2. Abundance models
Regression models based on Poisson distributions are often used

to analyse count data (such as abundance). However, these data
are often Zero-inflated, i.e., the incidence of zeros is larger than
expected by chance (Ridout et al., 1998; Welsh et al., 1996). Zuur
et al. (2009) described five sources of zeros, two related to species
occupancy patterns (i.e., the habitat is not suitable and the species
is not present, or the habitat is suitable but is not used by the
species) and three related to sampling errors (i.e., design error, low
species detectability, and sampling outside species’ habitat range
– “naughty naughts” sensu Austin and Meyers (1996)). The rigor-
ousness of our field survey and the high detectability of our target
species warrant that our samples do not contain false negatives
(sampling errors), so the zeros that do occur are only related to
patterns of species occupancy.

To model abundance we  used the same 15 environmental pre-
dictors described in Table 1 and tested three different algorithms:
(i) GLM with Poisson (P) and negative binomial (NB) distribu-

tions (GLMP and GLMNB), (ii) Hurdle models (HP and HNB, Zeileis
et al., 2008) and (iii) Zero-Inflated Count Data Regression (ZIP
and ZINB, respectively). GLMP (standard Poisson) is the simplest
method used to model count data and assumes equi-dispersion
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Table 2
Presence–absence model evaluation. Abundance: median and range, P (%):
(Prevalence = [true positives + false negatives]/sample size) × 100; rho: Spearman’s
rank  correlation; AUC: area under the receiver operator characteristic curve
(Mann–Whitney U-test).

Target species Abundance P (%) rho rho (Abd > 0) AUC

A. angustifolia 4 (0–49) 72.42 0.42* 0.17* 0.77**

B. eriospatha 0 (0–24) 1.55 0.21* 0.39 0.95**

C. scabra 0 (0–27) 9.79 0.30* 0.32* 0.79**

D. sellowiana 0 (0–153) 13.40 0.25* 0.02 0.71**

E. falcata 0 (0–4) 4.38 0.23* 0.16 0.83**

M. ilicifolia 0 (0–14) 21.13 0.47* 0.08 0.83**

M. frondosus 0 (0–29) 5.15 0.32* 0.12 0.92**

P. lambertii 0 (0–24) 5.67 0.18* 0.00 0.73**

T. brasiliensis 0 (0–21) 4.12 0.32* 0.21 0.96**

tifolia, C. scabra,  D. sellowiana and M. frondosus, and positively
related to the abundance of T. brasiliensis (Table 4). Soil pH pro-
vides an indirect nutrient gradient in the soil, and its values directly
affect the uptake of K+, S2− and P+ (low or negative  ̌ values,

Table 3
Selected abundance models based on AICc. ZIP, Zero-Inflated Count Data Regression
with Poisson distribution; ZINB, Zero-inflated Count Data Regression with Negative
Binomial distribution; HurdleNB, Hurdle Model Regression with Negative Binomial
distribution.

Target species Model AICc

A. angustifolia ZINB 2148.84
C.  scabra ZINB 347.28
D.  sellowiana ZINB 617.37
E.  falcata ZI 144.35
6 E.d.S.G. Guarino et al. / Ecolo

variance = mean), but this assumption is not always met  in prac-
ice due to zero-inflation (variance > mean). One alternative to deal
ith overdispersion is the use of negative-binomial regressions,
here variance is estimated as a quadratic function of the mean

Ver Hoef and Boveng, 2007; Lindén and Mäntyniemi, 2011).
Hurdle models are two-component class models capable of

ccounting for overdispersion, or underdispersion, using Poisson
HurdleP) or negative binomial (HurdleNB) distributions. Hurdle

odels slack the assumption that zeros and values >0 come from
he same process (Cameron and Trivedi, 1998). As a first step,
urdle models use a truncated count component for values >0,
ssuming that these values arise from the effect of conditions that
esult in passing a probability threshold or zero-hurdle (Cameron
nd Trivedi, 1998; Gray, 2005; Potts and Elith, 2006). As a sec-
nd step, a Hurdle component models zeros vs. non-zero values
sing a binomial GLM (Zeileis et al., 2008). Zero-inflated models
re two-component mixture models in which zeros are modelled
s originating from two stochastic processes, the binomial pro-
ess and the count process. Similar to Hurdle models, Zero-Inflated
odels use binomial GLM to model the probabilities of measur-

ng zeros, and the count process is modelled by a Poisson (ZIP) or
egative binomial (ZINB) GLM (Zuur et al., 2009). The predictors of
ll abundance models (GLM, Hurdle and ZIP models) were selected
sing the same AICc-based approach applied to presence–absence
odels (see Section 2.5.1).
We selected the best abundance model for each target species

sing AICc and evaluated it with the following four criteria: (i)
earson correlation coefficient (r), which varies from −1 to +1 and
rovides an indication of agreement between observed and pre-
icted abundance values (note that a perfect adjustment (r = 1) does
ot imply an exact prediction); (ii) Spearman’s rank correlation
rho), which also varies from −1 to +1 and provides an indication
f similarity in rank between observed and predicted abundance
alues; (iii) linear regression coefficients, which are obtained by
tting a simple linear regression (observed values = m(predicted
alues) + b; in a perfectly calibrated model, m should equal 1 and b
hould equal 0); and (iv) root mean square error (RMSE) and aver-
ge error (AVEerror), both of which are dependent on sample size
nd measure divergences between observed and predicted abun-
ance values (Potts and Elith, 2006). Confidence intervals (95%)
or each evaluated parameter were calculated using a bootstrap
rocedure (1000 replicates).

. Results

.1. Presence–absence models

AUC values ranged from 0.71 to 0.96 and in all cases were sig-
ificantly different from 0.5 (Mann–Whitney U-test, P < 0.01; for
etails about environmental variables included in the GLM mod-
ls see Appendix B). Overall, the relationship between observed
bundance and occurrence probability was positive and statis-
ically significant (Table 2 and Fig. 2). When we  truncated the
bundance data to eliminate zeros, the results were different. Only
. angustifolia (which had the highest prevalence) and C. scabra
with a relatively low prevalence) retained significant correlations
etween observed abundance and probability of occurrence values
Table 2 and Fig. 2). For the remaining seven species, the relation-
hip between abundance and probability of occurrence was not
ignificant when unoccupied sites were excluded. Note, however,
hat this exclusion of unoccupied sites implied that the mean sam-

le size for these species was significantly smaller (Mann–Whitney
-test, P < 0.001).

The correlation between AUC (i.e., model discrimination capac-
ty) and rho (i.e., the rank correlation between occurrence
* P < 0.05.
** P < 0.001.

probability and abundance) was 0.18 (Spearman coefficient,
P = 0.63). Therefore, we  found no proof that models with better dis-
crimination capacity were better at predicting species abundance.

3.2. Abundance models

Due to the high prevalence of zero counts (98%), we were not
able to model the abundance of B. eriospatha.  Based on AICc values,
Hurdle and Zero-Inflated models (Poisson or negative binomial dis-
tributions) were better than GLM with Poisson or negative binomial
distributions (Table 3).

We  could clearly distinguish three groups of species using
abundance evaluation parameters. (i) C. scabra,  D. sellowiana,  M.
frondosus and P. lambertii showed the worst-fit models with the
highest values of RMSE and AVEerror (Fig. 3). D. sellowiana had
a strong and inconsistent bias (b = 1.461 and m = 0.151), while C.
scabra, M.  frondosus and P. lambertii showed similar values of b
(0.230, 0.203 and 0.304, respectively) and m (0.01, 0.05 and 0.00,
respectively). (ii) E. falcata,  M.  ilicifolia and T. brasiliensis showed
accurate abundance estimates, with b and m equal or closer to zero
and one, respectively (Fig. 3). These species had relatively high val-
ues of r (≥0.55) and rho (≥0.33), indicating that both observed and
predicted abundance measures were similar in magnitude, but not
similarly ordered (Potts and Elith, 2006). Also, these species gave
the smallest RMSE and AVEerror (Fig. 3). (iii) Finally, a group com-
posed by only A. angustifolia which had consistent bias (b = 1.06 and
m = 0.83; Fig. 3).

3.3. Environmental correlates of occurrence and abundance

Soil pH was negatively related to the abundance of A. angus-
NB

M.  ilicifolia HurdleNB 569.96
M.  frondosus ZIP 173.67
P.  lambertii ZIP 241.48
T.  brasiliensis ZINB 158.12
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Table  4
Variables included in the abundance models (count and zero components) obtained for the studied species. ˇ, coefficient; S.E., standard error; P(z), significance of the
z-statistic test.

Target  species  Model  component  Variable  ˇ  S.E.  P(z)

A.  angustifolia

Count

pH H2O  −0.72  0.14  <0.001
S2− −0.07  0.03  0.03
Eastness  1.82  0.40  <0.001
Slope  0.03  0.01  <0.001

Zero

pH  H2O  1.33  0.58  0.02
S2− −0.18  0.05  <0.001
N  total −11.44 3.75  0.002
Northness  10.44  3.22  <0.001
Eastness  5.95  2.39  0.01
NDVI −  5.13  1.76  0.005
Slope −0.18  0.07  0.01

C.  scabra Count

Constant 58.82 12.63  <0.001
pH  H2O  −1.27  0.61  0.03
S2− −0.07  0.02  0.003
P+ −0.56  0.16  <0.001
Bulk  density  −17.54  4.23  <0.001
NDVI  −20.18  4.00  <0.001
Slope  0.27  0.05  <0.001
S2− −0.13  0.05  0.01
P+ −1.03  0.51  0.04
NDVI −20.63  8.55  0.01

D.  sellowiana Count

Constant  7.94  3.38  0.02
pH  H2O  −1.30  0.61  0.03
K+ 1.68  0.61  0.006
N  total 6.22  2.81  0.02
TWI −0.05  0.19  0.009
Slope 0.14  0.06  0.01

E.  falcata Count

Constant  −31.89  3.59  <0.001
pH  H2O  2.67  0.73  <0.001
K+ −3.46  0.69  <0.001
N  total  19.75  4.36  <0.001
Bulk  density  6.27  1.52  <0.001
Eastness −8.38  2.13  <0.001

Zero K+ −55.17  27.09  0.04

M.  ilicifolia

Count
P+ 0.69  0.26  0.007
Northness  2.03  0.88  0.02

Zero
Constant  −17.60  2.07  <0.001
pH  H2O  2.66  0.35  <0.001
S2− 0.08  0.01  <0.001

M.  frondosus

Count

Constant  76.65  13.24  <0.001
K+ 1.09  0.23  <0.001
S2− −0.36  0.06  <0.001
P+ −1.02  0.17  <0.001
Bulk  density  −23.20  3.54  <0.001
Eastness  8.09  0.91  <0.001
Slope  0.13  0.02  <0.001

Zero

Constant  673.77  288.92  0.02
pH  H2O  −42.25  18.68  0.02
K+ −6.83  3.35  0.04
S2− −3.38  1.47  0.02
P+ −2.82  1.30  0.03
N  total  89.08  43.27  0.04
Bulk  density  −137.98  59.40  0.02
Eastness  38.07  16.31  0.02
Slope  −1.25  0.57  0.03

P.  lambertii

Count

Constant  −3.75  1.46  0.01
K+ −2.16  0.47  <0.001
P+ 0.53  0.11  <0.001
N  total  4.68  2.31  0.04
Northness  8.88  2.36  <0.001
Eastness  −6.21  1.65  <0.001
TWI  0.52  0.08  <0.001
NDVI  9.48  2.00  <0.001
Slope  −0.56  0.08  <0.001

Zero
P+ 0.91  0.30  <0.001
Northness  12.57  5.23  0.01
Slope  −0.55  0.21  0.09

T.  brasiliensis Count

pH H2O  7.86  2.56  0.002
K+  5.70  1.20  <0.001
S2− −0.25  0.09  0.06
TWI  0.92  0.19  <0.001
NDVI  6.13  1.60  <0.001
Slope  0.52  0.10  <0.001



28 E.d.S.G. Guarino et al. / Ecological Modelling 230 (2012) 22– 33

F bunda
p

T
l
o
c
w
g
d
r
v
c
t
c
w

4

4
a

a
m
d
1
d
A
d
u

ig. 2. Relationship between occurrence probability and true abundance values (a
resence.

able 4) for each species. The occurrence of M. ilicifolia corre-
ated with soil pH. However, neither abundance nor occurrence
f P. lambertii was affected by soil pH. The abundance of E. fal-
ata, was positively related to the amount of nitrogen in soil,
hile the abundance of P. lambertii was positively related to nitro-

en (Table 4). Northness, eastness, slope and TWI  each had a
ifferent relationship with the values of abundance and occur-
ence, occasionally affecting both simultaneously (Table 4). The
alues of NDVI, an indirect indicator of the stage of vegetation suc-
ession (current vegetation biomass), were negatively related to
he abundance of C. scabra.  Occurrence of C. scabra was  also asso-
iated with low values of NDVI, while P. lambertii and T. brasiliensis
ere positively related to NDVI (Table 4).

. Discussion

.1. Presence–absence models and their relationship with
bundance

Because of the need for reliable species distribution models to
id in developing conservation strategies, methods used to assess
odel accuracy are one of the most important issues in species

istribution modelling (see e.g. Elith et al., 2006; Fielding and Bell,
997; Manel et al., 2001). Lobo et al. (2008) conducted a detailed

escription of the different issues involved with the misuse of the
UC, which is widely used as a measure of accuracy of species’
istribution models. One alternative proposed by the authors is the
se of abundance data to validate these models. This idea is based
nce ≥ 0) for each studied species. Black dots, species absence; white dots, species

on an inductive relationship, where probabilities of occurrence are
functionally related to species abundance (Nielsen et al., 2005).

Pearce and Ferrier (2001) attempted to use predicted proba-
bilities of occurrence as a surrogate method to predict species
abundance. However, according to these authors, the relationship
between the probabilities generated by linear models and observed
abundance is weak and restricted to a few species. Similar results
have been reported by Nielsen et al. (2005) and Jiménez-Valverde
et al. (2009).  In both studies, the probability of occurrence is not
correlated with abundance when points with zero abundance are
excluded from analysis. Pearce and Ferrier (2001) suggest that the
overall correlation between abundance and probability of occur-
rence is due mostly to the difference in mean predicted probability
between occupied and unoccupied sites. However, the fact that this
correlation often disappears when unoccupied sites are excluded
might also be due, at least in part, to a reduction in sample size and
the consequent loss of analytical power. Indeed, in our data, sam-
ple size was  highly significantly reduced when unoccupied sites
were excluded (mean occupied sample size = 59.33 ± 86.32; see
“prevalence” in Table 2), which may  have impeded the detection
of significant relationships between abundance and probabil-
ity of occurrence in occupied sites. Also in Pearce and Ferrier’s
(2001) study, for 59 species, the relationship between abundance
and probability of occurrence (mean sample size = 55.49, stan-
dard deviation = 47.50) was  no longer significant when unoccupied

sites were excluded (mean sample size = 42.98, standard devia-
tion = 38.43). We  found that the mean sample size considering only
occupied sites was  also significantly lower in their study (Wilcoxon
rank sum test, P < 0.001) than for 13 species for which this
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orrelation remained significant (mean sample size = 111.38, stan-
ard deviation = 47.31). These results suggest that sample size
ight be influencing the detection of an occupancy–abundance

elationship.
Real et al. (2009) also showed that predictions of GLMs based

n the presence–absence data of the Iberian lynx (Lynx pardinus)
nd wild rabbit (Oryctolagus cuniculus) in Spain are significantly
orrelated with independent abundance data. Even when we
epeated their analysis excluding unoccupied sites, the correla-
ions remained significant for the abundance of rabbit (Kendall’s
au-b = 0.100, P = 0.036, n = 300) and lynx in 1950 (there were no
ero-abundance data for this year), 1965 (Tau-b = 0.108, P = 0.005,

 = 355), and 1975 (Tau-b = 0.086, P = 0.035, n = 315). Only in one
ase (lynx data from 1985) was the correlation no longer significant

etween their predicted favourability and observed abundance,
ossibly due to the lower sample size (n = 215) when zero-
bundance cells were excluded for this year. This provides further
upport to the idea that, given sufficient sample size, predicted
ho, Spearman’s rank correlation; b, intercept; and m, gradient of the fitted line

probability of occurrence may  be a rough indicator of actual species
abundance.

Reconstructing or inferring abundance from species occur-
rence data can potentially be an important tool for conservation
planning efforts and species management, especially given the
difficulty of obtaining and analysing abundance data. Current
techniques are often not reliable because they generate unsta-
ble, low-quality results (spurious estimates; Joseph et al., 2009).
The occupancy–abundance relationship may  additionally be con-
ditioned by ecological or life-history traits of the modelled species,
as we expose in the next section. Further research may provide
useful insights into this matter. In the meanwhile, and given that
urgent measures are needed to mitigate the impacts of hydroelec-
tric power dams on threatened species, we advocate the use of

occurrence models as surrogates for species abundance when the
latter cannot be obtained. We  defend that, given sufficient sample
sizes, probability of occurrence measures can not only be an indi-
cator of model accuracy, as suggested by Albert and Thuiller (2008)
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nd Lobo et al. (2008),  but also provide a simple and inexpensive
lternative for the abundance measure for most species. This alter-
ative method also has great potential to be used in environmental
ssessment (see also Araújo and Williams, 2000; Real et al., 2009).

.2. Ecological constraints on the occupancy–abundance
elationship

Jiménez-Valverde et al. (2009) suggest that generalist species
nd those with a high degree of dispersal show positive and
ignificant relationships between abundance (>0) and the proba-
ility of occurrence. Nielsen et al. (2005) recommend an approach
ased on organism life history to explain the relationship between
ccurrence and abundance patterns, which is different from the
raditional approach based on extensive and exploratory fitting
xercises. In our study, A. angustifolia and C. scabra were the
nly species that exhibited a positive and significant correla-
ion between probabilities of occurrence and observed abundance
hen zero-abundance plots were excluded from the analysis. Both

pecies are tied to early successional stages in the studied region
Duarte et al., 2006; Sampaio and Guarino, 2007), and several stud-
es indicate that A. angustifolia is able to advance forest expansion
ver natural grasslands and colonise new areas of grasslands in the
ighlands of southern Brazil (Duarte et al., 2006). Furthermore, the
eeds of A. angustifolia are dispersed by birds and small mammals
Anjos, 1991; Iob and Vieira, 2008), whereas C. scabra’s seeds are
ind-dispersed and can thus travel greater distances.

Another interesting case is that of subtropical palms, B.
riospatha and T. brasiliensis,  which are gregarious species with
ense but sporadic populations in the study area. Because of the

mportance of fibre and the high nutritional value of the fruits,
oth species were influenced by ancient human inhabitants of the
egion. The population of these species was purposefully dispersed
y natives and European settlers, who grazed livestock for centuries

n the area we studied (Reitz et al., 1974). Past human-mediated
ispersion can affect the current patterns of plant distribution, cre-
ting artificially clustered populations that are often unnoticed in
xtensive exploratory model-fitting exercises. Although this his-
ory of plant manipulation is important, it has rarely been included
n studies of species distributions (Lutolf et al., 2009).

The relatively low strength of the correlation between predicted
ccurrence probabilities and observed abundance (<0.5 in all cases)
ould also be due to biotic interactions not included in the occur-
ence models. Austin et al. (1990) and Guisan and Thuiller (2005),
or example, suggested that the response curve of a species along
n environmental gradient can be seriously constrained by inter-
ction with biotic factors. This hypothesis was recently tested by
eikkinen et al. (2007) and Ritchie et al. (2009),  using different
rganisms, and they both found similar results. When data related
o interspecific competitors were incorporated into models, species
redictions were significantly improved. In addition, this effect

ikely plays a role in the relationship between occurrence and
bundance, obscuring the true relationship between occupied area
nd abundance. Ritchie et al. (2009) confirmed this idea demon-
trating that the predicted abundance of wallaroos and kangaroos
as improved with the addition of the occurrence and abundance

f interspecific competitors into the models. However, obtaining
hese data is difficult and model practitioners must continue to use

ostly abiotic factors (Barbosa et al., 2009; Elith and Leathwick,
009).

.3. Abundance models
In general, Zero-Inflated models performed better than Hurdle
odels. This result is contrary to other empirical studies on both

eal populations (Potts and Elith, 2006) and theoretical studies with
Modelling 230 (2012) 22– 33

pseudo-populations (Miller and Miller, 2008), suggesting that Hur-
dle models generally perform better than Zero-Inflated models.
Because the techniques used in this study to model abundance deal
differently with zeros, the results can be interpreted in several ways
(Potts and Elith, 2006; Zuur et al., 2009). Two-part modelling tech-
niques, such as GLM Hurdle models, analyse abundance data in the
following two  steps: (i) zero vs. non-zero values are modelled with a
logistic regression (binomial distribution), and (ii) non-zero obser-
vations are modelled with a truncated Poisson or negative-binomial
regression. Mixed techniques, such as Zero-Inflated models, clas-
sify zeros as originating from two different processes, binomial and
count processes (Zuur et al., 2009). Interpreting Hurdle models is
simpler than interpreting Zero-Inflated models (Potts and Elith,
2006), but, according to Welsh et al. (2000),  mixed models pro-
vide a better tool when there is overdispersion and a large number
of true zeros, as was  the case with our data.

4.4. Variables related to species occurrence and abundance

Our main objective with the fitted models was to predict species’
distribution and abundance rather than to test the effects of dif-
ferent ecological drivers on species occurrence and abundance.
However, we  can draw some conclusions about the ecological
factors that are associated to the analysed species’ distributions.
According to Barrows et al. (2005), environmental managers must
understand the anthropogenic and environmental factors that
influence the occurrence and abundance of species. With this infor-
mation, managers can employ adaptive management strategies to
maintain viable populations of desired species. Overall, occurrence
and abundance of studied species are determined, to some extent,
by different suites of environmental variables. Regardless of organ-
ism type, this pattern has been widely reported (Heinanen et al.,
2008; Illán et al., 2010; Truscott et al., 2008), suggesting that biotic
and abiotic events associated with plant establishment may  be
different than those influencing their abundance (Truscott et al.,
2008).

Here we highlight the relationship between the abundance of
E. falcata and total nitrogen availability. Abundance (count model
component) of E. falcata was negatively related to low soil nitro-
gen values. This species, along with others of the same genus, are
generally able to produce nitrogen-fixing root nodules (Faria et al.,
1984, 1989; Schimann et al., 2008). However, its roots have a unique
strategy to acquire soil nitrogen. The roots do not exploit avail-
able nitrogen in the soil, and instead use nitrogen in the leaf litter
(Chesney and Vasquez, 2007; Payan et al., 2009 on E. poeppigiana in
agroforestry systems), an environmental variable that was  analysed
in our study. Conversely, M.  frondosus, another Fabaceae species,
was not reported to produce nitrogen-fixing nodules (Allen and
Allen, 1981; Faria et al., 1984).

5. Conclusions and future applications

Our study is the first to apply a macroecological approach to
support in situ and ex situ plant conservation practices in a region
affected by a hydropower dam reservoir. Currently in Brazil, Envi-
ronmental Impact Assessment (EIA) and Strategic Environmental
Assessment (SEA) methods require costly and time-consuming
field surveys (floristic and phytosociological studies), often con-
ducted by professionals with an incomplete understanding of the
extreme diversity of Brazilian flora. As a result, these surveys
often produce low-quality, inapplicable data that are susceptible to

environmental error. Despite methodological limitations, i.e., low
(although significant) correlation between predicted probability of
occurrence and observed abundance, and a possible dependence on
ecological and life-history traits, we believe that EIA/SEA projects in
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razil could profit from using species distribution models to predict
uture impacts and plan landscape management strategies and mit-
gation actions. This approach is quicker and less expensive than the
urrent approach, although this method does require staff training
n data collection and analysis.

An effective way to organise data collection is to combine the
radsect method proposed by Austin and Heyligers (1989) and
essels et al. (1998) with the rapid assessment survey method

sed in this study and described by Magnusson et al. (2005).  For
xample, instead of measuring the height and diameter of each
ree species within plots, we record only the presence of each
pecies in georeferenced plots. Austin and Heyligers (1989) and
ustin and Meyers (1996) support the view that for most envi-
onmental goals, including species niche modelling, representative
amples are more important than accurate basal area estimations,
hich is the method currently used in the preparation of EIA/SEA

n Brazil. Even in a situation where field surveys are not performed,
resence-only data obtained from herbarium or museum collec-
ions are viable alternatives. Even with a coarse resolution, they
an produce pertinent information for the development of fine-
cale species conservation planning (Araújo, 2004; Barbosa et al.,
003, 2010).

Even weakly, the occupancy–abundance relationship can opti-
ise ex situ conservation actions in similar situations. Based

n species distribution models built with presence–absence field
ata obtained in rapid and systematic biodiversity assessments,
e can be able to, a priori, define the rare species set using

ccupancy–abundance relationships (Flather and Sieg, 2006).
egardless of threat levels, we can concentrate germplasm col-

ection efforts, at a first glance, on locally rare species with low
bundance and narrow area of occurrence, such as B. eriospatha
nd T. brasiliensis.  In a second step, species distribution models
an be used as a guide to define the most suitable areas to col-
ect germplasm samples of the selected species. This approach is
ess money and time-consuming and can accelerate conservation
ctions in landscapes submitted to strong anthropogenic impacts,
ike hydroelectric power dam reservoirs. Practical examples of this
pplication of distribution models as a guide to define suitable
reas to collect species germplasm samples were first described
y Jones et al. (1997) and followed by Jarvis et al. (2003, 2005a,b),
illordon et al. (2006) and Ramírez-Villegas et al. (2010).  However,

n all these previous examples authors used presence-only models
o guide germplasm collecting expeditions of crop wild relatives
i.e., peanut, potato, pepper) on a large scale.

The mere occurrence of one species is not sufficient to ensure
he persistence of a viable population within a system of protected
reas (Barrows et al., 2005). A system of protected areas should
ontain samples of the largest possible number of local ecosystems,
hereby maintaining the ecological processes of these ecosystems
Australia, 1997). An alternative to accomplish this goal would be to
ntegrate information about species occurrence (or abundance) and
egional land use in an interactive decision-making system. This
ethod would ensure the conservation of viable samples in dif-

erent ecosystems occurring in the region of interest (Ferrier et al.,
002).
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