
Classification of new electricity customers based on

surveys and smart metering data

Joaquim L. Viegasa,∗, Susana M. Vieiraa, R. Meĺıcioa,b , V. M. F. Mendesb,c ,
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Abstract

This paper proposes a process for the classification of new residential elec-
tricity customers. The current state of the art is extended by using a combi-
nation of smart metering and survey data and by using model-based feature
selection for the classification task. Firstly, the normalized representative
consumption profiles of the population are derived through the clustering of
data from households. Secondly, new customers are classified using survey
data and a limited amount of smart metering data. Thirdly, regression anal-
ysis and model-based feature selection results explain the importance of the
variables and which are the drivers of different consumption profiles, enabling
the extraction of appropriate models. The results of a case study show that
the use of survey data significantly increases accuracy of the classification
task (up to 20%). Considering four consumption groups, more than half of
the customers are correctly classified with only one week of metering data,
with more weeks the accuracy is significantly improved. The use of model-
based feature selection resulted in the use of a significantly lower number of
features allowing an easy interpretation of the derived models.

Keywords:
Data-driven energy efficiency, Electricity customer clustering, Classification
of new residential customers, Customer feature selection, Smart metering
data, Customer surveys data

∗Corresponding author.
Email address: joaquim.viegas@tecnico.ulisboa.pt (Joaquim L. Viegas)

Preprint submitted to Energy March 30, 2016



2



1. Introduction1

A game-changing shift has been happening in the utility industry and2

energy markets. Policy focused on energy efficiency and sustainability is3

growing fruit of the awareness of current environmental challenges. Liber-4

alization, growing competition between utilities, technological advancements5

and policy towards a sustainable use of energy sources are pushing utilities6

to seek innovation and new market related insights.7

Electricity is a main energy carrier used around the world for supporting8

the primary, secondary and tertiary sectors. The commercial and residential9

energy demand is expected to continue to shift towards electricity and away10

from primary fuels. By 2040, forecasts indicate that electricity generation11

will account for more than 40% of global energy consumption and, from 201012

to 2040, global electricity demand is projected to increase by about 85% [1–3].13

Technological advancement in the fields of metering, communications and14

computation are enabling utilities to monitor and save huge amounts of data15

related to their operation. The deployment of electricity meters with two-16

way communication capabilities is enabling the logging of the consumption of17

users with high resolution. The number of advanced metering infrastructure18

(AMI) installations, also known as smart meters, has surpassed the number19

of traditional one-way communication meters in the United States [4]. Close20

to 45 million smart meters are already installed in three Member States21

(Finland, Italy and Sweden) of the European Union (EU), representing 2322

percent of the envisaged installation in the EU by 2020 [5].23

The consumption data of customers has the potential to give insights of24

great importance for utilities and policy makers. Valuable insights can be25

derived by the knowledge of typical consumption curves of different consumer26

groups and understanding what are the main drivers of consumption. This27

knowledge can assist decision makers in the electricity utility industry in de-28

veloping demand side management (DSM) programs, consumer engagement29

strategy, marketing, alternative tariff setting methods and demand forecast-30

ing tools [6]. Knowledge on the way different demographic groups consume31

electricity is valuable to study the effect of energy policy on different popu-32

lation groups.33

The high number of consumers and desired high sampling frequencies in34

smart metering implies that huge amounts of data have to be stored and35

processing grows in complexity. Computational intelligence techniques in36

the fields of machine learning are starting to be extensively used in order37

3



to extract knowledge from the data coming from the grid. These techniques38

can provide decision makers with predictive models and the ability to extract39

valuable knowledge.40

In order to characterize the behaviour of electricity customers, the clus-41

tering of electricity consumption data has been the focus of a considerable42

amount of research in the past years. The usual stated applications range43

from the design and simulation of DSM [7, 8], load forecasting [9–11], tariff44

setting [12–14], marketing and bad data detection. The clustering meth-45

ods found to be used are mostly the K-means algorithm [8, 15–18]. Fuzzy46

clustering [19] has shown promise in the field. Data preparation is of high47

importance in these applications, dictating what information is desired to be48

extracted from the clustering and the ability of the used methods to achieve49

good results. Normalization, parametric modelling [10], temperature based50

normalization [16, 20] and wavelet transformation [9] have been found to be51

used in the literature.52

The use of static data related to household characteristics, e.g., income,53

number of inhabitants, education, construction year and appliances in rela-54

tion to static or dynamic energy consumption data is being studied in order55

to find the main drivers of residential energy consumption. In [21–23] fac-56

tor analysis and linear regression are used to find the main determinants of57

energy consumption in residential settings, such as weather data, household58

characteristics and demographics. In [24] demographic data and psychologi-59

cal and belief related data is studied in comparison to energy consumption.60

[25, 26] presents studies on the prediction of household information based61

on smart meter data. In [27, 28] consumptions profiles obtained via clus-62

tering are correlated to household characteristics. In [29] a methodology63

is presented for the characterization of medium voltage electricity customers64

through clustering and posterior modelling for which the classification of new65

customers is stated as a possible application.66

Classifying new customers is crucial for marketing purposes, as customers67

with lengthy relationships are less likely to defect and are less affected by new68

information and offers. Thus, a greater impact of marketing strategies and69

engagement is expected with new customers [30, 31].70

This paper extends the current state of the art by developing a process71

for the classification of new electricity customers using not only metering72

data but also using static data on household characteristics. The use of a73

limited amount of metering data is done in order to emulate the analysis of74

new electricity customers for which only a small amount of data is available.75
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The use of model-based feature selection for the discovery of the consumption76

drivers shows promise in the field.77

Based on the clustering of customers’ electricity consumption data, the78

consumption profile of new customers is predicted using survey data and79

a limited amount of smart metering data. Classification models in combi-80

nation with model-based and filter feature selection are compared for the81

classification task, selection and analysis of variables.82

The developed process aims to provide an interpretable classification83

modelling method for the classification of electricity customers and discovery84

of the drivers of different electricity consumption profiles. The presented re-85

sults aim to illustrate the application of the proposed process, using data that86

resulted from smart metering trials encompassing more than three thousand87

households in Ireland [32]. Requirements for the classification of customers88

and insights on the drivers of residential electricity consumption are pre-89

sented.90

This paper is organized as follows: Section 2 discusses the uses of the91

proposed process in the context of the smart grid. Section 3 presents the92

method for the generation of the populations representative consumption93

profiles. Section 4 presents the techniques used for modelling, feature selec-94

tion and model evaluation. Section 5 presents the experimental results and95

presents the discussion and Section 6 presents the conclusions.96

2. Classification of customers in the smart grid97

The smart grid is a concept with the purpose of intelligently integrating98

the generation, transmission and consumption of electricity through techno-99

logical means [33–37]. A smart electricity grid enables an efficient manage-100

ment of the whole electricity supply chain through innovative applications.101

The applications can provide the capacity to: securely integrate more re-102

newable energy sources and distributed generation; deliver power in a more103

efficient and secure manner through advanced control and monitoring; auto-104

matically reconfigure the grid to prevent and restore outages; better integrate105

consumption through DSM; enable consumer engagement in the market [38–106

41].107

Smart metering roll-outs and pilots are paving the way for the develop-108

ment of the smart grid. Meters with two-way communication capabilities109

are expected to empower consumers by enabling the creation of consumer110

services and engaging them to actively participate in the electricity market.111
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In Europe the total investment of smart grids amounted to e 3.15 billion in112

2014 and smart metering projects account for most of the total investment113

[38].114

The imperative for consumers to be on board is defended in order not115

only to reap the benefits of a smart grid, but also to make smart metering116

projects profitable. The extent of the transformation of the grid rests on117

the needs and the willingness of consumers to pay for the implementation118

[38, 41]. The right consumers need to be identified, engaged and motivated119

in order to reap the benefits of smart metering in terms of electricity cost120

savings, through, e.g., load shifting [42].121

Knowledge on the ways electricity is consumed in a population and what122

are the drivers of consumption dynamics, e.g., demographics, household char-123

acteristics and the use of appliances is essential in order to personalize ap-124

plications, energy services and policy towards a smarter grid.125

In the context of the smart grid, the ability to effectively group customers126

into similar behaviour market segments and to find the segment of new cus-127

tomers is very valuable, e.g., in the following applications:128

• Proposing tariff offers or DSM schemes taking into account the expected129

consumption behaviour of the customers;130

• Planning and studying the potential impact of personalized services131

and offers;132

• Offering the energy saving and sustainability services the customers are133

most likely to be interested in.134

The proposed process for clustering and classification of electricity cus-135

tomers enables more effective customer engagement on the part of utilities136

and smart grid operators. Customer engagement is essential to maximize the137

willingness of customers to pay for the implementation of this type o grid,138

either directly or indirectly by increasing the grids efficiency through DSM139

programs and energy efficiency solutions.140

3. Clustering141

Clustering methods attempt to group objects based on a definition of142

similarity. The objective is to find groups of objects with greater similarity143

between them than to the objects of other groups.144
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In the scope of this paper and the analysis of customers’ representa-145

tive consumption profiles, clustering methods are used to find which are the146

groups of customers which have similar consumption curves in some context,147

e.g., season, type of day. These groups are represented by the populations148

representative consumption profiles, resulting from aggregating the profile of149

all the customers of a group, equivalent to the cluster centroid.150

The methodology followed to find the customer groups and respective151

representative consumption profiles is in Figure 1. The clustering process152

is similar to the one proposed in [29]. Firstly, smart metering data is pro-153

cessed in order to obtain the customers’ representative consumption profiles,154

secondly, various clustering configurations are tested. Configurations are155

evaluated using multiple clustering validity indexes (CVI) which are used,156

together with careful visual evaluation, to chose the final configuration and157

obtain the customer groups and profiles.158

3.1. Customers’ normalized representative consumption profiles159

Smart metering consumption data is composed of a large set of times-160

tamped intervals with consumption values. In order to obtain consumption161

profiles which can be easily interpreted, visualized and manipulated, the data162

goes through a process of context filtering, aggregation and pre-processing.163

The process of context filtering consists on selecting data which represents164

a specific context, defined, for example, by a temporal window (e.g. Winter,165

Summer), type of day (e.g. working day) and location.166

Let xi be the feature vector (list of variables) associated to customer i.167

xi = (xm
i ,x

s
i ) where xm

i has dimension r equal to the number of variables168

which characterize a customers representative load profile (LP) or derived169

load indices (LI) and xs
i has dimension t equal to the number of survey vari-170

ables used. The dimension of a customers feature vector xi is p = r+t. The LI171

and survey variables are presented in 5.1 and 5.3. X = {x1,x2, ...,xN} ⊆ <p
172

is the feature dataset of N customers.173

After filtering, the consumption data is aggregated in order to reduce the174

dimension and obtain a curve representative of the whole temporal window.175

The aggregation is characterized by the period used, e.g., hourly, daily and176

operator, e.g., mean, median. For example, doing an hourly mean aggrega-177

tion of the consumption data of customer i will generate a vector xm
i ∈ <24

178

in which each element represents the mean consumption in a certain hour.179

The final pre-processing consists on the normalization of the data for eas-180

ier clustering, modelling and representation of different information. This181
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paper focuses on the case of normalization for each customer in which each182

representative profile is normalized with the maximum value of the profile183

as normalization factor. The normalization is done with the intent of trans-184

lating the consumption dynamic in relation to the maximum. This is done185

in [27–29]. The clustering of absolute representative consumption profiles186

results, using the same kind of data, on a separation of groups by amount of187

consumption.Without normalization the different shapes of curves are seem-188

ingly overshadowed by the mean absolute consumption while clustering [43].189

Figure 2 pictures an example of the clustering results, showing clusters190

centroids for hourly aggregated absolute and normalized representative pro-191

files. The curves behave in a similar way for different scales in absolute pro-192

files. For normalized consumption profiles the curves are distinct in terms of193

linearity and consumption between different times of the day.194

3.2. K-means clustering195

The K-means algorithm [44] is used due to its simplicity, efficiency and196

scalability. The algorithm has been proven to be adequate for this type of197

application in the literature [8, 15–18, 45, 46]. Let S = {S1, ..., SJ} be the198

groups (sets) of customers clustered together, J the number of clusters and199

de a chosen distance measure. The centroid of a cluster Sk is its mean vector,200

µk = 1
|Sk|

∑
x∈Sk

x. The algorithm is an iterative refinement method which, in201

this application, minimizes the distance between the customers’ consumption202

profiles x and the populations µk, as given by (1).203

arg min
S

J∑
k=1

∑
x∈Sk

de(x, µk)2 (1)

The difficulty associated with this algorithm is the need to determine the204

number of clusters and their initial centres. The choice of the number of205

cluster centres is detailed in the following Section 3.3. The initial cluster206

centres are generated randomly and the best clustering result of an high207

number of runs is used.208

3.3. Clustering evaluation209

A clustering in X is a set of disjoint clusters that partition X into k210

groups: S where ∪Sk∈S Sk = X,Sk ∩ Sl = ∅ ∀ k 6= l. The euclidean distance211

is used and de(xi,xk) =
√∑p

j=1(xij − xkj)2.212
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As pictured in Figure 1, multiple CVI are used to evaluate a number213

of different clustering configurations. If there is no consensus between the214

different CVI the expert chooses the best configuration based on the analysis215

of the CVI and visualization of the clustering results.216

Three different CVI are used in this work, they evaluate the goodness217

of the clustering in terms of maximization of inter cluster distances and218

minimization of intra cluster distances [47].219

The Dunn index (D) [48] is a ratio-type index where the cohesion is esti-220

mated by the nearest neighbour distance and the separation by the maximum221

cluster diameter. The original index is defined as,222

D(S) =
minSk∈S{minSl∈S\Sk

{δ(Sk, Sl)}}
maxSk∈S{∆(Sk)}

(2)

where,223

δ(Sk, Sl) = min
xi∈Sk

min
xj∈Sl

{de(xi,xj)} (3)

∆(Sk) = max
xi,xj∈Sk

{de(xi,xj)}. (4)

The Davis-Bouldin index (DB) [49] estimates the cohesion based on the224

distance from the points in a cluster to the centroid and the separation based225

on the distance between centroids. The DB index is defined as:226

DB(S) =
1

J

∑
Sk∈S

max
Sl∈S\Sk

{F (Sk) + F (Sl)

de(µk, µl)

}
(5)

where,227

F (Sk) =
1

|Sk|
∑
xi∈Sk

de(xi, µk). (6)

The silhouette index (Sil) [50] is a normalized summation-type index.228

The cohesion is measured based on the distance between all the points in the229

same cluster and the separation is based on the nearest neighbor distance.230

The silhouette index is defined as:231

Sil(S) =
1

N

∑
Sk∈S

∑
xi∈Sk

b(xi, Sk)− a(xi, Sk)

max{a(xi, Sk), b(xi, Sk)}
(7)
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where,232

a(xi, Sk) =
1

|Sk|
∑
xj∈Sk

de(xi,xj) (8)

b(xi, Sk) = min
Sl∈S\Sk

{ 1

|Sl|
∑
xj∈Sl

de(xi,xj)
}
. (9)

4. Modelling233

4.1. Classification234

This work intends to train models to predict the group of a new customer,235

characterized by a representative consumption profile. Figure 3 pictures the236

electricity customer classifier.237

Features are extracted from the survey responses and smart metering data238

of the customer. Based on the features the classifier returns a categorical239

variable y indicative of the customer group in which the customer best fits.240

The classifier is a function ϕ which maps the features of a customer to241

a categorical variable y, representing one of the J customer groups. It is242

defined as:243

ϕ : <p 7→ y (10)

y ∈ {c1, c2, ..., cJ} (11)

Classifiers are trained using the group labels extracted through the clus-244

tering of a full year of smart metering data, considered as the ground truth to245

be inferred from features extracted from a limited amount of smart metering246

data and survey data.247

The two following sections present the modelling approaches used in this248

methodology.249

4.1.1. Logistic regression250

The logistic regression (LR) models the posterior probabilities of the251

J classes via linear function in x while ensuring the sum to one and re-252

maining in [0, 1]. The LR model has the form presented in (12), where253

D represents the input vector [51, 52]. The parameter set of the model is254

θ = {β10, βT
1 , ..., β(J−1)0, β

T
(J−1)}.255
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log
Pr(y = 1|D = x)

Pr(y = J |D = x)
= β10 + βT

1 x

log
Pr(y = 2|D = x)

Pr(y = J |D = x)
= β20 + βT

2 x (12)

...

log
Pr(y = J − 1|D = x)

Pr(y = J |D = x)
= β(J−1)0 + βT

(J−1)x

Using the LR model, if the clustering analysis results in J customer256

groups, the classifier linearly separates each one of J − 1 customer groups to257

the J customer group.258

LR is usually fit by maximum likelihood, in the case of the results pre-259

sented in this paper the Newton-Raphson optimization method is used. For260

the case of two classes the parameters of the model can be easily interpreted261

through the significance and sign. In the case of multiple classes the inter-262

pretation of the model parameters is more complex due to a total set of J−1263

parameters for each variable.264

The LR model is chosen due to the simplicity (explained by linear func-265

tions) and interpretability, enabling the understanding of the role of the dif-266

ferent input variables in explaining the outcome [51]. Models with increased267

complexity, such as artificial neural networks or support vector machines,268

may provide higher accuracy but lack the transparency of the LR model269

[53].270

4.1.2. Decision trees271

Binary decision tree (DT) learning consists on fitting data to a tree-like272

structure. This type of method partitions the feature space into a set of273

rectangles and usually fits a constant in each one. This paper makes use274

of the popular tree-based regression and classification method called CART275

(Classification And Regression Tree) [51]. Tree-based methods have the ad-276

vantage of an easy interpretation and can be transformed into a simple set277

of rules if the number of branches is low.278

In order to grow a classification DT the learning algorithm automatically279

splits the data into two sets at each level, optimizing some criterion which280

translates the model accuracy. In this paper the Gini index is used, which is281

a measure of how often a randomly chosen element from the set is incorrectly282

11



labelled if it is randomly labelled according to the distribution of labels in283

the subset. The learning algorithm minimizes the difference of this measure284

between tree levels through the growth of the DT. Using DT in the multiple285

class case is straightforward and each end node of the tree will give a proba-286

bility for the J labels. Figure 4 pictures an example of a partition obtained287

by binary splitting and corresponding DT.288

A classification DT model is chosen, similarly to the LR model, due to289

its interpretability, providing a popular binary tree representation [51].290

4.2. Feature selection291

The objective of feature selection (FS) is to choose a subset of the avail-292

able features by eliminating features with little or no predictive information293

and also redundant features that are strongly correlated [54]. FS techniques294

are usually divided into filter, wrapper and embedded methods. Wrapper295

and embedded are usually referred to as model-based methods and filter296

techniques as model-free methods.297

Filter techniques assess the relevance of features by looking only at the298

intrinsic properties of the data. Filter techniques are normally easily scalable299

to very high-dimension datasets and computationally simple, having the dis-300

advantage of not taking into account the interaction with the classifier [55].301

Wrapper methods embed the classification model within the feature sub-302

set search. The selected set of features is obtained by training and testing303

a specific classification model, rendering this approach tailored to a specific304

classification algorithm [55].305

4.2.1. Regression based filter feature selection306

In regression analysis parameters are determined indicating the relation-307

ship between the features and the model output. The p-values of the hy-308

pothesis tests based on the parameters’ standard errors indicate if the corre-309

sponding variables are believed to be significantly different from 0 (rejected310

null hypothesis), thus indicators of the output variable. The regression fea-311

ture selection method used removes the variables for which the corresponding312

parameters result in a p-value higher than a certain significance level (5%).313

This parametric filter FS technique has been used in multiple studies,314

together with LR or probit regression, in order to find which are the fea-315

tures which are indicative of a specific electricity consumption profile and316

are determinants of electricity consumption [22, 23, 28].317
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4.2.2. Wrapper feature selection318

This paper proposes the use of greedy wrapper FS methods to find rela-319

tions between the characteristics of customers and the typical consumption320

profile. FS is also done in order to generate interpretable models by signifi-321

cantly reducing the number of features used to classify new customers.322

Sequential forward selection and sequential backward elimination [56] are323

the FS methods used. The forward FS algorithm sequentially selects features,324

starting with a empty set, choosing the features that improve the most the325

prediction accuracy. This is done until there is no more improvement in326

prediction. The backward FS algorithm starts with the full set of features and327

sequentially removes the ones which result in an improvement in prediction328

accuracy.329

4.3. Model evaluation330

In order to maximize the significance of the performance results of the331

trained classifiers k-fold cross-validation is used [51, 53]. This model vali-332

dation technique randomly divides the dataset into k folds. The classifier333

is then trained (using k − 1 folds) and evaluated (using 1 fold) k times, as334

pictured in Figure 5. The modelling approach is then evaluated through the335

mean and standard deviation of the accuracy.336

In order to do an unbiased FS the methods presented in Section 4.2337

are used only based on the training sets so that the process is totally in-338

dependent from the test data. The wrapper FS methods also make use of339

cross-validation to evaluate the feature subsets.340

5. Results and discussion341

5.1. Dataset342

The proposed methodology is applied to data from 4232 Irish households343

monitored for one and a half year. The dataset consists of electricity con-344

sumption data logged at 30 minute intervals and surveys responded before345

the start of the trial. This dataset resulted from an electricity customer be-346

haviour trial by the Irish Commission for Energy Regulation (CER). The data347

is stored and maintained by the Irish Social Science Data Archive (ISSDA)348

[32].349

The mean hourly consumption for the four seasons is pictured in Figure350

6. Consumption follows the typical residential dynamic with a small peak in351

the morning and lunch time, a larger one at the end of the afternoon and352
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low consumption during the night. As expected, the mean consumption in353

winter presents the highest values due to the heating needs.354

The distribution of the survey responses on social class and number of355

children per household is pictured in Figure 7. AB is upper middle class356

and middle class, C1 is lower middle class, C2 is skilled working class, DE357

is working and non-working classes and F represents farmers. The distribu-358

tions show that the used data encompasses different demographic groups and359

household types.360

The survey questions used as features are presented in Table 1 to Table 4,361

along with a description and possible responses. Table 1 presents the features362

with information on the respondent, Table 2 is related to the habitation363

characteristics, Table 3 to the heating systems and Table 4 to the appliances.364

Survey variables with no response are considered as ’refused’. The cus-365

tomers not considered in the study are the ones who did not respond to the366

question indicating the number of adults in the household. The final dataset367

used contains 3440 electricity customers.368

5.2. Clustering369

This section presents the results from the extraction of features from the370

customers smart metering data, transformation in representative profiles and371

clustering in order to obtain the final populations representative consumption372

profiles.373

5.2.1. Customers’ representative consumption profiles374

In order to obtain the customers’ consumption profiles the parameters375

used to extract the representative features are:376

• Context: Only the smart metering data from working days is used and377

profiles are extracted seasonally;378

• Aggregation: The data is aggregated hourly resulting in twenty-four379

features (r = 24);380

• Operator: The operator used is the mean.381

• Normalization: The profiles are normalized with regards to each cus-382

tomers maximum hourly consumption.383

The final customers’ representative consumption profiles are equal to the384

customer normalized mean hourly consumption in working days. The profiles385

are obtained for each one of the four seasons.386
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5.2.2. Populations representative consumption profiles387

Following the proposed methodology, the best number of clusters is found388

to be equal to four for the four seasons. Figure 8 pictures the evolution of389

the three CVI used when generating between two and six clusters for the390

Winter season. The Silhouette, Dunn and Davis-Bouldin indexes indicate,391

respectively, that the best number of cluster is two, four and five. In order to392

choose a number of clusters the partitions are visually analysed as pictured393

in Figure 9, Figure 10 and Figure 11. The figures present the populations394

representative consumption profiles (cluster centres) and the customers’ rep-395

resentative consumption profiles pertaining to the cluster.396

With two clusters, as pictured in Figure 9, many customers have a con-397

sumption profile different from the centre, indicating the need for an higher398

number of clusters. With four clusters, as pictured in Figure 10, the clusters399

are sufficiently compact having a significant number of customers in each400

group. With five clusters, as pictured in Figure 11, Cluster 2 has a low num-401

ber of customers with profiles showing a low similarity. Based on the visual402

analysis the number of chosen clusters is equal to four. The same process is403

used for the other seasons.404

The final populations representative consumption profiles are pictured in405

Figure 12. The population is divided mainly due to the following consump-406

tion profile characteristics:407

• Peakiness : Relation between peak evening consumption and the con-408

sumption throughout the rest of the day. For example: in Winter,409

clusters 1 and 2 have a much higher difference between peak evening410

and the rest of the days consumption (high peakiness), in comparison411

to clusters 3 and 4 (low peakiness).412

• Decline time: Time at which the consumption starts to rapidly de-413

cline after peak evening consumption. For example: in Spring, clusters414

2 and 4 have a late declining consumption (late decline) in comparison415

to clusters 1 and 3 (early decline), specially cluster 3 that has a very416

early decline in consumption.417

• Off-peak consumption: Presence of significant consumption during418

the off-peak hours (night and early morning) in comparison to the rest419

of the day. For example: in Autumn, cluster 4 presents a significant420

consumption during the night hours (high off-peak consumption) in421

comparison to the clusters 1, 2 and 3 (low off-peak consumption).422

15



Summer presents the most different populations consumption profiles in423

comparison to the other seasons, as pictured by the the consumption profile424

of Cluster 2. This cluster presents a high amount of variability between425

customers results in a low mean normalized consumption throughout the426

day.427

Table 5 presents the distribution of customers between the different clus-428

ters for each one of the seasons. Asides from the Winter clustering, the429

customers are approximately uniformly distributed between the four groups.430

5.3. Classification of new customers and feature selection431

Features extracted from metering data and from conducted surveys are432

used for the classification of new customers. In order to evaluate the process433

for the classification of new customers, the metering data is limited to an434

amount starting from no data to ten weeks of data. Due to the high amount435

of metering data and desire for interpretable models two types of features436

extracted from the smart metering data are tested: load profile (LP) and437

load indices (LI).438

The LP features are the ones used in the clustering: in this paper they are439

the hourly aggregated mean consumption normalized on an individual basis.440

The features differ from the ones used for clustering due to being derived441

from a limited amount of smart metering data.442

The LI are shape indices derived from the LP, these are proposed in [57]443

and used for the characterization of medium-voltage customers in [29]. LI444

are used in this paper with the intention of obtaining models of easier inter-445

pretation, explaining what consumption characteristics are the most relevant446

when comparing customers. The indices are presented in Table 6. i1 is the447

load factor, i2 is the off-peak factor, i3 is the night impact coefficient, i4 is448

the lunch impact coefficient and i5 is the modulation coefficient at off-peak449

hours. Pmax, Pmin, Pav are, respectively, the maximum, minimum and average450

consumption of the corresponding periods.451

Table 7 summarizes the smart metering features used in classification. In452

the case at least one day of metering data is available, a total of p = r+ t =453

24 + 47 = 71 features are available using the LP as the smart metering454

features and p = 5 + 47 = 52 features are available using the LI.455

Table 8 and Table 9 present the mean and standard deviation of the456

accuracy of the trained classifiers, through 5-fold cross-validation, in the457

cases of no smart metering data, 1, 4, 8 and 10 weeks of available smart458

metering data (W). In parentheses the mean number of features selected is459
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presented. The results are presented for the LR and DT models, for each460

season, and further divided by the use of no FS, the filter FS algorithm and461

forward FS. Backward FS results in a performance closely similar to the use462

of no FS. Accuracy was used, instead of measures that can correctly deal463

with class imbalances, such as the Area Under the ROC Curve (AUC) [58],464

precision/recall and MCC, due to the multiclass nature of the classification465

problem and the approximately balanced nature of the classes, inferred from466

Table 5.467

The evolution of the LR classifier performance with a growing number of468

weeks of metering data for the Winter season is pictured in Figure 13. The469

figure shows that, when using LP, the classification accuracy always benefits470

from the use of survey features. The difference between the performance471

of the classifier with and without survey features grows with the number472

of available weeks of smart metering data. When using LI the difference is473

only significant for the case when there is not metering data for which the474

classification is random because no features are available.475

Based on the analysis of the results of Table 8 and Table 9, the use476

of LP results in an better classification performance, proving that the LI477

are not able to correctly translate all the information needed to classify the478

customers.479

In general, filter FS results in the best accuracy, reducing significantly480

the number of features in comparison with not using any FS. Using forward481

FS resulted in an even greater reduction of the number of features at the cost482

of a reduction of accuracy.483

The following paragraphs present a detailed analysis of the classification484

and feature selection results for:485

1. Winter with no metering data;486

2. Spring with one week of metering data transformed in LI;487

3. Summer with four weeks of metering data transformed in LP;488

4. Autumn with eight weeks of metering data transformed in LP.489

For the classification of the Winter profiles without any smart meter-490

ing data Table 10 presents the variables selected by the filter FS algorithm491

(regression analysis) and Figure 14 pictures the rate of selection of the vari-492

ables selected by the forward FS throughout the cross-validation process.493

A maximum mean accuracy of 39% is achieved with the features selected494

by filter FS. With the forward FS the number of features is reduced from495
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16 to 9 and 4, respectively for LR and DT, achieving a better accuracy496

for DT (37.4% with forward and 36.3% with filter FS) and slightly worst497

with LR (37.3%). The variables selected by forward FS with LR modelling498

are mainly age and employment. heat solidfuel, tumble dryer499

and electric cooker are also selected in more than half of the cross-500

validation folds. The variable selected by forward FS with DT modelling501

is mainly age. heat electricity plugin and electric cooker are502

also selected in the more than half of the cross-validation folds. The age, em-503

ployment, type of heating and the use of electric cooking appliances are the504

features which can be used as indicators to separate customers with different505

consumption profiles.506

For the classification of the Spring profiles with one week of smart me-507

tering data, translated by LI, Table 11 presents the variables selected by the508

filter FS algorithm and Figure 17 pictures the rate of selection of the vari-509

ables selected by the forward FS throughout the cross-validation process. A510

maximum mean accuracy of 56.5% is achieved with the features selected by511

filter FS. With the forward FS the number of features is reduced from 20 to 9512

and 5, respectively for LR and DT, achieving slightly worst accuracies. The513

variables selected by forward FS with LR modelling are mainly the five LI514

(i1, ..., i5) and washing machine. The variables selected by forward FS515

with DT modelling are mainly three LI (i1, i3, i4), indicating that the load516

factor, night impact and lunch impact are the LI features which can be used517

as indicators to separate customers with different consumption profiles.518

For the classification of the Summer profiles with four weeks of smart519

metering data, translated by LP, Table 12 presents the variables selected by520

the filter FS algorithm and Figure 15 pictures the rate of selection of the521

variables selected by the forward FS throughout the cross-validation process.522

A maximum mean accuracy of 73.3% is achieved with the features selected523

by filter FS. With the forward FS the number of features is reduced from524

30 to 16 and 5, respectively for LR and DT, achieving slightly worst ac-525

curacies (71.7% and 64.9%). The variables selected by forward FS with LR526

modelling are mainly multiple LP features (l1, l2, l7, l11, l16, l18, l22, l23, l24) and527

washing machine. The variables selected by forward FS with DT mod-528

elling are mainly LP features (l2, l12, l15, l23). The consumption behaviour529

translated by LP features distributed throughout the day in combination530

with the number of washing machines in the customers household can be531

used as indicators to separate customers with different consumption profile.532

For the classification of the Autumn profiles with eight weeks of smart533
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metering data, translated by LP, Table 13 presents the variables selected by534

the filter FS algorithm and Figure 16 pictures the rate of selection of the535

variables selected by the forward FS throughout the cross-validation pro-536

cess. A maximum mean accuracy of 81.6% is achieved with the features537

selected by filter FS. With the forward FS the number of features is reduced538

from 32 to 16 and 8, respectively for LR and DT, achieving worst accuracies539

(77.9% and 70.4%). The variables selected by forward FS with LR modelling540

are mainly multiple LP features (l8, l10, l12, l13, l14, l15, l17, l20, l22, l23, l24) and541

washing machine. The variables selected by forward FS with DT mod-542

elling are mainly LP features (l2, l3, l5, l21, l23). The consumption behaviour543

translated by LP features distributed throughout the day in combination544

with the number of washing machines in the customers household can be545

used as indicators to separate customers with different consumption profile.546

Notice the LR results having a high standard deviation of the accuracy,547

such as the results for ten weeks of metering data for Winter and Spring548

with no FS, using LP metering features. These result due the inappropriate549

convergence of the optimization method for LR training. Using forward FS550

this problem is avoided.551

Based on the results, the five most important variables or questions an552

utility should ask customers on sign-up are:553

1. What is the customer employment status;554

2. How old the customer is;555

3. How many dishwashers are used in the clients household;556

4. How many electric cookers are used in the clients household;557

5. How many washing machines are used in the clients household.558

6. Conclusions559

The integration of smart metering in the power grid enables a detailed560

analysis of the consumption behaviour of electricity customers. Knowledge561

on the typical consumption profiles of customers and the main drivers of con-562

sumption are extremely valuable for decision makers in the utility industry563

and policy. The engagement and education of consumers is seen as a key564

task in order to successfully reap the potential benefits of the smart grid565

[41]. The daily routines and the social context of consumers needs to be566

correctly taken into account to efficiently plan and target the correct groups567
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for potential DSM programs and create incentives for consumers to act with568

regard towards sustainability.569

The proposed process is a contribution for enabling the modelling of inter-570

pretable classifiers to predict the consumption profile group of new customers571

using smart metering data and survey responses. It enables the discovery of572

the drivers of consumption profiles, e.g., which characteristics of customers573

are able to translate consumption behaviour differences. This can contribute574

to the better engagement of consumers and development of measures to in-575

crease efficiency in the power grid.576

An application, based on the data from more than three thousand resi-577

dential electricity customers from Ireland, shows the viability of the proposed578

methods. Without any metering data the LR is able to correctly classify up579

to 39% of the customers which is significantly better than randomly insert-580

ing the customer in one of the four customer groups (with four customer581

groups). With the growth of available smart metering data the simulations582

show an increase in accuracy achieving up to 60%, 70% and 80% accuracy,583

respectively, with 1, 4 and 8 weeks of data.584

The forward FS results pictured are easily interpreted and resulted in585

the discovery of the most important features when grouping electricity cus-586

tomers by their representative consumption profile. For the Irish population587

studied in the paper, information on the representative consumption profile588

throughout all the day results in the highest classification accuracy. A low589

number of shape indices is not suitable to accurately classify new electricity590

customers. The number of washing machines in the customers households is591

revealed to be a very important feature in the classification task, seemingly592

being the most influencing feature to the considerable increase of accuracy593

from the use of survey features added to the smart metering features.594
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[8] I. Beńıtez, A. Quijano, J.-L. Dı́ez, I. Delgado, Dynamic clustering seg-621

mentation applied to load profiles of energy consumption from Spanish622

customers, International Journal of Electrical Power & Energy Systems623

55 (2014) 437–448.624

[9] M. Misiti, Y. Misiti, G. Oppenheim, Optimized clusters for disaggre-625

gated electricity load forecasting, REVSTAT - Statistical Journal 8 (2)626

(2010) 105–124.627

[10] F. Andersen, H. Larsen, T. Boomsma, Long-term forecasting of hourly628

electricity load: Identification of consumption profiles and segmentation629

of customers, Energy Conversion and Management 68 (2013) 244–252.630

[11] H. R. Sadeghi Keyno, F. Ghaderi, a. Azade, J. Razmi, Forecasting elec-631

tricity consumption by clustering data in order to decline the periodic632

21



variable’s affects and simplification the pattern, Energy Conversion and633

Management 50 (3) (2009) 829–836.634

[12] G. Chicco, I. S. Ilie, Support vector clustering of electrical load pattern635

data, IEEE Transactions on Power Systems 24 (3) (2009) 1619–1628.636

[13] N. Mahmoudi-Kohan, M. P. Moghaddam, M. Sheikh-El-Eslami, An an-637

nual framework for clustering-based pricing for an electricity retailer,638

Electric Power Systems Research 80 (9) (2010) 1042–1048.639
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E. Amoiralis, M. S. Jiménez, C. Filiou, Smart grid projects outlook715

2014, European Commision, JRC Science and Policy Reports.716

[39] A. Faruqui, D. Harris, R. Hledik, Unlocking the e 53 billion savings717

from smart meters in the eu: How increasing the adoption of dynamic718

tariffs could make or break the eu’s smart grid investment, Energy Policy719

38 (10) (2010) 6222–6231.720

[40] A. J. Conejo, J. M. Morales, L. Baringo, Real-time demand response721

model, Smart Grid, IEEE Transactions on 1 (3) (2010) 236–242.722

[41] V. Giordano, F. Gangale, G. Fulli, M. Sánchez, J. Dg, I. Onyeji,723

A. Colta, I. Papaioannou, A. Mengolini, C. Alecu, T. Ojala, I. Maschio,724

24



Smart grid projects in Europe : lessons learned and current develop-725

ments, European Commision: JRC Scientific and Policy Reports.726

[42] Institute of Communication & Computer Systems of the National Tech-727

nical University of Athen ICCS-NTUA for the European Commission,728

Study on cost benefit analysis of Smart Metering Systems in EU Member729

States - Final Report.730

[43] J. L. Viegas, S. M. Vieira, R. Meĺıcio, V. M. F. Mendes, J. a. M. C.731
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Figure 1: Generation of populations representative consumption profiles.
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Figure 10: Winter clustering results with four clusters.
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Figure 11: Winter clustering results with five clusters.
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Figure 12: Populations representative consumption profiles.
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Figure 13: LR classifier accuracy using filter FS with and without the survey features for
Winter profiles.
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Figure 14: Forward FS for Winter with no metering data: rate of selection of features
throughout the cross-validation process.
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Figure 15: Forward FS for Summer with 4 weeks metering data (LP): rate of selection of
features throughout the cross-validation process.
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Figure 16: Forward FS for Autumn with 8 weeks metering data (LP): rate of selection of
features throughout the cross-validation process.
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Tables779

Nomenclature

Acronyms
AMI Advanced metering r number of smart metering

infrastructure data features
EU European Union t number of survey features
DSM Demand side management X feature dataset of all

customers
CVI Clustering validity index µi ith consumption profile of the
LP Load profile population
LI Load indexes S set of the groups of customers
FS Feature selection Si ith clustered group of
LR Logistic regression customers
DT Decision tree J number of clusters/customer
CER Commission for Energy groups

Regulation de(v1,v1) euclidean distance
ISSDA Irish Social Science D(S) Dunn index

Data Archive
DB(S) Davis Bouldin index

Symbols Sil(S) Silhouette index
xi feature vector of customer i y categorical variable
xm
i customer i smart metering representing a group

data features i1, i2, . . . , i5 load indices
xs
i customer i surveys features Pmax/min/av maximum, minimum and
N number of customers average consumption
p dimension of feature vector l1, l2, . . . , l24 load profile
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Table 1: Survey features I: respondent

Feature Description: {responses}

sex Sex of respondent: {male, female}

age
Age of respondent in years: {18-25, 26-35, 36-45, 46-55, 56-65, 65
or more, refused}

employment
employment status of respondent: {Employee, self-employed,
unemployed}

social class Social class of respondent: {AB, C1, C2, DE, F, refused}

education
Education level of respondent: {none, primary, secondary to
intermediate cert junior cert level, secondary to leaving cert level,
third level, refused}

income
Income of respondent before tax in euro: {0-15k, 15k-30k, 30k-50k,
50k-75k, 75k or more, refused}

Table 2: Survey features II: household

Feature Description: {responses}

home type
Household type: {apartment, semi-detached, detached,
terraced, bungalow}

home age
Household age in years: {0-4, 5-9, 10-29, 30-74, 75 or
more}

bedrooms Number of bedrooms : {1, 2, 3, 4, 5 or more, refused}

clf lighbulbs
Fraction of CLF light bulbs: {none, about a quarter,
about half, about three quarters}

doublegazed windows
Fraction of doubleglazed windows: {none, about a
quarter, about half, about three quarters}

attic insulated
Presence and age of attic insulation: {yes (last 5 years),
yes, no, don’t know}

externalwalls insuled
Presence and age of insulation of external walls: {yes, no,
don’t know}

internet Internet connection in the household: {yes, no}
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Table 3: Survey features III: heating

Feature Description: {responses}

heat electricity central Central electric heating : {yes, no}
heat gas Gas heating : {yes, no}
heat oil Oil heating : {yes, no}
heat solidfuel Solid fuel heating : {yes, no}
heat renewable Renewable energy heating : {yes, no}
heat other Other type of heating : {yes, no}
heat timer Use of heating timer : {yes, no}
water heat central Central water heating : {yes, no}
water heat electric Electric water heating: {yes, no}
water heat gas Gas water heating: {yes, no}
water heat oil Oil water heating: {yes, no}
water heat solidfuel Solid fuel water heating: {yes, no}
water heat renewable Renewable water heating: {yes, no}
water heat other Other water heating source : {yes, no}

45



Table 4: Survey features IV: appliances

Feature Description: {responses}

washing machine Number of washing machines : {0, 1, 2, 3 or more}
tumble dryer Number of tumble dryers : {0, 1, 2, 3 or more}
dishwasher Number of dishwashers : {0, 1, 2, 3 or more}
electric shower Number of electric showers : {0, 1, 2, 3 or more}
electric cooker Number of electric cookers : {0, 1, 2, 3 or more}
electric heater Number of electric heaters : {0, 1, 2, 3 or more}
standalone freezer Number of standalone freezers : {0, 1, 2, 3 or more}
water pump Number of water pumps : {0, 1, 2, 3 or more}
immersion heater Number of immersion heaters : {0, 1, 2, 3 or more}
tv 21 less Numbers of TVs with 21 or less inches: {0, 1, 2, 3, 4 or more}

tv 21 greater
Number of TVs with more than 21 inches: {0, 1, 2, 3, 4 or
more}

desktop computer Number of desktop computers: {0, 1, 2, 3, 4 or more}
laptop computer Number of laptop computers: {0, 1, 2, 3, 4 or more}
game console Number of game consoles: {0, 1, 2, 3, 4 or more}
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Table 5: Distribution of customers between the different clusters for the four seasons

Cluster Winter Spring Summer Autumn

1 30.93% 26.25% 26.14% 20.34%
2 25.50% 31.89% 18.83% 31.47%
3 28.17% 21.53% 27.17% 29.19%
4 15.39% 20.33% 27.86% 18.99%
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Table 6: Normalized indices to characterize electricity customers’ behaviour

Parameter Definition Periods

Daily Pav/Pmax i1 = Pav,day/Pmax,day 1 day
Daily Pmin,day/Pmax,day i2 = Pmin,day/Pmax,day 1 day

Night impact i3 = 1/3Pav,night/Pav,day
1 day and 8 h night
(from 23h to 06h)

Lunch impact i4 = 1/8Pav,lunch/Pav,day
1 day and 3 h lunch
from (12h to 15h)

Daily Pmin/Pav i5 = Pmin,day/Pav,day 1 day
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Table 7: Smart metering data features used for classification

Smart metering data features

Load indices (LI)
Normalized indices to characterize
electricity constumers’ behaviour.

i1, i2, i3, i4, i5

Load profile (LP)
Normalized mean hourly aggregated
consumption.

l1, l2, . . . , l24
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Table 8: Mean 10-fold cross-validation accuracy of classifiers using load indices as metering
data features (number of selected features)

Smart metering data features: Load indices

W Model Winter Spring Summer Autumn

No FS
0 LR 39.2±0.8 (47) 37.6±1.1 (47) 37.0±1.9 (47) 38.5±0.7 (47)

DT 36.0±1.5 (47) 34.7±1.1 (47) 33.8±2.4 (47) 36.7±1.7 (47)
1 LR 45.3±6.9 (52) 54.9±1.1 (52) 53.1±1.5 (52) 53.4±1.3 (52)

DT 46.5±1.7 (52) 53.3±1.6 (52) 51.8±1.5 (52) 51.4±2.0 (52)
4 LR 64.9±1.8 (52) 64.6±1.3 (52) 65.7±2.1 (52) 62.0±1.4 (52)

DT 62.8±0.8 (52) 62.4±2.7 (52) 63.3±2.7 (52) 59.3±1.9 (52)
8 LR 75.8±1.3 (52) 71.8±0.8 (52) 71.0±0.9 (52) 57.1±19.0 (52)

DT 73.3±1.3 (52) 70.4±0.5 (52) 69.3±2.3 (52) 67.7±1.6 (52)
10 LR 78.3±1.4 (52) 75.4±0.8 (52) 64.9±19.1 (52) 73.4±1.8 (52)

DT 75.1±1.0 (52) 72.9±0.8 (52) 71.7±1.3 (52) 72.1±1.8 (52)

Filter FS
0 LR 38.6±1.8 (17) 36.2±2.3 (18) 35.9±1.1 (17) 34.6±7.6 (23)

DT 36.7±1.7 (17) 35.7±0.9 (18) 34.1±2.2 (17) 35.1±0.5 (23)
1 LR 49.8±0.8 (21) 56.5±1.7 (20) 53.9±2.3 (21) 53.4±1.3 (19)

DT 46.3±2.7 (21) 52.8±1.4 (20) 51.0±0.3 (21) 50.6±1.4 (19)
4 LR 58.4±12.4 (26) 65.9±1.3 (18) 66.8±0.3 (16) 62.6±1.7 (19)

DT 62.1±2.7 (26) 62.0±0.8 (18) 64.2±1.7 (16) 60.1±1.0 (19)
8 LR 76.5±2.4 (19) 72.7±1.8 (17) 72.0±0.5 (17) 59.4±19.7 (26)

DT 73.8±0.9 (19) 69.5±2.0 (17) 69.8±1.7 (17) 67.7±1.2 (26)
10 LR 79.1±1.5 (17) 76.0±2.0 (19) 75.2±0.7 (15) 74.3±1.6 (22)

DT 75.3±1.9 (17) 72.6±1.1 (19) 71.9±1.8 (15) 72.1±1.2 (22)

Forward FS
0 LR 38.2±1.1 (9) 36.7±1.3 (5) 34.8±1.5 (10) 37.7±4.3 (5)

DT 36.6±1.1 (6) 35.8±0.5 (4) 32.9±1.1 (5) 37.4±4.3 (2)
1 LR 49.5±1.1 (11) 56.0±2.4 (9) 54.3±1.7 (10) 53.0±3.6 (10)

DT 46.9±1.5 (6) 52.6±0.9 (5) 52.3±0.9 (5) 50.6±2.2 (4)
4 LR 50.7±16.7 (6) 65.5±1.3 (11) 66.3±1.5 (7) 62.5±1.4 (7)

DT 61.7±1.9 (4) 62.9±2.1 (4) 63.1±1.2 (5) 60.4±0.8 (4)
8 LR 76.4±1.3 (8) 72.1±2.5 (8) 72.2±0.9 (9) 70.7±1.0 (8)

DT 71.5±0.8 (4) 69.8±1.3 (4) 69.5±1.2 (4) 67.4±1.9 (4)
10 LR 79.2±1.8 (9) 75.6±1.5 (9) 76.0±1.4 (9) 74.3±1.5 (8)

DT 75.8±1.3 (4) 72.7±2.6 (4) 72.3±1.2 (4) 71.8±0.8 (3)
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Table 9: Mean 10-fold cross-validation accuracy of classifiers using the load profile as
metering data features (mean number of selected features)

Smart metering data features: Load profile

W Model Winter Spring Summer Autumn

No FS
0 LR 38.7±2.1 (47) 37.2±2.6 (47) 36.6±2.3 (47) 38.6±0.9 (47)

DT 36.0±1.3 (47) 34.7±1.2 (47) 34.4±1.8 (47) 35.1±0.8 (47)
1 LR 53.9±0.9 (71) 60.8±2.4 (71) 58.7±2.3 (71) 60.6±1.3 (71)

DT 48.0±2.6 (71) 54.8±2.2 (71) 52.0±0.9 (71) 53.3±2.0 (71)
4 LR 70.8±1.9 (71) 72.5±1.6 (71) 72.3±1.0 (71) 70.6±1.2 (71)

DT 63.6±2.5 (71) 65.2±1.7 (71) 65.6±2.1 (71) 64.5±1.7 (71)
8 LR 83.4±1.5 (71) 80.8±1.3 (71) 79.4±1.1 (71) 78.4±1.2 (71)

DT 74.1±1.6 (71) 72.7±1.5 (71) 70.6±1.8 (71) 71.7±1.9 (71)
10 LR 76.3±22.2 (71) 73.1±24.7 (71) 82.9±1.0 (71) 83.2±1.2 (71)

DT 76.6±1.2 (71) 74.9±1.0 (71) 73.2±1.1 (71) 75.4±1.8 (71)

Filter FS
0 LR 39.0±1.2 (16) 37.4±0.9 (17) 35.3±1.3 (18) 38.9±1.4 (16)

DT 36.3±0.7 (16) 35.4±0.7 (17) 34.2±1.2 (18) 36.5±1.7 (16)
1 LR 53.9±0.8 (29) 60.8±0.6 (28) 59.7±1.1 (32) 60.9±1.5 (28)

DT 49.0±0.9 (29) 55.0±1.5 (28) 52.6±1.2 (32) 53.6±2.6 (28)
4 LR 62.2±16.5 (40) 72.9±1.6 (29) 73.3±1.0 (30) 71.4±2.2 (29)

DT 63.9±0.4 (40) 64.1±1.7 (29) 64.9±1.5 (30) 64.3±1.7 (29)
8 LR 83.1±2.4 (32) 81.6±0.8 (32) 79.6±1.8 (34) 78.9±1.9 (33)

DT 73.4±2.3 (32) 72.8±0.9 (32) 70.8±1.0 (34) 71.4±1.9 (33)
10 LR 88.3±0.9 (37) 86.1±0.6 (42) 83.1±0.9 (37) 83.8±0.8 (38)

DT 76.3±1.1 (37) 76.5±1.5 (42) 72.4±0.7 (37) 76.8±1.0 (38)

Forward FS
0 LR 37.3±5.2 (9) 36.8±0.9 (8) 34.1±1.8 (8) 37.8±1.0 (7)

DT 37.4±2.3 (4) 36.5±0.9 (3) 32.2±1.2 (4) 36.2±2.0 (3)
1 LR 50.9±1.4 (11) 59.1±1.6 (13) 56.4±2.4 (13) 57.9±1.6 (12)

DT 48.2±1.9 (5) 52.6±1.9 (6) 51.9±2.4 (6) 51.6±1.3 (6)
4 LR 69.8±1.6 (16) 70.3±1.3 (11) 71.7±1.7 (16) 70.2±1.4 (13)

DT 63.4±1.4 (7) 64.3±1.5 (6) 64.9±1.9 (5) 62.9±2.3 (6)
8 LR 83.4±1.1 (14) 80.8±1.1 (16) 77.9±2.1 (15) 77.8±1.2 (14)

DT 73.2±1.4 (5) 71.9±2.1 (8) 70.4±2.5 (7) 70.8±1.9 (6)
10 LR 87.3±0.8 (16) 85.2±0.9 (17) 81.1±2.0 (16) 82.8±1.3 (15)

DT 76.1±1.1 (6) 75.1±2.2 (6) 73.4±2.2 (5) 74.2±1.1 (7)
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Table 10: Filter FS for Winter with no metering data: variables found to be significant
for at least one of the classifiers of the MNLogit

Filter FS: Winter with no metering data

age employment social class
living situation n children bedrooms
water heat oil dishwasher electric shower 1
electric shower 2 electric cooker electric heater
tv 21 greater desktop computer game console
cfl lightbulbs cfl lightbulbs cfl lightbulbs
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Table 11: Filter FS for Spring with 1 week metering data (LI): variables found to be
significant for at least one of the classifiers of the MNLogit

Filter FS: Spring with one week metering data (LI)

age employment living situation
n children home type home age
bedrooms heat solidfuel water heat solidfuel
washing machine tumble dryer dishwasher
electric shower 2 electric cooker tv 21 less
externalwalls insulated education income
i1 i2 i3
i4 i4 i4
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Figure 17: Forward FS for Spring with 1 week metering data (LI): rate of selection of
features throughout the cross-validation process.
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Table 12: Filter FS for Summer with four weeks metering data (LP): variables found to
be significant for at least one of the classifiers of the MNLogit

Filter FS: Summer with four weeks metering data (LP)

age social class internet
living situation n children home type
water heat electric 2 water heat oil washing machine
electric cooker standalone freezer l1
l3 l8 l9
l10 l11 l12
l13 l14 l15
l16 l17 l18
l19 l20 l21
l22 l23 l24

54



Table 13: Filter FS for Autumn with eight weeks metering data (LP): variables found to
be significant for at least one of the classifiers of the MNLogit

Filter FS: Autumn with eight weeks metering data (LP)

internet living situation heat timer
water heat electric 2 water heat gas water heat oil
washing machine tumble dryer electric cooker
game console cfl lightbulbs attic insulated
externalwalls insulated education l2
l5 l6 l9
l10 l11 l12
l13 l14 l15
l16 l17 l18
l19 l20 l21
l22 l23 l24
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