Selective Sonogashira Couplings in 1,2,4,5-tetrazine derivatives

Paulo J. G. Mendes, a Tiago J. L. Silva, a,b M. Helena Garcia b

a Department of Chemistry, University of Évora, School of Science and Technology, Rua Romão Ramalho, 59, 7000 Évora, Portugal; b Centro de Química Estrutural, University of Lisbon, Faculty of Sciences , Campo Grande 1049-016 Lisboa, Portugal

Email: pijm@uevora.pt

1,2,4,5-Tetrazines are six-membered heterocyclic compounds in which the four nitrogen atoms are displayed in a symmetric fashion. Their reactivity is quite different from other heterocyclic aromatic systems due to its unique electron-withdrawing character, comparable to tetra-nitrobenzene. 1 In particular, 1,2,4,5-tetrazines are known to take part in [4+2] inverse-Diels–Alder cycloaddition processes which efficiently lead to the construction of substituted pyridazine systems that are important in drug development and biomarker applications. 2 However, the electronic character of 1,2,4,5-tetrazines hampered the development of 3-ethynyl- and 3,6-diethynyl-1,2,4,5-tetrazine derivatives for molecular electronic applications, proved by the scarcity of examples found in the literature. 3

Herein, we describe the synthesis and characterization of two novel ethynyl-based 1,2,4,5-tetrazine derivatives. Synthesis of 3,6-(4-bromophenyl)-1,2,4,5-tetrazine precursor (1) was achieved in good yield by Pinner’s method, starting from 4-bromobenzenonitrile. Despite its low solubility in common organic solvents, this precursor was found to react smoothly under typical Sonogashira coupling conditions to selectively afford the 3-ethyl (2) and 3,6-diethyl (3) protected derivatives (Figure 1). Reaction conditions were evaluated in order to provide the best yields and to promote selectivity of the mono- or disubstituted ethynyl derivatives. Finally, deprotection was achieved affording, in the case of compound 3, an unprecedented 3,6-diethynyl-1,2,4,5-tetrazine compound.

![Figure 1: Selective Sonogashira Coupling of 1,2,4,5-tetrazine derivatives.](image)

Time-Dependent Density Functional Theory (TDDFT) calculations for both deprotected ethynyl derivatives were used to simulate electronic spectra. A deep knowledge of the relevant electronic transitions involved and quantitatively satisfactory results of the calculated electronic excitations in comparison with experimental data were obtained.

Acknowledgements: The authors thankfully acknowledge Fundação para a Ciência e Tecnologia (FCT) for financial support.

References: