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a b s t r a c t

Fungal endophytes present in different asymptomatic grapevine plants (Vitis vinifera L.) lo-

cated in different vineyards within Alentejo, a highly important viticulture region in Portu-

gal, were identified in this study. Sampled grapevine plants included the three most

representative cultivars in the region, Syrah, Cabernet Sauvignon, and Aragonez, growing

under two different modes of management, conventional and biological. Sixteen fungal

taxa were identified through sequencing of the internal transcribed spacer region. Total

number of endophytic fungi isolated showed significant differences both in management

mode and in cultivars, with higher numbers in grapevines under conventional mode and

from Syrah cultivar. The composition of fungal endophytic communities did not show sig-

nificant differences among cultivars, but differences were observed between fungal com-

munities isolated from grapevines under biological or conventional modes. The most

fungal taxa isolated from grapevines cultivated under biological mode were Alternaria alter-

nata, Cladosporium sp., and Nigrospora oryzae, and under conventional mode Botrytis cinerea,

Epicoccum nigrum, and Epicoccum sp. These differences suggest that the different products

used in grapevine production have impacts in fungal endophytic composition. Further in-

vestigation of the identified fungi with respect to their antagonistic characteristics and po-

tential use in plant protection to ensure food safety is now in course.

ª 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Introduction apparent symptoms of disease (Petrini 1991). Fungal endo-
Endophytes aremicroorganisms that live entirely within plant

tissues, roots, stems, and/or leaves, without causing any
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. Published by Elsevier L
phytes are ubiquitous, they have been found within all plants

from the diverse habitats examined to date (Kumaresan &

Suryanarayanan 2001; Schulz et al. 2002; Rodriguez et al.
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2009; Pancher et al. 2012). The endophytic community in a sin-

gle plant is usually composed by numerous and systemati-

cally diverse species of fungi (Petrini 1991; Oono et al. 2015).

Their number and species composition is influenced by fac-

tors such as the environment (Saona et al. 2010; Yousaf et al.

2010; N�unez-Trujillo et al. 2012), plant physiology (Islam et al.

2010), anthropogenic factors (Rasche et al. 2006), and pathogen

infections (Araujo et al. 2002; Bulgari et al. 2011; Buyer et al.

2011).

Endophytes have been gaining attention in the past decade

in areas such as medicine, agriculture, and industry, mostly

due to the vast potential uses of their chemically diverse sec-

ondary metabolites (Tao et al. 2008; Rodriguez et al. 2009) and

their roles within plants (Oono et al. 2015). Several studies

have shown that some fungal endophytes have beneficial ef-

fects on their hosts. They may act as plant growth promoters;

confer tolerance to environmental stresses and pathogen and

herbivore attacks, the latter for instance by decreasing the

palatability of the host tissue to herbivores through the pro-

duction of toxic compounds (Arnold et al. 2003; Miller et al.

2008; Bae et al. 2009; Oono et al. 2015). The role of endophytes

in pathogen defence is attained through different mecha-

nisms, namely the induction of systemic resistance, through

the accumulation of pathogenesis-related (PR) proteins, ex-

pression of plant defence genes; the production of secondary

metabolites that inhibit fungal growth and the competition

with pathogens for the same ecological niches in terms of nu-

trients and space (Arnold et al. 2003; Gonzalez & Tello 2011).

On the other hand, endophytic fungi benefit from protection

and nutrition from their hosts, and in some cases, reproduc-

ing sexually on dead tissues of their host plant (Saikkonen

et al. 1998). This balance however may not be guaranteed in

a continuous manner, either due to a decrease in plant de-

fence or an increase in fungal virulence since some endo-

phytes may go from a mutualistic to a parasitic lifestyle,

depending on factors such as the environment, fungal com-

munity composition, host health and host-endophyte genoty-

peegenotype interaction to name a few (Redman et al. 2001).

This means that some pathogenic fungi may live as endo-

phytes during part of their life, which is an interesting chal-

lenge for plant pathology to find out and understand what

are the key differences for both endophytic and pathogenic

lifestyles. This is particularly important in grapevine, where

the agents known to cause some of the most important trunk

diseases (excoriose, Petri disease, esca) have been isolated

from inside plant tissues from both symptomatic and asymp-

tomatic plants (Mostert et al. 2000; Halleen et al. 2007; Gonzalez

& Tello 2011; N�unez-Trujillo et al. 2012).

DNA-based approaches have been largely used in grape-

vine mostly to identify plant pathogenic fungi (Schmidt et al.

2003; Oliveri et al. 2007; S�anchez-Torres et al. 2008). Endophytic

fungal communities have been studied less, but have showed

some very interesting and important results (Martini et al.

2009; Gonzalez & Tello 2011). Their presence has shown to in-

terfere in wine quality through the production of toxic metab-

olites that some fungi produce, such as ochratoxin A (OTA)

produced by Aspergillus spp. and Penicillium spp. (Cabanes

et al. 2010). In addition, the accumulation of PR proteins as a re-

sult of the activation of plant defence pathways by endo-

phytes has shown to affect wine stability (Ferreira et al.
2004). Some fungal endophytes in grapevine have, however,

shown some beneficial effects such as antagonistic properties

against some important pathogens. Fungi belonging to the ge-

nus Alternaria and Epicoccum have shown antagonism against

Plasmopara viticola and Botrytis cinerea (Musetti et al. 2007;

Polizzotto et al. 2009). These studies show that the study of en-

dophytic communities in grapevine is essential both to shape

future pest management and to produce high quality prod-

ucts. To our knowledge, in Portugal, data on such communi-

ties are inexistent.

The aim of this study was 1) to characterise the composi-

tion of fungal endophytic communities in grapevine plants

in a region of relevant impact in grapevine production; 2) to

find out if the composition of fungal communities is related

to the type of management performed (biological and conven-

tional); and 3) to find out if the composition of the fungal com-

munities is related to the cultivar (Syrah, Cabernet Sauvignon,

and Aragonez). Sampling was performed in two proximate lo-

cations in the south of Portugal (Estremoz and �Evora).

Exploring endophytic diversity in different contexts will

help to understand the variables responsible for structuring

fungal diversity. It will also help to understand the role/influ-

ence that the communities have on the host, for example on

grapevine terroir and wine characteristics, as well as to help

to understand their relation with other pathogens or diseases.
Materials and methods

Study sites and sample collection

The sampling areas are located in Alentejo (south of Portugal),

a major vine producing area, where the altitude ranges from

150 to 400 m above sea level, the climate is Mediterranean,

mean temperature is 15 �C, annual rainfall is 600mmand soils

are mostly of schist and calcareous origin. Surveys were car-

ried out during the period of 2014e2015.

A total of 12 vineyards in an area of 450.000 m2 were sam-

pled representing two types ofmanagement, biological or con-

ventional, and threemost produced cultivars, Syrah, Cabernet

Sauvignon, and Aragonez (synonym Tempranillo) (Table 1).

The fungicide substances used in the conventional plots

were fosetyl-aluminium, folpet, cymoxanil, spiroxamine,

cyflufenamid, difenoconazole, copper oxychloride, chinoxi-

fen, andmyclobutanil. These substances were used to prevent

excoriose, black rot, downy and powdery mildews, and Botry-

tis. At the time of the survey no signs of disease were ob-

served. The fungicide substances used in the biological plots

were copper hydroxide, sulphur and extracts from Equisetum

arvense and Saponaria officinalis.

Ten asymptomatic plants were randomly selected in each

vineyard, totalling 120 samples. Three leaves were cut from

each plant and transported to the laboratory in a refrigerated

basket, stored at 4 �C and processed within the next 48 h.
Isolation of endophytic fungi

Leaves were surface disinfected to suppress epiphytic micro-

organisms and cut into 0.5 cm2 sections. Disinfection con-

sisted in a succession of 3 min immersions, conducted



Table 1 e Provenience of grape leaf samples used in this study.

Type of management Location Cultivar Sample

Biological Estremoz Syrah BioEstSyr

Cabernet Sauvignon BioEstCab

Aragonez BioEstAra

Conventional Syrah ConvEstSyr

Cabernet Sauvignon ConvEstCab

Aragonez ConvEstAra

Biological �Evora Syrah BioEvoSyr

Cabernet Sauvignon BioEvoCab

Aragonez BioEvoAra

Conventional Syrah ConvEvoSyr

Cabernet Sauvignon ConvEvoCab

Aragonez ConvEvoAra
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under a sterile laminar airflow chamber, in a series of 96 %

ethanol, 3 % sodium hypochlorite solution, 70 % ethanol,

and ultra-pure water. After disinfection, leaf pieces were dried

in sterileWhatmanpaper, placed on Petri dishes of 9 cmdiam-

eter (four pieces per plate) containing Potato Dextrose Agar

medium (PDA, Merck, Germany) and incubated, in darkness,

for 1e2 weeks at 23e25 �C.
Four days later, all morphologically different colonies were

isolated by transferring an about 5 mm2 agar disk of the grow-

ing fungi to fresh medium (PDA). Mycelium from isolated col-

onies was ground in liquid nitrogen and stored at �80 �C for

later use in DNA extraction.

Fungal DNA extraction

DNA was extracted using the CTAB (hexadecyltrimethylam-

monium bromide) method described by Doyle & Doyle (1987)

with some modifications. Briefly, fungal DNA powder was

placed in 1.5 mL microtones containing pre warmed 600 mL

2 % CTAB extraction buffer (20 mM EDTA, 0.1 M TriseHCl pH

8.0, 1.4 M NaCl, 2 % CTAB, plus 4 % PVP, and 0.1 % b-mercap-

toethanol added just before use) and 0.5 % Proteinase K. The

solution was incubated at 55 �C for 60 min, gently mixing by

inversion every 15 min; 600 mL of chloroformeisoamyl alcohol

(24:1) was added to the tubes and gently mixed for 10 min.

Sampleswere centrifuged for 10min at 5000g, the supernatant

was then transferred to a fresh tube following the addition of

2.5 volumes of cold ethanol (�20 �C). Samples were gently

mixed by inversion and centrifuged at 10 000g for 20 min.

The liquid solution was released and the DNA pellet washed

with 500 mL of 70 % ethanol to eliminate salt residues adhered

to the DNA and dried in a speed vacuum for 10 min at 55 �C.
Pellet was resuspended in 50 mL of ultrapure water and stored

at �20 �C. DNA concentration was determined using a Nano-

Drop ND-1.000 spectrophotometer.

Fungal DNA identification

The internal transcribed spacer (ITS) region of nuclear rDNA

was amplified through PCR from genomic DNA, or lysed fun-

gal material, by using ITS1 and ITS4 primers (White et al.

1990). PCR reactions consisted of 30e80 ng of genomic DNA,

10 mM TriseHCl (pH 8.6), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM
dNTPs (Fermentas), 1 mM of each primer, and 2.5 U of Dream-

Taq DNA polymerase (Fermentas) in a total reaction volume of

50 mL. Amplification was carried out in a Thermal Cycler (Bio-

Rad) at 95 �C for 2 min followed by 40 cycles of 95 �C for 30 s,

50 �C for 50 s, and 72 �C for 60 s and a final extension at

72 �C for 10min. Amplified products were analysed by agarose

gel electrophoresis. PCR products were purified using DNA

Clean & Concentrator (Zymo Research) and sequenced in for-

ward and reverse directions by Macrogen (The Netherlands).

Sequence analysis of the ITS sequences was carried out using

BioEdit Sequence Alignment Editor v.7.2.3 (Hall 1999). The

search for homologous sequences was done using Basic Local

Alignment Search Tools (BLAST) at the National Center for

Biotechnology Information (NCBI). Sequences were identified

to the species level whenever possible. All fungal sequences

considered were at least 98 % identical to the best hit in the

NCBI database.
Fungal diversity and multivariate data analysis

To estimate if the number of operational taxonomical units

(OTUs) obtained represented quality sampling efforts, a spe-

cies accumulation curve was performed using EstimateS soft-

ware (Colwell 2013) with the protocol of randomize

individuals without replacement, using the classic formula

for Chao 1 and Chao 2 and Sobs (Mao Tau) algorithm. Single-

tons and doubletons were also determined. Several non-

parametric estimators were used to infer species richness:

Bootstrap, Jack 1 and Jack 2, Chao 1 and Chao 2, ACE and ICE

estimators.

Diversity of endophytes was obtained for each manage-

ment mode and cultivar by calculation of Simpson diversity

(D ¼ 1/sum(Pi2)), ShannoneWiener diversity (H ¼ �sum(Pi$ln

[Pi])), and Simpson evenness indexes (E ¼ H/ln[S], being Pi

the number of a species divided by the total number of organ-

isms observed and S the species richness.

Multivariate analyses were performed to detect significant

differences in the total number of fungi present under two dif-

ferent types of management ‘Biological’ and ‘Conventional’ in

the three cultivars, ‘Syrah’, ‘Cabernet Sauvignon’, and ‘Arago-

nez’. The statistical analyses of the datawere performed using

the PRIMER v6 software package (Clarke &Warwick 2001) with

the PERMANOVA add-on package (Anderson et al. 2008).
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Total number of fungi was calculated using the dataset

from two different types ofmanagement ‘Biological’ and ‘Con-

ventional’ and each cultivar ‘Syrah’, ‘Cabernet Sauvignon’,

and ‘Aragonez’. A two-way permutational analysis of variance

(PERMANOVA) was applied to test the hypothesis that signifi-

cant differences existed in total number of fungi between ‘Bi-

ological’ and ‘Conventional’, among ‘Syrah’, ‘Cabernet

Sauvignon’, and ‘Aragonez’. The PERMANOVA analysis was

carried out following the two factor design: ‘Management’: ‘Bi-

ological’ and ‘Conventional’ (2 levels, fixed) and ‘Cultivars’:

‘Syrah’, ‘Cabernet Sauvignon’ and ‘Aragonez’ (3 levels, ran-

dom). Total fungi data were square root transformed in order

to scale down the importance of highly abundant fungi genera

and therefore increase the importance of the less abundant

ones in analysis of similarity between communities. The PER-

MANOVA analysis was conducted on a BrayeCurtis similarity

matrix (Clarke & Green 1988). The null hypothesis was

rejected at a significance level <0.05 (if the number of permu-

tations was lower than 150, the Monte Carlo permutation p

was used).

A Principal Component Analysis (PCA) of presence and ab-

sence of fungal species was performed to explore patterns in

multidimensional data by reducing the number of dimensions

with minimal loss of information. The PCA ordination was

based on each of the two different types of management ‘Bio-

logical’ and ‘Conventional’ and on each of the three cultivars

‘Syrah’, ‘Cabernet Sauvignon’, and ‘Aragonez’. Prior to the cal-

culation of the PCA ordination data were log (X þ 1)

transformed.
Results

Isolation and identification of endophytic fungi

In the 2-year survey presented in this work, 120 field samples

were analysed and 240 endophytic fungal isolates were ob-

tained from two vine-producing areas. Fungal isolates were

obtained in all tested plants. All isolated fungi were
Fig 1 e Total number of fungal isolates isolat
successfully identified based on ITS sequence analysis. Fungi

were identified at species level in 40 % of the isolates. The

size of the generated PCR products ranged from 500 to 700 bp.

Species diversity of endophytic fungi

The 240 isolates were identified as belonging to 16 OTUs (Fig 1)

representing ten fungal genera. The species accumulation

curve (Fig 2), calculated using Mao Tau algorithm, which gives

confidence intervals of 95 %, indicated that the sampling ef-

forts made were suitable to recover most of species diversity

present in the phyllospheres of the plants surveyed. The ac-

tual species number was estimated to be 17 using Bootstrap

estimators, 19 using Jack 1, 20 using Chao 1, 21 using ACE,

ICE, Chao 2, and 22 using Jack 2, meaning that the 16 OTUs

found in this study represent more than 73 % of the species

richness actually present.

Nearly all isolates obtained belonged to the ascomycetes

(99.6 %), only one isolate belonged to basidiomycetes (Class

Agaricomycetes, Order Atheliales) (0.4 %). Within the ascomy-

cetes, the 15 OTU represented four classes (Dothideomycetes,

Leotiomycetes, Sordariomycetes, and Eurotiomycetes) being

the Dothideomycetes the most representative (60 %) and the

others distributed equally, with two species each. Within the

Dothideomycetes, the Pleosporales were the most frequent,

with seven OTUs, representing 78 % of the total Dothideomy-

cetes, 44 % of the total OTUs and 66 % of the total isolates

found.

The number of OTUs obtained from individual plants

ranged from one to five and in plots from four to ten.

Most of the OTUs obtained in this study showed to be very

frequent, ten (62 %) appeared in four or more plants (plurals),

two (13 %) in two plants (doubletons), and four (25 %) only in

one plant (singletons).

From the 240 isolates, 159 (66 %) belonged either to Alterna-

ria (89 isolates) or Epicoccum genera (70 isolates). Alternaria sp.

and Epicoccum sp. were the only OTUs detected in all vine-

yards. Alternaria solani, Athelia sp., Diplodia seriata, Penicillium

brevicompactum, and Penicillium sp. were only detected in one
ed from 12 vineyards distributed by OTU.



Fig 2 e Species accumulation curve showing the relation between the number of individuals (plants sampled) tested and the

total number of taxa obtained. Middle line: number of fungal taxa calculated by the Mao Tau algorithm. Upper and lower

lines: 95 % confidence limits of the estimate of taxa number. The curve is based on 100 randomizations.
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vineyard, all of them under conventional treatment, with the

exception of Athelia sp., suggesting a higher diversity of fungal

endophytes species in conventional vineyards.

From the 16 fungal OTU identified, four were detected

solely in conventional vineyards (Alternaria porri, A. solani, Pen-

icillium sp., and P. brevicompactum), two only in biological vine-

yards (Athelia sp. andD. seriata) and ten in bothmodes (Fig 3A).

Most common isolates (over 60 %) in conventional vine-

yards belonged to A. porri, A. solani, Botrytis cinerea, Epicoccum

nigrum, Epicoccum sp., P. brevicompactum, and Penicillium sp.;

and in biological vineyards, they belonged to Alternaria alter-

nata,Athelia sp., Cladosporium sp.,D. seriata, andNigrospora ory-

zae. Alternaria tenuissima, Alternaria sp., Colletotrichum sp., and

Gloetinia sp. isolates were equally common in conventional

and biological vineyards.

From the 16 fungal OTU identified, 15 were detected in

Syrah cultivars, 11 in Cabernet Sauvignon and nine in Arago-

nez. Five OTUs were detected only in Syrah cultivars (A. solani,

A. tenuissima, Athelia sp., D. seriata and Penicillium sp.), one was

detected only in Cabernet Sauvignon (P. brevicompactum) and

none was solely detected in Aragonez cultivar. Nine OTUs

were detected in all three cultivars and A. porri was detected

in Syrah and Cabernet cultivars (Fig 3B).

As for the total number of isolates, 39 % were detected in

cv. Syrah vines, 33 % in cv. Cabernet Sauvignon and 28 % in

cv. Aragonez. OTUs that most contributed to cv. Syrah values

were A. solani, A. tenuissima, Athelia sp., B. cinerea, Colletotri-

chum sp., D. seriata, Epicoccum sp., N. oryzae, and Penicillium

sp. Alternaria sp., E. nigrum, Gloetinia sp., and P. brevicompactum

were dominant in cv. Cabernet Sauvignon vines. A. alternata

was the only OTU with more isolates detected in Aragonez

than in any other cultivar.
Number and distribution of the isolates of the different

OTU was similar in the two localities sampled (data not

shown).

The Simpson and Shannon diversity indexes indicate that

fungal diversity and evenness did not vary significantly be-

tween grapevines under different management modes. As

for the cultivars, Syrah presented the highest diversity index

values (Table 2).

Multivariate data analysis

The total number of fungi detected was significantly ( p < 0.02)

higher on the conventional thanon thebiologicalmanagement

(mean number of fungi � SE of 2.17 � 0.12 versus 1.83 � 0.10).

This was verified for the three cultivars. In biological manage-

ment, the mean number of fungi � SE was 2.10 � 0.19 in culti-

var Syrah, 1.85 � 0.19 in Cabernet Sauvignon and 1.55� 0.16 in

Aragonez. In conventional management, the mean number of

fungi � SE was 2.55 � 0.23 in cultivar Syrah, 2.05 � 0.21 in

Cabernet Sauvignon and 1.90 � 0.20 in Aragonez (Fig 4).

The PCA ordination of the fungal species showed that the

first two components (PC1, 19.8 % and PC2, 17.6 %) accounted

for 37.4 % of the variability of the data. PCA ordination sepa-

rated samples collected under the conventional mode from

the samples from the biological management, Epicoccum nig-

rum, Epicoccum sp., and Botrytis cinerea were shown to be

more dominant in conventional mode and showed a marked

separation from Alternaria alternata, Colletotrichum sp., Nigro-

spora oryzae, and Cladosporium sp. that are dominant in biolog-

ical type of management (Fig 5).

PERMANOVA analysis revealed significant differences in

the factor ‘Cultivar’ ( p < 0.0105). In biological management,



Fig 3 e Number of fungal isolates per OTU identified in the vineyards under study according to type of management (A) and

cultivar (B).

Table 2 e Species richness, diversity, and evenness of phyllosphere endophytic fungi from grape obtained in this study.

Species richness Simpson diversity Shannon diversity Evenness

Mode Conventional 14 6,6 2,12 0,8

Biological 12 6,73 2,124 0,85

Cultivar Aragonez 9 6,53 1,98 0,9

Cabernet 11 5,86 1,89 0,79

Syrah 15 8,05 2,32 0,86

1530 C. M. R. Varanda et al.



Fig 4 e Mean number of endophytic fungal OTUs ± standard error (SE) present in the phyllosphere of each cultivar (Syrah,

Cabernet Sauvignon and Aragonez) under two different types of management (biological and conventional).
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individual pairwise comparisons detected a significantly

higher number of fungi on the Syrah cultivar than Aragonez

cultivar (Pairwise Tests, psyrah versus aragonez < 0.0399), however,

no significant differences were revealed between Syrah and

Cabernet (Pairwise Tests, psyrah versus cabernet < 0.3587), or be-

tween Cabernet and Aragonez (Pairwise Tests, paragonez versus

cabernet < 0.2367). In conventional management, individual

pairwise comparisons also detected a significantly higher

number of fungi on the Syrah cultivar than Aragonez cultivar

(Pairwise Tests, psyrah versus aragonez < 0.0395), and no significant

differences between Syrah and Cabernet (Pairwise Tests, psyrah

versus cabernet< 0.1249), or between Cabernet and Aragonez (Pair-

wise Tests, paragonez versus cabernet < 0.5955). In general, the num-

ber of fungi was significant consistently higher on Syrah

cultivar than Aragonez and Cabernet cultivars (Pairwise Tests,

psyrah versus aragonez< 0.0032, psyrah versus cabernet< 0.082, paragonez ver-

sus aragonez < 0.2194).

The PCA ordination of the fungal species in the factor ‘Cul-

tivar’ showed that the first two components (PC1, 19.8 % and

PC2, 17.6 %) accounted for 37.4 % of the variability of the

data. PCA ordination did not separate samples according to

the cultivar (Fig 6).

Discussion

This study describes the composition of endophytic fungal

communities within the plant phyllosphere of three cultivars

of grapevine fromAlentejo, under differentmodes ofmanage-

ment. Endophytes were isolated in fall, at the end of the veg-

etative cycle, before yellowing and falling of leaves. Leaves
present the highest frequency and diversity of fungal endo-

phytes (Gonzalez & Tello 2011) due to the less barriers fungi

face for infection when compared to other parts of the plant

(Arnold & Lutzoni 2007) or to the successful colonization of

above-ground fungal endophytes that travel among hosts as

spores.

In this study, the cumulative curves for species richness

approached asymptotic growth (Fig 2), suggesting that most

fungal species were detected and sample was representative.

Similar accumulation curves were obtained for each cultivar

and each management mode analysed individually (data not

shown). The species abundance of fungal endophytes in

grapevinewasmostly comprised of frequent taxa (75 %) rather

than rare species (singletons), meaning that there is a large

proportion of species that were repeatedly isolated and that

showed to be characteristic in grapevine, regardless of the

mode of management or cultivar. This result is in agreement

with other studies performed in grapevine adult trees

(Casieri et al. 2009; Gonzalez & Tello 2011; Pancher et al. 2012)

andmay be due to the fact that some endophyteOTUs become

specialized on plant tissues and occupy a specific ecological

role in the plant. The stable and strong colonization of these

fungi may then prevent the colonization of new different

species.

We achieved ITS PCR amplification for all 240 fungal iso-

lates obtained and sequence analyses placed them into 16 dif-

ferent OTUs, 15 of which belonged to Ascomycota and one to

Basidiomycota. Although some authors suggest that basidio-

mycetes constitute an important part of endophytic commu-

nities and low proportions of basidiomycetes may just



Fig 5 e PCA plot based on presence and absence of fungal OTUs detected as phyllosphere endophytes under two different

types of management ‘Biological’ and ‘Conventional’ (PC1, 19.8 % and PC2, 17.6 %).
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sometimes reflect sampling bias (Mueller et al. 2004; Pinruan

et al. 2010), the predominance of ascomycetes fungi over the

basidiomycetes found in this study is consistent with other

endophytic studies concerning grapevine (Mostert et al. 2000;

Gonzalez & Tello 2011; Pancher et al. 2012) and other woody

plants (Arnold 2007). Within Ascomycota, the Dothideomy-

cetes were the most representative (71 % of total isolates)

and within those, the Pleosporales (66 %), which have shown

to be one of the main components of the endophytic mycota

of many woody plants including grapevine (Gonzalez & Tello

2011; Pancher et al. 2012). This is mainly due to Alternaria

and Epicoccum species that are the most frequent among fun-

gal endophytes in grapevine, as well as in other plants

(Gonzalez & Tello 2011; Grisan et al. 2011; Pancher et al. 2012;

Landum et al. 2016) and have been studied as promising bio-

control agents.Alternaria species are usually the principal fun-

gal component of endophytic communities in phyllospheres,

mostly due to their particular life style, producing highly

melanised hyphae capable to resist and grow under intense

UV radiations. Alternaria species (37 % of total isolates; 50 %

in biological and 50 % in conventional), have shown antago-

nistic effects against Botrytis cinerea and grapevine downy
mildew caused by Plasmopara viticola (Dugan et al. 2002;

Musetti et al. 2006). The genus Epicoccum comprises 29 % of to-

tal isolates obtained in this study (average > 61 % in conven-

tional mode). This classical endophytic genus has also been

reported to possess several antifungal properties against

grapevine pathogens such as P. viticola or B. cinerea (Fowler

et al. 1999). Epicoccum nigrum is being developed commercially

due to its capability to produce secondary metabolites with

antibiotic activity (Martini et al. 2009). In summary, 66 % of

the isolates obtained in this study belonged either toAlternaria

or to Epicoccum species, which means that endophytic com-

munities may constitute a source of biocontrol agents useful

to control important vine diseases. Although Alternaria sp.

was found in similar levels in both modes, Epicoccum species

were dominant in the conventional mode.

In general, fungi isolated in this study have been previously

reported as grapevine endophytes (Gonzalez & Tello 2011;

Pancher et al. 2012). A low incidence of pathogenic species

was detected. With the exception of B. cinerea and Diplodia

seriata, no pathogenic species, such as esca, Petri disease

and excoriose related fungi were detected, in contrast to other

studies that frequently report high isolation rates of P. viticola



Fig 6 e PCA plot based on presence and absence of fungal OTUs detected as phyllosphere endophytes of three different grape

cultivars ‘Syrah’, ‘Aragonez’, and ‘Cabernet Sauvignon’ (PC1, 19.8 % and PC2, 17.6 %).
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(Rodolfi et al. 2006; Gonzalez & Tello 2011). The commonoccur-

rence of B. cinerea species as a grapevine endophyte has been

frequently reported (Casieri et al. 2009; Gonzalez & Tello 2011),

suggesting that this pathogen is latent, behaving as a plant en-

dophyte, but may become pathogenic under specific physio-

logical or environmental conditions. In addition,

Aureobasidium pullulans was not isolated from grapevines in

this study. This fungus has shown to be very frequent in

grapevine plants (Martini et al. 2009; Gonzalez & Tello 2011;

Grisan et al. 2011; Schmid et al. 2011; Pancher et al. 2012) and

its role as antagonist against several pathogens has led to its

commercial development to control B. cinerea. Differences

found may be due to the cultivars and environmental dissim-

ilarities, which have shown to have a very important impact

in the fungi present (N�unez-Trujillo et al. 2012; Pancher et al.

2012).

A higher number of fungi, as well as of OTUs, was observed

in grapevines from Syrah cultivar and the lower number of

fungi and OTUs was observed in Aragonez. These differences

were significant despite the mode of management. Differ-

ences in number of fungi were only significant between Syrah

and Aragonez. Differences in fungal communities of different
grapevine cultivars have been reported (Casieri et al. 2009;

Gonzalez & Tello 2011), but some studies showed no influence

in fungal endophyte composition when comparing cultivars

(Pancher et al. 2012). Differences in fungal composition of

the different cultivars may be related to different plant breed-

ing and selection processes which cultivars have been ex-

posed to; different sugar content, pH and nutrient

composition; differences in phenological stages; or presence

and abundance of secondary metabolites produced by the dif-

ferent cultivars. Among the three cultivars used here, some

characteristics may partially explain the similarities and dif-

ferences in fungal endophytic communities. Aragonez is the

most different; it has its origin in the Iberian Peninsula and

has a higher genetic variability when comparing to Syrah

and Cabernet. The latter are among the most used cultivars

in the world, they are original from France and very similar

in terms of maturation and aroma intensity. Some OTUs

were observed only in one of the cultivars, however the low

number of isolates (<4) these OTUs present, is not enough to

establish a relation with the cultivar, as shown in the PCA

(Fig 6), where a homogeneous spread of cultivars is observed.

In addition, as for OTUs with more than eight isolates, the
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percentage of isolates in each cultivar never exceeded 60 %

and maybe for that reason, again no relation could be estab-

lished between cultivar and OTU.

When comparing grapevines under the different modes of

management, it was observed that the total number of fungi

detected was significantly ( p < 0.02) higher on the conven-

tional than on the biological mode (54 % versus 46 %) which

was not expected as conventional treatments have impact

on non-target organisms and biological practices are usually

linked to higher microbial populations and community diver-

sities (Ara�ujo et al. 2009). This means that products used in bi-

ological modes, such as copper, may also have impacts on the

microbial communities and should not be disregarded. The

higher number of OTUs obtained in the conventional mode

than in biological mode did not, however, result in higher di-

versity indexes, much due to the also higher number of iso-

lates obtained in the conventional mode. Simpson diversity

and Shannon diversity indexes show very similar values in

both modes (Table 2), with a slight higher diversity value in

the biological mode, as observed in previous studies

(Pancher et al. 2012). Fungal endophyte composition also

showed some differences between both modes. Athelia sp.

and D. seriata were only detected in the biological mode and

Alternaria porri, Alternaria solani, Penicillium sp., and Penicillium

brevicompactum were only detected in the conventional

mode. In addition, B. cinerea, Epicoccum sp., and E. nigrum

showed to be more frequent in conventional vineyards

(87 %, 63 %, and 60 %, respectively) and Nigrospora oryzae, Cla-

dosporium sp., and Alternaria alternata were more frequent in

biological vineyards (80 %, 73 %, and 63 %, respectively). This

shows that composition of phyllosphere fungal communities

is different upon the type of culture management. PCA analy-

sis reinforced that fungal community composition showed

a separation between the biological and the conventional

vineyards (Fig 5). Summing up, plants under the two modes

of management revealed differences in terms of total fungal

endophyte number, fungal diversity and fungal communities

composition. These differences may be related to the use of

chemical/organic products that directly affect microorgan-

isms, or to alterations in plant physiology and consequently

on plant associated microorganisms. The response of plant

associated microbial communities to external products is of

great interest for agriculture and further work should focus

on the response of plant endophytes to such substances. In

addition, some studies have shown that management modes

may also interfere on endophytes role, as higher antagonistic

effect was observed in endophytes isolated from plants under

organic management (Schmid et al. 2011; Pancher et al. 2012).

Further studies are needed to test this hypothesis, but this

would mean that differences between the two modes of man-

agement could be even greater. It would also be interesting to

test if antagonistic activities increase due to interactions/syn-

ergistic effects of the different fungal species present in the

endophytic community. In addition, antagonistic capabilities

in the same endophytic fungal species also may vary between

plant species, age of the host or plant tissue sampled

(Saikkonen et al. 1998). One of the future challenges will be

to identify functional differences among endophytic fungi un-

der different conditions.
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