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GENETIC DIVERSITY AND POPULATION STRUCTURE OF THE SEA 
LAMPREY (PETROMYZON MARINUS L.) ACROSS ITS 
DISTRIBUTIONAL RANGE 

 

Abstract 

Lampreys are a group of ancient vertebrates with 360 million years of existence. 

Throughout their evolution, they have acquired local adaptations to the colonized 

habitats, showing high plasticity and adaptive capacities.  The sea lamprey (Petromyzon 

marinus L.) is a parasitic and anadromous species that occurs in both sides of the North 

Atlantic. The aims of this study were to analyse, using microsatellite markers, the genetic 

diversity and population structure of sea lamprey throughout its distributional range. 

Analyses demonstrated consistent signs of high population differentiation between 

European and North American samples (two-groups structure), most probably due to 

isolation by distance, but low differentiation among populations from the same coast. 

The apparent lack of homing in this species is in line with its high evolutive success, as 

homing may bring adults back to natal habitats that have changed, or that are 

intermittently unfavourable. Analyses also demonstrated higher levels of genetic 

diversity in North American samples.   

 

Keywords: Anadromy, fisheries management, homing, microsatellite loci, population 

structure, sea lamprey 
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DIVERSIDADE GENÉTICA E ESTRUTURA POPULACIONAL DA 
LAMPREIA-MARINHA (PETROMYZON MARINUS L.) AO LONGO 
DA SUA ÁREA DE DISTRIBUIÇÃO  

 

Resumo  

As lampreias são organismos ancestrais com cerca de 360 milhões de anos de 

existência. No decorrer da longa escala evolutiva têm vindo a adquirir adaptações aos 

locais que colonizaram, tendo uma forte capacidade evolutiva e adaptativa. A lampreia-

marinha (Petromyzon marinus L.) é uma espécie parasita e anádroma que ocorre em 

ambas as costas do Atlântico Norte. Este estudo teve como principal objetivo estudar a 

diversidade genética e a estrutura populacional desta espécie ao longo da sua área de 

distribuição, através do uso de microssatélites. Os resultados demonstraram forte 

divergência entre populações das costas Este e Oeste do Atlântico Norte, provavelmente 

devido à elevada distância entre populações, mas pouca diferenciação entre populações 

da mesma costa. A ausência de homing nesta espécie terá contribuído para o seu 

sucesso evolutivo, uma vez que o homing pode levar indivíduos a reproduzirem-se em 

habitats que se tornaram desfavoráveis ou intermitentemente inapropriados. Os 

resultados demonstraram também uma maior variabilidade genética nas populações 

americanas. 

 

Palavras-chave: Anadromia, estrutura populacional, gestão pesqueira, homing, 

lampreia-marinha, microssatélites 
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1. Introduction 

1.1. The sea lamprey  

The sea lamprey (Petromyzon marinus L., 1758) is a parasitic and anadromous 

species that occur at both sides of the North Atlantic. As anadromous, they migrate to 

freshwater for spawning, and the life cycle is divided in two distinct phases: an adult 

marine phase of parasitic feeding and a freshwater larval phase (Fig. 1). The larval stage 

is spent entirely in fresh water and is the longest period, lasting for 2-8 years (Hardisty 

& Huggins 1970; Beamish & Potter 1975; Morkert et al. 1998; Quintella et al. 2003), 

depending on the location and the environmental conditions. During this period, the 

lamprey larvae (usually called ammocoetes) live burrowed in fine sediment deposits of 

rivers and streams, and are filter feeders, feeding on organic detritus and 

microorganisms, especially diatoms (Hardisty & Potter 1971a; Moore & Mallatt 1980). 

After this period, larvae undergo a metamorphosis, with drastic remodelling of the 

cephalic region and of the digestive apparatus. In the majority of Northern Hemisphere 

lamprey species, the main external changes associated with metamorphosis are 

initiated from mid-July to September (Hardisty & Potter 1971b). After metamorphosis, 

juveniles initiate a downstream migration to salt water, where they feed parasitically for 

1.5 to 2.5 years, especially on bony fish (e.g. Silva et al. 2013). Adults return to rivers for 

reproduction, where they become sexually mature, and build nests, a depression in the 

bed of the stream which construction is initiated by the males, with later involvement 

of the females. Lampreys are semelparous, dying after spawning.  

A landlocked form of the sea lamprey, considered a pest, can be found in the 

Laurentian Great Lakes region, in North America. The sea lamprey was firmly established 

in all of the Great Lakes by the late 1940’s and causes extraordinary damage to the fish 

stocks, posing serious threats to fisheries (Pearce et al. 1980; Smith & Tibbles 1980). In 

this sense, studies on sea lamprey in each side of the Atlantic are generally quite distinct, 

with European studies directed to conservation and American studies to eradication 

methods. No landlocked form has been reported for Europe (Kottelat & Freyhof 2007). 

Though still widely distributed, the sea lamprey is now considered an endangered or 

rare species in some parts of its range, being the subject of important commercial 
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fisheries during their upstream spawning migration in parts of Spain, Portugal and 

France. In Portugal, it can be found in all the main river basins, being more abundant in 

the North and Central regions of the country (Mateus et al. 2012). Fishing activity 

concentrates in these regions, mainly Minho and Mondego, but also Lima, Cávado, 

Vouga and Tagus, as well as a more reduced fishery in the river Guadiana in the south 

(Almeida et al. 2002; Stratoudakis et al. 2016). Fishing takes place during the 

anadromous movement of pre-spawners from January to April, when licensed fishing 

for this resource constitutes one of the main activities of many hundreds of artisanal 

fishers (Stratoudakis et al. 2016). The sea lamprey is classified as Vulnerable according 

to the Portuguese Red List of Threatened Vertebrates (Cabral et al. 2005). 

 

 

Figure 1. The anadromous life cycle of the sea lamprey, Petromyzon marinus. 
Lamprey drawings with courtesy of Fernando Correia, Lab. de Ilustração Científica - dbio/UA. 
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1.2. Site selection, population structure and stock identification 

Anadromy occurs in c. 1 per cent of the known species of fish, but subsists as a 

life-history strategy quite widely across the diversity of fishes, and is widely accepted as 

a trait with adaptive and selective advantages, that has evolved multiple times 

(McDowall 2001a,b). The evolution of anadromy has provided fish with the opportunity 

for more rapid growth, larger size, and higher fecundity through access to richer food 

resources, but may result in greater mortalities resulting from predation during 

migration and when at sea, involves more costs related to osmoregulatory demands 

when shifting between fresh and salt waters, and has the tendency to disperse stocks 

very widely (reviewed in McDowall 2001a). Anadromy and homing are often suggested 

to have coevolved. Homing in anadromous fishes allows the development of local stocks 

adapted to local conditions (McDowall 2001a,b). Where there is precise homing of the 

returning fish, gene flow among populations will be much reduced, enhancing genetic 

differentiation among populations, and thus within-species diversity (McDowall 2001b). 

Homing, however, may bring adults back to natal habitats that have changed, or that 

are intermittently unfavourable, condemning most of their progeny (McDowall 2001a; 

Cury 1994). 

Lampreys apparently do not show homing behaviour (Bergstedt & Seelye 1995; 

Waldman et al. 2008). Most molecular studies that have been developed with European 

and North American populations of sea lamprey are based on mitochondrial markers 

(e.g. Rodríguez-Muñoz et al. 2004; Waldman et al. 2008), and all demonstrate a lack of 

fixed differences among populations of the same coast (suggesting lack of homing), but 

an absence of shared haplotypes between coasts.  

Lança et al. (2014) used morphological characters and heart tissue fatty acid 

signature to analyse the existence of a stock structure on sea lamprey populations 

sampled in the major Portuguese river basins. The authors suggest the existence of three 

different sea lamprey stocks in Portugal, namely North/Central group, Tagus group, and 

Guadiana group, possibly promoted by seabed topography isolation during the oceanic 

phase of the life cycle (Fig. 2). According to the authors, detected differences are 

probably related with environmental variables to which lampreys may have been 

exposed. A stock can be defined as a population or portion of a population of which all 
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members are characterized by similarities which are not heritable, but are induced by 

the environment, and which include members of several different subpopulations (Marr 

1957). The identification of stocks is fundamental for both fisheries and endangered 

species management, as individuals from a given stock are adapted to the environment 

where they live, and therefore must be managed according to the specific characteristics 

of the stock. 

 

Figure 2. Sea lamprey groups suggested by Lança et al. (2014), probably associated to the three isolated 

abyssal plains (and/or nearby continental slopes) off western Iberian Peninsula, detected by analysis of 

morphological characters and heart tissue fatty acid signature. Physiographic features of the west Iberia 

Margin are presented, as well as the seamounts and canyons that contour the three abyssal plains. Iberia 

AP - Iberia Abyssal Plain; Tagus AP - Tagus Abyssal Plain; Horseshoe AP - Horseshoe Abyssal Plain. T – 

Tore Seamount; ES – Estremadura Spur; G – Gorringe Bank. Adapted from Lança et al. (2014). 

 

For the sea lamprey, the absence of genetic differentiation along the European 

Atlantic coast and the existence of distinct stocks, would imply that the oceanic phase 

of the life cycle is composed by a dispersion period during the juvenile migration, 

followed by a much less mobile adult stage, which would restrict the mixture of adult 

lampreys from different geographical groups. However, genetic differentiation of 

European populations of sea lampreys has been accessed only with mitochondrial 

DNA, which is especially useful to investigate historic patterns of reproductive isolation 

and colonization. Markers such as microsatellites, which are highly polymorphic and 
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have high mutation rates, reveal more contemporary patterns of interactions among 

populations, making them especially useful for the study of fine-scale population 

structure and capable of detecting differences among closely related populations, not 

revealed by the mitochondrial DNA (O’Connell & Wright 1997). 

 

1.3. Objectives 

The aims of this study are to analyse, using microsatellite markers, the genetic 

diversity and population structure of sea lamprey from both sides of North Atlantic, and 

to give new insights on the stock structure identified in Portugal, most likely promoted 

by geographical segregation during the oceanic parasitic phase of the life cycle.  

To accomplish these objectives, the following specific tasks were established: 

a) Measure and compare the genetic diversity of P. marinus populations across its 

distributional range;  

b) Analyze the genetic differentiation among populations of P. marinus, to infer the 

dispersal patterns and site fidelity of the species; 

c) Analyze if the geographical groups previously identified through morphological 

characters and heart tissue fatty acid signature are genetically distinct. 

Ultimately, this study is intended to contribute for an informed management of 

fisheries and application of conservation measures, especially in areas where the species 

is considered endangered or rare.  
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2. Material and Methods 

2.1. Sampling and DNA extraction 

For the majority of sites, samples were collected from commercial lamprey 

catches or during monitoring studies. In two sites (rivers Eo and Sella, Asturias, Spain) 

specimens were collected by electro fishing. Lampreys collected by electro fishing were 

anaesthetized by immersion in 2-phenoxyethanol (0.3 ml L-1), a piece of tissue was 

removed from the dorsal fin, and after recovery individuals were released near the 

capturing sites. All tissue samples were preserved in alcohol pro-analyses. A total of 20 

sites were sampled, two from Sweden, one from the Netherlands, eight from Portugal, 

three from Spain, one from France and five from the west Atlantic North American coast 

(Fig. 3; Table 1).  

Total genomic DNA was extracted following a standard SDS-proteinase 

K/phenol–chloroform protocol and stored at -20ºC. DNA concentration was measured 

using a Thermo Scientific NanoDrop™ 1000 Spectrophotometer and standardized to 50 

ng μl-1 per sample.  

 

Figure 3. Sampling sites from the west Atlantic North American coast and the east Atlantic coast 

assayed in this study. Sampled countries in dark gray. For details about sampling sites see Table 1. 
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Table 1. Sampled localities, including site label as in Figure 3 and number of samples. 

Site 

label 

Country River N Provided by 
ROL Sweden Rolfsan 26 Micael Söderman 
ATR Sweden Atran 26 Jonas Andersson 
ROE The Netherlands Roer 8 Rob Gubbels 
GIR France Gironde 19 Mario Lepage 
SEL Spain Sella 50 This study 
EO Spain Eo 49 This study 
ULL Spain Ulla 50 Maria C. Rodicio 
MIN Portugal Minho 49 This study 
LIM Portugal Lima 50 This study 

CAV Portugal Cávado 44 This study 

DOU Portugal Douro 50 This study 

VOU Portugal Vouga 28 This study 

MON Portugal Mondego 38 This study 

TEJ Portugal Tagus 44 This study 

GUA Portugal Guadiana 28 This study 

LaH USA LaHave 40 Weiming Li 
COCH USA Cocheco 28 Weiming Li 
MER USA Merrimack 35 Weiming Li 
WES USA Westfield 22 Weiming Li 
CON USA Connecticut 18 Weiming Li 

 

 

2.2. Microsatellite amplification, genotyping and fragment size determination 

A total of 702 specimens of P. marinus from 20 sites were used in the analysis 

(Fig. 3 and Table 1). Initially, the following 19 microsatellite primer sets developed for P. 

marinus and other lamprey species were screened using the described protocols and 

further optimized: Pmaμ 2, Pmaμ 3, Pmaμ 4, Pmaμ 5, Pmaμ 7, Pmaμ 8 and Pmaμ 9 

developed for P. marinus (Bryan et al. 2003; Filcek et al. 2005); Lspn 005, Lspn 013, Lspn 

021b, Lspn 044, Lspn 050, Lspn 094, developed for Lethenteron sp. N (Takeshima et al. 

2005); Iun 2, Iun 4, Iun 5, Iun 6, Iun 7 and Iun 13 developed for Ichthyomyzon unicuspis 

and I. fossor (McFarlane & Docker 2009). Twelve primer sets produced unambiguously 

determined bands and were polymorphic: Pmaμ 2, Pmaμ 3, Pmaμ 4, Pmaμ 5, Pmaμ 7, 

Pmaμ 8, Iun 2, Iun 5, Iun 6, Lspn 044, Lspn 050 and Lspn 094. These 12 loci were used 

for analysis and all others were rejected.  The reverse primers were 5’-labelled with 6-

FAM, NED, PET or VIC (Applied Biosystems®) fluorescent dyes. Microsatellite loci were 

multiplex amplified by polymerase chain reactions (PCR) set up in 12 µl volumes 
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containing 2 µL of 50 ng μl-1 genomic DNA, 1.0 to 3.0 mM MgCl2, 0.2 mM dNTP mix, 0.5 

µM for each primer, 1 unit of DreamTaq™ DNA Polymerase (Fermentas) and 1× 

DreamTaq™ Buffer. PCR conditions were as follows: initial denaturation at 94 °C for 1 

min, followed by 23 to 25 cycles of 30 sec at 94 °C, annealing for 30 sec at temperatures 

ranging from 57 to 60 °C and 30 sec at 72 °C, and a final extension of 7 min at 72 °C. For 

some loci of difficult amplification, a Multiplex PCR Kit (Qiagen®) was used, with 5 µl 

Qiagen Multiplex PCR master Mix, 3 µl RNase-free water, 1 µl Primer Mix (2 µM each 

primer) and 1 µl of 50 ng μl-1 of genomic DNA, using the following protocol: initial 

activation step at 95 °C for 15 min, followed by 30 cycles of denaturation at 94 °C for 30 

sec, annealing at 57 °C for 90 sec and extension at 72 °C for 60 sec, and a final extension 

of 30 min at 60 °C. The PCR reactions were conducted on a Bio-Rad® thermal cycler.  

Samples were genotyped in an ABI PRISM® 310 Genetic Analyzer and fragments 

were sized with GeneScan™-500 LIZ™ Size Standard. Allele sizes were visually 

determined using the software GeneMapper® 3.7 (Applied Biosystems®). 

 

2.3. Data analysis 

Microsatellite loci were tested for null alleles, large allele dropout and stuttering 

using MICROCHECKER 2.2.3 (van Oosterhout et al. 2004), and visually examined for 

correction. Genetic diversity was measured through observed heterozygosity (Ho), and 

unbiased expected heterozygosity (He, sensu Nei 1978), inferred using GENETIX 4.05.2 

(Belkhir et al. 1996), and the mean allelic richness (AR), which was calculated and 

corrected for sample dimension by rarefaction using HP-Rare (Kalinowski et al. 2005).  

Differentiation among populations was determined using the software GENETIX 

through pairwise FST, using the Weir & Cockerham's estimator (Weir & Cockerham 

1984). Significance was assessed with 10,000 permutations.  

The distribution of genetic variation was accessed through locus-by-locus 

analysis of molecular variance (AMOVA) (Excoffier et al. 1992). This analysis 

accomplishes three components of genetic variation: among groups (FCT), among 

populations within each group (FSC), and within populations (FST). These analyses were 



MATERIAL AND METHODS 

9 
 

performed in ARLEQUIN 3.5.2.2 (Excoffier et al. 2005), using the allelic frequencies as 

the genetic distance and 20,000 permutations.  

Patterns of differentiation were visualized by principal coordinates analysis 

(PCoA). This analysis was computed using GenAlEx 6.5 (Peakall & Smouse 2006,2012). 

Population clustering was analyzed using the Bayesian model-based clustering 

approach implemented in STRUCTURE 2.3.4 (Pritchard et al. 2000; Falush et al. 2003). 

Runs were performed under the admixture model, with correlated allelic frequencies. 

STRUCTURE runs were performed for a number of groups (K) set between 1 and 20, with 

10 replicates of each K, with an initial burn-in of 100,000 MCMC (Markov Chain Monte 

Carlo) generations, followed by 1,000,000 MCMC steps. 

The most likely number of clusters in each dataset was inferred using a 

combination of two metrics: changes in LnP(D), the probability of the data given K, for 

consecutive K (when several values of K give similar estimates of LnP(D), the smallest of 

these is often the correct K, i.e., when values plateau), as suggested by Pritchard et al. 

(2010), and the protocol developed by Evanno et al. (2005), both obtained using 

STRUCTURE HARVESTER 0.6.94 (Earl & VonHoldt 2012).  
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3. Results 

The total number of alleles per locus across populations varied from 1 to 15. Eight 

private alleles (alleles found in a single population) were found: one in E0, one in MIN, 

two in LaH, two in COCH, one in MER and one in WES, and the mean allelic richness (AR) 

per locus ranged from 1.00 to 7.4109. The summary statistics of the genetic diversity 

indices for each locus and sample are provided in Table 2.  

FST values between sites ranged from -0,0109 (between VOUG, Portugal and GIR, 

France) to 0,28717 (between SELL, Spain and WES, USA; Table 3), with a global FST of 

0.10508. A total of 120 of the 190 FST values (63%) were statistically significant, however, 

many values were low, with the exception of comparisons between European and North 

American samples, which accounted for 62.5% of the total significant pairwise 

comparisons, and all being significant at the 0.1% level (P<0.001). 

Genetic structure analyses were consistent with these findings, as STRUCTURE 

analyses demonstrated consistent signs of high population differentiation between 

European and North American samples (two-groups structure), but low differentiation 

among populations from the same coast (Fig. 4). The most likely number of clusters in 

each dataset was computed using a combination of estimated LnP(D) values and ΔK of 

the Evanno method, and indicate that the most consistent structure attained for the 

entire dataset is a group in each side of the North Atlantic (Fig. 4A). Pritchard et al. 

(2010), suggested that when one have a situation with two clear populations, and is 

trying to decide whether one (or both) of these is further subdivided, then one can run 

STRUCTURE using subsets of populations that might be subdivided. Following this, three 

additional runs of STRUCTURE were performed: one including the 15 European 

populations (Fig. 4B); another including the five North American populations (Fig. 4C); 

and another (Fig. 4D) with the eight populations from Portugal, to test the hypothesis of 

regional differentiation suggested by Lança et al. (2014). This allows detection of further 

structure in these populations, if present, that otherwise would be hidden due to the 

high differentiation between the European and North American samples. Results from 

these analyses revealed, however, the same groups, with further differentiation only 
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within samples, i.e, there is no further structure among populations from the same 

coast, or among samples from Portugal.  

The principal coordinates analysis (PCoA), also revealed the existence of mainly 

two groups, the same detected by STRUCTURE (European and North American samples; 

Fig. 5).  

These results were in agreement with the analysis of molecular variance 

(AMOVA), which revealed low genetic variation among sea lamprey sites (10.7%; 

AMOVA I; Table 4) with variation within populations accounting for 89.3% of the total 

variation. When comparing the European and American samples, according to the 

results attained with PCoA and STRUCTURE (AMOVA II), variation between coast 

accounts for 23.7% of the total variation, and within populations variation is 75.3% of 

the total. In AMOVA III, where Portuguese populations were grouped according to the 

3-stock structure suggested by Lança et al. (2014), virtually all variation, almost 100%, 

occurred within populations (99.6%; Table 4). 
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Table 2. Measures of genetic diversity assayed at twelve microsatellite DNA loci for each sampled location. Sample acronyms correspond to locations as in Table 1. Sample size (n), number of 

alleles per locus (Na) with number of private alleles in parentheses, mean allelic richness (AR), unbiased expected heterozygosity (He), observed heterozygosity (Ho). 

 

 

 

 ROL ATR ROE GIR SEL EO ULL MIN LIM CAV DOU VOU MON TEJ GUA LaH COCH MER WES CON 

 n=26 n=26 n=8 n=19 n=50 n=49 n=50 n=49 n=50 n=44 n=50 n=28 n=38 n=44 n=28 n=40 n=28 n=35 n=22 n=18 

Locus                     

Pmaμ 2                     

AlRan 96-100 98-100 100 96-100 98-100 98-100 94-100 94-100 98-100 98-100 98-100 94-100 98-100 96-100 

3 

94-100 94-100 94-100 94-100 94-100 94-100 

Na 3 2 1 3 2 2 3 3 2 2 2 4 2 3 3 4 4 4 4 4 

AR 2.1925 1.9257 1 2.3528 1.9705 1.973 2.1317 2.1124 1.9878 1.9915 1.9987 2.4366 1.9955 2.1336 2.1945 2.7159 3.3925 2.8791 3.2504 2.6661 

He 0.3703 0.2919 - 0.5401 0.3685 0.3737 0.4941 0.4198 0.4160 0.4303 0.4848 0.4759 0.4507 0.4825 0.4084 0.5753 0.6526 0.5975 0.6311 0.5540 

Ho 0.1154 0.0385 - 0.2353 0.0000 0.0000 0.3778 0.0638 0.2200 0.0682 0.1600 0.3333 0.1111 0.1364 0.0714 0.3750 0.4643 0.3235 0.3636 0.2222 

                     
Iun 2                     

AlRan 114-117 111-117 114-117 114-117 111-117 111-117 111-117 114-117 114-117 114-117 111-117 114-120 111-117 114-120 114-120 105-117 114-117 105-120 114-117 114-117 

Na 2 3 2 2 3 3 3 2 2 2 3 3 3 3 3 3 2 4 2 2 

AR 1.9847 2.1925 2 1.9995 2.1054 2.1989 2.1295 1.9921 1.9931 1.9608 2.1143 2.2128 2.1868 2.1367 2.3809 2.3041 1.9971 2.3869 2 1.9998 

He 0.3927 0.3703 0.5250 0.4908 0.4216 0.3936 0.4543 0.4342 0.4396 0.3483 0.4600 0.4994 0.3130 0.4813 0.4909 0.4538 0.4580 0.5394 0.5127 0.4966 

Ho 0.1200 0.3077 0.6250 0.5789 0.4800 0.3469 0.4773 0.2500 0.4000 0.3023 0.3600 0.3929 0.2632 0.4419 0.4286 0.1143 0.2800 0.2903 0.2778 0.1333 

                     
Iun 5                     

AlRan 250-274 250-277 250-274 250-274 250-277 250-286 250-286 250-274 250-286 250-277 250-277 250-286 250-277 250-286 250-274 253-298 250-289 250-289 247-289 253-292 

Na 4 6 3 4 5 6 5 4 6 5 5 6 5 7 4 15(1) 13 14 10(1) 10 

AR 3.3837 3.569 2.8571 3.3545 3.2542 3.571 3.0558 3.3627 3.3625 3.3989 3.3107 3.5874 3.1439 3.3768 3.0914 7.054 7.4109 6.6272 5.8878 7.0938 

He 0.5407 0.5566 0.6044 0.5619 0.5824 0.6181 0.4932 0.5998 0.5574 0.6053 0.5354 0.4987 0.5747 0.5909 0.5721 0.8761 0.8994 0.8644 0.8150 0.8966 

Ho 0.5769 0.4615 1.0000 0.6316 0.6000 0.6531 0.4318 0.5625 0.4800 0.5909 0.6400 0.5000 0.7105 0.4773 0.5714 0.8684 0.7500 0.8667 0.7727 1.0000 

                     
Iun 6                     

AlRan 124-130 124-130 127 124-127 121-130 121-130 124-130 124-130 124-127 124-130 121-130 124-127 124-130 124-130 124-130 121-133 124-136 121-133 124-130 121-130 

Na 3 3 1 2 4 4 3 3 2 3 4 2 3 3 3 5 5(1) 5 3 4 
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Table 2. (Continued) Measures of genetic diversity assayed at twelve microsatellite DNA loci for each sampled location. Sample acronyms correspond to locations as in Table 1. Sample size (n), 

number of alleles per locus (Na) with number of private alleles in parentheses, mean allelic richness (AR), unbiased expected heterozygosity (He), observed heterozygosity (Ho). 

AR 2.425 2.2306 1 1.9999 2.2389 2.6358 2.3197 2.1313 1.9989 2.2552 2.3446 1.9999 2.4007 2.1295 2.2141 3.6033 3.372 3.730 2.9344 3.2891 

He 0.5282 0.5271 0.0000 0.5121 0.5119 0.5157 0.5158 0.4891 0.4887 0.5277 0.5121 0.5084 0.4895 0.4543 0.5266 0.7043 0.6701 0.7002 0.5973 0.5793 

Ho 0.3600 0.5769 0.0000 0.5263 0.5000 0.5306 0.5400 0.5111 0.4200 0.5455 0.5000 0.7500 0.5000 0.4318 0.4643 0.6286 0.3929 0.6061 0.6364 0.4667 

                     
Pmaμ 5                     

AlRan 131-137 131-137 131-137 131-137 131-137 131-137 131-137 131-137 131-137 131-137 131-137 131-137 131-137 131-137 131-137 125-139 125-137 131-137 125-139 125-139 

Na 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 5 4 3 5 6 

AR 1.9996 1.9997 2 1.9999 1.9997 2.2293 1.9994 1.9997 1.9997 1.9998 1.9997 1.9998 1.9993 1.9998 1.9996 3.7415 3.1567 2.9236 4.0623 4.6604 

He 0.4977 0.5030 0.5333 0.5078 0.5042 0.5041 0.4978 0.5045 0.5032 0.5055 0.5042 0.5065 0.4940 0.5055 0.4987 0.7060 0.6344 0.5967 0.7433 0.7504 

Ho 0.5385 0.5769 1.0000 0.4737 0.6400 0.4490 0.4800 0.6087 0.6200 0.4318 0.5200 0.3571 0.4737 0.5682 0.7143 0.4872 0.6786 0.5625 0.6190 0.4706 

                     
Lspn050                     

AlRan 134-152 134-152 134-152 134-152 134-152 134-152 134-152 134-152 134-152 134-152 134-152 134-152 134-152 134-152 134-152 134-154 134-154 134-156 134-154 134-152 

Na 2 2 2 2 2 3(1) 2 2 2 2 2 2 2 2 2 4 4 5(1) 4 3 

AR 1.9997 1.9999 2 1.9998 1.9996 2.2283 1.9997 1.9982 1.9989 1.9998 1.9962 1.9999 1.9961 1.9998 1.9996 2.8039 2.7337 2.9796 2.7224 2.8398 

He 0.5029 0.5098 0.5000 0.5007 0.5018 0.4948 0.5042 0.4787 0.4887 0.5055 0.4596 0.5084 0.4561 0.5055 0.4987 0.5344 0.4494 0.4693 0.4598 0.5865 

Ho 0.4800 0.5385 0.7500 0.5263 0.4800 0.4082 0.5200 0.3542 0.4200 0.5227 0.5400 0.4643 0.4211 0.3864 0.5714 0.4737 0.3929 0.5000 0.4091 0.5882 

                     
Pmaμ 7                     

AlRan 113 113 113 111-113 113 113 113 113 113 113 113 113 111-113 111-113 113 111-113 111-113 111-113 111-113 111-113 

Na 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2 2 

AR 1 1 1 1.3158 1 1 1 1 1 1 1 1 1.2926 1.7506 1 1.9998 1.9952 1.9886 1.9998 1.9923 

He 0.0000 0.0000 0.0000 0.0526 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0519 0.1857 0.0000 0.5051 0.4442 0.4141 0.5021 0.4127 

Ho 0.0000 0.0000 0.0000 0.0526 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0526 0.2045 0.0000 0.2000 0.2143 0.1143 0.1364 0.2222 

                     
Lspn094                     

AlRan 156 156 156 156 156 156 156 156 156 154-156 156 156 156 156 156 154-156 154-156 154-156 154-156 154-156 

Na 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 2 

AR 1 1 1 1 1 1 1 1 1 1.2555 1 1 1 1 1 1.9991 1.9622 1.9851 1.9998 1.8873 

He 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0449 0.0000 0.0000 0.0000 0.0000 0.0000 0.4902 0.3429 0.4012 0.5017 0.2460 

Ho 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0286 0.0000 0.0556 
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Table 2. (Continued) Measures of genetic diversity assayed at twelve microsatellite DNA loci for each sampled location. Sample acronyms correspond to locations as in Table 1. Sample size (n), 

number of alleles per locus (Na) with number of private alleles in parentheses, mean allelic richness (AR), unbiased expected heterozygosity (He), observed heterozygosity (Ho). 

 

Pmaμ 4                     

AlRan 157 157 157 155-157 157 157 155-157 157 155-157 157 155-157 155-157 155-157 157 157 157-163 155-161 155-163 157-161 157-161 

Na 1 1 1 2 1 1 2 1 2 1 2 2 2 1 1 4 4 5 3 3 

AR 1 1 1 1.5377 1 1 1.4053 1 1.12 1 1.12 1.2143 1.4073 1 1 3.0144 2.8646 3.332 2.9012 2.5597 

He 0.0000 0.0000 0.0000 0.1024 0.0000 0.0000 0.0776 0.0000 0.0200 0.0000 0.0200 0.0357 0.0768 0.0000 0.0000 0.6297 0.5639 0.6457 0.6308 0.5270 

Ho 0.0000 0.0000 0.0000 0.1053 0.0000 0.0000 0.0800 0.0000 0.0200 0.0000 0.0200 0.0357 0.0789 0.0000 0.0000 0.4615 0.3704 0.4545 0.4000 0.3333 

                     
Pmaμ 8                     

AlRan 164 164 162-164 162-164 162-164 162-164 162-164 162-164 162-164 162-164 162-164 162-164 162-164 162-164 162-164 160-164 156-164 156-164 160-164 160-164 

Na 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 5 4 3 3 

AR 1 1 1,75 1.9808 1.2267 1.9618 1.9998 1.2355 1.6546 1.8728 1.6546 1.993 1.7653 1.9105 1.8752 2.865 3.5476 3.1299 2.6461 2.865 

He 0.0000 0.0000 0.1250 0.3713 0.0396 0.3518 0.5048 0.0412 0.1487 0.2547 0.1487 0.4305 0.1909 0.2861 0.2494 0.6018 0.6674 0.6480 0.5749 0.6190 

Ho 0.0000 0.0000 0.1250 0.3684 0.0400 0.4490 0.9800 0.0417 0.1200 0.2955 0.1600 0.5357 0.1053 0.3409 0.2857 0.6579 0.5556 0.6000 0.9048 0.6875 

                     
Lspn044                     

AlRan 207-209 207-209 207-209 207-209 207-209 207-209 205-209 207-209 205-209 207-209 207-209 207-209 207-209 207-209 207-209 205-217 205-217 205-217 205-217 205-217 

Na 2 2 2 2 2 2 3 2 3 2 2 2 2 2 2 6 7(1) 6 6 6 

AR 1,9999 1.9989 2 1.9999 1.9975 1.9997 2.1191 1.9998 2.1196 1.9973 1.9998 1.999 1.9998 1.9983 1.9998 4.4584 4.6942 4.4585 4.0013 4.8884 

He 0.5098 0.4827 0.5250 0.5121 0.4709 0.5043 0.5036 0.5049 0.5125 0.4681 0.5048 0.4857 0.5063 0.4796 0.5065 0.7649 0.7736 0.7650 0.7357 0.8085 

Ho 0.6154 0.4615 0.6250 0.5263 0.5400 0.4694 0.5400 0.5306 0.5000 0.4545 0.5800 0.3571 0.5000 0.4545 0.6429 0.7297 0.8519 0.8182 0.8636 0.9375 

                     
Pmaμ 3                     

AlRan 216-226 216-226 216-224 216-226 216-226 216-226 216-226 216-234 216-224 216-226 216-226 216-226 216-226 216-226 216-226 216-228 218-228 218-228 218-228 216-228 

Na 3 3 2 3 4 4 3 5(1) 3 3 4 4 4 4 3 6(1) 5 4 4 4 

AR 2.6617 2.4091 2 2.3157 2.6309 2.2445 2.4115 2.5797 2.1197 2.1351 2.4409 2.9522 2.8707 2.5097 2.3854 3.7971 3.3274 3.0203 2.8104 2.8709 

He 0.5724 0.5098 0.5250 0.5391 0.5545 0.5235 0.5405 0.5263 0.5145 0.4982 0.5428 0.6010 0.5818 0.5368 0.5409 0.6089 0.4922 0.4791 0.4165 0.4778 

Ho 0.5769 0.5769 0.8750 0.6842 0.5200 0.5918 0.4490 0.5208 0.5400 0.5000 0.5200 0.5556 0.5789 0.4318 0.4643 0.5750 0.5000 0.5143 0.5000 0.6111 

                     
All loci                     

AR 1.89 1.86 1.63 1.99 1.87 2.00 1.96 1.87 1.86 1.91 1.91 2.03 2.00 2.00 1.93 3.36 3.37 3.29 3.10 3.30 
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Table 3. Pairwise estimates of genetic differentiation (FST) among sites (above diagonal) and corresponding P values (below diagonal). For populations’ acronyms, please check Table 1. 
  ROL ATR ROE GIR SEL EO ULL MIN LIM CAV DOU VOU MON TEJ GUA LaH COCH MER WES CON 

ROL - -0.01049 0.05647 0.01403 -0.00577 0.01872 0.05233 -0.00967 -0.00721 0.00630 -0.00052 0.01350 0.00491 0.01135 -0.00547 0.24156 0.20797 0.20984 0.26780 0.21627 

ATR NS - 0.08699 0.02497 -0.00873 0.01861 0.06100 -0.00129 0.00092 -0.00322 0.01710 0.01781 0.01347 0.01476 0.00244 0.25190 0.21786 0.21888 0.27797 0.23164 

ROE * *** - 0.09220 0.06715 0.07128 0.10975 0.05382 0.06046 0.09935 0.07153 0.07978 0.07752 0.05269 0.07575 0.22603 0.19675 0.21113 0.24821 0.21126 

GIR NS * ** 
- 0.01680 0.00970 0.00242 0.01535 0.00388 0.00352 0.00371 -0.01090 0.02368 -0.00348 -0.00196 0.17864 0.14052 0.14472 0.19598 0.14791 

SEL NS NS ** * 
- 0.01498 0.05178 -0.00397 -0.00442 -0.00158 0.00739 0.01479 0.00724 0.00470 0.00037 0.26109 0.22563 0.23055 0.28717 0.23516 

EO * * *** NS 
** - 0.02619 0.02046 0.01355 0.00800 0.02631 0.01477 0.01525 0.00719 0.01245 0.24077 0.20118 0.20596 0.25105 0.20003 

ULL *** *** *** NS *** *** 
- 0.05445 0.03516 0.03083 0.03717 0.00192 0.04628 0.02270 0.02734 0.22521 0.18468 0.18750 0.23466 0.18111 

MIN NS NS ** NS NS ** 
*** - -0.00625 0.00650 -0.00256 0.01714 -0.00019 0.00488 -0.00374 0.25047 0.21446 0.22012 0.27519 0.21937 

LIM NS NS ** NS NS * *** NS 
- 0.00228 -0.00529 0.00603 0.00328 0.00137 -0.00825 0.25219 0.21681 0.22228 0.27738 0.22169 

CAV NS NS *** NS NS NS *** NS NS 
- 0.01324 0.00392 0.00987 0.00454 -0.00027 0.23857 0.20129 0.20260 0.25617 0.20571 

DOU NS * ** NS NS *** *** NS NS 
* - 0.01039 0.00336 0.00560 -0.00130 0.24402 0.20989 0.21574 0.26992 0.20997 

VOU NS * ** NS * * NS * NS 
NS NS - 0.02321 0.00289 -0.00023 0.20643 0.16926 0.17471 0.22410 0.17790 

MON NS NS ** * NS * *** NS NS 
NS NS ** - 0.00724 0.00896 0.24486 0.21383 0.21659 0.26226 0.20358 

TEJ NS * ** NS NS NS ** NS NS 
NS NS NS NS - 0.00543 0.21041 0.17150 0.18314 0.22636 0.17295 

GUA NS NS ** NS NS * ** NS NS 
NS NS NS NS NS - 0.22569 0.19125 0.19408 0.25050 0.20082 

LaH *** *** *** *** *** *** *** *** *** 
*** *** *** *** *** *** - 0.00107 0.00492 -0.00532 0.02182 

COCH *** *** *** *** *** *** *** *** *** 
*** *** *** *** *** *** NS - -0.00604 0.00711 0.00033 

MER *** *** *** *** *** *** *** *** *** 
*** *** *** *** *** *** NS NS - 0.00167 0.00349 

WES *** *** *** *** *** *** *** *** *** 
*** *** *** *** *** *** NS NS NS - 0.00884 

CON *** *** *** *** *** *** *** *** *** 
*** *** *** *** *** *** * NS NS NS - 

*, P<0.05; **, P<0.01; ***, P<0.001; NS, not significant (P > 0.05) 
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Figure 4. STRUCTURE bar plots generated from 12 microsatellite loci for A) the entire dataset of 20 

populations from both sides of North Atlantic; B) European populations, composed of 15 sites; C) Five 

North American populations; and D) Eight populations from Portugal, to test the hypothesis of regional 

differentiation, following Lança et al. 2014. The most likely number of clusters in each dataset was 

computed using a combination of estimated LnP(D) values and ΔK of the Evanno method, as represented 

by the charts. These analyses indicate that the most consistent structure attained is a group in each side 

of the North Atlantic, as additional structuring in subgroups composed by samples from the same coast 

results in the same number of groups, with further differentiation within samples. Each individual is 

represented by a vertical bar, and sampled locations are indicated below plot. 
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Figure 4. (Continued) STRUCTURE bar plots generated from 12 microsatellite loci for A) the entire dataset 

of 20 populations from both sides of North Atlantic; B) European populations, composed of 15 sites; C) 

Five North American populations; and D) Eight populations from Portugal, to test the hypothesis of 

regional differentiation, following Lança et al. 2014. The most likely number of clusters in each dataset 

was computed using a combination of estimated LnP(D) values and ΔK of the Evanno method, as 

represented by the charts. These analyses indicate that the most consistent structure attained is a group 

in each side of the North Atlantic, as additional structuring in subgroups composed by samples from the 

same coast results in the same number of groups, with further differentiation within samples. Each 

individual is represented by a vertical bar, and sampled locations are indicated below plot. 
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Table 4. Locus-by-locus analysis of molecular variance (AMOVA).  

Source of variation 
Sum of 

squares 

Variance 

components 

Percentage 

of variation 
P 

Fixation 

Indices 

AMOVA I      

Among populations 417.461 0.28551 10.65 

 

 

  

Within populations 3257.205 2.39494 89.35 

 

<0.001 FST: 0.10651 

 
Total 3674.666 2.68045 

 

   

AMOVA II      

Among groups 336.441 0.75470 23.73 <0.001 FCT: 0.23730 

 
Among populations within groups 81.020 0.03068 0.96 <0.001 FSC: 0.01265 

Within populations 3257.205 2.39494 75.31 

 

<0.001 FST: 0.24695 

Total 3674.666 3.18033 

 

   

AMOVA III      

Among groups 5.195 -0.00286 -0.14 >0.05 FCT: -0.00135 

 
Among populations within groups 15.381 0.01129 0.53 >0.05 FSC: 0.00532 

Within populations 1372.135 2.11244 99.61 

 

>0.05 FST: 0.00397 

Total 1392.711 2.12087 

 

   

In AMOVA I all populations were included (n=20), in AMOVA II the same populations were grouped into the two clusters 

suggested by the STRUCTURE analyses (i.e., European and North American populations), and in AMOVA III individuals 

from Portuguese populations (n=8) were assembled into the three groups suggested by Lança et al. (2014). 

 

 
Figure 5. Principal coordinates analysis plot (PCoA) computed by GenAlEx. The percentage of 

variation explained by each axis is shown, with most variation explained by axis 1. Samples’ 

acronyms as in Table 1.  
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4. Discussion  

4.1. Dispersal at sea, site selection and evolutionary implications 

Anadromous sea lamprey populations from the west and east coast of the North 

Atlantic show significant genetic differentiation and a strong geographic clustering, i.e., 

a two-groups structure, with restricted dispersal between, and fidelity to, the east and 

west coast of the Atlantic. This suggests that European and North American populations 

are isolated and there is an absence of gene flow between both sides of the Atlantic, 

probably due to the long distance between coasts. These results are in accordance with 

a previous study using mitochondrial DNA (Rodríguez-Muñoz et al. 2004), that showed 

an absence of genetic exchange among sea lamprey populations spawning in the west 

and east Atlantic coasts.  

Analysis were performed to clarify if there is further differentiation within the 

American and European populations, but at this scale the results revealed low genetic 

differentiation among locations of the same coast (although some significant pairwise 

comparisons), and no geographic clustering. This suggests a lack of natal homing, in 

agreement with the results of Waldman et al. (2008), where no structure was revealed 

between sea lampreys collected from 11 North American east coast rivers (some of 

them included in this analysis). Using a portion of the mitochondrial DNA control region, 

these authors found no significant differences in haplotype frequencies among them, 

with almost 99 per cent of haplotypic diversity occurring within populations. Bryan et al. 

(2005) also found no significant genetic differences among anadromous populations of 

sea lamprey along the North American Atlantic coast, and Rodríguez-Muñoz et al. (2004) 

found the same lack of structure along the European Atlantic coast.  

The apparent lack of natal homing in sea lamprey is observed in other 

anadromous lamprey species, like for instance the Pacific lamprey (Entosphenus 

tridentatus), where no geographic structure was detected among 20 locations from west 

coast of North America, using nine microsatellite loci (Spice et al. 2012). These authors, 

however, suggest limits to dispersal at sea, which precludes panmixia in this species. 

This assumption was based in the somewhat higher and often significant FST values 

found among Pacific lamprey locations (Spice et al. 2012). In fact, the extent to which 
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lampreys are panmictic will be dependent on their dispersal capabilities at sea. The sea 

lamprey is apparently another case of restricted dispersal at sea in some areas of its 

distribution, namely in the western Iberian Peninsula, where significant morphological 

and physiological differences were found between adults from different geographical 

groups, segregated by seabed topography (Lança et al. 2014). This differentiation is most 

likely the result from the influence of environmental factors to which lampreys may have 

been exposed during the oceanic trophic phase of the life cycle. Indeed, in the present 

study no genetic structure was attained for the exact same populations, meaning that 

the oceanic phase of the sea lamprey life cycle is most likely composed by a dispersion 

period during the juvenile migration, followed by a much less mobile adult stage, which 

will restrict the mixture of adult lampreys from different geographical groups. 

Adaptation in the larval stage also seems to occur to some extent. Almeida et al. (2008) 

analysed the morphological variability of sea lamprey larvae from the main Portuguese 

river basins, and found morphometric segregation of populations (the total classification 

rate estimated from cross-validation procedure was 54.8%), meaning that during the 

long larval phase individuals also adapt to the environmental conditions encountered in 

the natal stream. 

These results indicate local adaptation of i) sea lamprey populations inhabiting 

the east and west coast of the North Atlantic, with genetic differentiation detected both 

at mitochondrial DNA (Rodríguez-Muñoz et al. 2004) and microsatellite loci (this study), 

and ii) groups of populations from western Iberian Peninsula, differentiated at the 

morphological and physiological levels, as result of ecological factors (Almeida et al. 

2008; Lança et al. 2014), rather than derived from a genetic basis (this study). 

The apparent lack of natal homing in anadromous lampreys contrasts to strong 

natal homing in other anadromous fish, like salmonids.  McDowall (2001a) suggested 

that homing raises adaptation of stocks to favourable local spawning conditions, 

allowing the evolution of local adaptations. Even though homing is generally regarded 

as adaptive advantageous, it seems that lampreys have evolved in the direction of 

regional adaptations, instead of natal site fidelity. Indeed, even though homing makes 

fish return to habitats of known spawning success, it may become disadvantageous. 

Cury (1994), in a review about reproductive behaviours, such as natal homing, referring 
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to marine turtles and salmon, species that return very accurately to their natal sites, 

explains that individuals cannot respond, in terms of adaptability, to changes in their 

spawning habitat. If, for natural or anthropogenic reasons, the spawning site becomes 

unsuitable, the individuals do not attempt to breed at alternative areas, and spawn at 

sites that are unfavourable for successful production of progeny. In this sense, the 

author considers that “strays are essential for long-term dynamics by exploring and 

fixing new environmental solutions that later may become possible for the species” 

(Cury 1994). In the study of Lança et al. (2014), classification results revealed a few of 

such individuals, similar to the “strays” of species exhibiting homing, i.e., individuals that 

were classified in other geographical groups, which, for instance if their hosts have 

carried them far from their natal rivers, can explore other areas nearby. According to 

the exposed above, lampreys seem to present regional panmixia, with local adaptations 

at the morphological and physiological levels, but apparently no genetic segregation, 

which seem to provide adaptive advantage for the species survival in the long-term. 

Also, it is known that parasitic lampreys may be displaced over hundreds of kilometres 

by host fishes (Johnson et al. 2015), and thus returning to the natal stream would imply 

high energetic costs, which lampreys, not homing, can invest in reproduction (such as 

gonadal production, upstream migration and nest construction). 

 In the absence of homing, Waldman et al. (2008) suggested that lampreys use a 

strategy referred to as ‘suitable river’, to complete its life cycle. According to this 

strategy, and because many rivers are unsuitable for sea lamprey reproduction, instead 

of returning to natal streams, sea lamprey use chemical cues to locate spawning habitat 

that is suitable for larvae. The perception that there are populations of conspecifics in 

upstream catchments (“kin recognition”) through body odours or pheromones released 

incidentally or deliberately by populations upstream was also recognized as a strategy 

to relocate and exploit favourable spawning habitats by McDowall (2001a). Lamprey 

larvae release unique bile acids that function as migratory pheromones detectable by 

adults in marine waters (e.g. Li et al. 1995; Bjerselius et al. 2000; Polkinghorne et al. 

2001) and then reproductively mature males release a bile acid that acts as a potent sex 

pheromone, inducing preference and searching behaviour in ovulated female lampreys 

(Li et al. 2002). This strategy allows ammocoetes to “advise” the former generations to 
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spawn where they occur, because it means that, at that moment, the habitat conditions 

are favourable, and allows adult lampreys to locate suitable spawning and rearing 

habitat. Another advantageous characteristic of this strategy is that the attraction is not 

species specific, as pheromones emitted by larvae are conserved among lamprey species 

(e.g. Fine et al. 2004; Robinson et al. 2009).  

The great capacity of adaptation, both in the larval and adult phases, seems to 

bring lampreys adaptive advantages, as it enhances the plasticity of the species to adapt 

to inconstant environments. Also, the absence of homing, but instead the kin 

recognition allows the selection of watersheds with suitable spawning and rearing 

habitat. The cues for initiating upstream migration are another issue of great interest 

among the lamprey community, and temperature and flow appear to be the key triggers 

for upstream migration (Moser et al. 2015). Studies have demonstrated that migratory 

activity increases with increased stream discharge, which may be a mechanism to ensure 

that lamprey passage is facilitated through difficult areas (reviewed in Moser et al. 

2015). In basins where the available water is reduced in the months with higher 

temperatures, like the Guadiana basin, in southern Portugal, river flow reduction in 

drought years can reduce the watershed attractiveness of the basin to migratory adults. 

This southern basin constitutes a geographical group with unique morphological and 

physiological characteristics as adults (Lança et al. 2014), but the absence of homing 

allows some individuals to enter nearby watersheds. This plasticity allows lampreys to 

respond positively to, for instance, potential effects of climate change, moving 

northwards and shifting the species distribution.    

 

4.2. Implications for conservation 

Populations from the west Atlantic coast revealed higher levels of genetic 

diversity than European samples (see Table 2). This is in agreement with findings from 

Bryan et al. (2005), where the authors found evidence for a genetic bottleneck in River 

Mondego, using eight microsatellite loci, and significant differences in allele frequencies 

between Mondego and North American anadromous populations.  
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This scenario may be due to the distinct threats faced by populations from both 

sides of the Atlantic. P. marinus is considered threatened in the European countries 

holding the main populations (i.e. France, Spain and Portugal), where it has been fished 

for centuries during their upstream spawning migration, and is considered a 

gastronomic delicacy with high socioeconomic value (Almeida et al. 2002; Mateus et al. 

2012; Stratoudakis et al. 2016). Overfishing, together with habitat loss, are the main 

threats to this species in the Iberian Peninsula (Almeida et al. 2002; Mateus et al. 2012), 

and both have led to a large reduction in population size, and consequently, the 

populations are more prone to genetic bottlenecks due to the loss of variation. 

Therefore, these populations require special conservation and management actions, 

especially in what concerns fishing regulations and habitat restoration. In Portugal, 

actions directed to the conservation of diadromous fish are being conducted, both 

intended to recover stretches of habitat that became unavailable after construction of 

impassable barriers (Pereira et al. 2016), and directed to sustainable fisheries 

(Stratoudakis et al. 2016), to guarantee the long-term persistence of the species. 

The identification of stocks, and whether they have a genetic basis, or rather are 

derived from environmental factors, is key for the management of fisheries. 

Conservation priorities for sea lamprey were defined as the effective articulation 

between fisheries management and habitat recovery, to guarantee cost-effective 

monitoring and sustainable long-term exploitation (Stratoudakis et al. 2016).  
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