Heterozygosity decrease in wild boar mating system - a case of outbreeding avoidance?

J. Pérez-González¹, V. Costa², P. Santos², J. Carranza¹, A. Zsolnai⁴,⁵, P. Fernández-Llario⁶,⁷, N. M. Monteiro²,⁸, I. Anton⁴ & A. Beja-Pereira²

¹ Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Córdoba, Córdoba, Spain
² Departamento de Paisagem, Ambiente e Ordenamento, Escola de Ciências e Tecnologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
³ Biologist and Ethology Unit, University of Extremadura, Cáceres, Spain
⁴ NARIQ - Research Institute for Animal Breeding, Nutrition and Food Science, Herzeghalom, Hungary
⁵ University of Kaposvár, Kaposvár, Hungary
⁶ Biology and Ethology Unit, University of Extremadura, Cáceres, Spain
⁷ Innovación en Gestión y Conservación de Ungulados S.L., Cáceres, Spain
⁸ Centro de Investigación em Biomedicina (CEBIMED), Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal

Keywords
Sus scrofa; heterozygosity; genetic relatedness; mate choice; microsatellite markers; outbreeding avoidance; wild boar.

Abstract
In sexually reproducing organisms, the specific combinations of parental alleles can have important consequences on offspring viability and fitness. Accordingly, genetic relationship between mates can be used as a criterion for mate choice. Here, we used microsatellite genetic markers to estimate the genetic relationship between mating pairs in the wild boar, Sus scrofa. Males, females and foetuses proceeding from Portugal, Spain and Hungary were genotyped using 14 microsatellite markers. The genetic relationship between mates was estimated using different measures of foetus heterozygosity. We found that the observed heterozygosity of foetuses was lower than that expected under random mating. This result occurred mainly when Sr² (relatedness of parental genomes) was used as the heterozygosity measure. After simulations, we concluded that the observed low heterozygosity was possibly due to outbreeding avoidance. Outbreeding avoidance based on genetically different genomes might play an important role in species evolution and its genetic conservation.

Introduction
In sexually reproducing organisms, offspring genotypes are the result of combinations of maternal and paternal genotypes. The specific combinations of parental alleles can have important consequences on offspring viability and fitness (Trivers, 1972; Penn, 2002). As both inbreeding and outbreeding can negatively impact fitness (Bateson, 1982; Charlesworth & Charlesworth, 1987), the most complementary mates should be those that do not produce inbred or excessively outbred offspring (Trivers, 1972; Bateson, 1982). Populations might be expected to evolve mate choice preferences promoting optimal outbreeding, which would then maximize fitness by avoiding the hazards of both extreme inbreeding and extreme outbreeding (Penn & Potts, 1999).

Choice for genetically complementary mates occurs both in males and females (Andersson, 1994). However, in species where reproductive investment is female-biased, such as most of mammals, choice for complementary mates should occur mainly in females. This is because females pay a higher cost by producing offspring with low fitness (Trivers, 1972). In populations, female choice for complementary mates interacts with other criteria such male ornamentation or competitive ability (Andersson, 1994; Mays & Hill, 2004). Therefore, several selective pressures, with different outputs in offspring genotypes, act on a particular mating system to construct the genetic composition of the following generation. Choice for genetically complementary mates has direct consequences on offspring genotypes; a fact that can be easily assessed today in natural populations, thus leading to increased attention and empirical support (Mays & Hill, 2004).

Inbreeding, outbreeding and the genetic relationship between mates in the wild have been broadly estimated using molecular techniques. For instance heterozygosity-fitness correlation, a widespread goal in evolutionary biology studies, uses different estimates of heterozygosity at neutral markers (mostly microsatellite markers) to infer inbreeding and to derive correlations with fitness traits (Chapman et al., 2009). Moreover, offspring heterozygosity measures have been used to estimate parental relatedness in the wild (Amos et al., 2001). The inference of the inbreeding coefficient with heterozygosity estimates...
has received criticisms because of their possible weak correlation (Balloux, Amos & Coulson, 2004). However, studies continue to show the utility of using heterozygosity at microsatellite markers in inferring inbreeding coefficient (Forstmeier et al., 2012). Szulkin, Bierne & David (2010) show that multilocus heterozygosity can be used to estimate inbreeding and whole-genome heterozygosity, as long as the assessed loci present identity disequilibrium (ID). On the other hand, despite the widespread use of heterozygosity measures based on allelic difference (e.g. Coulson et al., 1998; Colman et al., 1999; Da Silva et al., 2009), there has been considerable heterogeneity in results and its ubiquitous application has been challenged (e.g. Tistrone, Rouset & David, 2001; Colman & Slate, 2003). Nevertheless, it has been shown useful in inferring outbreeding in individuals from genetically dissimilar populations (Coulson et al., 1999; Da Silva et al., 2009).

Wild boar (Sus scrofa) is a polytocous and polygynandrous mammal that has increased its distribution and population size throughout Europe (Apollonio, Andersen & Putman, 2010). Nevertheless, despite high population sizes, hybridization threatens wild boar conservation. For hunting purposes, wild boar from different areas and individuals hybridized with domestic pigs in captivity, have been released to restock or increase local populations (Randi, Apollonio & Tos, 1989). Wild boar in these local populations can also hybridize with domestic individuals that escape from pig farms. Accordingly, studies found gene flow or genetic introgressions from domestic pigs to wild boar populations (Goedbloed et al., 2013).

In wild boar populations, negative relationships between individual homozygosity and fitness have been described (Acevedo-Whitehouse et al., 2005). Therefore, inbreeding avoidance might play an important role in mate choice. Moreover, due to the important role of hybridization in wild boar populations (Goedbloed et al., 2013), outbreeding mating might not have relevant consequences to individual fitness. Therefore, outbreeding avoidance might not be expected. On the other hand, processes such as sequential mating, multiple paternity, male-biased dispersal or male heterozygous advantage occur in wild boar populations and all contribute to increase genetic diversity and inbreeding tolerance (Kokko & Ots, 2006; Poteaux et al., 2009; Pérez-González et al., 2014; Podgórski, Scandura & Jędzejewska, 2014). Consequently, inbreeding avoidance might lose its relative importance. Different mating processes acting on wild boar populations make genetic relationship between mates hard to predict. The knowledge of the genetic relationship between mates can be important to understand the relative role of different evolutionary processes shaping the wild boar mating system.

In this study, we used heterozygosity at microsatellite markers to estimate the genetic relationship between mates and to infer the existence of inbreeding or outbreeding avoidance in different wild boar populations. Here, we observed a heterozygosity decrease, but only when a particular heterozygosity measure was used. We employed different simulated scenarios to assess whether the obtained results can be supported by outbreeding avoidance or by alternative processes. As alternative processes, we assessed the advantage of homozygous males in mate competition and the mortality of highly heterozygous foetuses.

Materials and methods

Sample collection

The samples used in this work originated from Portugal, Spain and Hungary. We collected tissue samples from specimens legally culled by hunters. In Portugal, sampled individuals were obtained in two hunting events conducted in Alqueva and Vila Viçosa. In Spain, samples were collected in two hunting events conducted in Azagala and Santa Amalia. In Hungary, culled individuals were collected in one hunting event conducted in Kereki. All the samples were collected between November 2008 and February 2009.

For simulation analyses (see below) additional samples were collected. On one hand, around the Hungarian hunting place, we obtained samples from males harvested in Kisbajom, Lábod, Szulok, Cserénfa, Kereki Kapasi, Pusztaszemes, Karád and Tótokilap. Male domestic pigs were also sampled to assess the effect of hybridization on heterozygosity measures (see below). These domestic males belong to different Hungarian pig breeds such as Black Slavonian, Hungarian Large White or Mangalica.

Tissue samples were collected from 91 male wild boars, 79 pregnant females and 318 foetuses, as well as seven samples from male domestic pigs (Table 1). We recorded the foetuses belonging to the same litter and the mother of each litter. For additional assessments (see below), we weighted the foetuses from the hunting event with higher sample size (Azagala, N = 135 foetuses). See Supplementary Material and Pérez-González et al. (2014) for details on hunting locations and procedures, as well as sample processing.

Microsatellite genotyping and heterozygosity measures

All 495 samples used in this study were genotyped for a set of 14 microsatellite markers designed for parentage analyses in wild boar (Sw24, S0155, Sw936, Sw2410, S0005, Sw632, Sw857, S0226, Sw72, Sw240, S0068, S0101, Sw122 and Sw2008). See details in Costa et al. (2012) and Pérez-González et al. (2014).

Three heterozygosity measures were used: standardized heterozygosity (SH; Colman et al., 1999), heterozygosity by loci ($HetL$) and standardized d^2 (Sd^2; Coulson et al., 1998).

Table 1 Sample sizes across hunting events or populations. ‘Other’ refers to additional samples that were used to interpret the main results of the study (see Methods)

<table>
<thead>
<tr>
<th>Hunting event/Population</th>
<th>Country</th>
<th>Males</th>
<th>Females</th>
<th>Foetuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alqueva</td>
<td>Portugal</td>
<td>10</td>
<td>11</td>
<td>45</td>
</tr>
<tr>
<td>Vila Viçosa</td>
<td>Portugal</td>
<td>28</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>Azagala</td>
<td>Spain</td>
<td>18</td>
<td>35</td>
<td>135</td>
</tr>
<tr>
<td>Santa Amalia</td>
<td>Spain</td>
<td>16</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>Kereki</td>
<td>Hungary</td>
<td>7</td>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>Other</td>
<td>Hungary</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm (pig)</td>
<td>Hungary</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Amos et al., 2001). HetL equals 1-HL, being HL the homozygosity by loci index developed in Aparicio, Ortego & Cordero (2006). We used HetL instead of HL to simplify the interpretation of results. See Supplementary Material (Figure S1) for the relationship among the three heterozygosity measures in the studied wild boar populations.

The existence of ID was estimated using the g_2 parameter, which measures variance in inbreeding. For each hunting event we combined all loci to compute a single estimate of g_2, with significant differences indicating ID (Szulkin et al., 2010).

Genetic and statistical analyses

The genetic relationship between parents was assessed using the heterozygosity of the foetuses (see Amos et al., 2001). We considered inbreeding or outbreeding avoidance in our data when the observed heterozygosity obtained in the sampled foetuses was significantly different from that expected under random mating. To simulate random mating, we randomly combined the genotypes of females and males from the same hunting event (see Supplementary Material; Figure S2). We randomly selected a haploid genotype of a female and a haploid genotype of a male from the same hunting event to create a diploid simulated offspring. This process was repeated 1,000 times for each female and the heterozygosity of its simulated offspring was quantified. The mean heterozygosity of the 1,000 simulated offspring was considered as the expected heterozygosity under random mating. Therefore, in our dataset each female had as many observed heterozygosity values as foetuses it gestated, but only one value for the expected heterozygosity under random mating. Observed heterozygosity and expected heterozygosity under random mating were compared using two linear mixed-effect (LME) models fitted by reduced maximum likelihood (REML). In the first LME, a general trend in our dataset was assessed using heterozygosity as the dependent variable, mating type (observed vs. random mating) as fixed factor and female within hunting event as nested random effects. In the second LME, we assessed whether the general trend was repeated in all hunting events. Therefore, heterozygosity was the dependent variable; mating type, hunting event and their interaction were included as fixed factors; female was included as random effect.

Additional assessments were performed to discuss the results. On one hand, we estimated the expected heterozygosity in offspring under random mating between females and two types of males: males from a different hunting event (Diff) and male domestic pigs (Pig; see Figure S2). In both cases we used the same procedure as that used to quantify the expected heterozygosity in offspring under random mating between females and males from the same hunting event (Same; see above). For the quantification of the expected heterozygosity under random mating between females and males from a different hunting event, we only used the males from the nearest hunting event. Therefore, for the females from Alqueva we used the males from Vila Viçosa (62 km apart); for the females of Vila Viçosa we used the males from Alqueva; females from Azagala and males from Vila Viçosa (72 km apart); females from Santa Amalia and males from Azagala (92 km apart). For the females from Hungary, the males culled in different Hungarian hunting events were used (see above; mean distance = 36 km). We only used the nearest hunting event to simulated male dispersal in natural populations.

Diff was used to compare the genetic relationship between females and males from the same and different hunting event. This comparison was conducted by a LME with heterozygosity as the dependent variable, mating type (Same vs. Diff) as fixed factor and female within hunting event as nested random effects. Similarly, Pig was used to compare the genetic relationships between females and males from different hunting events and the genetic relationship between females and male domestic pigs. As above, a LME was conducted with heterozygosity as the dependent variable, mating type (Diff vs. Pig) as fixed factor and female within hunting event as nested random effects. Due to male domestic pigs were sampled in Hungary, we additionally compared Pig with Diff for only Hungarian samples (results in Supplementary Material).

On the other hand, we inferred the existence of any relationship between heterozygosity and the weight of foetuses to assess the possible effect of intrauterine mortality. Intrauterine mortality of highly heterozygous foetuses might affect the proportion of homozygous foetuses in late gestation. The gestation time (conception age in Hugget & Widdas, 1951) was estimated for each foetus using body weight. Therefore, we assumed the existence of relationship between heterozygosity and mortality in foetuses, in case of relationship between foetus heterozygosity and its body weight. We performed a Generalized Additive Mixed Model (GAMM) to assess the existence of relationship between heterozygosity and weight in foetus from Azagala (see above). Weight was the dependent variable, the smoothed term of heterozygosity was included as fixed factor, and female as random effect.

Statistical models were repeated for each of the three heterozygosity measures. Since we repeated three times each model we assumed as significant those differences with P values lower than 0.0167. Simulations and statistical analyses were conducted using R (R Core Team, 2012). We used the nlme package in R (Pinheiro et al., 2012) to perform LME analyses, and gam4 package (Wood & Scheipl, 2015) for GAMM analyses.

Simulated scenarios

Outbreeding avoidance can explain the loss of heterozygosity in foetuses. However, similar results might be achieved under the effect of additional processes such as the advantage of homozygous males in mate competition and the mortality of highly heterozygous foetuses. To determine which processes can support a heterozygosity decrease, we created different simulated scenarios. In these scenarios we simulated outbreeding avoidance, advantage of homozygous males and mortality of heterozygous foetuses, and assessed whether the obtained results are compatible with the main results of this work.
used the three heterozygosity measures within two contexts. On one hand, SH, $HetL$ and Sd^2 were used as different measures over which selection might act. On the other hand, they were used as different consequences of the selection process on the heterozygosity decrease. In all three processes, we tried to simulate a similar strength of selection. For that, we ordered the individuals taking into account their heterozygosity and used the 75th percentile as threshold for selection (see Supplementary Material). In all simulations, females ($N = 11$) and males ($N = 10$) sampled in Alqueva (Portugal) were used as model.

We created three parameters: OUT_{diff} (Figure S3), ADV_{diff} (Figure S4) and MOR_{diff} (Figure S5). These parameters measure the effect of outbreeding avoidance, advantage of homozygous males and mortality of highly heterozygous foetuses (respectively) on the heterozygosity decrease in descendants. They were estimated as the standardized difference between the offspring expected heterozygosity under random mating and offspring heterozygosity under the selection processes. Therefore, the higher the values of the parameters, the larger the effects of the selection processes on heterozygosity decrease (zero means no effect). See details of simulation procedures in Supplementary Material.

Results

The molecular estimate of g^2 differed significantly from zero in the Azagala hunting event ($g^2 = 0.016$, [sd 0.013], $P = 0.017$). In the remaining hunting events g^2 did not differ from zero (Alqueva: $g^2 = -0.022$, [sd 0.015], $P = 0.939$; Vila Viçosa: $g^2 = 0.001$, [sd 0.013], $P = 0.452$; Santa Amalia: $g^2 = 0.016$, [sd 0.018], $P = 0.073$; Kereki: $g^2 = 0.007$, [sd 0.018], $P = 0.291$).

Observed heterozygosity, measured as SH and $HetL$, tended to be lower than expected heterozygosity under random mating (Same), but the difference did not reach significance (Table 2a, b, Fig. 1a,b). However, when Sd^2 was used, observed heterozygosity was significantly lower than expected heterozygosity under random mating (Table 2c, Fig. 1c). When hunting event was used as fixed factor, the interaction between mating type and hunting event was not significant, so the pattern of lower observed heterozygosity than expected under random mating occurred in all hunting events (Table 3, Fig. 2).

Additional assessments

Same (expected heterozygosity under random mating between females and males from the same hunting event) was lower

| Table 2 LME coefficients for the comparison between observed heterozygosity in foetuses and expected heterozygosity under random mating (Same) |
|-----------------|----|---|---|---|---|
| | | | | | |
| a) SH | | | | | |
| Intercept | 0.978 | 0.016 | 317 | 59.796 | <0.001 |
| Mating type | 0.040 | 0.021 | 317 | 1.893 | 0.059 |
| b) $HetL$ | | | | | |
| Intercept | 0.624 | 0.031 | 317 | 19.929 | <0.001 |
| Mating type | 0.027 | 0.013 | 317 | 2.093 | 0.037 |
| c) Sd^2 | | | | | |
| Intercept | 0.251 | 0.011 | 317 | 22.366 | <0.001 |
| Mating type | 0.047 | 0.009 | 317 | 5.389 | <0.001 |

Hunting event was included as random effect. Observed heterozygosity as reference. (a) SH as heterozygosity measure. (b) $HetL$ as heterozygosity measure. (c) Sd^2 as heterozygosity measure.

Figure 1 Mean heterozygosity and standard errors for each mating group. Obs: observed heterozygosity of foetuses; Same: expected heterozygosity in simulated offspring under random mating between females and males from the same hunting event; Diff: expected heterozygosity in simulated offspring under random mating between females and males from a different hunting event; Pig: expected heterozygosity in simulated offspring under random mating between females and male domestic pigs. (a) SH as heterozygosity measure. (b) $HetL$ as heterozygosity measure. (c) Sd^2 as heterozygosity measure.
than Diff (expected heterozygosity under random mating between females and males from the different hunting events) when we used \(\text{SH} \) and \(\text{HetL} \), but there was no difference when \(\text{Sd}^2 \) was used (Table 4, Fig. 1). Diff was lower than Pig (expected heterozygosity under random mating between females and male domestic pigs) for all heterozygosity measures, and this difference was the highest in all the assessed comparisons (Table 5, Fig. 1; see Table S1 for only Hungarian samples).

There was no relationship between heterozygosity and body weight in foetuses from Azagala. The lack of relationship occurred in all three heterozygosity measures (smoothed term of \(\text{SH} \), \(F = 0.010, P = 0.922 \); smoothed term of \(\text{HetL} \), \(F = 0.027, P = 0.871 \); smoothed term of \(\text{Sd}^2 \), \(F = 1.504, P = 0.222 \); see Figure S6).

Simulated scenarios

Outbreeding avoidance and mortality of highly heterozygous foetuses tended to decrease heterozygosity \((\text{OUT}_{\text{diff}} > 0 < \text{MOR}_{\text{diff}}; \text{Fig. } 3) \). This effect was larger when we took into account \(\text{Sd}^2 \) as both the selection criterion and the measure used to assess the effect of the process on the heterozygosity decrease \((\text{Sd}^2 \text{ in Fig. } 3c) \). The results of these simulated scenarios match with the results we obtained in our data.

On the contrary, the advantage of homozygous males seemed to have a lower effect on heterozygosity decrease than the other processes. The difference was higher when we took into account \(\text{SH} \) and \(\text{Sd}^2 \) as the selection criteria and \(\text{Sd}^2 \) as the measure used to assess the effect of the process on the heterozygosity decrease \((\text{Sd}^2 \text{ in Fig. } 3a,c) \).

Discussion

Observed heterozygosity of foetuses was lower than the expected heterozygosity under random mating, mainly when \(\text{Sd}^2 \) was used as the heterozygosity measure. This pattern was similar in populations from Portugal, Spain and Hungary. Simulations support that this result might be due to the existence of outbreeding avoidance in the wild boar mating system. The genetic relationship between parents was inferred using foetus heterozygosity. The \(g_z \) parameter was only significantly

Table 3 LME results for the comparison between observed heterozygosity in foetuses and expected heterozygosity under random mating (Same)

<table>
<thead>
<tr>
<th></th>
<th>numDF</th>
<th>denDF</th>
<th>F-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) SH</td>
<td>Intercept</td>
<td>1</td>
<td>313</td>
<td>6491.159</td>
</tr>
<tr>
<td></td>
<td>Mating type</td>
<td>1</td>
<td>313</td>
<td>3.570</td>
</tr>
<tr>
<td></td>
<td>Hunting event</td>
<td>4</td>
<td>74</td>
<td>1.347</td>
</tr>
<tr>
<td></td>
<td>Mating type * Hunting event</td>
<td>4</td>
<td>313</td>
<td>0.285</td>
</tr>
<tr>
<td>b) HetL</td>
<td>Intercept</td>
<td>1</td>
<td>313</td>
<td>7660.186</td>
</tr>
<tr>
<td></td>
<td>Mating type</td>
<td>1</td>
<td>313</td>
<td>4.265</td>
</tr>
<tr>
<td></td>
<td>Hunting event</td>
<td>4</td>
<td>74</td>
<td>14.382</td>
</tr>
<tr>
<td></td>
<td>Mating type * Hunting event</td>
<td>4</td>
<td>313</td>
<td>0.504</td>
</tr>
<tr>
<td>c) Sd^2</td>
<td>Intercept</td>
<td>1</td>
<td>313</td>
<td>2076.062</td>
</tr>
<tr>
<td></td>
<td>Mating type</td>
<td>1</td>
<td>313</td>
<td>28.903</td>
</tr>
<tr>
<td></td>
<td>Hunting event</td>
<td>4</td>
<td>74</td>
<td>4.504</td>
</tr>
<tr>
<td></td>
<td>Mating type * Hunting event</td>
<td>4</td>
<td>313</td>
<td>1.959</td>
</tr>
</tbody>
</table>

Hunting event was included as fixed factor. Observed heterozygosity as reference. *Interaction. (a) \(\text{SH} \) as heterozygosity measure. (c) \(\text{HetL} \) as heterozygosity measure. (c) \(\text{Sd}^2 \) as heterozygosity measure.
different from zero in one hunting event (Azagala). Moreover, Sd^2 yielded the main result of the analyses. Thus, our results might be perceived as directly plunging into the controversy surrounding the use of microsatellite markers in the inference of whole-genome heterozygosity (Tsitrone et al., 2001; Balloux et al., 2004). However, our simulations indicate that the heterozygosity at the used markers might infer parents’ genetic relationship. When individuals from different hunting events were randomly mated (Diff), the offspring heterozygosity (SH and $HetL$) was higher than that obtained after the mating of individuals from the same hunting event (Same; Fig. 1a,b). When Sd^2 was used as the heterozygosity measure, Same was not different from Diff, and Pig (heterozygosity of offspring obtained after the mating of wild boar and male domestic pigs) showed the highest values (Fig. 1c). These results are expected to occur at the whole genome scale. Nonetheless, our findings should be confirmed in future studies with more powerful and genome-wide representative information.

In addition to outbreeding avoidance, other selective processes might explain the heterozygosity decrease. For instance in mate competition, outbred males might have lower fitness and heterozygosity of the following generation would tend to decrease (see Mitton et al., 1993). However, we found that the effect of advantage of homozygous males on the heterozygosity decrease was relatively low. On the other hand, mortality of highly heterozygous foetuses might also explain the obtained heterozygosity decrease. Simulations support this possible effect, although we did not find any relationship between heterozygosity and gestation time (estimated by body weight) in foetuses from Azagala. The proportion of homozygous foetuses did not increase as gestation progressed. Results show

Table 4	LME coefficients for the comparison between Same (expected heterozygosity under random mating between females and males from the same hunting event) and Diff (expected heterozygosity under random mating between females and males from the different hunting events)					
a) SH	Intercept	1.008	0.018	78	56.435	< 0.001
	Mating type	0.068	0.010	78	7.050	< 0.001
b) $HetL$	Intercept	0.649	0.030	78	21.509	< 0.001
	Mating type	0.041	0.005	78	7.608	< 0.001
c) Sd^2	Intercept	0.283	0.012	78	23.637	< 0.001
	Mating type	-0.003	0.006	78	-0.593	0.5546

Same as reference. (a) SH as heterozygosity measure. (b) $HetL$ as heterozygosity measure. (c) Sd^2 as heterozygosity measure.

Table 5	LME coefficients for the comparison between Diff (expected heterozygosity under random mating between females and males from the different hunting events) and Pig (expected heterozygosity under random mating between females and male domestic pigs)					
a) SH	Intercept	1.083	0.021	78	50.304	< 0.001
	Mating type	0.176	0.014	78	12.539	< 0.001
b) $HetL$	Intercept	0.694	0.020	78	35.290	< 0.001
	Mating type	0.082	0.007	78	10.834	< 0.001
c) Sd^2	Intercept	0.281	0.011	78	25.121	< 0.001
	Mating type	0.055	0.006	78	8.899	< 0.001

Diff as reference. (a) SH as heterozygosity measure. (b) $HetL$ as heterozygosity measure. (c) Sd^2 as heterozygosity measure.

Figure 3 Results of simulated scenarios. Standardized difference in heterozygosity between that expected under random mating and that obtained under outbreeding avoidance (OUT_{diff}), advantage of homozygous males (ADV_{diff}) and mortality of highly heterozygous foetuses (MOR_{diff}; y axis). Heterozygosity was measured as SH, $HetL$ and Sd^2 (x axis). a) Selection against heterozygosity taking into account SH index. (b) Selection against heterozygosity taking into account $HetL$ index. (c) Selection against heterozygosity taking into account Sd^2 index.
that low success of heterozygous males and mortality of highly heterozygous foetuses might not explain the heterozygosity decrease in the studied wild boar populations.

The simulated effects of outbreeding avoidance on heterozygosity decrease might be the best candidate to explain the results obtained in wild boar. Moreover, we do not have any evidence that this process might not occur. Despite we cannot rule out the effect of other processes, we propose outbreeding avoidance as the most likely process able to induce a heterozygosity decrease in wild boars. According to sexual conflict theory (Trivers, 1972), outbreeding avoidance should be mainly carried out by females. The avoidance of genetically dissimilar mates might occur as a precopulatory process dependent on olfactory assessments (Boulet, Charpentier & Drea, 2009) or a postcopulatory phenomenon based on sperm choice or gametic incompatibility (Eberhard, 1996).

Simulated scenarios show that individuals might be avoiding mating with genetically different potential mates, taking into account S_d^2 index, that is the difference in relatedness between parental genomes. The direct consequence of this selective process is that wild boars might be avoiding the mating with genetically different taxa such as domestic pigs. Our results show that the simulated random mating between wild boar females and male domestic pigs (Pig) produced the most heterozygous descendants. This mating produced simulated offspring whose heterozygosity was even higher than that obtained after the simulated mating between wild boar individuals from different hunting events (Diff). Therefore, despite the high frequency of contact among individuals and the importance of hybridization in the evolution of wild boar (Goedbloed et al., 2013; Frantz et al., 2015), there could be a process that tends to decrease the degree of hybridization between both taxa. Taking into account our results and the sexual conflict theory, we predict that wild boar males do not avoid mating with receptive female pigs. However, wild boar females might avoid mating with male pigs.

Outbreeding avoidance can be explained by several selective pressures. For instance, it can be expected when excessive outbreeding has negative fitness consequences (Bateson, 1982) and an optimal outbreeding is the best strategy to maximize offspring fitness (Penn & Potts, 1999). Further, theory predicts that inbred mating can be adaptive because it increases the inclusive fitness of reproducers (Bengtsson, 1978). In addition, females might prevent the contact (and copulation) with males bearing dissimilar genomes to reduce the risk of disease transmission (Møller, Dufva & Allander, 1993). We did not find clear evidences supporting some of these selective pressures, but future studies on the genetic consequences of wild boar mating should explore the effect of outbreeding depression and disease transmission risks.

Wild boar populations present a male-biased dispersal pattern in which females are normally philopatric and males show high dispersal rates and large ranges (Poteaux et al., 2009; Podgórski et al., 2014). If females avoid outbreeding, male dispersal would be non-adaptive. However, our results show that male dispersal might be adaptive under conditions of outbreeding avoidance. As pointed out above, individuals might avoid mating with genetically different potential mates taking into account the difference in relatedness between parental genomes. We found that the S_d^2 of foetuses was not different when we simulated random mating between individual of the same (Same) and different (Diff) wild boar populations. Therefore, outbreeding avoidance based on the avoidance of genetically different parental genomes might not affect the reproductive success of dispersing males among different wild boar populations. Future studies should take spatial information into account (e.g. home ranges, size of study areas or population densities) to improve the interpretation regarding social behaviour and landscape genetics of the European wild boar.

We did not find a significant heterozygosity decrease using other parameters such as SH and $HetL$. However, there was a clear trend and we might expect a reduction in these parameters values in successive generations. The outbreeding avoidance based on different parental genomes might produce problems of genetic diversity conservation and, hence might reduce the fitness of individuals (e.g. Acevedo-Whitehouse et al., 2005). This trend might be counteracted with other processes that favour the genetic diversity maintenance such as seasonal partner switch, litter production, multiple maternity, sex-biased dispersal and mate competition (Karl, 2008; Delgado-Acevedo et al., 2011; Pérez-González et al., 2014).

Wild boar presents a polygynandrous mating system in which several evolutionary phenomena interact to shape the genetic composition of the next generation. Our data suggest the existence of an additional process: the outbreeding avoidance based on genetically different genomes. This process might play an important role in the current genetic context where introgression of domestic pigs is an important threat for wild boar conservation.

Acknowledgements

We thank Jean-Nicolas Volff, Elina Rantanen and two anonymous reviewers for insightful comments on the manuscript. Rodrigo Delgado helped in field and laboratory work. Land managers, owners of hunting estates and hunters provided permissions and facilitates for field work and sampling. This work was funded by Fundação para a Ciência e Tecnologia (FCT): projects PTDC/CVT/68907/2006 and PTDC/CVT/71429/2006, and Ministerio de Educación y Ciencia: project CGL2010-17163. JP-G received support from Gobierno de Extremadura through postdoctoral fellowship POS900020. AB-P and NMM were funded by FCT, Programa Ciência.

References

Supporting Information
Additional Supporting Information may be found in the online version of this article:

Figure S1. Relationship among the three heterozygosity measures (SH, $HetL$ and Sd^2).
Figure S2. Diagram that summarizes the method used to obtain the observed heterozygosity and expected heterozygositities under random mating.
Figure S3. Diagram that summarizes the simulated scenario of *outbreeding avoidance*.
Figure S4. Diagram that summarizes the simulated scenario of advantage of homozygous males in mate competition.
Figure S5. Diagram that summarizes the simulated scenario of mortality of highly heterozygous foetuses.
Figure S6. Relationship between heterozygosity and body weight in foetuses from Azagala (Spain).
Table S1. Comparison between Diff and Pig for only Hungarian samples.