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Estudos de transcrição da oxidase alternativa (AOX) e da oxidase terminal da plastoquinona 

(PTOX) na regulação do crescimento dos tecidos da raíz de cenoura (Daucus carota L.) sob 

condições de stresse - uma abordagem para identificação de candidatos a marcadores 

funcionais para o melhoramento da estabilidade de produção 

 

Resumo 

A presente tese explora a hipótese de utilização dos genes da oxidase alternativa 

(AOX) e da oxidase terminal da plastoquinona (PTOX) como genes-alvo para o 

desenvolvimento de marcadores funcionais (MF) para avaliar a performance do crescimento 

em cenoura, fator determinante da produtividade. Para avaliar se os referidos genes estão 

associados com o crescimento da cenoura procedeu-se ao seu isolamento e posterior análise 

dos seus perfis de transcrição em diversos sistemas biológicos. O sistema in vitro selecionado, 

denominado sistema de culturas primárias, permitiu avaliar alterações na quantidade de 

transcritos desses genes durante os processos de reprogramação celular e crescimento. Ao 

nível da planta foi também estudado o efeito do frio na expressão precoce dos genes AOX. 

Ambos os genes DcAOX1 e DcAOX2a revelaram uma resposta rápida e um padrão semelhante 

após stresse (inoculação in vitro e resposta ao frio). Foi Igualmente verificado um incremento 

na expressão do gene DcPTOX durante a fase inicial do processo de reprogramação celular. 

Estudos de expressão dos genes AOX durante o desenvolvimento da raíz da cenoura revelaram 

que o gene DcAOX2a será potencialmente o gene mais envolvido neste processo. De modo a 

avaliar a hipótese de envolvimento do gene DcPTOX no crescimento da raíz, procederam-se a 

estudos de expressão ao nível do tecido meristemático. Todavia, para um mais completo 

entendimento da ligação entre DcPTOX e o crescimento secundário e/ou acumulação de 

carotenos, a expressão do gene DcPTOX foi também avaliada em raízes de cenoura durante o 

desenvolvimento, utilizando cultivares caracterizadas por distintos conteúdos de carotenos. Os 

resultados obtidos demonstraram a associação do gene DcPTOX a ambos os processos. O 

envolvimento da PTOX no crescimento adaptativo da raiz foi analisado com um ensaio que 

permitiu identificar, no tecido meristemático, uma resposta precoce do gene DcPTOX face a 

uma diminuição da temperatura. Adicionalmente, foi efetuada a seleção de genes de 

referência para uma análise precisa da expressão génica por RT-qPCR em diversos sistemas 

biológicos de cenoura, e a importância do seu estudo ao nível do sistema biológico foi 

realçada. 

 Os resultados desta tese são encorajadores para prosseguir os estudos de utilização 

dos genes AOX e PTOX como MF no melhoramento da performance do crescimento adaptativo 

em cenoura, fator determinante para a produtividade. 

 

 

Palavras-chave: cenoura; oxidase alternativa; oxidase terminal da plastoquinona; marcador 

funcional; crescimento 
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Abstract 

 

This thesis explores the hypothesis of using the alternative oxidase (AOX) and the 

plastid terminal oxidase (PTOX) as target genes for functional marker (FM) development for 

yield-determining growth performance in carrot. To understand if these genes are associated 

to growth, different AOX gene family members and the single PTOX gene were isolated, and 

their expression patterns evaluated in diverse carrot plant systems. An in-vitro primary culture 

system was selected to study AOX and PTOX transcript changes during cell reprogramming and 

growth performance. At plant level, a putative early response of AOX to chilling was also 

evaluated. In fact, both DcAOX1 and DcAOX2a were early responsive and showed similar 

patterns under stress conditions (in vitro inoculation and chilling). A role for DcPTOX during 

earliest events of cell reprogramming was also suggested. Next, the expression profiles of AOX 

gene family members during carrot tap root development were investigated. DcAOX2a was 

identified as the most responsive gene to root development. In order to evaluate if DcPTOX is 

associated with carrot tap root growth performance, DcPTOX transcript levels were measured 

in the central root meristem. To further understand whether DcPTOX is associated with 

secondary growth and/or carotenoids accumulation, DcPTOX expression was also studied in 

developing carrot tap roots in cultivars with different carotenoids contents. The results 

indicated that DcPTOX associates to both carotenoid biosynthesis and secondary growth 

during storage root development. To obtain further insights into the involvement of PTOX on 

adaptive growth, the early effects of temperature decrease were explored in the root 

meristem, where a short-term early response in DcPTOX was found, probably associated with 

adaptive growth. Furthermore, a selection of the most suitable reference genes for accurate 

RT-qPCR analysis in several carrot experimental systems was performed and discussed.  

 The present research provides the necessary toolbox for continuing studies in carrot 

AOX and PTOX genes as promising resources for FM candidates in order to assist breeding on 

yield-determining adaptive growth performance. 

 

 

Keywords: carrot; alternative oxidase; plastid terminal oxidase; functional marker; growth  
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CHAPTER 1 - INTRODUCTION 

 

1.1. General aspects of carrot (Daucus carota L.) biology and production  

Carrot (Daucus carota var. sativus L.) is the most widely cultivated member of the 

Apiaceae family, which comprises up to 3700 species across 450 genera distributed worldwide 

(Constance 1971; Pimenov and Leonov 1993). There are approximately 20 members in the 

genus Daucus, where cultivated carrot is included. 

D. carota var. sativus L. is an outcrossing, insect-pollinated diploid (2n = 2x = 18) plant, 

with a genome size of approximately 480 Mb (Iorizzo et al. 2011). Carrot is a biennial plant, not 

flowering during the vegetative phase of its life cycle, when the storage root forms and grows 

(going from 60 to 150 days or more, depending on the environment and genotype). The 

vegetative phase of carrot life cycle is essential to successful crop production. Cool 

temperature is the primary stimulus that initiates carrot flowering, so plants exposed to cold 

weather in the field will therefore make the transition from vegetative phase and initiate 

flowering.  

Carrot storage root is rich in pro-healthy antioxidants, both of lipophylic (carotenoids) 

and hydrophilic (phenolic compounds) characters. Root pigmentation depends on the relative 

proportion of different carotenoids in combination with anthocyanins (Surles et al. 2004). 

Orange and red-rooted carrots accumulate large amounts of carotenoids, mainly α- and β-

carotene for the orange type and lycopene and β-carotene for the red type. Yellow-rooted 

carrots present low amounts of carotenoids, especially lutein and β-carotene. White-rooted 

carrots contain negligible amounts of carotenoids. Polyphenol substances, mostly 

anthocyanins, are typical for purple roots (Sun et al. 2009; Arscott and Tanumihardjo 2010).  

Nowadays, carrot production represents, together with turnips, more than 37 million 

tons a year worldwide, according to 2013 data from the Food and Agriculture Organization of 

the United Nations (http://faostat3.fao.org). Since 1961 (http://faostat3.fao.org), carrot world 

production has been increasing and this is in part, attributed to an increased awareness of 

health benefits associated to carrot human consumption (Arscott and Tanumihardjo 2010).  

 

1.2. Carrot genetics and breeding 

Cultivated carrots have their origin in the Afghanistan region before the 900s and were 

initially yellow and purple (Mackevic 1929). When the domestication of carrot began, carrots 

were selected for storage root size and smoothness. From this center of domestication, carrots 

were grown as a root crop to the East and West with the incorporation of several 

characteristics which led to the development of contrasting phenotypes between those two 
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geographic regions. The Eastern carrot spread to central and north Asia and then to Japan. Red 

coloured carrots are typical of India and were also introduced to Japan (Laufer 1919; Shinohara 

1984). In contrast, Western carrot type is characterized by its initial yellow and later orange 

root colour. The orange carrots were not commonly found until the 16th and early 17th 

centuries (Banga 1963) and its origin is unknown. Although it was suggested that the 

outcrossing of cultivated yellow and purple carrot with wild carrot may have contributed to 

the development of the now common orange carrot, this hypothesis has not been 

substantiated (Simon and Goldman 2007). Since the 19th century, orange-rooted carrots have 

spread from Europe to other continents and have become commercially attractive vegetable 

(Rubatzky et al. 1999). Genetic analysis to assess genetic diversity among cultivated carrot 

cultivars recently revealed a genetic subdivision between Western (European and American) 

and Eastern (Asian) accessions (Clotault et al. 2010; Baranski et al. 2011). 

The development of a highly reliable cytoplasmic male sterility system was developed 

between 1950s and 70s and provided the foundation for carrots’ hybrid development (Simon 

and Goldman 2007). With diverse germplasms available across the world, breeding programs 

have made great strides in carrot improvement. Carrot root size has been selected and 

improved for a variety of consumer markets (Simon and Goldman 2007). Another important 

breeding goal for carrot is reducing the tendency for early flowering or bolting. Under cold 

conditions, bolting results in changes in the composition of the storage root, making it tough, 

woody and unmarketable (Peterson and Simon 1986). 

Carrot genetics has traditionally focused on traits important to growers and 

consumers. Disease resistance is a focus for modern carrot breeding and genetics programs. 

For instance, Alternaria leaf blight, caused by the fungus Alternaria dauci has been extensively 

investigated, and a recent program has included wild relatives to try to trace back the 

resistance to that disease (see http://www.bioversityinternational.org/uploads/tx_news/ 

Report_of_a_ Working _Group_on_Umbellifer_Crops_Second_Meeting4.pdf). The root knot 

nematodes Meloidogyne javanica and Meloidogyne incognita can also have a high impact on 

carrot production, and for this reason carrot resistance to these pathogens has been 

extensively studied, and a single gene has been identified conferring resistance to both 

nematodes (Boiteux et al. 2004). Moreover, two genes have been identified for carrots’ 

resistance to the nematode Meloidogyne hapla (Wang and Goldman 1996). In addition to 

breeding programs focused on pathogens resistance and temperature tolerance, seed 

companies are also trying to fulfill market demands for new and different products, including 

various carrot sizes, shapes, thickness and flavors. 
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As previously referred, the content of antioxidants in carrot storage root is a trait that 

has gained importance due to the link with human health. Important loci regarding carotenoid 

accumulation have been identified in carrot, which regulate the accumulation of carotenoid 

pigments throughout the carrot root (Santos and Simon 2002; Fernandes Santos et al. 2005; 

Just et al. 2009). In the carotenoid biosynthetic pathway (Fig. 1), the coloured carotenoids are 

synthesized within plastids from phytoene, a non-coloured precursor that results from two 

geranylgeranyl diphosphate (GGPP) molecules, catalysed by phytoene synthase (PSY). 

Desaturation of phytoene by the sequential activity of the enzymes phytoene desaturase (PDS) 

and ζ-carotene desaturase (ZDS) (Carol and Kuntz 2001; Simkin et al. 2008) results in the 

production of lycopene, a substrate for the formation of both α- and β-carotene (Fig. 1). 

 

 

Fig. 1. A simplified diagram of the enzymes and major products in the carotenoid pathway (adapted 

from Just et al. 2007). Boxes indicate main carotenoids found in carrot (Surles et al. 2004). 

 

Carotenoid biosynthesis pathway analysis suggests that PSY is the major driver for 

accumulation of carotenoids in carrot (Maass et al. 2009). Fernandes Santos et al. (2005) also 

refers an important role for PSY in regulating carotenoid accumulation in a carrot population 

segregating for white, yellow and orange root colour. Several quantitative trait loci (QTL) have 
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been also associated with products of the carotenoid pathway (Santos and Simon 2002; Just et 

al. 2009). 

 

1.3. Aspects of carrot physiology on yield production 

The storage organ derives mainly from root tissues, but in the mature state, the 

hypocotyl comprises about 2.5 cm of the upper part of the storage organ (Esau 1940). The 

secondary growth resulting in the swollen tap root begins with the initiation of the secondary 

cambium between primary xylem and primary phloem. The cambium is formed simultaneously 

to the first leaves (Esau 1940). Hole et al. (1984) observed initiation of the cambium at 11 days 

after sowing and completion of the cambial ring after 20 days in a controlled environment. 

Under field conditions, initiation and completion of the cambium occurred ten days later (Hole 

et al. 1987b). Esau (1940) described the development of the secondary growth of carrot root 

as the division of cambial cells to form xylem on the inside and phloem on the outside. Most of 

the secondary tissues consist of parenchyma cells, which embed the vessels in xylem and sieve 

tubes and companion cells in the phloem. As a consequence of enlargement of the 

circumference of the root, cells of the cortex and endodermis disrupt, simultaneously to the 

appearance of the colour, in the coloured varieties. Periderm, arising from meristematic 

activity in the pericycle, forms the new protective layer. Cell division continues throughout the 

development of the storage root together with cell expansion (Hole et al. 1987a). 

 To understand the physiology of yield production in carrots and to improve nutrient 

efficiency mechanisms, it is crucial to analyse the factors that contribute to control cambial 

activity (Arnholdt-Schmitt 1999). A first approach to be considered is the importance of 

regulation by source or sink strength. Hole et al. (1987c) reported the existence of young 

carrot plants with genotypic differences in the shoot to root ratio, already observable at 34 to 

48 days after sowing. Nevertheless, the distribution of assimilates to shoot or root and its loss 

by respiration were not cultivar specific (Hole and Dearman 1991). Arnholdt-Schmitt et al. 

(1993) found that positive correlation between carrot shoot and root fresh weight became 

significant at the main phase of secondary root growth, suggesting that shoot may become a 

limiting factor during the increase of yield production. Arnholdt-Schmitt (1999 and references 

therein) pointed for a basic role of cytokinins as key regulating factors for carrot yield 

production, thus seeming to be directly involved in the control of cell cycle activity in the root 

meristem. 

Isolated cambial tissue of carrot roots was shown able to synthesize cytokinins, 

whereas in non-cambial regions this synthesis was not observed (Chen et al. 1985). During 

secondary root growth an increase of cytokinin activity was also observed (Palussek and 
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Neumann 1982). Arnholdt-Schmitt (1993) referred to differences of carrot root cells in their 

ability to transduce a given cytokinin signal into cell division growth. This potential termed 

cytokinin sensitivity was related to the growth potential of carrot root cells in tissue culture 

experiments and was found to be genotype dependent (Arnholdt-Schmitt 1999). 

 

1.4. Characterization of alternative oxidase and plastid terminal oxidase  

1.4.1. Alternative oxidase (AOX) 

Plants possess a so-called alternative respiration pathway as part of the total 

respiration process. A key enzyme in this pathway is the multigenic alternative oxidase (AOX). 

AOX is a nucleus encoded terminal ubiquinol oxidase, and in eukaryotes is located at the 

substrate side of the Cytochrome bc1 complex, forming an integral part of the electron 

transport chain in the mitochondria (Siedow et al. 1995). It catalyses the oxidation of ubiquinol 

and provides an alternative route for electrons to reduce oxygen to water prior to proton 

translocation by complexes III and IV, in turn hindering ATP formation and thus energy is 

dissipated as heat (Siedow et al. 1995; Moore et al. 2013) (Fig. 2). AOX bypasses adenylate and 

local Pi (inorganic phosphorus) control and, under a high-energy charge, AOX helps to avoid 

incomplete reduction of oxygen to water as a source for reactive oxygen species. Many 

publications point to the protective role of AOX against oxidative stress in plants (see 

Vanlerberghe 2013 and references therein). However, it was in the thermogenic floral tissues 

of Araceae that the alternative respiration was first recognized, and its involvement with 

pollination was first related. The high rate of electron flux that occurs in thermogenic plants 

generates heat that consequently volatilizes important compounds to attract insect pollinators 

(Meeuse 1975). 

AOX proteins belong to the membrane-bound di-iron carboxylate proteins (Berthold 

and Stenmark 2003). The location of the hydrophobic regions suggests an interfacial rather 

than a transmembrane nature of the protein (Andersson and Nordlund 1999; Berthold et al. 

2000; Albury et al. 2009; Moore et al. 2013). AOX occurrence is ubiquitous in the plant 

kingdom but is also found in many fungi, algae, protists and nematodes (Siedow and Umbach 

2000; Mercy et al. 2015; Valadas et al. 2015). In higher plants, AOX is nuclear encoded by a 

small multigene family, comprising one to six gene members (Cardoso et al. 2015) distributed 

by two subfamilies, the AOX1 and AOX2. In monocots, only genes belonging to the AOX1 

subfamily have been identified, while in dicots, genes from both subfamilies are present 

(Cardoso et al. 2015). The number of genes belonging to each subfamily varies considerably 

with the plant species (Cardoso et al. 2015). In carrot, one gene of the AOX1 subfamily 

(DcAOX1, Costa et al. 2014a) and two genes belonging to the AOX2 subfamily (DcAOX2a and 
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DcAOX2b) were identified (Campos et al. 2009; Costa et al. 2009). Recently, Costa et al. 

(2014b) proposed a classification scheme, based on protein phylogenies and sequence 

harmony methods, to clarify the taxonomic distribution and evolutionary history of AOX in 

angiosperms. The predominant structure of genomic AOX sequences consists of four exons 

interrupted by three introns at well conserved positions (Saisho et al. 1997; Considine et al. 

2002; Saika et al. 2002; Polidoros et al. 2009; Cardoso et al. 2015). This typical structure was 

previously identified in both carrot AOX2 genes (Campos et al. 2009). Evolutionary intron loss 

and gain has resulted in the variation of intron number in some AOX members (Cardoso et al. 

2014; Considine et al. 2002; Ito et al. 1997; Polidoros et al. 2009; Saisho et al. 2001). Campos et 

al. (submitted, see in CHAPTER 3) described the structure of carrot AOX1 gene as composed by 

only three exons interrupted by two introns due to the loss of intron 3. High variability at 

intron size has been also reported within members of AOX genes from a single species, as well 

across plant species (Cardoso et al. 2009; Cardoso et al. 2015). Nevertheless, high conservation 

in the protein coding sequence leads to peptides around 300 amino acid residues with highly 

conserved regions. Two highly conserved cysteine residues located towards the N-terminal 

hydrophilic domain mark the target site of redox and α-keto acid regulation (Rhoads et al. 

1998; Holtzapffel et al. 2003). AOX proteins contain a four-helix bundle coordinating the di-

iron center (Berthold et al. 2002; Berthold and Stenmark 2003; Moore et al. 2008; Moore et al. 

2013). The presence of iron-binding motifs within the four helical regions, rich in histidine and 

glutamate (4 glutamates and 2 histidines), that coordinate the diiron center, and those that 

interact with the AOX inhibitor salicylhydroxamic acid (SHAM) are identified in AOX across 

kingdoms (Moore et al. 2013).  
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Fig. 2. The mitochondrial electron transport chain showing the position of the alternative oxidase. AOX, 

alternative oxidase; CI, NADH: ubiquinone oxidoreductase; CII, succinate: ubiquinone oxidoreductase; 

CIII, Cytochrome bc1 complex; CIV, cytochrome c oxidase; CV, ATP synthase; Cytc, cytochrome c; NDHs, 

rotenone-insensitive NAD(P)H dehydrogenases; Pi, inorganic phosphorus; Trx, thioredoxin; UQ, 

ubiquinone pool (Arnholdt-Schmitt et al. 2006). 

 

AOX1 genes are frequently induced by many different kinds of stress (Thirkettle-Watts 

et al. 2003; Clifton et al. 2005; Umbach et al. 2005; Costa et al. 2010; Cavalcanti et al. 2013; 

Belozerova et al. 2014; Tang et al. 2014; Vishwakarma et al. 2014). Perhaps, the most studied 

abiotic condition in relation to alternative respiration is temperature, particularly low 

temperature, with studies in many species showing a sharp increase in AOX transcript and/or 

protein after changing to, or growing at a low temperature (Vanlerberghe and McIntosh 1992; 

Ito et al. 1997; Fiorani et al. 2005; Watanabe et al. 2008; Wang et al. 2009; Tang et al. 2014; 

Velada et al. 2014). Several reports have also demonstrated a link between AOX 

capacity/activity and response to other abiotic factors such as drought, nutrient limitation, 

salinity or low oxygen (Amor et al. 2000; Bartoli et al. 2005; Vassileva et al. 2009; 

Vijayraghavan V 2010; Martí et al. 2011). Stress-inducible cell signaling molecules for growth 

and development, such as reactive oxygen species (ROS) and nitric oxide, have also been 

shown to induce AOX genes (Huang et al. 2002; Gray et al. 2004; Clifton et al. 2005; Liao et al. 

2012; Zidenga et al. 2012). Other compounds, known to activate various stress signaling 

pathways (e.g. methyl jasmonate and salicylic acid) demonstrated also an association with the 

increase in AOX transcript levels (Matos et al. 2009; Sircar et al. 2012; Belozerova et al. 2014). 
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Regarding plant growth and development, there are several research groups that report a 

relationship with AOX (see in Arnholdt-Schmitt et al. 2006; Vanlerberghe 2013). Differently to 

AOX1, AOX2-subfamily gene members are usually reported as constitutively or 

developmentally expressed (Considine et al. 2002; Costa et al. 2014b). Nevertheless, several 

studies have shown that AOX2 genes are also able to respond to stress conditions (Clifton et al. 

2005; Costa et al. 2010; Cavalcanti et al. 2013; Mróz et al. 2015). 

 

1.4.2. Plastid terminal oxidase (PTOX) 

Major reactions of oxygenic photosynthesis consist in a vectorial electron transfer from 

water to NADP+ involving protein complexes present in thylakoid membranes, namely 

photosystem II (PSII), the cytochrome b6/f complex, photosystem I (PSI) and ferredoxin NADP+ 

reductase, connected with soluble carriers such as plastoquinones (PQs), plastocyanin and 

ferredoxin (Fig. 2). Besides major photosynthetic complexes of oxygenic photosynthesis, new 

electron carriers have been identified in thylakoid membranes of higher plant chloroplasts 

(Rumeau et al. 2007). In fact, there is a chlororespiratory pathway (Bennoun 1982; Peltier and 

Cournac 2002), mediated by a chloroplastic dehydrogenase (NDH), that uses stromal NAD(P)H 

for the non-photochemical reduction of PQ to PQH2, which in turn, is oxidized by a chloroplast 

targeted plastid terminal oxidase (PTOX) (Fig. 2). PTOX is a nucleus encoded plastid-located 

plastoquinone (PQ)-O2 oxidoreductase (plastoquinol oxidase), localized in stromal thylakoid 

membranes of chloroplast. PTOX has been suggested to be the chloroplasts’ functional 

analogous to AOX in mitochondria (Aluru and Rodermel 2004; Kuntz 2004). Both enzymes are 

non-heme diiron-carboxylate proteins linked to the adjustment of the cell redox state and 

have been modeled as interfacial membrane proteins with an active site (DOX) domain 

exposed to the matrix (for AOX) or stroma (for PTOX) (Fu et al. 2012). 
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Fig. 3. Electron transfer reactions during oxygenic photosynthesis, showing the position of plastid 

terminal oxidase (PTOX). Granal thylakoids contain photosystem II (PSII) complexes and the cytochrome 

b559 complex (not shown on the figure), whereas stroma lamellae contain photosystem I (PSI) 

complexes, ATPases, the cytochrome b6/f complex, the NDH complex and PTOX. Rubisco, ribulose 1·5-

bisphosphate carboxylase/oxygenase (Rumeau et al. 2007). 

 

In the same way as AOX, PTOX proteins have several conserved domains, such as iron-

binding residues (4 glutamates and 2 histidines) (McDonald et al. 2011). Both enzymes exhibit, 

at their C-terminus, the iron-binding motifs typical of Type II di-iron carboxylate proteins (Carol 

and Kuntz 2001). Protein sequences’ analysis showed that PTOX shares sequence similarity 

with AOX in a number of plant species (Carol et al. 1999; Wu et al. 1999; Berthold and 

Stenmark 2003), reason why there are frequently misunderstandings in the annotation of both 

genes (Nobre et al. in preparation). Interestingly, recent findings in A. thaliana indicate that 

AtAOX2 was imported into the chloroplasts using its own transpeptide (Fu et al. 2012). These 

authors proposed that AtAOX2 is able to function in chloroplasts to supplement PTOX activity 

during early events of chloroplast biogenesis. Similar results were obtained when AtAOX1a 

was reengineered to target the plastid. The ability of AtAOX1a and AtAOX2 to substitute PTOX 

in the correct physiological and developmental contexts is a striking example of the capacity of 

a mitochondrial protein to replace the function of a chloroplast protein and illustrates the 

plasticity of the photosynthetic apparatus (Fu et al. 2012).  

Chlororespiration was suggested as an effective electron safety valve preventing over-

reduction of the PQ pool and protecting PSII reaction centers from photo-damage under 

excessive light conditions (Niyogi 2000). PTOX is the terminal oxidase of chlororespiration and 

regulates the redox state of the PQ pool (Peltier and Cournac 2002; Aluru and Rodermel 2004) 

by transferring excess electrons to O2, in order to maintain the relative redox balance in the 

photosynthetic electron transport chain and reducing the possibility for oxidative damage by 
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ROS under environmental stresses (McDonald et al. 2011). Sun and Wen (2011) suggested a 

protective function for PTOX when stress-caused inhibition of photosynthetic electron 

transport chain occurs. For instance, In high alpine plants acclimated to a low temperature, 

PTOX was shown to play an important role in photoprotection of PSII (Streb et al. 2005). 

Increased expression levels were also detected in plants exposed to various stress conditions 

such as heat, cold, high light, drought, and salinity (reviewed by Sun and Wen 2011), indicating 

a important metabolic role for PTOX upon adverse conditions. According to Sun and Wen 

(2011) PTOX is likely helpful under stress conditions in certain plants, in which additional PTOX-

related physiological regulation may exist in response to stresses, but probably, does not act as 

a universal or essential safety valve in the whole plant kingdom. In fact, other studies argue 

that PTOX more likely plays important roles in plant development (Rosso et al. 2006; Shahbazi 

et al. 2007; Busch et al. 2008; Okegawa et al. 2010) or other physiological processes.  

Recent reports further indicate PTOX as a key enzyme of the carotenoid biosynthesis 

pathway. Using a transgenic approach, Carol and Kuntz (2001) showed that the lack of PTOX 

blocks carotenoid synthesis. PTOX absence gives rise to the immutans phenotype in 

Arabidopsis and to the ghost phenotype in Solanum lycopersicum (Carol et al. 1999; Josse et al. 

2000; Carol and Kuntz 2001; Rodermel 2001; Aluru et al. 2006). These phenotypes are 

characterised by variegated leaves with green and bleached sectors and in S. lycopersicum, by 

a yellow-orange ripe fruit. In immutans, the variegated phenotype might thus be due to a 

block in the desaturation of phytoene in the carotenoid biosynthetic pathway, as a result of 

insufficient oxidized PQ, which is needed as an electron acceptor for this reaction (Wu et al. 

1999; Carol and Kuntz 2001), leading to photobleaching of green tissues. PTOX has also a 

preponderant role in carotenoid biosynthesis in fruit chromoplasts (Josse et al. 2000), as 

observed in the yellow-orange S. lycopersicum fruit, which is characterised by a reduced 

carotenoid content (Barr et al. 2004). In S. lycopersicum, a dual role for PTOX in efficient 

carotenoid desaturation as well as in chlororespiration in green tissues is referred by Shahbazi 

et al. (2007). Furthermore, PTOX is the most likely oxidase involved in the barely studied 

respiratory process that occurs in chromoplast, called chromorespiration (Carol et al. 1999; Wu 

et al. 1999; Renato et al. 2014). Agreeing to its role in chromorespiration and carotenoid 

biosynthesis, the expression of PTOX increases during the ripening process of S. lycopersicum 

and Capsicum annuum fruits, in parallel with chromoplast differentiation (Josse et al. 2000). 

PTOX exists widely in photosynthetic species, including algae and higher plants 

(Cournac et al. 2000; Carol and Kuntz 2001; Archibald et al. 2003; Kuntz 2004). In higher plants 

PTOX has been described as a single gene (Wang et al. 2009; Houille-Vernes et al. 2011). In 

some eukaryotic algae genomes (at least in Chlamydomonas, Haematococcus, Ostreococcus 
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and Cyanidioschyzon) PTOX is present as a small multigene family, composed by two gene 

members (PTOX1 and PTOX2) (Wang et al. 2009). Bioinformatic analyses revealed that so far, 

PTOX is known to be present in a total of 15 cyanobacterial strains found in marine, terrestrial, 

and freshwater environments (McDonald et al. 2011). From those, the marine cyanobacterium 

Acaryochloris marina is unique in that it possesses two PTOX genes, while all other 

cyanobacteria only encode a single PTOX gene. 

 

1.5. AOX potential role for functional marker (FM) development  

 

This sub-chapter is adapted from the book chapter: 
 
Nogales A, Noceda C, Ragonezi C, Cardoso HG, Campos MD, Frederico AM, Sircar D, Iyer R, 
Polidoros A, Peixe A, Arnholdt-Schmitt B (2015) Functional marker development from AOX 

genes requires deep phenotyping and individualized diagnosis. In: Gupta KJ, M.L., Neelwarne B 
(eds) Alternative respiratory pathways in higher plants. John Wiley & Sons, Inc, Oxford, pp 275-
280 

 

Marker assisted selection is commonly used in plant breeding programs to select traits 

with agronomic interest (e.g. productivity, disease resistance, stress tolerance, quality) using 

molecular markers closely associated to that trait. FMs can be used to detect the presence of 

allelic or copy number variation for genes underlying a desired characteristic, thus increasing 

the efficiency and precision of plant breeding programs. For this reason, FM development has 

become an area of considerable research interest during the last years (Andersen and 

Lübberstedt 2003; Neale and Savolainen 2004; Arnholdt-Schmitt 2005; Lübberstedt and 

Varshney 2013).  

Development of FMs can be laborious and time-consuming, and depending on the 

nature of the selected agronomic trait, the strategies to follow may differ. The first critical step 

for FM development is the identification of candidate genes and sequence polymorphisms that 

affect protein (enzyme) activity and consequently induce phenotypic variations (functional 

polymorphisms). Candidate genes for FM development can be identified by high-throughput 

differential gene expression (expression quantitative trait loci, eQTL), association mapping, and 

QTL analysis followed by fine mapping, (bulk) segregation for a trait or by hypothesis-driven 

research. Hypothesis driven selection of candidate genes is a targeted approach and is thus a 

highly promising strategy in molecular plant breeding (Arnholdt-Schmitt 2005; Collins et al. 

2008).  

Plant abiotic stress tolerance is one of the most important and complex traits 

considered in breeding programs. Adaptive plasticity upon environmental changes influences 
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the stability of plant biomass and consequently yield production. Plant stress tolerance, as a 

quantitative multigenic trait, involves the effect of a large set of genes belonging to different 

signalling and metabolic pathways, hampering the selection of the most appropriate gene(s) 

for FM development. Good candidate genes are genes that are involved in global cell 

coordination and decision making of cell fate in plant responses to environment. Candidate 

gene-based association studies are commonly used to establish a link between genotypes and 

phenotypes. AOX genes have been proposed and adopted as candidate genes for FM 

development related to multi-stress tolerance and phenotype plasticity (Arnholdt-Schmitt et 

al. 2006; Polidoros et al. 2009; Cardoso and Arnholdt-Schmitt 2013). However, although AOX 

genes could be general candidate markers related to diverse types of abiotic and biotic stress 

reactions, the role of AOX can differ between species and needs to be validated at species as 

well as at target tissue or cell level, depending on the crop and breeding goals (Arnholdt-

Schmitt 2005; Arnholdt-Schmitt et al. 2006; Vanlerberghe 2013). 

Phenotypic changes related to adaptation to environmental changes might be 

coordinated by AOX, due to its upstream role in biotic and abiotic stress responses (McDonald 

and Vanlerberghe 2006; Plaxton and Podestá 2006; Cardoso and Arnholdt-Schmitt 2013; 

Vanlerberghe 2013) and these changes can include morphogenic responses (Fiorani et al. 

2005; Ho et al. 2007; Campos et al. 2009; Frederico et al. 2009; Santos Macedo et al. 2009; 

Santos Macedo et al. 2012). Differential expression of AOX genes in genotypes from the same 

species but with contrasting stress responses likely provides supporting evidence for a 

functional role of this gene in stress adaptation (Mhadhbi et al. 2013). 

After selecting a suitable candidate gene, the next step for FM development consists, 

as referred above, on the identification of polymorphisms within the candidate gene sequence 

that are likely functional and associated with phenotypic variation. This includes 

characterisation of alleles and/or copy number variation in genotypes with different degree of 

stress tolerance or responses, affecting plant phenotypes. The subsequent validation of such 

polymorphisms as markers is then needed. Characterisation of FMs from candidate gene 

sequences will be less time consuming and will require a lower amount of samples when 

phenotyping of the polymorphic genotypes is done in a focused way, i.e. by performing deep 

phenotyping. By identifying the relevant biochemical and/or physiological processes in target 

tissues/cells, i.e. “deep traits”, the association between them and polymorphic sequences is 

easier to explore, due to the requirement of less samples, as the studied process is more 

directly influenced by the candidate gene (i.e., targeted and thus with less factors masking the 

gene effect). Functional polymorphisms that can be used as FM will be much more easily 
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identified than just measuring the final trait which is influenced by many other factors, thus 

reducing the degree of robustness of the putative FM. 

While this approach might be valid for many candidate genes, it is especially relevant 

in the case of AOX. The central and upstream role that AOX has in adaptive metabolism and 

several biological processes makes its regulation too complex to easily obtain a link with a 

specific desirable trait. Consequently, identifying a link between the AOX gene sequence and a 

biochemical or metabolic ‘deep trait’ which highly determines the agronomical trait of interest 

will make FM development more efficient.  

This strategy is being applied recently in several studies related to FM development for 

AOX genes. For example, Santos Macedo et al. (2009; 2012) and Hedayati et al. (2015) 

investigated the involvement of AOX in olive adventitious rooting for FM development related 

with the efficiency of this process. Adventitious root formation can be considered a 

morphological response upon stressful treatments which involves cell reprogramming and de 

novo differentiation. That fact leads to the selection of AOX as a candidate gene for FM 

development. In the studies performed by Santos Macedo et al. (2009; 2012), the ring from 

the basal portion of olive semi-hardwood shoots was taken, which is the place where cells are 

reprogrammed to perform adventitious rooting, a process that is important for efficient and 

commercially relevant propagation of the trees. Metabolic analyses were performed in the 

target tissues and demonstrated that phenylpropanoid and/or lignin content could be suitable 

‘deep traits’ for association studies with AOX polymorphisms (Santos Macedo et al. 2012). 

The appropriateness of in vitro – culture systems for studying the linkage of AOX to a 

morphological process could recently be confirmed by comparing AOX transcript levels during 

adventitious root induction in semi-hardwood olive shoots and in vitro microshoots. A similar 

AOX gene expression pattern could be found in both systems (C. Noceda and E.S. Macedo, 

personal communications), which makes future studies on the functionality of AOX gene 

polymorphisms for efficient adventitious rooting reasonable. Applying the in vitro – system will 

make screening much more efficient. Different genotypes can be checked under in vitro – 

culture conditions at the same time in a reasonably small space compared to the necessary 

space for greenhouse plant trials. Additionally, genetic stability and robustness of the 

polymorphic sites and their effects can easily be screened under these conditions. 

Another example of in vitro- culture application as a strategy for ’deep phenotyping’ 

for FM development is the use of a primary culture system (PCS) for Daucus carota (Campos et 

al. 2009, see CHAPTER 2 and 3). This system was first established by Steward and Caplin (1952) 

and consists of inducing a cell program change in differentiated secondary phloem explants 

from tap roots in a nutrient media containing cytokinin and auxin which initiates callus growth. 
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The primary culture system has been applied at diverse temperatures and was adopted as a 

test system for the genetic potential for carrot yield production and to distinguish carrot 

genotypes (Arnholdt-Schmitt 1999). The rapid observation of differences in callus growth 

behaviour between carrot genotypes makes primary cultures a promising system to test the 

functionality of polymorphisms in AOX gene sequences.  

Overall, one can refer to the importance of the existence of genetic variability for a 

desired trait and for the related genes as prerequisites for FM development. Hence, the 

already identified polymorphisms in carrot AOX gene sequences (alleles, haplotypes) (Nogales 

et al. submitted; Cardoso et al. 2009; Cardoso et al. 2011), create an important basis for 

association studies between polymorphic DNA marker and a desired trait. 

 

1.6. Research goals 

This thesis aims to explore the AOX and PTOX as target genes for functional markers 

(FM) development for yield-determining growth performance in carrot. No analyses have been 

done so far to explore the role of PTOX in the regulation of cell division activity and relation to 

growth. Due to the similarity between both enzymes it is plausible that PTOX is also involved in 

some of the same functions of AOX, and therefore the gene arises as a potential source of 

functional markers. 

To understand if and how these genes might associate to growth performance, the 

different AOX gene members and the single PTOX gene were isolated, and their expression 

patterns evaluated in diverse carrot plant systems. An in-vitro primary culture system with 

reproducible length in the lag phase during growth induction was selected to study basic 

principles of AOX and PTOX transcript changes during cell reprogramming and growth 

performance. AOX and PTOX transcript accumulation was analysed during early time points of 

de novo growth induction during the lag-phase and during exponential growth, in cultures 

subjected to different temperatures. The results obtained, with AOX differentially transcribed 

early after inoculation – thus early after an environmental change - led to new experiments in 

a first attempt to transpose insights from the PCS to plant level. For this a pot experiment was 

performed to study carrot AOX early response to chilling. Further, AOX gene expression and 

the role of different AOX gene family members were studied during tap root growth along 

plant development. 

In order to study if PTOX is associated with yield-determining tap root growth 

performance, PTOX transcript accumulation was targeted in the central root meristem, using 

growth chamber pot experiments. To clarify if PTOX was associated with secondary growth 

and/or carotenoids accumulation, PTOX expression was evaluated in developing carrot tap 
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roots in an experiment that included cultivars with different carotenoids contents. To get 

insights of the involvement of PTOX on adaptive growth, the early effect of temperature 

decrease was evaluated, with PTOX transcript accumulation targeted in the root meristem. 

 

1.7. Thesis format 

This thesis is organised in chapters, each of them a stand-alone research work. To 

achieve the defined goals of the research line specific tasks were defined: 

- Isolation and characterisation of DcAOX1 gene (CHAPTER 3), DcAOX2a and DcAOX2b 

(CHAPTER 2) and DcPTOX (CHAPTER 5, cDNA level and CHAPTER 6, gDNA level). 

- First expression studies of DcAOX genes during de novo growth induction in the primary 

culture system (CHAPTER 2). 

- Expression of DcAOX genes and DcPTOX gene by higher time resolution during the early 

phases of de novo growth induction and exponential growth in the PCS (CHAPTER 3, AOX and 

CHAPTER 6, PTOX). 

- Pot plant experiments to analyse early DcAOX response to chilling (CHAPTER 3).  

- DcAOX transcript accumulation during carrot tap root growth (CHAPTER 4). 

- DcPTOX transcript accumulation during carrot root secondary growth. In a first experiment 

the meristem was used for expression analysis (CHAPTER 6), and later DcPTOX was analysed 

during carrot storage root development involving cultivars with different carotenoids 

contents (CHAPTER 5).  

- Pot plant experiment to analyse early DcPTOX response to mild cold stress (CHAPTER 6). 

- Selection of suitable reference genes in different carrot experimental systems for accurate 

normalisation of data (CHAPTER 7). 

 
Note: This doctoral thesis was designed to be based on a group of manuscripts that are 

published, were submitted or are in preparation, and give body to the research of the thesis. 

As all articles were written to stand alone, the reader may find repetition in some parts of the 

manuscripts, especially in the introduction and method sections, as well as the final discussion. 

This fact results from sharing samples, instruments and procedures amongst the series of 

articles. The results presented in CHAPTER 2 were achieved in frame of the Marie Curie Chair 

project ‘Stress adaptation in plants - a molecular approach of socio-economic interest´ and 

mark the beginning of the tasks developed in this PhD project. 
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CHAPTER 2 - DIFFERENTIAL EXPRESSION AND CO-REGULATION OF CARROT (Daucus 

carota L.) AOX GENES  

 

This chapter is adapted from the manuscript: 
 
Campos MD, Cardoso H, Linke B, Costa JH, Fernandes de Melo D, Justo L, Frederico AM, 
Arnholdt-Schmitt B (2009) Differential expression and co-regulation of carrot AOX genes 
(Daucus carota). Physiol Plant 137: 578–591 
 

 
Abstract 

 Alternative oxidase (AOX) is a mitochondrial protein encoded by the nuclear genome. 

In higher plants AOX genes form a small multigene family mostly consisting of the two 

subfamilies AOX1 and AOX2. Here we report on the expression patterns of the carrot AOX 

genes DcAOX1, DcAOX2a and DcAOX2b. Our results demonstrate that all of the three carrot 

AOX genes are expressed. Differential expression was observed in organs, tissues and during 

de novo induction of secondary root phloem explants to growth and development. DcAOX1 

and DcAOX2a indicated a differential transcript accumulation but a similar co-expression 

pattern. 

 The genes of each carrot AOX sub-family revealed a differential regulation and 

responsiveness. DcAOX2a showed high inducibility in contrast to DcAOX2b, which generally 

revealed low transcript abundance and rather weak responses. In search for within-gene 

sequence differences between both genes as a potential reason for the differential expression 

patterns, the structural organization of the two genes was compared. DcAOX2a and DcAOX2b 

showed high sequence similarity in their open reading frames (ORFs). However, length 

variability was observed in the N-terminal exon 1 region. The predicted cleavage site of the 

mitochondrial targeting sequence in this locus is untypical small for both genes and consists of 

35 amino acids for DcAOX2a and of 21 amino acids for DcAOX2b. The importance of structural 

gene organization and the relevancy of within-gene sequence variations are discussed. Our 

results strengthen the value of carrot as a model plant for future studies on the importance of 

AOX subfamily evolution. 

 

Keywords: Daucus carota; alternative oxidase; cell reprogramming; growth induction; DcAOX2 

gene characterisation 
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2.1. Introduction 

Daucus carota L. was highlighted as an ideal model plant to progress alternative 

oxidase (AOX) stress research (Costa et al. 2009a). This was deduced from the easiness of cell 

reprogramming in this species upon stress, which led in 1958 to the first demonstration of 

totipotency in plants (Raghavan 2006). Zottini et al. (2002) studied nitric oxide effects in carrot 

cells. Their data pointed for the first time to a role of AOX in carrot in response to stress-

induced mitochondrial dysfunctioning and signalling. Plant AOX protein is encoded by a small 

nuclear multigene family. In higher plants, the AOX multigene family consists of two discrete 

subfamilies, AOX1 and AOX2 genes. The occurrence of two subfamilies is species-dependent. 

To date, the AOX1 genes were found in monocots and eudicots, whereas AOX2 genes were 

detected only in eudicot species (Considine et al. 2002) and in the gymnosperm Pinus pinea 

(see Frederico et al. 2009). In most of the species studied so far either the AOX1 subgroup was 

expanded, as in the case of Arabidopsis thaliana (Saisho et al. 1997) or only AOX2, as in the 

case of Glycine max or Vigna unguiculata (Costa et al. 2004).  

The reason why these two gene subfamilies evolved and their functional importance 

across species are not understood. Recently, differences in conserved sequences between 

AOX1 and AOX2 genes were identified, covering also near-neighbour sequences of the CysI site 

(Costa et al. 2009a; Frederico et al. 2009). From in silico analysis it is known that considering 

neighbour sequences can well improve the prediction of conserved functional sites (Capra and 

Singh 2007) indicating the importance of such loci. Additional importance for the differential 

regulation of the two AOX gene subfamilies may come from different positions in the plant 

genomes related to the chromosomal territories. For example, it can be observed that in A. 

thaliana AOX1a, AOX1b and AOX1c are located at chromosome 3, AOX1d at chromosome 1, 

whereas AOX2 is situated at chromosome 5. Costa et al. (2009b) confirmed the observation 

that AOX2 is located separately now also for Vitis vinifera genes. Whereas the two VvAOX1 

genes are located on chromosome 2, VvAOX2 is found at chromosome 12.  

Expansion of a gene family can point to the evolution of pseudogenes or merely to a 

duplication of sequences related to the same function. Thus, it is important to study 

expression patterns and structural organization of the gene sequence. An in-vitro primary 

culture system was selected to study basic principles of AOX transcript changes during cell 

reprogramming and growth performance. The carrot primary culture system has been 

established originally by Steward et al. in 1952 to study mechanisms of growth. It was this 

group that also had succeeded (Steward et al. 1958), simultaneously with the group of Reinert 

(1958), to prove for the first time totipotency in plant cells in D. carota as an experimental 

confirmation of the ideas developed by Haberlandt (1902). The primary culture system has 
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been improved and maintained as an experimental system for studies on cell reprogramming 

in the group of Neumann (see review in Arnholdt-Schmitt 1993; 1999). In this system, after 

inoculation of the explants that consist on pieces of homogenous types of cells of quiescent, 

differentiated secondary root phloem tissue, tissue dedifferentiation can be induced and callus 

growth is initiated mainly through cell division growth (Arnholdt-Schmitt 1993). Due to a 

supplementation of cytokinin in the culture medium, no organogenesis is initiated during 28 

days of the experiment. However, if depletion of cytokinin happens, at the prolonged 

stationary phase, rooting from the callogenic tissues can be observed. If cultured from the 

beginning without cytokinin, rooting starts around day 14 of culture (Neumann 1966; 

Arnholdt-Schmitt 1999). In cells of initial explants taken from secondary phloem of mature tap 

roots usually only carotene-containing chromoplasts appear to be present and neither 

chloroplasts nor other plastid structures were found; however, during the first 8 days in 

culture (lag-phase), restructuration of chromoplasts to chloroplasts is initiated via an 

intermediate state as amylo-chloroplasts (Kumar et al. 1983). Tissue dedifferentiation and 

induction to callus formation also take place during the lag-phase (Arnholdt-Schmitt 1999). 

After that, exponential callus growth starts and typically callus continues to proliferate during 

28 days in culture.  

Here, we report the differential expression of DcAOX1, DcAOX2a and DcAOX2b in 

various tissues or organs and during growth, and highlight within-gene differences between 

DcAOX2 subfamily gene members. The results revealed expression of all three carrot AOX 

genes. Independent regulation of both genes in DcAOX2 subfamily was accompanied by co-

regulation of DcAOX1 and DcAOX2a. The role of within-gene differences is discussed. 

 

2.2. Materials and Methods 

2.2.1. Plant material 

Seeds of D. carota cv. Rotin were germinated and grown on MS solid medium 

(Murashige and Skoog 1962) under sterile and controlled-climate conditions (25±1°C at 16h 

photoperiod: 95-100µmolm-2s-1, Philips). For partial DcAOX2 genes identification, a mixture of 

several in vitro plants were taken, while for complete gene isolation, one single in vitro plant 

was used. 

Tissue- or organ-specific expression studies in roots and leaves were performed in cv. 

Rotin in three individual eight-week old in vitro plants, in the cambium and secondary phloem 

of carrot tap roots and during initiation of a primary culture. For the primary culture assays 

and the isolation of cambium and secondary phloem from carrot tap roots, plants of cv. Rotin 
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were cultivated in pots under greenhouse conditions for 10 weeks and maintained in pots in a 

cooling chamber at 4 °C until the experiment started. 

 

2.2.2. Primary culture system 

In order to study gene expression during de novo growth induction and differentiation, 

a primary culture was established. Slices from the third upper part of carrot tap roots of 2 

individual plants (cv. Rotin) were cut and 5 explants (2-4 mg) of the secondary phloem were 

inoculated in 100 mL Erlenmeyer flasks containing 20 mL of NL liquid medium (Neumann 1966) 

The cultures were incubated under continuous rotation (90 rpm) at continuous light (95-100 

µmolm-2s-1, Philips) at 28 °C. During culture callus formation is induced. After a lag-phase of 6 

to 8 days exponential callus growth starts mainly due to cell division activity. At day 14, the 

linear phase of callus growth is running and a mixotrophic nutritional system is established 

(Arnholdt-Schmitt 1999). Samples for expression analysis were collected at inoculation (t0), 

and 1.5 (36 h), 3 (7 2h), 6 and 14 days after inoculation. The selected sample collection times 

consider the induction of cell cycle activities in the system. Circadian rhythmic under the 

permanent light was not studied. 36 h after inoculation marks the termination of a first cell 

cycle round, which is initiated synchronously in some cells of the explant. 6 days marks ending 

of the lag phase and 14 days relates to the linear phase of exponential growth (r = 0.813) (see 

in Gartenbach-Scharrer et al. 1990; Arnholdt-Schmitt et al. 1991; Arnholdt-Schmitt 1995; 

Arnholdt-Schmitt 1999). 

 

2.2.3. Reverse transcription semi-quantitative PCR (RT-sqPCR) 

Primer design for RT-sqPCR expression analyses were based on the published carrot 

AOX gene sequences for DcAOX1 (Acc. No EU286573), DcAOX2a (Acc. No EU286575) and 

DcAOX2b (Acc. No EU286576) (see Costa et al. 2009a). 

Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany), 

with on-column digestion of DNA with the RNase-Free DNase Set (Qiagen, Hilden, Germany), 

according to manufacturer’s instructions. For root tissues, the reverse transcription was 

performed using the RETROscript kit (Ambion, Austin, USA) with oligo d(T) primer and 2 µg of 

total RNA. For primary cultures and for plants a single strand cDNA was produced by 

RevertAid™ H Minus First Strand cDNA Synthesis kit (Fermentas, Ontario, Canada) according to 

manufacturer’s instructions with oligo d(T) primer and 5 µg of total RNA. RT-sqPCR was 

performed using Ready-To-Go PCR Beads (GE Healthcare, Little Chalfont, England) and the 

annealing temperature of 55°C with different cycle numbers (35 and/or 45 cycles). The 

following specific primers for each DcAOX gene were designed to generate amplicons between 
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250 and 350bp: DcAOX1F and DcAOX1R for DcAOX1, DcAOX2aF and DcAOX2aR for DcAOX2a, 

DAOX2b_133F and DAOX2b_402Rev for DcAOX2b (Table 1). In these assays RT-sqPCR for each 

gene was normalized by D. carota L. Actin1 (Acc. No X17526) using the primers DcA1F and 

DcA1R (Table 1). In general, two to three biological repetitions were performed. For the 

primary culture assay and flower analyses, each biological sample consisted of bulked samples. 

The Ready-to-Go PCR Bead technology was applied to avoid technical non-reproducibility of 

PCR results and the necessity for technical repetitions. The reproducibility by this technique 

was monitored in former research and was validated even for sensitive RAPD studies 

(Arnholdt-Schmitt 2000; Schaffer and Arnholdt-Schmitt 2001). Nevertheless, the critical data 

from tap root tissues and primary cultures were confirmed by including at least one technical 

repetition.  

 

Table 1. List of primers used in this study. 

Primer Sequence Application Comments 

DcA1F:5’-ATGTTGCTATCCAGGCTGTGC-3´ RT Designed from DcActin1  

DcA1R:5’-TCACGAACAATTTCCCGCTCG-3’ RT Designed from DcActin1 

DcAOX1F: 5’-GCAAGTCACTCAGGCGCTTTG-3’ RT Designed from DcAOX1 

DcAOX1R: 5’-CATGGTTTGACGAGGGATTT -3’ RT Designed from DcAox1 

DcAOX2aF: 5’-TGCTGCATCTGAGGTCTCTCC-3’ RT Designed from DcAOX2a 

DcAOX2aR: 5’-GGAGCAGGAACATTTTCAATTG-3’ RT Designed from DcAOX2a 

DAOX2b_133F:5’-ACGGATATACTGTTCAAGAGACG-3’ RT Designed from DcAOX2b 

DAOX2b_402Rev:5’-AGCTTTGGTGACAGTATGTATAGG-3’ RT Designed from DcAOX2b 

VIAL 9:5’-GACCACGCGTATCGATGTCGAC-3’ RACE oligo d(T) primer (Roche)  

DcAox2c1F:5’- AAGAAGCTGAGAATGAGAGG-3’ RACE Designed from DcAOX2a 

DcAOX2bintF1:5’-TGAATAAACACCATAAACCTAAGG-3’ RACE Designed from DcAOX2b 

3’ RACE Out Primer:5’-GCGAGCACAGAATTAATACGACT-3’ RACE 
FirstChoice RLM-RACE Kit 
(Ambion)  

3’RACE Inn Primer:5’-CGCGGATCCGAATTAATACGACTCACTATAGG-3’ RACE 
FirstChoice RLM-RACE Kit 
(Ambion) 

DcAOX2b_404Fw:5’-TCCTATACATACTGTCACCAAAGC-3’ RACE Designed from DcAOX2b 

P6:5’-CGCGGAAGAAGGCACATGGCTGAATA-3’ RACE 
Specific from the Lambda 
gt22a phage vector 
(Invitrogen) 

DcAox2aR:5’-GGAGCAGGAACATTTTCAATTG-3’ RACE Designed from DcAOX2a 

DAOX2b_402Rev:5’-AGCTTTGGTGACAGTATGTATAGG-3’ RACE Designed from DcAOX2b 

DcAOX2a_30Fw:5’-ATGAATCATCTGTTAGCCAAGTCTG-3’ Complete sequence Designed from DcAOX2a 

DcAOX2a_3UTRev:5’-TTCAGAGATATATAGCTATGTGG-3’ Complete sequence Designed from DcAOX2a 

DAOX2b_40Fw:5’-TGCATGCGTCCTTCCTTATTTTTC-3’ Complete sequence Designed from DcAOX2b 

DAOX2b_1188Rev:5’-CGTCTGCTGTGATTTTCTGGAC-3’ Complete sequence Designed from DcAOX2b 

 

2.2.4. Identification of DcAOX2 genes 

For partial gene identification, DNA extraction was performed from a mixture of 

several plants using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). DNA quantification 

was made in comparison to defined concentrations of lambda DNA as a standard in 1 % 

agarose by using GeneTools (Syngene, Cambridge, UK). The degenerated primer pair P1/P2 
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designed in exon 3 of A. thaliana was used for amplification according the conditions referred 

by Saisho et al. (1997). PCR was conducted with Ready-To-Go PCR Beads (GE Healthcare, Little 

Chalfont, England) using 10 ng of DNA as a template. 

 

2.2.5. Isolation of complete DcAOX2 genes  

To determine the 5’ and 3’ ends of both identified DcAOX2 genes 5’ and 3’ RACE-PCRs 

were conducted. Total RNA from a selected in vitro plant was isolated using RNeasy Plant Mini 

Kit as described before. To isolate the 3’ ends a single strand cDNA was produced by 

RevertAid™ H Minus First Strand cDNA Synthesis Kit (Fermentas, Ontario, Canada) as described 

above.  

For the 3’ RACE-PCR of the DcAOX2a the reverse primer VIAL 9 (Roche, Mannheim, 

Germany) and a gene-specific forward primer DcAox2c1F (Table 1) were used. RACE-PCR 

products were amplified as follows: denaturation at 94 °C for 30 s, annealing at 52 °C for 30 s 

and DNA synthesis at 72 °C for 60 s (35 cycles).  

With the procedure previously described it was not possible to isolate the 3’ UTR of 

the DcAOX2b gene. The FirstChoice RLM-RACE Kit (Ambion, Austin, USA) was applied according 

to manufacturer’s instructions using the primers DcAOX2bintF1 and the 3’ RACE Outer Primer 

from the kit (PCR1) (Table 1). The parameters used were 30 s a 94 °C, 30 s at 60 °C and 1 min at 

72 °C for 35 cycles. 1 µl of PCR1 was used as template in PCR2 using the primers 

DcAOX2b_404Fw and the 3’RACE Inner Primer from the kit (Table 1). The parameters used in 

this re-amplification reaction were: 1 min at 95 °C, 2 min at 60 °C and 2 min at 72 °C for 35 

cycles. PCR in both reactions were carried out with Ready-To-Go PCR Beads (GE Healthcare, 

Little Chalfont, England).  

In order to isolate the 5’ end of both DcAOX2 genes a cDNA library of D. carota L. cv. 

Marktgaertner M853 cloned into a Lambda gt22a phage vector (Invitrogen, Karlsruhe, 

Germany) was generated as was previously described (Linke et al. 2003)  and used for 

screening of full-length sequences. For amplification the vector-specific forward primer P6 

(Table 1) was applied combined with the two gene-specific reverse primers: DcAox2aR for 

DcAOX2a, and DAOX2b_402Rev for DcAOX2b (Table 1). RACE-PCR products were amplified as 

follows: 94 °C for 30 s, 55 °C for 30 s and 72°C for 2min (35 cycles).  

To isolate the complete gene sequences and the open reading frames (ORFs) of both 

DcAOX2 genes, DNA and cDNA from an individual plant of cv. Rotin were used as templates. 

The cDNA was produced by RevertAid™ H Minus First Strand cDNA Synthesis kit (Fermentas, 

Ontario, Canada) as described above. Two gene-specific primer sets were designed based on 

the 5’ and 3’ sequences isolated before (DcAOX2a_30Fw and DcAOX2a_3UTRev for the 
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DcAOX2a and DAOX2b_40Fw and DAOX2b_1188Rev for the DcAOX2b) (Table1). PCRs were 

performed using 0.2 µM of each specific primers and the Phusion™ High-Fidelity DNA 

Polymerase (Finnzymes, Espoo, Finland) according to the manufacturer protocol. PCR was 

carried out for 35 cycles each one consisting in 10 s at 98 °C, 20 s at 52 °C for DcAOX2a and 

55 °C for DcAox2b for primers annealing, and 2 min at 72 °C. 

 

2.2.6. Cloning and sequence analysis 

PCR fragments were purified from agarose gels with GFX PCR DNA and Gel Band 

Purification Kit according to the manufacture protocol (GE Healthcare, Little Chalfont, 

England). They were separately cloned into a pGem-T Easy vector (Promega, Madison, USA). 

Plasmid DNA was extracted from putative recombinant clones (Birnboim and Doly 1979) and 

analysed with the restriction enzymes EcoRI, HpyF3I, AluI and Bsp143I (Fermentas, Ontario, 

Canada). Clones showing different restriction patterns were completely sequenced (Macrogen 

company: www.macrogen.com) in the directions of sense and antisense strands using the 

primers T7 and SP6 (Promega, Madison, USA). Sequence homology was explored in the NCBI 

(National Center for Biotechnology Information) data basis using BLAST algorithm (Karlin and 

Altschul 1993).  

DNA and cDNA sequencing data were analysed with SeqMan from Lasergene 7 

software (DNASTAR, Madison, WI), in order to make the pairing of the 3’ end and 5’ end of 

each gene with each initial AOX partial sequence. The DcAOX2a and DcAOX2b sequences were 

translated to protein using the EditSeq from Lasergene 7 software (DNASTAR, Madison, WI). 

Phylogenetic studies included AOX sequences available in NCBI databases. The sequences were 

aligned with ClustalW Multiple alignment in BioEdit software (Hall 1999) and in MegAlign from 

Lasergene 7. The alignments were bootstrapped with 1000 replicates by the Neighbor-Joining 

method using the MEGA 3.1 software. MitoProt software (Claros and Vincens 1996) was used 

to predict the mitochondrial targeting sequence cleavage site. 

 

2.3. Results 

2.3.1. Expression of carrot AOX genes 

Organ-specific expression 

Fig. 1 shows expression patterns of DcAOX1, DcAOX2a and DcAOX2b in roots and 

leaves of carrot plants. In both organs, all AOX genes revealed expression signals. Differential 

expression was observed between paralogous genes in all three biological parallels. In general, 

the transcript abundance of DcAOX1 and DcAOX2a genes was higher in leaves than in roots, 
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while DcAOX2b showed identical expression between both organs in two of the three 

biological repetitions. 

 

Fig. 1. Expression of AOX genes in carrot root and leaves. Transcript accumulation was analysed by RT-

sqPCR using the Actin1 gene for normalisation. Expression levels of DcAOX1, DcAOX2a and DcAOX2b in 

three different in vitro plants was evaluated. Differential expression amongst both genes and plants can 

be observed. The RT-sqPCR-products of root and leaves of all AOX genes were run together in the same 

electrophoresis. 

 

De novo differentiation and tissue-specific expression 

In order to focus on the dynamics of gene expression during growth, a primary culture 

experimental approach was chosen (Fig. 2A). AOX expression was studied after inoculation of 

differentiated secondary root phloem explants in a cytokinin-containing nutrient solution that 

induces tissue dedifferentiation and callus growth. 

An increase in the expression of AOX genes could be observed already after 36 h at the 

beginning of the lag-phase of growth induction. Typically, at this stage individual cells have 

been induced to enter into the cell cycle and first cycles are completed (Gartenbach-Scharrer 

et al. 1990; Arnholdt-Schmitt, 1999). DcAOX1 was most responsive showing a clear up-

regulation of expression with a peak after three days, still a high level of expression at the end 

of the lag-phase (day 6) and a decline at day 14. The same expression profile but at a lower 

abundance was obtained for DcAOX2a. After 14 days at linear cell division growth, the 

expression levels of both DcAOX1 and DcAOX2a were still higher than in the original, quiescent 

tissue. Expression of DcAOX2b remained overall low, and did not show specific patterns.  

Due to the significance that DcAOX1 and DcAOX2a demonstrated during growth 

induction, the expression of these genes was analysed in vivo in the meristem of tap roots, the 

cambium, and for comparison in the adjacent secondary phloem, collected from root slices of 

individual carrot plants. Cambium cells showed clearly higher expression than the secondary 

phloem for both genes. DcAOX1 presented again the highest transcript accumulation (Fig. 2B). 
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Fig. 2. Expression of AOX genes in carrot. Transcript accumulation was analysed by RT-sqPCR using the 

Actin1 gene for normalisation. A) Primary cultures from the secondary phloem of carrot roots. The 

explants were collected at the inoculation moment in the culture medium (0) and 1.5, 3, 6 and 14 days 

after inoculation. Discrimination between DcAOX1, DcAOX2a and DcAOX2b gene expression was 

performed. B) Discrimination between DcAOX1 and DcAOX2a expression in the meristematic tissues 

cambium and secondary phloem. 

 

2.3.2. Characterisation of the full-length sequences of both DcAOX2 genes  

In search for differences between both extended genes of the DcAOX2 subfamily, two 

full-length cDNA sequences were isolated from an individual plant of D. carota cv. Rotin. Fig. 3 

shows the nucleotide sequences and the two putative DcAOX2 proteins, DcAOX2a (Acc. No 

EU286575) and DcAOX2b (Acc. No EU286576). The ORF length of both DcAOX2 genes is similar. 

However, the DcAOX2a gene sequence is slightly longer, containing a continuous ORF of 1014 

bp that encodes a putative polypeptide consisting of 338 amino acid residues, whereas the 

DcAOX2b gene contains a continuous ORF of 957 bp encoding a polypeptide of 319 amino 

acids. The ATG in the beginning of the ORF of both genes is the correct start of translation, 

because it is the first start codon resulting in an open reading frame, and stop codons are 

present in all three reading frames of the transcript before this ATG. Fig. 4 demonstrates the 

conserved sites for intron positions. Both DcAOX2 gene sequences show the expected genome 

organisation of four exons interrupted by three introns (see also Cardoso et al. 2009). The sizes 

of exons 2, 3 and 4 are the same in both DcAOX2 genes with respectively 129 bp, 489 bp and 

57 bp. However, the overall length difference observed for the whole gene sequences is 

exclusively due to exon 1 in the N-terminal region. Exon 1 has a size of 339 bp in DcAOX2a and 

of 282 bp in DcAOX2b.  
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Fig. 3. Nucleotide and deduced amino acid sequences of two cDNAs encodind Daucus carota alternative 

oxidase, DcAOX2a (NCBI accession number EU286575) and DcAOX2b (NCBI accession number 

EU286576). The sites of introns are indicated by filled triangles, and * indicates stop codons. 

 

As can be seen in the alignment of the deduced amino acid sequences of DcAOX2a and 

DcAOX2b and other AOX2 sequences available or identified through ESTs (expressed sequence 

tags) sequences (Fig. 4) the N-terminal regions (that comprises the exon 1) between the AOX2 

sequences analysed are highly different. All sequences are complete, with exception of the 

sequences of Centaurea maculosa AOX2a and AOX2b where a small part from the N-terminal 

region is missing (Fig. 4). The predicted length of the cleavage site of the mitochondrial 

targeting sequence from the beginning of the protein contains 35 amino acids for DcAOX2a 

and 21 amino acids for DcAOX2b. All proteins contain the two conserved cysteines (boxed in 

Fig. 4). 
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Fig. 4. Multiple alignment of the deduced amino acid complete sequences of DcAOX2a and DcAOX2b 

and 13 previously reported AOX2 proteins. The alignment was performed using the ClustalW method of 

Lasergene 7 software. The sites of two conserved cysteins (CysI and CysII) that are involved in 

dimerization of the AOX protein by S-S bond formation (Umbach and Siedow 1993) are indicated in grey 

boxes. Grey arrows indicate the position of a conserved prolin (P) and a conserved methionine (M) in 

AOX2 sub-family identified by Costa et al. (2009a). Black arrows indicate the positions of conserved 

methionine (M) and valine (V) in AOX2 sub-family identified by Frederico et al. (2009). Helical regions 

that are assumed to be involved in the formation of a hydroxo-bridged binuclear iron center (Anderson 

and Nordlund 1999; Berthold et al. 2000) are shown with overlines. E (glutamate) and H (histidine) 

amino acids residues involved in the iron-binding are indicated in filled circles. Possible membrane-

binding domains (Anderson and Nordlund 1999 and Berthold et al. 2000) are shown by two-headed 

arrows above the amino acid sequences. In black boxes are the structural elements proposed to 

influence AOX regulatory behavior by Crichton et al. (2005). Accession numbers to published sequences 

in the GenBank are as follows: DcAOX2a (EU286575), CmAOX2a (EH726462, EH727324, EH746720), 

TpAOX2a (EY182248, EY182249), GmAOX2a (U87906), VuAOX2a (AJ319899), LjAOX2a (AP007304), 

DcAOX2b (EU286576), CmAOX2b (EH723572, EH741730), TpAOX2b (EY177728, EY177727), GmAOX2b 

(U87907), VuAOX2b (AJ421015), LjAOX2b (AP007304), CsAOX2 (AAP33163), VvAOX2 (EU523224), 

AtAOX2 (AB003176). 
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In silico analysis allowed the identification of two additional AOX2 sequences for the 

asterids C. maculosa and Triphysaria pussilla in ‘contigs’ of different ESTs available in the 

database. A phylogenetic tree was constructed by the neighbour-joining method with the 

AOX2 protein sequences also used in the alignment, and two additional sequences used as 

outgroup (AOX from the fungus Neurospora crassa and a sequence of AOX1a from A. thaliana) 

(Fig. 5). For the construction of the phylogenetic tree, a small N-terminal part of 44 amino 

acids for DcAOX2a and 37 amino acids from DcAOX2b was removed after the alignment since it 

was missing in C. maculosa AOX2 sequences (see Fig. 4). 

 

 

Fig. 5. Phylogenetic tree describing the relationship among AOX2 proteins from plants, including the two 

AOX2 sequences of Daucus carota L. The alignments were bootstrapped with 1000 replicates by the 

Neigbor-Joining method using the MEGA 3.1 software. The fungus Neurospora crassa and Arabidopsis 

thaliana AOX1a were used as outgroup. The scale bar indicates the relative amount of change along 

branches. Accession numbers to published sequences in the GenBank are as follows: D. carota AOX2a 

(EU286575), D. carota AOX2b (EU286576), Centaurea maculosa AOX2a (EH726462, EH727324, 

EH746720), Centaurea maculosa AOX2b (EH723572, EH741730), Triphysaria pusilla AOX2a (EY182248, 

EY182249), Triphysaria pusilla AOX2b (EY177728, EY177727), Glycine max AOX2a (U87906), Glycine max 

AOX2b (U87907), Vigna unguiculta AOX2a (AJ319899), Vigna unguiculata AOX2b (AJ421015), Lotus 

japonicus AOX2a (AP007304), Lotus japonicus AOX2b (AP007304), Cucumis sativus AOX2 (AAP33163), 

Vitis vinifera AOX2 (EU523224), Arabidopsis thaliana AOX2 (AB003176). 

 

In all three asterids two genes have been classified as belonging to subfamily AOX2. 

The AOX2a and AOX2b sequences exhibited higher similarity between each other in each of 

these plant species, as can be seen in Fig. 5. T. pussilla demonstrated the highest homology 
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(84.4 %) for the deduced polypeptides of AOX2a and AOX2b. In contrast, AOX2a of the rosids 

(order fabales) Glycine max, Vigna unguiculata and Lotus japonica are closer to each other 

than to the corresponding AOX2b sequences, which form a distinguished group (Fig. 5). The 

plant species that show a single AOX2 sequence (V. vinifera, Cucumis sativus and A. thaliana) 

are included in a group together with AOX2a and AOX2b from D. carota, C. maculosa and T. 

pussilla (Fig. 5). 

 

2.4. Discussion 

Our results present evidence for the expression of all three carrot AOX genes. They 

were expressed in all studied organs (roots and leaves) and tissues (cambium and secondary 

phloem of the tap root), as well as in primary cultures induced to callus growth, and 

demonstrate differential expression in relation to organs, tissues and growth. DcAOX1 played 

the most important role at transcript level in various organs or tissues and responses on 

changing environmental conditions that need acclimation. However, the discussion of the 

results will not focus on similar responses described for genes from other species. Expression 

patterns of AOX genes must be considered in a species-specific manner, since transcript 

profiles of orthologous genes will not be a sufficient measure to group the functional 

importance of AOX genes (Thirkettle-Watts et al. 2003). Studies of gene orthology and gene 

ontology demand more exhaustive and systematic analyses. This view is getting confirmation 

through current knowledge of a high number of polymorphisms in AOX gene sequences in 

naturally growing plants and breeding lines. Individual genotypes and groups of genotypes can 

be distinguished by polymorphic AOX gene sequences, even within the same species 

(Holtzapfel et al. 2003; Cardoso et al. 2009; Costa et al. 2009b; Ferreira et al. 2009; Frederico 

et al. 2009; Polidoros et al. 2009; Santos Macedo et al. 2009). Thus, in future investigations the 

comparison of expression patterns and functionality should consider genetic differences within 

the AOX gene sequence under study. Further, it is known from a large number of studies with 

transgenic plants that the genomic background of plants can be expected to strongly interfere 

with gene expression patterns. 

The expression data uncovers two typical patterns for carrot AOX genes. At first, a 

close link between DcAOX1 and DcAOX2a expression was discovered. Both genes have been 

induced under the same conditions, although different transcript levels have been outlined. 

DcAOX1 shows typically a higher transcript accumulation. Secondly, DcAOX2a and DcAOX2b 

are differentially expressed among each other and typically, DcAOX2b is less responsive. 

AOX1 and AOX2 genes can be discriminated by conserved nucleotide positions near 

important functional sites, such as the conserved cysteine in position CysI and the di-iron-
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binding sites. These sites have been recently highlighted by Costa et al. (2009a) and Frederico 

et al. (2009) (see arrows in Fig. 4). The meaning of these sites and their conservation is though 

still obscure. However, all carrot genes contain both conserved cysteines, di-iron binding sites 

and the currently highlighted conserved sites to distinguish AOX1 from AOX2 genes (see Fig. 4). 

Notably, Lotus japonicus is exceptional in that it does not show the methionine (M) two 

positions downstream of CysII, but contains a serine (S) in this position. Differential or co-

regulation of genes can be due to regulative elements outside gene sequences or due to 

within-gene sequence variations or similarities. Promoter sequences of AOX genes have been 

studied across species in soybean and A. thaliana (Thirkettle-Watts et al. 2003; Ho et al. 2007) 

and have been highlighted in a recent paper (Polidoros et al. 2009). It was concluded that 

promoter motifs will not be sufficient to explain common gene regulation. Clifton et al. (2005) 

suggested that the hierarchical order of common motifs in gene-upstream sequences can be 

important for similar responses. Recently, the importance of within-gene variability is better 

understood and target of intensive studies on cause-relationships for human diseases (e.g. 

Zacharova et al. 2005). Research on plant AOX gene sequences lacks systematic studies on 

sequence variations in paralogous genes of individuals and of different genotypes from the 

same species (see in Cardoso et al. 2009; Costa et al. 2009b; Ferreira et al. 2009; Santos 

Macedo et al. 2009). A comparison of complete DcAOX1 and DcAOX2a sequences can be 

expected in helping to reveal important within-gene motifs for co-regulation. 

 Contrarily, both AOX2 subfamily member genes of D. carota, DcAOX2a and DcAOX2b, 

clearly indicated differential regulation patterns, despite the high similarity of their protein-

coding sequences. Surprisingly, in the clade of asterids both of the deduced proteins of AOX2 

show high similarity to each other in all three species (Fig. 5), whereas AOX2a and AOX2b from 

V. unguiculata, G. max and L. japonicus were more similar to the according protein in the other 

species. The cause for high sequence similarities within the same species might originate from 

duplication events during evolution (Moore and Purugganan 2005). However, a tandem-linked 

duplication is unlikely, because of the differential regulation and obvious neofunctionalization 

(Lynch et al. 2001). Recently, we have mapped carrot DcAOX2a and DcAOX2b and found that 

the two genes mapped to separate linkage groups (unpublished, see also Cardoso et al. 2009). 

Both observations point to independent regulation and function of both genes.  

Sequence comparison of the complete protein-coding region confirmed the similarity 

in exon 2 and exon 3, but identified clear differences in exon 1 between both member genes of 

the AOX2 subfamily. The most pronounced difference was due to the deviating length of the 

cleavage sites of the mitochondrial targeting sequence between DcAOX2a and DcAOX2b. The 

meaning of this difference in the N-terminal region for the regulation of expression activities is 
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unknown. Finnegan et al (1997) refer that a lack of homology in mitochondrial-targeting 

signals is common and typical of proteins requiring N-terminal signals for mitochondrial 

import. However, between phylogenetically very close species, the AOX orthologous proteins 

should be expected to present high identity in the N-termini (Costa et al. 2004). Differences in 

the predicted length of the mitochondrial targeting peptide in AOX2 were reported for 

different plant species: for example 57 amino acids for G. max AOX2a, 51 amino acids for G. 

max AOX2b, 55 amino acids for V. unguiculata AOX2a and 50 amino acids for V. unguiculata 

AOX2b. In DcAOX2a and DcAOX2b proteins the predicted length of the mitochondrial targeting 

sequence cleavage site is smaller and displayed 35 and 21 amino acids, respectively. 

Both carrot AOX2 genes exhibited similar ORF lengths and the same exon - intron 

structure consisting of four exons and three introns. This confirms the conserved structure 

(Considine et al. 2002), typically found for AOX genes. This conserved structure was reported 

for the AOX1a, AOX1c and AOX1d genes of Oryza sativa (Ito et al. 1997; Saika et al. 2002), in 

AOX1a, AOX1b and AOX1c genes of A. thaliana (Saisho et al. 1997), in AOX1, AOX2a and 

AOX2b genes of V. unguiculata (Acc. No DQ100440, Acc. No EF187463 and Acc. No DQ100439) 

and in all three identified genes of G. max (AOX1, AOX2a and AOX2b) (Whelan et al. 1993; 

Finnegan et al. 1997; Thirkette-Watts et al. 2003). Notable exceptions of this structure have 

been evolved by intron loss or gain. In AOX2 from A. thaliana (Saisho et al. 2001) a gain of an 

intron occurred. The gene consists of five exons and four introns. A. thaliana AOX1d (Considine 

et al. 2002) and O. sativa AOX1b (Ito et al. 1997) are the two known examples that show a loss 

of intron 2. More information about intron loss or gain can be consulted in Polidoros et al. 

(2009). Interestingly, a pattern in the size of exons of the AOX genes can be observed. Exons 2, 

3 and 4 of AOX2a and AOX2b genes of D. carota and other AOX2 genes available in the NCBI 

database (Cucumis sativus AOX2 Acc. No AY258276; V. unguiculata AOX2a Acc. No EF1874663; 

G. max AOX2a and AOX2b Acc. No AY303971) count to respectively 129 bp, 489 bp and 57 bp. 

A newly described AOX2 gene from olive shows the same size of 57 bp in exon 4 (Santos 

Macedo et al. 2009). Exon 1 is the only exon sequence that presents variation in its size, in a 

typical four exon structure AOX gene: 363 bp in the AOX2 gene of C. sativus, 312 bp in the 

AOX2a of V. unguiculata, 304 bp and 303 bp in the AOX2a and AOX2b of G. max, and 339 bp 

and 366 bp in AOX2a and AOX2b of D. carota. In case of AOX1d of A. thaliana and AOX1b of O. 

sativa, where a loss of intron 2 took place, exon 2 has the size of 618 bp that corresponds to 

the sum of exon 2 and exon 3 of a typical four exon structure gene (129 and 489 bp). AOX2 of 

A. thaliana (Acc. No AB003176) contains one extra intron in the upstream region (Saisho et al. 

2001) that leads to the existence of two smaller exons (with 193 and 191 bp), but the other 

three downstream exons have the pattern sizes already referred (129 bp, 489 bp and 57 bp). 
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Within-genomic DNA sequence differences can be suspected to affect diverse gene 

regulation mechanisms, such as alternative splicing, transcription binding sites, regulation 

through small RNAs or chromosomal organisation (see in Polidoros et al. 2009). Recent studies 

on polymorphisms in AOX genes of Hypericum perforatum L. (Ferreira et al. 2009), Olea 

europaea L. (Santos Macedo et al. 2009) and V. vinifera L. (Costa et al. 2009b) are providing 

evidence of intron polymorphisms in AOX genes. Introns are generally known to provide a rich 

source for discriminatory SNPs or insertion/deletion polymorphisms between genotypes that 

can be useful in marker-assisted plant breeding. Also, screening for polymorphic sequences in 

the carrot AOX2a gene between breeding lines and cultivars revealed high variability in intron 

3 of this gene (Cardoso et al. 2009). Variable 3’UTR-length induced differential polyadenylation 

and polymorphic single nucleotide sites in the 3’UTR related to miRNA target sites may also be 

a source for differential gene regulation. Currently, such types of polymorphisms have been 

observed also in AOX genes (Polidoros et al. 2005; Santos Macedo et al. 2009). Thus, we 

speculate that exon 1-derived sequence variation between carrot AOX2a and AOX2b genes 

and differences in 5’ upstream sequences will not be sufficient to explain the observed clear 

differences in the expression regulation of both genes. We suggest that important regulative 

effects may also come from sequence variations within the three putative introns and the 

3’UTR of these genes. 

 

2.5. Conclusion 

Results about transcript abundances in diverse carrot tissues, organs and a primary 

culture indicate a differential expression for all three identified AOX genes from Daucus carota 

L.. Similar expression profiles for DcAOX1 and DcAOX2a in the studied systems point to co-

regulation of these two genes, although the extent of transcript accumulation differed 

between them. An independent and functional role of all three AOX genes can be suggested 

rather than merely the evolution of pseudogenes or non-functional gene duplication in each 

sub-family. The meaning of the length variation in the mitochondrial targeting sequence 

cleavage sites in exon 1 for differential regulation between DcAOX2a and DcAOX2b remains 

yet unclear and needs clarification. The high similarity between both ORFs, despite a clearly 

differential regulation, demands searching for important regulative cis-elements and/or 

within-gene differences at genomic DNA level. 

It can be concluded that given the differential expression dynamics of carrot AOX 

genes, this species has a good potential as model to advance current insights in the 

functionality and evolutionary importance of both AOX subfamilies. A future transgenic 
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approach for functional genomics and association studies is expected to bring knowledge a 

significant step forward. 
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CHAPTER 3 - STRESS-INDUCED ACCUMULATION OF DcAOX1 AND DcAOX2a 

TRANSCRIPTS COINCIDES WITH CRITICAL TIME POINT FOR STRUCTURAL BIOMASS 

PREDICTION IN CARROT (Daucus carota L.) PRIMARY CULTURES  

 

This chapter is adapted from the submitted manuscript: 
 
Campos MD, Nogales A, Cardoso HG, Rajeev Kumar S, Nobre T, Sathishkumar R, Arnholdt-
Schmitt B. Stress-induced accumulation of DcAOX1 and DcAOX2a transcripts coincides with 
critical time point for structural biomass prediction in carrot primary cultures (Daucus 

carota L.). Submitted 
 

 
Abstract 

Stress-adaptive cell plasticity in target tissues and cells for plant biomass growth is 

important for yield stability. In vitro systems with reproducible cell plasticity can help to 

identify relevant metabolic and molecular events during early cell reprogramming. In carrot, 

regulation of the central root meristem is a critical target for yield-determining secondary 

growth. Calorespirometry, a tool previously identified as promising for predictive growth 

phenotyping has been applied to measure to measure the respiration rate in carrot meristem. 

In a carrot primary culture system (PCS), this tool allowed identifying an early peak related 

with structural biomass formation during lag phase of growth, around the 4th day of culture. In 

the present study, we report a dynamic and correlated expression of carrot alternative oxidase 

(AOX) genes (DcAOX1 and DcAOX2a) during PCS lag phase and during exponential growth. 

Both genes showed an increase in transcript levels until 36 h after explant inoculation, and a 

subsequent down-regulation, before the initiation of exponential growth. In PCS growing at 

two different temperatures (21 °C and 28 °C), DcAOX1 was also found to be more expressed in 

the highest temperature, and the transcript accumulation of both AOX genes did not 

unambiguously relate to growth performance. DcAOX genes’ were further explored in pot 

plants in response to chilling, which confirmed the early AOX transcript increase prior to the 

induction of a specific anti-freezing gene (AFP). Our findings point to DcAOX1 and DcAOX2a as 

being reasonable candidates for functional marker development related to early cell 

reprogramming. While the sequence of gDcAOX2a was previously described, we characterise 

the complete genomic sequence of DcAOX1. 

 

Keywords: Daucus carota; alternative oxidase; cell reprogramming; growth induction; chilling; 

DcAOX1 gene characterisation 
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3.1. Introduction 

Plant breeding can use in vitro systems not only for plant cloning and propagation, but 

also as a system to isolate scientific questions related to stress responsiveness for later up-

scaling of the knowledge to plant level. Especially, early molecular plant responses during cell 

reprogramming upon abiotic stress can easily be targeted (Arnholdt-Schmitt 1993; Arnholdt-

Schmitt et al. 1995 and references in: Arnholdt-Schmitt 2004; Arnholdt-Schmitt et al. 2006; 

Frederico et al. 2009; Zavattieri et al. 2010). In recent years, considerable progress has been 

made regarding the development and isolation of stress tolerant genotypes by using in vitro 

techniques (Pérez-Clemente and Gómez-Cadenas 2012). Phenotypic variability shown in in 

vitro culture systems is due to high genotype dependence, going from species level to the level 

of cultivar/variety and individual genotypes. It can vary between organs/tissues and 

developmental stages (Cardoso et al. 2010 and references therein). This variability in response, 

known as in vitro recalcitrance, could be described as varying capacity for plant cells to adapt 

to new environmental conditions, i.e. the capacity to develop and express new cell programs. 

This general capacity is important at plant level when environmental conditions are changing. 

For example, efficient transformation of trichoblasts (see Arnholdt-Schmitt 2004) to fine root 

hairs is important under changing phosphorus availability in the soil to guarantee access to the 

nutrient. Plant adaptive plasticity was recently proposed as a new trait in plant breeding 

(Nicotra et al. 2010; Cardoso and Arnholdt-Schmitt 2013), since it influences stability of plant 

biomass and yield production. Plant research for robust phenotypes that show stability in 

growth performance is crucial, but also the most critical and most expensive step in breeding. 

Efficient marker systems and reliable screening tools that can assist in identifying and selecting 

superior robust genotypes with differential adaptive plasticity are still important bottlenecks 

(Arnholdt-Schmitt et al. 2014; Arnholdt-Schmitt et al. 2015a). 

In molecular plant breeding, candidate gene approaches for marker-assisted selection 

are considered a promising strategy (Collins et al. 2008). Good candidate genes for multi-stress 

tolerance and yield stability are genes involved in cell coordination and decision making in 

target cells. Alternative oxidase (AOX) is increasingly getting into the focus of research on 

stress acclimation and adaptation and seems to play a key role in regulating the process of cell 

reprogramming by ameliorating metabolic transitions related with the cellular redox state and 

flexible carbon balance (Arnholdt-Schmitt et al. 2006; Rasmusson et al. 2009; Arnholdt-Schmitt 

2015). AOX is supposed to provide the respiratory system with built-in flexibility regarding the 

degree of coupling between carbon metabolism pathways, electron transport chain activity, 

and ATP turnover (Vanlerberghe 2013). For this reason, AOX genes were proposed and 

adopted as candidate genes for functional marker development related to multi-stress 
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tolerance and plant adaptive plasticity (Arnholdt-Schmitt et al. 2006; Polidoros et al. 2009; 

Cardoso and Arnholdt-Schmitt 2013). AOX genes were found to be differentially transcribed in 

various systems early during in vitro culture –induced morphogenic responses. This includes de 

novo growth from quiescent root phloem tissue (Campos et al. 2009) and somatic 

embryogenesis (Frederico et al. 2009a) in carrot and adventitious rooting in olive (Santos 

Macedo et al. 2009; Santos Macedo et al. 2012). 

Nogales et al. (2013) developed calorespirometry as a new tool for breeding in a carrot 

in vitro primary culture system. This in vitro system, originated from quiescent secondary tap 

root phloem, was first established by Steward et al. (1952) and later proposed by Arnholdt-

Schmitt (1999) as a mean for carrot yield prediction. Calorespirometry has shown useful to 

accurately monitor temperature dependent growth performance in terms of metabolic rates, 

respiratory rates, efficiency of biomass acquisition and growth rates over 21 days of in vitro 

cultures (Nogales et al. 2013). Those data showed a drastic increase in structural biomass 

formation until around the 4th day after inoculation during the lag phase of growth.  

In the work here presented, we expanded the number of cultures tested by Nogales et 

al. (2013) and first demonstrate that the increase in structural biomass formation, showing an 

early peak during the lag phase of growth, is present in all the five tested cultures. We report 

that both carrot AOX genes, DcAOX1 and DcAOX2a, previously demonstrated as the ones with 

major expression in the primary culture system (Campos et al. 2009), showed increased levels 

of transcripts until the 4th day of culture and subsequent down-regulation before exponential 

growth starts. As a first attempt to transpose these findings to plant level, we also show an 

early transcript accumulation for both AOX genes in a chilling pot plant experiment prior to the 

induction of a specific anti-freezing gene (AFP). This study identifies DcAOX1 and DcAOX2a as 

being reasonable candidates for functional marker development on efficient cell 

reprogramming under changing environments in general. The isolation and characterisation of 

the complete genomic sequence of DcAOX1 is further reported. 

 

3.2. Materials and methods 

3.2.1. Establishment of a primary culture system (PCS) 

To study the dynamics of gene expression during growth, a primary culture approach 

was chosen. Ten weeks old plants of D. carota L. cv. Rotin grown in pots, containing 

commercial soil mixture maintained under greenhouse conditions were used (Campos et al. 

2009). Five explants from the secondary tap root phloem of each plant were inoculated per 

Erlenmeyer containing 20 mL of NL liquid medium (Neumann 1966) supplemented with kinetin 

(1 mg·L-1) and indoleacetic acid (2 mg·L-1). Inoculation of explants from quiescent secondary 
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root phloem in a cytokinin-containing nutrient media induces cell program changes that imply 

the acquisition of a so-called ‘undifferentiated’ stage (callus) and subsequent cells 

multiplication (callus growth). 

 

3.2.2. Calorespirometry measurements 

In order to calculate specific growth rates (i.e. structural biomass formation rate, 

Rstruct_biomass) and efficiencies of biomass acquisition as described in Nogales et al. (2013), the 

respiratory metabolic heat rates and CO2 emission rates were measured in PCS by 

calorespirometry, at different time points. To confirm reproducibility of the early peak for 

structural biomass formation reported by these authors, we expanded the existing data set 

and performed new measurements in three PCS growing at two different incubation 

temperatures (21 °C and 28 °C). A total of five PCS measurements are presented. 

 

3.2.3. DcAOX1 and DcAOX2a expression analysis 

AOX response during tissue dedifferentiation and callus growth  

We studied DcAOX1 and DcAOX2a mRNA levels in an in vitro PCS by:  

(i) Semi-quantitative PCR (RT-sqPCR) on both AOX genes, in order to shed light on transcript 

changes during the earliest events related to cell reprogramming and also in the later growth 

phase. Explants from 4 individual carrot plants (4 biological replicates) inoculated at 21 °C were 

collected at different time points: 0 h, 4 h, 8 h, 12 h, 36 h, 4 days, 8 days, 14 days, 21 days and 

28 days post inoculation (hpi/dpi). From 0 hpi until 4 dpi, 30 explants were taken per time 

point. For the remaining time points, a maximum of 15 explants were taken. Samples were 

collected as bulked samples. Fresh weight (FW) of each callus was also determined at 0, 4, 8, 

12, 14, 18, 21 and 28 dpi. 

(ii) Quantitative real-time PCR (RT-qPCR), to compare the transcript changes of AOX on PCS 

under two incubation temperatures (21 °C and 28 °C, as in 2.2). Explants from five individual 

plants (five biological replicates) were collected at 0 and 14 dpi (T0 and T14). Samples 

consisted of bulked samples of about 50 explants. The five plants used on expression analysis 

(n = 5) resulted from a previous selection of 12 individual plants based on their callus growth 

behaviour under the two temperatures tested. Fresh weight of each callus was determined at 

respective time points in the 12 plants. Data were analysed by Student’s t -test using the 

STATISTICA 8.0 statistical package (StatSoft Inc., Tulsa, USA). 
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AOX response to chilling exposure (CE) of carrot plants  

Seeds of D. carota cv. Rotin were sowed in pots containing commercial soil mixture 

and maintained at controlled conditions for one month (23 °C, 70-75 % of air humidity and 

16 h photoperiod with 200 ± 20 μmol m-2 s-1 light intensity). 

Two CE experiments were conducted by:  

(i) Semi-quantitative PCR (RT-sqPCR), to study the effect of chilling exposure on AOX 

expression of seedlings growing under controlled conditions (as described above), and 

exposed to 4 °C for five days. Samples were collected at different time points: 0, 1, 2, 3, 4 and 

5 days post chilling exposure (dpce). Samples consisted of young leaves taken as bulked 

samples from three individual plants. Three bulked samples (biological replicates) were 

considered in a total of 54 plants. 

(ii) Quantitative real-time PCR (RT-qPCR), to evaluate early AOX transcript levels on seedlings 

exposed to 4 °C for 24 h. Samples were collected at 0 h, 10 min, 45 min, 4 h, 6 h and 24 h post 

chilling exposure (minpce or hpce) and at 24 h and 48 h after transferring the plants back to 

the initial growth conditions, as described above (recovery period). Samples consisted of 

young leaves taken from single plants. Four plants (4 biological replicates) were considered per 

time point. Additionally, the expression of carrot antifreezing protein (DcAFP) was evaluated in 

this experiment at the referred time points. 

 

Sample processing  

Total RNA from all samples was extracted using RNeasy Plant Mini Kit (Qiagen, Hilden, 

Germany), with on-column digestion of DNA using RNase-Free DNase Set (Qiagen, Hilden, 

Germany), according to manufacturer’s instruction. DNase-treated total RNA (1 µg) were 

reverse transcribed with random decamer primer (PCS experiments) or the oligo d(T) primer 

(CE experiments), using the RETROscript® kit (Ambion, Austin, TX, USA) according to 

manufacturer’s instruction. The maximum number of time points chosen to collect plant 

material for RNA extraction and for growth curve analysis was restricted by nature of root 

sizes. 

 

Transcript analyses 

(i) RT-sqPCR: all RT-sqPCR experiments were performed using Ready-To-Go PCR Beads (GE 

Healthcare, Little Chalfont, England), 2 µL of cDNA (diluted 1:10) as template and 0.2 µM of 

each specific primer (Table 1). Elongation factor 1 alpha (DcEF1α) was previous selected 

(results not shown) as the reference gene for all RT-sqPCR experiments. PCR for DcEF1α and 

DcAOX1 (for primers sequences see Table 1) was carried out for 32 cycles, each one consisting 
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of 30 s at 94 °C, 15 s at 60 °C, and 15 s at 72 °C. For DcAOX2a the PCR was of 35 cycles 

consisting in 30 s at 94 °C, 30 s at 55 °C, and 30 s at 72 °C. An initial step at 94 °C for 5 min and 

a final extension at 72 °C for 5 min were performed in both cases. A previous experiment 

confirmed that disinfection did not have influence on AOX transcript levels in PCS (data not 

shown). RT-sqPCR products were analysed by electrophoresis in 2 % (w/v) agarose gel. For PCS, 

image analysis was carried out to normalise the expression level of AOX cDNA with the 

reference DcEF1α gene, by density band analyses using ImageJ 1.47v software 

(http://imagej.nih.gov/ij/) (Schneider et al. 2012). The results were expressed as mean ± 

standard error (SE) of four individual plants. Differences between time points were examined 

by one-way ANOVA using the STATISTICA 8.0 statistical package (StatSoft Inc.). 

(ii) RT-qPCR: Transcript abundances of DcAOX1, DcAOX2a and DcAFP (Table 1) were 

determined by RT-qPCR on a 7500 Real Time PCR System (Applied Biosystems, Foster City, 

USA) using Maxima SYBR Green q-PCR Master Mix (Fermentas, Ontario, Canada). Reaction (15 

µL), consisted in 2 µL of first-strand cDNA (previously diluted 1:10) and 0.3 µM of each specific 

primer were used for the expression analysis. DcEF1α was selected for data normalisation 

based on previous experiments involving 12 candidate genes (Campos et al. 2015; data for PCS 

not shown). Amplicons of all genes were previously confirmed by direct sequencing. Standard 

curves of a 4-fold dilution series (1:1-1:125) (run in triplicate) of pooled cDNA from all samples 

were used for primer efficiency determination. Minus reverse transcriptase and no template 

controls were included to assess contaminations. RT-qPCR was performed for 40 cycles, each 

consisting of 15 s at 95 °C followed by 1 min at 60 °C. To analyse the dissociation curve profiles, 

an additional step at 95 °C during 15 s was added, followed by a constant increase of 

temperature between 60 and 95 °C. The 2−ΔΔCT methodology (Livak and Schmittgen 2001) was 

used to normalise expression data.  

For PCS experiment (i) and CE experiment (ii), a One-way analysis of variance (ANOVA) 

with Tukey’s post hoc test was used to search for significant differences in gene expression 

between time points. Regarding the PCS experiment at different temperatures (ii), differences 

in transcript levels between temperatures at T14 were analysed by Student’s t -test (n = 5). A 

Pearson’s product–moment correlation (Zar 2010) was used to compare normalised 

expression data of DcAOX1 versus DcAOX2a. All statistical analyses were performed using the 

STATISTICA 8.0 statistical package (StatSoft Inc., Tulsa, USA). Significance levels were set at 

P<0.05. 
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Table 1. Primers used in RT-sqPCR and RT-qPCR. 

Amplicons size. (AS); primers efficiency (E) and regression efficiency (r2) for the primary culture 
experiment (PCS) and chilling experiments (CE). 
 

3.2.4. DcAOX1 gene isolation  

Plant material  

Seeds of D. carota L. cv. Rotin were germinated in vitro in MS basal media (Murashige 

and Skoog 1962) and maintained under controlled conditions (25 ± 1 °C, 16 h photoperiod with 

34 µmolm-2s-1 light intensity). Eight-week-old in vitro grown seedlings were used for genomic 

DNA (gDNA) and total RNA extraction. For gene identification, mixtures of several plants were 

used; for complete gene isolation at gDNA and cDNA level, single plants were taken. 

 

Identification of DcAOX1  

gDNA extraction was performed using DNeasy Plant Mini Kit (Qiagen, Hilden, 

Germany) following the manufacturer’s instructions. Degenerate primers (P1/P2, annealing at 

60 °C for 2 min and extension at 72 °C for 2 min, Table 2), previously designed based on A. 

thaliana (Saisho et al. 1997) were used for AOX gene identification. PCR was performed with 

Ready-To-Go PCR Beads (GE Healthcare, Little Chalfont, England) using 10 ng·μL-1 of gDNA as 

template and 0.2 µM of each primer. 

 

Isolation of DcAOX1 complete sequence 

To determine the 5’ and 3’ ends of the isolated DcAOX1 fragment, 5’ and 3’ RACE-PCRs 

were performed. Total RNA was isolated using RNeasy Plant Mini Kit (20) (Qiagen, Hilden, 

Germany), with on-column digestion of DNA with the RNase-Free DNase Set (Qiagen, Hilden, 

Germany) according to the manufacture’s protocol.  

For 3’RACE-PCR, single cDNA strand was produced using the enzyme 

RevertAidTmHMinus M-MuLV Reverse (Fermentas, Ontario, Canada), with oligo (dT) primer 

VIAL 8 (Roche, Mannheim, Germany) (Table 2), according to the manufacturer’s instruction. 

For the synthesis of the second cDNA strand and subsequent 3’ end amplification, the reverse 

Gene [NCBI accession ID] Primer sequence (5’→3’) 
AS 

(bp) 

E (%) (r
2
) 

PCS CE 

DcEF1α [GenBank:GQ380566] 
Fw TGGTGATGCTGGTTTCGTTAAG  

75 97.0 (0.996) 97.7 (0.996) 
Rv AGTGGAGGGTAGGACATGAAGGT 

DcAOX1 [GenBank:EU286573] 
Fw CTTCAACGCCTACTTCCTTG 

196 99.2 (0.996) 87.7 (0.994) 
Rv ATCTCGCAATGTAGAGTCAGC 

DcAOX2a [GenBank:EU286575] 
Fw TCTTCAATGCTTTCTTTGTTCTT 

200 92.9 (0.993) 87.7 (0.992) 
Rv GACATCTTTTAGTTTGGCATCTTT 

DcAFP [Genbank:AJ131340] 
Fw CGACAAGCAAGC TTTACT CCAA 

80 - 94.1 (0.992) 
Rv CGTCTGACACCCATGAGTCTGT 
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primer VIAL 9 (Roche, Mannheim, Germany) (Table 2) was used in combination with gene-

specific forward primer (DcAOX1Fw, annealing at 55 °C for 30 s, extension 72 °C for 60 s, see 

Table 2) designed based on previously isolated AOX1 P1/P2 sequence. One µL of a 1:10 cDNA 

dilution of first strand PCR product was used as template for amplification. 

To isolate the 5’ end, a cDNA library of D. carota L. cv. Marktgaertner M853 (kindly 

provided by Dr. Bettina Linke, Humboldt University of Berlin, Germany) cloned into a Lambda 

gt22a phage vector (Invitrogen, Karlsruhe, Germany) was generated (Linke et al. 2003). 5’ 

RACE-PCR was carried out using 1 µL of cloned library as template and vector specific forward 

primer P6 (Table 2), combined with a gene-specific reverse primer designed based on the 

sequence previously isolated with P1/P2 (DcAOX1R, annealing at 55 °C for 30 s and extension 

at 72 °C for 2 min, see Table 2).  

 

Table 2. Primers used for DcAOX1 gene isolation. 

Primer name Sequence (5′→3′) 

P1 CTGTAGCAGCAGTVCCTGGVATGGT 
P2 GGTTTACATCRCGRTGRTGWGCCTC 
VIAL 8 GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTV 
VIAL 9 GACCACGCGTATCGATGTCGAC 

DcAOX1Fw GCAAGTCACTCAGGCGCTTTG 
P6 CGCGGAAGAAGGCACATGGCTGAATA 

DcAOX1R ATCTCGCAATGTAGAGTCAGCC 
DcAOX1_25Fw ATTTCTGGTACATTTTAGTTTTGA 

DcAOX1_1304Rev CATGGTTTGACGAGGGATTT 
DcAOX1_24Fw AAAATAACAATGATGATGACACG 
DcAOX1_1032Rv AACCAGAGATTCCTCCACTTCA 
V = A, C or G; R= A or G; W=A or T 

 

RACE-PCRs were performed using mix of 0.5 U of Taq DNA polymerase (Thermo 

Scientific, Wilmington, DE, USA) with 1X manufacturer supplied (NH4)2SO4 buffer, 1.5 mM 

MgCl2, 0.2 mM of each dNTPs (Fermentas, Ontario, Canada) and 0.2 μM of each primer. 

For complete gene (cDNA) isolation, a gene-specific primer set (DcAOX1_25Fw and 

DcAOX1_1304Rv, annealing at 52 °C for 20 s and extension at 72 °C for 2 min, Table 2) was 

designed based on 5’ and 3’ UTR sequences previously isolated with RACE-PCRs. For gDNA 

complete gene isolation, another gene-specific primer set (DcAOX1_24Fw and DcAOX1_1032 

Rv, annealing at 64 °C for 30 s and extension at 72 °C for 2 min, Table 2) was designed. Ten 

ng·μL-1 of gDNA and a 1:10 cDNA dilution from a single plant were used as templates. PCRs 

were performed using Phusion™ High-Fidelity DNA Polymerase (Finnzymes, Espoo, Finland) 
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according to the manufacturer’s instruction, using 0.2 µM of each specific primer. All PCR 

products were analysed in 1.4 % (w/v) agarose gel. 

 

Cloning and sequence analysis 

All PCR fragments were purified using GFX PCR DNA and Gel Band Purification Kit (GE 

Healthcare, Little Chalfont, England) according to the manufacture’s protocol, and cloned into 

pGEM-T Easy vector (Promega, Madison, WI, USA). Reaction products were transformed to 

E. coli JM109 (Promega Madison, WI, USA) competent cells. Plasmid DNA was extracted from 

putative recombinant clones (Bimboim and Doly 1979) and confirmed by using EcoRI 

restriction enzyme (Fermentas, Ontario, Canada). Selected recombinant clones were 

sequenced (Macrogen, Seoul, Korea: www.macrogen.com) using T7 and SP6 primers 

(Promega, Madison, WI, USA). Sequence homology was confirmed in NCBI GenBank database 

(National Center for Biotechnology Information, Bethesda, MD, http://www.ncbi.nlm.nih.gov/) 

using BLASTn and BLASTp algorithm (Karlin and Altschul 1993). 

SeqMan and EditSeq softwares (LASERGENE 7, GATC Biotech, Konstanz) were used to 

edit the obtained AOX sequence. Phylogenetic studies included data retrieved from public 

web-based databases, freely available (NCBI: http://www.ncbi.nlm.nih.gov/), Plaza 

(http://bioinformatics.psb.ugent.be/plaza/); e!EnsemblPlants (http://plants.ensembl.org 

/Multi/Search/New?db=core) and IPK Barley Blast Server: (http://webblast.ipk-

gatersleben.de/barley/). Non-annotated AOX sequences used for phylogenetic studies were 

previously identified (Cardoso et al. 2015).  

Sequences were aligned using MAFFT software (online version: 

http://mafft.cbrc.jp/alignment/server/) under the model G-INS-1 (Slow; progressive method 

with an accurate guide tree), all other variables left as default. The best-fit model of amino 

acid replacement was selected by Akaike Information Criterion (AIC) according to the software 

ProtTest (Darriba et al. 2011). The selected model of protein evolution (probability of change 

from a given amino acid to another over a period of time, given some rate of change) was 

JTT+I+G [the JTT empirical model (Jones et al. 1992), considering an invariable fraction of 

amino acids (+I) and assigning each site a probability to belong to a different category of rate 

change (Darriba et al. 2011)]. Phylogenetic reconstruction was done through maximum 

likelihood as implemented in the software MEGA v.6, under the above referred model, and 

bootstrapped with 1000 replicates. The phylogenetic tree was rooted with Chlamydomonas 

reinhardtii alternative oxidase (AOX1) sequence. 

MITOPROT software (Claros and Vincens 1996) was used to predict mitochondrial 

targeting sequence and cleavage site. Gene draw was performed in FancyGene 1.4 (Rambaldi 
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and Ciccarelli 2009). For intron identification, the Spidey software 

(http://www.ncbi.nlm.nih.gov/spidey/) was used. 

 

3.3. Results 

3.3.1. Calorespirometry in primary cultures 

Fig. 1 shows the results for Rstruct_biomass calculated from calorimetrically measured Rq 

and RCO2, from day 0 to day 21 after inoculation. An increase on Rstruct_biomass could already be 

observed at day 2 in all PCS, and in most cases reached a maximum at day 4. In PCS1 and PCS4 

grown at 21 °C the peak on Rstruct_biomass is reached at day 7, since the speed (slope when a 

linear regression is fitted between two data points) of increase is slower. 

 

 

 

Fig. 1. Rstructural biomass in callus grown at 21 °C and 28 °C in primary cultures during 21 days. Each data 

point represents the average of 3 measurements performed using 200-300 mg of callus. 

 

3.3.2. Expression of carrot AOX genes 

PCS de novo differentiation 

The growth curve and aspect of callus along the 28 days of in vitro culture can be 

observed in Suppl. Fig. 1. During the first 8 days in culture (lag-phase), growth of the explants 

was not visible. Then, exponential cell division started and callus proliferate until 28 days. 

During growth, callus lost the original orange colour of the explants and progressively acquired 

a green colour (Suppl. Fig. 1).  

Transcript levels for both AOX genes were found to slightly increase from the early 

beginning (4 hpi) of the lag-phase until 36 hpi (Fig. 2). The time points showing highest level of 

transcripts (P>0.05) were 4 hpi until 4 dpi for DcAOX1, and 8 hpi until 36 hpi for DcAOX2a. 
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However, it was also observed that the timings of higher or lower expression were somewhat 

unphased between individual explants (not shown), thus reducing the possibility of observing 

significant differences between time points. At 4 dpi (lag phase), while the level of expression 

was still high for DcAOX1, DcAOX2a was already down regulated to values near the ones 

measured at 0 hpi. At the end of the lag phase and at initiation of exponential growth (8 dpi), 

expression of both genes achieved the lowest levels and remained relatively stable until 28 

dpi, with values similar to the original, quiescent tissue (0 h). Expression patterns of DcAOX1 

and DcAOX2a significantly correlated (P=0.01). 

 

 

Fig. 2. Transcript levels of DcAOX1 and DcAOX2a in primary cultures from secondary phloem of carrot 

roots. Samples were collected at 0 h, 4 h, 8 h, 36 h, 4 days, 8 days 14 days, 21 days and 28 days post in 

vitro inoculation. Cultures were maintained at 21 °C. Transcript levels were analysed by RT-sqPCR using 

Elongation factor 1 alpha (DcEF1α) as reference gene. Normalisation of the quantity of DcAOX 

transcripts was performed through the ratio of integrated densities DcAOX cDNA and DcEF1α cDNA 

bands. Data are the mean values ± SE of four individual plants.  

 

PCS response to temperature 

Fig. 3 shows expression levels for both DcAOX genes during exponential growth, at 14 

dpi (T14), at two different growing temperatures (21 °C and 28 °C), in 5 explants with 

independent origins. DcAOX1 was significantly higher expressed (5-fold) at 28 °C than at 21 °C 

(P<0.05). No significant differences were observed for DcAOX2a between temperatures, and 

this gene showed low expression levels at both temperatures (Fig. 3). These five plants had 

been selected for these studies on AOX gene expression variation from a larger group of 12 

plants, because they showed variation in growth (Table 3). Callus FWs of explants were taken 

per single plants, grown at 21 °C and 28 °C (Table 3). As expected, temperature influenced 

callus FWs. At 28 °C, the mean value for FWs exceeded significantly the achieved at 21 °C 

(Table 3). A clear genotype effect was visible, allowing thus identification of temperature-
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dependent growth variants. From 12 plants used, 8 showed significantly higher production of 

callus biomass at 28 °C, 3 did not show significant differences between both temperatures and 

one even had a significantly higher callus FW at 21 °C. 

 

Fig. 3. Transcript levels of DcAOX1 and DcAOX2a in primary cultures derived from secondary phloem of 

carrot roots grown at different temperatures. The expression was normalised with Elongation factor 1 

alpha (DcEF1α). T14-21 °C: explants after 14 days in culture, growing at 21 °C; T14-28 °C: explants after 

14 days in culture, growing at 28 °C. T0 (explants before inoculation) was used as calibrator. Data are the 

mean values ± SE of five individual plants. Student’s t test was applied to test differences between 

temperatures for each gene. Significant differences are marked with *. 

 

The five selected plants revealed the following variation in growth (Table 3): two 

showed significantly higher callus biomass at 28 °C (R2 and R5), two had no significant 

differences between both temperatures (R1 and R3) and one showed a significantly higher 

callus FW at 21 °C (R4). R3 was also characterised by low growth at both temperatures. 

However, concerning AOX transcript accumulation, at T14 during the exponential growth 

phase no direct link was detected between callus FW and individual DcAOX1 or DcAOX2a 

transcript accumulation. 
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Table 3. Callus fresh weight (FM) from a primary culture system of Daucus carota L. cv. Rotin at 

exponential growth phase, grown at 21 °C or 28 °C.  

 

Due to their different growth behaviour, R1, R2, R3, R4 and R5 were the plants selected for the RT-qPCR 
expression analysis.  
n: number of obtained callus from each plant. Differences between callus FW in the two temperatures 
were analysed by Student’s t test, and separatly for each root. Significant differences between 
temperatures are indicated by *(p < 0.05) or *** (p < 0.001). 
 

Plant response to chilling  

One month old carrot seedlings exposed to 4 °C for five days showed a similar 

induction pattern between both DcAOX1 and DcAOX2a (Fig. 4). The level of transcripts 

detected in DcAOX1 was clearly higher than that of DcAOX2a. Expression levels of DcAOX1 

were high from day 1 to day 3 and decreased from day 4 to 5.  

 

 

Fig. 4. Transcript levels of DcAOX1 and DcAOX2a genes in leaves of D. carota cv Rotin seedlings exposed 

to chilling (4 °C) for five days. Elongation factor 1 alpha (EF1α) was used as reference gene and the gel 

profiles are representative of three independent RT reactions from 3 biological replicates. 

 

Plant 
number 

Callus fresh weight (mg) 

n 28 °C n 21 °C 

1 53 42.4 50 39.9 R1 

2 47 64.1*** 55 24.8  

3 76 62.2*** 62 26.3  

4 35 28.7 38 25.5  

5 64 55.0*** 77 21.4 R2 

6 34 28.5*** 36 9.0  

7 65 25.7 61 23.6 R3 

8 62 28.0 65 32.8* R4 

9 60 21.8*** 60 14.6  

10 57 59.0*** 55 33.5 R5 

11 40 51.5*** 45 27.0  

12 38 82.3*** 49 32.3  

mean 
plant/temperature 45.5***  26.0  
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When RT-qPCR analysis was performed with a higher time resolution until 24 hpce, 

both AOX genes showed very early responses to chilling exposure, since significantly higher 

mRNA levels were found at 45 min comparing to 0 hpce (P < 0.05) (Fig. 5). In case of DcAOX1, 

an increase was observed immediately after 10 min of exposure with 1.2-fold difference in RE, 

followed by a 1.5-fold increment after 45 min. A slight transcript level reduction was observed, 

followed by a significant increase until 24 hpce (P < 0.05) (Fig. 5). DcAOX2a increased 2.4-fold 

at 45 min of cold exposure relatively to 0 hpce (P < 0.05) (Fig. 5). Transcript levels of DcAOX2a 

then decreased, showing constant levels until the 24 h of the recovery phase. By 48 h of 

recovery, a further reduction in mRNA levels was observed (Fig. 5). Expression patterns of 

DcAOX1 and DcAOX2a significantly correlated (P < 0.001). 

 

 

Fig. 5. Transcript levels of DcAOX1, DcAOX2a and DcAFP during chilling exposure in one-month-old 

carrot (Daucus carota L. cv. Rotin) seedlings. Samples were harvested at 0 hpce (immediately before 

chilling exposure) and after 10 min, 45 min, 4 h, 6 h, and 24 h of exposure to at 4 °C and after 24 h and 

48 h after transferring plants back to the initial growth conditions (recovery period). Expression data 

was analysed by RT-qPCR using Elongation factor 1 alpha (DcEF1α) as reference gene. Data are the 

mean values ± SE of four plants considered per time point. Statistical analysis (one-way ANOVA with 

Tukey’s post hoc test) was applied to each gene separately. Different superscript letters indicate 

significant differences between sampling points. 

 

Compared to both AOX genes, cold-responsive gene AFP in carrot showed a later but 

much higher level of transcripts in plants subjected to chilling stress. After 10 min and 40 min 



CHAPTER 3 
 

63 
 

of cold stress, the increase was only of 0.15 and 1.17-fold difference in RE from the 0 hpce 

respectively (Fig. 5). However, DcAFP expression then highly increased, particularly at 24 hpce, 

showing an almost 400-fold difference comparing to 0 hpce (Fig. 5).  

 

3.3.3. Analysis of complete DcAOX1 sequence 

A single band of expected size (ca. 450 bp) was obtained with primer combination 

P1/P2 and identified as D. carota AOX1 based on high similarity with AOX gene sequences from 

other plant species available at NCBI database. Sequenced clones obtained were of 444 bp, 

and showed similarity between 75 % and 99 % with AOX from different plant species. For 5’ 

end isolation, reverse specific primer was used in combination with vector specific primer, 

which led to the amplification of a fragment near 1000 bp. For 3’ end isolation, the use of a 

forward specific primer in combination with the oligo d(T) primer, led to the amplification of 

fragments between 670-827 bp (described below). Based on match of 5’ and 3’ UTR sequences 

with initial partial exon 3 sequence, in silico full-length cDNA of D. carota AOX1 (DcAOX1) was 

predicted. 

At genomic level, DcAOX1 of D. carota L. cv. Rotin has 1812 bp, consisting of three 

exons (exon 1: 432 bp, exon 2: 489 bp and exon 3: 57 bp) interrupted by two introns (intron 1: 

630 bp and intron 2: 173 bp). Gene structure of DcAOX1 and structure of previously identified 

AOX1 genes in several other plant species are shown in Suppl. Table 1. At transcript level, it has 

1366 bp in length (Fig. 6) with a continuous open reading frame (ORF) of 981 bp, which 

encodes a putative polypeptide of 326 amino acid residues. The homologous identity score 

performed in NCBI with deduced amino acid residues showed that DcAOX1 shares a high 

degree of similarity with AOX1 proteins from other plant species such as Nicotiana 

benthamiana (78 %), Brassica juncea (73 %), Gossypium hirsutum (72 %) and Arabidopsis lyrata 

(70 %). Different lengths of 3’ UTR were identified on DcAOX1 cDNA sequences (3’ end 

isolation), varying between 185 to 344 bp (data not shown). The in silico sequence presented 

in Fig.6 was the longest reconstructed sequence.  

DcAOX1 revealed structural features usually found in AOX1 sub-family members, with 

highly variable N-terminal region. DcAOX1 also showed two conserved cysteines (CystI and 

CystII) and di-iron-binding sites (Fig. 7). DcAOX1 protein was predicted to be localized in 

mitochondria (mTP score of 0.868). The predicted length of the cleavage site of the 

mitochondrial targeting sequence (from the beginning of the protein) is 14 amino acids. 

Prediction of mitochondrial transit peptide for sequences used in the alignment of Fig. 7 shows 

no conservation across protein sequences and species, with DcAOX1 presenting the smallest 

predicted length. AOX1 sequences from O. sativa showed a predicted length of the 
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mitochondrial targeting peptide of 67 (BGIOSGA008063), 58 (BGIOSGA005788), 54 

(BGIOSGA014422) or 51 (BGIOSGA014421) amino acids. A. thaliana AOX1 predicted length of 

mitochondrial targeting peptide displayed 52 (AT3G22360), 63 (AT3G22370), 53 (AT3G27620) 

or 50 (AT1G32350) amino acids. 

 

Fig. 6. Nucleotide and deduced amino acid sequences of cDNA encoding Daucus carota L. cv. Rotin AOX1 

(DcAOX1) (NCBI accession number EU286573.2). Underlines indicate location of primers used for 

amplification of complete gene sequence. The sites of introns are indicated by filled triangles, and * 

indicates stop codon.  
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Fig. 7. Multiple alignment of previously reported AOX1 proteins from Oryza sativa (BGIOSGA008063, 

BGIOSGA005788, BGIOSGA14422, BGIOSGA14421), Arabidopsis thaliana (AT3G22360, AT3G22370, 

AT3G27620, AT1G32350) (Cardoso et al. 2015) and DcAOX1 (ABZ81227.2). Data retrieved from public 

web-based databases, freely available (Plaza: http://bioinformatics.psb.ugent.be/plaza/; 

e!EnsemblPlants: http://plants.ensembl.org/Multi/Search /New?db=core; and NCBI: 

http://www.ncbi.nlm.nih.gov/ ). Amino acids residues differing are shown on a black background, 

deletions are shown by minus signs. The sites of two conserved cysteins (CysI and CysII) involved in 

dimerization of the AOX protein by S–S bond formation (Umbach and Siedow 1993) are indicated in dark 

grey boxes. Amino acid in light grey boxes are three regions defined by Berthold et al. (2000) as highly 

conserved in AOX. E (glutamate) and H (histidine) amino acids residues involved in iron-binding are 

indicated by filled triangles. Black boxes indicate the structural elements proposed to influence AOX 

regulatory behaviour (Crichton et al., 2005), residues potentially involved in regulation of AOX activity 

are indicated by filled circles. Helical regions assumed to be involved in the formation of a hydroxo-

bridged binuclear iron center (Andersson and Nordlund 1999; Berthold et al. 2000) are shown by two-

headed arrows above the amino acid sequences. Possible membrane-binding domains center 

(Andersson and Nordlund 1999; Berthold et al. 2000) are shown with a line above amino acid 

sequences. The peptide sequences presented in this figure refer to the ORF translation of the sequences 

given in Fig. 6. 
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The identified D. carota AOX1 sequence clearly nests within the AOX1 clade, and 

within the eudicots (Fig. 8). Indeed, AOX1 sequences could be separated into two different 

groups: one including all eudicots sequences and other with the monocots (Fig. 8A). Both 

within eudicots and monocots, the AOX1d clade was identified although not in an ancestral 

position (see Costa et al. 2014 for details). Within the eudicots, the Solanaceae, the 

Brassicaceae and the Fabaceae formed distinct monophyletic groups (Fig. 8B). 

 

Fig. 8. A) Maximum likelihood (ML) tree showing the relationships among translated amino acid 

sequences of previously reported AOX1 proteins from plants, including the DcAOX1 sequence 

(ABZ81227.2) of D. carota L. cv. Rotin. Phylogeny reconstruction was done following the parameters 

described in the Material and methods section. Data retrieved from public web-based databases, freely 

available (Plaza: http://bioinformatics.psb.ugent.be/plaza/; e!EnsemblPlants: http://plants.ensembl.org 

/Multi/Search/New?db=core; and NCBI: http://www.ncbi.nlm.nih.gov/). AOX sequences were annotated 

by Cardoso et al. (2015) and AOX1 sequences are identified in Suppl. Table 1. B) AOX eudicot clade, 

without AOX1d representatives, showing the position of DcAOX1 sequence (ABZ81227.2). 
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3.4. Discussion 

3.4.1. AOX, cell reprogramming and temperature-dependent growth 

Cell reprogramming upon external stress initiates cascades of events including 

dedifferentiation and de novo differentiation (see Nagl 1987; 1989; 1992; Arnholdt-Schmitt 

2004; Fehér 2015 and references there in; Grafi and Barak 2015). Dedifferentiation can be 

rapidly induced as shown by severe stress through protoplastation (within 24 hours) (Fehér 

2015 and references therein). Since its beginning, plant tissue culture has substantially 

contributed to the current understanding of inducibility of differentiation events and the role 

of associated stress (e.g.Bassi 1990; Arnholdt-Schmitt 2001; Zavattieri et al. 2010; Grafi et al. 

2011). The carrot PCS used in our experiments was established originally by Steward et al. 

(1952) to study mechanisms of growth, and was later improved and maintained as an 

experimental system for studies on cell reprogramming (see review in Arnholdt-Schmitt 1993b; 

1999). In PCS, tissue dedifferentiation is induced in cells from quiescent secondary phloem 

followed by callus growth initiation, mainly due to cell divisions (Arnholdt-Schmitt 1993b). 

Cells from secondary phloem are quiescent adult cells that recently had developed by 

switching fate from meristem to phloem cells. The cambial root cells are considered target 

cells for both yield formation and environmental responses (Arnholdt-Schmitt 1999). New 

meristem in the callus are unregularly distributed across the explant, beneath the periphery. 

Such cell fate switching can happen via stress-induced endogenous hormone regulation 

directly in perivascular stem cells, or indirectly via dedifferentiation in differentiated, 

competent cells, as it was shown for the well-studied process of somatic embryogenesis (e.g. 

Grieb et al. 1997).  

The efficiency by which cell reprogramming can occur is of special interest, as this 

process is important for applied systems such as breeding or commercial propagation. In a 

given system, efficiency might be limited during phase of induction or during initiation, or 

both. Fehér (2015) pointed that genetic differences for efficiency are more likely to be found 

during initiation. The usefulness of calorespirometry to study morphogenic responses (i.e. cell 

reprogramming) in in vitro cultures was first demonstrated by Kim et al. (2006) and later, this 

system was also used by Nogales et al. (2013) in D. carota cv. Rotin PCS to study temperature 

dependent growth performance at 21 and 28°C. In their study, an early peak around day 4 for 

Rstruct_biomass was observed, which was coincident with the cell reprogramming process that 

happens in this system. In the present work, using this same system, we studied potential 

genotype differences on the early increase of Rstruct_biomass associated with cell reprogramming 

process, and we found that the peak appeared homogeneously in all five tested PCS. However, 



CHAPTER 3 
 

68 
 

the different slopes found in the curve of Rstruct_biomass from day 0 to day 4 were indeed plant 

dependent.  

AOX genes seem to have a role during earliest events of cell reprogramming upon 

environmental changes (Arnholdt-Schmitt et al. 2006). For somatic embryogenesis, Frederico 

et al. (2009a) showed an early expression of AOX genes during initiation of the embryonic 

development (‘realisation phase’ after depletion of auxin from the medium), being DcAOX1 

gene the one responding at higher level than DcAOX2a. In olive microshoots that were induced 

to rooting, callus growth that originated from cells close to the xylem and preceded rooting 

could not be inhibited by salicylhydroxamic acid (SHAM), a known inhibitor of AOX, while in 

the same system at the identical plants and morphologic region root induction was suppressed 

by SHAM (Santos Macedo et al. 2012). This observation suggests that AOX is not required for 

callus growth per se. However, the induction of root organogenesis seemed to be linked to 

AOX activity. Therefore, a role for AOX may be seen in the early control of signaling and 

metabolic homeostasis for carbon and energy metabolism as a prerequisite for later balancing 

growth and development according to the available environmental conditions. This view 

confirms the proposal of Vanlerberghe (2013) and seem also to fit to the observations of 

Petrussa et al. (2009), who pointed the role of AOX as an anti-apoptotic factor in neighbour 

cells that have critical role for the reprogramming to somatic embryogenesis in Abies alba (see 

also Smertenko and Bozhkov 2014; Arnholdt-Schmitt et al. 2015b). In carrot PCS, our results 

suggest a role of DcAOX1 and DcAOX2a genes during the first hours of induced de novo 

differentiation of secondary phloem explants. These genes showed a modest though 

consistent increase in transcript levels until 36 h after inoculation and subsequent down-

regulation before the beginning of the exponential growth. Due to the a priori unknown high 

intrinsic variability of the explants, future experiments must however include a higher number 

of samples. 

AOX has been shown to be especially active in meristematic tissues (Hilal et al. 1997) 

and several studies have indicated links between AOX activity and plant growth (Arnholdt-

Schmitt et al. 2006; Vanlerberghe 2013 and references therein). Strong support for this view 

was found by experiments performed under various nutrient conditions in transgenic tobacco 

cells with silenced AOX1a. Sieger et al. (2005) demonstrated that AOX1a knockdown led to the 

incapacity of the cells for down-regulating growth under P- and N-deficiency, and concluded 

that AOX activity provides a mechanism for adjusting growth and counteracting nutrient 

imbalance. When maintaining the knockdown of AOX1a, tobacco cell growth was connected to 

more stable carbon use efficiency. Arnholdt-Schmitt et al. (2006) also hypothesized on the 

importance of considering down-regulation of AOX as a potential tool for molecular breeding 
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on higher nutrient efficiency. This led us to explore the hypothesis that differential AOX gene 

regulation relates to growth rates, with expected higher levels of AOX connected to 

suppressed growth or to lower growth rates. This seems to fit to our observation in PCS: during 

the lag phase of growth, particularly until 8 days, where we observed a dynamic behaviour of 

both AOX genes, but no increase in FW (although substantial amounts of nutrients were 

provided) were found. During lag phase, cells are thought to be prepared for the new fate and 

in PCS, first cells were reported to enter into the S-phase of cell cycling from 12 hpi to 24 hpi 

(Gartenbach-Scharrer et al. 1990). According to its known effect on cell homeostasis 

(Vanlerberghe et al. 2009; Vanlerberghe 2013), AOX could have contributed to suppressing 

growth during lag phase. 

In the present work it was also investigated the effect of temperature on AOX 

expression during PCS exponential growth phase. Temperature is a major environmental 

constraint and can influence the molecular mechanisms controlling growth. Despite the 

generally higher growth in the PCS from 28 °C comparing to 21 °C, in the individual plants 

(Table 3), and being DcAOX1 responsive to the highest growing temperature (Fig. 3), the 

expression of both AOX genes in each individual plant was not unambiguously related to callus 

FW (not shown). 

In a first attempt to transpose these findings to plant level, we investigated both AOX 

genes in a chilling pot plant experiment, and compared it with the expression of the gene 

encoding the anti-freezing protein (AFP). Interestingly, the two AOX genes were co-regulated 

in both PCS and pot experimental systems, which is in agreement with previous findings 

(Campos et al. 2009; Van Aken et al. 2009; Vanlerberghe 2013). Clifton et al. (2005) analysed 

the response of plant cells from A. thaliana at 3 h and up to 24 h post exposure upon various 

treatments designed to induce abiotic stress, and identified alternative respiration pathway 

components as the most important ones for early responses. The components of normal 

respiration were shown to be more stable during early times of acclimation without 

pronounced variations in transcript abundance. Low temperature stress - either chilling or 

freezing - is one of the most important abiotic stresses, with plants showing reduced yield 

(Beck et al. 2004). Our results indicated DcAOX1 as the highest/rapidly responsive AOX gene 

during cold stress in carrot (Fig. 4 and Fig. 5). Nevertheless, the patterns of transcript 

abundance over time course also revealed a further prevalent response of DcAOX2a, which 

was basal in control conditions (Fig. 4). In general, AOX1 is reported as a stress-responsive 

gene, whereas AOX2 sub-family members were considered during long time as housekeeping 

genes or related to developmental events (Considine et al. 2002). Later on, AOX2 members 

were found also to be involved in plastid-dependent signalling (Clifton et al. 2005) and in 
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response upon several stress factors, including cold stress (Costa et al. 2010). AOX2 stress 

response during chilling was also seen in the present study. In A. thaliana, Fiorani et al. (2005) 

reported a significantly lower leaf area in an AOX1a anti-sense line growing upon low 

temperature when comparing with the wild type. This phenotype was associated with reduced 

amount of AOX transcripts (almost entirely suppressed) and consequently low level of AOX 

protein. The authors suggested that the lower level of AOX1a protein could point to a reduced 

ability of the plant to cope with low temperature throughout the whole vegetative growth 

period. Taken these results together, it can be concluded that differential expression and co-

regulation of diverse AOX family member genes might contribute to fine-tuning the metabolic-

physiological cell responses upon stress towards deciding for growth and/development. 

 

3.4.2. DcAOX1 sequence and phylogenetic analyses 

Plant plasticity allows coping with stressful environmental conditions. Rapid 

acclimation and adaptation are desired plant characteristics, and target traits for which we aim 

to develop functional markers. It was thus our interest to look for genetic variability in a target 

gene, which could be linked with the desired trait. In this frame, the existence of 

polymorphisms in AOX gene sequences (alleles, haplotypes) is an essential basis for association 

studies to find links to achieve breeding goals (Arnholdt-Schmitt 2015). Complete information 

about gene sequences is essential, since it is known that important/relevant differences 

between genotypes often occur not only in the coding region, but also in introns or UTRs. 

DcAOX2a gene isolation and variability in intronic regions among genotypes was already 

described (Campos et al. 2009; Cardoso et al. 2009). DcAOX1 gene sequence and structural 

organization were still unknown and are here reported for the first time. 

At transcript level, DcAOX1 is 1366 bp in length, encoding a putative polypeptide of 

326 amino acid residues. Variability on the DcAOX1 3’ end was observed, ranging from 185 bp 

to 344 bp, with 294 bp as the average size. The involvement of alternative polyadenylation 

(production of mature transcripts with 3’ ends of variable length) in oxidative stress response 

in plants has been pointed out (Xing and Li 2011). AOX genes members present variability at 

the 3’ end, with a length ranging between 111-313 bp in maize (Polidoros et al. 2005) and 

between 76-301 bp in olive (Santos Macedo et al. 2009). In AOX1 genes, previous transcript 

analysis revealed also the existence of length variation between Arabidopsis and O. sativa 

(Loke et al. 2005; Shen et al. 2008).  

Analysis of the deduced amino acid sequence revealed structural features usually 

found in most of the higher plant AOXs (Fig. 6). The role of some of these residues in AOX 

activity have been previously studied using site-directed mutagenesis in plants and other 
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organisms such as protists, which revealed that many residues are critical for activity (Ajayi et 

al. 2002; Albury et al. 2002; Berthold et al. 2002; Crichton et al. 2005; Nakamura et al. 2005; 

Crichton et al. 2010; Moore et al. 2013). Multiple sequence alignment showed a highly variable 

N-terminus of AOX1 sub-family as a result of low similarity amongst exon 1 sequences. Lack of 

homology in mitochondrial targeting signals is common and typical for proteins which require 

N-terminal signals for mitochondrial import (Finnegan et al. 1997). Despite the variability in 

length of the transit peptide, its presence is vital for targeting the peptide to mitochondria.  

The conserved cysteine residues assumed to be involved in post-translational regulation of 

AOX activity (Umbach and Siedow 1993; Rhoads et al. 1998; Grant et al. 2009) were also 

identified in DcAOX1. In some plant species, the conserved CysI in the N-terminal region of 

protein is replaced by SerI (Umbach and Siedow 1993; Costa et al. 2009). This leads to 

regulation by succinate instead of pyruvate (Holtzapffel et al. 2003; Grant et al. 2009). 

Substitution of CysII by SerII can be observed in the alignment presented in the present work 

(Fig. 6). However, physiological consequences of such changes are still unknown. Within AOX1 

family monocots can be separated from eudicots and within the last ones, some groups form 

separated clades highlighting their common evolutionary history. Differential regulation on 

AOX gene subfamilies described by several authors may come from different positions in the 

plant genomes related to chromosomal territories (Arnholdt-Schmitt 2004; Costa et al. 2009). 

The common distribution of AOX members is on at least two different chromosomes, at one 

gene per chromosome, occurring either in sense or antisense orientation (Cardoso et al. 2015). 

Furthermore, the presence of iron-binding motifs within four helical regions suggests that AOX 

might be a member of di-iron carboxylate protein family (Berthold et al. 2002; Berthold and 

Stenmark 2003; Moore et al. 2008). Four conserved α-helical regions rich in histidine and 

glutamate were identified in DcAOX1, involved in the formation of hydroxyl bridged binuclear 

iron center (Siedow et al. 1995). 

The predominant structure of genomic AOX sequences, including also both carrot 

DcAOX2 genes (DcAOX2a and DcAOX2b), consists of four exons interrupted by three introns at 

well-conserved positions (Campos et al. 2009; Cardoso et al. 2015). Genes sharing this 

structure usually show exon size conservation for last three exons (Campos et al. 2009). 

Although not conserved, exon 1 presents a size around 300 bp (Campos et al. 2009; Cardoso et 

al. 2015). This feature is responsible for the formation of similar AOX proteins across different 

plant species. However, in DcAOX1 loss of intron 1 was identified (Suppl. Table 1). Hence, a 

fusion of exon 1 and 2 could have consequently resulted in increase in exon size (432 bp) as 

compared to the common size of around 300 bp for exon 1 in genes showing the 4 exon 

structure. Nevertheless, it was observed that the last two exons showed a conserved size of 
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489 bp and 57 bp respectively. Evolutionary intron loss and gain have resulted in the variation 

of intron numbers in some AOX members, with alterations in exons size (Considine et al. 2002; 

Polidoros et al. 2009; Cardoso et al. 2015) Suppl. Table 1. For instance, Cardoso et al. (2015) 

reported the existence of an AOX gene of Oryza brachyantha with six exons and five introns 

and showed the existence of a Hordeum vulgare AOX gene completely devoid of introns. 

Recent findings also showed the absence of introns in an AOX gene member of Triticum urartu 

(EnsemblPlants acc. nº TRIUR3_12374) (data not shown). 

 

3.5. Conclusions 

With this study, calorespirometry arises as a suitable technology for the identification 

of cell reprogramming events related to metabolic and respiratory activity in carrot and shows 

a great potential to be used for phenotyping yield stability in in vitro systems. Our results are 

comparable with previous results showing an early peak in structural biomass formation 

during the lag phase of growth in the PCS, and show that DcAOX1 and DcAOX2a were co-

expressed in the earliest events in cell reprogramming upon environmental changes 

(inoculation or chilling). DcAOX1 responded also to a higher growing-temperature in the 

exponential phase of the PCS. For a better understanding of these results, the complete gene 

sequence of DcAOX1 and its structural organisation were also analysed. High throughput 

genotype screening on complete DcAOX1 and DcAOX2a genes could help on future 

identification of important within-gene motifs for co-regulation and differential transcript 

accumulation in view of novel resources for functional marker identification. 
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Supplemental Fig. 1. A) Growth curve of primary cultures system of Daucus carota L. cv. Rotin during 28 

days in culture at 21 °C in four individual plants. Data are shown as callus fresh weight values and 

represented as mean±S.D. B) Explants from the secondary phloem of carrot tap roots (primary culture 

system). Aspect of the explants (1) before (T0), (2) 14 days and (3) 28 days after in vitro inoculation.  

 



 

 

 Species Gene_id Gene size  Protein lenght  Exon-intron gene structure 
E

u
d

ic
o

ts
 

Arabidopsis lyrata 

AL1G33660 1319 315  

AL3G24680 1237 324  

AL3G24690 1518 354  

AL5G06730 1290 330  

Arabidopsis thaliana 

AT1G32350 1333 318  

AT3G22360 1229 325  

AT3G22370 1527 354  

AT3G27620 1307 329  

Brassica rapa 

Bra010153 3045 319  

Bra001865 2110 346  

Bra031351 2078 360  

Bra023835 1804 324  

Daucus carota KJ669723 1366 326 
�  

Fragaria vesca FV5G29310 1323 361                          Δ                 

Glycine max GM04G14800 3196 321  

Lotus japonicus LJ2G020780 2471 314  

Medicago truncatula MT5G026620 2287 330 

Populus trichocarpa 

PT03G09340 1310 329 

PT12G01430 2149 352 

PT12G01440 2091 350 

PT15G01960 2140 351 

Solanum lycopersicum 

Solyc08g005550.2 2198 366 

Solyc08g075540.2 1402 358 

Solyc08g075550.2 2711 318 

Solanum tuberosum 

PGSC0003DMG400007613 2518 321 

PGSC0003DMG400007614 1524 356 

PGSC0003DMG400018484 2333 279  
Theobroma cacao TC03G031300 2729 326 

Vitis vinifera 
VV02G09030 1252 322 

VV02G09050 1245 320 

M
o

n
o

co
ts

 

Brachypodium distachyon 

BD3G52505 1308 343 

BD5G20540 1907 333 

BD5G20547 1165 324                      � 
BD5G20557 1186 330                      � 

Hordeum vulgare 

CAJW010038523 1815 281 

CAJW011587016 1163 270 

CAJW010099492 975 324                      ▲ 

Musa acuminata 

GSMUA_Achr5G03810_001 1277 324                       ♦ 
GSMUA_Achr6G01170_001 1225 328  

GSMUA_Achr6G01300_001 1397 317                       ♦ 

GSMUA_Achr1G27800_001 1458 327                       ♦ 

Oryza brachyantha 

OB02G22630 2617 316  

OB02G36280 4950 806  
OB04G30980 2009 331  

OB04G30990 1219 331                       � 

Oryza glaberrima 

ORGLA02G0249500 1344 345  
ORGLA04G0206000 2216 331  

ORGLA04G0206100 1220 335                       � 

Oryza sativa 

BGIOSGA008063 2061 339  
BGIOSGA005788 1344 345  

BGIOSGA014421 1227 335                       � 

BGIOSGA014422 2191 332  

Sorghum bicolor 

SB04G030820 1398 346  

SB06G027410 1779 331  

SB06G027420 1179 314                       � 

SB06G027430 1210 332                       � 

Zea mays 

ZM02G05480 1215 332                       � 
ZM02G05490 1178 329                       � 
ZM02G05500 2287 329  
ZM05G37570 2136 347  
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Supplemental Table 1. Diversity of AOX1 in exon-intron pattern across higher plants. Data retrieved 

from public web-based databases, freely available (Plaza: http://bioinformatics.psb.ugent.be/plaza/; 

e!EnsemblPlants: http://plants.ensembl.org/Multi/Search/New?db=core; IPK Barley Blast Server: 

http://webblast.ipk-gatersleben.de/barley/; NCBI: http://www.ncbi.nlm.nih.gov/). Gene draw was 

performed in FancyGene 1.4 (Rambaldi and Ciccarelli 2009). (Adapted from Cardoso et al. 2014). 

� loss of intron 1, Δ loss of intron 3, � loss of intron 2, ▲ loss of all introns, ♦ gain of intron in exon 1 
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CHAPTER 4 - DYNAMICS OF CARROT ALTERNATIVE OXIDASE EXPRESSION IN DEVELOPING 

STORAGE ROOTS 

 

Abstract 

Plant alternative oxidase (AOX) is a nuclear encoded mitochondria-targeted inner 

membrane enzyme involved in alternative respiration. The expression of AOX genes can be 

tissue–specific and/or developmentally regulated, and affected by several stress factors. For a 

better understanding of the putative role of AOX in carrot tap root secondary growth, the 

expression patterns of carrot AOX gene family (DcAOX1, DcAOX2a and DcAOX2b) were 

analysed in five carrot cultivars, starting at the beginning of the secondary growth (5 weeks 

post sowing) until 13 weeks post sowing. Root fresh weight and root length were measured. 

While the levels of DcAOX1 transcripts were generally low and DcAOX2b transcripts were not 

detected, DcAOX2a mRNA levels changed during the experiment, with the highest values 

detected at the initial time points. That period was characterised by a strong increase in root 

length and to the very beginning of the secondary growth. At the end of the experiment, when 

DcAOX2a expression was lowest and tap root secondary growth (determined by root fresh 

weight) was highest, no increase in root length was observed. Such changes in DcAOX2a 

transcript levels during carrot tap root development are discussed. 

 

Keywords: Daucus carota; alternative oxidase; development; growth 

 

 

4.1. Introduction 

The alternative oxidase (AOX) is a cyanide-resistant terminal oxidase that participates 

in the electron transport chain, found in the inner mitochondrial membrane of plants and 

several other lineages (Siedow et al. 1995). AOX accepts electrons directly from ubiquinol, 

diverting electrons from two of the three proton translocation sites (Complex III and Complex 

IV). Hence, electrons flowing through the AOX pathway contribute less to the generation of 

ATP than those flowing through the cytochrome oxidase pathway and are not subjected to 

control by cellular adenylate energy status (Siedow et al. 1995; Moore et al. 2013). The free 

energy that is released by electron flow through AOX is released as heat, a phenomenon 

which, together with the very large amounts of AOX and consequent rapid rate of uncoupled 

respiration, underlies the prominent role of AOX (Finnegan et al. 2004; Watling et al. 2006; 

Grant et al. 2008; Wagner et al. 2008). In higher plants, AOX is nuclear encoded by a small 

multigene family, comprising one to six gene members (Cardoso et al. 2015). 
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The presence of AOX provides the respiratory system with built-in flexibility regarding 

the degree of coupling between carbon metabolism pathways, electron transport chain 

activity, and ATP turnover (Vanlerberghe 2013). AOX can play a role in response to stress and 

on the maintenance of cellular and mitochondrial homeostasis (reviewed in Finnegan et al. 

2004) and numerous studies have focused on the role of AOX under stressful growth 

conditions (Thirkettle-Watts et al. 2003; Clifton et al. 2005; Umbach et al. 2005; Costa et al. 

2010; Cavalcanti et al. 2013; Belozerova et al. 2014; Tang et al. 2014; Vishwakarma et al. 2014). 

Interestingly, AOX genes have also showed differential expression in plant organs and tissues 

(Macherel et al. 2007; Campos et al. 2009; Cavalcanti et al. 2013), as well during post-

germination development (McCabe et al. 1998; Saisho et al. 2001). Nevertheless, 

understanding the role of AOX during normal plant growth and development has been a 

relatively slow process. The use of transgenic plant approaches have contributed however to 

unravel the involvement of AOX in several biological processes, including physiological and 

morphologic changes (Fiorani et al. 2005; Chai et al. 2012; Cvetkovska et al. 2014; Ivanova et 

al. 2014), and on AOX implication in plant vegetative growth and reproductive performance 

(Lennon et al. 1995; McCabe et al. 1998; Fiorani et al. 2005; Murakami and Toriyama 2008; 

Chai et al. 2012). AOX genes have been also associated with fruit ripening, especially in 

climacteric fruits such as tomatoes and mangoes (see in Kumar et al. 1990; Considine et al. 

2001; Xu et al. 2012). 

The present work aimed to explore the role of carrot (Daucus carota L.) AOX gene 

family (namely DcAOX1, DcAOX2a, DcAOX2b) during storage roots development, in five carrot 

cultivars, growing under typical greenhouse growth conditions.  

 

4.2. Materials and methods 

4.2.1. Plant material 

Five different cultivars of Daucus carota L. were used in the experiment: white (711-1), 

yellow (207-1), red (203-1), and purple (purple phloem with yellow xylem) (699-1) (cultivated 

carrot breeding stocks developed by the USDA carrot breeding program), and the orange 

coloured cv. Rotin. Seeds of each cultivar were sown in pots containing commercial substrate 

and maintained under greenhouse conditions. Three pots with a total of 10 plants per pot 

were considered per cultivar. Harvest was performed arbitrarily (from 4 to 6 plants, biological 

replicates) at different time points: 5, 7, 9 and 13 weeks post sowing (wps). Fresh weight (g) 

and root length (cm) of each tap root were annotated and samples were snap frozen in liquid 

nitrogen and stored at -80 °C for further expression analyses. Samples consisted of complete 
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roots (for samples collected at 5 and 7 wps) or pieces from the upper third-part of the root (for 

samples collected at 9 and 13 wps).  

 

4.2.2. RNA extraction and cDNA synthesis 

Total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany), 

with on-column digestion of DNA with the RNase-Free DNase Set (Qiagen, Hilden, Germany), 

according to manufacturer’s protocol. The quantification of RNA and evaluation of its quality 

were determined in a NanoDrop-2000C spectrophotometer (Thermo Scientific, Wilmington, 

DE, USA). The integrity was evaluated by denaturing gel electrophoresis and visualised using a 

Gene Flash Bio Imaging system (Syngene, Cambridge, UK) after staining in an EtBr solution (2 

ng·mL-1). DNase-treated total RNA (1 µg) was reverse transcribed with random decamer 

primers, using the RETROscript® kit (Ambion, Austin, TX, USA) according to manufacturer’s 

instruction. 

 

4.2.3. Reverse transcription quantitative real-time PCR (RT-qPCR)  

Gene-specific primers were designed using Primer Express Software (Applied 

Biosystems, Foster City, USA). Target transcripts were DcAOX1, DcAOX2a and DcAOX2b. Carrot 

EF-1A, GAPDH, and the Ribosomal 5.8S (5.8S rRNA) genes were used for selection of the most 

appropriate reference genes. Primer sequences and amplicon sizes are shown in Table 1. 

Quantification of gene expression was performed by RT-qPCR with SYBR Green q-PCR 

Master Mix (Fermentas, Ontario, Canada) on a 7500 Real Time PCR System (Applied 

Biosystems, Foster City, USA). 18 µl reaction volume containing 5 µL of first-strand cDNA 

(previously diluted 1:10) and 560 nM of each specific primer was used for expression analysis. 

The identity of each amplicon was confirmed by Sanger sequencing and specificity of RT-qPCR 

reactions was evaluated by melting curve analysis. Efficiencies were calculated using a 4-point 

standard curves from a 4-fold dilution series (1:1-1:125) (run in triplicate) of pooled cDNA. RT-

qPCR was conducted for 40 cycles, each consisting in 15 s at 95 °C followed by 1 min at 60 °C. 

To analyse the dissociation curve profiles, an additional step at 95 °C during 15 s was added, 

followed by a constant increase of temperature between 60 °C and 95 °C. All samples were run 

in duplicate. Minus reverse transcriptase and no template controls were included for all genes. 

Cq values were acquired for each sample with the Applied Biosystems 7500 software (Applied 

Biosystems, Foster City, CA, USA) with a fluorescence threshold arbitrarily set at 1. 

Evaluation of expression stability of reference genes and selection of the most 

appropriate combination of genes to be used as reference was done using the statistical 

application geNorm (Vandesompele et al. 2002).  
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Table 1. Primers used in RT-qPCR. AS corresponds to amplicon size and E corresponds to 

primer efficiency. 

[NCBI accession ID] Gene Primer sequence (5’→3’) AS (bp) E (%) 

[GenBank:D12709] EF-1A Fw: TGGTGATGCTGGTTTCGTTAAG 
75 99 

Rv: AGTGGAGGGTAGGACATGAAGGT 

[GenBank:AY491512] GAPDH 
Fw: GGGAGGTGCAAAGAAAGTTATCA 79 96 
Rv: TTCCTTTTCATTGACACCAACAA 

[GenBank:X17534] 5.8S Fw: AATGACTCTCGGCAACGGATAT 73 102 
Rv: TCACACCAAGTATCGCATTTCG 

[GenBank: EU286573] DcAOX1 Fw: CTTCAACGCCTACTTCCTTG 
196 97 

Rv: ATCTCGCAATGTAGAGTCAGC 

[GenBank: EU286575] DcAOX2a 
Fw: TCTTCAATGCTTTCTTTGTTCTT 

200 93 
Rv: GACATCTTTTAGTTTGGCATCTTT 

[GenBank: EU286576] DcAOX2b Fw: CAAGAGAGAAAATGAATCAAGTGGTAG 
92 110 

Rv: ATGACTCCGAAATGTACTCATAGGTG 

 

4.2.4. Statistics 

A One-way analysis of variance (ANOVA) and the Tukey’s post hoc test was used to test 

for significant differences in gene expression, fresh weight and length between time points. 

Statistical analyses were performed using the STATISTICA 8.0 statistical package (StatSoft Inc., 

Tulsa, USA). Significance levels were set at P<0.05. 

 

4.3. Results  

Carrot tap root fresh weight and length measurements were taken from developing 

roots at 5, 7, 9 and 13 wps. The general aspect of tap roots at the defined time points is shown 

in Fig. 1. The part of the tap root used in the length determination is also indicated (Fig. 1). 

Carrot tap root fresh weight increased from week 5 to week 13, when it reached a 

maximum. A similar behaviour was detected in all five cultivars, as can be seen in Table 2. 

Within each cultivar, fresh weight slightly increased from 5 to 7 wps, without significant 

differences detected (P>0.05), and was followed by a marked increase until 13 wps, being 

significantly higher than at 5 wps (P<0.05). Fresh weight mean value vary according to the 

cultivar, with the white and yellow cultivars reaching the highest and the red the lowest value 

at 13 wps (Table 2). 
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Fig. 1. Scheme representing the general aspect of carrot tap roots at (A) 5, (B) 7, (C) 9 and (D) 13 weeks 

post sowing. The vertical bar indicates the part of the tap root used for length measurement. 

 

Contrarily to the fresh weight, the root length sharply increased at the beginning of the 

experiment (Table 2). Between 5 wps and 7 wps a great increase occurred in all studied 

cultivars, with significant differences of at least P <0.05 (Table 2). At the end of the experiment 

(between 9 and 13 wps) a decrease on root length mean values was observed in almost all 

cultivars (exception on yellow), and significantly different in the red cultivar (Table 2). This 

resulted from that in the last time point only the clearly distinguishable storage tap root was 

considered to take the length value. The final part of carrot tap root was not taken in account, 

since in some roots it was noticed that this part was broken during harvest (see Fig. 1D). 
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Table 2. Fresh weight (g) and root length (cm) measurements of carrot tap roots at 5, 7, 9 and 

13 weeks post sowing (wps).  

Cultivar  Time point (wps) Root fresh weight (g) Root length (cm) 

White  5 0.2 ± 0.06a 7.9 ± 0.6a 
7 4.2 ± 0.68a,b 21.0 ± 1.2b 

9 32.5 ± 10.25b 21.0 ± 1.9b 

13 51.0 ± 9.15b 19.3 ± 2.3b 
Yellow  5 0.2 ± 0.02a 5.6 ± 1.2a 

7 5.7 ± 1.46a,c 18.7 ± 1.1b 
9 23.3 ± 3.00b,c 20.0 ± 0.6b 

13 49.2 ± 5.36b 20.5 ± 0.8b 

Orange  5 0.1 ± 0.01a 6.0 ± 0.3a 
7 4.6 ± 0.95a,c 15.9 ± 1.4b 
9 13.0 ± 1.76b,c 16.5 ±1.0b 

13 32.5 ± 5.47b 11.8 ± 1.0a,b 
Red  5 0.1 ± 0.03a 8.3 ± 0.9a 

7 3.4 ± 0.62a,c 14.6 ± 0.8b,c 
9 15.8 ± 2.63b,c 17.3 ± 0.4b 

13 27.1 ± 4.13b 13.6 ± 0.8c 
Purple  5 0.2 ± 0.05a 6.9 ± 0.9a 

7 4.1 ± 1.29a,b 16.0 ± 2.7b 

9 20.3 ± 2.10b 21.1 ± 0.4b 
13 40.0 ± 11.16b 16.1 ± 1.2b 

White (711-1), yellow (207-1), orange (Rotin), red (203-1), and purple (purple phloem with yellow xylem) 

(699-1), correspond to the different carrot cultivars used in the experiment. Data is presented as the 

mean ± SE of four to six tap roots independent measurements. Different superscript letters in the same 

column indicate significant differences of at least P<0.05 between time points, within each 

cultivar. 

 

Expression analyses of carrot AOX genes revealed that both DcAOX1 and DcAOX2a 

genes were expressed throughout the investigated period, in the five different cultivars (Fig. 

2). In contrast, no transcripts of DcAOX2b were detected at any time point and cultivar. 

DcAOX1 expression remained generally low, with few significant differences amongst 

time points observed in the white, yellow, orange and purple cultivars (Fig. 2A-E). On the 

contrary, the red cultivar presented a higher expression at the beginning, with significant 

changes during the course of the experiment (P < 0.05). However, it is worth to notice a high 

variability in DcAOX1 expression among individual plants, particularly in the last time point (5 

biological replicates were considered), which is reflected by a high standard error (Fig. 2D). 

Overall, no specific trend was detected in DcAOX1 transcript levels during carrot root 

development. Different results were observed regarding the highly expressed DcAOX2a (Fig. 

2A-E). A clear expression pattern, in all five cultivars, was observed during the time course of 
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the experiment. DcAOX2a presented a marked decrease on transcript levels, particularly 

between either the first or second time points (5 and 7 wps) and the two final time points (9 

and 13 wps), with significant differences (P<0.05) in all the studied cultivars (Fig. 2). Those 

differences reached a maximum of approximately 5-fold for purple and red, 3-fold for white 

and 2-fold for yellow and orange cultivars (Fig. 2). 
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Fig. 2. Expression patterns of DcAOX1 and DcAOX2a during carrot root secondary growth in the cultivars 

white (711-1) (A), yellow (207-1) (B), orange (Rotin) (C), red (203-1) (D), and purple (purple phloem with 

yellow xylem) (699-1) (E). Transcript levels were determined by RT-qPCR. In each harvest time point, 4-6 

biological replicates were considered per cultivar. Error bars indicate the standard error of the mean. 

Different superscript letters indicate significant differences between the stages of development for 

DcAOX1 (small letters), or for DcAOX2a (capital letters). W: white; Y: yellow; Or: orange; R: red; P: 

purple. 

 
4.4. Discussion 

Root meristems located in the cambium ring are the main tissue responsible for 

secondary growth in carrot tap roots (Nogales et al. 2014) and, it is known that, independently 

of the cultivar, the cambium ring starts its development around 4-7 weeks after sowing (Hole 

et al. 1987). Located between the primary xylem and the phloem, the cambium ring produces 

phloem tissue on the outside and xylem tissue on the inside (Hole et al. 1987). Therefore, it is 

very likely that at the initial time point presented in this work (5 wps), the secondary growth of 

carrot tap roots was at the very beginning, since a pronounced increase in root biomass was 

only observed after 7 wps. On the contrary, during initial stages (between 5 and 7 wps) the 

root length sharply increased. Our observation is in accordance with Palussek and Neumann 

(1982), which referred that root length is determined previously to the root secondary growth. 

Regarding the expression data, DcAOX2a presented the highest values between 5 and 7 wps, 

just before the initiation of the secondary growth. During that period no significant increase of 

fresh weight was detected, while root length greatly increased in all the studied cultivars. At a 

later stage, when DcAOX2a expression was reduced (at 9 and 13 wps), and when higher cell 

division rates are likely to take place in the meristem (reflected as secondary growth), the 

increment on root length stopped. Therefore, and differently to DcAOX1, DcAOX2a followed a 

concrete trend during carrot storage root growth.  

AOX has been shown to be especially active in meristematic tissues (Hilal et al. 1997) 

and several studies have indicated links between AOX activity and plant growth (Arnholdt-

Schmitt et al. 2006; Vanlerberghe 2013 and references therein). Strong support for this view 

was found on experiments performed under various nutrient conditions with transgenic 

tobacco cells with silenced AOX1a. Sieger et al. (2005) demonstrated that AOX1a knockdown 

led to the incapacity of cells for down-regulating growth under P- and N-deficiency, and 

concluded that AOX activity provides a mechanism for adjusting growth and counteracting 

nutrient imbalance. When maintaining the knockdown of AOX1a, tobacco cell growth has been 

connected to more stable carbon use efficiency. Another single cell system in which the 

relation between AOX and growth has been critically examined is in the green alga 
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Chlamydomonas reinhardtii (Mathy et al. 2010). Similar to the case with tobacco suspension 

cells (although not requiring nutrient-limiting growth conditions), transgenic Chlamydomonas 

lacking AOX displayed a large increase in biomass accumulation comparing to wild type 

cultures. In general, while the single cell systems referred above show that removing AOX had 

a positive impact on growth, the relation between AOX and growth will undoubtedly be much 

more complex in whole plants. Several examples illustrate the AOX effect on plant vegetative 

growth and reproductive performance. It can be pointed out the work of Fiorani and co-

workers (2005), who observed a reduced leaf area and rosette size through the antisense 

suppression of AtAOX1a in Arabidopsis plants grown for 21 days at 12 °C. Such differences 

diminished as the plants approached flowering, suggesting that AOX played a role in the 

acclimation of shoot growth to low temperature during early vegetative development. 

Focusing on the AOX2 subfamily, several reports point to its involvement on development and 

growth processes. Chai et al. (2012) reported the impact of altered expression of an AOX2 

gene on growth of soybean. In this case, an antisense knockdown of Aox2b was shown to 

compromise both vegetative growth and seed yield under typical greenhouse growth 

conditions. Other study showed that during seedling development, the relative abundance of 

AOX2 in soybean transcripts decreased, whereas the transcript abundance of other AOX genes 

increased (McCabe et al. 1998). Saisho et al. (2001) observed that AOX2 expression in 

Arabidopsis was high in dry seeds and subsequently decreased during early germination, 

whereas AOX1a was less abundant at the beginning of the process and only increased in a later 

stage. 

It seems therefore that the involvement of AOX genes on growth and development is 

highly species-specific, and it is not only related with the gene sub-family (AOX1 or AOX2) but 

also with the specific function of each gene inside the sub-family, which can differ amongst 

plant species. 
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CHAPTER 5 - ISOLATION AND CHARACTERIZATION OF PLASTID TERMINAL OXIDASE 

GENE FROM CARROT AND ITS RELATION TO CAROTENOID ACCUMULATION 

 

This chapter is adapted from the submitted manuscript: 
 
Campos MD, Campos C, Cardoso HG, Simon PW, Oliveira M, Nogales A, Arnholdt-Schmitt B. 
Isolation and characterization of plastid terminal oxidase gene from carrot and its relation to 
carotenoid accumulation. Submitted 
 

 
Abstract 

Carrot (Daucus carota L.) is a biennial plant that accumulates considerable amounts of 

carotenoid pigments in the storage root. To better understand the molecular mechanism for 

carotenoid accumulation in developing storage roots, plastid terminal oxidase (PTOX) cDNA 

was isolated and selected for reverse-transcription quantitative polymerase chain reaction (RT-

qPCR). Present in photosynthetic species, PTOX is a plastid-located, nucleus encoded 

plastoquinone (PQ)-O2 oxidoreductase (plastioquinol oxidase). The enzyme is known to play a 

role as a cofactor for phytoene desaturase, and consequently plays a key in the carotenoid 

biosynthesis pathway. In carrot a single PTOX gene copy was identified (DcPTOX). DcPTOX 

encodes a putative protein with 366 amino acids that contains the typical structural features of 

PTOXs from higher plants. The expression of DcPTOX was analysed during the development of 

white, yellow, orange, red, and purple carrot roots, along with five genes known to be involved 

in the carotenoid biosynthesis pathway, PSY2, PDS, ZDS1, LCYB1, and LCYE. Expression analysis 

revealed the presence of DcPTOX transcripts in all cultivars, and an increase of transcripts 

during the time course of the experiment, with differential expression among cultivars in early 

stages of root growth. Our results demonstrated that DcPTOX showed a similar profile to that 

of other carotenoid biosynthetic genes with high correlation to all of them. The preponderant 

role of PSY in the biosynthesis of carotenoid pigments was also confirmed. 

 

Keywords: Daucus carota; DcPTOX; gene isolation; expression analysis; carotenoid 

biosynthesis; development 

 

 

5.1. Introduction 

The plastid terminal oxidase (PTOX) is a nucleus encoded plastid-located plastoquinone 

(PQ)-O2 oxidoreductase (plastoquinol oxidase) that occurs widely in photosynthetic species, 
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including algae and higher plants (Cournac et al. 2000; Carol and Kuntz 2001; Archibald et al. 

2003; Kuntz 2004). PTOX is present in some eukaryotic algae as a small multigene family, 

composed by two members (PTOX1 and PTOX2). In higher plants PTOX appears as a single 

gene (Wang et al. 2009; Houille-Vernes et al. 2011), which is involved in chlororespiration, 

chromorespiration and carotenoid biosynthesis (Josse et al. 2000; Carol and Kuntz 2001; Joet 

et al. 2002; Aluru and Rodermel 2004; Kuntz 2004; Shahbazi et al. 2007). PTOX is the terminal 

oxidase of chlororespiration, regulating the redox state of the PQ pool (Peltier and Cournac 

2002; Aluru and Rodermel 2004). It transfers the excess of electrons to O2, in order to maintain 

the relative redox balance in the photosynthetic electron transport chain (ETC), and reduces by 

this means the possibility for oxidative damage (McDonald et al. 2011). PTOX is considered to 

play a role in minimizing the generation of reactive oxygen species (ROS) when induced under 

environmental stresses (McDonald et al. 2011). Sun and Wen (2011) suggested a protective 

function with stress-induced inhibition of photosynthetic ETC.  

Carotenoid pigments are important compounds in human health because they serve as 

both vitamin A precursors as well as having antioxidant properties. Carrot (Daucus carota L.) is 

a biennial plant that in its storage root provides an important source of carotenoids in the 

human diets. Carotenoids play essential biological roles in plants and the genes coding for 

enzymes in the carotenoid pathway have already been subject of intensive studies in many 

species. However, the molecular regulation of carotenoid accumulation in the storage root of 

carrot has not been extensively explored.  

Recent reports point to PTOX as a key enzyme in the carotenoid biosynthesis pathway. 

Using a transgenic approach, Carol and Kuntz (2001) showed that the lack of PTOX blocks 

carotenoid synthesis. PTOX absence gives rise to the immutans phenotype in Arabidopsis 

thaliana and to the ghost phenotype in Solanum lycopersicum (also known as Lycopersicon 

esculetum) (Carol et al. 1999; Wu et al. 1999; Josse et al. 2000; Carol and Kuntz 2001; 

Rodermel 2001; Aluru et al. 2006). These phenotypes are characterized by variegated leaves 

with green and bleached sectors and additionally -in S. lycopersicum- by a yellow-orange ripe 

fruit. In immutans, the variegated phenotype might thus be due to a block in the desaturation 

of phytoene in the carotenoid biosynthetic pathway, as a result of insufficient oxidized PQ, 

which is needed as an electron acceptor for this reaction (Wu et al. 1999; Carol and Kuntz 

2001), leading to photobleaching of green tissues. PTOX has also a preponderant role in 

carotenoid biosynthesis in fruit chromoplasts (Josse et al. 2000), as observed in the yellow-

orange S. lycopersicum fruit, which is characterized by reduced carotenoid content (Barr et al. 

2004). In S. lycopersicum, a dual role for PTOX in efficient carotenoid desaturation as well as in 

chlororespiration in green tissues is refereed by Shahbazi et al. (2007). However, PTOX 
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transcript levels and carotenoid accumulation are not correlated in all tissues and organs 

(Aluru et al. 2001). 

Protein sequence analysis shows that PTOX shares sequence similarity with the stress-

inducible mitochondrial alternative oxidase (AOX) in a number of plant species (Berthold and 

Stenmark 2003; Carol et al. 1999; Wu et al. 1999). As with AOX proteins, PTOX sequence 

analysis reveals the existence of several conserved domains, such as iron-binding residues 

(McDonald et al. 2011). In both enzymes the sequences exhibit at their C-terminus the iron-

binding motifs typical of Type II di-iron carboxylate proteins (Carol and Kuntz 2001).  

In this work the PTOX gene was isolated from D. carota (DcPTOX) and its expression 

was investigated in relation to carotenoid content in the developing storage root of white, 

yellow, orange, red, and purple cultivars. These results were compared with the expression of 

five genes encoding carotenoid biosynthesis enzymes. To our knowledge this is the first report 

about the isolation of PTOX in D. carota and the analysis of its expression.  

 

5.2. Material and Methods 

5.2.1. Plant materials 

For DcPTOX gene isolation seeds of D. carota L. cv. Rotin were in vitro germinated in 

pots containing MS solid medium (Murashige and Skoog 1962) maintained under controlled 

conditions (25±1 °C at 16 h photoperiod: 34 µmolm-2s-1 light intensity, provided by day light 

Philips lamps). cDNA from a pool of eight week-old in vitro grown seedlings was used for gene 

identification, while cDNA from a single plant was used for complete gene isolation. 

To study the involvement of DcPTOX in carotenoid accumulation, an experiment with 

five cultivars representing a wide range of pigmented carrot material was performed under 

greenhouse conditions. White (711-1), yellow (207-1), red (203-1), and purple (purple phloem 

with yellow xylem) (699-1) (cultivated carrot breeding stocks developed by the USDA carrot 

breeding program), and the orange colored cv. Rotin. Seeds of each cultivar were sown in 

three pots with a total of 10 plants per pot. Samples of each cultivar were collected arbitrarily 

from 4 to 6 plants (biological replicates) at different time points: 5, 7, 9 and 13 weeks post 

sowing (wps). Samples consisted of complete roots (for samples collected at 5 and 7 wps) or 

pieces from the upper third root part (for samples collected at 9 and 13 wps). The appearance 

of the roots during the time course of the experiment can be observed on Suppl. Fig. 1. 

All collected samples were ground to a fine powder using liquid nitrogen and stored at 

-80 °C until further analysis.  
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5.2.2. Total RNA isolation 

Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany), 

with on-column digestion of DNA with the RNase-Free DNase Set (Qiagen, Hilden, Germany), 

according to manufacturer’s protocol. The quantification of RNA and the evaluation of its 

quality were determined in a NanoDrop-2000C spectrophotometer (Thermo Scientific, 

Wilmington, DE, USA). The integrity was evaluated by denaturing gel electrophoresis and 

visualized using a Gene Flash Bio Imaging system (Syngene, Cambridge, UK) after staining in an 

EtBr solution (2 ng·mL-1).  

 

5.2.3. Identification of DcPTOX and Rapid Amplification of the cDNA Ends (RACE) 

Single strand cDNA was produced with RevertAidTmHMinus M-MuLV Reverse enzyme 

(Fermentas, Ontario, Canada) using the oligo (dT) primer VIAL 8 (Roche, Mannheim, Germany) 

(Table 1), according to the manufacturer’s instruction. The degenerate primer pair 

(ptox_613fw and ptox_1023rv, see sequence in Table 1) was designed by choosing the two 

most conserved regions on an alignment performed with plant PTOX gene sequences available 

at NCBI data bases (National Center for Biotechnology Information, Bethesda, USA) (not 

shown) and was used for D. carota PTOX (DcPTOX) gene identification. PCR was performed 

with Ready-To-Go PCR Beads (GE Healthcare, Little Chalfont, England) using 1 µL of cDNA as 

template and 0.2 µM of each primer. Based on the DcPTOX cDNA partial sequence, new primer 

pairs were designed to conduct Rapid Amplification of the cDNA Ends (RACE) to isolate the 5’ 

and 3’ end of the gene. To determine the 5’ end of DcPTOX gene a cDNA library of D. carota cv. 

Marktgaertner M853 (kindly provided by Dr. Bettina Linke, Humboldt University of Berlin, 

Germany) cloned into a Lambda gt22a phage vector (Invitrogen, Karlsruhe, Germany) was 

generated (Linke et al. 2003). 5’ RACE-PCR was carried out using 1 µL of cloned library as 

template and the vector specific forward primer P6 (Table 1) combined with a gene-specific 

reverse primer (DcPTOX_24Rv, annealing at 58 °C for 30 s and extension at 72 °C for 60 s, see 

Table 1). For DcPTOX 3’ end isolation, 3’RACE-PCR was conducted using the reverse primer 

VIAL 9 (Roche, Mannheim, Germany) in combination with a gene-specific forward primer 

(DcPTOX_364Fw, annealing at 58 °C for 30 s and extension at 72 °C for 60 s, see Table 1). One 

µl of a 1:10 cDNA dilution of the first strand PCR product was used as template for 

amplification. RACE-PCRs were performed with Ready-To-Go PCR Beads (GE Healthcare, Little 

Chalfont, England) and 0.2 μM of each primer. For complete gene isolation one gene-specific 

primer set (DcPTOX_13Fw and DcPTOX_1183Rv, annealing at 55 °C for 15 s and extension at 

72 °C for 60 s, Table1) was designed based on the 5’ and 3’ UTR sequences previously isolated 

with RACE-PCRs. One μl of a 1:10 cDNA dilution from a single plant were used as templates. 
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All PCRs were performed in a 2720 thermocycler (Applied Biosystems, Foster City, CA, 

USA). PCRs products were separated in 1.4 % agarose gel and subsequently analysed, after 

EtBr staining (2 ng·mL-1) on a Gene Flash Bio Imaging system (Syngene, Cambridge, UK). 

Fragments showing the expected size were purified from agarose gel using the GFX PCR DNA 

and Gel Band Purification Kit (GE Healthcare, Little Chalfont, England) according to the 

manufacturer’s protocol. For cloning, PCR fragments were inserted into a pGem-T Easy 

vector (Promega, Madison, WI,USA) and used to transform E. coli JM109 (Promega Madison, 

WI, USA) competent cells. Plasmid DNA was extracted from putative recombinant clones 

(Birnboim and Doly, 1979) and confirmed by restriction enzyme analysis using EcoRI 

(Fermentas, Ontario, Canada). Sense and antisense strands were sequenced (Macrogen 

company: www.macrogen.com) in selected recombinant clones using T7 and SP6 primers 

(Promega, Madison, WI, USA).  

 

Table 1. Primers used for cDNA DcPTOX gene isolation. 

Primer name Sequence (5′→3′) 

ptox_613fw GYTTTGGYTGGTGGAGAMGRG  
ptox_1023rv CTCKGCTTCRTCRTCTCTRATG  
VIAL 8 GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTV    
DcPTOX_364Fw ACACACGAAGACCAGTGATAG  
VIAL 9 GACCACGCGTATCGATGTCGAC 

P6 CGCGGAAGAAGGCACATGGCTGAATA 

DcPTOX_24Rv CAAAATGGACTTTCAGATAGTC 
DcPTOX_13Fw GTCCGTCATTATTCAAACTTCAA 
DcPTOX_1183Rv ATCATCCTACTTGCCTAATATC 
(V = A, C or G) 

 

5.2.4. Bioinformatic analysis of the full-length DcPTOX cDNA and putative protein sequence  

Sequence homology was explored at the NCBI database using the BLAST algorithm 

(Karlin and Altschul 1993) (http://www.ncbi.nlm.nih.gov/) (BLASTn). To edit DcPTOX sequence 

data, SeqMan and EditSeq softwares (LASERGENE 7, GATC Biotech, Konstanz) were used. 

Phylogenetic studies included the PTOX proteins from a group of 21 eudicot and 5 monocots 

plant species retrieved from the genomic database freely available Plaza (Plaza 3.0: 

http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_monocots/ and http:// 

bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_dicots/), and were based on a ClustalW 

Multiple alignment made in BioEdit software (Hall 1999); the alignment was bootstrapped with 

1000 replicates by the Neighbor-Joining (NJ) method using the MEGA 4 software. For protein 

sequence comparison, a ClustalW Multiple alignment was performed using the CLC Main 



CHAPTER 5 
 

102 
 

Workbench 6.7.1 software (CLC bio). TargetP 1.1 software (Emanuelsson et al. 2000) 

(http://www.cbs.dtu.dk/services/TargetP/) was used to predict the chloroplast targeting 

sequence cleavage site.  

 

5.2.5. Reverse transcription quantitative real-time PCR (RT-qPCR)  

DNase-treated total RNA (1 µg) was reverse transcribed with the random decamer 

primers provided by the RETROscript® kit (Ambion, Austin, TX, USA) according to 

manufacturer’s instruction. RT-qPCR was used to investigate the involvement of DcPTOX with 

carotenoid accumulation in five cultivars of carrot with different root colors. Gene-specific 

primers were designed using Primer Express Software (Applied Biosystems, Foster City, USA). 

The genes considered for normalisation were: elongation factor-1alpha (EF-1A), glyceraldeyde 

3-phosphate dehydrogenase (GAPDH), and the ribosomal RNA 5.8S (5.8S rRNA) (previous 

selected by Campos et al. 2015). The target genes selected for RT-qPCR were DcPTOX, and the 

carotenoid biosynthetic genes: phytoene synthase 2 (PSY2), phytoene desaturase (PDS), ζ-

carotene desaturase (ZDS), lycopene β-cyclase 1(LCYB1), lycopene ε-cyclase (LCYE). Primer 

sequences and amplicon sizes are shown in Table 2. 

Quantification of gene expression was performed by RT-qPCR with SYBR Green q-PCR 

Master Mix (Fermentas, Ontario, Canada) on a 7500 Real Time PCR System (Applied 

Biosystems, Foster City, USA). 15 µl reaction volume containing 5 µL of first-strand cDNA 

(previously diluted 1:10) and 560 nM of each specific primer was used for expression analysis. 

The identity of each amplicon was confirmed by Sanger sequencing and specificity of qPCR 

reactions was evaluated by melting curve analysis. Efficiencies were calculated using a 4-point 

standard curves from a 4-fold dilution series (1:1-1:125) (run in triplicate) of pooled cDNA. RT-

qPCR was conducted for 40 cycles, each consisting of 15 s at 95 °C followed by 1 min at 60 °C. 

To analyse dissociation curve profiles, an additional step at 95 °C during 15 s was added, 

followed by a constant increase of temperature between 60 and 95 °C. All samples were run in 

duplicate. Minus reverse transcriptase and no template controls were included to assess 

contaminations. Cq values were acquired for each sample with the Applied Biosystems 7500 

software (Applied Biosystems, Foster City, CA, USA) with a fluorescence threshold arbitrarily 

set at 1. 
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Table 2. Primers used in RT-qPCR.  

[NCBI accession ID] Gene  Primer sequence (5’→3’) 
AS 

(bp) 

E 

(%) 

[GenBank:D12709] EF-1A 
Fw TGGTGATGCTGGTTTCGTTAAG 

75 99 
Rv AGTGGAGGGTAGGACATGAAGGT 

[GenBank:AY491512] GAPDH 
Fw GGGAGGTGCAAAGAAAGTTATCA 

79 96 
Rv TTCCTTTTCATTGACACCAACAA 

[GenBank:X17534] 5.8S 
Fw AATGACTCTCGGCAACGGATAT 

73 102 
Rv TCACACCAAGTATCGCATTTCG 

[GenBank:DQ192187] PSY2 
Fw GGTTGGGTTCCCGGGATA 

67 81 
Rv TCCGCAGCTTACCCTTCTCA 

[GenBank:DQ222429] PDS 
Fw TAACATGGCCTGAGAAAGTCAAGT 

71 105 
Rv CACGTAGGCTTGTCCACCAA 

[GenBank:DQ222430] ZDS1 
Fw CCGAAGCTAAAAGTGGCTATTATAGG 

77 93 
Rv TGGCCCTGATCTAGAAGCTCAA 

[GenBank:DQ192190] LCYB1 
Fw CCAGTTGTTGCCAATGCAAT 

63 84 
Rv GTTTCCCAAAGCGCCTTTC 

[GenBank:DQ192192] LCYE 
Fw CATTCCATGCAGGCTTGCTA 

70 94 
Rv CCCAACCTCATACTGCAAAAGTT 

[GenBank: EU331420] DcPTOX 
Fw CGTTTTCGTGTAATTCGTTGAGAT 

142 93 
Rv TCCACAACTACCTTCTCCTCATTCT 

AS corresponds to amplicon size; E corresponds to primer efficiency. Primers sequences of PDS, ZDS1 
and LCYE were previously published in Clotault et al. (2008). 
 

Evaluation of expression stability of reference genes and selection of the most 

appropriate combination of genes to be used for data normalisation was done using the 

statistical application geNorm (Vandesompele et al. 2002). Error bars shown in RT-qPCR data 

represent the standard error of the means of 4 to 6 biological replicates per time point. 

 

5.2.6. Statistics 

The gene expression values were transformed by using a loge transformation to ensure 

a Normal distribution and homogeneity of variance (tested by Shapiro–Wilk and the Levene’s 

tests for normality and homocedasticity respectively). A two-way analysis of variance (ANOVA) 

and a Tukey’s honestly significant difference (HSD) for unequal N (Spjotvoll and Stoline 1973) 

were used to test for significant differences in gene expression between time points and/or 

cultivars. Statistical analyses were performed by using software SAS commercial software 

(Statistical Analysis System) v.9.2. In all the analyses we considered significant a P-value < 0.05.  

The correlation between transcript levels of PTOX and the other studied genes in all 

cultivars and time points was evaluated by a parametric correlation test using SPSS v. 16.0. 
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5.3. Results 

5.3.1. Characterisation of DcPTOX cDNA  

Specific primers allowed the isolation of the complete PTOX gene of D. carota L. cv. 

Rotin (DcPTOX). DcPTOX  full-length cDNA sequence of 1338 bp (Fig. 1) includes a continuous 

open reading frame (ORF) with 1098 bp, which encodes a putative polypeptide consisting of 

366 amino acid residues, with a predicted molecular weight (mol wt.) of 41.73 kDa and a 

hypothetical isoelectric point (pI) of 5.57. The homologous identity score performed in NCBI 

with the deduced amino acid residues sequence shows that DcPTOX shares high degree of 

similarity with PTOX from other plant species such as Capsicum annuum (72 % identity, 93 % 

coverage), S. lycopersicum (71 % identity, 98 % coverage) and Coffea canephora (70 % identity, 

94 % coverage). In most of the analysed sequences, PTOX appears as a single gene. 

Nevertheless, in five species (Cucumis melo, Eucalyptus grandis, Glycine max, Populus 

trichocarpa and Zea mays) two PTOX genes were identified (see CHAPTER 6).  

 

Fig. 1. Nucleotide and deduced amino acid sequences of cDNA encoding Daucus carota L. cv. Rotin 

plastid terminal oxidase, DcPTOX. * indicates stop codon. (GenBank: EU331420) 

 

A multiple sequence alignment of 10 complete protein-coding regions of several PTOX 

plant sequences, including DcPTOX was used to highlight similarities and differences in the 
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protein sequences (Fig. 2): DcPTOX revealed structural features usually found in most of the 

higher plants’ PTOX. These perfectly conserved residues are four glutamates and two 

histidines, also conserved in DcPTOX at the positions: E151, E190, H193, E242, E312, H315 

(position at the alignment sequence, see in Figure 2). The conservation of 6 cysteines at the C-

terminal region was also noted, as in other plant species (C240, C316, C322, C346, C354, C360 

in Fig. 2). A conserved 16-amino acid residues insertion, identified by Fu et al. (2005), which 

corresponds to exon 8 of the higher plant genomic PTOX gene sequence was located near de 

C-terminus (Fig. 2).  

PTOXs from the eudicot group can be clearly distinguished from the monocots by 

specific residues at the positions E86, M204 and W218 (Fig. 2). PTOX sequences from 

monocots (Fig. 2) can be also distinguished from the remaining plants by specific residues, 

F191, R213, F214, F217, A225, R243, L255, A269, N276 and E345. These results were 

confirmed in an alignment with a larger group of sequences (results not shown). PTOX 

encoded peptides from G. max (GM09G01130 and GM15G11950) and Z. mays (ZM02G01080 

and ZM02G01090) were included in the alignment. Few differences can be detected between 

both G. max PTOX sequences, only differing in 5 amino acids (Fig. 2). Z. mays presented many 

amino acids differences between the two PTOX sequences (Fig. 2). 

DcPTOX protein was predicted to be located in the chloroplast, with a predicted length 

of the chloroplast transit peptide (cTP) of 49 amino acids residues (cTP score of 0.988). 

Prediction of cTP for the sequences used in the alignment of Fig. 2 shows no conservation 

across species. PTOX sequences from G. max (GM09G01130 and GM15G11950) showed a 

conserved predicted length of the cTP of 36 amino acid residues. A. thaliana (AT4G22260) cTP 

displayed 56 amino acids. The members of Solanaceae S. lycopersicum (SL11G011990) and 

Solanum tuberosum (ST11G007260) showed a cTP of 65 amino acids. PTOX sequences from Z. 

mays (ZM02G01080 and ZM02G01090) present a cTP of 94 and 46 respectively.  
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Fig. 2. Multiple alignment of the deduced amino acid sequence from Daucus carota L. cv. Rotin PTOX 

(DcPTOX) and 9 other plant PTOX sequences. The alignment was performed using CLC Main Workbench 

6.7.1 software. Six conserved cysteines identified by Josse et al. (2000) are indicated in red. The amino 

acids required for iron binding are indicated in green (Berthold et al. 2000). The location of the exon 8 

identified by Fu et al. (2005) is boxed in yellow. The predicted amino acid sequences used for 

comparison were DcPTOX (GeneBank: ACA53387) and other PTOX sequences from Plaza databases as 

follows: GM09G01130 and GM15G11950, Glycine max; AT4G22260, Arabidopsis thaliana; SL11G011990, 

Solanum lycopersicum; ST11G007260, S. tuberosum; OSINDICA_04G49460, Oryza satica indica; 

OS04G57320, O. sativa japonica; ZM02G01090 and ZM02G01080, Zea mays. 

 

To determine the relationship between DcPTOX and PTOX from other plant species a 

NJ tree was constructed (Fig. 3), using the identified PTOX sequences. In plants, the PTOX can 

be separated into two different groups: one group includes all eudicots sequences and other 

the monocots (Fig. 3). A clade that comprises members of Brassicaceae (AL7G19990, 

AT4G22260, BR01G12490, CRU_007G18140, TP7G20380) can also be clearly identified within 

the eudicots.  
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Fig. 3. Neighbor-Joining (NJ) tree showing the relationships among 32 deduced PTOX sequences from 

plants. The shaded area indicates DcPTOX. The NJ tree was obtained using the complete PTOX peptide 

sequences. The alignments were bootstrapped with 1000 replicates by the NJ method using the MEGA 4 

software. PTOX sequences from the green algae Haematococcus pluvialis (GenBank: DQ485457 and 

DQ485458), were used as outgroups. The scale bar indicates the relative amount of change along 

branches. The predicted amino acid sequences used for comparison were Daucus carota PTOX 

(GeneBank: ACA53387) and other PTOX sequences from Plaza databases as follows: GM09G01130 and 

GM15G11950, Glycine max; MT2G025140, Medicago truncatula; EG0005G29840 and EG0005G29880, 

Eucalyptus grandis; FV3G01900, Fragaria vesca; PPE_004G01240, Prunus persica; BR01G12490, Brassica 

rapa; TP7G20380, Thellunginela parvula; CRU_007G18140, Capsella rubella; AL7G19990, Arabidopsis 

lyrata; AT4G22260, A. thaliana; SL11G011990, Solanum lycopersicum; ST11G007260, S. tuberosum; 

 

Monocots 

Eudicots 
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CP00152G00610, Carica papaya; CS00007G03400, Citrus sinensis; TC0006G22260, Theobroma cacao; 

GR09G18220, Gossypium raimondii; ME06598G00570, Manihot esculenta; RC29842G00190, Ricinus 

communis; PT04G00260 and PT11G02180, Populus trichocarpa; CM00049G00470 and CM00049G00520, 

Cucumis melo; CL01G15950, Citrullus lanatus; OSINDICA_04G49460, Oryza sativa indica; OS04G57320, 

O. sativa japonica; BD5G25540, Brachypodium distachyon; ZM02G01090 and ZM02G01080, Zea mays; 

SB06G032180, Sorghum bicolor. 

 

5.3.2. DcPTOX gene expression and its relation to carotenoid biosynthesis  

To examine whether carotenoid accumulation during carrot root development and 

differences in carotenoid composition between carrot cultivars could be related to the 

expression of PTOX, transcript levels of DcPTOX and five carotenoid biosynthetic genes were 

analysed. EF-1A and GAPDH were selected to normalize target gene expression. Carotenoids 

analysis confirmed that the dominant carotenoids that accumulate in the analysed carrot roots 

vary according to root color and increased during carrot developmental age (results not 

shown). 

RT-qPCR analysis performed in carrot tap roots during secondary root growth showed 

that all the analysed genes were expressed between the 5th and 13th week of plant growth in 

the five cultivars, including the white carrot, where very little or no carotenoid pigments were 

detected (Fig. 4). 

Target gene transcript accumulation in the different cultivars throughout the 

investigated period can be observed in Fig. 4 (for differences during development for each 

genotype see uppercase letters). As for other carotenoid biosynthetic genes (Fig. 4 B, C, D) 

DcPTOX presented an increased transcript level during the time course of the experiment, with 

significant (P<0.05) differences during early root development (5-9 wps) (approximately 3-fold 

for white, yellow and purple; 2-fold for red and 4-fold for orange, Fig. 4 A). This is consistent 

with the accumulation of total carotenoids in colored cultivars during root development. 

Carotenoid accumulation and levels of most transcripts seemed to be less correlated during 

the late rapid carotenoid accumulation stage (9-13 wps). For most genes studied in all cultivars 

transcript levels were stable over this period, with LCYB1 being the only exception. Although 

the white cultivar did not contain carotenoids (see below), transcript levels of DcPTOX, PDS, 

ZDS1 and LCYB1 increased globally throughout the investigation period. PSY2 remained 

constantly low in this cultivar (Fig. 4) with a slight increase in the period between 5-7 wps. 

Differences in transcript levels among cultivars detected per time point can also be 

seen in Figure 4 (see lowercase letters). At 7, 9 and 13 wps PSY2 presented differential 

expression between the white and the remaining cultivars with a maximum of 11.6-fold 
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difference from the orange cultivar, achieved 9 wps. LCYE was low in the white cultivar in all 

studied time points, and significantly different from all cultivars at 13 wps. PDS, PTOX and ZDS 

presented a similar profile, with some differences between different root colors only detected 

at 7 wps.  

Transcript accumulation of DcPTOX was correlated with the transcript accumulation of 

PSY2 (Pearson Coefficient: 0,747, P< 0.001), PDS (Pearson Coefficient: 0,810, P< 0.001), ZDS 

(Pearson Coefficient: 0,721, P< 0.001), LCYB1 (Pearson Coefficient: 0,791, P< 0.001) and LCYE 

(Pearson Coefficient: 0,631, P< 0.001). 
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Fig. 4. Transcript accumulation of DcPTOX and five carotenoid biosynthetic genes during carrot root 

development in five different carrot cultivars, growing under greenhouse conditions. Transcript levels 

were determined by RT-qPCR. In each harvest time point, 4-6 biological replicates were considered per 

cultivars. Error bars indicate the standard error of the mean. Different superscript letters indicate 

significant differences between the stages of development for each cultivars (capital letters), or 

between cultivars within each time point (small letters). W: white; Y: yellow; Or: orange; R: red; P: 

purple cultivars. 

 

5.4. Discussion 

5.4.1. DcPTOX sequence analysis 

A single gene encoding the PTOX was identified on D. carota L. cv. Rotin (DcPTOX), as 

reported in higher plants such as S. lycopersicum, C. annuum and Arabidopsis (Scolnik et al. 

1987; Carol et al. 1999; Wu et al. 1999; Josse et al. 2000), as well as in several plant species 

phylogenetic distant included in this study like Brachypodium distachyon and Sorghum bicolor. 

Nevertheless, it was possible to identify, by analysis of sequences available from projects of all 

genome sequencing, the existence of two PTOX genes in some plant species (including mono 

and dicot plant species) (Fig. 2, detailed information in CHAPTER 6) e.g. in C. melo, E. grandis, 

G. max, P. trichocarpa and Z. mays. The deduced amino acid sequence of DcPTOX shared high 

sequence similarity with PTOXs from other higher plants, including the conserved iron binding 

residues described by several authors (Josse et al. 2000; Finnegan et al. 2003; Fu et al. 2009; 

McDonald et al. 2011). PTOX is a member of the non-heme diiron carboxylate (DOX) protein 

family. The DOX domain is composed of a four-helix bundle that provides six ligands for 

binding the diiron center (Andersson and Nordlund 1999; Berthold et al. 2000). Fu et al. (2005) 

demonstrated by using in vitro and in planta site-directed mutagenesis, that the iron ligands of 

PTOX are essential for activity and that they do not tolerate changes. These mutagenesis 

experiments also showed a highly conserved 16 amino acid domain located near the C-

terminus, encoded by exon 8, required for PTOX activity and stability. That domain, 

characteristic of PTOX (McDonald et al. 2003; Fu et al. 2005; Fu et al. 2009; McDonald et al. 

2011), could exceptionally be absent. That is the case of A. thaliana, in which an allele of IM 

gene (PTOX gene for A. thaliana) was characterized by the lack of exon 8 (Aluru et al. 2006). 

That mutation did not affect gene regulation at the transcriptional level but had a strong role 

on post-transcriptional gene regulation; normal levels of mRNA were produced, but no IM 

protein was accumulated. Six previously reported conserved cysteines on the C-terminal 

region (Josse et al. 2000) were also identified in DcPTOX.  
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PTOX chloroplast localisation was confirmed by in organelle import assays in A. 

thaliana (Wu et al. 1999; Carol et al. 1999). PTOX has a N-terminal cTP, like most of the 

precursor proteins targeted to chloroplasts, and its length influences the efficiency of 

translocation (Bionda et al. 2010). In PTOX of higher plants, no conservation across species was 

identified when a prediction of cTP was done using bioinformatics tools. The biological reason 

for those differences remains unknown. Nevertheless, there are other examples of no 

conservation of TP across plant species. It is the case of the mitochondrial alternative oxidase 

(AOX) where the predicted length of the mitochondrial targeting sequence cleavage site is 

highly variable, not only across plant species but also within the same plant species across 

proteins encoded by different members of the AOX gene family (Campos et al. 2009).  

 

5.4.2. DcPTOX, carrot development and carotenoid accumulation 

Carotenoids are common pigments and their compositions and contents are important 

indexes to evaluate the nutritional and commercial values. For a better understanding of the 

involvement of PTOX on the carrot carotenoid biosynthesis pathway, an experiment involving 

five cultivars with variable root colors and different developmental stages was performed. 

DcPTOX transcripts were ubiquitously detected between the 5th and 13th week of plant growth 

for all cultivars. Beside DcPTOX, five other genes directly involved in carotenoid biosysthesis 

pathway, with their transcripts detected in carrot roots were selected (Just et al. 2007; Clotault 

et al. 2008; Fuentes et al. 2012). DcPTOX presented a similar expression profile to these genes, 

and highly correlated with all, especially with PDS. PTOX is known to play a role as a cofactor 

for PDS and is consequently a key enzyme in carotenoid biosynthesis. In the carotenoid 

biosynthetic pathway, the colored carotenoids are synthesized within plastids from phytoene, 

a non-colored precursor that results from two geranylgeranyl diphosphate (GGPP) molecules, 

catalyzed by PSY. Desaturation of phytoene by the sequential activity of the enzymes PDS and 

ZDS (Carol and Kuntz 2001; Simkin et al. 2008) results in the production of lycopene, a 

substrate for the formation of both α- and β-carotene. Catalytic activity of PDS and ZDS has 

been shown to require several redox components including PQ and O2. As a PQ/O2 

oxidoreductase, plant PTOX has been regarded as an important co-factor of carotenoid 

biosynthesis by transferring the electrons derived from PDS and ZDS steps to O2 via the PQ 

pool (Carol and Kuntz 2001; Aluru and Rodermel 2004). PTOX is responsible for oxidizing PQH2 

and making PQ available for reduction allowing the process to continue (Josse et al. 2000; 

McDonald et al. 2011). Lack of PTOX will block carotenoid synthesis at the PDS step due to 

over reduction of the PQ pool (Carol and Kuntz 2001). Due to its position in metabolism, PDS 

activity could serve to regulate both the carotenoid and chlorophyll biosynthetic pathways 
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(McDonald et al. 2011). In tomato, the loss of PTOX function in the ghost mutant leads to 

carotenoid accumulation defects in both leaves (chloroplasts) and fruit (chromoplasts), 

indicating that PTOX is a major cofactor involved in phytoene desaturation in both 

photosynthetic and non-photosynthetic tissues (Josse et al. 2000). 

Carrot root colour is a result of various pigments that serve as intermediate products in 

the carotenoid pathway. Different root colors are the result of differences in carotenoid 

composition. The orange color is due to α- and β-carotene, whereas the red color is due mostly 

to an accumulation of lycopene. The purple carrots contain anthocyanins, and the yellow color 

in carrot roots is due to xanthophylls, downstream of β-carotene. White-colored roots are low 

in total carotenoids. However a poor link was detected in our experiment among carotenoid 

accumulation and the relative transcript abundance of DcPTOX as well as other studied 

carotenoid biosynthetic genes. In fact, only in the early stages of root growth differences on 

DcPTOX transcript accumulation were detected among cultivars. However, differential 

expression of PSY2 was detected when comparing the carrot storage root tissue of the white 

and the other cultivars. Our results are in agreement with Maass et al. (2009), where they 

suggest that PSY is the major driver for accumulation of carotenoids, and with Santos et al. 

(2005) that refer an important role of PSY in regulating carotenoid accumulation in a carrot 

population segregating for white, yellow and orange root color. From the analysed carotenoid 

biosynthetic genes in different carrot storage root colors (PTOX not included), also Bowman et 

al. (2014) observed differential expression only on PSY genes, suggesting these authors its key 

role in the biosynthesis of carotenoid pigments. These authors hypothesized that differential 

expression of one or more genes in that pathway may account for, or at least contribute to, 

the large differential accumulation of carotenoids observed by comparing white and orange 

carrots. Evidence of carotenoid gene expression in non-pigmented carrot root (without 

carotenoid accumulation), with a similar profile of several carotenoid genes of colored roots 

(including DcPTOX) was observed in our experiments, as well as by several other authors 

(Bowman et al. 2014; Clotault et al. 2008). Several mechanisms were already suggested to 

explain this apparent paradox such as the existence of non-functional alleles, tissue-specific 

isoforms, impaired enzyme activity, or increased carotenoid degradation in white carrots, but 

no direct experimental evidence supporting any of them was presented (Rodriguez-Conception 

and Stange 2013; Clotault et al. 2008). Recently, the identification of post-transcriptional 

mechanisms with influence on carotenoid accumulation can also explain this poor correlation 

(Ruiz-Sola and Rodríguez-Concepción 2012). As an example of this post-transcriptional 

mechanisms we can refer to the orange curds of the cauliflower (Brassica oleracea var. 

botrytis) Orange variety, in which chromoplast-like plastids with inclusions of membranous 
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compartments develop due to a mutation in a gene that results in the accumulation of much 

higher carotenoid (β-carotene) levels compared to uncolored varieties without changes in the 

expression of carotenoid biosynthetic genes (Li et al. 2001). Although the biological role of this 

mutation is still unclear, these studies illustrate how carotenoid accumulation can be boosted 

by triggering the synthesis of a plastid deposition sink to store carotenoids (Giuliano and 

Diretto 2007; Li and Van Eck 2007). From the analysis of our results we can suggest an 

additional explanation for the increase of PTOX transcripts in the carrot white cultivar along 

the experiment, which is based on the association of DcPTOX not only with carotenoid 

biosynthesis, but also with development and growth. 

As a complement to gene expression, DcPTOX genomic sequence analysis with the 

identification of single nucleotide polymorphisms (SNPs) and InDels (insertion and deletions) in 

all parts of the gene (exons, introns, promoter regions and UTRs) will be of further interest to 

determine if these features are associated with storage root pigmentation. DNA sequence 

analysis in carotenoid biosynthesis genes has already been associated with accumulation of 

various carotenoid pigments. In maize, the natural variation of DNA sequence of the 

carotenoid gene LCYE has been found to control the flux of carotenoid metabolism towards 

either α-carotene or β-carotene accumulation, and can be used as a source of genetic variation 

for maize biofortification (Harjes et al. 2008). Sequence variability in DcPTOX could also 

contribute to the diversity in carotenoid accumulation in D. carota. Association of these 

polymorphisms will help bridge the gap between genomics and phenomics.  

 

5.5. Conclusions 

Our results showed that DcPTOX expression has a similar profile to that of other 

carotenoid biosynthetic genes, with a high correlation to all, suggesting an involvement of 

DcPTOX in carotenoid biosynthesis pathway during carrot storage root development. Our 

results also reaffirm previous experiments regarding the preponderant role of PSY in the 

biosynthesis of carotenoid pigments. We also propose that DcPTOX might be associated not 

only with carotenoid biosynthesis, but also with development and growth. 
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Supplemental Fig. 1. Aspect of the roots during the time course of the experiment (5, 7, 9 and 13 weeks 

post-sowing). Cultivars: white (711-1), yellow (207-1), Rotin, red (203-1) and purple (699-1) (from left to 

right).  

5 weeks post sowing 7 weeks post sowing 

9 weeks post sowing 13 weeks post sowing 
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CHAPTER 6 - DIFFERENTIAL EXPRESSION OF CARROT PLASTID TERMINAL OXIDASE 

(DcPTOX) DURING STORAGE ROOT GROWTH, AND IN EARLY RESPONSE TO GROWTH 

INDUCTION 

 

Abstract 

The nuclear plastid terminal oxidase gene (PTOX) is present in photosynthetic species 

and functions in the oxidation of the plastoquinone pool. Expression analysis on diverse carrot 

experimental systems showed a dynamic expression of carrot PTOX (DcPTOX). First, an 

increase on transcript accumulation during carrot tap root secondary growth in a pot plant 

growth chamber (GC) experiment was detected, which suggests the involvement of DcPTOX in 

tap root secondary growth and/or in the carotenoid biosynthesis pathway. A short-term early 

response in DcPTOX transcript accumulation upon temperature decrease was found, probably 

associated with adaptive growth. After the beginning of the mild-cold treatment the storage 

root growth (measured by root biomass, length and thickness) was suppressed. However, the 

mild-cold stress had a positive effect on the final storage root growth. Next, the expression of 

DcPTOX was studied by high time resolution in a primary culture system (PCS) during early 

phases of de novo growth induction and exponential growth at 21 °C/28 °C. The PCS results 

showed that DcPTOX gene was differentially transcribed during earliest events in cell 

reprogramming and exponential growth. Differential DcPTOX expression was also observed 

between genotypes and dependent of temperature. Furthermore, the thorough analysis of the 

complete DcPTOX gene revealed it as a single gene, with an exceptionally large genomic 

sequence (9422 bp) in comparison to other species, comprising nine exons interrupted by 

eight introns. In silico analysis based on data from whole genome sequencing projects revealed 

that some plant species present two PTOX genes. Prediction of pre-miRNA sequences in 

intronic regions of DcPTOX showed two putative locations coding for precursors of miRNAs, 

one located at intron 2 and other located at intron 6. Regarding future development of 

functional markers, the search for sequence variability at genomic level was performed. 

DcPTOX revealed intron length polymorphisms (ILPs) in intron 2, due to the occurrence of two 

insertion/deletions (InDels) events. 

 

Keywords: Daucus carota; plastid terminal oxidase; cell reprogramming; growth; DcPTOX gene 

characterisation 
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6.1. Introduction 

The nuclear plastid terminal oxidase gene, initially identified through transposon 

tagging (Carol et al. 1999) codes for a plastid quinol:oxygen oxidoreductase termed plastid 

terminal oxidase (PTOX). PTOX is the terminal oxidase of the chlororespiration, and regulates 

the redox state of the plastoquinone (PQ) pool (Peltier and Cournac 2002; Aluru and Rodermel 

2004) by transferring excess electrons to O2, in order to maintain the relative redox balance in 

the photosynthetic electron transport chain (ETC), and reducing by this means the possibility 

for oxidative damage (McDonald et al. 2011). This catalytic function was deduced from its 

protein sequence similarity to mitochondrial alternative oxidase (AOX). Several conserved 

domains such as iron-binding residues that are essential for activity have been identified on its 

amino acid sequence (McDonald et al. 2011; Fu et al. 2012). Such as AOX,PTOX is a member of 

the non-heme diiron carboxylate (DOX) protein family (Carol et al. 1999; Wu et al. 1999; 

Berthold and Stenmark 2003) and both enzymes have been modeled as interfacial membrane 

proteins with an active site (DOX) domain (McDonald et al. 2011). PTOX in chloroplasts has 

been suggested to be functionally analogous to AOX in mitochondria (Aluru and Rodermel 

2004; Kuntz 2004) and for instance a role in minimizing the generation of reactive oxygen 

species (ROS) when induced under environmental stresses has been attributed to PTOX 

(McDonald et al. 2011). The “safety valve” function of PTOX, which is a protective function 

against over-reduced states under stress conditions, has frequently been put forward for e.g. 

in the alpine plant Ranunculus glacialis under light stress at increasing altitudes (Streb et al. 

2005), in the halophyte Thellungiella halophila under salt stress (Stepien and Johnson 2009) 

and in Brassica fruticulosa under temperature and light stress (Díaz et al. 2007). All these 

studies seem to indicate a metabolic role for plant PTOX upon a diversity of environmental 

stresses. However, other authors argue that PTOX does not act as a “safety valve” for 

photosynthesis during stressful conditions but more likely plays important roles during plant 

development (Rosso et al. 2006; Shahbazi et al. 2007; Busch et al. 2008; Okegawa et al. 2010). 

In fact, it is likely that PTOX is involved on stress response of certain plants, but does not act as 

a universal or essential safety valve in the whole plant kingdom. An important function on 

carotenoids biosynthesis pathway is also attributed to PTOX (Carol et al. 1999; Wu et al. 1999; 

Josse et al. 2000; Carol and Kuntz 2001; Rodermel 2001; Aluru et al. 2006; see CHAPTER 5)  

Interestingly, recent findings on the interaction between AOX and PTOX were referred 

in Arabidopsis thaliana by Fu et al. (2012). According to these authors, AtAOX2 was imported 

into chloroplasts using its own transpeptide and so, it was proposed that AtAOX2 is able to 

function in chloroplasts to supplement PTOX activity during early events of chloroplast 

biogenesis. Similar results were obtained when AtAOX1a was reengineered to target the 
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plastid. The ability of AtAOX1a and AtAOX2 to substitute PTOX in the correct physiological and 

developmental contexts is a striking example of the capacity of a mitochondrial protein to 

replace the function of a chloroplast protein and illustrates the plasticity of the photosynthetic 

apparatus (Fu et al. 2012).  

The involvement of AOX genes in plant stress responses towards phenotype plasticity 

and the relation of AOX activity to growth have put forward the idea of its use as a source for 

functional marker (FM) candidates in molecular plant breeding on adaptive stress behaviour 

(Arnholdt-Schmitt et al. 2006; Arnholdt-Schmitt 2009; Polidoros et al. 2009; Cardoso and 

Arnholdt-Schmitt 2013; CHAPTER 3). Due to the similarity between both enzymes it is plausible 

that PTOX is also involved in at least some of those functions, and therefore the gene arises as 

a potential source of functional markers. 

In the present work it is described the dynamics of DcPTOX transcript accumulation in 

two experimental systems: (a) during carrot tap root secondary root growth, in a growth 

chamber experiment (GC) and (b), during growth in an in vitro primary culture system (PCS). 

The effect of temperature was evaluated in both systems. Considering the possible 

involvement of DcPTOX on important agronomical traits in carrot (yield or pigmentation of 

storage roots), the idea of future development of functional markers could be of high interest 

to assist carrot plant breeding. In this context the isolation and characterization of the DcPTOX 

complete genomic sequence is presented, as well the evaluation of polymorphisms at intronic 

level.  

 

6.2. Material and methods 

6.2.1. DcPTOX expression analysis 

Growth chamber experiment (GC) 

In order to study the involvement of DcPTOX in plant growth and plant response upon 

mild-cold stress, growth chamber experiments were performed. Seeds of D. carota cv. Rotin 

were sown in pots in order to have 10 plants per pot, and three pots per time point. Pots were 

distributed in two growth chambers maintained at 25 °C day and 20 °C night, under 16 h 

photoperiod with 202.5 μmol m-2 s-1 (15000 lux) of light intensity. These experiments run at 

the German ‘Federal Centre for Breeding Research on Cultivated Plants (BAZ)’ in Quedlinburg 

within the frame of a bilateral cooperation. The plant material was harvested, properly stored 

and sent to PhD candidate for the expression analyses. 

To study the involvement of DcPTOX on plant growth, samples were collected from tap 

roots growing under 25/20 °C (day/night) at 28, 42, 70 and 98 days post-sowing.  
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To study the involvement of DcPTOX upon cold stress, the temperature conditions of 

one chamber changed at 84 days after sowing from 25/20 °C (day /night) to 15/10 °C 

(day/night), and samples were collected from tap roots at 84 days after sowing (before 

exposure to cold stress), and at 3 h, 8 h, 24 h and 4 days after exposure to cold stress.  

Samples consisted of small pieces of the cambium tissue plus adjacent secondary 

phloem cells, taken from 18 plants as a bulked sample per time point. 

The parameters root biomass (root fresh weight), root length and root thickness were 

evaluated in 6 individual storage roots from both chambers at the described temperature 

conditions at the time points: 28, 42, 56, 70, 84, 85, 86, 88, 90, 92, 98 and 125 days after 

sowing. 

 

Establishment of a primary culture system (PCS) 

To study the dynamics of DcPTOX gene expression during growth, a primary culture 

system approach was chosen. For complete and detailed description of the procedure see 

Campos et al. (submitted, see in CHAPTER 3. Explants from secondary tap root phloem from 10 

weeks old plants of D. carota L. cv. Rotin were inoculated in NL liquid medium (Neumann 

1966) supplemented with kinetin (1 mg·L-1) and indole acetic acid (2 mg·L-1). Inoculation of 

explants from quiescent secondary root phloem in a cytokinin-containing nutrient media 

induces cell program changes that imply the acquisition of a so-called ‘undifferentiated’ stage 

(callus) and subsequent growth. To get novel insights about role of PTOX on tissue 

dedifferentiation and callus growth, explants from 4 individual carrot plants (4 biological 

replicates) were inoculated at 21 °C and were collected at different time points: 0 h, 8 h, 12 h, 

36 h, 4 days, 8 days, 14 days, 21 days and 28 days post inoculation (hpi/dpi). Samples consisted 

in a bulked of 30 explants taken at time points from 0 hpi until 4 dpi, and about 15 explants in 

the remaining time points. The maximum number of time points chosen to collect plant 

material for RNA extraction and for growth curve analysis was restricted by root sizes (for 

growth curve analysis results and the aspect of the callus during growth see CHAPTER 3). 

To compare the transcript changes of DcPTOX on PCS under two different incubation 

temperatures (21 °C and 28 °C), explants from five individual plants (five biological replicates 

previously selected from 12 individual plants based on callus growth behaviour, under the two 

temperatures tested, see details in CHAPTER 3) were collected before inoculation (T0), and 

from callus from exponentially growing primary cultures at 14 dpi. Samples consisted of bulked 

samples of about 50 explants.  

 

 



CHAPTER 6 
 

125 
 

Sample processing  

All samples were immediately grounded to fine powder using liquid nitrogen and 

stored at -80 °C until further analysis. Total RNA was extracted using RNeasy Plant Mini Kit 

(Qiagen, Hilden, Germany) with on-column digestion of DNA using RNase-Free DNase Set 

(Qiagen, Hilden, Germany), according to manufacturer’s instruction. The integrity of RNA 

samples were analysed in denaturing gel after stained with EtBr solution (2 ng·mL-1) and 

visualized in a Gene Flash Bio Imaging system (Syngene, Cambridge, UK). RNA concentration 

was determined in a NanoDrop-2000C spectrophotometer (Thermo Scientific, Wilmington, DE, 

USA). DNase-treated total RNA (1 µg) were reverse transcribed with random decamer primer 

using the RETROscript® kit (Ambion, Austin, TX, USA) according to manufacturer’s instruction.  

In GC experiment two RTs were performed per time point. In the PCS bulked samples from 

individual plants were taken and a single RT was performed per time point. 

 

Transcript analysis 

The availability of complete DcPTOX gene sequences at the cDNA level in Daucus 

carota (see in CHAPTER 5) allowed the design of specific primers to study transcript 

accumulation in both experimental systems. 

Transcript analyses of DcPTOX were performed by semi-quantitative PCR (RT-sqPCR) 

and by quantitative PCR (RT-qPCR). Gene-specific primers were designed using Primer Express 

Software (Applied Biosystems, Foster City, USA) (Table 1). For RT-sqPCR experiments the gene 

considered for normalisation was elongation factor-1alpha (EF-1A) (selection based on 

previous experiments, see technical details on CHAPTER 7). For RT-qPCR experiments the 

reference genes selection was previously made, and vary according to the experimental 

system: EF-1A and alpha-tubulin (TBA) for GC (to evaluate plant growth, see CHAPTER 7), and 

EF-1A and Actin for GC (to evaluate the effect of cold treatment, previously selected from a set 

of 4 tested reference genes, results not shown) and for PCS (see CHAPTER 7). 

RT-sqPCR experiment was performed only in PCS using Ready-To-Go PCR Beads (GE 

Healthcare, Little Chalfont, England), 2 µL of cDNA (diluted 1:10) as template and 0.2 µM of 

each specific primer (Table 2). PCR for EF-1A and DcPTOX was carried out in a 2720 

thermocycler (Applied Biosystems, Foster City, CA, USA) for 35 cycles, each one consisting of 

30 s at 94 °C, 15 s at 60 °C, and 15 s at 72 °C. RT-sqPCR products were analysed by 

electrophoresis in 2 % (w/v) agarose gel. Image analysis was carried out to normalize the 

expression level of PTOX cDNA with the reference DcEF1α gene. The densities of the bands 

were analysed with using ImageJ 1.47v (http://imagej.nih.gov/ij) (Schneider et al. 2012) . The 

results were expressed as mean ± standard error (SE) of four individual plants. Differences 
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between time points were examined by one-way ANOVA using the STATISTICA 8.0 statistical 

package (StatSoft Inc.).  

RT-qPCR gene expression was performed with SYBR Green q-PCR Master Mix 

(Fermentas, Ontario, Canada) on a 7500 Real Time PCR System (Applied Biosystems, Foster 

City, USA). Fifteen µl reaction volume containing 5 µL of first-strand cDNA (previously diluted 

1:10) and specific primers adjusted to the adequate concentration (see primer details on Table 

1) were used. The identity of each amplicon was confirmed by Sanger sequencing and 

specificity of qPCR reactions was evaluated by melting curve analysis. Efficiencies were 

calculated using a 4-point standard curves from a 4-fold dilution series (1:1-1:125) (run in 

triplicate) of pooled cDNA. RT-qPCR was conducted for 40 cycles, each consisting in 15 s at 

95 °C followed by 1 min at 60 °C. To analyse the dissociation curve profiles, an additional step 

at 95 °C during 15 s was added, followed by a constant increase of temperature between 60 

and 95 °C. All samples were run in duplicate. Minus reverse transcriptase and no template 

controls were included to assess contaminations. Cq values were acquired for each sample 

with a fluorescence threshold arbitrarily set at 1. Evaluation of expression stability of reference 

genes and selection of the most appropriate combination of genes to be used as reference was 

done using the statistical application geNorm (Vandesompele et al. 2002). The results were 

expressed as mean ± standard error (SE), and examined by One-Way ANOVA or by Student’s t 

tests, using the STATISTICA 8.0 statistical package (StatSoft Inc., Tulsa, USA). 

 

Table 1. Primers used in sq-qPCR and RT-qPCR. 

[NCBI accession ID] Gene Primer sequence (5’→3’) AS (bp) [µM] 

[GenBank:X17525] ACT 
Fw: CACACGGTGCCAATTTATGAA 
Rv: GATCACGGCCAGCAAGGT 

73 300 

[GenBank:D12709] EF-1A 
Fw: TGGTGATGCTGGTTTCGTTAAG 
Rv: AGTGGAGGGTAGGACATGAAGGT 

75 900 

[GenBank:D12709] TBA 
Fw: TCTGGTGCCATACCCAAGGA 
Rv: ATAGGCCTTCTCAGCGGAGAT 

73 500 

[GenBank: EU331420] DcPTOX 
Fw: GGAAATCGGCCACATTAAAATTA 
Rv: CCCAACATTCCCCACTTGTC 

142 500 

 

6.2.2. DcPTOX genomic sequence isolation and sequence variability  

Plant material 

For genomic DcPTOX sequence isolation, 8 weeks old in vitro growing seedlings of D. 

carota L. cv. Rotin were used (for detailed information related with in vitro establishment see 

CHAPTER 2). A complete single plant was considered for genomic DNA (gDNA) extraction and 

gene sequence isolation. 
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For intron length polymorphism studies (ILP), there were considered 10 weeks old 

plants of D. carota cv. Rotin growing under greenhouse conditions. Leaf samples were taken 

from individual plants and used for gDNA extraction. 

For the identification of polymorphisms that could be associated with carotenoids’ 

content, 5 cultivars representing a wide range of pigmented carrot material (3 plants/cultivar, 

15 plants in total) were used: white (711-1), yellow (207-1), red (203-1), and purple (purple 

phloem with yellow xylem) (699-1) (cultivated carrot breeding stocks developed by the USDA 

carrot breeding program), and the orange coloured cv. Rotin. Samples were taken from leaves 

of 13 weeks old plants growing under greenhouse conditions and were further used for gDNA 

extraction. 

 

gDNA extraction 

All samples were grounded to fine powder using liquid nitrogen and stored at -80 °C 

until further analysis. gDNA extraction was performed using the DNeasy Plant Mini Kit (Qiagen, 

Hilden, Germany) following the manufacturer’s instructions. gDNA integrity analysis was 

performed by electrophoresis in 1 % (w/v) agarose gel and visualised using GeneTools 

(Syngene, Cambridge, UK) after staining with EtBr solution (2 ngmL-1). gDNA concentration was 

determined in a NanoDrop-2000C spectrophotometer (Thermo Scientific, Wilmington, DE, 

USA). 

 

Isolation of genomic sequence 

For complete gene isolation several gene-specific primers sets were designed (Table 2) 

based on DcPTOX cDNA sequence (GenBank acc nº EU331420.2), and on contigs and scaffolds 

from the draft assembly of inbred line 493 of the carrot genome sequencing program 

(provided by Dr Philipp Simon, University of Wisconsin-Madison, USA). Considering this 

previous information, primers covering seven partially overlapping genomic regions were 

obtained. PCRs were performed using 0.2 µM of each specific primer and the Phusion™ High-

Fidelity DNA Polymerase (Finnzymes, Espoo, Finland) following manufacturer’s instruction. Ten 

ng of gDNA from a single plant were used as template. PCRs were performed in a 2720 

thermocycler (Applied Biosystems, Foster City, CA, USA). PCR products were separated in 1.4 % 

(w/v) agarose gel, stained in EtBr (2 ng·mL-1) and subsequently visualised on a Gene Flash Bio 

Imaging system (Syngene, Cambridge, UK). Fragments showing the expected size were purified 

from the agarose gel using the GFX PCR DNA and Gel Band Purification Kit (GE Healthcare, 

Little Chalfont, England) according to the manufacturer’s protocol. For cloning, PCR fragments 

were separately inserted into a pGem-T Easy vector (Promega, Madison, WI, USA). Reaction 
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product was used to transform E. coli JM109 (Promega Madison, WI, USA) competent cells. 

Plasmid DNA was extracted from putative recombinant clones following an alkaline lysis 

protocol (Bimboim and Doly 1979) and the insert was confirmed by restriction using EcoRI 

(Fermentas, Ontario, Canada). Selected recombinant clones were sequenced (Macrogen 

company: www.macrogen.com) in the directions of sense and antisense strands using T7 and 

SP6 primers. 

 

Table 2. Sequence of primers used for DcPTOX amplification. 

Amplified fragment Sequence (5′→3′) 
Primer 

TM (°C) 

Amplicon 

size (bp) 

Cloned/direct 

sequenced 

① Exon 1-Exon 4 
170F: CGTTTTCGTGTAATTCGTTGAGAT 58 

3059 Cloned 
24R: CAAAATGGACTTTCAGATAGTC 60 

② Exon 4-Exon 5 
int4F1: GAAAGTCCATTTTGCCGAGA 60 

926  Cloned 
int4R: CAAACCACCAAGCATTTCCT 60 

③ Exon 5-Exon 9 
int6F1: AGGAAATGCTTGGTGGTTTG 60 

5522  
direct 

sequenced int6R1: AACGGAGGTTTCCAGGAGTT 60 

④ Intron 6-begin 
int6bF: TCATTAGAGTTGCAAGGTTCCA 58 

1341  Cloned 
int6bR: AGGATTTGGCAGCAAACATGT 59 

⑤ Intron 6-middle 
int6mF: TTGAGTGCATCCCTTAGCCA 59 

927  Cloned 
int6mR: TTGGTTGCACTGCTTTCGTT 59 

⑥ Intron 6-end 
int6eF: GGGGCTCGGTAAAATATGCT 58 

1781 Cloned 
Int6eR: CCGAGTTCCTGTCCCTCAAT 59 

⑦ Exon 8 -3’UTR 
364F: ACACACGAAGACCAGTGATAG 62 

581 cloned 
1301R: AGCCTCCTTTTCGTTACA 45 

 

Sequence analysis 

Sequence homology was explored at the NCBI database using the BLAST algorithm 

(Karlin and Altschul 1993) (http://www.ncbi.nlm.nih.gov/) (BLASTn). To edit the DcPTOX 

sequence data, SeqMan and EditSeq softwares (LASERGENE 7, GATC Biotech, Konstanz) were 

used. 

PTOX genes from a group of 21 eudicot and 5 monocots plant species were retrieved 

from the genomic database freely available (Plaza 3.0: http://bioinformatics 

.psb.ugent.be/plaza/versions/plaza_v3_monocots/ and http://bioinformatics.psb.ugent.be 

/plaza/versions/plaza_v3_dicots/). Sequences were checked at the NCBI database using the 

BLAST algorithm (Karlin and Altschul 1993) (http://www.ncbi.nlm.nih.gov/) (BLASTn) and 

exon/intron borders annotations were corrected when needed. Gene draw was performed 

using FancyGene 1.4 (Rambaldi and Ciccarelli 2009). 

 

In silico identification of regulatory elements located at the DcPTOX intronic regions 

For identification of putative miRNA precursors in DcPTOX introns, the publicly 

available software miR-abela (http://www.mirz.unibas.ch/cgi/pred_miRNA_genes.cgi) was 



CHAPTER 6 
 

129 
 

used. For validation of potential pre-miRNAs, the software MiPred was applied 

(http://www.bioinf.seu.edu.cn/miRNA/) (Jiang et al. 2007). Prediction of the secondary 

structure of pre-miRNA was run on the web-based software Mfold, (available at 

http://mfold.rit.albany.edu/?q=mfold/RNA-Folding-Form) (Zuker 2003). The criteria applied for 

screening the candidates of potential pre-miRNA have been previously described (Xie et al. 

2007). To screen potential candidates for miRNAs, the validated pre-miRNAs were run with the 

software miRBase (http://microrna.sanger.ac.uk/sequences/search.shtml). BLASTx from NCBI 

database (http://www.ncbi.nlm.nih.gov/BLAST/) was used to find the potential target genes 

(Mathews et al. 1999; Zuker 2003). 

 

Studies of DcPTOX sequence variability  

To study the sequence variability of DcPTOX within a cultivar, two regions of the gene 

were selected: intron 2 and intron 6. To easily check for the occurrence of polymorphisms 

associated with insertion/deletion (InDels) events, the Exon Priming Intron Crossing-PCR (EPIC-

PCR) approach was followed. Specific primers were designed in the exon boundaries of the 

intron 2 (Fw: 5’-ACCAGATGGTTCATCCTCCA-3’, Rv: 5’-TGCATAGTCACGGTCATGGT-3’; annealing 

at 60 °C for 20 s and extension at 72 °C for 2 min) and intron 6 (Fw: 5’-

TGGAACATCATGCCTTTGAA-3’, Rv: 5’-AACGGAGGTTTCCAGGAGTT-3’; annealing at 60 °C for 20 s 

and extension at 72 °C for 2 min). PCRs were performed with Ready-To-Go PCR Beads (GE 

Healthcare, Little Chalfont, England) according to the manufacturer’s instruction. 

To check for the occurrence of specific polymorphisms associated with the carotenoids 

content across 5 different cultivars representing a wide range of pigmented carrot material, 

the analysis of DcPTOX sequence variability was focused only on intron 2 (same primers as 

above). PCRs were performed using Phusion™ High-Fidelity DNA Polymerase (Finnzymes, 

Espoo, Finland) according to the manufacturer’s instruction. 

PCRs were performed in a 2720 thermocycler (Applied Biosystems, Foster City, CA, 

USA) using 10 ng of gDNA as template and 0.2 µM of each primer. Ten µl of each PCR product 

were analysed by 2 % (w/v) agarose gel electrophoresis. Gel staining and visualisation were 

performed as described above. Amplicon identity was confirmed by cloning and Sanger 

sequencing following the above described procedure.  

 

 

 

 

 



CHAPTER 6 
 

130 
 

6.3. Results 

6.3.1. Expression analysis on DcPTOX 

In vivo carrot GC experimental system  

RT-qPCR analysis performed on carrot tap root cambium during secondary root growth 

allowed detecting PTOX mRNA at all time points.  

 

Fig. 1. Expression of DcPTOX measured in samples taken from the cambium tissue plus adjacent 

secondary phloem cells of carrot (Daucus carota L. cv. Rotin) plants growing at 25 °C day/20 °C night 

under 16 h photoperiod. Transcript levels were determined by RT-qPCR. In each harvest time point, 

samples were collected as a bulked sample of 30 plants, and two RTs were performed. Error bars 

indicate the standard error of the mean. Different superscript letters indicate significant differences 

between days post sowing. 

 

The expression analysis was performed during storage root growth at 28, 42, 70 and 98 

days post sowing (Fig. 1). The profile of DcPTOX through carrot development showed a marked 

increase (Fig. 1). Expression levels at 98 days post sowing were significantly higher (P<0.05) 

than at 28 days (almost 6-fold) and at 42 days post sowing (almost 3-fold). This result suggests 

DcPTOX involvement in carrot tap root growth (aspect of carrots during development and the 

heterogeneity observed between roots can be seen on Suppl. Fig. 1). Forty two days after 

sowing, the tap roots can be easily identified, and the orange-pale colour becomes visible. At 

the end of the experiment roots presented the size and colour of the commercialized carrot 

tap roots. 

In order to evaluate DcPTOX gene expression involvement in storage root responses 

upon cold stress, at 84 days post sowing the temperature conditions were changed in one 

growth chamber from 25 °C/20 °C (day/night) to 15 °C/10 °C (day/night).  
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Fig. 2. Transcript accumulation of DcPTOX measured in the cambium tissue plus adjacent secondary 

phloem cells, on carrot (Daucus carota L. cv. Rotin) plants upon cold stress. Until 84 days post sowing 

the growth chamber was at 25 °C day/20 °C night; after that time the temperature decreased to 15 °C 

day/10 °C night, until the end of the experiment. In each harvest time point, samples were collected as a 

bulked sample of 18 plants. Two RTs were performed. Error bars indicate the standard error of the 

mean. Significant differences between the initial time point (0h) and the remaining sampling points are 

indicated by different superscripts. 

 
A short-term early response in DcPTOX transcript accumulation could be observed 3 h 

after cold stress (Fig. 2). Eight hours after cold exposure, the transcript levels decreased and at 

24 h the levels were similar to the ones observed at 0 h, maintaining that level until the end of 

the experiment. The peak of transcript accumulation was observed at 3 h post cold stress with 

significant differences (P < 0.05) between 0 h and 3 h, between 3 h and 24 h and between 3 h 

and 4 days after cold stress.  

The parameters root biomass, root length and root thickness were also measured 

during the 125 days of the experiment (Fig. 3). While in chamber 1 plants were maintained at 

25 °C/20 °C (day /night) during all experiment (control treatment), in chamber 2 the 

temperature conditions changed at 84 days after sowing (marked with a vertical arrow in 

Fig. 3) from 25 °C/20 °C (day /night) to 15 °C/10 °C (day/night). After the beginning of the cold 

treatment the storage root growth was suppressed, with the biomass, length and thickness 

values presenting significant lower results than the control, at 88, 92 and 88 days respectively. 

However, at the end of the experiment, the mild cold stress treatment had a positive impact in 

all measured parameters (Fig. 3). 
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Fig. 3. Measurements of root biomass (A), root length (B) and root thickness (C) of carrot plants (Daucus 

carota cv Rotin) during secondary growth under controlled temperature conditions. Chamber 1: plants 

maintained at 25/20 °C (day /night) during time course of the experiment; Chamber 2: the temperature 

conditions changed at 84 days after sowing (marked with a vertical arrow) from 25/20 °C (day /night) to 

15/10 °C (day/night). Harvest date refers to the number of days post sowing. Data is presented as the 

mean ± SE of six tap roots independent measurements. * indicate significant differences (P < 0.05) 

between treatments. 

 

De novo differentiation 

To study the potential role of PTOX in early cell reprogramming and induction of 

growth, primary cultures of four carrot roots (D. carota cv Rotin) were established at 21 °C. 

The inoculation of differentiated secondary root phloem explants in a cytokinin-containing 

nutrient media lead to a cell program change related with the acquisition of an 

undifferentiated stage (callus) and subsequent growth. To shed light on involvement of 

DcPTOX in the earliest events related to cell reprogramming and in a later growth phase, a high 

temporal resolution in the initial phase and a long observation time was chosen (Fig. 4). 

Increased transcript accumulation for DcPTOX gene was observed at the early 

beginning (8 hpi) of the lag-phase during growth induction (Fig. 4). The a priori unknown high 

variability of individual response of each single plant (4 biological replicates were considered) 
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led to the absence of statistical significance for differences between time points. Nevertheless, 

it was possible to distinguish a pattern of expression. At the end of the lag phase and at 

initiation of exponential growth (8 dpi) transcript accumulation was down regulated to values 

near the ones measured at 0 hpi followed by an increase at 14 dpi (exponential growth phases) 

and slight decrease at 21 dpi which was maintained at 28 dpi to values measured for the 

original, quiescent tissue (Fig. 4). 

 

Fig. 4. Transcript levels of DcPTOX in primary cultures from secondary phloem of carrot roots. Samples 

were collected at 0 h, 8 h, 36 h, 4 days, 8 days, 14 days, 21 days and 28 days post in vitro inoculation. 

Cultures were maintained at 21 °C. Transcript accumulation was analysed by RT-sqPCR using EF-1A as 

reference gene. Normalisation of the quantity of DcPTOX transcripts was performed through the ratio of 

integrated densities of DcPTOX cDNA and EF1-1A cDNA bands. Data are the average values ± SE of four 

individual plants. 

 

To study transcript accumulation changes of DcPTOX on growth acclimation upon 

temperature, a second PCS experiment was performed considering two growth temperatures 

(21 °C and 28 °C). The five plants selected for this study presented different temperature-

dependent callus growth performance (for callus growth information see Table 3 in CHAPTER 

3): two showing a significantly higher production of callus biomass at 28 °C (R2 and R5), two 

without significant differences between both temperatures (R1 and R4) and only one showing 

a significantly higher callus fresh weight at 21 °C. DcPTOX is expressed in the initial explants 

before in vitro inoculation (T0), as well as after 14 days of cell division growth (Fig. 5), initiating 

a trend for differential expression. Differences for differential gene transcript accumulation 

between individual plants can be detected, however without a clear tendency between them. 

Interestingly in R3, the inferior callus fresh weight at 28 °C compared with 21 °C (see Table 3 in 

CHAPTER 3), is coincident with a lower DcPTOX transcript accumulation at 28 °C. 
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Fig. 5. Transcript accumulation of DcPTOX in a primary culture system of Daucus carota L. cv. Rotin 

established under different temperatures. Five biological replicates (single plants) were considered (R1 

to R5). T0: explants before inoculation; T14-21 °C: explants after 14 days in culture, growing at 21 °C; 

T14-28 °C: explants after 14 days in culture, growing at 28 °C  

 

6.3.2. DcPTOX sequence analysis and PTOX gene diversity across higher plant species 

Specific primers allowed the isolation of the complete PTOX gene of D. carota L. cv. 

Rotin (DcPTOX) at gDNA level. DcPTOX has 9422 bp, consisting of nine exons (exon 1: 173 bp; 

exon 2: 196 bp; exon 3: 94 bp; exon 4: 116 bp; exon 5: 109 bp; exon 6: 69 bp; exon 7: 72 bp; 

exon 8: 48 bp; exon 9: 221 bp) interrupted by eight introns (intron 1: 1931 bp; intron 2: 474 bp; 

intron 3: 207 bp; intron 4: 843 bp; intron 5: 120 b p; intron 6: 4474 bp; intron 7: 78 bp; intron 

8: 197 bp). 

The diversity in terms of orientation, size and exon-intron pattern across 27 plant 

species is presented on Table 3. The general structure of plant PTOX is of nine exons 

interrupted by eight introns. A single exception was detected in Medicago truncatula , with a 

total of 8 exons and 7 introns due to intron 1 loss and consequent fusion of exon 1 and exon 2. 

A single gene was identified in most of the plant species, showing a sense or antisense 

orientation. Nevertheless, five species presented two PTOX genes (Cucumis melo, Eucalyptus 

grandis, Glycine max, Populus trichocarpa and Zea mays), in three of them appearing as 

tandem duplications (C. melo, E. grandis, Z. mays). Exon size conservation across plant species 

was verified at the level of exons 3, 4, 5, 6, 7 and 8 (results not shown). That conservation is 

responsible by the low variability of the ORF size and consequently of the encoded peptide. 

Exons 1, 2 and 9 are the regions responsible by the variability identified across plant species 

(exon 1 range from 101 to 177 bp; exon 2 from 172 to 220 bp; exon 9 from 200 to 233 bp) 

(Table 3). 
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Table 3. Diversity of PTOX in terms of gene location, orientation, size and exon-intron pattern 

across 27 higher plant species. Data was retrieved from public web-based databases, freely 

available (Plaza 3.0: http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_monocots/ 

and http://bioinformatics.psb. ugent.be/plaza/versions/plaza_v3_dicots/). Daucus carota 

PTOX at GenBank: KM514737 (NCBI: http://www.ncbi.nlm.nih.gov/). Gene draw was 

performed in FancyGene 1.4 (Rambaldi and Ciccarelli 2009). 



Species Gene_id Chromosome location Gene orientation Gene size Protein lenght 
 

Exon-intron (box-line) gene structure 

Arabidopsis lyrata AL7G19990 Scaffold_7 + 2292 352  

Arabidopsis thaliana AT4G22260 4 - 2384 352  

Brassica rapa BR01G12490 A01 - 1834 355  

Capsella rubella CRU_007G18140 Scaffold_7 + 2338 354  

Carica papaia CP00152G00610 Supercontig_152 - 7586 357  

Citrullus lanatus CL01G15950 1 - 3594 355  

Citrus sinensis CS00007G03400 Scaffold00007 - 3722 350  

Cucumis melo 
CM00049G00470  CM3.5_scaffold00049 + 6058 360  

CM00049G00520  CM3.5_scaffold00049 + 3112 356  

Daucus carota KM514737 2 nd 9422 366  

Eucalyptus grandis 
EG0005G29840 Scaffold_5 + 4359 352  

EG0005G29880 Scaffold_5 + 4344 362  

Fragaria vesca FV3G01900 LG3 - 2908 366  

Glycine max 
GM09G01130 9 - 4215 333  

GM15G11950 15 - 6953 333  

Gossypium raimondii GR09G18220 9 + 2746 361  

Manihot esculenta ME06598G00570 Scaffold06598 + 5485 360  

Medicago truncatula  MT2G025140 2 - 3946 343  

Populus trichocarpa 
PT04G00260 4 + 3616 363  

PT11G02180 11 - 3437 359  

Prunus persica PPE_004G01240 Scaffold_4 + 3112 355  
Ricinus communis RC29842G00190 29842 + 3229 357  
Solanum lycopersicum SL11G011990 11 - 4686 367  

Solanum tuberosum  ST11G007260 11 + 4402 367  

Thellungiella parvula TP7G20380 7-4 - 2387 346  

Theobroma cacao  TC0006G22260 Scaffold_6 - 3060 359  

Brachypodium distachyon BD5G25540 5 - 2906 369  

Oryza sativa indica OSINDICA_04G49460 4 - 2440 337  

Oryza sativa japonica OS04G57320 4 - 2440 337  

Sorghum bicolor SB06G032180 6 - 2516 352  

Zea mays 
ZM02G01080 2 + 3530 340  

ZM02G01090 2 + 3106 342  
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Prediction of pre-miRNA sequences in intronic regions of DcPTOX revealed two 

putative locations coding for precursors of miRNAs, one located at intron 2 and other located 

at intron 6. In both cases a high homology with previously described miRNAs was found (see 

Table 4). Searches for sequence homologies regarding putative miRNAs target genes identified, 

for both introns, disease resistance genes (in intron 2 a 100 % homology with Citrus sinensis 

GenBank acc. XM_006495173.1 and in intron 6 a 100 % homology with Phaseolus vulgaris 

GenBank acc. HQ632856.1). 

 

Table 4. Computational prediction of intronic miRNA precursors in PTOX of Daucus carota cv. 

Rotin.  

Pre-miRNAs were determined with miR-abela software (http://www.mirz.unibas.ch/cgi/pred miRNA 
genes.cgi.). bp: length of the pre-miRNA sequence in bp, MFE: minimal free energy in kcal/mol, Prob: 
probability to be a real pre-miRNA sequence calculates at MiPred software 
(http://www.bioinf.seu.edu.cn/miRNA/) (Jiang et al. 2008). 
 

The identification of regulatory elements at intron 2 and 6 led us to investigate the 

occurrence of gene variability on those regions by following the EPIC-PCR approach. The 

existence of ILP in D. carota cv. Rotin was detected only in intron 2, both at genotype level 

(heterozygosis) and across genotypes. In the agarose gel two fragments were visualised: a 

short (S) fragment with 0.6 Kb and a large (L) fragment with 1.3 Kb (Fig. 6a). The S fragment is 

common to all genotypes tested. The L fragment appeared with a significant lower frequency: 

from the 22 individual cv Rotin plants analysed, it appeared only in 3 heterozygous plants. The 

L fragment was never found alone. Sequence analysis revealed that the ILP identified by 

electrophoresis in agarose gel is due to the existence of two InDel events, one of 118 bp and 

Intron Putative pre-miRNA sequence bp MFE 
Prob 

(%) 

1 UAUAUAACAAUUACCCGGACUGGGUUUAUAAUCUUAUGAGA
AAUUGGGAUGGCAAACUAGUUUACGGCGUCAAGAAAUGUAU
ACAUCUAUGUGUCUUGUAUAUGUG 

106 -19.72 No 

2 UUCCUACUCAAGUUUCUGUGUGUAGGAUGUCAGCAUUCUGA
UUAAUGUUGGUAUUGUAUGAUAGUAAGGAA 

71 -15.90 72.8 

3 No pre-miRNAs were identified - - - 
4 No pre-miRNAs were identified - - - 
5 GACGUAUUUCUUUGAUUAUAAAUUAUCUUCUUGGGUUCUAC

GACUUAUAUAGAUAUGUAUAUAACAAGAUCUCAUGUU 
78 -13.10 No 

6 GUCUAUACCUCCUAGAUAUCAUCUAUCUUCUAGUUGCUGGCC
CAUGAGCGUAUGAGUCAUUCAAAUUAGUCAGUUAAGUACGU
ACUAGGUUCUCUCGGUGUAGAU 

105 -25 69.2 

7 GAAGAACAAUUGGGUUUGAAAGUAAACUUACAUUUUUACUU
CCAUCGCUUC 

51 -8.9 No 

8 No pre-miRNAs were identified - - - 
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another with 560 bp (Fig. 6b). However, any of the polymorphisms identified at sequence level 

were located at both predicted pre-miRNA encoding sites. 

 

 

Fig. 6. Results of the analysis of intron 2 of DcPTOX in individual plants of D. carota cv. Rotin. a) Variants 

identified by electrophoresis in agarose gel (1) heterozygous genotype with allele S and L, (2) 

homozygous genotype showing only allele S ; b) Scheme representing the location of InDels on the 

intron 2 which give rise to two different sizes of intron 2 (two variants). 

 

When intron 2 was analysed in plants belonging to a range of pigmented carrot 

material (3 plants/cultivar, an exception to the Red with a single genotype analysed), only the 

S fragment was identified. Five recombinant clones were sequenced from each plant, and in 

most genotypes, a single intron 2 sequence (variant) was identified. The exceptions were W-1, 

W-3, Y-2 and P-2 that presented two different variants (Table 5). The variability identified 

among all those sequences was restricted to three SNPs (single nucleotide polymorphisms) 

and those were also not located at any of the pre-miRNAs encoding sites (Table 5). 
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Table 5. Polymorphic nucleotide positions in intron 2 of DcPTOX.  

Genotype 

Nucleotide 

position  

50 127 426 

W-1-var 1 G T T 

W-1-var 2 T T C 

W-2 G T T 

W-3-var 1 T C T 

W-3-var 2 T T T 

Y-1 G T T 

Y-2-var 1 G T T 

Y-2-var 2 T T C 

Y-3 G T T 

Or-1 T C T 

Or-2 T C T 

Or-3 T T C 

R-1 T T T 

P-1 T T C 

P-2-var1 G T T 

P-2-var2 T T C 

P-3 T T T 
The nucleotide position is reoffered according the beginning of the intron 2 short sequence. The 
genotypes correspond to White (W), Yellow (Y), Orange (Or), Red (R) and Purple (P) carrot cultivars. The 
genotypes W-1, W-3, Y-2 and P-2 presented two different variants (var1 and var2). 
 

6.4. Discussion 

6.4.1. DcPTOX expression analysis 

DcPTOX transcripts were ubiquitously detected in the systems studied. The carrot 

growth chamber experimental system allowed the study of the involvement of PTOX gene on 

carrot root secondary growth (Fig. 1). The tissue collected for transcript analysis was the 

cambium ring, where the root meristems are located and therefore is the main responsible 

tissue for secondary growth in carrot tap roots. The meristematic tissue is the metabolically 

most active tissue in the tap root and is responsible for the yield production (Hole et al. 1984; 

Arnholdt-Schmitt 1999). However, due to the small cell layers of this tissue (approximately 10 

cell thickness) the immediately next secondary phloem that is originated directly from the 

meristem was picked together with the cambium ring. An increase of DcPTOX transcripts was 

detected during tap root secondary growth, with the highest levels observed 14 weeks (98 

days) after sowing, which relates with the roles in development already attributed to PTOX 

(Shahbazi et al. 2007; Busch et al. 2008; Okegawa et al. 2010). Nevertheless, this increase is 

coincident with the accumulation of carotenoids in the root, which relates to the appearance 
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of the yellow colour visible 28 days after sowing. It is known that young carrot roots are pale 

and start to accumulate carotenoids after the first month of growth (Phan and Hsu 1973; 

Clotault et al. 2008; Fuentes et al. 2012). Under good cultivation conditions, the total 

carotenoid content in carrot roots sharply increases at the 14th week after germination and 

shortly before secondary growth is completed (Nicolle et al. 2004; Surles et al. 2004; Clotault 

et al. 2008). A model integrating PTOX as a component of an electron transport chain 

associated to carotenoid desaturation, as well as to respiratory activity within plastids, was 

proposed in A. thaliana (Carol and Kuntz 2001). The biosynthesis of carotenoid pigments has 

been extensively reviewed (Bartley and Scolnik 1995; Cunningham and Gantt 1998; Carol and 

Kuntz 2001; Hirschberg 2001; Just et al. 2007), and recent reports point to the involvement of 

PTOX on that biosynthetic pathway (Simkin et al. 2008; Simkin et al. 2010; Sun and Wen 2011) 

(see CHAPTER 5). Several genes coding for carotenoid biosynthesis enzymes have been 

identified and their transcripts were detected in carrot roots (Just et al. 2007; Clotault et al. 

2008; Fuentes et al. 2012; CHAPTER 5). Transcript levels of several of those genes globally 

increased during carrot root development, in parallel with carotenoid accumulation rate 

(Clotault et al. 2008). Therefore, it is proposed that the increase of DcPTOX transcript 

accumulation is due to both carrot root secondary growth and carotenoid accumulation.  

 When the analysis of the effect of mild-cold stress on DcPTOX gene expression in the 

carrot tap root cambium during secondary growth was performed, an immediate increase in 

transcript accumulation was observed, suggesting an involvement of DcPTOX in adaptive 

growth (Fig. 2). In fact, after few days from the beginning of the mild-cold treatment, the 

storage root growth (measured by root biomass, length and thickness) was suppressed. 

However, the mild-cold stress had a positive effect on the final storage root growth. Although 

without enough quality and reliability to be here presented, the same results as DcPTOX were 

observed with the homologous DcAOX genes in this same experiment (not shown). When the 

effect of cold treatments was evaluated on PTOX transcript accumulation in carrot plants from 

two inbreed lines, with the high time resolution of 6 h, 9 h, 24 h and 48 h after cold stress, 

DcPTOX gene was found to be early responsive to chilling exposure (results not shown, 

publication in preparation). In this experiment and for both inbreed lines, DcPTOX presented a 

higher mean mRNA level in cold stress than in the respective controls in all time points, being 

some of them statistically significant. The expression of DcPTOX in the control treatment 

remained constantly low throughout the investigation period. 

In the PCS experiments the explants were taken directly from the secondary phloem 

tissue, immediately next to the cambium ring. This culture system was established by Steward 

et al. (1952) to study cell reprogramming and growth and has previously been proposed as a 
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test system for the genetic potential of yield production in carrots (Arnholdt-Schmitt 1999). 

The results here presented point to a role of DcPTOX during earliest events of cell 

reprogramming demonstrated during the first hours of induced de novo differentiation of 

secondary phloem explants from carrot tap roots in a medium containing auxin and cytokinin, 

with the same tendency observed with the homologous AOX (CHAPTER 3). Our results are also 

in accordance with previous findings achieved with the functionally analogous AOX (Van Aken 

et al. 2009; Vanlerberghe 2013). Cell reprogramming upon external stresses initiate a cascade 

of events including dedifferentiation and de novo differentiation. A discussion on these 

processes is also referred in CHAPTER 3. Thus, the results here presented showed that DcPTOX 

is differentially transcribed during growth, but at individual plant level no direct link can be 

suggested between callus fresh weight and DcPTOX transcript accumulation (data on callus 

fresh weight were included on CHAPTER 3). Differential transcript accumulation induced by 

primary culture between genotypes and temperatures was also detected, being the 

differences between the callus growing at 21 °C and at 28 °C mainly related with differences in 

biomass due to cell division growth (Arnholdt-Schmitt 1999). 

Other processes can also be pointed to explain DcPTOX expression dynamics in PCS. In 

this system a reversible differentiation of the chromoplasts into chloroplasts takes place, and 

the chlorophyll content of explants increases continuously during the culture period (Kumar et 

al. 1983). Callus lose the orange colour of the original explants and acquire progressively a 

green colour. In cells of freshly cut explants from the secondary phloem of mature tap roots of 

D. carota, only chromoplasts containing carotene usually occur and neither chloroplasts nor 

other plastid structures can be found (Kumar et al. 1983). The cells along the cambium ring are 

the youngest (Baranska et al. 2006), and the highest levels of carotene are accumulated in the 

cells of the secondary phloem of carrot roots (Koch and Goldman 2005; Baranska et al. 2006; 

Kim et al. 2010). This observation agrees with the results achieved on DcPTOX transcript 

accumulation at secondary phloem collected before inoculation (T0), (Fig. 5). Also in Capsicum 

annuum and Solanum lycopersicum fruits it was shown an involvement of PTOX in carotenoid 

desaturation during chromoplasts differentiation, when carotenoid production is enhanced 

(Josse et al. 2000). However during the PCS two different processes overlap and can explain 

DcPTOX accumulation: i) the presence of chromoplasts in the initial explants, which 

accumulate carotenoids and ii), the differentiation of chloroplast during the exponential phase 

of growth, and its consequent implication in the chlororespiration of the callus green tissues.  

 

 

 



CHAPTER 6 
 

142 
 

6.4.2. DcPTOX sequence analysis 

A single gene encoding the PTOX was already identified on D. carota L. cv. Rotin 

(DcPTOX) (CHAPTER 5). A blast search on the whole genome reference using the complete or 

fragments of the isolated DcPTOX gene sequence confirmed that PTOX is clearly a single copy 

gene in carrot, located at chromosome 2 (Dr Philipp Simon, Wisconsin University, USA, 

personal communication). A single gene encoding PTOX was also recognized in the tomato 

mutant ghost (Scolnik et al. 1987; Josse et al. 2000) and Arabidopsis mutant immutans (Carol 

et al. 1999; Wu et al. 1999), as well as in most of the plant species included in the PTOX gene 

diversity study here presented (Table 3). Nevertheless, several plant species (C. melo, E. 

grandis, G. max, P. trichocarpa and Z. mays) with two PTOX genes, located in the same or in 

different chromosomes, were here reported for the first time. Two PTOX genes were also 

detected in eukaryotic algae (at least in the genera Chlamydomonas, Haematococcus, 

Ostreococcus and Cyanidioschyzon) genomes (Wang et al. 2009). Although present in 

cyanobacterial strains, the marine cyanobacterium Acaryochloris marina is unique in that it 

possesses two PTOX genes (McDonald et al. 2011).  

A typical 9 exons/8 introns structure was found in PTOXs from higher plant species, 

with DcPTOX presenting the largest size (see Table 3). In the same way as its homologue AOX 

(CHAPTER 2), PTOX from higher plant presents conservation in the size of exons: in this case in 

6 of the 9 exons. Events of intron loss and gain are responsible by the variability in gene 

structure and consequently in exons size. The PTOX gene identified in Medicago truncatula 

presents the largest intron 1 size, which resulted from intron 1 loss and consequent fusion of 

exon 1 and 2.  

The involvement of introns in the regulation of gene expression is getting high interest 

in diverse research fields (Rose 2008; Goebels et al. 2013; Heyn et al. 2015). The encoding of 

important regulatory elements in introns makes them of great interest for the identification of 

polymorphisms that could be responsible for phenotypical differences, precisely due to 

differences on gene regulation induced by such elements. miRNAs are an example of 

regulatory elements that can be encoded at intronic regions, playing its control by negatively 

regulating gene expression at post-transcription level. In plants, miRNAs play a critical role in 

almost all biological and metabolic processes, including plant development - and there is 

evidence for the regulation of root growth (Wang et al. 2005), leaf development (Mallory et al. 

2004), flower development and fertility (Achard et al. 2004) – and stress response playing vital 

roles in plant resistance to abiotic as well as biotic factors (see reviews of Khraiwesh et al. 

2012; Kumar 2014). Many miRNA families are evolutionarily conserved across all major 

lineages of plants, including bryophytes, lycopods, ferns and monocots and dicots (Axtell and 
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Bartel 2005). This conservation makes it possible to identify homologous miRNAs in other 

species (Axtell and Bartel 2005; Zhang et al. 2006). Considering this knowledge, the in silico 

identification of two pre-miRNAs which possess a high similarity with miRNAs already 

identified in other plant species (Glycine max_ gma-miR1520p and Oryza sativa_ osa-

miR5494), lead us to the hypothesis that PTOX gene could be involved in the regulation of 

genes related with plant response upon biotic stresses. 

The location of polymorphic sites on regions encoding for pre-miRNAs could be related 

with phenotypical differences due to differences on the mechanism of regulation of genes 

directly linked with a specific phenotype. The identification of an InDel event on a region 

encoding for a pre-miRNA was previously reported in a gene belonging to the AOX gene family 

(Cardoso et al. 2009), on that case might be related with a gene involved in the somatic 

embryogenesis. The search for polymorphic sites at the intron 2 and intron 6 allowed to the 

identification of two InDels located at intron 2 and few SNPs. Nevertheless, none of those 

polymorphic sites were located at the pre-miRNA encoding regions, with no expected 

differential gene regulation. 

 

6.5. Conclusion 

Besides the already known involvement of PTOX on chlororespiration, it is suggested 

that this enzyme also participates in both carrot storage root growth and carotenoid 

accumulation, as well on adaptive growth. The results here presented at transcriptomic level 

showed that DcPTOX is differentially transcribed during the likely earliest events of cell 

reprogramming. Differential DcPTOX transcript accumulation in the PCS between individual 

plants and between temperatures was also found. Therefore, the results achieved are 

encouraging to strengthen future efforts on the identification of polymorphic motifs in DcPTOX 

for the development of functional markers related to agronomic traits of interest such as yield 

or pigmentation of storage roots. 
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Supplemental Fig. 1. Aspect of the roots (Daucus carota L. cv. Rotin) 28 days after sowing (A), 42 days 

after sowing (B), 68 days after sowing (C) and 95 days after sowing (D). The heterogenity between roots 

is evident (D). Bar 5 cm. 
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CHAPTER 7 SELECTION OF SUITABLE REFERENCE GENES FOR REVERSE TRANSCRIPTION 

QUANTITATIVE REAL-TIME PCR STUDIES ON DIFFERENT EXPERIMENTAL SYSTEMS 

FROM CARROT (Daucus carota L.) 

 

7.1. Selection of suitable reference genes for RT-qPCR studies during carrot tap root 

secondary growth and on a somatic embryogenesis system 

 
This sub-chapter refers to the manuscript: 
 
Campos MD, Frederico AM, Nothnagel T, Arnholdt-Schmitt B, Cardoso H (2015) Selection of 
suitable reference genes for reverse transcription quantitative real-time pcr studies on 
different experimental systems from carrot (Daucus carota L.). Sci Hortic  186: 115-123 
 
 

Abstract 

Reverse transcription quantitative real time polymerase chain reaction (RT-qPCR) is a 

preferred method for rapid and accurate quantification of gene expression studies. 

Appropriate application of RT-qPCR requires accurate normalisation through the use of 

suitable reference genes. This study aimed selecting robust and reliable reference genes which 

are constitutively and equally expressed for accurate RT-qPCR normalisation analysis in two 

different experimental systems with carrot. A systematic comparison of 12 selected candidate 

genes for carrot is presented. These included seven genes commonly used as reference gene: 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), 18S ribosomal RNA (18S 

rRNA), ubiquitin (UBQ), alpha-tubulin (TUA), beta-tubulin (β-TUB) and elongation factor-1alpha 

(EF-1A). Additionally, other five genes were here presented as potential candidates: other 

ribosomal RNA (25S and 5.8S rRNA) and ribosomal protein L2 encoding gene (rpL2), the 

transcriptional initiation factor (TIF1), and the heat shock protein 70 (hsp70). Expression 

stability was evaluated in: i) in vivo growth experiment based on carrot tap root secondary 

growth carried out in growth chambers and ii) realization phase of somatic embryogenesis. 

During carrot tap root secondary growth, two reference genes GAPDH and 5.8S rRNA, were 

stably expressed. In the somatic embryogenesis realization experiment, two ribosomal RNAs 

were selected as reference genes, the 5.8S and the 25S rRNA. Additionally, the expression 

profile of the mitochondrial alternative oxidase gene DcAOX1 was conducted in the in vivo 

growth experiment, to show the impact of reference genes selection. Taken together, our 

results provide a systematic analysis for the selection of superior reference genes for accurate 

transcript normalisation in carrot, under different experimental conditions. We reinforce the 

idea that the validation of reference genes for the conditions under study is essential, as 
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emphasized by the expression analysis of DcAOX1 as target gene. These results show that a 

previous selection of reference genes for each experimental system is crucial to achieve 

accurate and reliable RT-qPCR gene expression data, avoiding low precision or misleading 

results. 

 

Keywords: carrot; reverse transcription quantitative real-time PCR; reference gene; 

normalisation 

 

 

7.1.1. Introduction 

Reverse transcription quantitative real time polymerase chain reaction (RT-qPCR) is a 

preferred method for rapid and accurate quantification of gene expression in various biological 

systems (Bustin et al. 2005). The accuracy of the results depends strongly on several variables, 

including the RNA integrity, cDNA synthesis efficiency, enzyme and primer performance, 

reference genes used and method chosen for data analysis (Bustin 2002; Bustin and Nolan 

2004; Pfaffl 2001; Skern et al. 2005). All these variables are crucial for relative quantification of 

gene expression by RT-qPCR. However, because quantification is based on the expression ratio 

of a target gene versus a reference gene (Pfaffl and Hageleit 2001), the choice of reference 

gene(s) has a direct and strong impact, given all other variables optimal and constant. A vast 

number of reference genes has been proposed for gene expression analysis (Gu et al. 2014; Jin 

et al. 2013; Kumar et al. 2011; Warrington et al. 2000). Traditional reference genes, used to 

examine gene expression in plants, usually code for proteins or ribosomal RNAs (rRNA) that 

function in basic cellular processes such as cell structure maintenance or primary metabolism. 

Some of the best known and most frequently used reference transcripts for RT-qPCR in plants 

include those of 18S rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation 

factor-1alpha (EF-1A), ubiquitin (UBQ), actin (ACT), alpha-tubulin and beta-tubulin (TUA and β-

TUB, respectively) genes (Dheda et al. 2004; Goidin et al. 2001; Kim et al. 2003; Kumar et al. 

2011; Radonic et al. 2004). On in vitro somatic embryogenesis studies in Dimocarpus longan, 

Pinus pinaster and Picea abies, TUA, EF-1A, Histone H3 and UBQ are referred as suitable 

reference genes (de Vega-Bartol et al. 2013; Lin and Lai 2010). Any substitution of traditional 

references will only be available after screening and identification of novel reference genes. 

The availability of plant genome and transcriptome sequences in an increasing number of plant 

species are source of miscellaneous genes for several experimental conditions. These have the 

potential to be used in RT-qPCR and aid in fixing the difficulties of gene expression variability 

(Kumar et al. 2011; Czechowski et al. 2005; Lee et al. 2010; Manoli et al. 2012). It is highly 
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unlikely that an ideal universal reference gene exists (Bustin et al. 2005; Gutierrez et al. 2008; 

Vandesompele et al. 2002); many studies have used reference genes without proper validation 

of their presumed stability of expression, even though their transcript levels can vary 

considerably (Die et al. 2010; Radonic et al. 2004). Reference genes should be transcribed at a 

relatively constant level across various conditions -such as developmental stage or tissue type- 

and their expression is assumed to be unaffected by experimental parameters.  

Different statistical procedures or software packages have been reported to assess the 

expression stability of candidate reference genes, such as geNorm (Vandesompele et al. 2002), 

NormFinder (Andersen et al. 2004), BestKeeper (Pfaffl et al. 2004) and ‘Stabiliy index’ (Brunner 

et al. 2004), with the ranking of candidate reference genes depending upon the selected 

software (Liu et al. 2012; Qi et al. 2010; Rivera-Vega et al. 2012). These algorithms have 

simplified the researchers’ choice of appropriate reference genes and the optimal number of 

candidate genes required for normalisation. Methods and tools that integrate the rankings 

provided by different software have been developed (Goulao et al. 2012; Xie et al. 2012) and 

provide relevant insights. 

In the present study we were interested in selecting robust and reliable reference 

genes which are constitutively and equally expressed for accurate RT-qPCR normalisation 

analysis in two different experimental systems with carrot: i) an in vivo growth experiment 

based on carrot tap root secondary growth and ii) the realization phase of somatic 

embryogenesis. The studied genes included commonly used reference genes and other 

potential gene candidates. The expression of 12 selected candidate genes were carefully 

evaluated, specifically for each of the above referred experimental systems, aiming to identify 

the most suitable and stable reference genes for data normalisation. Furthermore, in order to 

illustrate the impact of the reference genes choice on the biological interpretations, expression 

analyses of a mitochondrial alternative oxidase gene (DcAOX1) in an in vivo growth experiment 

is discussed using several combinations of candidate reference genes. Alternative oxidase 

(AOX) was selected as target gene since it belongs to a gene family related with growth (see 

Arnholdt-Schmitt et al. 2006; Campos et al. 2009), with the prevention oxidative stress under 

various forms of abiotic or biotic stress (Umbach et al. 2005) and, in specific cases, it is 

involved in morphogenic responses (see review in Cardoso and Arnholdt-Schmitt 2013), being 

suggested to play an important role in efficient cell reprogramming under stress (Arnholdt-

Schmitt et al. 2006; Clifton et al. 2006). To the authors’ knowledge, this work provides the first 

systematic analysis for the selection of superior reference genes for accurate transcript 

normalisation in carrot. 
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7.1.2. Material and methods 

Plant material and experimental conditions 

Two different experimental systems were carried out: (i) based on plant growth in 

carrot plants growing in vivo in growth chambers; (ii) focused on the realization phase of 

somatic embryogenesis system, which is related with the differentiation of somatic embryos 

from auxin-induced embryogenic callus material. This last system is related to morphogenic 

responses as a consequence of cell reprogramming upon stress. 

In the growth chamber experiment (i), seeds of carrot (D. carota cv. Rotin) were sown 

in pots, with 10 plants/pot, and incubated in a growth chamber under 16 h photoperiod with 

202.5 μmolm-2s-1 (15000 lux) of light intensity and 25 °C day and 20 °C night temperature. 

Samples were collected from 30 plants as a bulked sample (3 pots, 10 plants/pot) at eight 

time-points: 28, 56, 84, 85, 88, 92, 98, and 125 days post sowing (one bulked sample/time 

point). Each sample consisted of small pieces of the cambium tissue plus adjacent secondary 

phloem cells. 

In the assay on early realization phase of somatic embryogenesis (ii), the embryogenic 

cell line L5.S.R of D carota L. cv. Rotin was inoculated in 20 mL of B5
- medium without 2,4-D 

(see protocol details on Frederico et al. 2009). Cells and/or embryos were collected through 

sieving with 54 μm mesh pore polyester precision woven screens (Sefar Petex, Thal, 

Switzerland) during a 10 days’ time course experiment with a total of 12 time points (see the 

description of the time points on Suppl. Table 1). 

The information about all the experimental conditions mentioned above is 

summarized in Table 1. 

Sample processing  

After sampling, plant material was immediately frozen in liquid nitrogen and stored at -

80 °C. Total RNA was isolated using RNeasy Plant Mini Kit (Qiagen, Hilden, Germany), with on-

column digestion of DNA applying the RNase-Free DNase Set (Qiagen, Hilden, Germany), 

according to manufacturer’s protocol. RNA integrity was verified by electrophoresis in 0.1 % 

DEPC (diethyl pyrocarbonate) (Sigma-Aldrich, St. Louis, MO, USA). RNA concentration was 

determined with the NanoDrop-2000C spectrophotometer (Thermo Scientific, Wilmington, DE, 

USA). DNase-treated total RNA (1 µg) was reverse transcribed with RETROscript® kit (Ambion, 

Austin, TX, USA) using random decamer primers, in a 20 µl reaction volume according to 

manufacturer’s instruction. In both experiments two RTs were performed per time point 

(Table 1). 
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Table 1. Summary of the experimental systems and samples used in present study. 

Experimental 

system 
Tissue type 

No 

treatments 

Biological 

replicates 

Sampling 

dates 

RTs per 

time 

point 

Total of cDNA samples 

(treatmentsxreplicatesxdatesxRTs) 

Growth 
chamber 

pieces of cambium 
tissue plus 
adjacent 
secondary phloem 

1 
1 bulked 
sample 

8 2 16 

Somatic 
embryogenesis 

cells and/or 
embryos 

1 
1 bulked 
sample 

12 2 24 

Total      40 

 

 

Candidate reference gene selection and primer design 

A set of 12 candidate genes were selected, comprising several conventional and/or 

most commonly used reference genes in plants, and others based on previous reports: 

GAPDH,TBA, β-TUB, ACT, UBQ, EF-1A, heat shock protein 70 (hsp70), ribosomal protein L2 

(rpL2), transcriptional initiation factor (TIF1) and the ribosomal 18S, 25S and 5.8S RNAs (Table 

2). 

 

Table 2. List and description of the selected candidate reference genes. 

Gene name Gene symbol Biological process 

Actin  ACT Cytoskeletal structural protein. 

Elongation factor 1-alpha  EF-1A 

Translational elongation, from the formation of the first 
peptide bond to the formation of the last one. Also 
binds/disunites microtubules. 

Heat shock protein 70 hsp70 Protection of cells from thermal or oxidative stress. 

Translational initiation factor 1 TIF1 
Seems to be required for maximal rate of protein 
biosynthesis. 

Glyceraldehyde 3-phosphate 
dehydrogenase  

GAPDH Important glycolytic pathway enzyme. 

Alpha-tubulin  and Beta-tubulin TBA and β-TUB Structural constituent of cytoskeleton. 

Ubiquitin  UBQ 

Postranslational attachment of ubiquitin monomers: 
proteasomal degradation, control of stability, function, 
and intracellular localization of proteins. 

18S, 25S, 5.8S Ribosomal subunits 
18S, 25S, 5.8S 

rRNAs 
Component of small ribosomal subunits. 

Ribosomal protein L2  rpL2 Association of the ribosomal subunits and tRNA binding. 

 

Primers were designed on the basis of known sequences and sequence stretches from 

NCBI GenBank sequence data for carrot (Table 3). All primer pairs for RT-qPCR amplification 

were designed with Primer Express software (Applied Biosystems, Foster City, CA, USA) with 

default parameters. Amplicon length ranges were set to be between 62 and 97 bp. All primer 
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sets were checked for amplification specificity and annealing temperature by endpoint PCR 

using synthesized cDNA.  

 

Table 3. Primer sequences and amplicon characteristics for each of the 12 candidate reference 

genes under evaluation. 

[NCBI accession ID] Gene  Primer sequence (5’→3’) AS (bp) 

E (%) (r
2
) 

Growth 

chamber 

Somatic 

embryogenesis 

[GenBank:X17525] ACT 
Fw CACACGGTGCCAATTTATGAA 

73 105.7 (0.997) 84.7 (0.972) 
Rv GATCACGGCCAGCAAGGT 

[GenBank:D12709] EF-1A 
Fw TGGTGATGCTGGTTTCGTTAAG 

75 103.2 (0.998) 81.2 (0.978) 
Rv AGTGGAGGGTAGGACATGAAGGT 

[GenBank:X60088] hsp70 
Fw GAAGTTTGAGCTCACGGGAATT 

77 93.2 (0.998) 85.4 (0.987) 
Rv TCGCATCAATGTCGAACACA 

[GenBank:ABI32458] TIF1 
Fw GGTATGTTCCGTATTCGCTTAG 

97 89.1 (0.999) 82.4 (0.987) 
Rv TATCGCCTGGTAGTATCC 

[GenBank:AY491512] GAPDH 
Fw GGGAGGTGCAAAGAAAGTTATCA 

79 93.4 (0.999) 89.0 (0.997) 
Rv TTCCTTTTCATTGACACCAACAA 

[GenBank:AY007250] TBA 
Fw TCTGGTGCCATACCCAAGGA 

73 85.3 (0.993) 91.5 (0.993) 
Rv ATAGGCCTTCTCAGCGGAGAT 

[GenBank:AAB64308] β-TUB 
Fw GGGCTCTCTATGTCTTCCACATTC 

78 102.9 (0.988) 85.0 (0.981) 
Rv AAACTGTTCACTAACTCGTCGAAACA 

[GenBank:U68751] UBQ 
Fw TCTTCGCCGGCAAGCA 

67 82.5 (0.997) 61.6 (0.996) 
Rv GTGGACTCCTTCTGGATGTTGTAGT 

[GenBank:X17534] 5.8S 
Fw AATGACTCTCGGCAACGGATAT 

73 94.5 (0.998) 83.1 (0.990) 
Rv TCACACCAAGTATCGCATTTCG 

[GenBank:X17534] 18S 
Fw GACTACGTCCCTGCCCTTTG 

62 96.1 (0.998) 86.0 (0.995) 
Rv TCACCGGACCATTCAATCG 

[GenBank:X17534] 25S 
Fw AGTCGGGTTGTTTGGGAATG 

67 94.5 (0.996) 91.3 (0.991) 
Rv TCGCCTGTATTTAGCCTTGGA 

[GenBank:ABI32465] rpl2 
Fw GGAAATCGGCCACATTAAAATTA 

92 98.0 (0.993) 91.2 (0.994) 
Rv CCCAACATTCCCCACTTGTC 

AS corresponds to the amplicons size; Primers efficiency (E) and regression coefficient (r2) for the growth 
chamber and somatic embryogenesis experimental systems. 
 

Reverse transcription quantitative real time PCR  

RT-qPCR experiments were performed on a 7500 Real Time PCR System (Applied 

Biosystems, Foster City, CA, USA) using Maxima SYBR Green q-PCR Master Mix (Fermentas, 

Ontario, Canada). 15 µl reaction volume containing 4 µl of previously diluted cDNA (1:10) and 

specific primers previously adjusted to the concentration, was applied in 96-well plates 

(Thermo Scientific) and sealed with adhesives (Applied Biosystems, Foster City, CA, USA). All 

samples were run in duplicate and no-template controls were included in all plates. RT-qPCR 

was conducted for 40 cycles, each consisting in 15 s at 95 °C followed by 1 min at 60 °C. To 

analyse dissociation curve profiles, an additional step at 95 °C during 15 s was added, followed 

by a constant increase of the temperature between 60 and 95 °C. Single peaks were obtained 

for every primer pair and one single band on agarose gels indicated that one single PCR 

product was amplified with each primers pair. 

Standard curves of a 4-fold dilution series (1:1 to 1:125) (run in triplicate) from pooled 

cDNA (mix of cDNA from all samples in each experiment) were generated for each primer pair. 
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The PCR efficiency (E) is given by the equation: E(%)=(10-(1/slope)-1)x100 (Radonic et al. 2004), 

with the slope of linear regression model fitted over log-transformed data of the input cDNA 

concentrations versus cycle threshold (Ct) values. 

 

Data analyses 

Global variability of gene expression for each gene was analysed using the standard 

statistical parameters provided in the SigmaStat statistical package (Systat software, London, 

UK). Three publically available software tools were used to rank expression stability of 

reference genes in all experimental sets: geNorm v3.5 (medgen.ugent.be/~jvdesomp/ 

genorm/) (Vandesompele et al. 2002), Normfinder (Andersen et al. 2004) and BestKeeper 

(Pfaffl et al. 2004). The geNorm algorithm assumes that expression variation of the ratio of two 

ideal reference genes is identical in all samples. Based on pairwise variation of candidate 

reference genes, the stability measure (M value), which reflects instability in expression levels 

of one gene, is calculated. M values lower than 0.5 are typically observed for stably expression 

genes in relatively homogeneous sample panels, however, M values of 1 are acceptable for 

heterogeneous sample panels (Hellemans et al. 2007). NormFinder is based on a variance 

estimation approach, which calculates an expression stability value (SV) for each gene 

analysed. It enables estimation of the overall variation of the reference genes, taking into 

account intra and intergroup variations of the sample set. BestKeeper is able to compare 

expression levels of up to 10 reference genes. As a set of 12 candidate genes were selected in 

our experiments, the two worst ranked by geNorm and NormFinder in each experimental 

system were removed from BestKeeper analysis. According to this algorithm, genes with 

lowest SV will be top ranked. BestKeeper tool uses the Ct values of all candidate reference 

genes to calculate their standard deviation (SD). Genes with a SD value of less than 1 are 

generally considered stable. A pairwise correlation coefficient of variation between each gene 

and the BestKeeper index (geometric mean between Ct values of stable genes) was calculated 

in BestKeeper. 

The three methods described above are implemented in RefFinder (Xie et al. 2012; 

http://www.leonxie.com/referencegene.php), a web-based comprehensive tool developed for 

evaluating and screening the stability of reference genes. It integrates the currently available 

major computational programs: geNorm (Vandesompele et al. 2002), Normfinder (Andersen et 

al. 2004), BestKeeper (Pfaffl et al. 2004), and the comparative delta-Ct method (Silver et al. 

2006). Mean Ct values were entered to the RefFinder web page. Based on the rankings 

provided by each of the software products, RefFinder assigns an appropriate weight to an 

individual gene and calculates the geometric mean of their weights for the overall final ranking 
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(RefFinder recommended comprehensive ranking). The three experimental systems were 

analysed individually as subsets, and also together as a single set. 

In addition to the ranking of a set of reference genes and the expression stability (M) 

for each gene, geNorm calculates the pairwise variation (V) to determine the optimal number 

of reference genes needed for building an accurate normalisation factor (NF). Pairwise 

variations of NFnand NFn+1 were calculated, reflecting the effect of including additional (n+1) 

gene. A V value with a cut-off of 0.15 as threshold was used to select the optimal number of 

reference genes (Vandesompele et al. 2002).  

 

Normalisation of DcAOX1 

DcAOX1 encoding a carrot alternative oxidase was obtained from NCBI [GenBank: 

EU286573.2] and used as a target gene to demonstrate the usefulness of the validated 

candidate reference gene in RT-qPCR. Gene expression levels of DcAOX1 were quantified in 

samples from the growth chamber experiment (described above) at five time-points: 56, 85, 

92, 98, and 125 days post sowing (one bulked sample/time point, two RTs). RT-qPCR reaction 

and cycling conditions were as above. Primer pair (Fw: 5’-CTTCAACGCCTACTTCCTTG-3’, Rv: 5’-

ATCTCGCAATGTAGAGTCAGC-3’) of DcAOX1 were also verified by melting curve analysis and 

sequencing as described for reference genes. 

Three normalisation strategies were followed to determine the expression of DcAOX1: 

(a) using the 2 top reference genes given by RefFinder recommended comprehensive ranking; 

(b) using the optimal number of reference genes based on geNorm pairwise variation; and 

finally (c) DcAOX1 was normalized with the worst candidate gene ranked in all programs. 

Calculations associated with the delta-Ct method incorporating the amplification 

efficiency (E) for each primer pair (Pfaffl 2001) for RT-qPCR, were applied using the qCalculator 

version 1.0 (available at: http://www.genequantification.de/qCalculator.zip). The time-point 

56 days was selected as calibrator. Results were given as mean of duplicated Ct values from 

each RT. 

 

7.1.3. Results 

Amplification specificity and efficiency 

To examine the expression stability of the potential reference genes selected, 

transcript levels of the 12 candidate reference genes (Table 2) were measured by RT-qPCR 

using gene-specific primer pairs (Table 3). Gene-specific amplification of each of the 12 genes 

was confirmed by the presence of a single peak in the dissociation curve (Suppl Fig. 1). 

Amplification efficiencies of every candidate reference gene were calculated individually for 
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each experimental system, to check for variation in primer efficiency. All calibration curves 

exhibited linear relationships (regression coefficient -r2- varying from 0.97 to 0.99; with only 

two values below 0.98) between the fractional cycle number and the log of the initial copy 

number (Table 3).The amplification efficiency (E) of the reactions ranged from 61.6 % for UBQ 

on somatic embryogenesis to 105.7 % for ACT on growth chamber experiment (Table 3). 

 

Expression profiling of candidate reference genes 

RT-qPCR was designed for transcript profiling of the 12 candidate reference genes in 

two experimental systems in a total of 40 diverse samples. For an overview of the relative 

abundance of candidate reference genes, the calculated cycle threshold (Ct) values were 

determined for each gene across both experimental systems. Analysis of the raw expression 

levels across samples identified some variation amongst candidate reference genes (Table 4). 

The 18S, 25S and 5.8S rRNAs were the candidate genes with the highest expression, with β-

TUB being the one with the lowest expression values. All the other candidate reference genes 

were expressed at moderate levels with mean Ct values from 17.89 to 26.93. rpL2 showed the 

narrowest Ct ranges among all samples, whereas UBQ was the most variable one. None of the 

tested reference genes exhibited a constant expression level across experimental systems. 

 

Table 4. Expression levels of 12 candidate reference genes across all samples (overall) and for 

each experimental system.  

Genes Overall Growth chamber 
Somatic 

embryogenesis 

ACT 22.79 ± 1.39 23.94 ± 1.56 22.45± 0.25 

EF-1A 21.43 ± 2.03 23.18 ± 1.36 20.20 ± 0.41 

hsp70 25.04 ± 2.25 24.71 ± 3.08 25.31 ± 1.04 

TIF1 18.57 ± 1.32 17.19 ± 1.59 18.71 ± 0.27 

GAPDH 21.19 ± 1.41 22.10 ± 1.50 20.79 ± 0.41 

TBA 24.42 ± 1.92 26.16 ± 1.46 23.35 ± 0.48 

β-TUB 32.42 ± 1.77 31.57 ± 2.28 32.78 ± 0.68 

UBQ 26.93 ± 2.90 29.77 ± 1.55 24.84 ± 0.57 

5.8S 8.63 ± 1.54 9.85 ± 1.58 8.19 ± 0.19 

18S 12.77 ± 1.81 11.10 ± 2.51 13.01 ± 0.24 

25S 9.28± 2.23 11.48 ± 1.75 8.18 ± 0.13 

rpL2 17.89 ± 1.28 18.91 ± 1.62 17.77 ± 0.24 

The mean raw cycle threshold (Ct) RT-qPCR data of each reference gene and the standard deviation (SD) 
are presented. Values are mean ± SD. 
 

A more detailed analysis of individual gene expression levels in each experimental 

system revealed that candidate reference genes were expressed in the two experimental 

systems albeit with different expression patterns (Table 4). The standard deviation of Ct values 
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can be used as a surrogate for the expression stability of each candidate reference gene. In this 

way, the somatic embryogenesis system shows the highest expression stability for all the 

candidate genes. On the growth chamber system, due to dramatic changes on transcriptional 

activity, it is particularly evident that a straightforward statistical analysis of raw Ct values is 

not suitable to select the best reference genes for normalisation of these RT-qPCR data.  

 

Gene expression stability analysis 

The expression stability was determined by geNorm, NormFinder and BestKeeper 

packages. The choice of the best genes from the 12 candidate reference genes, separately by 

experimental systems was not totally consistent between softwares and showed a high 

variability of the expression stability depending on the experimental conditions (Table 5). 

In the growth chamber experiment, (i) geNorm ranked EF-1A and TBA as the most 

stable genes, which together with GAPDH had the highest expression stability values (the 

lowest M value, <0.5, Table 5). As geNorm, Bestkeeper revealed the same three most stable 

genes in the growth chamber experiment, even though there was some difference in their 

rank (Table 5). NormFinder however, selected 5.8S as the most stable gene in this system 

followed by GAPDH and 25S rRNA. Considering BestKeeper analysis, only the most stable gene 

(EF-1A) presented a SD<1. The least stable genes in this system were 18S rRNA, β-TUB and 

hsp70.  

In the somatic embryogenesis experimental system (ii) all the 12 genes were highly 

stable, with geNorm M values ranging from 0.13 to 0.53. Bestkeeper returned SD values lower 

than 1.0 in all candidate genes. 25S and 5.8S rRNAs were in the top three most stable genes 

considering all programs. UBQ, β-TUB and hsp70 were ranked as the least stable genes in this 

system. 

RefFinder comprehensive ranking considered GAPDH, 5.8SrRNA, EF-1A and TBA as the 

first four recommended reference genes for the growth chamber experiment, and 5.8S rRNA, 

25S rRNA, ACT and 18S rRNA for the somatic embryogenesis system (Suppl. Fig. 2 a, b). If no 

discrimination is done between the experimental system, RefFinder returns the genes 5.8S 

rRNA, GAPDH, ACT and rpL2 as the most stable four candidates, while hsp70, β-TUB and UBQ 

were in the last positions of the rank (Suppl. Fig. 2 c). 

geNorm package was also applied on the determination of the optimal number of 

reference genes for normalisation. Figure 1 shows the pairwise variation analysis, which 

suggests that normalisation requires the use of only two reference genes for both 

experimental systems, since V2/3 values were under the cut-off level (0.05 in somatic 

embryogenesis and 0.13 in growth experiments). 



 

 

 

Table 5. Ranking of the 12 candidate reference genes in two different experimental systems (growth chamber and somatic embryogenesis) according to 

their expression stability values as given by geNorm, NormFinder, and BestKeeper. 

   
Growth 

chamber 
     

Somatic 

embryogenesis 
   

Rank geNorm  M NormFinder SV BestKeeper 
std dev 

[+/-CP] 
geNorm  M NormFinder SV BestKeeper 

std dev 

[+/-CP] 

1 EF-1A|TBA 0.430 5.8S 0.094 EF-1A 0.88 5.8S|18S 0.128 5.8S 0.020 25S 0.10 
2   GAPDH 0.315 GAPDH 1.00   25S 0.053 58S 0.16 
3 GAPDH 0.436 25S 0.340 TBA 1.02 25S 0.148 ACT 0.104 rpl2 0.19 
4 ACT 0.562 TIF1 0.391 TIF1 1.09 ACT 0.166 18S 0.114 18S 0.19 
5 5.8S 0.641 TBA 0.416 5.8S 1.10 TIF1 0.214 rpl2 0.162 TIF1 0.21 
6 25S 0.709 ACT 0.513 ACT 1.15 rpl2 0.242 TIF1 0.164 ACT 0.21 
7 UBQ 0.752 UBQ 0.527 rpl2 1.19 GAPDH 0.286 GAPDH 0.256 EF-1A 0.32 
8 TIF1 0.803 EF-1A  0.591 UBQ 1.21 TBA 0.318 EF-1A 0.276 GAPDH 0.33 
9 rpl2 0.859 rpl2 0.598 25S 1.28 EF-1A 0.353 TBA 0.278 TBA 0.40 

10 18S 0.992 18S 0.963 18S 1.79 UBQ 0.377 UBQ 0.297 UBQ 0.47 
11 β-TUB 1.176 β-TUB 1.372 β-TUB - β-TUB 0.431 β-TUB 0.424 β-TUB - 
12 hsp70 1.360 hsp70 1.453 hsp70 - hsp70 0.534 hsp70 0.698 hsp70 - 
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Fig. 1. Optimal number of reference genes required for effective normalisation. The pairwise variation 

(Vn/Vn+1) between the normalisation factors NFn and NFn+1 was analysed by geNorm program to 

determine the minimum number of reference genes required for RT-qPCR data normalisation in two 

experimental systems: growth chamber experiment; somatic embryogenesis. 

 

Evaluation of selected reference genes 

For the growth chamber system, DcAOX1 transcript accumulation was evaluated at 56 

days post sowing, corresponding to the initial explants (used as calibrator), and at 85, 92, 98 

and 125 days post sowing. Three normalisation strategies were followed to determine the 

expression of DcAOX1: (a) using the 2 top reference genes given by RefFinder recommended 

comprehensive ranking - GAPDH and 5.8S rRNA; (b) using the 2 best reference genes selected 

by geNorm that correspond to the V value V2/3=0.13 (below the 0.15 cut-off value) - EF-1A and 

TBA; and finally (c) using the worst gene ranked in all programs -hsp70. 

The analyses revealed that expression of DcAOX1 increased from the 56 days post 

sowing until the end of the experiment. Similar results were obtained between combinations 

(a) and (b) (Fig. 2). However, when hsp70 was used as reference gene (the worst ranked gene), 

a substantial higher increase on DcAOX1 transcript accumulation took place (Fig. 2). 
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Fig. 2. Relative quantification of DcAOX1 expression after 56, 85, 92, 98, and 125 days post sowing in a 

growth chamber experiment. Initial DcAOX1a expression (56 days post-sowing) from each plant was 

selected as calibrator. Three normalisation strategies are presented: the two best RGs from the 

RefFinder comprehensive ranking; GeNorm V value from pairwise variation analysis and the worst RG 

from the comprehensive ranking (hsp70). RG: reference gene. Mean and SD deviation values of two RTs 

are presented. 

 

7.1.4. Discussion 

Several genes including GAPDH, ACT, 18S rRNA, UBQ, TBA, β-TUB and EF have already 

been used as reference genes for expression studies in many plant species (Goulao et al. 2012; 

Kumar et al. 2011; Meng et al. 2013; Monteiro et al. 2013; Yi et al. 2012). Besides those, we 

proposed 25S, 5.8S rRNA, TIF1, hsp70 and the rpL2 as candidates due to their specific roles in 

several cellular processes. Furthermore, the availability of the carrot sequence transcriptome 

(Iorizzo et al. 2011) can allow the identification of additional candidate genes, which are 

potentially steadily expressed and involved in diverse molecular functions, biological processes 

or forming part of cellular components. 

Recent studies suggest that some of the most traditionally used reference genes 

display unacceptable high expression variability, limiting their use as internal controls 

(Exposito-Rodriguez et al. 2008; Jain et al. 2006; Zhu et al. 2012). Validating a set of candidate 

reference genes for specific experimental conditions should be a main concern, as the 

expression level of those genes cannot be assumed to remain constant under all possible 

conditions (Hruz et al. 2011; Hu et al. 2009). It is thus currently accepted that the stability of 

potential reference genes must be systematically determined prior to their use (Guenin et al. 

2009; Gutierrez et al. 2008). Failure to do so has been considered the most common error in 

RT-qPCR experiments, which, together with normalisation based on a single reference gene, 



CHAPTER 7 
 

164 
 

lead to erroneous expression differences (Vandesompele et al. 2002) and thus faults on the 

biological understanding of the mechanisms under study. The results of the present study 

further support this statement, as we clearly have shown that each experimental system 

requires a specific set of reference genes. A good example is the GAPDH gene, ranked in the 

first positions in the growth chamber experimental system (i) which clearly contrasts with its 

lower stability in the somatic embryogenesis experimental system (ii). In coffee (Barsalobres-

Cavallari et al. 2009) or field mustard (Qi et al. 2010), GAPDH was also reported as a stable 

reference gene. However the expression stability of GAPDH was found to be unsuitable for 

normalisation in some experiments with soybean, tomato and petunia (Exposito-Rodriguez et 

al. 2008; Jian et al. 2008; Mallona et al. 2010). Ribosomal RNAs have been suggested to be 

good reference genes as they are expressed in all cell types to direct biogenesis of ribosomes; 

a large number of rRNAs have been validated as suitable reference genes in plants 

(Barsalobres-Cavallari et al. 2009; Luo et al. 2014; Zhang and Hu 2007). In the two 

experimental systems here tested, the highly expressed ribosomal 5.8S, 25S and 18S rRNA 

genes appear as well ranked genes. Also in other plant species and experimental conditions, 

ribosomal genes are expressed at very high levels (Barsalobres-Cavallari et al. 2009; Jain et al. 

2006; Saha and Vandemark 2012). Furthermore, the commonly used reference gene β-TUB 

was repeatedly ranked in the last positions, regardless the experimental system analysed. On 

somatic embryogenesis, hsp70 unsuitability as reference gene can be explained by the 

involvement of this gene in the somatic embryogenesis process (Gyorgyey et al. 1991). In fact 

hsp70, normalized by the stable 5.8S rRNA, presents a progressive increase during somatic 

embryogenesis realization phase (results not shown). Previous gene expression studies on 

carrot used EF-1A or UBQ for normalisation of carotenoids biosynthesis genes (Clotault et al. 

2008; Fuentes et al. 2012) or GAPDH on carrot allergens experiments (Zagon et al. 2010). On 

carrot embryogenic cell lines, the reference genes TUB or UBQ (Frederico et al. 2009; Milioni et 

al. 2001) have also been used. However, under the conditions here assayed, the ribosomal 

genes were the best ranked in the somatic embryogenesis system. Our results emphasize the 

importance of reference genes validation for each experimental condition, especially when 

samples belong to very different sets. 

Differences in the stability ranking between the different computational programs 

(geNorm, NormFinder, BestKeeper) were also observed, as they make use of different 

approaches and algorithms. It has been argued that co-regulation of genes may compromise 

geNorm approach as the software tends to select genes with a similar expression profile 

(Andersen et al. 2004; Exposito-Rodriguez et al. 2008; Paolacci et al. 2009). It is worth to notice 

that the main difference observed between approaches was on the rank of the most stable 
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genes, being all programs in agreement on the least stable genes (Table 5). Due to the 

variability among softwares, RefFinder comprehensive ranking can represent a strategy on the 

selection of candidate genes. It was previously used to rank candidate reference genes in 

several other experimental systems in different plant species (Castro-Quezada et al. 2013; 

Figueiredo et al. 2013; Ovesna et al. 2012; Yeap et al. 2014; Zhu et al. 2012). 

Based on geNorm data, two reference genes were recommended for somatic 

embryogenesis and growth chamber experimental systems. Even though geNorm 

recommended the use of EF-1A and TBA on growth chamber experiment (i) and of ACT and 

5.8S rRNA on somatic embryogenesis (ii), we would like to propose the ones recommended by 

RefFinder comprehensive ranking: GAPDH and 5.8S rRNA for (i) and 5.8S and 25S rRNAs for (ii), 

due to the similarity between the M values of these genes (see Table 5). In fact, when the 

suitability of the reference genes identified on the growth chamber experiment was verified 

on a member of the alternative oxidase gene family, DcAOX1, similar results were found when 

data were normalized using the best ranked candidate genes selected by RefFinder 

comprehensive ranking or selected by geNorm pairwise variation. We have clearly shown that 

wrong data interpretation can result from the use of a wrong reference gene - normalisation 

was obscured when the least stable reference gene (hsp70) was chosen. 

Although no single reference gene had an optimal performance across all the 

experimental systems, 5.8S rRNA and GAPDH can be proposed as a good starting point for 

gene expression studies on carrot, whereas hsp70, β-TUB and UBQ should not be used as 

reference genes. 

 

7.1.5. Conclusions 

In this study we evaluated 12 genes for potential use as reference genes for RT-qPCR 

analysis on gene expression in carrot, in two different experimental systems. To the best of our 

knowledge, this is the first report on the selection of appropriate reference genes in carrot. 

The magnitude of samples and experimental conditions contribute for a more accurate use of 

RT-qPCR in the analysis of gene expression in this species. We provide a clear indication of 

reference genes to be used on carrot expression analysis, but we also reinforce the idea that 

the validation of reference genes for the experimental conditions under study is essential. This 

need was emphasized by the presented expression analysis of DcAOX1 as target gene, where 

the adverse effect of using unsuitable reference genes for normalisation were unarguably 

shown. Our results demonstrate that a previous selection of reference genes for a specific 

experimental setup is crucial to achieve accurate and reliable RT-qPCR gene expression data, 

avoiding low precision or misleading results. 
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Supplemental Table 1. Sampling times during somatic embryogenesis realization phase 

(Daucus carota L. cv. Rotin, cell line L5.S.R) (adapted from Frederico et al. 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

Sample name Description 

T-2 Flow-through cells sieved with a 200 μm mesh pore screen in B5
+ 

T-1 Flow-through cells sieved with a 95 μm mesh pore screen in B5
+ 

0 h Washed cells with B5
- by centrifugation (Somatic embryogenesis start) 

1 h 1 hour after inoculation in B5
- 

4 h 4 hours after inoculation in B5
- 

12h 12 hours after inoculation in B5
- 

24 h 24 hours after inoculation in B5
- 

2 days 2 days after inoculation in B5
- 

3 days 3 days after inoculation in B5
- 

5 days 5 days after inoculation in B5
- 

7 days 7 days after inoculation in B5
- 

10 days 10 days after inoculation in B5
- 
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Supplemental Fig. 1. Primer specificity test through dissociation curve analysis collected from 7500 

System SDS software ver. 1.3.1 (Applied Biosystems). ACT, EF-1A, hsp70, TIF1, GAPDH, TBA, β-TUB, UBQ, 

18S rRNA, 25S rRNA, 5.8 S rRNA and rpL2, in the two tested experimental systems. Non-template control 

is indicated by a black arrow.  
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Supplemental Fig. 2. Ranking of expression stability values in the two analysed experimental systems 

(12 candidate reference genes). The ranking was calculated with RefFinder software. a recommended 

comprehensive ranking on the growth chamber experiment, b recommended comprehensive ranking on 

somatic embryogenesis system, c recommended comprehensive ranking on the overall experiments. 
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7.2. Selection of suitable reference genes for RT-qPCR studies on a carrot primary culture 

system 

 

Abstract 

This study aimed selecting robust and reliable reference genes which are constitutively 

and equally expressed for accurate normalisation of RT-qPCR data from a carrot primary 

culture system. A systematic comparison of 12 selected candidate genes is presented. These 

include seven commonly used (GAPDH, ACT, 18S rRNA, UBQ, TBA, β-TUB, EF) and other five 

potential candidates (25S and 5.8S rRNA, TIF1, hsp70, rpL2). Additionally, the expression 

profile of the mitochondrial alternative oxidase gene DcAOX1 was conducted in the primary 

culture system, to demonstrate the importance of selection of reference genes. Although all 

candidate reference genes did not reach the minimum values to be selected as valid for data 

normalisation, EF-1A and rpL2 were the most stable genes. The results obtained on DcAOX1 

expression using those two genes as reference genes, in comparison with the genes identified 

as the less stable, reinforce the idea that the validation of reference genes for the conditions 

under study is essential. These results demonstrate that a previous selection of reference 

genes is crucial to achieve accurate and reliable RT-qPCR gene expression data, avoiding low 

precision or misleading results. 

 

Keywords: carrot; reverse transcription quantitative real-time PCR; reference gene; 

normalisation  

 

 

7.2.1. Aim of the study 

The aim of this study was the selection of robust and reliable reference genes which 

are constitutively and equally expressed for accurate RT-qPCR normalisation analysis in the 

carrot primary culture in vitro system (PCS). This system is related to morphogenic responses 

as a consequence of cell reprogramming upon stress. The expression stabilities of twelve 

selected candidate genes were carefully evaluated, aiming to identify the most suitable and 

stable reference genes for data normalisation. These genes included commonly used reference 

genes and other potential candidates. Furthermore, in order to illustrate the usefulness of the 

reference genes, expression analysis of a mitochondrial alternative oxidase gene (DcAOX1) in 

the PCS is presented using several combinations of reference genes. 
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7.2.2. Material and methods 

Plant material and experimental conditions 

Tap roots of 10 weeks old carrot plants (Daucus carota cv. Rotin) growing under 

greenhouse conditions were used. Five explants, which consisted in small pieces of secondary 

phloem, taken from three individual plants (biological replicates), were inoculated per 

Erlenmeyer containing 20 mL of NL liquid medium (Neumann 1966) supplemented with kinetin 

(1 mgL-1) and indoleacetic acid (2 mgL-1) (for protocol details see Campos et al. 2009). Samples 

were collected per plant as bulked sample of about 50 explants (10 Erlenmeyers) before (T0) 

and after 14 days in culture (T14), growing at 21 °C and 28 °C. 

 

Sample processing  

After sampling, plant material was immediately frozen in liquid nitrogen and stored at -

80 °C. Total RNA was isolated using RNeasy Plant Mini Kit (Qiagen, Hilden, Germany), with on-

column digestion of DNA applying the RNase-Free DNase Set (Qiagen, Hilden, Germany), 

according to manufacturer’s protocol. RNA integrity was verified by electrophoresis on a 1 % 

agarose gel using DEPC (diethyl pyrocarbonate) (Sigma-Aldrich®, St. Louis, MO, USA) treated 

water, stained with ethidium bromide (2 ng·mL-1) and visualized in a Gene Flash Bio Imaging 

system (Syngene, Cambridge, UK). RNA concentration was determined with the NanoDrop-

2000C spectrophotometer (Thermo Scientific, Wilmington, DE, USA). DNase-treated total RNA 

(1 µg) was reverse transcribed with RETROscript® kit (Ambion, Austin, TX, USA) using random 

decamer primers, in a 20 µl reaction volume according to manufacturer’s instruction. Nine 

cDNA samples were synthesized. From each biological replicate the time points considered 

were the referred above: T0, T14 at 21°C, and T14 at 28 °C. 

 

Candidate reference gene selection and primer design 

See detailed description in 7.1. The complete list of the selected candidate reference 

genes, and respective primer sequences tested in the PCS are included in Table 1. 

 

Quantitative Real Time PCR  

See detailed description in 7.1. 

 

Data analysis 

See detailed description in 7.1. 
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Table 1. List and description of the selected candidate reference genes under evaluation in the 

primary culture system.  

Gene name 
Gene 

symbol 
NCBI accession ID Primer sequence (5’→3’) AS (bp) 

Actin  ACT [GenBank:X17525] 
Fw: CACACGGTGCCAATTTATGAA 

73 
Rv: GATCACGGCCAGCAAGGT 

Elongation factor 1-alpha  EF-1A [GenBank:D12709] 
Fw: TGGTGATGCTGGTTTCGTTAAG 

75 
Rv: AGTGGAGGGTAGGACATGAAGGT 

Heat shock protein 70 hsp70 [GenBank:X60088] 
Fw: GAAGTTTGAGCTCACGGGAATT 

77 
Rv: TCGCATCAATGTCGAACACA 

Translational initiation 
factor 1 

TIF1 [GenBank:ABI32458] 
Fw: GGTATGTTCCGTATTCGCTTAG 

97 
Rv: TATCGCCTGGTAGTATCC 

Glyceraldehyde 3-
phosphate dehydrogenase  

GAPDH [GenBank:AY491512] 
Fw: GGGAGGTGCAAAGAAAGTTATCA 

79 
Rv: TTCCTTTTCATTGACACCAACAA 

Alpha-tubulin   TBA [GenBank:AY007250] 
Fw: TCTGGTGCCATACCCAAGGA 

73 
Rv: ATAGGCCTTCTCAGCGGAGAT 

Beta-tubulin  β-TUB [GenBank:AAB64308] 
Fw: GGGCTCTCTATGTCTTCCACATTC 

78 
Rv: AAACTGTTCACTAACTCGTCGAAACA 

Ubiquitin  UBQ [GenBank:U68751] 
Fw: TCTTCGCCGGCAAGCA 

67 
Rv: GTGGACTCCTTCTGGATGTTGTAGT 

18S Ribosomal subunits 18S rRNAs [GenBank:X17534] 
Fw: GACTACGTCCCTGCCCTTTG 

62 
Rv: TCACCGGACCATTCAATCG 

25S Ribosomal subunits 25S rRNAs [GenBank:X17534] 
Fw: TCACCGGACCATTCAATCG 

67 
Rv: TCGCCTGTATTTAGCCTTGGA 

5.8S Ribosomal subunits 5.8S rRNAs [GenBank:X17534] 
Fw: AATGACTCTCGGCAACGGATAT 

73 
Rv: TCACACCAAGTATCGCATTTCG 

Ribosomal protein L2  rpL2 [GenBank:ABI32465] 
Fw: GGAAATCGGCCACATTAAAATTA 

92 
Rv: CCCAACATTCCCCACTTGTC 

Primer sequence sets and amplicon characteristics for each of the twelve candidate reference genes are 
also presented. AS corresponds to the amplicons size. 
 

Normalisation of DcAOX1 

DcAOX1 encoding a carrot alternative oxidase was obtained from NCBI 

[GenBank:EU286573.2] and used as a target gene to demonstrate the usefulness of the 

validated candidate reference gene in RT-qPCR. RT-qPCR reaction and cycling conditions were 

in point 2.1. Primer pair (Fw: 5’-CTTCAACGCCTACTTCCTTG-3’, Rv: 5’-

ATCTCGCAATGTAGAGTCAGC-3’) of DcAOX1 were also verified by melting curve analysis and 

sequencing as described for reference genes. 

Four normalisation strategies were followed to determine the expression of DcAOX1: 

(i) using the 2 top reference genes given by RefFinder recommended comprehensive ranking; 

(ii) using the 3 top reference genes given by RefFinder recommended comprehensive ranking; 

(iii) using the optimal number of reference genes based on geNorm pairwise variation; and 

finally (iv) DcAOX1 was normalized with the worst candidate gene ranked in all programs. 
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Calculations associated with the delta-Ct method incorporating the amplification 

efficiency (E) for each primer pair (Pfaffl, 2001) for RT-qPCR, were applied using the freeware 

qCalculator version 1.0 (freely available at: www.genequantification.de/qCalculator.zip). The 

T0 sample was selected as the calibrator for each tap root. Results were given as the mean of 

duplicated Ct values from each sample. 

 

7.2.3. Results 

Amplification specificity and efficiency 

To examine the expression stability of the potential reference genes selected, transcript 

levels of the twelve candidate genes were measured by RT-qPCR using gene-specific primer 

pairs (Table 1). Gene-specific amplification of each of the twelve candidates was confirmed by 

the presence of a single peak in the dissociation curve analysis (Fig. 1). Amplification 

efficiencies of every candidate gene were calculated individually (Table 2). All calibration 

curves exhibited linear relationships (regression coefficient r2 varying from 0.971 to 0.999) 

between the fractional cycle number and the log of the initial copy number (Table 2). The 

amplification efficiency (E) of the reactions ranged from 85.7 % for UBQ to 106.1 % for GAPDH 

(Table 2). 

 

Fig. 1. Primer specificity test through dissociation curve analysis collected from 7500 System SDS 

software ver. 1.3.1 (Applied Biosystems). ACT, EF-1A, hsp70, TIF1, GAPDH, TBA, β-TUB, UBQ, 18S rRNA, 
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25S rRNA, 5.8 S rRNA and rpL2, in the primary culture system. Non-template control is indicated by a 

black arrow. 

 

Expression profiling of candidate reference genes 

The standard deviation of Ct values indicates the expression stability of each candidate 

reference gene (Table 2). In the PCS, several candidate genes displayed a high variability, being 

evident that a straight forward statistical analysis of raw Ct values is not suitable to select the 

best reference genes for normalisation of these RT-qPCR data. 

 

Table 2. Expression levels of 12 candidate reference genes for the primary culture system. 

Genes E (%) (r
2
) Mean Ct ± SD 

ACT 98.2 (0.999) 22.18 ± 1.61 

EF-1A 102.0 (0.999) 19.26 ± 1.43 

hsp70 102.2 (0.994) 27.28 ± 1.81 

TIF1 102.3 (0.992) 20.97 ± 1.08 

GAPDH 106.1 (0.997) 21.22 ± 1.99 

TBA 100.7 (0.992) 21.86 ± 1.60 

β-TUB 85.7 (0.971) 29.95 ± 3.41 

UBQ 104.9 (0.989) 26.15 ± 2.32 

5.8S 100.8 (0.992) 9.50 ± 3.27 

18S 100.5 (0.980) 13.55 ± 3.33 

25S 99.9 (0.998) 9.20 ± 3.28 

rpL2 90.1 (0.987) 20.96 ± 0.89 

Primers efficiency (E) and regression coefficient (r2) are indicated. The mean raw cycle threshold (Ct) RT-
qPCR data of each reference gene and the standard deviation (SD) are presented. 
 

Gene expression stability analysis 

The expression stability of the 12 candidate reference genes was determined by 

geNorm (Vandesompele et al. 2002), NormFinder (Andersen et al. 2004) and BestKeeper (Pfaffl 

et al. 2004) packages. The results for best reference genes were not totally consistent between 

softwares, as it can be seen in Table 3.  

The geNorm software revealed M values ranging from 0.854 to 2.488, and BestKeeper 

displayed SD values lower than 1.0 only in the two more stable genes (rpl2 and TIF1). The 

RefFinder software (Xie et al. 2012), that integrates the computational programs geNorm, 

Normfinder, BestKeeper and the comparative delta-Ct method, and which calculates the 

geometric mean of their weights for the overall final ranking (RefFinder recommended 
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comprehensive ranking), was also used to evaluate the expression stability of candidate 

reference genes. Accordingly, RefFinder comprehensive ranking considered EF-1A, rpL2, TIF1 

and ACT (Fig. 2). 

 

Table 3. Ranking of the 12 candidate reference genes in the primary culture system according 

to their expression stability values as given by geNorm, NormFinder, and BestKeeper. 

Rank geNorm M NormFinder SV BestKeeper std dev [+/-CP] 

1 EF-1A|TIF1 0.854 rpl2 0.566 rpl2 0.65 

2   TBA 0.642 TIF1 0.90 

3 ACT 0.887 ACT 0.724 EF-1A 1.03 

4 GAPDH 0.998 EF-1A 0.744 TBA 1.17 

5 TBA 1.118 TIF1 0.954 ACT 1.26 

6 rpl2 1.243 GAPDH 1.156 hsp70 1.55 

7 UBQ 1.450 UBQ 1.320 GAPDH 1.68 

8 hsp70 1.711 hsp70 1.399 UBQ 1.75 

9 5.8S 2.035 5.8S 1.662 5.8S 2.54 

10 25S 2.198 25S 1.683 25S 2.55 

11 18S 2.318 18S 1.869 18S - 

12 β-TUB 2.488 β-TUB 2.052 β-TUB - 

 

 

 

Fig. 2. Ranking of expression stability values in the primary culture system (12 candidate reference 

genes). The ranking was calculated with RefFinder software.  

 

Determination of the optimal number of reference genes for normalisation by GeNorm 

The geNorm v3.5 software was applied to calculate the pairwise variations Vn/n+1 in 

order to determine the optimal number of reference genes required for building an accurate 

NF in the different experimental systems. A V value below 0.15 was suggested as the limit 
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under which it was unnecessary to add an additional gene for normalisation (Vandesompele et 

al. 2002). As shown in figure 3, all the V values exceeded the cut-off value, being five genes 

(V5/6=0.221) the best combination for an accurate normalisation. 

 

 

Fig.3. Optimal number of reference genes required for effective normalisation in the primary culture 

system. The pairwise variation (Vn/Vn+1) between the normalisation factors NFn and NFn+1 was 

analysed by geNorm program to determine the minimum number of reference genes required for RT-

qPCR data normalisation. 

 

Evaluation of selected reference genes 

Four normalisation strategies were followed to determine the expression level of 

DcAOX1 in a PCS. In this system the pairwise variation threshold value was not achieved, and 

the effect of selecting different combination of reference genes for DcAOX1 normalisation was 

evaluated.  

DcAOX1 transcript accumulation was evaluated at T0, corresponding to the initial 

explants (used as calibrator), and in 14 days callus, under two tested temperatures (Fig. 4). 

Four normalisation strategies were followed to determine the expression of DcAOX1: (i) using 

the 2 top reference genes given by RefFinder recommended comprehensive ranking; (ii) using 

the 3 top reference genes given by RefFinder recommended comprehensive ranking; (iii) using 

the 5 best reference genes selected by geNorm that correspond to the lowest V value 

(V5/6 =0.221) (the V did not reach the 0.15 cut-off value on PCS); and finally (iv) using the 

worst ranked in all programs on PCS. Therefore, DcAOX1 was normalised based on the 

expression of (i) EF-1A and rpL2; (ii) EF-1A, rpL2 and TIF1; (iii) EF-1A, TIF1, ACT, GAPDH and TBA 

and (iv) β-TUB. 
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Fig. 4. Relative quantification of DcAOX1 expression after 14 days (T14) of in vitro culture from carrot 

primary culture system. Callus grew at 21 °C and 28 °C. Four normalisation strategies are presented: the 

two and the three best reference genes from the RefFinder comprehensive ranking; GeNorm V value 

from pairwise variation analysis and the worst reference gene from the comprehensive ranking (β-TUB). 

Initial DcAOX1 expression (T0) from each plant was selected as calibrator. Mean and SD deviation values 

of two biological replicates are presented. 

 

The analysis using the three first normalisation strategies revealed that expression 

levels of DcAOX1 increased from T0 to T14 under both temperatures tested (Fig. 4), and the 

highest value was observed in tissue growing at 28 oC. However, when β-TUB was used as 

reference gene, the worst ranked gene in all programs, a significant decrease on DcAOX1 

transcript accumulation between T0 and T14 took place (Fig. 4). 

 

7.2.4. Discussion 

General discussion is included in 7.1. Here the focus in on the PCS. 

With geNorm M threshold values ranging from 0.842 to 2.533, none of the studied 

genes could be considered as valid reference gene in the PCS. It seems therefore evident that 

PCS samples have an intrinsic high variability, which might be explained by its proliferative 

nature. In this system, the inoculation of differentiated secondary root phloem explants in a 

cytokinin-containing nutrient media leads to a cell program change related with the acquisition 

of an undifferentiated stage (callus) and subsequently growth. Moreover, the samples selected 

for this study presented different callus growth behaviour for the two different temperatures 

tested (for growth results see CHAPTER 3). Therefore, this was a very heterogeneous sample 

panel. Nevertheless, it is very likely that additional reference genes, which have not been used 

so far, will improve the normalisation outcome. For instance, the availability of the carrot 

sequence transcriptome (Iorizzo et al. 2011) can allow the identification of additional 
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candidate genes, which are potentially steadily expressed and involved in diverse molecular 

functions, biological processes or forming part of cellular components. 

When the suitability of the reference genes identified on the PCS was verified on a 

member of the alternative oxidase gene family, DcAOX1, similar results were found when data 

were normalized using the best ranked candidate genes selected by RefFinder comprehensive 

ranking or selected by geNorm pairwise variation. However, the results showed that 

normalisation was obscured when the least stable reference gene (β-TUB) was chosen. In this 

sense, here it is proposed the top two EF-1A and rpl2 reference genes selected by the 

RefFinder comprehensive ranking for normalisation of PCS transcript data. The β-TUB 

unsuitability as reference gene in the PCS can be explained by the involvement of tubulin 

genes in processes related with cell division activity (Stotz and Long, 1999; Dumontet et al., 

1996; Setter and Flannigan, 2001). In fact, β-TUB normalized by EF-1A, presents an increase 

during the PCS between the initial explants (T0) and the growing callus after 14 days in culture 

(results not shown).  

In conclusion, our analysis on a PCS, although presenting limitations, illustrates the 

adverse effect of using unsuitable reference genes for normalisation. These results are a very 

important starting point for further primary culture transcript analysis. Our results 

demonstrate that a previous selection of reference genes for a specific experimental setup is 

crucial to achieve accurate and reliable RT-qPCR gene expression data, avoiding low precision 

or misleading results. 
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CHAPTER 8 - GENERAL DISCUSSION, CONCLUSIONS AND PERSPECTIVES 

 

8.1. General discussion 

In the past two decades routine protocols were developed to genetically identify and 

characterise the loci contributing to a quantitative trait, referred to as quantitative trait loci 

(QTL). In contrast to the feasibility of QTL mapping studies, zooming into natural segregating 

loci (quantitative or qualitative effect) to find their molecular bases was until now not 

straightforward. Recently, the availability of high-throughput sequencing technologies with 

reduced prices allowed accelerating the analysis of natural sequence variation, at different 

levels, going from single gene level or even exome analysis, to whole genome sequencing. 

However, with the huge amount of data that those technologies provide, the bottleneck is 

represented nowadays by the ability to genetically dissect complex traits and identify the 

genes underlying them. One example of a quantitative trait is the yield, which strongly 

depends on the capacity of plants to efficiently adapt their growth to varying conditions, 

recently defined as a new trait - plant plasticity (see Cardoso and Arnholdt-Schmitt 2013). The 

ability for growth adaptation to new environmental conditions depends on the existence of 

phenotypic variation inside a species, cultivar or variety. This variation, known as natural 

variation is defined as phenotypic variation caused by spontaneously arisen genetic 

polymorphisms that are maintained either by natural or human selection (Alonso-Blanco et al. 

2005). The identification of genes and polymorphisms within these genes that affect protein 

function and consequently natural variation assumed high importance in plant breeding due to 

the development of functional markers (FM). These markers within the target gene provide an 

absolute differentiation between phenotypes (Andersen and Lübberstedt 2003). Genes of 

interest for FM development can be identified by high-throughput differential gene analyses or 

in hypothesis-driven research approaches (Arnholdt-Schmitt 2005). Candidate gene 

approaches for marker-assisted selection are actually rated as the most promising strategies in 

molecular plant breeding (Collins et al. 2008). AOX was previously proposed in a hypothesis-

driven approach as target to develop FMs for efficient cell reprogramming, to assist breeding 

for robust plants with individual or multi-stress tolerance linked to traits such as yield stability 

(Arnholdt-Schmitt et al. 2006; Arnholdt-Schmitt 2009; Polidoros et al. 2009; Arnholdt-Schmitt 

2015).  

Different studies have been demonstrating the involvement of AOX genes in plant 

response upon a diversity of biotic and abiotic stresses (see reviews of Plaxton and Podestá 

2006; Vanlerberghe 2013), including morphogenic responses (Fiorani et al. 2005; Ho et al. 

2007; Campos et al. 2009; Frederico et al. 2009; Santos Macedo et al. 2009; Santos Macedo et 
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al. 2012). Several authors also report the key role of AOX in regulating the process of cell-

reprogramming by ameliorating metabolic transitions related with the cellular redox state and 

the flexible carbon balance (Arnholdt-Schmitt et al. 2006; Rasmusson et al. 2009). Clifton et al. 

(2005; 2006) pointed to the importance of this pathway as an early-sensing system for cell 

programming.  

Contrarily to AOX, in which there are a vast number of reports showing the 

involvement of the different genes in diverse physiological and morphological processes in 

plants (stress response, development and cell-reprogramming) and the existence of sequence 

variation across genotypes (Cardoso et al. 2009; Ferreira et al. 2009; Santos Macedo et al. 

2009), PTOX has very limited literature describing its role, and no studies have be done so far 

on the existence of sequence variability. Nevertheless, the similarities at protein sequence 

level that PTOX has with AOX (Atteia et al. 2004) led to the possibility that the enzyme 

encoded by PTOX could also be involved in some of the same functions that AOX. This 

assumption prompted us to select this latter gene as candidate for further FM development 

related with yield stability. The work presented in this thesis aimed therefore to explore the 

potential role of both AOX and PTOX as target genes for FM development for yield-

determining growth performance in carrot. This research is embedded in a broader 

Competence Focus on ‘AOX Research and Functional Marker Development’ across diverse 

organisms and applied systems, and has been also linked to several industrial pilot projects on 

carrot breeding. Thus, the results of the thesis contribute to the overall knowledge at that 

focus and provide the basis for advancing in the state-of-the art for ongoing and future 

projects. 

Focusing on the defined research line fully explained in CHAPTER 1, several were the 

advances attained with the present work. For transcript analysis the first step was the isolation 

of the different genes. Through CHAPTER 2, CHAPTER 3, CHAPTER 5 and CHAPTER 6 a detailed 

characterisation of AOX and PTOX genes’ is made. The expression of AOX and PTOX was then 

evaluated in different experimental system and conditions, with the main results here 

discussed. 

 

8.1.1. AOX and PTOX on cell reprogramming and growth performance 

Daucus carota L. was the first organism where cell totipotency was proved (Steward et 

al. 1958), and up-to-now it is the most used species to study cell programming (Harada et al. 

1990; Imani et al. 2001; Kikuchi et al. 2006), due to the easiness to reprogram cells. The in vitro 

primary culture system (PCS) of secondary phloem explants of carrot tap roots was established 

to study the processes of cell reprogramming and growth performance. This in vitro system 
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had a preponderant role on the experiments presented in this thesis, and it was used to study 

changes on the expression of AOX genes and of PTOX gene on cell dedifferentiation process 

and growth adaptation to different temperatures.  

The first results obtained with this system (CHAPTER 2), showed a dynamic expression 

of AOX genes during de novo induction of secondary root phloem explants, with a similar 

pattern observed between DcAOX1 and DcAOX2a. It was found an increase in transcript levels 

as early as 36 h, followed by a reduction at exponential growth phase (after 14 days in culture). 

To shed light on even earlier events related to cell reprogramming, the expression of both 

DcAOX1 and DcAOX2a genes was then determined in a higher temporary resolution in the 

initial phase, with an earlier start, and a longer observation time (CHAPTER 3). These results 

revealed that DcAOX1 and DcAOX2a transcript levels increased until 36 h after explant 

inoculation, with a subsequent down-regulation, before the initiation of exponential growth. 

At the end of the lag phase and at initiation of exponential growth (8 dpi), expression of both 

genes reached the lowest levels and remained relatively stable until 28 dpi, with values similar 

to the original, quiescent tissue. Although not directly in the frame of this thesis, the 

calorespirometry measurements presented in CHAPTER 3 arise as a crucial complement for the 

interpretation of the expression results. This tool previously identified as promising for 

predictive growth phenotyping (Nogales et al. 2014; Arnholdt-Schmitt et al. 2015), was 

developed by Nogales et al. (2013) for breeding in carrot in vitro primary culture systems. 

Calorespirometry has shown useful to accurately monitor temperature dependent growth 

performance in terms of metabolic rates, respiratory rates, efficiency of biomass acquisition 

and growth rates over 21 days of in vitro cultures (Nogales et al. 2013). The structural biomass 

formation showed a drastic increase until around the 4th day after inoculation (CHAPTER 3), 

during the lag phase of growth (without any visible growth detected), in all five PCS tested. 

This peak was associated with the cell reprogramming process occurring in this system. 

Additionally, the callus FW from 12 individual PCS allowed the identification of different 

growth behaviour in PCS at two different temperatures (21 °C and 28 °C), during the 

exponential growth phase. However, regarding AOX expression, no direct link was detected 

between callus FW and individual DcAOX1 or DcAOX2a transcript levels during the exponential 

growth phase. Nonetheless, those results allowed identifying DcAOX1 as the gene responsive 

to a higher growing temperature in the PCS, during the exponential growth phase. 

Following the same trend as DcAOX genes, a rather similar role for DcPTOX during the 

earliest events of cell reprogramming was suggested (CHAPTER 6). However other processes to 

explain DcPTOX expression dynamics during PCS cannot be discarded. In the PCS a reversible 

differentiation of the chromoplasts into chloroplasts takes place, and the chlorophyll content 
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of explants increases continuously during the culture period (Kumar et al. 1983). Therefore, it 

was proposed in CHAPTER 6 that during the PCS two different processes overlap and can also 

explain DcPTOX accumulation pattern: i) the presence of chromoplasts in the initial explants, 

which accumulate carotenoids (PTOX involvement on carotenoids biosynthesis described 

below), and ii) the differentiation of chloroplast during the exponential phase of growth, and 

consequent implication of PTOX in chlororespiration of the callus green tissues. In the same 

way to DcAOX, no direct link was detected between callus FW at exponential growth phase 

and DcPTOX expression. 

 

8.1.2. AOX early response to chilling 

As an attempt to transpose the in vitro PCS results to plant level, a pot plant 

experiment was performed to analyse how early DcAOX1 and DcAOX2a would respond to 

chilling (CHAPTER 3). Low temperature stress is one of the most important abiotic stresses in 

plants, with the alternative respiration pathway components referred as the most important 

ones for early responses to abiotic stresses (Clifton et al. 2005). The presented results revealed 

that DcAOX1 and DcAOX2a are both early transcribed upon chilling stress, with differences 

detected from the control as soon as after 45 min of exposure. DcAOX genes’ response was 

prior to the induction of the cold responsive AFP gene, although the latter presented a 

substantially higher mRNA level. 

 

8.1.3. AOX and storage root growth during plant development 

In order to get insights on the role of the different DcAOX genes in tap root growth 

during plant development, gene expression studies were performed (CHAPTER 4). In this 

experiment, performed using different carrot cultivars, the expression dynamics of all DcAOX 

gene family members (DcAOX1, DcAOX2a and DcAOX2b) were assessed. Growth was 

evaluated by measurements of root length and root secondary growth (indicated by fresh 

weight) in the developing storage roots (from the 5th to the 13th wps). A substantial increase on 

tap root length was detected at the beginning of the experiment, right after the formation of 

the cambium ring (Hole et al. 1987), when secondary growth (evaluated by fresh weight) was 

almost inexistent. In later stages of development there was a halt on root length increase 

concomitantly to an increment on root secondary growth. Expression analysis revealed that 

during storage root development, the only AOX gene that followed a concrete trend was 

DcAOX2a, with the highest levels of transcripts detected at the initial time points, followed by 

a pronounced decreased. Combining the growth information with the expression analysis it is 

clear that DcAOX2a is somehow associated with carrot tap root development: a high 
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expression was observed during early stages, coincident with a high root length increase, and a 

decrease in transcript levels was observed concomitantly to the increment of secondary 

growth.  

A positive impact on growth related with the lack of AOX was already emphasised on 

studies using single cell systems (Sieger et al. 2005; Mathy et al. 2010). Sieger et al. (2005) 

demonstrated that AOX1a knockdown led to the incapacity of cells for down-regulating growth 

under P- and N-deficiency, and concluded that AOX activity provides a mechanism for 

adjusting growth and counteracting nutrient imbalance. These results let Arnholdt-Schmitt 

(2006) hypothesize on the importance of considering down-regulation of AOX as a potential 

tool for molecular breeding on higher nutrient efficiency. 

However the relation between AOX and growth is undoubtedly much more complex in 

whole plants systems. In this sense it cannot be totally discarded the positive relationship 

observed in the first time points of the experiment, between DcAOX2a transcripts and tap root 

primary growth (evaluated by root length). Nevertheless, AOX was shown to be especially 

active in meristematic tissues (Hilal et al. 1997; see also CHAPTER 2), and expression studies 

made directly on carrot root meristem will for sure allow a complete clarification on the role of 

AOX on root secondary growth. 

 

8.1.4. PTOX association with secondary growth and/or carotenoids accumulation 

 In order to study if PTOX is associated with yield-determining tap root growth 

performance, PTOX expression was investigated in central root meristem (cambium ring), 

using pot plant experiments (CHAPTER 6). An increase on DcPTOX transcripts was detected 

during storage root development. The meristematic tissue is the metabolically most active 

tissue in the tap root and is responsible for secondary growth, and consequently on yield 

production (Hole et al. 1984; Arnholdt-Schmitt 1999). However, due to the small cell layers of 

the cambium ring (approximately 10 cell thickness), the immediately next secondary phloem 

that is originated directly from the meristem was picked together. Although in a first approach 

the results point to a relation between PTOX and root secondary growth, it is necessary to 

consider that cells from secondary phloem contain carotenoids, and previous studies already 

indicated the involvement of PTOX on the metabolic pathway of carotenoids biosynthesis 

(Simkin et al. 2008; Simkin et al. 2010; Sun and Wen 2011). 

In this sense, and to understand whether PTOX is associated with secondary growth 

and/or carotenoids accumulation, DcPTOX expression was evaluated in developing carrot tap 

roots (in complete roots or in pieces from the upper part), in an experiment that included 

cultivars with different carotenoids contents (CHAPTER 5). It was found an increase of 
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transcripts during the time course of the experiment, in all cultivars, including the white one 

where very little or no carotenoid pigments are detected. DcPTOX showed a similar transcript 

profile to other carotenoid biosynthetic genes and highly correlated to all of them. 

Taken together, our data indicate an association of DcPTOX with both carotenoid 

biosynthesis and storage root secondary growth mechanisms. A first analysis on DcPTOX 

sequence variability was also performed, with encouraging results to strengthen future efforts 

on the identification of polymorphic motifs in DcPTOX for the development of FM related to 

agronomic traits of interest such as yield or pigmentation of storage roots. 

 

8.1.5. Early DcPTOX response to mild cold stress 

 To get insights on the involvement of PTOX on adaptive growth, the early effect of 

temperature decrease was further evaluated in tap root meristems (CHAPTER 6). In this 

experiment, a short-term early response was detected in DcPTOX expression levels upon 

temperature decrease, most probably associated with adaptive growth. After the beginning of 

the mild-cold treatment, the storage root growth (measured by root biomass, length and 

thickness) was suppressed. However, the mild-cold stress had a positive effect on the final 

storage root growth.  

 

8.1.6. Selection of suitable reference genes in different carrot experimental systems for 

accurate data normalisation 

Clearly, throughout the research work leading to the present thesis, transcript analysis 

was the main approach. The importance of the selection of suitable reference genes in 

different carrot experimental systems was highlighted and demonstrated. The somatic 

embryogenesis system results, although not in the frame of this PhD project, were included as 

an additional experimental system for analysis. An indication of reference genes to be used on 

those experimental systems of carrot was provided, and the idea that the validation of 

reference genes for each experimental condition is essential for accurate and reliable RT-qPCR 

gene expression measurements was reinforced.  

 

8.2. Conclusions 

The studies performed in this thesis represent an important contribution towards the 

exploitation of AOX and PTOX as target genes for FM development for yield-determining 

growth performance in carrot. The following main conclusions can be highlighted from the 

results presented: 
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- DcAOX1 and DcAOX2a can be considered reasonable candidates for FM development on 

efficient cell reprogramming under changing environments in general (in vitro inoculation 

and chilling). Additionally, calorespirometry measurements allowed assessing the 

efficiency by which cell reprogramming occurs. DcPTOX follows the same trend as DcAOX 

genes during earliest events of cell reprogramming. However, the involvement of DcPTOX 

in processes such as carotenoids biosynthesis and chlororespiration in green tissues must 

be further considered. No direct link was detected between callus fresh weight at 

exponential growth phase and DcAOX and DcPTOX transcript accumulation. 

- DcAOX2a was associated with tap root growth during carrot development, following a 

concrete trend. 

- DcPTOX was associated with both carotenoid biosynthesis and secondary growth during 

storage root development. 

- A short-term early response was detected in DcPTOX transcript accumulation in tap root 

meristem upon temperature decrease. However, the mild cold stress treatment had a 

positive effect on the final root biomass, length and thickness. 

- The selection of suitable reference genes for accurate RT-qPCR analysis for each carrot 

experimental system was performed and its importance highlighted. 

 

8.3. Future perspectives and work in progress 

In view to continue the work here described, several tasks are planned or already in 

course. The existence of sequence variability within a gene linked to a desired trait and 

consequently related with differences at phenotypic level (the basis of association studies) is a 

fundamental requisite for FM development. The identification of polymorphisms in AOX and 

PTOX sequences considering the different regions of the gene (promoter, UTRs, exons and 

introns) are of higher interest to continue FM research. Studies on DcAOX gene variability and 

on the identification of regulatory elements were the focus of several research papers 

(Nogales et al. submitted; Cardoso et al. 2009; Cardoso et al. 2011), with further analysis still in 

course. First results on DcPTOX sequence variability were performed and included in CHAPTER 

6, but additional in silico DcPTOX sequence analysis to search for sequences coding for 

regulatory elements or involved in regulation of gene expression will be essential. Also, it is 

necessary to ascertain whether the presented results on AOX and PTOX gene expression are 

reflected at protein level and if polymorphic sites are related with protein functionality. The 

association of selected polymorphisms with the trait of interest is as well a point of high 

interest for carrot FM development. 
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 As a first attempt to elucidate the functionality of each carrot AOX gene, a work 

related with AOX-silencing and overexpression following a transgene approach is in course. 

This work is being developed in the frame of a bilateral cooperation between Portugal 

(University of Évora) and India (University of Coimbatore), under the project ‘Study of DcAOX 

genes functionality associated with cell reprogramming under abiotic stresses’. A similar 

procedure related with gene silencing and overexpression would be important on PTOX 

research. 

 Additionally, a methodology to test the functionality of a selected polymorphism, this 

meaning to understand if a specific polymorphic site has consequences on protein 

functionality, has been recently established in the frame of a FCT project (EXCL/BEX-

GMG/0038/2012) under the consultancy of Dr. Anthony Moore group (University of 

Sussex/UK), and it is possible to investigate all polymorphisms located at the ORF. This 

methodology is based on gene expression in a yeast test system and allows the investigation of 

the effect of each single polymorphism in protein functionality by measuring AOX 

capacity/activity.  

 As a final step in FM development and previous to field trials for its validation, 

appropriate screening tools to identify the final trait need to be used. Several advanced tools 

are being developed for this (reviewed by Furbank and Tester 2011), including 

calorespirometry (Nogales et al. 2013) which was used in CHAPTER 3. This technology has 

recently been presented as a novel tool for efficient phenotype screening related to 

temperature responses and related to growth potentials (Nogales et al. 2013). Preliminary 

results point to its great potential on detecting functional AOX gene polymorphisms for 

molecular breeding in carrot (Arnholdt-Schmitt et al. 2015). Besides its application in plants, 

this methodology is under establishment for yeast. This will allow to focus in a specific 

polymorphism, independently of other polymorphisms that can occur simultaneously, and 

prevent the interference of the different gene family members. 
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