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Strategic interactions of urban land
developers in the housing market

Abstract

This thesis studies the supply side of the housing market taking into account the

strategic interactions that occur between urban land developers. The thesis starts by

reviewing the literature on new housing supply, concluding that there are very few studies

where strategic interactions are taken into account. Next, we develop a model with two

urban land developers, who �rst decide the quality of housing and then compete in prices,

considering that the marginal production costs depend on the housing quality. First, we

analyze the price competition game and characterize the Nash equilibrium of the price

game. Finally, we examine the �rst stage of the game and determine numerically the

subgame perfect Nash equilibrium (SPNE) of the quality-price game.

In the price competition game, our results show that the equilibrium price of an urban

land developer is an increasing function of its own quality, while it is a non-monotonic

function of the rival�s quality. The behavior of the equilibrium pro�ts reveals that, in

general, urban land developers gain by di¤erentiating their quality. However, the urban

land developer located at the Central Business District (CBD), may prefer to have the

same quality than the rival when transportation costs are high by exploiting its locational

advantage.

The analysis of the �rst stage of the game also reveals that, in general, the �rms best

response is to di¤erentiate their quality and that, in most cases, there are two subgame

perfect Nash equilibria that involve quality di¤erentiation. However, the results depend

on transportation costs and the quality valuation parameter. For small quality valuations,

in equilibrium, the market is not fully covered and, if the unit transportation costs are

high, only the urban land developers located at the CBD operates. For higher quality

valuations, all the consumers are served. Furthermore, the equilibrium qualities and

pro�ts are increasing with quality valuation parameter.

Keywords: land urban developers, strategic interaction, vertical di¤erentiation
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Interação estratégica dos produtores no
mercado de habitação

Resumo

Esta tese estuda a oferta no mercado da habitação, tendo em conta as interações es-

tratégicas que ocorrem entre os produtores de habitação. A tese revê a literatura sobre

a oferta de habitação, concluindo que existem poucos estudos que tenham tido em conta

as interações estratégicas. De seguida, desenvolvemos um modelo com dois produtores de

habitação, que primeiro decidem a qualidade da habitação e depois competem em preços,

considerando que os custos marginais de produção dependem da qualidade. Primeiro

analisamos o jogo em preços e caracterizamos o equilíbrio de Nash. Posteriormente, ex-

aminamos o primeiro estágio do jogo e determinamos numericamente o equilíbrio perfeito

em todos os subjogos (SPNE) do jogo.

No jogo de competição em preços, os resultados mostram que, o preço de equilíbrio,

é uma função crescente da qualidade da habitação, sendo uma função não monótona

da qualidade do rival. O lucro de equilíbrio revela que, geralmente, os produtores de

habitação têm ganhos em diferenciar a qualidade. No entanto, o produtor localizado

no Centro (CBD), pode preferir oferecer a mesma qualidade que o rival, caso os custos

unitários de transporte sejam elevados, através da sua vantagem de localização. A análise

do primeiro estágio do jogo, revela que, geralmente, a melhor resposta de um produtor é

a de diferenciar a qualidade. Na maior parte dos casos existem dois SPNE que envolvem

essa diferenciação. No entanto, os resultados dependem dos custos unitários de transporte

e da valorização da qualidade por parte do consumidor. Para uma reduzida valorização

da qualidade, em equilíbrio, o mercado não é totalmente coberto e, se o custo unitário

de transporte é elevado, apenas o produtor localizado no CBD opera no mercado. Para

uma valorização elevada da qualidade, todos os consumidores são servidos. Além disso,

as qualidades e os lucros de equilíbrio são crescentes com a valorização da qualidade.

Palavras-chave: produtores no mercado da habitação, interação estratégica, diferen-

ciação vertical
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Chapter 1

Introduction

The object of this study is the housing supply. We start by a literature review on the

supply of new housing. The objective in this chapter is to elaborate a systematic literature

review that shows the various theoretical and empirical studies about housing supply and

to identify the theoretical bases of these studies, so as to discover how can we make a

contribution to a better understanding of this theme.

In the housing market, the demand side has been widely studied. On the contrary,

many authors like DiPasquale (1999) state that the supply side is still understudied.

Sometimes it is di¢ cult to identify the theoretical underpinnings of certain empirical

and theoretical studies. However one can identify three major theoretical foundations:

the investment literature; the urban economic theory and more recently the industrial

organization literature. In the urban economic theory there is evidence, supported by

studies like Arnott and Igarashi (2000), of imperfect competition in the housing market.

That enables and justi�es the growing literature that applies game theory / industrial

organization to the housing market. Our work is in the intersection between industrial

organization and urban economic theory. Our review on the articles that use game theory/

industrial organization models of housing supply, shows that the strategic interaction

between urban land developers is still understudied. Thus we believe there is a need to

develop theoretical models of the urban land developers.

Strategic interaction models of housing supply may enable us to understand how land
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developers make their decisions regarding the house location, house quality and prices. It

may permit us to explore the market structure of the housing market and test if the market

is competitive or if the urban land developers have some oligopolistic power. There is a

extensive literature in industrial economics about vertical product di¤erentiation models,

including models with endogenous quality choice. But most of the literature analyzes

general theoretical models, that do not take into account the speci�cities of the housing

market. In particular, one feature that is important in the housing market is the house

location. Furthermore, di¤erences in quality are likely to a¤ect both the marginal cost of

construction as well as the �xed costs.

Our speci�c goal is to study the supply side of the housing market taking into account

the type of strategic interactions that occur between urban land developers. So in the

third chapter we develop a model of the behavior of urban land developers, incorporating

the speci�cities of the housing market, such as the location of the producers and consid-

ering variable and �xed costs of quality improvements. We discuss a model where there

are two urban land developers, who take quality and price decisions independently and si-

multaneously. In this model, producers �rst decide the housing quality and then compete

in prices. We assume that one of the producers stays at the CBD while the other has a

more decentralized location. Our model also considers, in the utility function a transport

cost per unit of distance.

We start by examining the price competition stage game, considering the quality

levels as given. We derive the demand functions and we impose some conditions about

the quality levels of the two urban land developers, so that the demand is positive for

at least one of the urban land developers, we also de�ne some cut-o¤ valuations that

enabled us to simplify the exposition. We obtained analytically the Nash equilibrium

of the price game considering all possible cases. Next we perform a numerical analysis,

using a GAUSS program, to characterize the Nash equilibrium of the price game. For each

vector of quality levels, we compute the equilibrium prices, pro�t and type of equilibrium.

Then, we examine how the equilibrium prices and pro�ts vary with the quality levels.

In the fourth chapter we solve the �rst stage of the quality-price game, obtaining

2



the equilibrium housing qualities. Since it is impossible to get an analytical solution for

the equilibrium qualities, we determine the Subgame Perfect Nash Equilibrium (SPNE)

numerically, using a GAUSS program. In this chapter we present the results of this

numerical analysis. We start by analyzing the best response functions of the two urban

land developers for various parameters values. Next we study the impact of changing the

unit transportation cost and the lowest quality valuation parameter. In particular, we

analyze the type of equilibrium for di¤erent combinations of these two parameter values

and we study how the equilibrium values of qualities and pro�ts change with the unit

transportation cost and with the lowest quality valuation parameter.
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Chapter 2

New housing supply: what do we

know and how can we learn more?

2.1 Introduction

This study reviews the literature on housing supply. The focus of our review is the

literature on the supply of new housing, so we do not consider the renovation and repair

of the existing stock.

While the literature on housing supply has grown in the last years, housing supply still

remains understudied relatively to demand. In fact, many authors in their reviews about

housing supply conclude that it has been understudied (see, among others, Quigley, 1979;

Olsen, 1987; Smith, 1988; and DiPasquale, 1999). The reason certainly is not the lack

of interest but perhaps, as argues Rosenthal (1999), the inexistence of adequate data for

empirical studies. Another reason may be the di¢ culty of modelling the housing supply

as referred by Quigley (1979). The �rst di¢ culty is that housing services are di¢ cult

to measure. The second is that in the housing market we observe price times quantity,

unlike other markets where we see the price for a standard unit. The third di¢ culty is

that housing supply is the result of the decision making by land developers and by the

actual owners of housing. To understand the micro foundations of housing supply, we

5



would need data such that the unit of observation is the individual supplier. However

it is very di¢ cult to obtain data on the behavior of land developers. This explains why

the great majority of the articles of new housing supply analyze aggregate data. Like

DiPasquale (1999) says, there are few articles that use micro data (where the decision

maker, the developer, is the unit of analysis).

Most studies in the literature of housing supply involve the estimation of an empirical

model, with the objective of identifying the determinants of new housing supply and

estimating the price elasticity of supply. As a consequence, a great part of this survey

is dedicated to the empirical studies on housing supply and summarizes the �ndings

regarding these two issues.

Although, in some cases, it is di¢ cult to identify the theoretical underpinnings of

the empirical studies, one can identify two major theoretical foundations: the investment

literature and the urban economic theory. The main di¤erence in these two approaches

is the treatment of land. Studies based on the investment theory treat land as an input

in the production of new housing and tend to ignore the special characteristics of land

as a factor of production while those based on urban economic theory incorporate the

land market into the theoretical structure. Moreover, the models based on the investment

theory assume that the home-building industry is composed of competitive �rms and

that they face rising factor cost schedules for labor and for building materials. However,

according to the urban economic theory, land is di¤erent from other factors of production.

Land prices depend on the stock of housing, not on the �ow or level of building activity, as

a result a rise in house prices initially generates excess returns, but the �ow of construction

increases only temporarily above the normal level. As the stock of housing grows, land

prices rise and eventually absorb the excess returns and construction declines to its normal

level.

The investment theory framework is well illustrated in the work of Poterba (1984) and

Topel and Rosen (1988). Poterba (1984) uses an asset market form to model the housing

market and de�nes supply as net investment in structures. Topel and Rosen (1988)

consider housing production decisions as housing investment decisions. On the other

6



hand, Dipasquale and Wheaton (1994) and Mayer and Somerville (2000) are reference

papers based on the urban economic theory. Besides the in�uence of the investment

theory and urban economic theory, there is a growing literature that applies game theory

/ industrial organization to the housing market. We believe that this new branch of the

literature can provide an important theoretical contribution to the housing supply and

suggest some clues to future empirical work on this theme. We dedicate section 2.5 to the

review on strategic interaction models.

Besides the di¤erences in the theoretical foundations, the studies also di¤er in the

type of data and estimation techniques used, thus in our literature review we provide

information on these two aspects. In the literature there are two approaches that have

been used to estimate housing supply: the reduced-form estimation and the structural

form estimation. In the reduced-form estimation the equilibrium price is a function of

supply and demand factors. On the other hand, in the structural approach the aggregate

supply is estimated directly with construction as a function of price and cost shifters.

As mentioned before it is not always easy to classify the empirical papers according to

their theoretical foundations, thus we did not attempt to do so in this work. However, we

decided to organize the survey of the empirical articles in two distinct sections. First, we

revise the earlier empirical studies, from Maisel (1953) to Topel and Rosen (1988). These

studies are in�uenced by the investment theory. Next we revise the more recent studies,

starting with Dipasquale and Wheaton (1992).

The remaining of the chapter is organized as follows. In section 2 we start by revising

the earlier empirical studies whereas in section 3 we present the more recent empirical

studies. In section 4 we analyze the determinants of housing supply. In section 5 we

summarize the game theoretical models that have been used to model the housing supply.

Finally, the last section, summarizes the main conclusions of the chapter and presents

some ideas for future research.
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2.2 Earlier empirical studies

Table 2.1 summarizes the earlier empirical studies, indicating the country, sample period,

estimation method, whether the regression is done in levels or di¤erences and, �nally the

estimates of the price elasticity of supply (PES).

Although Maisel (1953) provides a description of builders of single-family housing in

USA, namely in the San Francisco area, and the factors that in�uence their construction

decisions, in the literature on housing supply the study by Muth (1960) is considered

the �rst empirical study. Muth (1960) assumes a neoclassical e¢ cient markets view of

the housing market, where supply responsiveness is in�nitely elastic in the long run. He

develops a stock adjustment model and tests the relation between price and quantity of

new housing construction. He was unable to reject the null hypotheses of a perfectly

elastic supply. However, there are several problems with the Muth (1960) study. One

of the problems is the small sample: annual data from 1915 to 1934 and with the war

years omitted. Another critique is the fact that his estimation does not adjust for serial

correlation or for the possibility of simultaneity bias between the price and quantity of new

housing construction. Olsen (1987) also points out signi�cant methodological problems,

particularly on the issue of including both input prices and quantity in the reduced form

model.

Leeuw and Ekanem (1971) use a reduced form model. In their paper they use informa-

tion on rent di¤erences among metropolitan areas in the USA to estimate the elasticity

of supply of rental housing. Using cross sectional data, they estimated two equations and

combined the results of the reduced form estimation with information from other studies

on the parameters of the demand equation to draw conclusions about the behavior of

the supply of housing services. Leeuw and Ekanem (1971) estimate an elasticity of sup-

ply from 0.3 to 0.7, suggesting that the supply of housing is inelastic. In addition, they

suggest that one of the sources of the inelasticity are the diseconomies of scale.

Follain (1979) follows the formulation of Muth (1960). He uses annual aggregated

data from 1947 to 1975 and employs two measures of the quantity of new housing stock.

8



Follain (1979) tests the null hypotheses of a perfectly elastic supply. Like Muth (1960)

he �nds no signi�cant positive relationship between quantity and price, and concludes

that the hypothesis of a perfectly elastic long run supply of new construction cannot be

rejected.

Whitehead (1974) used quarterly data from 1955 to 1972 for the UK. With this time

series he develops and estimates a series of related stock adjustment models. The results

for the price elasticity of supply range from 0.5 to 2.

Rydell (1982) has a very complete study of the price elasticity of housing supply. He

examines the components of supply response to demand shifts. Rydell (1982) argues

that the supply of housing services available to consumers can increase in three ways: (i)

existing housing can be upgraded by repair; (ii) the housing inventory can be expanded

either by using existing residential land more intensely or by increasing the amount of

residential land; (iii) the proportion of existing housing that is occupied can be increased.

So the overall supply elasticity is a composite of these three components. His study

supports the conclusion that the repair elasticity is very low, that the inventory elasticity

is very large, and that the occupancy elasticity is greater than zero. Rydell (1982) used

cross sectional data from 59 metropolitan areas in the USA, in the years of 1974 and

1976. Using a reduced form estimation he estimates a long run price elasticity of supply

of 11.3. He �nds that the short-run price elasticity of supply (PES) is lower, 0.24 or 0.83,

depending on the market occupancy rate.
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The attempts to directly model housing supply, in the 80�s, comes from the theoretical

background of the investment literature. These models assume that the home-building

industry is composed of competitive �rms. Two reference studies are Poterba (1984) and

Topel and Rosen (1988).

Poterba (1984) models the housing market using an asset approach, he de�nes supply

as net investment in structures. Poterba assumes that investment supply depends on real

house price, the real price of alternative investment projects, and the construction wage

rate. To explain the impact of credit rationing he includes alternative indicators of credit

availability. Knowing that houses take time to build, he uses one-quarter ahead forecasts

of real house price and the real price of alternative investment projects. Since new houses

take time to sell, he adjusts real house price to re�ect interest costs incurred during the

period from completion to sale. He estimates various linear models using quarterly data

from 1964 to 1982. Investment supply is measured as the value of one-family structures put

in place or as a rate of new housing investment de�ned relative to aggregate real output.

In the best-�tting models, the elasticity of the rate of new construction with respect to

real house prices varies from 0.5 to 2.3. He detects a signi�cant relationship between

credit availability and the rate of housing investment, supporting the "supply e¤ect"

hypothesis that credit availability a¤ects the �ow of new construction. The measures

of construction costs, such as the construction wage, produced unexpected signs and no

statistical signi�cance.

Topel and Rosen (1988) study new housing supply by considering whether current

asset prices are su¢ cient for housing investment decisions. If they are, then the short-run

and long-run investment supplies are identical; if they are not, because of costs associated

with moving resources between industries, then short-run supply is less elastic than long-

run supply. As a result, builders and developers must anticipate future asset prices in

making current construction decisions.

They incorporate these supply dynamics by specifying the industry�s cost function in

terms of both the level and the rate of change in construction, along with cost variables.

They estimate a myopic model and then a model with expectations and internal adjust-
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ment costs. In their myopic model, production costs are una¤ected by the rate of change

in construction activity so current construction decisions are based solely on current asset

price and marginal cost. If production costs are a¤ected by the rate of change in con-

struction activity, then internal adjustment costs are present and short-run supply is less

elastic than long-run supply. These internal adjustment costs introduce expectations of

future asset prices as determinants of new housing supply since current prices by them-

selves fail to re�ect all relevant information. Using quarterly data for 1963 through 1983,

they estimate alternative versions of their myopic and internal adjustment cost models.

They measure new housing investment as the number of single-family housing starts. The

expected real interest rate, the expected in�ation rate, lags of these rates, and alternative

measures of construction input prices are included as cost shifters. The number of months

from start to sale for single-family homes is included as an indicator of market conditions.

In both the myopic and adjustment cost frameworks, nominal interest rates in�uence

construction activity, but construction costs have insigni�cant e¤ects on housing invest-

ment. The myopic model generates new housing supply elasticities ranging from 1.2 to

1.4. They �nd that the short-run PES is lower, about 1. Their empirical results reject the

myopic model in favor of the adjustment cost model. Supply elasticities are calculated

to reveal the investment impact of both transitory and permanent housing price shocks.

The presence of the time to sale variable considerably reduces the magnitude of the sup-

ply responses. For their preferred model, a permanent 1% rise in housing price increases

housing investment by about 1.7% in the short run and 2.8% in the long run. However,

nearly all of the change in construction activity occurs within one year.

As in Poterba (1984) their measures of construction costs do not have a signi�cative

impact on housing starts, the cost of capital to the builders are explained by real interest

rates. Topel and Rosen (1988) conclude that real interest rates and expected in�ation

have a signi�cative impact on starts. They argue that the impact of in�ation is di¢ cult

to explain and that the magnitude of the coe¢ cient on real interest rates is too big to

just re�ect the cost of capital. They also argue that the impact of in�ation may re�ect

changes in the velocity at which houses are sold at market prices, to test this explanation

12



they put the median months on the market for new houses, their results show a signi�cant

and negative impact of that variable on house starts. But again they argue that the e¤ect

is too big to re�ect the holding costs related to sales delay.

2.3 Recent empirical studies

The contributions from the investment literature, such as Poterba (1984) and Topel and

Rosen (1988), do not take into account the importance of land as an input. However,

as we know, from the literature on urban economic theory, land is di¤erent from other

factors of production. Urban economic theory incorporates the land market on its theory

and gives us equilibrium models in which the stock of houses always equals the urban

population.

Table 2.2 summarizes the more recent empirical studies on housing supply.

DiPasquale and Wheaton (1994) approach re�ects the dynamic nature of housing sup-

ply by incorporating a stock adjustment process and a long run equilibrium framework

based on urban spatial theory. The latter theory implies that urban spatial growth gen-

erates higher land prices in order to attract the land necessary for new housing. By

de�nition, the net change in the housing stock equals new construction less replacement

investment. New construction in turn re�ects how quickly the housing stock adjusts to its

long run equilibrium level. The long run equilibrium housing stock depends on housing

price and input prices.

This housing supply framework has two important implications for understanding new

housing supply. First, it implies that construction activity re�ects the adjustment process

as the current stock moves to its long run equilibrium level. Second, it indicates that the

housing price level a¤ects new construction only to the extent that the current housing

stock di¤ers from its long run equilibrium level for this price level. As such, changes in

housing price rather than its level attract the land necessary for long run urban spatial

growth.
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DiPasquale and Wheaton (1994) specify new construction (housing starts) as a linear

function of new housing price, the short-term real interest rate (the real cost of short

term construction �nancing), the price of agricultural land, construction costs (indices for

construction), and lagged housing stock. The change in aggregate employment and the

number of months from completion to sale for new homes are also introduced as indicators

of housing market conditions. They estimate alternative linear versions of their supply

framework using aggregate annual data from 1963 through 1990. They restrict their

analysis to single-family housing and measure new construction as the number of single-

family housing starts. In all speci�cations, the coe¢ cient on housing price is signi�cantly

positive.

Their estimates of the long-run PES range from 1.0 to 1.2. They conclude that the

stock adjusts to its long run equilibrium through new construction very slowly, the rate of

adjustment is about 2% per year. On the other hand, real short-term interest rates have a

signi�cant negative impact on construction and land costs do not have a signi�cant impact

on construction. Just like Topel and Rosen (1988) and Poterba (1984) they did not �nd

a signi�cant relationship between construction costs and the level of construction. Like

Topel and Rosen they add months on the market for new homes to the supply equation

and they also �nd that sales time has a large impact on construction, they argue that the

magnitude of the coe¢ cients of sales delays and interest costs is too large and that the

importance of those variables indicates that price is not enough to explain housing starts.

They also argue that the magnitude of the coe¢ cient appears to be too large to simply

re�ect holding costs associated with sales delays. They include, as a market indicator,

the change in employment, a variable that has a positive impact on construction. Adding

this variable and the sales time to the model improved the �t of the model. DiPasquale

and Wheaton (1994) presents strong evidence of a gradual price adjustment process in the

market for single family housing in contrast to previous studies that made assumptions of

instantaneous market clearing. Their results con�rms the idea that the housing market

functioning is very di¤erent from other �nancial asset markets.

In their model, Mayer and Somerville (2000), incorporate the time taken in the de-
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velopment process. In addition, they use more recent time series econometrics methods.

One of the di¤erences of this model relatively to DiPasquale and Wheaton (1994) is that

Mayer and Somerville use price and cost changes and not their levels. They argue that

housing starts is a �ow variable so it should be a function of �ow variables. Consequently

they use lagged price changes and lagged cost changes in their model. The results of this

model is a price elasticity of housing starts of about 6.0 and a low price elasticity of the

stock of about 0.08. They justify that di¤erence saying that the low price elasticity of the

stock is due to the fact that housing starts are a small percentage of the stock. They also

�nd that changes in construction costs are not statistically signi�cant, and that time to

sales is statistically signi�cant and the coe¢ cient is large, which means that time to sale

has a signi�cant impact on construction.

A great majority of the studies that try to estimate the supply concentrates on the

problem of single-family housing starts but there are two articles that study the problem of

the supply of multifamily housing. DiPasquale and Wheaton (1992) estimated a construc-

tion equation for multifamily rental housing where the level of multifamily construction,

measured by the units in structures with more than one unit, depends on how the asset

price of rental housing compares with the construction costs. Asset prices are a function

of rents, vacancies, and the capitalization rate. The estimated model explains variation

in construction with rents, vacancies, the capitalization rate, construction costs, lagged

construction, and construction by the federal government of the USA. With this model

they estimate a long-run rent elasticity of supply of 6.8, in this model the construction

costs obtained in a �rm of construction, is statistically signi�cant and has the expected

negative sign.

Malpezzi and Mayo (1997) indicates that there are signi�cant di¤erences in supply

elasticities between countries. They argue that those di¤erences seem to be correlated

with the stringency of the regulatory framework in place for land and housing developers.

Goodman (1998) says that supply conditions vary also within a country. Pryce (1999)

used data from England at a local district level and constructed a simultaneous equation

model of housing construction. The model compares elasticities of supply between two
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cross-sectional periods, a boom in 1988 and a slump in 1992. The article discussed the

rationality and tested the existence of, a backward-bending supply relationship. Pryce

(1999) concludes that supply was concave in both periods and that it bends backwards

during the boom period. He �nds that there is a structural break between the boom and

the bust period, the elasticity of supply is higher in the slump period (1.03) and smaller in

the boom (0.58), but he concludes that there are considerable variations across districts.

Blackley (1999) used annual data from USA for the period 1950�1994. The basic

model expresses residential construction as a linear function of new housing price, the

prices of construction materials and labor, the real interest rate and the expected in�ation

rates. He also considered the e¤ects of land price, lagged housing stock and the price of

nonresidential construction. The variables are expressed in levels. The �rst conclusion is

that the new housing supply is relatively price elastic in the long run. Estimates of the long

run price elasticity of new housing supply range from 1.6 to 3.7. However in the models

with variables expressed in di¤erences, the long-run elasticity is lower, about 0.8. The

second conclusion, is that nominal interest rates in�uence new housing supply directly.

And the third conclusion, is that the temporal properties of each data series should be

considered when specifying and estimating time-series models of new housing supply,

for example, with variables expressed in levels, supply is elastic, but with explanatory

variables expressed in di¤erences, supply is inelastic.

Malpezzi and Maclennan (2001) estimate the PES of housing for USA and for UK.

Using a long time series both countries, as we can see from Table 2.2, they divided the

sample between prewar and postwar. The results for the PES reveal greater values for

USA comparing with UK, concluding that the USA market is more elastic. Moreover, the

values of PES are higher in the prewar period both in USA and UK.

Green, Malpezzi, and Mayo (2005) estimated supply elasticities for 45 metropolitan

areas in the USA following the model of Mayer and Sommerville (2000). They conclude

that the estimates of the price elasticity of supply varied signi�cantly according to the

metropolitan area. Metropolitan areas that were strongly regulated have low elasticities

while metropolitan areas that are less regulated have a wide range of behavior. In partic-

17



ular, metropolitan areas with low regulation and with fast growth tend to have high price

elasticities whereas those with slow growth have low price elasticities. They also conclude

that population density is an important variable in explaining supply elasticity and that

metropolitan areas with high population density have lower elasticities.

Meen (2005) states that, in comparison with the USA, the price elasticities of supply

in England are low, and that the England�s price elasticities of supply have been falling

since 1970. He concludes that the price elasticities of supply is low in all the regions

of England (price elasticities are approximately 0 since 1990 in all the English regions).

Meen argues that it is di¢ cult to incorporate information about planning controls into

the time-series models, although that may partially explain the results as Malpezzi and

Mayo (1997) defend. By introducing dummy variables, Meen (2005) concludes that there

are additional factors that explain the low price elasticity of supply.

In their paper, Levin and Pryce (2009) works out the UK market. This paper gives a

great contribution to the problem of the price elasticity of supply, �rst by demonstrating

that it varies over time due to changes in real interest rates. They conclude that increases

in the long run real interest rates cause house price rises and a low elasticity of supply, this

in the absence of restrictive regulation and market imperfections. The article considered

also how some market imperfections can interact with planning constrains and building

regulations to form the response of supply to price changes. They argue that these may

conduce to cyclical asymmetry in price elasticity of supply - the tendency for the quantity

supplied to respond very slowly to outward shifts of demand, but very rapidly to inward

shifts.

As we can see from Tables 2.1 and 2.2 the estimate of the long-run PES of housing

varies considerably across studies. However, excluding some earlier studies like Muth

(1960) and Follain (1979), we can reject a perfectly elastic supply of housing, and we

can conclude that at least in the long run supply is elastic with respect to price. We can

conclude also by the recent studies that the PES of housing is higher in the USA comparing

with UK, so the values should be di¤erent across countries. Another conclusion that can

be made observing the results across studies is that the PES of housing varies at regional
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and local level, there are several studies that conducted this analysis and came to the same

conclusion. We can state that the short-run PES is lower than the long-run PES. We can

also state that the results vary with econometric models used and with the speci�cation.

For example, the use of variables in di¤erences seem to lead to lower values in the long-run

PES of housing.

2.4 Determinants of housing supply

In the last two sections we revised the empirical studies but did not mention, in a sys-

tematic manner, the regressors of the housing supply models. However it is worthwhile

to summarize the various categories of explanatory variables that have been used as well

as the results that have been obtained. This will give us an overall picture of the results

obtained in the existing empirical evidence.

The set of explanatory variables and the result regarding their impact on housing

supply has varied across studies. Classifying the regressors in 8 categories, Table 2.3

shows selected references that include in their study that category of regressors.

As we can see by the number of references in Table 2.3, the most utilized regressors

are those related with �nancing costs and with construction costs.

To have a more clear view of the sign and signi�cancy of the regressors classi�ed in

the same categories of Table 2.3, we show in Table 2.4 the number of papers where that

regressor has a positive and statistically signi�cant impact, the number of papers where

that regressor has a negative and statistically signi�cant impact, and the number of papers

where the regressor are not statistically signi�cant.

In the category of �nancing costs, which includes the interest rate in various forms,

almost all the empirical studies conclude that the cost of �nancing determines negatively

the housing starts. This result is consistent with the theory. Levin and Pryce (2009)

concludes that changes in the long-run real interest rate cause a low PES.

Theoretically, construction costs should be an important determinant of housing sup-

ply, and should have a negative sign, re�ecting the negative relation between housing
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Table 2.3: Selected references for each category of regressors.

Category of regressors Selected References

Financing costs Follain (1979);Topel and Rosen (1988);Dipasquale and Wheaton (1994);

Blackley (1999); Mayer and Somerville (2000); Kenny (2003);

Meen (2005); Hwang and Quigley (2006)

Construction costs Follain (1979); Poterba (1984);Dipasquale and Wheaton (1992);

Blackley (1999); Somerville (1999); Mayer and Somerville (2000);

Kenny (2003); Meen (2005)

Vacancy rate Leeuw and Ekanem (1971); Dipasquale and Wheaton (1992)

Sales delay Topel and Rosen (1988); Mayer and Somerville (2000);

Dipasquale and Wheaton (1994)

In�ation rate Topel and Rosen (1988); Blackley (1999)

Stock of housing Dipasquale and Wheaton (1994); Blackley (1999);

Mayer and Somerville (2000)

Price of agricultural land Dipasquale and Wheaton (1994); Blackley (1999)

Regulation Pryce (1999); Hwang and Quigley (2006)

starts and construction costs. However, Table 2.4 shows that the results for the category

of construction costs (which include material costs, wage costs or an index of both of

them) are inconclusive. Although the expected negative impact is obtained if 5 articles,

an equal number of papers shows a positive impact and in 2 other studies the construction

costs are not statistically signi�cant. As DiPasquale (1999) refers, most of the empirical

literature on housing supply has the problem of the measurement of construction costs.

Thus one possible explanation for the inconclusive results is the quality of the data used

to measure the variable. It is interesting to note that studies that use more disaggregated

data, such as Somerville (1999), conclude that the variable has signi�cant and negative

impact on housing supply.

The evidence on the impact of the vacancy rate is scarce, since only 3 studies include

this variable as a regressor. Two of this studies �nd a negative impact, which is accor-
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Table 2.4: Results of the empirical studies by category of regressors.

Category of regressors Positive Negative Not signi�cant

Financing costs � 9 1

Construction costs 5 5 2

Vacancy rate � 2 1

Sales delay � 3 �

In�ation rate � 2 �

Stock of housing 1 2 2

Price of agricultural land 1 1 1

Regulation � 2 1

dance with theory, while one of the studies �nds out that the variable is not statistically

signi�cant.

The variable sales delay is included only in three studies. However its impact on

housing supply is negative and statistically signi�cant in all the papers reviewed, which is

theoretically consistent: if the houses take a very long time to sell the consequence is less

housing starts. It is also worthwhile to note that the magnitude of the impact of sales

delay is quite big in the three studies that include this variable.

The two studies that include in�ation rate as a regressor, reveal a signi�cant and

negative e¤ect on housing starts, which is also consistent with theory.

The evidence regarding the impact of the stock of housing (normally with a lag) on

housing starts is inconclusive: 2 articles reveal a negative impact, 2 studies show a non-

signi�cant impact and 1 study �nds a positive impact. Similarly, the e¤ect of the price

of agricultural land is also not clear as the three studies that include this variable reach
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completely di¤erent results.

In the category of regulation we include the planning controls, which is used in two

papers. The reason why this type of regressor is not used more often is probably related

with the lack of information, in particular it is di¢ cult to have a time series regarding

this variable. In theory, places where the regulatory controls are more restrictive have

less housing starts, hence the sign of the coe¢ cient should be negative. Two of the three

studies that include regulation show the expected theoretical result whereas in one study

the variable is not statistically signi�cant. It is also important to mention that Green,

Malpezzi and Mayo (2005) concludes that metropolitan areas that were more regulated

have lower PES.

2.5 Strategic interaction models

In the three previous sections we revised the empirical literature on housing supply. How-

ever, within the housing supply literature, there are other studies that we would like to

highlight. We want to review also the application of game theory/industrial organization

to model housing supply. Unfortunately, has we will show, there are very few studies in

this area.1

One of the most important application of game theory that we found was Baudewyns

(2000). This article focus on the strategic interactions of land developers, analyzing the

decisions made by two land developers that decide independently two variables: price and

quality. He assumes that one �rm is at the Central Business District (CBD) and builds

houses in this location while the other builds in a more decentralized area. In his article,

he considers a �rst stage in which the duopolists choose the level of housing quality,

where the quality is de�ned as a function of accessibility and housing quality. In the

second and last stage, the two �rms simultaneously compete in prices to attract potential

1Strategic interaction models have also been used in other related areas. For instance, Firoozi, Hollas,
Rutherford, and Thomson (2006) present a game theoretic model of property tax assessment and provide
evidence of asymmetric information in residential property assessments. Similarly, Anglin and Arnott
(1991), analyze the terms of the brokerage contract between a house seller and his agent, applying the
literature on the principal-agent problem.
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clients. Baudewyns concludes that the decentralized developer can adopt two kinds of

strategies depending on the distance and the anticipated level of quality at the CBD. If the

centralized land developer o¤ers high quality apartments, then the decentralized developer

o¤ers low-quality housing units in the CBD, the idea of the decentralized developer is to

di¤erentiate its residential quality to soften price competition in the second stage, in the

suburban areas, it o¤ers a higher quality of housing but the residential quality is lower,

because of the transportation costs.

Ong, Sing and Choo (2004) apply a game theoretic Nash equilibrium approach to the

issue of planning �exibility within the land use zoning. This work is based in the land use

planning in Singapore, and in the example of the �white sites�programme in that country.

The authors refer that �exibility in land use may be valuable, but it potentially introduces

a supply ine¢ ciency through the uncertainty in the development decision-making process.

The main proposition is that interaction between developers of proximate sites may result

in a suboptimal supply situation. The authors demonstrate that a �rst-mover advantage

exists such that subsequent �white sites�released shortly after the �rst �white sites�are

likely to fetch lower land prices.

Wang and Zhou (2000), study one well documented problem in the real estate markets

literature �the excess vacancy or overbuilding in the market. The article models over-

building as a two-stage in�nite-horizon non-cooperative game between land developers.

The game is divided into two stages. In the �rst stage each developer simultaneously and

independently decides to build a certain number of real properties to meet the demand

level. In the second stage given the available supply and demand of the market, developers

select the optimal rental price for their properties. The authors conclude that it is natural

to observe oversupply in real estate markets, developers have the incentive to build once

they �nd a development opportunity. As consequence, developers as a whole, will supply

more houses into the market than the level of demand. After the oversupply, developers

will stop building until the demand absorb the existing supply. Their model explains

the long-lasting overbuilding in real estate markets without some traditional explanations

such as agency costs, irrational behavior or uncertainty of demand.
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Chu and Sing (2007) incorporate strategic interaction in the modeling of optimal

timing decision for real estate development projects. In their article they examine the

subgame perfect equilibrium strategies for a duopoly real option model, with two �rms

with asymmetric demand functions. In the presence of preemptive threat, �rms may forgo

the waiting options, and invest earlier than what the monopolistic real option models

would predict. In their symmetric duopoly model �rms are identical and products are

homogeneous. So there are no relative advantages in the price function of the �rst mover

over the next. Short bursts and recession induced overbuilding are two outcomes in the

authors model. The model predicts that those two phenomena occur in earlier phases of

market cycles, and not in the state of recession. In a recessed market with high volatility,

the two �rms will choose the waiting strategies.

Other important articles on housing supply examine the home building industry, its

structure and industrial organization. Somerville (1999) states that his article is the

�rst analytical treatment of the industrial organization of housing supply. He says that

traditional studies of housing markets assume house building as a perfectly competitive

industry. This study uses metropolitan area level data on the average size of homebuilder

�rms and homebuilder market concentration, to analyze the market structure of the in-

dustry. He concludes that there is a systematic variation across metropolitan areas on

the housing market, this variation occurs in the average size of builders and in the market

share for the largest builders. So he argues that the results are more consistent with treat-

ing the industry as monopolistically competitive with a di¤erentiated product. He also

concludes that home builders are larger in more active housing markets, and they are also

larger where there is a bigger supply of developed land adequate for larger developments.

He argues that the type of regulating jurisdiction that establishes land-use regulation has

in�uence on the builder size and market concentration.

Ball (2003) in his paper examines the way that the housebuilding industry is organized

and tries to identify some implications for the wider operation of housing markets. He ar-

gues that there are several characteristics of the industry that seem to reject the idea of a

competitive industry. First, there are di¤erent institutional forms within and across coun-

24



tries, housebuilding industrial structures vary considerably. Second, �rms adopt strategies

and they know, from experience, that they are important in determining pro�t. He states

that strategic behavior can not have e¤ect on market outcomes in a competitive model.

The article analysis potential economies of scale, market factors, information asymmetries,

regulation and risk. Ball argues that the great variety of ways in which housing is built,

is not the reason that explain its industrial organization. Things like market instability,

locational speci�city, the markets where the houses are sold, information, strategic be-

havior, regulation in labour markets, land availability and the regulation, are factors that

a¤ect the size of �rms. The author states also that strategic behavior is important in this

industry, particularly through behavior with regard to the land market and residential

development strategies.

2.6 Conclusion

Along the years, various empirical studies have been undertaken. Although there are some

studies using cross section or panel data sets for metropolitan areas, the great majority

of the studies use aggregated time series data. In spite of the di¤erences regarding the

type of data and econometric estimation methods, the main results are quite consistent

across studies.

Excluding some earlier studies like Muth (1960) and Follain (1979), we can reject a

perfectly elastic supply of housing. Most studies �nd an elastic housing supply but there

are some studies that obtain below unit elasticities. The studies that distinguish between

short run and long run elasticities reveal that price elasticity of housing supply is lower in

the short run. Moreover, the studies that allow comparisons across countries or regions

show that there are signi�cant di¤erences in supply elasticities between countries and

regions. For instance, the values of the price elasticity of supply are higher in USA than

in the UK.

Regarding the other determinants of housing supply, most empirical results are ac-

cording to the theoretical predictions. For instance, �nancial costs, in�ation and sales
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delay in�uence negatively the housing supply. However there are also some results which

are unexpected, namely the inconclusive results with respect to the impact of construction

costs. One possible explanation for this inconclusive results is the di¢ culty in measuring

accurately the construction costs.

Our review on the articles that use game theory/ industrial organization models of

housing supply shows that the strategic interaction between land developers or construc-

tors is still understudied and hence there is a lot of potential in exploring this type of

models.

We believe that there is a need to increase our understanding of the behavior of con-

structors and land developers. This deeper understanding can come from the development

of theoretical models predicting their decisions in a context where there exists strategic

interactions between land developers and the estimation of empirical models based on mi-

cro data. Strategic interaction models of housing supply may allow us to understand how

land developers make their decisions regarding the house location and house quality, may

allow us to explore the market structure of the housing market and test if the market is

competitive or if the land developers have some oligopolistic power. By using data where

the unit of analysis is the land developer, we may be able to resolve some contra-intuitive

results such as those obtained with respect to the impact of construction costs.
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Chapter 3

Duopoly price competition in the

housing market

3.1 Introduction

The vast majority of the literature on housing markets assumes that the housing industry

is perfectly competitive, with a few exceptions like Arnott (1987), Arnott and Igarashi

(2000) and Baudewyns (2000). However the existence of di¤erences in the housing quality,

di¤erences in housing accessibility, di¤erences in households tastes, just to mention a few,

can be sources of market power and lead to strategic interactions between the urban land

developers (ULD).

This chapter and the next one apply game theory and industrial organization tools to

model housing supply. In these two chapters we discuss a dynamic duopoly game with

two stages. In the �rst stage, the two ULD simultaneously choose the quality of housing

and, in the second stage, the ULD simultaneously choose prices. We assume that one

of the urban land developers is located at the central business district (CBD) while the

other is located at a more peripheral area.

Our model is naturally related to the vertical di¤erentiation literature. Our model

assumes that a quality improvement has �xed costs but it also increases the marginal
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production costs. Thus a quality improvement has cost implications both for the price-

stage game as well as for the quality-stage game. This is a contribution to the literature

on vertical di¤erentiation, since none of the existent studies incorporates simultaneously

these two types of costs of increasing quality. Moreover, our study is more complete than

most in the literature because we study whether in the subgame perfect equilibrium there

is partial coverage of the market or full coverage of the market (instead of assuming one

or the other).

In this chapter the emphasis is on the second stage price competition game, considering

the quality levels as given. We compute analytically the Nash equilibrium of the price

game for many possible combinations of the qualities of the two urban land developers.

Our analysis covers cases where both urban land developers operate (with full or with

partial coverage) as well as cases where only one of the ULD operates (again, with full

or partial coverage). Next we characterize the type of equilibrium obtained, using a

numerical analysis. Chapter 4 completes the analysis of our model by looking at the

choice of the quality levels in the �rst stage, for various parameters values.

This chapter is organized as follows. In the next section we present a literature review

on vertical di¤erentiation. Section 3 describes the model. In section 4, we start by

imposing the necessary conditions on the two ULD quality levels, such that, their demand

is positive, this permits to restrict our analysis of the Nash equilibrium, for cases where at

least one ULD has positive demand. In this section we de�ne also some cut-o¤ valuations

that permit us to simplify the exposition. In section 5 we study the Nash equilibrium of the

price game, obtaining analytically the equilibrium prices for the second stage, assuming

given quality levels, considering all the cases that can occur. In section 6 we perform

numerical analysis to characterize the Nash equilibrium of the price game. For each

quality levels, we compute the equilibrium prices, pro�t and type of equilibria. Finally,

section 7 summarizes our main conclusions of the chapter.

28



3.2 Literature review on vertical di¤erentiation

There is a wide literature in industrial economics about vertical product di¤erentiation,

including models with endogenous quality choice. However most of the literature that we

have reviewed consists of general theoretical models, that do not take into account the

speci�cities of the housing market. In particular, one feature that is important in the

housing market is the location. In addition, di¤erences in quality are likely to a¤ect the

marginal production costs. These characteristics are taken into account in our model.

The literature on vertical product di¤erentiation models, speci�cally with endogenous

quality choice, can be divided according to the assumption that is made about the nature

of the costs of quality improvement. As Motta (1993) explains, some authors like Shaked

and Sutton (1982), Bonanno (1986), Aoki and Prusa (1997), Lehman-Grube (1997) or

Lambertini and Tampieri (2012) assume that there are �xed costs of quality improvement

while variable costs do not change with quality. This assumption is reasonable when pro-

ducers improve quality by advertising or by research and development. The authors that

assume variable costs of quality improvement like Mussa and Rosen (1978) or Lambertini

and Tedeschi (2007a) argue that higher quality requires more expensive inputs or a more

specialized labour force. Motta (1993) compares the two assumptions about the nature

of the costs of quality improvement in the same vertical product di¤erentiation model.

He concludes that in both cases di¤erentiation always exists at equilibrium. The author

states that �rms choose to di¤erentiate products in the �rst stage in order to smooth the

competition on prices in the second stage.

Shaked and Sutton (1982) is one of the earliest studies about how product di¤erentia-

tion relaxes price competition. In their model with three stages, �rst �rms choose to enter

or not in the industry, second the �rms choose the quality of the product and, in the third

stage of the game, �rms compete in prices. They conclude that when there are two �rms

in the market, they choose to di¤erentiate the product, and the two �rms have positive

pro�t at equilibrium, as the qualities are closer there is more competition in prices and

the pro�ts get smaller for both �rms. They also conclude that, if there are more than
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two �rms in the market, all the �rms choose the maximum level of quality possible and

pro�ts become zero. They state that when a small cost of entry is introduced, the only

perfect equilibrium in the game is the one in which two �rms enter in the market, in this

case, they di¤erentiate the product and have positive pro�ts.

Aoki and Prusa (1997) consider a vertical quality di¤erentiation model, where they

analyze the e¤ect of the timing of investment decisions on the levels of quality chosen

by producers. The authors compare sequential with simultaneous quality decisions, and

they conclude that sequential choice of quality drives both �rms to make smaller quality

investments than they would make if their decisions were simultaneous. They assume

that marginal cost of production is zero, but they state that if the marginal production

cost depends on quality, and if with quality improvement the marginal production costs

increases a lot then such quality improvements should not be undertaken.

Lambertini (1999) also discusses the timing and the choice of quality in a di¤erentiated

oligopoly. The author extends the work of Aoki and Prusa (1997) assuming that quality

improvements has �xed costs.

Lambertini and Tedeshi (2007b) studied a market of vertically di¤erentiated goods

with sequential entry. Firms enter in the market after having developed innovations

that imply di¤erent quality levels. They conclude that the time and quality dimensions

interact in the formation of the industry. They also conclude that by imposing quality

improvements on later entrants implies the persistence of monopoly, and that when a

second innovator is allowed to produce an inferior quality good and the patent protection

is not too long then emerges a duopoly equilibrium.

Lambertini and Tedeschi (2007a) in a two period duopoly model of vertical product

di¤erentiation, proves that there exists a unique subgame perfect equilibrium where the

�rst entrant o¤ers a lower quality good and gains higher pro�ts than the last entrant, he

also proves that this sequential entry is socially e¢ cient. In a more recent article, in the

same �eld, Lambertini and Tampieri (2012) assumes partial market coverage and �xed

costs of increasing quality.

Aoki (2003) analyses the e¤ect of credible quality investment, comparing Bertrand
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and Cournot competition. The author concludes that with Bertrand competition the

equilibrium qualities are lower with credible commitment and the competition is softer

while with Cournot competition the equilibrium qualities are higher.

Liao (2008) analyses the issue of market coverage in a vertical di¤erentiation model

with �xed costs. He �nds out that a covered market with an interior solution in the price

stage is not a Nash equilibrium.

To the best of our knowledge, Baudewyns (2000) is the only paper that considers

vertical di¤erentiation among land developers. The paper analyzes the decisions made

by two land developers that decide independently two variables: price and quality. He

assumes that one �rm is at the CBD and builds houses in this location while the other

builds both in the CBD and in a more decentralized location. He considers a �rst stage

in which the duopolists choose the level of housing quality, where the quality is de�ned

as a function of accessibility and housing quality. In the second stage, the two �rms

simultaneously compete in prices. The author concludes that the decentralized developer

can adopt two kinds of strategies depending on the distance and the anticipated level of

quality at the CBD. If the centralized land developer o¤ers high quality apartments, then

the decentralized developer o¤ers low-quality housing units in the CBD, the idea of the

decentralized developer is to di¤erentiate its residential quality to soften price competition

in the second stage. In the suburban areas, it o¤ers a higher quality of housing but the

residential quality is lower, because of the transportation costs.

3.3 The model

Let us consider a standard model of vertical di¤erentiation. There are two urban land

developers indexed by i = 1; 2. The �rst urban land developer (ULD 1) stays at the

CBD while the second urban land developer (ULD 2) builds houses at a more peripheral

location. In the �rst stage, each ULD decides the quality of its houses. In the second

stage of the game, each ULD decides its housing price.
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The consumer net utility if he buys a house1 from urban developer i, is given by:

U = �ki � tdi � pi

where ki represents the quality of the house sold by developer i and pi is the corresponding

price. The parameter � is a taste parameter that re�ects how much the consumer values

quality. This parameter is uniformly distributed across the population between � and

� = � + 1, � 2 [�; � + 1] which implies that the density function is equal to 1. Finally, di
is the distance from the urban developer i�s house to the central business district (CBD)

and t is the transportation cost by unit of distance. Since the ULD 1 is located at the

CBD, d1 = 0. For simplicity we assume that d2 = 1.

It should be noted that when a consumer buys a house he is also choosing his own

location (where he wants to live). If we assume that jobs and shops are located in the

CBD (like in the traditional monocentric city model), a consumer who buys a house in a

peripheral location has to move whenever he goes to work or shopping, which explains the

inclusion of the transportation cost in the utility function. On the contrary, a consumer

who buys a house in the CBD (from ULD 1) does not incur transportation costs.

Considering the location of the two urban land developers, the net utility of the con-

sumer is: 8>>><>>>:
�k1 � p1 if he buys from ULD 1

�k2 � t� p2 if he buys from ULD 2

0 if he does not buy

Among these three options, the consumer chooses the alternative that gives him the

highest net utility. Note that the two ULD are not in a symmetric position, unless the

transportation costs are nil. For positive transportation costs, if the two ULD o¤er the

same quality and the same price, the consumer prefers ULD 1 house to ULD 2 house.

On the other hand, when t = 0, our model is similar to the traditional model of vertical

product di¤erentiation.

1Thus we are assuming that each consumer has a unit demand.
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This is a two-stage dynamic game with imperfect information. In the �rst stage

the duopolists simultaneously choose the quality of housing and in the second stage they

simultaneously choose prices. In the price game, we assume that the urban land developers

have constant marginal production costs that depend on the quality chosen in the �rst

stage. That is the production costs are given by:

C(qi) =
k2i
2
� qi

where qi is the quantity of houses produced.

In addition, we assume that in the �rst stage of the game there is an investment cost

of quality given by:

I(ki) =

8<: 0 if ki = 0

F if ki > 0

where F is a positive constant.2

In order to �nd the subgame perfect equilibrium, as we have a two stage game, we

need to �nd �rst the Nash equilibrium of the second stage of the game (the simultaneous

choice of prices), then go back to the �rst stage and �nd the solution of the complete

game.

In section 3.5 we analyze the equilibrium in the second stage game, considering the

housing quality of the two ULD as given. The Nash equilibrium of the game depends

on the vector of qualities (k1; k2) chosen in the �rst stage of the game. If the game was

symmetric we could, without loss of generality, assume that k1 � k2 and compute the cor-

responding Nash equilibria, knowing that if the assumption was the reverse one we would

have similar equilibria but with the roles of the two �rms reversed. However, when the

transportation costs are positive, our model is not symmetric (ULD 2 has a disadvantage

because it is not located in the CBD). Thus, in our model it is important to explore the

2This assumption is not relevant for the second stage of the game but in�uences the determination of
the equilibrium qualities in the �rst stage. The numerical solution presented in the next chapter could be
changed easily to study other functional forms of the investment cost function. However time constraints
did not allow us to explore the implications of other assumptions.
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cases where k1 > k2, k1 = k2 and k2 > k1. In all these cases we may have di¤erent types

of equilibrium, depending on the housing quality di¤erence, the transportation cost and

on the quality taste parameter, �. In particular, we may have cases where only one �rm

operates (with partial or full coverage) and cases where both �rms operate (with partial

or full coverage). Before we compute the Nash equilibrium it is useful to derive some

preliminary results.

3.4 Some preliminary results

We start by imposing necessary conditions on the two ULD quality levels for their demand

to be positive. This allows us to restrict our analysis of the Nash equilibrium for vector of

qualities (k1; k2) where at least one of the ULD has positive demand. Moreover, in order

to simplify the exposition it is also useful to de�ne some cut-o¤ valuations.

3.4.1 Necessary conditions for demand to be positive

A necessary condition for ULD 1 to have positive demand is that the consumer with the

highest quality valuation, � = � + 1, has a positive net utility if he buys from ULD 1 at

a price equal to its marginal cost, p1 = c1. In other words:

(� + 1)k1 �
k21
2
> 0

which is equivalent to:

k1 < 2(� + 1): (3.1)

If k1 is equal or greater than 2(� + 1), ULD 1 has zero demand even if it charges a

price equal to its marginal cost. What happens is that for k1 > 2(� + 1), quality is too

high. Since the marginal costs of production are increasing with quality, for those levels

of quality the marginal cost of production is so high that even the consumer who values

most quality would prefer not to buy than to buy the house.
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Similarly, a necessary condition for ULD 2 to have a positive demand, is that the

consumer with the highest quality valuation, � = � + 1, has a positive net utility if he

buys from ULD 2 at a price equal to the marginal cost, p2 = c2. In other words:

(� + 1)k2 � t�
k22
2
> 0:

Since the second order derivative with respect to k2 is negative, we have an inverted

parabola, which means that the expression is positive between the roots of the quadratic

equation:

(� + 1)k2 � t�
k22
2
= 0:

The intuition is that, if the quality, k2, is too low no one wants to buy the house from ULD

2 for a price equal to the marginal cost due to the transportation costs. If the quality is

too high, it also happens that no one wants to buy because the corresponding price would

be too high, even if the price was equal to the marginal cost. Thus, in order for ULD 2

to have a positive demand, its quality must satisfy the following condition :

(� + 1)� 2
p
(� + 1)2 � 2t < k2 < (� + 1) + 2

p
(� + 1)2 � 2t (3.2)

In order to have real roots, the radicand must be positive. Therefore (� + 1)2 � 2t > 0,
or equivalently:

t � (� + 1)2

2
:

Thus, in order for ULD 2 to have a positive demand, the transportation costs cannot be

too high with respect to the highest quality valuation, �+1. Otherwise, even the highest

valuation consumer would prefer not to buy than to buy a house from ULD 2. In what

follows we restrict the analysis to the case where t � (�+1)2

2
, since otherwise we would

never have a duopoly.
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3.4.2 Some important cut-o¤valuations and preliminary results

The consumer�s choice between buying from ULD 1 or not buying depends on whether

buying from ULD 1 gives the consumer a positive net utility or not. The consumer prefers

to buy from ULD 1 than not buy, if and only if:

U1(�) = �k1 � p1 � 0

Let b�1 be the quality valuation of the consumer for which the previous condition is satis�ed
in equality. In other words: b�1 = p1

k1
: (3.3)

The consumer with valuation b�1 is indi¤erent between buying from ULD 1 or not buying

at all. Note that all consumers with � > b�1 strictly prefer to buy from ULD 1 than not

to buy, whereas all consumers with � < b�1 prefer not buy than to buy from ULD 1.

Depending on k1 and p1, b�1 may be below �, between � and � +1 or above � +1. Ifb�1 < � then all the consumers prefer to buy from ULD 1 than not buy, which means that
all consumers are served. On the contrary, if b�1 > � +1, none of the consumers wants to
buy from ULD 1.

Similarly, one can �nd the consumers who prefer to buy from ULD 2 than not buying,

by solving:

U2(�) = �k2 � t� p2 � 0

Let b�2 be the indi¤erent consumer between buying from ULD 2 or not buying at all. In

other words: b�2 = p2 + t

k2
: (3.4)

Again the consumers with valuations above b�2 strictly prefer to buy from ULD 2 than not
buying. Depending on k2; t and p2, b�2 may be below �, between � and � +1 or above � +1.
If b�2 < � then all the consumers prefer to buy from ULD 2 than not buy, which means

that all consumers are served. On the contrary, if b�2 > � +1, none of the consumers wants
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to buy from ULD 2.

Figure 3.1 shows the utility of buying a house from ULD 1 (in the left) and from ULD

2 (in the right) in a case where some lower valuation consumers prefer not to buy any of

the houses, and thus the indi¤erent consumers, b�1 and b�2, are above �. From the �gure

it is clear that all consumers to the right of b�i strictly prefer to buy a house from ULD i

than not to buy a house whereas all consumers to the left of b�i strictly prefers not to buy
a house from ULD i.

θ+1 θ+1

( +1) −θ k p1 1 ( +1) − −θ k t p2 2

θ
θ

U k p1 1 1( ) =θ θ − U2( )θ = θ − −k t p2 2

Figure 3.1: The indi¤erent consumer between buying and not buying from ULD 1 and
from ULD 2, respectively.

Note that the slope of the utility function of buying from ULD i is equal to ki and

therefore for positive qualities the utility is increasing with �. This has implications on

the way the consumers choose between the two ULD. Some results are easy to show:

Lemma 3.1 If the highest valuation consumer, � + 1, prefers the house with the lower

quality, then all the consumers prefer the house of lower quality.

Proof. Assume that k2 > k1, the di¤erence in utilities, U1(�) � U2(�), for type � is

positive if (�k1 � p1)� (�k2 � t� p2) > 0, or equivalently, p2+ t� p1 > � (k2 � k1). Since

the right hand side of the previous expression is increasing with �, that implies that if the

condition holds for (� + 1) then it holds for any � < � + 1. A similar proof holds in the

case of k1 > k2.
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A similar results holds when the lower valuation consumer prefers the high quality

house:

Lemma 3.2 If the lowest valuation consumer, �, prefers the house with the higher quality,

then all the consumers prefer the house of higher quality.

Proof. Assume that k2 > k1, the di¤erence in utilities U2(�) � U1(�) for type � is

positive if (�k2 � t� p2)� (�k1 � p1) > 0, or equivalently, p2+ t� p1 < � (k2 � k1). Since

the right hand side of the previous expression is increasing with �, that implies that if

the condition holds for � then it holds for any � > �. A similar proof holds in the case of

k1 > k2.

The proofs show that, for a given quality di¤erential, the consumer decision depends

on the di¤erence between the total prices, p2 + t � p1, where p2 + t is the total price of

�rm 2 and p1 is the total price of �rm 1. Note that, in the two previous cases, only one

of the ULD has positive demand.

In order for both �rms to have positive demand, the price di¤erential cannot be too

high since otherwise all consumers would prefer the low quality house. On the other hand

the price di¤erential cannot be too low, otherwise all the consumers would prefer the high

quality house.

Lemma 3.3 If prices are such that both ULD have positive demand, the higher quality

ULD serves the higher valuation consumers whereas the lower quality ULD serves the

lower valuation consumers.

Proof. Assume that k2 > k1, then from lemma 3.1 we know that ULD 2 can only

have positive demand if the highest valuation consumer prefers the higher quality house.

Moreover, from lemma 3.2 we know that ULD 1 can only have positive demand if the

lowest valuation consumer prefers the lower quality house. This implies that U2(�) �

U1(�) = (�k2 � t� p2)�(�k1 � p1) is negative at � but positive at �+1. Since the function

is continuous in �, there exists an intermediate value of �, ��, where (�k2 � t� p2) �

(�k1 � p1) = 0. Moreover since U2 �U1 is increasing in �, then all consumers to the right
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of �� prefer to buy the house from ULD 2, whereas all consumers to the left of �� prefer

to buy from ULD 1. A similar proof holds in the case where k1 > k2.

This shows that we can never have two local monopolies. Either only the high quality

ULD operates, only the low quality ULD operates, or both ULD operate.

The consumer choice between the two urban lands developers depends on whether

k1 = k2, k1 > k2 or k2 > k1. If the two ULD have the same quality, the utility functions

of buying from the two ULD have the same slope and either ULD 1 is strictly preferred to

ULD 2 for all consumers, or the reverse, or all consumers are indi¤erent between buying

from ULD 1 and buying from ULD 2.

When k2 > k1, consumers prefer to buy from ULD 1 than from ULD 2 if:

�k1 � p1 � �k2 � t� p2

which is equivalent to:

� � p2 � p1 + t
k2 � k1

Let �� be the value of � such that previous expression holds in equality:

�� =
p2 � p1 + t
k2 � k1

In other words, �� is the indi¤erent consumer between buying from ULD 1 or buying from

ULD 2. The consumers to the right of �� strictly prefer to buy from ULD 2 whereas the

consumers to the left of �� strictly prefer to buy from ULD1 than from ULD2. Therefore,

the higher valuation consumers buy from the higher quality ULD while the lower valuation

consumers buy from the lower quality ULD.

Similarly, when k1 > k2, consumers prefer to buy from ULD 1 than from ULD 2 if:

�k1 � p1 � �k2 � t� p2
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which is equivalent to:

� � p1 � p2 � t
k1 � k2

Let �� be the value of � such that previous expression holds in equality, in other words

�� is the indi¤erent consumer between buying from ULD 1 or buying from ULD 2. The

consumers to the right of �� strictly prefer to buy from ULD 1 whereas the consumers to

the left of �� strictly prefer to buy from ULD2 than from ULD1. Therefore, the higher

valuation consumers buy from the higher quality ULDwhile the lower valuation consumers

buy from the lower quality ULD.

θ+1 θ+1

( +1) −θ k p1 1

( +1) −θ k p1 1( +1) − −θ k t p2 2

( +1) − −θ k t p2 2

θ θθ∗^ ^ θ∗

θ2
θ1

Figure 3.2: The indi¤erent consumer between buying from ULD 1 and ULD 2 when
k2 > k1 (left) and when k1 > k2 (right).

Using the results in this section and the previous one, it is relatively easy, although

slightly boring, to derive the demand functions when k2 = k1, when k2 > k1 and when

k1 > k2. The detailed calculations are presented in Appendix A - Demand functions.

3.5 Nash equilibrium of the price game

Considering that any price below the marginal cost is weakly dominated by charging a

price equal to marginal cost, to derive the Nash equilibrium we restrict the analysis to

prices pi � ci. To organize our results, it is helpful to think about the maximum utility

that a �rm could o¤er to the consumers, without charging a price below marginal cost.
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θ+1θ

Π2

Π1

U2(θ)

U1(θ)

U (1 θ)

U (2 θ)

θ∗

Figure 3.3: The ULD pro�t represented as the di¤erence between the maximal surplus of
�rm i and the surplus at pi

This maximal surplus is given by:

U1(�) = �k1 �
k21
2

and U2(�) = �k2 � t�
k22
2

An interesting result is:

Lemma 3.4 If ULD i serves consumer with valuation �, the pro�t obtained with this

consumer is given by U i(�)� Ui(�).

Proof. Consider ULD 1, U1(�)� U1(�) = �k1 � k21
2
� (�k1 � p1) = p1 � k21

2
= p1 � c1.

A similar proof can be done for ULD 2.

This results allows us to get a nice representation of the pro�t obtained by the ULD

i, since it will be given by the area between U i(�) and Ui(�) in the market area of ULD i.

Moreover this result also helps organizing the presentation of the Nash equilibrium as

that will depend on which �rm o¤ers a higher quality but it will also depend on which

�rm (if any) has a natural advantage in terms of the maximum surplus it can o¤er. In

particular, if the maximum surplus a �rm can o¤er is always non-positive, the �rm has

zero demand as long as pi � ci. In this case the other �rm has a guaranteed monopoly

position. It is also possible that the maximum surplus that one ULD can o¤er is always
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above the maximal surplus that the other ULD can o¤er. In this case, the �rm with

higher maximal surplus has the possibility of being a monopolist by charging a price low

enough so that for the other ULD is not pro�table to build any house. However the ULD

that has a «natural advantage» may prefer to charge a higher price and share the market

with the other ULD (it all depends on which of these options is more pro�table). Finally,

it is also possible that when we look at the maximal surplus o¤ered by each ULD, both

�rms have a «natural market» . In this case, both �rms will operate in equilibrium.

Another interesting conclusion that follows from the analysis of the maximum surplus

expression, U i(�); is that it is a quadratic function with a maximum at ki = �. In other

words, increasing quality above � has a negative impact on the maximum surplus that

can be o¤ered to the consumer with valuation �. Thus choosing a quality above �+1

decreases the maximum surplus that can be o¤ered to all the consumers and hence it is

detrimental in terms of the �rm potential demand.

3.5.1 One of the ULD has a guaranteed monopoly

Firm 1 has a guaranteed monopoly

As explained in section 3.4.1 no consumer will ever buy from �rm 2 if k2 is outside the

limits in expression (3.2). In this case, if k1 < 2(�+1) �rm 1 has a guaranteed monopoly.

If ULD 1 operates in the market with partial coverage, its demand is given by all the

consumers above b�1. Figure 3.4 illustrates this case.

ULD 1 Demand

θ+1θ

Figure 3.4: Only ULD 1 operates with partial coverage.

ULD 1 solves the following problem:

max
p1
�1 =

�
� + 1� p1

k1

�
(p1 � c1) subject to p1 � k1�
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If we solve the unconstrained problem, the �rst order condition is

d�1
dp1

= �p1 � c1
k1

+ � + 1� p1
k1
= 0

Solving with respect to p1, we obtain:

p�1 =
c1 + k1(� + 1)

2
(3.5)

If the previous price is equal or above k1�, then p�1 is the equilibrium price. Otherwise

ULD 1 covers the whole market and it solves:

max
p1
�1 = (p1 � c1) subject to p1 � k1�

Since the pro�t function increases linearly with p1, it is optimal to charge the highest

price possible. That is, with full coverage, p�1 = k1�.

Therefore, the equilibrium price of ULD 1 when it has a guaranteed monopoly is:

Proposition 3.5 If k2 < (�+ 1)� 2
p
(� + 1)2 � 2t or k2 > (�+ 1) + 2

p
(� + 1)2 � 2t and

k1 < 2(� + 1), ULD 1 has a guaranteed monopoly and its optimal price is:

p�1 = max

"
k1�;

k21
2
+ k1(� + 1)

2

#

The market is partially covered whenever � � 1 or when � > 1 and k1 > 2(��1). If � > 1

and k1 < 2(� � 1) the market is fully covered.

Proof. The �rst part of the proof is an immediate consequence of ULD 1 pro�t

maximization problem and from the substitution of c1 =
k21
2
in expression (3.5). The

second part of the proof follows from the comparison between terms in the maximum

function. The condition

k21
2
+ k1(� + 1)

2
> k1� , k1 (k1 + 2(1� �)) > 0
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which holds for every k1 > 0 when � � 1 and it also holds for k1 > 2(� � 1) for � > 1.

Obviously, the reverse condition holds for � > 1 and k1 < 2(� � 1).

The intuition for this result is that when the lowest valuation consumer has a very low

valuation of quality, the monopolist is better o¤ by not covering the whole market, since

full coverage would imply a too low price (in the limit case of � = 0, the price would have

to be 0 to have full coverage). On the other hand, when the lowest valuation consumer is

high, the monopolist is also better o¤ covering only partially the market if the quality is

very high. The reason is that, for a high quality the marginal production costs are also

very high, which implies very high prices. But then the lower valuation consumers do not

want to buy and hence the market is not fully covered.

The previous results also tells us that the monopolist ULD 1 only covers the market

completely for higher valuations and not too high quality.

If ULD 1 has a guaranteed monopoly, its price is increasing with its quality. It increases

linearly when the market is fully covered. It increases at an increasing rate if the market

is only partially covered (due to the shape of marginal costs). Moreover the optimal price

does not depend on t because the demand of ULD 1 is not a function of t.

Firm 2 has a guaranteed monopoly

As we can see in section 3.4.1, ULD 1 has zero demand if k1 > 2(� + 1). In this case,

ULD 2 has a guaranteed monopoly as long as k2 satis�es condition (3.2). If the market

is partially covered, the demand of ULD 2 is given by all the consumers above b�2. Figure
3.5 illustrates this case.ULD 2 solves the following problem:

ULD 2 Demand

θ+1θ ^

Figure 3.5: Only ULD 2 operates with partial coverage.

max
p2
�2 =

�
� + 1� p2 + t

k2

�
(p2 � c2) subject to p2 > k2� � t
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If we solve this problem ignoring the constraint, the �rst order condition is:

d�2
dp2

= �p2 � c2
k2

+ � + 1� p2 + t
k2

= 0

Then solving with respect to p2, we get:

p�2 =
c2 + k2(� + 1)� t

2

If the previous price is higher than k2�� t, then p�2 is the equilibrium price. Otherwise

ULD 2 covers the whole market in which case it wants to charge the highest price that

guarantees full coverage, thus

p�2 = k2� � t:

Therefore, the equilibrium price of ULD 2 when it has a guaranteed monopoly is:

Proposition 3.6 If k1 � 2(� + 1) and (� + 1) � 2
p
(� + 1)2 � 2t < k2 < (� + 1) +

2
p
(� + 1)2 � 2t then ULD 2 has a guaranteed monopoly and its optimal price is

p�2 = max

"
k2� � t;

k22
2
+ k2(� + 1)� t

2

#

Proof. It is immediate from the solution of ULD 2 pro�t maximization problem.

The optimal price of ULD 2 when it has a guaranteed monopoly is an increasing

function of k2 (the intuition is the same than in the previous subsection). Moreover the

optimal price of �rm 2 is decreasing with t. This last result is an immediate consequence

of t having a negative impact on the �rm demand (if the market is partially covered) and

a negative impact on the price that can be charged to the lowest valuation consumer (if

the market is fully covered).

3.5.2 Case where k1 = k2

When k1 = k2 = k, the two ULD are o¤ering precisely the same quality, thus there is no

di¤erentiation and we have a traditional Bertrand model. However, if t > 0, ULD 2 has
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a disadvantage and the ULDs demand are discontinuous at p1 = p2 + t.

In the Nash equilibrium one cannot have p2 above c2 = k2

2
or p1 above k2

2
+ t, since if

that happened there would be an incentive for each �rm to slightly undercut the price so

has to capture the whole demand.

If t = 0 the two ULD will share equally the market, but both have a zero operating

pro�t. This implies that if there are �xed cost to improve quality, the ULD get a negative

payo¤ in the complete game. If t > 0, ULD 1 has an advantage over ULD 2 and will be

the only ULD operating in the market by selling at price below k2

2
+ t. For t high, ULD 1

may be able to charge its optimal monopoly price (as long as this price is below k2

2
+ t),

while for t small the constraint p1 � k2

2
+ t will be binding.

From section 3.5.1 we already know the optimal monopoly price of ULD 1 depending

on whether the market is fully covered or not. But now ULD 1 is constrained to charge a

price below k2

2
+ t. For t high the constraint p1 � k2

2
+ t is not binding and either we get

full coverage or partial coverage according the result in section 3.5.1. On the other hand,

for t low the constraint is binding and ULD 1 will have to charge a lower price to match

the surplus o¤ered by ULD 2. Thus, for t low ULD 1 is a constrained monopoly (with

partial or full coverage).

Therefore when the two ULD o¤er the same quality the Nash equilibrium of the price

game is as follows:

Proposition 3.7 When k1 = k2 = k, if t = 0, then p�1 = p�2 =
k2

2
. When t > 0, then

p�2 =
k2

2
and

p�1 = min

"
k2

2
+ t;max

"
�k;

k2

2
+ k(� + 1)

2

##

When t � k
�
� � k

2

�
the market is always fully covered and p�1 =

k2

2
+ t. When t >

k
�
� � k

2

�
, � > 1 and k1 < 2(� � 1); then the market is fully covered and p�1 = �k. If

t > k
�
� � k

2

�
and either � � 1 or � > 1 and k1 > 2(�� 1), the market is partially covered

and p�1 = min
�
k2

2
+k(�+1)

2
; k

2

2
+ t

�
:

Proof. The �rst part of the result follows from the solution of ULD 1 pro�t maxi-
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mization problem subject to the constraint p1 � k2

2
+ t. If the constraint is not binding

the ULD 1 optimal price as given in 3.5.1, otherwise p1 = k2

2
+ t: If we have t � k

�
� � k

2

�
,

then k2

2
+ t � �k and therefore p�1 = k2

2
+ t. Since p�1 � �k the market is fully covered.

When t > k
�
� � k

2

�
, we have k

2

2
+t > �k: If

k2

2
+k(�+1)

2
� �k then p�1 = �k and the market

is fully covered. This case holds for � > 1 and k1 < 2(� � 1). However if t > k
�
� � k

2

�
and

k2

2
+k(�+1)

2
> �k the market is partially covered and p�1 = min

�
k2

2
+k(�+1)

2
; k

2

2
+ t

�
.

The previous result tells that when t is low, t � k
�
� � k

2

�
, ULD 1 covers the whole

market and charges p�1 =
k2

2
+ t (in reality p�1 has to be slightly below this). Consequently,

the pro�t is:

��1 =
k2

2
+ t� c1 =

k2

2
+ t� k

2

2
= t

In this case, the lowest valuation consumer gets a positive surplus, the same surplus it

would be able to get buying from ULD 2 at p2 = k2

2
.

For t high, t > k
�
� � k

2

�
, the market will be totally covered for � > 1 and k1 < 2(��1)

at price p�1 = �k and the corresponding pro�t is:

��1 = �k � c1 = �k �
k2

2
:

Note that in this case the lowest valuation consumer gets a zero surplus.

In the remaining cases the market will be partially covered. The consumers covered

may be the same than under unconstrained monopoly (for very high t), but for t not

too high, more consumers will be served due to existence of ULD 2 (when matching the

surplus o¤ered by ULD 2 is a binding constraint).

Looking at the equilibrium prices when k1 = k2 = k, one observes that the prices are

increasing with the quality and are increasing with t whenever the constraint p�1 � k2

2
+t is

binding (that is for low t). For higher t the equilibrium prices depend only on the quality.
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3.5.3 Case where k2 > k1

Both ULDs have a «natural market»

Suppose that if ULD 2 charges p2 =
k22
2
and ULD 1 charges p1 =

k21
2
; then the highest

valuation consumer prefers to buy from ULD 2, while the lowest valuation consumer who

buys a house prefers to buy a house from ULD 1. In other words, suppose that U2(�)

and U1(�) intersect at some � between max
h
�;b�1(c1)i and (� + 1), where b�1(c1) = k1

2
is

the indi¤erent consumer between buying from ULD 1 and not buying if this �rm charges

p1 = c1. Then with marginal cost pricing both �rms have a strictly positive demand. This

is illustrated in Figure 3.6. This case holds when the following conditions are both true:

θ+1θ

U2(θ)

U1(θ)

θ (∗ c c1 2, )

«Natural market» of
of ULD 1 «Natural market» of ULD 2

Figure 3.6: The «natural markets» of ULD 1 and ULD 2.

�
(� + 1)k2 � t�

k22
2

�
�
�
(� + 1)k1 �

k21
2

�
> 0

and
�
max

�
�;
k1
2
)

�
k2 � t�

k22
2

�
�
�
max

�
�;
k1
2

�
k1 �

k21
2

�
< 0

which is equivalent to:

(k2 � k1)
�
max

�
�;
k1
2

�
� (k1 + k2)

2

�
< t < (k2 � k1)

�
(� + 1)� (k1 + k2)

2

�
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Note that if max
�
�; k1

2

�
= k1

2
the left hand side limit is necessarily negative, and thus

only the right hand side limit is relevant. Intuitively t cannot be too high for both �rms

to operate, since with t very high only �rm 1 would operate. On the other hand, if

max
�
�; k1

2

�
= �, which happens for low levels of k1, k1 < 2�, the left hand side limit may

be positive (if k2 is not very high) in which case for low values of t all consumers prefer

ULD 2. To summarize, when k2 > k1, the two �rms operate if t is not too high and k1 is

not too low (and k2 is not very high).

Under this circunstances one can show the following:

Lemma 3.8 If (k2 � k1)
�
max

�
�; k1

2

�
� (k1+k2)

2

�
< t < (k2 � k1)

�
(� + 1)� (k1+k2)

2

�
, then

in equilibrium both �rms operate.

Proof. By contradiction, suppose that one of the ULDs does not operate in equi-

librium (let us assume it is ULD 1). If ULD 2 is charging a price above the marginal

cost, that would mean that some consumers would buy from ULD 1 if it charges a price

slightly above its marginal cost, which would imply a positive pro�t. Thus ULD 1 has an

incentive to deviate. On the other hand, if ULD 2 was charging p2 � c2, this ULD would

gain by deviating to a price slightly above c2. Thus, if one of the �rms was not operating,

at least one of them would gain by deviating. Hence in equilibrium one cannot have one

of the �rms without operating.

When both �rms operate in the market with full coverage, we already know that ULD

2 covers the consumer with higher valuation while the ULD 1 covers the consumers with

lower valuation as shown in Figure 3.7.The demands of the two ULD are given by:

                 ULD 2 Demand

θ+1θ

                 ULD 1 Demand

Figure 3.7: Both �rms operate and the whole market is covered when k2 > k1.

D1 =
p2 � p1 + t
k2 � k1

� � and D2 = � + 1�
p2 � p1 + t
k2 � k1
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Then the pro�t functions for the two ULD are given by the following expressions:

�1 =

�
p2 � p1 + t
k2 � k1

� �
�
(p1 � c1)

�2 =

�
� + 1� p2 � p1 + t

k2 � k1

�
(p2 � c2)

The �rst order conditions of the two ULD pro�t maximization problems are:

@�1
@p1

= � p1 � c1
k2 � k1

+

�
p2 � p1 + t
k2 � k1

� �
�
= 0

@�2
@p2

= � p2 � c2
k2 � k1

+

�
� + 1� p2 � p1 + t

k2 � k1

�
= 0

Solving this system with respect to p1 and p2, we obtain the equilibrium prices:

p�
1
=

(1� �) (k2 � k1) + 2c1 + c2 + t
3

p�2 =
(� + 2)(k2 � k1) + 2c2 + c1 � t

3

It should be noted that in order for this to be the equilibrium, we have to have

� � ��(p�1; p�2) � � + 1 (so that both �rms operate) and the consumer with lowest quality

valuation, �; has to have a non-negative net utility buying the house of ULD 1 at price

p�1. In other words, full coverage holds if:

�k1 �
(1� �) (k2 � k1) + k21 +

k22
2
+ t

3
(3.6)

Note that for very low values of � the previous condition does not hold (it does not hold

for � and hence, by continuity it does not hold in a neighborhood of � = 0. Moreover, the

condition is easier to be satis�ed for higher � (since the left hand side of the expression

is increasing and the right hand side is decreasing with �). The previous result can be

summarized as follows:

Proposition 3.9 When k2 > k1 and both ULD operate in equilibrium and there is full
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coverage, the equilibrium prices are:

p�
1
=

(1� �) (k2 � k1) + k21 +
k22
2
+ t

3

p�2 =
(� + 2)(k2 � k1) + k22 +

k21
2
� t

3

Proof. It follows from the solution of the system of �rst order conditions of the two

ULD pro�t maximization problems assuming full coverage and substituting ci by
k2i
2
.

The equilibrium prices depend on the quality di¤erential (k2 � k1), depend on the

marginal costs which are a quadratic function of quality and depend on t. Note that the

shape of the equilibrium prices as a function of the qualities is in�uenced a lot by the

shape of the marginal costs.

Under full coverage, increasing t in�uences positively the equilibrium price of ULD

1 and negatively the equilibrium price of ULD 2. This happens because, increasing t

increases the demand of ULD 1 and decreases the demand of ULD 2. As a consequence

it is optimal for ULD 1 to charge a higher price (its best response shifts to the right)

whereas for ULD 2 it is optimal to decrease it price (its best response shifts down).

The impact of changes in the �rm house quality on its own price is clearly positive for

the higher quality ULD. For the lower quality ULD the sign is positive if � � 1, but may

be negative otherwise.

If at the previous equilibrium prices, condition 3.6 does not hold, then it means that in

the Nash equilibrium we cannot have a duopoly with full coverage. Figure 3.8 illustrates

what happens if both �rms operate with partial coverage.

                       ULD 2 Demand

θ+1θ

                             ULD 1 Demand

Figure 3.8: Both �rms operate but the market is only partially covered when k2 > k1.
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Thus, if the equilibrium involves a duopoly with partial coverage demands are:

D1 =
p2 � p1 + t
k2 � k1

� p1
k1

and D2 = � + 1�
p2 � p1 + t
k2 � k1

The pro�t functions for the two ULD are given by the following expressions:

�1 =

�
p2 � p1 + t
k2 � k1

� p1
k1

�
(p1 � c1)

�2 =

�
� + 1� p2 � p1 + t

k2 � k1

�
(p2 � c2)

The �rst-order conditions of the two ULD pro�t maximization problems are:

@�1
@p1

= � p1 � c1
k2 � k1

� p1 � c1
k1

+
p2 � p1 + t
k2 � k1

� p1
k1
= 0

@�2
@p2

= � p2 � c2
k2 � k1

+ � + 1� p2 � p1 + t
k2 � k1

= 0

Solving the system of equations with respect to p1 and p2, we obtain the equilibrium

prices:

p�1 =
k1(� + 1) (k2 � k1) + 2c1k2 + c2k1 + tk1

4k2 � k1
p�2 =

2k2(� + 1) (k2 � k1) + c1k2 + 2c2k2 � t (2k2 � k1)
4k2 � k1

In order for this to be a Nash equilibrium it has to happen that, considering the

equilibrium price p�1, the indi¤erent consumer between buying from ULD 1 and not buying,

�̂1(p
�
1), is between � and �

�(p�1; p
�
2) and that �

�(p�1; p
�
2) is smaller than (�+1), since otherwise

all the consumers would prefer ULD 1.

Therefore if both ULD operate with partial coverage, the equilibrium is as follows:

Proposition 3.10 When k2 > k1 and both ULD operate in equilibrium and there is
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partial coverage, the equilibrium prices are:

p�1 =
k1(� + 1) (k2 � k1) + k21k2 + 0:5k22k1 + tk1

4k2 � k1

p�2 =
2k2(� + 1) (k2 � k1) + 0:5k21k2 + k32 � t (2k2 � k1)

4k2 � k1

Proof. It follows from the solution of the system of �rst order conditions of the two

ULD pro�t maximization problems assuming partial coverage and substituting ci by
k2i
2
.

ULD 2 has a natural advantage

ULD 2 has a natural advantage if U2(�) > U1(�) for all consumers who buy a house at

marginal cost pricing. This is illustrated in Figure 3.9. ULD 2 has a natural advantage

θ+1θθ+1

θk c t2 2− −
θk c1 1−

θ

U2(θ)

U2(θ)

U1(θ)

U1(θ)

Figure 3.9: ULD 2 has a «natural advantage» and can be a monopolist.

if:

U2(�)� U1(�) =
�
�k2 � t�

k22
2

�
�
�
�k1 �

k21
2

�
> 0 for all � � max

h
�;b�1(c1)i

which is equivalent to:

1

2
(k2 � k1) (2� � (k1 + k2)) > t for all � � max

h
�;b�1(c1)i

53



Note that for this condition to hold the sum of the qualities cannot be too high, k1 +

k2 < 2max
h
�;b�1(c1)i. Moreover the condition is easier to be satis�ed for higher quality

di¤erentials, i.e. higher k2 � k1 (for a constant k1 + k2) and for smaller t.

When ULD 2 has a natural advantage, this �rm can be a monopolist by charging a

price that guarantees consumers at least the same surplus they get from ULD 1 at price

p1 = c1. However such behavior may not be optimal if it implies a very low price since

ULD 2 may be better o¤ by charging a higher price, thus gaining a higher mark-up, even

if that implies loosing some customers to ULD 1. Intuitively, ULD 2 will only prefer

to be a monopolist if it has a very big advantage (U2(�) is much higher than U1(�)).

Otherwise sharing the market will be a better alternative and we obtain the equilibrium

prices derived in section 3.5.3.

From section 3.5.1 we already know the optimal price charged by ULD 2 if it was an

unconstrained monopoly. To be a monopolist, now ULD 2 maximizes its pro�t subject

to constraint that the lowest valuation consumer who buys a house, if he buys from ULD

2 gets a surplus at least as high as the surplus he would get from buying a house from

ULD 1. This surplus constraint can be written as follows:

max
h
�;b�1(c1)i k2�t�p2 � max h�;b�1(c1)i k1�c1 , p2 � max

h
�;b�1(c1)i (k2 � k1)+c1�t

If the lowest valuation consumer, �, gets a positive surplus if he buys from ULD 1

at p1 = c1, b�1(c1) � �, then in order to be a monopolist ULD 2 has to cover the whole

market and o¤er consumer � at least the same surplus he would get from ULD 1. This

case is illustrate in the left side of Figure 3.9. The surplus constraint is given by:

�k2 � t� p2 � �k1 � c1 , p2 � � (k2 � k1) + c1 � t

Thus, in this case p�2 = � (k2 � k1) + c1 � t.

On the other hand, if b�1(c1) > � (illustrated in the right side of Figure 3.9), the surplus

54



constraint is given by:

b�1(c1)k2 � t� p2 � b�1(c1)k1 � c1 , p2 � c1
k2
k1
� t

In this case, ULD 2 can be a monopolist covering the whole market or not, depending on

which of these alternatives is most pro�table. If the market is fully covered, the constraint

is not binding and the price is p�2 = k2��t. If the market is partially covered the constraint

may or not be binding and the price is p�2 = min
h
c1
k2
k1
� t; c2+k2(�+1)�t

2

i
.

To summarize, if ULD 2 has a natural advantage, and wants to be a monopolist, its

optimal price is:

Proposition 3.11 If ULD 2 has a natural advantage and wants to be a monopolist, its

optimal price is:

p�2 = min

"
max

�
�;
k1
2

�
(k2 � k1) + c1 � t;max

"
k2� � t;

k22
2
+ k2(� + 1)� t

2

##

Proof. It follows from the solution of the constrained pro�t maximization problem

of ULD 2. If solving the unconstrained problem p�2 is lower or equal than the upper limit

imposed by the constraint, then ULD 2 can behave as an unconstrained monopoly and p�2

is as given in section 3.5.1. If the unconstrained optimal price does not satisfy the surplus

constraint, then the constraint is binding and p�2 = max
�
�; k1

2

�
(k2 � k1) + c1.

However, when the constraint is binding, ULD 2 may be better o¤ by not being

a monopolist since that position is achieved only by charging a lower price than the

monopolist would wish. When that happens the equilibrium prices will be the ones given

in section 3.5.3.

ULD 1 has a natural advantage

ULD 1 is o¤ering the lower quality house. We know that if the highest valuation consumer

prefers to buy fromULD 1, then everyone else also prefers to buy fromULD 1. Considering
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this, if U1(�+ 1) > U2(�+ 1), ULD 1 has a natural advantage. This case is illustrated in

Figure 3.10.

θ+1θθ+1

( +1) −θ k c1 1

( +1) −θ k c2 2−t

θ

U2(θ) U2(θ)

U1(θ)
U1(θ)

Figure 3.10: ULD 1 has a «natural advantage» and can be a monopolist.

This scenario holds when:

�
(� + 1)k1 �

k21
2

�
�
�
(� + 1)k2 � t�

k22
2

�
> 0

which is equivalent to

(k2 � k1)
�
1

2
(k1 + k2)� (� + 1)

�
+ t > 0

Note that a su¢ cient condition (but not necessary) for the previous expression to hold is

k1 + k2 > 2(� + 1). Thus this case is more likely to hold when the sum of the qualities is

high and when the quality di¤erential is also high.

From section 3.5.1 we already know the optimal price charged by ULD 1 if it was an

unconstrained monopoly. To be a monopolist, now ULD 1 maximizes its pro�t subject

to constraint that the highest valuation consumer gets a higher surplus if he buys from

ULD 1 than if he buys ULD 2 at p2 = c2. In other words, the surplus constraint is:

(� + 1)k1 � p1 � (� + 1)k2 � t� c2 , p1 � c2 + t� (� + 1) (k2 � k1)

If the previous constraint is satis�ed when we solve the unconstrained problem of pro�t

maximization, the optimal price of ULD 1 is the one given in section 3.5.1. Otherwise

56



the surplus constraint is binding, and to be a monopolist, ULD has to charge p�1 =

c2 + t� (� + 1) (k2 � k1).

To summarize, if ULD 1 has a natural advantage and wants to be a monopolist, its

optimal price is:

Proposition 3.12 If ULD 1 has a natural advantage and wants to be a monopolist, its

optimal price is:

p�1 = min

"
k22
2
+ t� (� + 1) (k2 � k1) ;max

"
k1�;

k21
2
+ k1(� + 1)

2

##

Proof. It follows from the solution of the constrained pro�t maximization problem of

ULD 1 and the result in section 3.5.1.

If the optimal monopoly price is such that the surplus constraint is binding, ULD 1

may be better o¤ by not decreasing the price so much and share the market with ULD 2.

In that case, the equilibrium prices will be the ones presented in section 3.5.3.

3.5.4 Case where k1 > k2

Both ULDs have a «natural market»

Now ULD 1 is o¤ering the higher quality house. Therefore, if both �rms operate, ULD

1 serves the higher valuation consumers while ULD 2 serves the lower valuation ones.

Similarly to section 3.5.3, we can show that if U1(�) and U2(�) intersect at some � between

max
h
�;b�2(c2)i and (�+1), where b�2(c2) is the indi¤erent consumer between buying from

ULD 2 and not buying if this �rm charges p2 = c2, then with marginal cost pricing both

�rms have a strictly positive demand and in equilibrium both �rms operate.

If both ULD operate and the market is fully covered, consumers with � � ��are served

by ULD 2 whereas consumers with � � �� are served by ULD 1 (see Figure 3.11).

Hence the demands of the two ULD are given by:

D1 = � + 1�
p1 � p2 � t
k1 � k2

and D2 =
p1 � p2 � t
k1 � k2

� �
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                 ULD 1 Demand

θ+1θ

                 ULD 2 Demand

Figure 3.11: Both ULD operate and cover the whole market when k1 > k2.

Thus the pro�t functions for the two ULD are given by the following expressions:

�1 =

�
� + 1� p1 � p2 � t

k1 � k2

�
(p1 � c1)

�2 =

�
p1 � p2 � t
k1 � k2

� �
�
(p2 � c2)

The �rst order conditions of the pro�t maximization problems are:

@�1
@p1

= � p1 � c1
k1 � k2

+ � + 1� p1 � p2 � t
k1 � k2

= 0

@�2
@p2

= � p2 � c2
k1 � k2

+
p1 � p2 � t
k1 � k2

� � = 0

Solving this system of equations with respect to p1 and p2 we obtain the equilibrium

prices:

p�
1
=

(� + 2)(k1 � k2) + 2c1 + c2 + t
3

p�2 =
(1� �)(k1 � k2) + 2c2 + c1 � t

3

Consequently, when both �rms operate with full coverage, the equilibrium is as follows:

Proposition 3.13 When k1 > k2 and both ULD operate in equilibrium and there is full

coverage, the equilibrium prices are:

p�
1
=

(� + 2)(k1 � k2) + k21 +
k22
2
+ t

3

p�2 =
(1� �)(k1 � k2) + k22 +

k21
2
� t

3
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Proof. It follows from the solution of the system of �rst order conditions of the two

ULD pro�t maximization problems assuming full coverage and substituting ci by
k2i
2
.

It should be noted that in order for this to be the equilibrium, we have to have

� � �� � � + 1 (so that both �rms operate) and the consumer with lowest quality

valuation, �; has to have a non-negative net utility buying the house of ULD 2 at price

p�2. If at the previous equilibrium prices the last condition does not hold, then it means

that in the Nash equilibrium we cannot have a duopoly with full coverage.

If the two ULD operate in the market with partial coverage, the lower valuation

consumers prefer not to buy the house and demands are as given in Figure 3.12.That is,

                       ULD 1 Demand

θ+1θ

                             ULD 2 Demand

Figure 3.12: Both ULD operate but the market is only partially covered when k1 > k2.

the demand functions are given by:

D1 = � + 1�
p1 � p2 � t
k1 � k2

and D2 =
p1 � p2 � t
k1 � k2

� p2 + t
k2

And the pro�t functions are:

�1 =

�
� + 1� p1 � p2 � t

k1 � k2

�
(p1 � c1)

�2 =

�
p1 � p2 � t
k1 � k2

� p2 + t
k2

�
(p2 � c2)

The �rst-order conditions are given by:

@�1
@p1

= � p1 � c1
k1 � k2

+ � + 1� p1 � p2 � t
k1 � k2

= 0

@�2
@p2

= � p2 � c2
k1 � k2

� p2 � c2
k2

+
p1 � p2 � t
k1 � k2

� p2 + t
k2

= 0
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After we solve with respect to p1 and p2 we get the following equilibrium prices:

p�
1
=

2k1(� + 1)(k1 � k2) + k1 (2c1 + c2 + t)
4k1 � k2

p�
2
=

k2(� + 1)(k1 � k2) + 2k1c2 + k2c1 � t (2k1 � k2)
4k1 � k2

Therefore if both ULD operate with partial coverage, the equilibrium is as follows:

Proposition 3.14 When k1 > k2 and both ULD operate in equilibrium and there is

partial coverage, the equilibrium prices are:

p�
1
=

2k1(� + 1)(k1 � k2) + k1
�
k21 +

k22
2
+ t
�

4k1 � k2

p�
2
=

k2(� + 1)(k1 � k2) + k1k22 + k2
k21
2
� t (2k1 � k2)

4k1 � k2

Proof. It follows from the solution of the system of �rst order conditions of the two

ULD pro�t maximization problems assuming partial coverage and substituting ci by
k2i
2
.

ULD 2 has a natural advantage

ULD 2 is o¤ering the lower quality house. We know that if the highest valuation consumers

prefers to buy fromULD 2, then everyone else also prefers to buy fromULD 2. Considering

this, if U2(� + 1) > U1(� + 1), then ULD 2 has a natural advantage.

From section 3.5.1 we already know the optimal price charged by ULD 2 if it was an

unconstrained monopoly. To be a monopolist, now ULD 2 maximizes its pro�t subject to

the surplus constraint is:

(� + 1)k2 � t� p2 � (� + 1)k1 � c1 , p2 � c1 � t� (� + 1) (k1 � k2)

If the previous constraint is satis�ed when we solve the unconstrained problem of

ULD 2 pro�t maximization, the optimal price of ULD 2 is the one given in section 3.5.1.
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Otherwise the surplus constraint is binding, and to be a monopolist, ULD 2 has to charge

p�2 = c1 � t� (� + 1) (k1 � k2).

To summarize, if ULD 2 has a natural advantage and wants to be a monopolist, its

optimal prices would be:

Proposition 3.15 If ULD 2 has a natural advantage and wants to be a monopolist, its

optimal price is:

p�2 = min

"
k21
2
� t� (� + 1) (k1 � k2) ;max

"
k2� � t;

k22
2
+ k2(� + 1)� t

2

##

Proof. It follows from the solution of the constrained pro�t maximization problem of

ULD 2 and the result in section 3.5.1.

If the optimal monopoly price is such that the surplus constraint is binding, ULD 2

may be better o¤ by not decreasing the price so much and share the market with ULD 1.

In that case, the equilibrium prices will be the ones presented in section 3.5.4.

ULD 1 has a natural advantage

ULD 1 has a natural advantage if U1(�) > U2(�) for all consumers who buy a house at

marginal cost pricing. In other words, U1(�) > U2(�) for all � � max
h
�;b�2(c2)i :

From section 3.5.1 we already know the optimal price charged by ULD 1 if it was an

unconstrained monopoly. To be a monopolist, now ULD 1 maximizes its pro�t subject

to constraint that the even lowest valuation consumer who buys a house, if he buys from

ULD 1 gets a surplus at least as high as the surplus he would get from buying a house

from ULD 2 at price p2 = c2. The surplus constraint can be written as follows:

max
h
�;b�2(c2)i k1�p1 � max h�;b�2(c2)i k2�t�c2 , p1 � max

h
�;b�2(c2)i (k1 � k2)+c2+t

If this constraint is not binding when ULD 1 solves its unconstrained pro�t maximization

problem, then its optimal price is the one given in section 3.5.1. Otherwise, to be a

monopolist, ULD 1 has to charge p�1 = max
h
�;b�2(c2)i (k1 � k2) + c2 + t. To summarize:
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Proposition 3.16 If ULD 1 has a natural advantage and wants to be a monopolist, its

optimal price is:

p�1 = min

"
max

h
�;b�2(c2)i (k1 � k2) + k22

2
+ t;max

"
k1�;

k21
2
+ k1(� + 1)

2

##

Proof. It follows from the solution of the constrained pro�t maximization problem of

ULD 1 and the result in section 3.5.1.

If the optimal monopoly price is such that the surplus constraint is binding, ULD 1

may be better o¤ by not decreasing the price so much and share the market with ULD 2.

In that case, the equilibrium prices will be the ones presented in this section.

3.6 Numerical analysis

In the previous section we analyzed the Nash equilibrium of the price competition game,

considering all the cases that can potentially occur. For a given case, that analysis allowed

us to characterize the equilibrium prices and how they change with the quality levels of

the two �rms. However it does not provide a global view of how equilibrium prices change

with the vector of quality levels (k1, k2). In this section, we use numerical analysis to

get a more global perspective of how the equilibrium prices and pro�ts change with the

quality levels (k1, k2) and what are the types of equilibria that occur.

In order to do numerical analysis we used the software GAUSS. We developed a pro-

gram that computes the Nash Equilibrium of the price game for given quality levels

(k1; k2). For each vector of quality levels the program computes the equilibrium prices,

the equilibrium pro�ts and the type of equilibria.

3.6.1 Cases where the unit cost of transportation is nil

In this section we consider the case where the transportation costs are nil. In this case

there is symmetry between the two �rms. Our numerical simulations considered � = 2 (we

chose � > 1 to guarantee that, even in the monopoly case, we would have cases where the
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Table 3.1: Type of equilibrium for several combinations of k1 and k2, when t = 0 and
� = 2.

k1jk2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0 NO M2FC M2FC M2FC M2FC M2PC M2PC M2PC M2PC M2PC M2PC M2PC NO

0.5 M1FC DB M2FC DFC DFC DFC DFC DFCK DFCK DFCK DFCK DFCK M1FC

1 M1FC M1FC DB DFC DFC DFC DFC DFC DFC DFCK DFCK DFCK M1FC

1.5 M1FC DFC DFC DB DFC DFC DFC DFC DFC DFCK DFCK M1FC M1FC

2 M1FC DFC DFC DFC DB DFC DFC DFC DFC DFC DFCK M1PC M1FC

2.5 M1PC DFC DFC DFC DFC DB DFC DFC DFC DFC DFCK M1PC M1PC

3 M1PC DFC DFC DFC DFC DFC DB DFC DFC DFC M1PC M1PC M1PC

3.5 M1PC DFCK DFC DFC DFC DFC DFC DB DFC M1PC M1PC M1PC M1PC

4 M1PC DFCK DFC DFC DFC DFC DFC DFC DB M1PC M1PC M1PC M1PC

4.5 M1PC DFCK DFCK DFCK DFC DFC DFC M2PC M2PC DB M1PC M1PC M1PC

5 M1PC DFCK DFCK DFCK DFCK DFCK M2PC M2PC M2PC M2PC DB M1PC M1PC

5.5 M1PC DFCK DFCK M2FC M2PC M2PC M2PC M2PC M2PC M2PC M2PC DB M1PC

6 NO M2FC M2FC M2FC M2FC M2PC M2PC M2PC M2PC M2PC M2PC M2PC NO

equilibrium involves full coverage). Table 3.1 shows the type of equilibrium that occurs

for every combination of (k1;k2), when k1 and k2 vary from 0 to 6, with jumps of 0:5. Note

that when ki = 0 or ki = 6 the demand of ULD i is equal to zero (quality is too low in

the �rst case and too high in the second case).

Table 3.1 describes seven types of equilibria. When the two ULD have zero demand

(which happens when ki = 0 or ki = 6, with i = 1; 2) none of the ULD operates in the

market (in the table this case is denoted by NO). When k1 = k2, excluding the cases

where k1 = k2 = 0 and k1 = k2 = 6, we get the Bertrand equilibrium where the two ULD

charge a price equal to marginal cost and have nil pro�t.

When k2 = 0 or k2 = 6 and 0 < k1 < 6, only ULD 1 operates. We obtain an

equilibrium where ULD 1 operates with full coverage (M1FC) or an equilibrium where

ULD 1 operates with partial coverage (M1PC), the last case occurs for higher values of

k1. Symmetrically when k1 = 0 or k1 = 6 and 0 < k2 < 6, only ULD 2 operates and we

obtain either the equilibrium where ULD 2 operates with full coverage (M2FC) or, for

higher values of k2, we obtain the equilibrium where ULD 2 operates with partial coverage

(M2PC).
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When k2 > k1 > 0, we obtain �ve types of equilibria: both ULD operate with full

coverage (DFC); or both ULD operate with full coverage but in a kink case, where �̂ = �

(DFCK) which means that the lowest valuation consumer gets zero surplus; or ULD 2

operate with full coverage (M2FC); or when k2 is too high and k1 is also high we obtain

the equilibria where ULD 1 operates with partial coverage (M1PC). Finally, for very high

values of k2 and low values of k1, ULD1 operates with full coverage (M1FC).

Symmetrically, when k1 > k2 > 0, we obtain DFC; or DFCK; or M1FC; or M1PC

when k1 is not very high. When k1 is very high, if k2 is also high we obtain the equilibria

where ULD 2 operate with partial coverage (M2PC) whereas for lower values of k2 we get

the equilibrium where ULD 2 operates with full coverage (M2FC).

For � = 2 and t = 0, we can analyze how the equilibrium prices and equilibrium pro�ts

change with the quality levels of the two ULD. Figure 3.13 shows how the equilibrium

price of ULD i changes with its own quality level, ki, for given values of the other ULD

quality (considering kj = 0, kj = 2 and kj = 3). Based on Figure 3.13, we can conclude

the following:

p *i
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Figure 3.13: Equilibrium price of ULDi, p�i , as a function of its quality level, ki, given the
values of kj.

Result 3.17 With nil transportation cost, for a given value of kj, the equilibrium price

of ULD i, p�i , is an increasing and convex function of its own quality level, ki.

To explain the behavior of the equilibrium price of ULD i as a function of its own
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quality, there are three e¤ects that need to be taken into account. The �rst e¤ect is the

impact of increasing ki on the demand of ULD i. As its quality increases, the demand

of ULD i also rises and, for a given marginal cost, it is optimal for ULD i to increase its

price. The second e¤ect is due to the fact that, as the quality of ULD i rises, its marginal

cost also rises, which leads to an higher optimal price. These two e¤ects imply a shift

to the right of ULD i best response function, leading to higher equilibrium prices. The

third e¤ect is the impact of increasing ki on the demand of ULD j. When ki increases,

the demand of ULD j decreases and thus the optimal price of �rm j will be lower (the

best response function of ULD j shifts downwards). The last e¤ect alone would lead to

a lower equilibrium p�i , since prices are strategic complements. However, the two �rst

e¤ects dominate the last one and, therefore, p�i is increasing with ki. Moreover, the e¤ect

of increasing ki on the marginal cost of �rm i, explains the fact that equilibrium price is a

convex function of ki. This happens because the marginal costs are a quadratic function

of quality and, consequently, the impact of ki on p�i , through the marginal costs, becomes

larger as ki increases.

Figure 3.13 also shows the impact of changing kj on the equilibrium price of ULD

i. Note that for kj = 0 (or, equivalently, for kj = 6), ULD j has no demand and thus

ULD i is a monopolist. We observe that the optimal prices under monopoly are above

the equilibrium prices when there is competition between the two �rms (which happens

when kj = 2 or kj = 3 in the �gure). Hence Figure 3.13 shows very clearly the e¤ect of

competition on the equilibrium prices.

Figure 3.14 shows the equilibrium price of ULD i, p�i , as a function of the quality level

of the rival, kj, (considering ki = 1; ki = 2 and ki = 3). This �gure allows us to conclude

the following:

Result 3.18 With nil transportation cost, for intermediate values of ki, the equilibrium

price of ULD i, p�i , is a non-monotonic function of kj. For small values of kj, p
�
i is

decreasing with kj, but, after a certain point, p�i becomes an increasing function of kj.

Finally, for very high values of kj, p�i is constant. In other words, for intermediate values
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of ki and kj, the equilibrium price of ULD i follows a U relationship with kj.
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Figure 3.14: Equilibrium price of ULDi, p�i , as a function of the quality of ULDj, kj, given
the values of ki.

How can we explain the U shaped relationship between p�i and kj? When we look at

the impact of kj on the equilibrium price of ULD i, there are two e¤ects that need to be

considered. The �rst e¤ect is the direct impact of kj on the demand of ULD i. When kj

increases, for given prices, Di decreases. This direct e¤ect implies a lower optimal price

for ULD i (the best response function of ULD i shifts to the left). This e¤ect alone implies

a lower equilibrium price for ULD i, p�i . However there are also indirect e¤ect that need to

be considered. When kj increases, the demand and the marginal costs of ULD j increase,

leading to an upward shift in the best response of ULD j. Since ULD j increases its price,

and prices are strategic complements, in equilibrium ULD i also increases its price. Hence

the two e¤ects have opposite signs: the direct e¤ect is negative whereas the indirect e¤ect

is positive. The previous result shows that, for small values of kj the �rst e¤ect dominates

the second one and thus p�i decreases with kj. However, for higher values of kj the second

e¤ect dominates and hence p�i is increasing with kj. This result is quite intuitive because,

for high values of kj, the marginal costs of ULD j increase a lot with kj (since marginal

costs are quadratic on quality), explaining why the second e¤ect dominates.

Note that the U-shaped relationship only holds for intermediate values of kj. As we

know, when kj = 0 or when kj is too high, ULD j has no demand and therefore ULD i is
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a monopolist and charges its optimal price which is not a function of kj (this explains the

horizontal sections of p�i in �gure 3.14). This �gure also shows the e¤ect of competition

on the equilibrium prices, since equilibrium price is lower when kj is intermediate and the

two ULDs operate in the market.

Let us now analyze the equilibrium pro�ts. Figure 3.15 shows the equilibrium pro�t

of ULD i as a function of ki, for given values of kj. We �rst plot the case where ULD i

has a monopoly (which happens when kj = 0 or kj = 6): Under monopoly, the optimal

pro�t function is a concave function of ki: the pro�t starts growing with quality, it reaches

a maximum, and after that pro�t declines with quality till it becomes nil. Figure 3.16,

shows the equilibrium pro�t of ULD i as a function of ki but now considering intermediate

values of kj (kj = 2 and kj = 3). As it can be seen, the shape of the equilibrium pro�t is

quite di¤erent from the one observed under monopoly.
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Figure 3.15: Equilibrium pro�t of ULDi, ��i , as a function of its quality, ki, when kj = 0
or kj = 6.

The results in Figures 3.15 and 3.16 can be summarized as follows:

Result 3.19 With nil transportation cost, when kj is nil or when kj is too high, ULD

i is a monopoly and the corresponding optimal pro�t is a concave function of its own

quality level, ki (with a unique global maximum). For intermediate values of kj, both

ULDs operate and, for given kj, the equilibrium pro�t of ULD i has two local maxima:

one with ki < kj and the other one with ki > kj.
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Figure 3.16: Equilibrium pro�t of ULDi, ��i , as a function of its quality, ki, when kj = 2
and when kj = 3.

The shape of the equilibrium pro�t under duopoly shows the bene�ts of di¤erentiation.

For a given quality of ULD j, kj, ULD i is always better o¤ if he chooses a quality level

di¤erent from the rival�s one (choosing the same quality implies zero pro�t). But ULD i

can di¤erentiate either with a lower quality or with a higher quality than the rival quality.

Figure 3.16 suggests that, when kj is low, ULD i is better o¤ if he di¤erentiates by

choosing a higher quality. However, when kj is high, ULD i is better o¤ by di¤erentiating

by choosing a lower quality. This Figure also suggests that the best response functions in

the �rst stage of the game (when ULDs choose their housing qualities), are discontinuous

(till a certain point it is better to choose a quality lower than the rival, after that point

it is better to chose a quality higher that the rival). This intuition will be important in

the next chapter.

3.6.2 Cases with positive unit transportation costs

In this subsection we analyze what happens when the unit transportation costs are pos-

itive. In this case, the two ULDs are no longer in a symmetric position and hence it is

important to describe what happens in equilibrium for each of the ULDs. We analyze the

di¤erent equilibria, when t = 0:5 and � = 2 (the value chosen for the unit transportation

costs is relatively low so as to guarantee that we have cases where both ULDs operate).
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Table 3.2: Type of equilibrium for several combinations of k1 and k2, when t = 0:5 and
� = 2.

k1jk2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0 NO M2PC M2FC M2PC M2PC M2PC M2PC M2PC M2PC M2PC M2PC M2PC NO

0.5 M1FC M1FC DFC DFC DFC DFC DFC DFCK DFCK DFCK DFCK DFCK M1FC

1 M1FC M1FC M1FC DFC DFC DFC DFC DFC DFCK DFCK DFCK M1FC M1FC

1.5 M1FC M1FC M1FC M1FC DFC DFC DFC DFC DFC DFCK DFCK M1FC M1FC

2 M1FC M1FC DFC M1FC M1FC DFC DFC DFC DFC DFCK DFCK M1PC M1FC

2.5 M1PC DFC DFC DFC DFC M1FC DFC DFC DFC DFC M1PC M1PC M1PC

3 M1PC DFCK DFC DFC DFC DFC M1FC DFCK DFC M1PC M1PC M1PC M1PC

3.5 M1PC DFCK DFC DFC DFC DFC DFC M1FC DFCK M1PC M1PC M1PC M1PC

4 M1PC DFCK DFCK DFC DFC DFC DFC DFC M1PC M1PC M1PC M1PC M1PC

4.5 M1PC DFCK DFCK DFCK DFCK DFCK DFCK DPC DPC M1PC M1PC M1PC M1PC

5 M1PC DFCK DFCK DFCK DFCK DFCK M2PC M2PC M2PC M2PC M1PC M1PC M1PC

5.5 M1PC DPC DFCK M2PC M2PC M2PC M2PC M2PC M2PC M2PC M2PC M1PC M1PC

6 NO M2PC M2FC M2PC M2PC M2PC M2PC M2PC M2PC M2PC M2PC M2PC NO

Table 3.2 shows the type of equilibrium for the various combinations of k1 and k2, when

k1 and k2 vary from 0 to 6 with jumps of 0:5.

As we can see in table 3.2, we have six types of equilibria. Like before, when ki = 0 or

ki = 6 and kj = 0 or kj = 6 both ULDs have no demand and thus none of them operates

in the market (this case is denoted by NO in the table). However when 0 < k1 = k2 < 6,

we get a quite di¤erent type of equilibrium than the one with nil transportation costs. In

these cases, the demand function is discontinuous (like when t = 0) but now ULD 1 has an

advantage because consumers have to incur transportation costs if they buy a house from

ULD 2. Therefore we obtain equilibria where only ULD 1 operates, with full coverage

(M1FC) for lower qualities and with partial coverage (M1PC) for higher qualities.

When k2 = 0 or k2 = 6 and 0 < k1 < 6, for low values of k1 we obtain an equilibrium

where ULD 1 operates with full coverage(M1FC) whereas for high values of k1 only ULD

1 operates but with partial coverage (M1PC). Symmetrically when k1 = 0 or k1 = 6

and 0 < k2 < 6, we obtain an equilibrium where ULD 2 operates with partial coverage

(M2PC) except for k2 = 1 where also only ULD 2 operates but with full coverage.

When k2 > k1 > 0, we obtain four types of equilibria: both ULD operate with full
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coverage (DFC); or both ULD operate with full coverage but, �̂ = �, in a kink case

(DFCK); or for high values of k2 and small values of k1 only ULD 1 operates with full

coverage (M1FC); for high values of k2 and k1 we obtain a equilibria where only ULD 1

operates but with partial coverage (M1PC).

When k1 > k2 > 0, we obtain the following types of equilibrium: for low values of

k1 we obtain an equilibrium where only ULD 1 operates with full coverage (M1FC); for

intermediate values of k1, we obtain an equilibrium where both ULD operate with full

coverage (DFC) or the same but in a kink case (DFCK); or both operate with partial

coverage (DPC); or when k1 is very high we obtain the equilibrium where ULD 2 operate

with partial coverage (M2PC).

Let us now analyze the equilibrium prices and pro�ts for each ULD, for di¤erent

quality levels. Figure 3.17 shows p�1 as a function of k1(on the left) and p
�
2 as a function

of k2(on the right) for given values of k2 and k1, respectively.
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Figure 3.17: Equilibrium price of ULD 1 and ULD 2 as a function of their quality levels

The behavior of the equilibrium prices as a function of the ULD�s quality is very

similar to the one observed with nil transportation costs. For k2 = 0, k2 = 2 and k2 = 3,

as we can see, p1 is an increasing and convex function of k1. Similarly, for given values of

k1, p2 is an increasing and convex function of k2.

Result 3.20 With positive unit transportation costs, for given the values of kj, the equi-

librium price of ULD i, p�i ; is an increasing and convex function of its own quality, ki.
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The intuition for this result is the same than in the case where t = 0. An increase

in ki a¤ects positively the demand of ULD i and negatively the demand of ULD j, for

given prices. Moreover increasing ki leads to an increase in ULD i marginal costs. The

positive impact on Di and on the marginal cost lead to an higher p�i whereas the negative

impact on Dj tends to decrease p�i , but the �rst two e¤ects outweigh the last one. The

convex shape of p�i can be explained by the convex shape of the marginal costs, which are

a quadratic function of quality.

Figure 3.18 represents, on the left side, the values p�1 as a function of k2 (considering

k1 = 2; k1 = 4 and k1 = 5); on the right side, it shows the values of p�2 as a function

of k1 (considering k2 = 2; k2 = 4 and k2 = 5). Note that the equilibrium price of ULD

2 are slightly lower than the equilibrium prices of ULD 1. However, the behavior of the

equilibrium prices as a function of the quality level of the rival ULD is very similar to the

one observed when t = 0.

Result 3.21 With positive unit transportation cost, for intermediate values of ki, the

equilibrium price of ULD i, p�i , is a non-monotonic function of kj. For small values of

kj, p�i is decreasing with kj but, after a certain point, p
�
i becomes an increasing function

of kj. Finally, for very high values of kj, p�i is constant. In other words, for intermediate

values of ki and kj, the equilibrium price of ULD i follows a U relationship with kj.

The explanation for this result is the same than when t = 0. When kj increases, the

demand of ULD i decreases, leading to lower optimal price for ULD i (the best response

function of ULD i shifts to the left). However, when kj increases, the demand and the

marginal costs of ULD j increase, leading to an upward shift in the best response of ULD

j. Since ULD j increases its price, and prices are strategic complements, in equilibrium

ULD i also increases its price. Hence the two e¤ects have opposite signs: the direct e¤ect

is negative whereas the indirect e¤ect is positive. For small values of kj the �rst e¤ect

dominates the second one (thus p�i decreases with kj) while, for higher values of kj, the

second e¤ect dominates (hence p�i is increasing with kj).

As it can be seen in Figure 3.18, in the three curves of the two graphics, when the
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quality of the rival ULD is nil or when it is too high, ULD i is a monopolist and its

optimal price does not depend on kj. For intermediate values of kj there is a duopoly and

the price is below the monopoly price (due to the competition e¤ect).
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Figure 3.18: Equilibrium price of ULD 1 and ULD 2 as a function of the housing quality
of ULD 2 and ULD 1, respectively.

The previous results show that, the existence of positive unit transportation costs

does not change the overall pattern of the equilibrium prices. Nevertheless, it should

be highlighted that the equilibrium prices are not symmetric when t > 0. However the

biggest di¤erence in terms of results is the one regarding the equilibrium pro�ts. When the

quality is too low or too high, we have a monopoly, and the shape of the pro�t is concave

like the case of nil cost of transportation, as we can see in Figure 3.19. But when we have

a duopoly, the result is very di¤erent, has we can see in the Figure 3.19 that represents

the equilibrium pro�t of ULD 1, ��1, as a function of k1, considering k2 = 1; k2 = 2:5 and

k2 = 4 (on the left). In the same Figure, on the right, we have the equilibrium pro�t of

ULD 2, ��2, as a function of k2. Those �gures allows us to conclude the following:

Result 3.22 With positive unit transportation cost, when kj is nil or when kj is too high,

ULD i is a monopoly and the corresponding pro�t is a concave function of its own quality

level, ki. For low values of kj, the pro�t of ULD i quasi-concave function of its own

quality and the optimal pro�t occurs for ki > kj. For high values of kj, the pro�t of ULD

i quasi-concave function of its own quality and the optimal pro�t occurs for ki < kj. For
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intermediate values of k2, the equilibrium pro�t of ULD 1 has a local maximum when

k1 = k2. On the other hand, for intermediate values of k1, the equilibrium pro�t of ULD

2 has two local maxima: one with k2 < k1 and the other one with k2 > k1.
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Figure 3.19: Equilibrium pro�t of ULD1 and ULD2 , ��1 and �
�
2, as a function of its

quality, k1and k2 , when the quality of the other ULD is equal to 1; 2:5 and 4.

The equilibrium pro�t when only one of the ULD operates (because the other ULD

has a nil quality or a too high quality) has a similar shape to the one observed when t = 0

(but the monopoly pro�t of ULD 2 is lower due to the transportation cost). However,

for intermediate values of the rival ULD�s quality, the behavior of the equilibrium pro�t

is very di¤erent for ULD 1 and ULD 2. While ULD 2 gets an higher equilibrium pro�t

when its quality is di¤erent from k1, ULD 1 equilibrium pro�t may be higher when its

quality is precisely the same than the quality of ULD 2. The explanation is that when the

unit cost of transportation is di¤erent from zero, ULD 1 has an advantage when qualities

are the same and is able to capture all the demand by charging p1 � c2 + t (ULD 1 is a

constrained monopolist). This result is important for the next chapter as it suggests that

we may have a problem in �nding an equilibrium in the �rst stage of the game.
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3.7 Conclusion

In this chapter we analyzed the second stage of a two stage game between two urban land

developers, in which one of the ULD is located at the CBD while the other is located

in the periphery. In the �rst stage the two ULD simultaneously choose the quality of

housing and, in the second stage, they simultaneously choose prices. This chapter solved

the second stage price competition game, considering the qualities chosen in the �rst stage

as given.

The chapter started with a literature review on vertical di¤erentiation models, that

allowed us to recognize the basic features of those models and to construct our model

according the speci�cities of the urban land developers. Since the location of the house

is an important characteristic, our model incorporates unit cost of transportation when

a house is bought from the ULD located in the periphery. In addition we consider �xed

and variable costs of quality improvement.

To solve the model, we started by deriving the demand functions of each ULD and

by imposing conditions on the quality levels of the two ULDs so that their demand is

positive. In addition we de�ned some cut-o¤ valuations which enabled us to simplify

the exposition. Next, we found analytically the Nash equilibrium for di¤erent quality

vectors. Our analysis is very complete as we explore all the possible cases both in terms

of who operates in the market (in some cases both operate while in others only one of

the urban land developers operates) as well as in terms of the market coverage (in some

cases the whole market is covered while in others there is only partial market coverage).

For this reason, this chapter is an important contribution to the quality di¤erentiation

literature. Furthermore the chapter characterizes the Nash equilibrium (equilibrium type,

equilibrium prices and equilibrium pro�ts) for the di¤erent quality levels.

The results show that with nil transportation costs, the equilibrium price of a ur-

ban land developer is increasing with its housing quality, for given values of the quality

of the other urban land developer. This result is also valid with positive unit cost of

transportation. On the other hand, the equilibrium price of a urban land developer is a

74



non-monotonic function of the quality of the rival ULD. In particular, for intermediate

values of the other ULD quality, there is a U shaped relationship between the equilibrium

price of a ULD and the housing quality of the other ULD. This result is also valid with

positive transportation costs.

When the quality of an ULD is nil or very high, this ULD has zero demand and

the other ULD is a monopolist. In this case the monopolist ULD optimal pro�t is a

concave function of its housing quality: the equilibrium pro�t �rst grows with quality, up

to a maximum, and then falls and becomes equal to zero. This result is also valid with

positive unit cost of transportation. However when the two ULD have intermediate levels

of quality and the unit transportation cost is nil, the equilibrium pro�t functions have two

local maxima (one where the ULD chooses a quality lower than the rival, the other one

where the ULD chooses a quality higher than the rival). Therefore, the equilibrium pro�t

functions show the bene�ts of di¤erentiating the quality. Moreover the result shows that,

when the other ULD has a low quality it is better to di¤erentiate by choosing a higher

quality, whereas when the rival has a high quality it is better to di¤erentiate by choosing

a lower quality.

On the other hand, with positive unit transportation costs and intermediate quality

levels, the ULD located at the periphery prefers to di¤erentiate but the ULD located

at the CBD may be better o¤ by choosing a quality level equal to the rival�s one and

«exploiting» its locational advantage.
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Appendix A �Demand functions

Case where k1 = k2

We start by analyzing the case when k1 = k2 = k. In this case the two urban land

developers are o¤ering precisely the same quality, thus there is no di¤erentiation and the

consumers always prefer the ULD that has a lower total price. For instance, the consumers

strictly prefer ULD 1 if:

�k � p1 > �k � t� p2 , p1 < p2 + t

Similarly, if p2 < p1 � t all consumers prefer ULD 2. Finally, when p1 = p2 + t the

consumers will be indi¤erent between buying from ULD 1 or ULD 2. In this case we

assume that demand is equally divided among the two ULD. Consequently, demand is

discontinuous. If p1 � �k all consumers prefer to buy from ULD 1 than not to buy, hence

the market is fully covered and the demand of ULD 1 is:

D1(p1; p2) =

8>>><>>>:
0 if p1 > p2 + t
1
2

if p1 = p2 + t

1 if p1 < p2 + t

If �k < p1 � (� + 1) k the market is only partially covered when ULD 1 operates and

demand of ULD 1 is:

D1(p1; p2) =

8>>><>>>:
0 if p1 > p2 + t
1
2

�
� + 1� p1

k

�
if p1 = p2 + t

� + 1� p1
k

if p1 < p2 + t
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The demand function of �rm 2 can be derived in a similar manner. If p2 � �k � t

D2(p1; p2) =

8>>><>>>:
0 if p2 > p1 � t
1
2

if p2 = p1 � t

1 if p2 < p1 � t

If �k � t < p2 � (� + 1) k � t the demand of ULD 2 is:

D2(p1; p2) =

8>>><>>>:
0 if p2 > p1 � t
1
2

�
� + 1� p2+t

k

�
if p2 = p1 � t

� + 1� p2+t
k

if p2 < p1 � t

Case where k2 > k1

If ULD 2 o¤ers a higher quality house than ULD 1, the demand functions depend on the

price di¤erential, p2 � p1. If p2 � p1 > (� + 1) (k2 � k1) � t all consumers prefer to buy

from ULD 1 than from ULD 2. Depending on its price the ULD 1 may get the whole

demand (if p1 � �k1) or cover the market only partially (if �k1 < p1 � (� + 1) k1). Figure

3.20 illustrates these two cases.
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( +1) − −θ k t p2 2
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U k p1 1 1( ) =θ θ −

U2( )θ = θ − −k t p2 2

θ+1

( +1) −θ k p1 1

θk p1 1−

( +1) − −θ k t p2 2

θ

U k p1 1 1( ) =θ θ −

U2( )θ = θ − −k t p2 2

Demand of ULD 1 Demand of ULD 1

Figure 3.20: If the price di¤erential p2 � p1 is high, ULD 2 gets no demand. Depending
on p1, ULD 1 may cover the whole market (left) or not (right).
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Thus when p2 � p1 > (� + 1) (k2 � k1)� t the demand functions are:

D1(p1; p2) =

8>>><>>>:
0 if p1 > (� + 1) k1

� + 1� p1
k1

if �k1 < p1 � (� + 1) k1
1 if p1 < �k1

and D2(p1; p2) = 0

The opposite happens when the price di¤erential is very low. If p2�p1 < max
�
�;b�1� (k2 � k1)�

t, ULD 1 has zero demand whereas ULD 2 covers the whole market (if p2 � �k2 � t) or

covers the market partially (if �k2 � t < p2 � (� + 1) k2 � t). Figure 3.21 illustrates these

two cases.
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Figure 3.21: If the price di¤erential p2� p1 is low, ULD 1 gets no demand. Depending on
p2, ULD 2 may cover the whole market (left) or not (right).

Thus when p2 � p1 < max
�
�;b�1� (k2 � k1)� t the demand functions are:

D1(p1; p2) = 0 and D2(p1; p2) =

8>>><>>>:
0 if p2 > (� + 1) k2 � t

� + 1� p2+t
k2

if �k2 � t < p2 � (� + 1) k2 � t

1 if p2 < �k2 � t

For price di¤erentials between the two previous limits, both urban land developers

operate. Figure 3.22 illustrates this case when there is full coverage (left) and when there

is partial coverage (right). Note that the higher quality urban land developer, ULD 2,

covers the higher valuation consumers while ULD 1 covers the lower valuation consumers.

If p1 is relatively high, the lower valuation consumers prefer not to buy. Thus when
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Figure 3.22: For intermediate price di¤erentials, both �rms operate either with full cov-
erage (left) or with partial coverage (right). ULD 2 covers higher valuation consumers
while ULD 1 covers lower valuation consumers.

max
�
�;b�1� (k2 � k1)� t < p2 � p1 � (� + 1) (k2 � k1)� t the demand function are:

D1(p1; p2) =

8>>><>>>:
0 if p1 > (� + 1) k1
p2�p1+t
k2�k1 � p1

k1
if �k1 < p1 � (� + 1) k1

p2�p1+t
k2�k1 � � if p1 < �k1

and

D2(p1; p2) =

8<: 0 if p2 > (� + 1) k2 � t

� + 1� p2�p1+t
k2�k1 if p2 � (� + 1) k2 � t

Case where k1 > k2

Let us now consider the case where ULD 1 o¤ers a house of higher quality than ULD 2.

If p1� p2 > (� + 1) (k1 � k2) + t all consumers prefer to buy from ULD 2 than from ULD

1. Depending on its price ULD 2 may get the whole demand (if p2 � �k2 � t) or cover

the market only partially (if �k2 � t < p2 � (� + 1) k2 � t). Figure 3.23 illustrates these

two cases.
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Figure 3.23: If the price di¤erential p1 � p2 is high, ULD 1 gets no demand. Depending
on p2, ULD 2 may cover the whole market (left) or not (right).

Thus when p1 � p2 > (� + 1) (k1 � k2) + t the demand functions are:

D1(p1; p2) = 0 and D2(p1; p2) =

8>>><>>>:
0 if p2 > (� + 1) k2 � t

� + 1� p2+t
k2

if �k2 � t < p2 � (� + 1) k2 � t

1 if p2 < �k2 � t

The opposite happens when the price di¤erential is very low. If p1�p2 < max
�
�;b�2� (k1 � k2)+

t, ULD 2 has zero demand whereas ULD 1 covers the whole market (if p1 � �k1) or covers

the market partially (if �k1 < p1 � (� + 1) k1. Figure 3.24 illustrates these two cases.

θ+1

( +1) −θ k p1 1

( +1) − −θ k t p2 2

θ

U k p1 1 1( ) =θ θ −

U2( )θ = θ − −k t p2 2

θ+1

( +1) −θ k p1 1

θk p1 1−

( +1) − −θ k t p2 2

θ

U k p1 1 1( ) =θ θ −

U2( )θ = θ − −k t p2 2

Demand of ULD 1 Demand of ULD 1

Figure 3.24: If the price di¤erential p1� p2 is low, ULD 2 gets no demand. Depending on
p1, ULD 1 may cover the whole market (left) or not (right).
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Thus when p1 � p2 < max
�
�;b�2� (k1 � k2) + t the demand functions are:

D1(p1; p2) =

8>>><>>>:
0 if p1 > (� + 1) k1

� + 1� p1
k1

if �k1 < p1 � (� + 1) k1
1 if p1 < �k1

and D2(p1; p2) = 0

For price di¤erentials between the two previous limits, both urban land developers

operate. Figure 3.24 illustrates this case, both when the market is whole covered (left)

and when the market is not fully covered (right). Note that in both cases, ULD 1 serves

the consumers who value most quality.

θ+1

( +1) −θ k p1 1

( +1) − −θ k t p2 2

θθ+1

( +1) −θ k p1 1

( +1) − −θ k t p2 2

θ

Demand of ULD 2 Demand of ULD 2Demand of ULD 1 Demand of ULD 1

θ∗ θ∗

Figure 3.25: For intermediate price di¤erentials, both �rms operate either with full cov-
erage (left) or with partial coverage (right). ULD 1 covers higher valuation consumers
while ULD 2 covers lower valuation consumers.

Thus when max
�
�;b�2� (k1 � k2) + t < p1 � p2 � (� + 1) (k1 � k2) + t the demand

function are:

D1(p1; p2) =

8<: 0 if p1 > (� + 1) k1

� + 1� p1�p2�t
k1�k2 if p1 � (� + 1) k1

and

D2(p1; p2) =

8>>><>>>:
0 if p2 > (� + 1) k2 � t
p1�p2�t
k1�k2 � p2+t

k2
if �k2 � t < p2 � (� + 1) k2 � t

p1�p2�t
k1�k2 � � if p2 < �k2 � t
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Appendix B �Gauss Program

/*****************************************************************/
/* This program computes the NE of the quality-price game for given quality levels */
/* (k1,k2). For each (k1,k2) the equilibrium prices, pro�t and type of equilibria is */
/* computed for each �rm. */
/*****************************************************************/
/******* Parameters of the model ***********************/
tetab=2;
t=0.5;
saltok=0.5; /* step size for the iterations on the quality levels*/
format /rdt 6,3; /* print number formatation */
tol=10^(-12);
/*****************************************************************/
/**Finding the second stage NE for various levels of (k1,k2) and saving ***********/
/******** the NE variables of each �rm in a matrix ************/
/*****************************************************************/
k1min=0;
k2min=0;
k1max=2*(tetab+1);
k2max=2*(tetab+1);
niterk1=int((k1max-k1min)/saltok)+1; /* number of iterations for quality level of �rm 1 */
niterk2=int((k2max-k2min)/saltok)+1; /* number of iterations for quality level of �rm 2 */
pi1mat=ones(niterk1,niterk2); /* create matrix to save the NE pro�t of �rm 1 */
pi1mat=pi1mat*(-5);
pi2mat=ones(niterk1,niterk2); /* create matrix to save the NE pro�t of �rm 2 */
pi2mat=pi2mat*(-5);
typemat=zeros(niterk1,niterk2);
p1mat=ones(niterk1,niterk2); /* create matrix to save the NE prices of �rm 1 */
p1mat=p1mat*(-5);
p2mat=ones(niterk1,niterk2); /* create matrix to save the NE prices of �rm 1 */
p2mat=p2mat*(-5);
k2mat=zeros(1,niterk2);
k1mat=zeros(niterk1,1);
k1=k1min;
iterk1=1;
do while k1<= k1max;
c1=(k1^2)/2; /* marginal production costs as a function of k1 */
fcost1=0.001;
k2=k2min;
iterk2=1;
pi1eq=-5;
pi2eq=-5;
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do while k2<= k2max;
c2=(k2^2)/2; /* marginal production costs as a function of k2 */
fcost2=0.001;
/******** Condition for a �rn to have zero demand if price is ************/
/******** greater or equal than marginal cost ************/
k2dmin= (tetab+1)-sqrt((tetab+1)^2-2*t);
k2dmax=(tetab+1)+sqrt((tetab+1)^2-2*t);
k1dmax=2*(tetab+1);
k1dmin=0;
/*****************************************************************/
/****** Cases where both �rms have zero demand ****************************/
/*****************************************************************/
if (k2 le k2dmin or k2 ge k2dmax) and (k1 le k1dmin or k1 ge k1dmax); /* both �rms have

zero demand */
p1mat[iterk1,iterk2]=c1;
p2mat[iterk1,iterk2]=c2;
if k1 eq 0;
pi1mat[iterk1,iterk2]=0;
else;
pi1mat[iterk1,iterk2]=-fcost1;
endif;
if k2 eq 0;
pi2mat[iterk1,iterk2]=0;
else;
pi2mat[iterk1,iterk2]=-fcost2;
endif;
typemat[iterk1,iterk2]=1;
goto nefoundc;
endif;
/***********************************************************************/
/****** Cases where only �rm 2 has zero demand ***********************/
/***********************************************************************/
if (k2 le k2dmin or k2 ge k2dmax) and (k1 gt k1dmin and k1 lt k1dmax); /* only �rm 1

operates */
p2mat[iterk1,iterk2]=c2;
if k2 eq 0;
pi2mat[iterk1,iterk2]=0;
else;
pi2mat[iterk1,iterk2]=-fcost2;
endif;
p1eq=(c1+k1*(tetab+1))/2jtetab*k1;
p1eq=maxc(p1eq);
tetahat1=p1eq/k1;
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/*** check if �rm 1 operates and has full coverage **/
if (p1eq eq(tetab*k1))and (p1eq ge c1);
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=2;
goto nefoundc;
endif;
/*** check if �rm 1 operates and does not have full coverage **/
if (p1eq eq ((c1+k1*(tetab+1))/2)) and (tetahat1 le (tetab+1)) and (p1eq ge c1); /*check

if we are in this case */
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=3;
goto nefoundc;
endif;
endif;
/***********************************************************************/
/****** Cases where only �rm 1 has zero demand ***********************/
/***********************************************************************/
if (k1 le k1dmin or k1 ge k1dmax) and (k2 gt k2dmin and k2 lt k2dmax); /* only �rm 2

operates */
p1mat[iterk1,iterk2]=c1;
if k1 eq 0;
pi1mat[iterk1,iterk2]=0;
else;
pi1mat[iterk1,iterk2]=-fcost1;
endif;
p2eq=(c2+k2*(tetab+1)-t)/2jk2*tetab-t;
p2eq=maxc(p2eq);
/*** check if �rm 2 operates and has full coverage **/
if p2eq eq (k2*tetab-t) and p2eq ge c2;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=4;
goto nefoundc;
endif;
/*** check if �rm 2 operates and does not have full coverage **/
tetahat2=(p2eq+t)/k2;
if p2eq eq (c2+k2*(tetab+1)-t)/2 and tetahat2 le (tetab+1) and p2eq ge c2; /*check if we

are in this case */
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pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=5;
goto nefoundc;
endif;
endif;
/***********************************************************************/
/****** Cases when k2 = k1 (but with positive demand) *****************/
/***********************************************************************/
if k2 eq k1;
if t eq 0;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
typemat[iterk1,iterk2]=6;
else;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
/**** check if there is partial coverage *******************/
p1eq=(c1+k1*(tetab+1))/2;
p1eqc=p1eqj(c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
if tetahat1 gt tetab and tetahat1 le (tetab+1) and p1eq ge c1;
pi1eq=(tetab+1-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=7;
goto nefoundc;
endif;
p1eqc=(k1*tetab)j(c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
if tetahat1 le tetab and p1eq ge c1;
pi1eq=(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=8;
goto nefoundc;
endif;
endif;
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endif;
/***********************************************************************/
/****** Cases when k2 > k1 ********************************************/
/***********************************************************************/
if k2 gt k1;
/**** check if NE has full coverage and both �rms operate ******/
p1eq=((1-tetab)*(k2-k1)+2*c1+c2+t)/3;
p2eq=((tetab+2)*(k2-k1)+2*c2+c1-t)/3;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetahat1=p1eq/k1;
if tetahat1 le tetab and tetastar ge tetab and tetastar le (tetab+1)and p1eq ge c1 and p2eq

ge c2; /*check if we are in this case */
pi1eq=((p2eq-p1eq+t)/(k2-k1)-tetab)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=9;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if NE does not have full coverage and both �rms operate **/
p1eq=(k1*(tetab+1)*(k2-k1)+2*c1*k2+c2*k1+t*k1)/(4*k2-k1);
p2eq=(2*k2*(tetab+1)*(k2-k1)+c1*k2+2*c2*k2-t*(2*k2-k1))/(4*k2-k1);
tetahat1=p1eq/k1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
if tetahat1 gt tetab and tetahat1 le tetastar and tetastar le (tetab+1)and p1eq ge c1 and

p2eq ge c2; /*check if we are in this case */
pi1eq=((p2eq-p1eq+t)/(k2-k1)-(p1eq/k1))*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=10;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/**** check if NE has full coverage and both �rms operate but in a kink case******/
p1eq=tetab*k1;
p2eq=((tetab+1)*(k2-k1)+c2-t+p1eq)/2;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetahat1=p1eq/k1;
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if tetastar ge tetab and tetastar le (tetab+1)and p1eq ge c1 and p2eq ge c2; /*check if we
are in this case */

pi1eq=((p2eq-p1eq+t)/(k2-k1)-tetab)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=101;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if in the NE only �rm 2 operates and does not have full coverage **/
p2eqc=((c2+k2*(tetab+1)-t)/2)j((k2*c1/k1)-t);
p2eq=minc(p2eqc);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
if tetastar le tetahat2 and tetahat2 ge tetab and tetahat2 le (tetab+1) and p2eq ge c2;
p1mat[iterk1,iterk2]=p1eq;
pi1mat[iterk1,iterk2]=-fcost1;
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=11;
goto nefoundc;
endif;
/*** check if in the NE only �rm 2 operates and has full coverage **/
p2eqc=(tetab*k2-t)j(tetab*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
p2eq=p2eqj((tetab+1)*(k2-k1)+c2-t+p1eq)/2;
p2eq=maxc(p2eq);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-tetab;
tetadif=abs(tetadif);
if tetastar le tetab and tetahat2 le tetab and p2eq ge c2; /* check if, given prices, we are in

this case */
p1mat[iterk1,iterk2]=p1eq;
pi1mat[iterk1,iterk2]=-fcost1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
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typemat[iterk1,iterk2]=12;
goto nefoundc;
endif;
if tetadif le tol and tetahat2 le tetab and p2eq ge c2; /* check if, given prices, we are in this

case */
p1mat[iterk1,iterk2]=p1eq;
pi1mat[iterk1,iterk2]=-fcost1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=121;
goto nefoundc;
endif;
/**** check if NE only �rm 2 operates and has full coverage but in a kink case******/
p1eq=c1;
p2eqc=(tetab*k2-t)j(tetab*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetahat1=p1eq/k1;
tetahat2=(p2eq+t)/k2;
if tetastar eq tetab and tetahat2 le tetab and p2eq ge c2; /*check if, given prices, we are in

this case */
pi1eq=-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=122;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if in the NE only �rm 1 operates and does not have full coverage **/
p1eqc=((c1+k1*(tetab+1))/2)j((tetab+1)*(k1-k2)+c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
p2eq=c2;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
if tetastar ge (tetab+1) and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
p2mat[iterk1,iterk2]=c2;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
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pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=13;
goto nefoundc;
endif;
if tetadif le tol and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
p2mat[iterk1,iterk2]=c2;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=131;
goto nefoundc;
endif;
/*** check if in the NE only �rm 1 operates and has full coverage **/
p1eqc=(tetab*k1)j((tetab+1)*(k1-k2)+c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
p2eq=c2;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
tetadif1=tetahat1-tetab;
tetadif1=abs(tetadif1);
if tetastar ge (tetab+1) and tetahat1 le tetab and p1eq ge c1; /*check if, given prices, we

are in this case */
p2mat[iterk1,iterk2]=p2eq;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=14;
goto nefoundc;
endif;
if tetadif le tol and tetahat1 le tetab and p1eq ge c1;
p2mat[iterk1,iterk2]=p2eq;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=141;
goto nefoundc;
endif;
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if tetadif1 le tol and tetastar ge (tetab+1) and p1eq ge c1;
p2mat[iterk1,iterk2]=p2eq;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=142;
goto nefoundc;
endif;
endif;
/***********************************************************************/
/****** Cases when k1 > k2 ********************************************/
/***********************************************************************/
/**** check if NE has full coverage and both �rms operate ******/
if k1 gt k2;
p1eq=((tetab+2)*(k1-k2)+2*c1+c2+t)/3;
p2eq=((1-tetab)*(k1-k2)+2*c2+c1-t)/3;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetahat2=(p2eq+t)/k2;
if tetahat2 le tetab and tetastar ge tetab and tetastar le (tetab+1) and p1eq ge c1 and p2eq

ge c2; /*check if, given prices, we are in this case */
pi2eq=((p1eq-p2eq-t)/(k1-k2)-tetab)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
pi1eq=((tetab+1)-(p1eq-p2eq-t)/(k1-k2))*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=15;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if NE does not have full coverage and both �rms operate **/
p1eq=(2*k1*(tetab+1)*(k1-k2)+k1*(2*c1+c2+t))/(4*k1-k2);
p2eq=(k2*(tetab+1)*(k1-k2)+2*k1*c2+k2*c1-t*(2*k1-k2))/(4*k1-k2);
tetahat2=(p2eq+t)/k2;
tetastar=(p1eq-p2eq-t)/(k1-k2);
if tetahat2 ge tetab and tetahat2 le tetastar and tetastar le (tetab+1)and p1eq ge c1 and

p2eq ge c2; /*check if, given prices, we are in this case */
pi2eq=(tetastar-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
pi1eq=((tetab+1)-tetastar)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
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typemat[iterk1,iterk2]=16;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/**** check if NE has full coverage and both �rms operate but we are in a kink case ******/
p2eq=tetab*k2-t;
p1eq=((tetab+1)*(k1-k2)+c1+p2eq+t)/2;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetahat2=(p2eq+t)/k2;
if tetastar ge tetab and tetastar le (tetab+1) and p1eq ge c1 and p2eq ge c2; /*check if,

given prices, we are in this case */
pi2eq=((p1eq-p2eq-t)/(k1-k2)-tetab)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
pi1eq=((tetab+1)-(p1eq-p2eq-t)/(k1-k2))*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=161;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if in the NE only �rm 1 operates and does not have full coverage **/
p1eqc=((c1+k1*(tetab+1))/2)j(k1*(c2+t)/k2);
p1eq=minc(p1eqc);
p2eq=c2;
tetahat1=p1eq/k1;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetadif=tetastar-tetahat1;
tetadif=abs(tetadif);
if tetastar le tetahat1 and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=17;
goto nefoundc;
endif;
if tetadif le tol and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=171;
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goto nefoundc;
endif;
/*** check if in the NE only �rm 1 operates and has full coverage **/
p1eqc=(tetab*k1)j(tetab*(k1-k2)+c2+t);
p1eq=minc(p1eqc);
p2eq=c2;
tetahat1=p1eq/k1;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetadif=tetastar-tetab;
tetadif=abs(tetadif);
if tetastar le tetab and tetahat1 le tetab and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=18;
goto nefoundc;
endif;
if tetadif le tol and tetahat1 le tetab and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=181;
goto nefoundc;
endif;
/*** check if in the NE only �rm 2 operates and does not have full coverage **/
p2eqc=((c2+k2*(tetab+1)-t)/2)j((tetab+1)*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
if tetastar ge (tetab+1) and tetahat2 ge tetab and tetahat2 le (tetab+1) and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=19;
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goto nefoundc;
endif;
if tetadif le tol and tetahat2 ge tetab and tetahat2 le (tetab+1) and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=191;
goto nefoundc;
endif;
/*** check if in the NE only �rm 2 operates and has full coverage **/
p2eqc=(tetab*k2-t)j((tetab+1)*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
tetadif1=tetahat2-tetab;
tetadif1=abs(tetadif1);
if tetastar ge (tetab+1) and tetahat2 le tetab and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=20;
goto nefoundc;
endif;
if tetadif le tol and tetahat2 le tetab and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=201;
goto nefoundc;
endif;
if tetadif1 le tol and tetastar ge (tetab+1) and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=p2eq-c2-fcost2;
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pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=202;
goto nefoundc;
endif;
endif;
nefoundc:
k2mat[1,iterk2]=k2;
k2=k2+saltok;
iterk2=iterk2+1;
endo;
k1mat[iterk1,1]=k1;
k1=k1+saltok;
iterk1=iterk1+1;
endo;
pidif=pi1mat-pi2mat�;
pdif=p1mat-p2mat�;
print "Type of NE";
print typemat;
print "Equilibrium prices for �rm 1";
print p1mat;
print "Equilibrium prices for �rm 2";
print p2mat;
print "Equilibrium pro�t for �rm 1";
print pi1mat;
print "Equilibrium pro�t for �rm 2";
print pi2mat;
print "pro�ts matrizes di¤erence";
print pidif;
print "prices matrizes di¤erence";
print pdif;
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Chapter 4

Housing quality choice in a price

competition duopoly model

4.1 Introduction

In the previous chapter and in this one we consider a two stage model among two urban

land developers,where one of the producers stays at the CBD while the other one has

a more decentralized location. In the �rst stage of the game the two ULDs take simul-

taneously their quality decisions and in the second stage of the game they compete in

prices.

The emphasis in the last chapter was in the price competition game among the two

ULDs, for given quality levels. We started by deriving analytically the Nash equilibrium

of the second stage of the game. Next, using numerical simulations we studied how the

equilibrium changes with the qualities chosen in the �rst stage. In particular we looked

at the equilibrium prices, at the equilibrium pro�ts and at the type of equilibrium that

occurs for each vector of qualities.

In this chapter we complete the analysis of the game by looking at the choice of the

quality levels in the �rst stage of the game. Thus we determine the Subgame Perfect

Nash Equilibrium (SPNE) of the quality-price game. Since it is impossible to get an
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analytical solution for the equilibrium qualities, we determine the Subgame Perfect Nash

Equilibrium (SPNE) numerically. We used the Gauss software to create a program that

computes the SPNE of the quality-price game. The program determines �rst the Nash

equilibrium of the second stage game, for given quality levels. That is, for each (k1; k2)

we obtain the equilibrium prices and pro�ts for each ULD. This procedure is repeated for

many (k1; k2), and the equilibrium values for pro�t is saved in two matrices: the pro�t

matrix of ULD 1 and the pro�t matrix of ULD 2. These two matrices are then used

to determine the best response functions of each ULD. To determine the best response

function of ULD 1, for each k2 we �nd the maximum value of ULD 1 pro�t in the column

that corresponds to k2 in the ULD 1 pro�t matrix and identify the value of k1 that

corresponds to it. Similarly, to identify the best response function of ULD 2, for each k1

we �nd the maximum value of ULD 2 pro�t in the row that corresponds to k1 in the ULD 2

pro�t matrix and identify the value of k2 that corresponds to it. Next the Nash equilibrium

of the �rst stage game is determined, by identifying the pairs of (k1, k2) such that both

ULDs are simultaneously in their best responses. After identifying the equilibrium values

for (k1; k2), the corresponding NE of the second stage is determined. This procedure

is repeated for many values of the unit transportation cost, t; and the lowest quality

valuation, �, to analyze how the equilibrium changes with these two parameters. The

program computes the equilibrium qualities and the equilibrium pro�ts for each ULD as

well as the types of equilibria.

In this chapter we present the results of our numerical analysis of the SPNE. The chap-

ter starts by looking at the best response functions of both ULDs, we analyze the best

response functions for nil unit transportation costs as well as for positive unit transporta-

tion costs. Next we discuss how the equilibria change as we vary the unit transportation

costs and the lowest quality valuation. In particular, we analyze the type of equilibria

that occur, the changes in the equilibrium qualities and the changes in the equilibrium

pro�ts.
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4.2 Best Response Functions

In this section we present graphically some of the results obtained in our numerical analy-

sis. In order to give an idea of the shape of the best response functions and how they

change as we vary the unit transportation cost, t, we present the best response functions

with nil transportation case (in which case there is symmetry between the two ULDs)

and the best response functions when t is positive (in which case there is no symmetry).

4.2.1 Best response for nil unit cost of transportation

First we analyze the best response function for nil cost of transportation (t = 0). In

order do obtain the values for the best response function of both ULDs, we considered

increments of 0:1 for k1 and for k2. We compute the best response functions for � = 0:5,

for � = 2, and for � = 3:5 (see in Figure 4.1). By looking at these best response functions

we will get an idea of the impact of the quality valuation parameter on the best response

functions.
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Figure 4.1: Best response functions for t = 0, when � = 0:5, � = 2 and � = 3:5.

As we can see in Figure 4.1, for nil unit cost of transportation the best response

functions for ULD 1 and ULD 2 are symmetric. Figure 4.1 shows that the best response

functions when � = 0:5 and when � = 2 have a very similar shape. On the contrary, for

� = 3:5 the shape of the best response functions is quite di¤erent.
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In the two �rst graphs we observe that when k2 = 0, or when k2 is very high, ULD 1

best response is to choose the monopoly quality level (for instance, when � = 2 and k2 = 0

or k2 > 5:6, the best response of ULD 1 is k�1 = 2). This explains the vertical segment of

ULD 1 best response when k2 is very high (similarly, the best response function of ULD 2

has an horizontal segment for very high values of k1). In addition, for low values of k2 it

is optimal for ULD 1 to di¤erentiate o¤ering higher quality, whereas for higher values of

k2, it is optimal for ULD 1 to di¤erentiate by o¤ering lower quality. The best response of

ULD 2 is similar. Therefore, when both ULDs operate, the best response functions show

that it is optimal to choose a quality di¤erent from the quality of the rival ULD. When the

other ULD o¤ers a low quality, it is optimal to di¤erentiate by o¤ering an higher quality.

When the other ULD o¤ers a high quality, it is optimal to di¤erentiate by o¤ering a

lower quality. When � = 0:5 and when � = 2, there are two SPNE that involve quality

di¤erentiation (in one ULD 1 has higher quality, in the other one the reverse happens).

The following result summarizes these conclusions:

Result 4.1 For low and intermediate values of the lowest quality valuation parameter, �,

and nil transportation cost, for low values of kj it is optimal for ULDi to di¤erentiate by

o¤ering an higher quality level, k�i > kj. On the other hand, for high values of kj it is

optimal for ULDi to di¤erentiate by o¤ering a lower quality, k�i < kj. When kj = 0 or for

very high values of kj, ULDi is a monopoly and it is optimal to o¤er the monopoly quality

level. Furthermore, the best response functions are positively sloped, except when the ULD

is about to become an unconstrained monopolist. There are two SPNE that involve quality

di¤erentiation.

In Figure 4.1, the graphic on the right side, for � = 3:5, shows a much more complex

behavior and more discontinuities in the best response functions. We can see that for low

values of k2 (ranging from 0 to 1.2) ULD 1 o¤ers the monopoly quality level k1 = 3:5.

This also happens for very high values of k2 (ranging from 8.2 to 9). In this case, since the

consumers value a lot quality, if ULD2 o¤ers a very low quality it will have no demand

and ULD 1 can behave as a monopolist. On the other hand, if ULD 2 o¤ers a too high
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quality it will also have no demand (unless it charges a price below marginal cost) and

again ULD 1 can behave as a monopolist. For values of k2 between 1.3 and 3.5, ULD

1 di¤erentiates o¤ering higher qualities. For values of k2 between 3.6 and 4.5, ULD 1

continues to di¤erentiate o¤ering higher qualities, but much higher qualities. In addition,

in this region the best response function of ULD 1 is negatively sloped (that is, ULD

1 reduces its quality when k2 increases). For k2 ranging from 4.6 to 6.5, ULD 1 still

di¤erentiates o¤ering higher qualities however its quality is again increasing with k2. For

k2 ranging from 5.7 to 7.9, ULD 1 di¤erentiates o¤ering lower quality and its quality

increases with k2. For k2 ranging from 8 to 8.1, ULD 1 still di¤erentiates o¤ering lower

quality but its quality is decreasing with k2.

In terms of equilibria, in our numerical simulations we got 8 equilibria when t = 0

and � = 3:5. However we believe that this is due to the fact that numerically we have to

de�ne the increments in k1 and k2 and we may not have considered a grid �ne enough to

obtain only two equilibria.

4.2.2 Best response for positive unit cost of transportation

Let us now analyze the best response function for positive unit cost of transportation. In

this case the best response functions of the two ULDs are no longer symmetric. Since we

want to analyze the impact of changes in the unit cost of transportation, we set � = 1,

and obtain the best response functions for both ULDs, for t = 0:2, t = 0:5, and t = 0:8

(see Figure 4.2).

When t = 0:2 and t = 0:5 the shape of the best response function of ULD 2 is

very similar to the one observed when t = 0. That is, for small values of k1, ULD 2

wants to di¤erentiate with higher qualities whereas for high values of k1 ULD 2 wants

to di¤erentiate by o¤ering lower qualities. For very high k1, ULD 2 o¤ers the monopoly

quality level and the best response function is horizontal. On the other hand, when t = 0:8,

the best response function of ULD 2 has a di¤erent behavior, since for intermediate values

of k1 the best response of ULD 2 is to choose k2 = 0 (which implies that it will have
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Figure 4.2: Best response functions for � = 1 when t = 0:2, t = 0:5, and t = 0:8.

no demand). This means that if k1 is intermediate, it is not pro�table for ULD 2 to

di¤erentiate either by choosing a lower quality or by choosing an higher quality and thus

ULD 2 ends up choosing a nil quality.

Regarding the shape of the best response of ULD 1, there are more di¤erences relatively

to the nil transportation cost case and as the value of t changes. For t = 0:2 we still observe

that for relatively low value of k2, ULD 1 wants to di¤erentiate by o¤ering higher qualities

whereas for high values of k2, ULD 1 wants to di¤erentiate by o¤ering lower qualities.

However there are two novelties. The �rst is that o¤ering the monopoly quality level is

now a best response for some positive but very low values of k2 (due to t being positive,

if k2 is below a certain level, ULD 2 has no demand). The other new feature is that

there are some intermediate values of k2 for which the best response of ULD 1 is to o¤er

precisely the same quality, k�1 = k2). This last feature is even more visible when t = 0:5

where the best response function of ULD has a big segment that coincides with the 45o

line. As t increases the shape of the ULD 1 best response function starts having less clear

discontinuities and becomes closer and closer to being a vertical line in the monopoly

quality level. This means that as t increases, ULD 1 is able to have a behavior which

does not di¤er much from the behavior of a monopolist. In particular for t = 0:8, ULD 1

either behaves as a monopolist (for low and for high values of k2) or o¤ers a quality which

is slightly above the monopoly level.

In terms of equilibria when � = 1, there are four SPNE when t = 0:2, there is no

equilibrium when t = 0:5 since there is no intersection between the two best response
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functions (this can also be seen in Table 4.1), and there is a SPNE when t = 0:8 where

ULD 1 is a monopolist since the interception of the two best response functions happens

when k2 = 0 and the best response function of ULD 1 is vertical (we can see in Table 4.1

that this is an equilibrium where ULD 1 has partial coverage).

4.3 Impact of parameters changes on the equilibria

In this section we analyze the changes on the equilibrium when t varies between 0 and

1 (with increments of 0.1), and � varies from 0 to 3:5 (with increments of 0:5). We �rst

describe the type of equilibria that occurs for each combination of these two parameter

values. Next we analyze how the equilibrium qualities and pro�ts change as t increases

and as � increases.

4.3.1 Type of equilibria

The type of equilibria that occurs depends on the values of parameters t and �. Table

4.1 presents the type of equilibrium for several combinations of the parameters values (t

varies between 0 and 1 and � varies between 0 and 3:5).

Table 4.1: Type of equilibria for several combinations of the parameters t (row) and �
(column).

t j � 0 0.5 1 1.5 2 2.5 3 3.5
0 DPC DPC DFCK DFC DFC DFC DFCK DFCK
0.1 DPC DPC DFC DFC DFC DFC DFCK DFCK
0.2 M1PC DPC DFC DFC DFC DFC DFC DFCK
0.3 M1PC NO DFC DFC DFC DFC DFC DFCK
0.4 M1PC M1PC NO DFC DFC DFC DFC DFCK
0.5 M1PC M1PC NO DFC DFC DFC DFC DFCK
0.6 M1PC M1PC NO DFC DFC DFC DFCK DFCK
0.7 M1PC M1PC M1PC DFC NO DFC DFCK DFCK
0.8 M1PC M1PC M1PC NO NO DFCK DFCK DFCK
0.9 M1PC M1PC M1PC NO NO DFC DFCK DFCK
1 M1PC M1PC M1PC NO NO NO DFCK DFCK
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For the parameters values considered, there are four types of equilibria. The equilibria

where ULD 1 operates alone in the market with partial coverage are denoted by M1PC.

The equilibria where both ULDs operate and there is partial coverage of the market, since

the lower valuation consumers are not served, are denoted by DPC. The equilibria where

both ULDs operate in the market but with full coverage are denote by DFC. Finally,

there are equilibria where both ULDs operate in the market with full coverage but we are

in a kink case (DFCK) where even a very small increase in prices would lead to partial

coverage. We describe the cases where no equilibria occurs as NO, the explanation for

these cases is on the discontinuities of the qualities best response functions combined with

the fact that the best response functions are asymmetric when t is positive.

The results are very clear. For low values of � there is partial coverage whereas for

higher values of values of � there is full coverage of the market. For low values of the

quality valuation parameter, when t is small (ranging from 0 to 0:2), we obtain the type

of equilibria DPC, where both ULDs operate but with partial coverage. As the values of

t rise from 0:2 to 1, and still with small values of � ( ranging from 0 to 1) we may either

have the equilibrium where ULD 1 operates as a monopoly with partial coverage (M1PC)

or have no equilibrium. The explanation for the existence of equilibria with monopoly

and partial coverage, is that ULD1 as an advantage with respect to its rival when the

unit cost of transportation is high, since ULD 1 is located at the CBD while the rival is

not. It also interesting to note that the cases of no equilibria are a sort of transition case

between the case of duopoly equilibria with partial coverage and the case of monopoly

with partial coverage.

For high values of the taste parameter �, namely when the lowest valuation of housing

quality is between 1.5 and 3:5, we only get equilibria where the two ULDs operate with full

coverage (DFC) or the two ULDs operate with full coverage but in a kink case (DFCK)

or, for higher values of t, we may get no equilibrium.
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4.3.2 Equilibrium qualities and pro�ts

Having the matrices for the SPNE qualities k�1 and k
�
2, and the matrices for the corre-

sponding equilibrium pro�ts, ��1 and �
�
2, we now analyze how the equilibrium qualities

and pro�ts changes with t and �. Figure 4.3 shows how the equilibrium qualities, k�1 and

k�2, change with the unit cost of transportation t, considering the cases when � = 1 and

when � = 3. The �gure illustrates what happens to the equilibria where, under duopoly,

ULD 1 has the lowest quality (k�1 < k
�
2).
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Figure 4.3: Equilibrium qualities of ULD 1 and ULD 2 as a function of t, when � = 1 and
when � = 3.

In Figure 4.3 , on the left we can see k�1 as a function of t. When � = 1, the equilibrium

quality of ULD 1 starts by being increasing with the unit cost of transportation, then for

values of t greater than 0:7 the quality is constant with t. The fact that k�1 does not

change with t for t � 0:7 is explained by the fact that ULD 1 is a monopolist for these

very high values of the unit transportation costs. When � = 3, we can observe that for

low values of t (ranging from 0 to 0.2) the housing quality of ULD 1 decreases with t, but

for t between t = 0:3 and t = 0:6 ULD 1 quality is increasing with t. Finally, for t � 0:8

the housing quality of ULD 1 is constant with t.

In the graphic on the right we can see the plot for the equilibrium quality of ULD 2,

k�2, as a function of t. When � = 1, we can observe that k
�
2 increases with t, from 0 to 0:1,

but then it decreases from 0:1 to 0:2, however the equilibrium quality maintains an almost
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constant value for low values of t ( from t = 0 to t = 0:3). For greater values of t (ranging

from 0:7 to 1) the equilibrium qualities of ULD 2 are nil and hence ULD 1 is a monopoly.

When � = 3, the behavior of the equilibrium quality of ULD2 is similar (although with

bigger jumps) to the one observed for ULD1. In fact k�2 starts by decreasing with t (from

0 to 0:2), jumps down and becomes increasing with t (from 0:3 to 0:6). Finally, for t

ranging from 0:6 to 1 the ULD 2 quality decreases slightly with t.

To analyze how the equilibrium qualities, k�1 and k
�
2, change with �, we represent the

cases where t = 0:2 and t = 0:5. In Figure 4.4, on the left we have the equilibrium quality

of ULD 1, k�1 as a function of �. In this graphic we can observe that the equilibrium quality,

k�1, is increasing with the valuation of the housing quality, and that the equilibrium quality

is higher for the series that represents the larger unit cost of transportation, t = 0:5.

On the right side of Figure 4.3 we have a graphic for the equilibrium quality of ULD 2,

k�2 as a function of �. When t = 0:2, the equilibrium quality of ULD 2 is increasing with

the valuation of housing quality. When t = 0:5, the quality also grows with the valuation

of the housing quality, however the equilibrium quality of ULD 2 is nil for � = 0 and

� = 0:5, since for those values of � we have a monopoly of ULD 1. The explanation for

the increasing quality with the valuation of housing quality is obvious. If the consumers

value more the housing quality then the ULDs have an interest in o¤ering higher quality

of housing.

Result 4.2 For given values of the unit cost of transportation, t, the equilibrium qualities

of ULD 1 and ULD 2, k�1 and k
�
2, are increasing with the lowest valuation of housing

quality, �.

We now examine the behavior of the equilibrium pro�t of each ULD as a function of

t and as a function of �. Figure 4.5 shows the behavior of the equilibrium pro�t of both

ULDs as a function of t, considering the case where � = 0:5 and the case where � = 2:5:

The left side of Figure 4.5 shows that, for ULD 1, when the consumers have a low

quality valuation (� = 0:5), the equilibrium pro�t starts to slightly rise with the unit cost

of transportation, but then becomes constant at a very low value. On the contrary, when
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Figure 4.4: Equilibrium qualities of ULD 1 and ULD 2 as a function of �, when t = 0:2
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the quality valuation of the consumer is high (� = 2:5), the equilibrium pro�t increases

more steeply with the unit cost of transportation. For t = 0:8 we have a very high pro�t

value (remember that this is an equilibrium where we have a kink case). This graph shows

that ULD 1 bene�ts from the existence of the transportation costs since it has a strong

advantage due to its location at the CBD. This bene�t is even more e¤ective when we

have a high valuation of housing quality by the consumers.

Result 4.3 In general, the equilibrium pro�ts of ULD 1 are non-decreasing with the unit

cost of transportation.
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On the other hand, the right side of Figure 4.5 reveals that, for the ULD 2, in both

cases, � = 0:5 and � = 2:5 (for low and high valuation of housing quality), the equilibrium

pro�t declines strongly as the unit cost of transportation increases. Like we explained

above this is due to the fact that ULD 2 has a peripheral location, so the unit cost of

transportation is a disadvantage for ULD 2, and therefore the equilibrium pro�ts decline

with the increase of the unit cost of transportation. Again for t = 0:8, we have an increase

of the equilibrium pro�t, we think that the explanation is because we are in a kink case.

Result 4.4 In general, the equilibrium pro�ts of ULD 2 are non-increasing with the unit

cost of transportation.

Figure 4.6 shows the equilibrium pro�ts as a function of �, when t = 0 and when

t = 0:5. As we can see on the left graph, the equilibrium pro�t of ULD 1, when t = 0:5,

there is an increase of the equilibrium pro�t with � for smaller values of � (ranging from

0 to 1:5). For values of � between 1:5 and 3 the equilibrium pro�t of ULD 1 is constant

with �. Finally, for � = 3:5 we have a very high equilibrium pro�t value. Observing the

case when t = 0, we can conclude that we have the same pattern of the case with t = 0:5.

We conclude that the equilibrium pro�t of ULD 1 grows sharply for very high valuations

of house quality.
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Figure 4.6: Equilibrium pro�ts of ULD 1 and ULD 2 as function of �, when t = 0 and
when t = 0:5

Analyzing the equilibrium pro�t of ULD 2 as a function of � (the graphic on the right

in Figure 4.6), we observe that for t = 0:5, for � = 0 and � = 0:5 the equilibrium pro�t
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of ULD 2 is nil. From � = 1:5 to � = 3 and t = 0:5, ULD 2 has a constant equilibrium

pro�t. Finally, for � = 3:5 the pro�t of ULD 2 grows sharply. We conclude that for the

two ULDs the equilibrium pro�t grows for high valuations of housing quality.

Result 4.5 For t = 0 and t = 0:5, the equilibrium pro�t of ULD 1 and ULD 2 grows

sharply for high valuations of housing quality.

4.4 Conclusion

In this chapter we solved numerically the �rst stage of the quality-price game, by using a

Gauss program. The chapter started by looking at the best response functions for both

ULDs. Next we studied the impact of changes in the unit transportation cost and in

the lowest valuation of housing quality parameter on the equilibria. In particular, we

investigated the type of equilibria that happen, the impact on the equilibrium qualities

and the impact on the equilibrium pro�ts.

Regarding the best response functions, when the unit transportation cost are null,

we can conclude that if the rival ULD o¤er low quality, it is optimal to di¤erentiate by

o¤ering a higher quality level. On the other hand, if the rival ULD o¤ers a high quality, it

is optimal to di¤erentiate by o¤ering a lower quality. Finally, when the rival ULD o¤ers

a very high quality, the ULD is a monopoly and o¤ers the optimal monopoly quality.

The best response functions are discontinuous and, typically, there are two subgame

perfect Nash equilibria, involving quality di¤erentiation. In one equilibrium ULD o¤ers

a lower quality that ULD 2, in the other equilibrium the reverse happens. For higher

housing quality valuations the best response functions present even more discontinuities

and there are intermediate values of the rival quality valuation where the best response

functions are negatively sloped. However the best response functions still show the «desire

to di¤erentiate» from the rival.

With positive transportation costs, the best response of ULD 2 is similar to the one

observed without transportation costs. However, when the unit transportation cost is

high and ULD 1 o¤ers an intermediate quality, it may not be pro�table for ULD 2 to
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di¤erentiate and ULD 2 may be better o¤ by o¤ering a nil quality. On the other hand,

the best response function of ULD 1 shows some interesting features, including the fact

that, for intermediate values of the quality o¤ered by the rival, ULD 1 best response

may be to o¤er precisely the same quality. Another feature is that there are more values

of the quality o¤ered by ULD 2, where ULD 1 is a monopolist. Furthermore, as the

transportation costs increase, the best response function of ULD 1 becomes closer and

closer to the quality o¤ered by a monopolist (ULD 1 is a sort of constrained monopolist).

With positive transportation costs, we may still have cases where there are two SPNE,

but we may have cases with no equilibrium and we may also have cases where there is a

unique equilibrium where only ULD 1 operates.

In the second part of this chapter we analyzed the impact of changes in the parameter

values on the equilibria. Our �rst conclusion is that the type of equilibria that occur,

depends on the combinations of the parameters values. When the lowest housing quality

valuation is small and for low values of the unit cost of transportation, in equilibrium both

urban land developers operate but with partial coverage of the market. For higher values

of the unit transportation cost, we have an equilibrium where the ULD 1 is a monopoly

with partial coverage, this is due to the advantage that ULD 1 has as consequence of the

unit cost of transportation. Moreover we may also have cases where no equilibria exists.

For higher values of the lowest housing quality valuation parameter, we have two

similar types of equilibria: in the �rst the two ULDs operate with full coverage and, in

the second, the two ULDs operate with full coverage, but in a kink case where even a

small increase in prices would imply partial coverage. The fact that the market is fully

covered when the consumers value a lot housing quality is intuitive, because in this case

the two urban land developers have interest in serving all the consumers.

Besides looking at the type of equilibria that arise for each combination of the parame-

ters values, we also studied how the equilibrium values of qualities and pro�ts change with

the transportation costs and with the lowest quality valuation parameter. Our numerical

results show that, for given values of the unit cost of transportation, the qualities of both

ULDs are increasing with the valuation of housing quality. Similarly, the equilibrium
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pro�ts of both ULDs are increasing with the valuation of housing quality.

Moreover, the equilibrium pro�ts of the urban land developer located at the CBD

(ULD 1), when we have a high value of the lowest valuation of housing quality, are

increasing with the unit transportation cost. And for ULD 2 ( the ULD located far away

from the CBD), the equilibrium pro�ts decreases with the unit cost of transportation,

this re�ects the disadvantage of this ULD with the unit cost of transportation.

We could not observe a conclusive pattern of how the quality that each ULD o¤ers

varies with the unit cost of transportation. But for high values of the unit cost of trans-

portation, and small values of the housing quality valuation, the urban land developer

located at the periphery (ULD 2) does not operate in the market, due to its disadvantage

with the unit cost of transportation.

Appendix - Gauss Program

/*****************************************************************/
/* This program computes the SPNE of the quality-price game. */
/* The program determines �rst the NE of the second stage game, for */
/*given quality levels (k1,k2) and for each (k1,k2) the equilibrium pro�t */
/* of each �rm, (Pi1,Pi2), is computed. This is repeated for many (k1,k2) */
/* of each �rm, (Pi1,Pi2), is computed and saved in two matrices. */
/* Next the NE of the �rst stage game is determined (k1eq,k2eq) and the */
/* corresponding NE of the second stage game is determined. */
/* This procedure is repeated for many values of the parameter values*/
/* so as to analyze how the equilibrium changes with changes in the parameters*/
/*****************************************************************/
/****** Inicial parameters of the model ***********************/
tol=10^(-12);
tetabmin=0;
tetabmax=3,5;
tmin=0; /* minimum value of transportation cost */
tmax=1;
saltetab=0.5;
saltot=0.1;
saltok=0.05; /* step size for the iterations on the quality levels*/
nitert=int((tmax-tmin)/saltot)+1; /* number of iterations for transportation cost*/
nitertb=int((tetabmax-tetabmin)/saltetab)+1; /* number of iterations for quality level of

�rm 1*/
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/**** Create matrices to keep the SPNE values of qualities, prices, pro�ts and welfare ****/
k1eqmat1=zeros(nitert,nitertb);
k2eqmat1=zeros(nitert,nitertb);
k1eqmat2=zeros(nitert,nitertb);
k2eqmat2=zeros(nitert,nitertb);
typemat1=zeros(nitert,nitertb);
typemat2=zeros(nitert,nitertb);
p1eqmat1=zeros(nitert,nitertb);
p2eqmat1=zeros(nitert,nitertb);
p1eqmat2=zeros(nitert,nitertb);
p2eqmat2=zeros(nitert,nitertb);
pi1eqmat1=zeros(nitert,nitertb);
pi2eqmat1=zeros(nitert,nitertb);
pi1eqmat2=zeros(nitert,nitertb);
pi2eqmat2=zeros(nitert,nitertb);
tmat=zeros(nitert,1);
tetabmat=zeros(1,nitertb);
nspnemat=zeros(nitert,nitertb);
/***** Start iterations of level the of transportation costs and lowest valuation ********/
t=tmin;
itert=1;
do while t<= tmax;
tetab=tetabmin;
itertb=1;
do while tetab<= tetabmax;
/*****************************************************************/
/******** Finding the second stage NE for various levels of (k1,k2) and saving ***/
/******** the NE variables of each �rm in a matrix ************/
/*****************************************************************/
k1min=0;
k2min=0;
k1max=2*(tetab+1);
k2max=2*(tetab+1);
niterk1=int((k1max-k1min)/saltok)+1; /* number of iterations for quality level of �rm 1 */
niterk2=int((k2max-k2min)/saltok)+1; /* number of iterations for quality level of �rm 2 */
pi1mat=ones(niterk1,niterk2); /* create matrix to save the NE pro�t of �rm 1 */
pi1mat=pi1mat*(-5);
pi2mat=ones(niterk1,niterk2); /* create matrix to save the NE pro�t of �rm 2 */
pi2mat=pi2mat*(-5);
typemat=zeros(niterk1,niterk2);
p1mat=ones(niterk1,niterk2); /* create matrix to save the NE prices of �rm 1 */
p1mat=p1mat*(-5);
p2mat=ones(niterk1,niterk2); /* create matrix to save the NE prices of �rm 1 */
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p2mat=p2mat*(-5);
k2mat=zeros(1,niterk2);
k1mat=zeros(niterk1,1);
k1=k1min;
iterk1=1;
do while k1<= k1max;
c1=(k1^2)/2; /* marginal production costs as a function of k1 */
fcost1=0.001;
k2=k2min;
iterk2=1;
pi1eq=-5;
pi2eq=-5;
do while k2<= k2max;
c2=(k2^2)/2; /* marginal production costs as a function of k2 */
fcost2=0.001;
/******** Condition for a �rn to have zero demand if price is ************/
/******** greater or equal than marginal cost ************/
k2dmin= (tetab+1)-sqrt((tetab+1)^2-2*t);
k2dmax=(tetab+1)+sqrt((tetab+1)^2-2*t);
k1dmax=2*(tetab+1);
k1dmin=0;
/*****************************************************************/
/****** Cases where both �rms have zero demand ****************************/
/*****************************************************************/
if (k2 le k2dmin or k2 ge k2dmax) and (k1 le k1dmin or k1 ge k1dmax); /* both �rms have

zero demand */
p1mat[iterk1,iterk2]=c1;
p2mat[iterk1,iterk2]=c2;
if k1 eq 0;
pi1mat[iterk1,iterk2]=0;
else;
pi1mat[iterk1,iterk2]=-fcost1;
endif;
if k2 eq 0;
pi2mat[iterk1,iterk2]=0;
else;
pi2mat[iterk1,iterk2]=-fcost2;
endif;
typemat[iterk1,iterk2]=1;
goto nefoundc;
endif;
/***********************************************************************/
/****** Cases where only �rm 2 has zero demand ***********************/
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/***********************************************************************/
if (k2 le k2dmin or k2 ge k2dmax) and (k1 gt k1dmin and k1 lt k1dmax); /* only �rm 1

operates */
p2mat[iterk1,iterk2]=c2;
if k2 eq 0;
pi2mat[iterk1,iterk2]=0;
else;
pi2mat[iterk1,iterk2]=-fcost2;
endif;
p1eq=(c1+k1*(tetab+1))/2jtetab*k1;
p1eq=maxc(p1eq);
tetahat1=p1eq/k1;
/*** check if �rm 1 operates and has full coverage **/
if (p1eq eq(tetab*k1))and (p1eq ge c1);
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=2;
goto nefoundc;
endif;
/*** check if �rm 1 operates and does not have full coverage **/
if (p1eq eq ((c1+k1*(tetab+1))/2)) and (tetahat1 le (tetab+1)) and (p1eq ge c1); /*check

if we are in this case */
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=3;
goto nefoundc;
endif;
endif;
/***********************************************************************/
/****** Cases where only �rm 1 has zero demand ***********************/
/***********************************************************************/
if (k1 le k1dmin or k1 ge k1dmax) and (k2 gt k2dmin and k2 lt k2dmax); /* only �rm 2

operates */
p1mat[iterk1,iterk2]=c1;
if k1 eq 0;
pi1mat[iterk1,iterk2]=0;
else;
pi1mat[iterk1,iterk2]=-fcost1;
endif;
p2eq=(c2+k2*(tetab+1)-t)/2jk2*tetab-t;
p2eq=maxc(p2eq);
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/*** check if �rm 2 operates and has full coverage **/
if p2eq eq (k2*tetab-t) and p2eq ge c2;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=4;
goto nefoundc;
endif;
/*** check if �rm 2 operates and does not have full coverage **/
tetahat2=(p2eq+t)/k2;
if p2eq eq (c2+k2*(tetab+1)-t)/2 and tetahat2 le (tetab+1) and p2eq ge c2; /*check if we

are in this case */
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=5;
goto nefoundc;
endif;
endif;
/***********************************************************************/
/****** Cases when k2 = k1 (but with positive demand) *****************/
/***********************************************************************/
if k2 eq k1;
if t eq 0;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
typemat[iterk1,iterk2]=6;
else;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
/**** check if there is partial coverage *******************/
p1eq=(c1+k1*(tetab+1))/2;
p1eqc=p1eqj(c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
if tetahat1 gt tetab and tetahat1 le (tetab+1) and p1eq ge c1;
pi1eq=(tetab+1-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=7;
goto nefoundc;
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endif;
p1eqc=(k1*tetab)j(c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
if tetahat1 le tetab and p1eq ge c1;
pi1eq=(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=8;
goto nefoundc;
endif;
endif;
endif;
/***********************************************************************/
/****** Cases when k2 > k1 ********************************************/
/***********************************************************************/
if k2 gt k1;
/**** check if NE has full coverage and both �rms operate ******/
p1eq=((1-tetab)*(k2-k1)+2*c1+c2+t)/3;
p2eq=((tetab+2)*(k2-k1)+2*c2+c1-t)/3;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetahat1=p1eq/k1;
if tetahat1 le tetab and tetastar ge tetab and tetastar le (tetab+1)and p1eq ge c1 and p2eq

ge c2; /*check if we are in this case */
pi1eq=((p2eq-p1eq+t)/(k2-k1)-tetab)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=9;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if NE does not have full coverage and both �rms operate **/
p1eq=(k1*(tetab+1)*(k2-k1)+2*c1*k2+c2*k1+t*k1)/(4*k2-k1);
p2eq=(2*k2*(tetab+1)*(k2-k1)+c1*k2+2*c2*k2-t*(2*k2-k1))/(4*k2-k1);
tetahat1=p1eq/k1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
if tetahat1 gt tetab and tetahat1 le tetastar and tetastar le (tetab+1)and p1eq ge c1 and

p2eq ge c2; /*check if we are in this case */
pi1eq=((p2eq-p1eq+t)/(k2-k1)-(p1eq/k1))*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
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pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=10;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/**** check if NE has full coverage and both �rms operate but in a kink case******/
p1eq=tetab*k1;
p2eq=((tetab+1)*(k2-k1)+c2-t+p1eq)/2;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetahat1=p1eq/k1;
if tetastar ge tetab and tetastar le (tetab+1)and p1eq ge c1 and p2eq ge c2; /*check if we

are in this case */
pi1eq=((p2eq-p1eq+t)/(k2-k1)-tetab)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=101;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if in the NE only �rm 2 operates and does not have full coverage **/
p2eqc=((c2+k2*(tetab+1)-t)/2)j((k2*c1/k1)-t);
p2eq=minc(p2eqc);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
if tetastar le tetahat2 and tetahat2 ge tetab and tetahat2 le (tetab+1) and p2eq ge c2;
p1mat[iterk1,iterk2]=p1eq;
pi1mat[iterk1,iterk2]=-fcost1;
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=11;
goto nefoundc;
endif;
/*** check if in the NE only �rm 2 operates and has full coverage **/
p2eqc=(tetab*k2-t)j(tetab*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
p2eq=p2eqj((tetab+1)*(k2-k1)+c2-t+p1eq)/2;
p2eq=maxc(p2eq);
tetahat2=(p2eq+t)/k2;
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p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-tetab;
tetadif=abs(tetadif);
if tetastar le tetab and tetahat2 le tetab and p2eq ge c2; /* check if, given prices, we are in

this case */
p1mat[iterk1,iterk2]=p1eq;
pi1mat[iterk1,iterk2]=-fcost1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=12;
goto nefoundc;
endif;
if tetadif le tol and tetahat2 le tetab and p2eq ge c2; /* check if, given prices, we are in this

case */
p1mat[iterk1,iterk2]=p1eq;
pi1mat[iterk1,iterk2]=-fcost1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=121;
goto nefoundc;
endif;
/**** check if NE only �rm 2 operates and has full coverage but in a kink case******/
p1eq=c1;
p2eqc=(tetab*k2-t)j(tetab*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetahat1=p1eq/k1;
tetahat2=(p2eq+t)/k2;
if tetastar eq tetab and tetahat2 le tetab and p2eq ge c2; /*check if, given prices, we are in

this case */
pi1eq=-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=122;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if in the NE only �rm 1 operates and does not have full coverage **/
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p1eqc=((c1+k1*(tetab+1))/2)j((tetab+1)*(k1-k2)+c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
p2eq=c2;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
if tetastar ge (tetab+1) and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
p2mat[iterk1,iterk2]=c2;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=13;
goto nefoundc;
endif;
if tetadif le tol and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
p2mat[iterk1,iterk2]=c2;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=131;
goto nefoundc;
endif;
/*** check if in the NE only �rm 1 operates and has full coverage **/
p1eqc=(tetab*k1)j((tetab+1)*(k1-k2)+c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
p2eq=c2;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
tetadif1=tetahat1-tetab;
tetadif1=abs(tetadif1);
if tetastar ge (tetab+1) and tetahat1 le tetab and p1eq ge c1; /*check if, given prices, we

are in this case */
p2mat[iterk1,iterk2]=p2eq;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=14;
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goto nefoundc;
endif;
if tetadif le tol and tetahat1 le tetab and p1eq ge c1;
p2mat[iterk1,iterk2]=p2eq;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=141;
goto nefoundc;
endif;
if tetadif1 le tol and tetastar ge (tetab+1) and p1eq ge c1;
p2mat[iterk1,iterk2]=p2eq;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=142;
goto nefoundc;
endif;
endif;
/***********************************************************************/
/****** Cases when k1 > k2 ********************************************/
/***********************************************************************/
/**** check if NE has full coverage and both �rms operate ******/
if k1 gt k2;
p1eq=((tetab+2)*(k1-k2)+2*c1+c2+t)/3;
p2eq=((1-tetab)*(k1-k2)+2*c2+c1-t)/3;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetahat2=(p2eq+t)/k2;
if tetahat2 le tetab and tetastar ge tetab and tetastar le (tetab+1) and p1eq ge c1 and p2eq

ge c2; /*check if we are in this case */
pi2eq=((p1eq-p2eq-t)/(k1-k2)-tetab)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
pi1eq=((tetab+1)-(p1eq-p2eq-t)/(k1-k2))*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=15;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if NE does not have full coverage and both �rms operate **/
p1eq=(2*k1*(tetab+1)*(k1-k2)+k1*(2*c1+c2+t))/(4*k1-k2);
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p2eq=(k2*(tetab+1)*(k1-k2)+2*k1*c2+k2*c1-t*(2*k1-k2))/(4*k1-k2);
tetahat2=(p2eq+t)/k2;
tetastar=(p1eq-p2eq-t)/(k1-k2);
if tetahat2 ge tetab and tetahat2 le tetastar and tetastar le (tetab+1)and p1eq ge c1 and

p2eq ge c2; /*check if we are in this case */
pi2eq=(tetastar-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
pi1eq=((tetab+1)-tetastar)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=16;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/**** check if NE has full coverage and both �rms operate but we are in a kink case ******/
p2eq=tetab*k2-t;
p1eq=((tetab+1)*(k1-k2)+c1+p2eq+t)/2;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetahat2=(p2eq+t)/k2;
if tetastar ge tetab and tetastar le (tetab+1) and p1eq ge c1 and p2eq ge c2; /*check if,

given prices, we are in this case */
pi2eq=((p1eq-p2eq-t)/(k1-k2)-tetab)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
pi1eq=((tetab+1)-(p1eq-p2eq-t)/(k1-k2))*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=161;
goto nefoundc; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if in the NE only �rm 1 operates and does not have full coverage **/
p1eqc=((c1+k1*(tetab+1))/2)j(k1*(c2+t)/k2);
p1eq=minc(p1eqc);
p2eq=c2;
tetahat1=p1eq/k1;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetadif=tetastar-tetahat1;
tetadif=abs(tetadif);
if tetastar le tetahat1 and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;

119



p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=17;
goto nefoundc;
endif;
if tetadif le tol and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=171;
goto nefoundc;
endif;
/*** check if in the NE only �rm 1 operates and has full coverage **/
p1eqc=(tetab*k1)j(tetab*(k1-k2)+c2+t);
p1eq=minc(p1eqc);
p2eq=c2;
tetahat1=p1eq/k1;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetadif=tetastar-tetab;
tetadif=abs(tetadif);
if tetastar le tetab and tetahat1 le tetab and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=18;
goto nefoundc;
endif;
if tetadif le tol and tetahat1 le tetab and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typemat[iterk1,iterk2]=181;
goto nefoundc;
endif;
/*** check if in the NE only �rm 2 operates and does not have full coverage **/
p2eqc=((c2+k2*(tetab+1)-t)/2)j((tetab+1)*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
tetahat2=(p2eq+t)/k2;
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p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
if tetastar ge (tetab+1) and tetahat2 ge tetab and tetahat2 le (tetab+1) and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=19;
goto nefoundc;
endif;
if tetadif le tol and tetahat2 ge tetab and tetahat2 le (tetab+1) and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=191;
goto nefoundc;
endif;
/*** check if in the NE only �rm 2 operates and has full coverage **/
p2eqc=(tetab*k2-t)j((tetab+1)*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
tetadif1=tetahat2-tetab;
tetadif1=abs(tetadif1);
if tetastar ge (tetab+1) and tetahat2 le tetab and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=20;
goto nefoundc;
endif;
if tetadif le tol and tetahat2 le tetab and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
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p1mat[iterk1,iterk2]=c1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=201;
goto nefoundc;
endif;
if tetadif1 le tol and tetastar ge (tetab+1) and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typemat[iterk1,iterk2]=202;
goto nefoundc;
endif;
endif;
nefoundc:
k2mat[1,iterk2]=k2;
k2=k2+saltok;
iterk2=iterk2+1;
endo;
k1mat[iterk1,1]=k1;
k1=k1+saltok;
iterk1=iterk1+1;
endo;
/*****************************************************************/
/************* Find the SPNE levels of k1 and k2 ***************************/
/*****************************************************************/
iterk1=1;
nspne=0;
k1eq=-1;
k2eq=-1;
do while iterk1 <= niterk1;
iterk2=1;
do while iterk2 <= niterk2;
pi1col=pi1mat[.,iterk2];
pi2row=pi2mat[iterk1,.];
pi2col=pi2row�;
if pi1mat[iterk1,iterk2]==maxc(pi1col) and pi2mat[iterk1,iterk2]==maxc(pi2col); /* this

checks if a given (k1,k2) is a NE */
/* if we are in the region where no NE of 2nd stage game was found, jump to line with level

notane */
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if pi1mat[iterk1,iterk2]==(-500) or pi2mat[iterk1,iterk2]==(-500);
goto notane;
else;
k1eq=k1min+saltok*(iterk1-1); /* if NE is in feasible region, this gives us SPNE value of

k1 */
k2eq=k2min+saltok*(iterk2-1); /* if NE is in feasible region, this gives us SPNE value of

k2 */
nspne=nspne+1;
typeeq=0;
/* Identify the type of equilibrium and compute SPNE prices and pro�ts */
k1=k1eq;
k2=k2eq;
c1=(k1^2)/2;
c2=(k2^2)/2;
fcost1=0.001;
fcost2=0.001;
/****************************************************************************/
/****** Cases where both �rms have zero demand ****************************/
/****************************************************************************/
if (k2 le k2dmin or k2 ge k2dmax) and (k1 le k1dmin or k1 ge k1dmax); /* in this case both

�rms have zero demand */
p1mat[iterk1,iterk2]=c1;
p2mat[iterk1,iterk2]=c2;
if k1 eq 0;
pi1mat[iterk1,iterk2]=0;
else;
pi1mat[iterk1,iterk2]=-fcost1;
endif;
if k2 eq 0;
pi2mat[iterk1,iterk2]=0;
else;
pi2mat[iterk1,iterk2]=-fcost2;
endif;
typeeq=1;
goto nefound;
endif;
/***********************************************************************/
/****** Cases where only �rm 2 has zero demand ***********************/
/***********************************************************************/
if (k2 le k2dmin or k2 ge k2dmax) and (k1 gt k1dmin and k1 lt k1dmax); /* in this case

only �rm 1 operates */
p2mat[iterk1,iterk2]=c2;
if k2 eq 0;
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pi2mat[iterk1,iterk2]=0;
else;
pi2mat[iterk1,iterk2]=-fcost2;
endif;
p1eq=(c1+k1*(tetab+1))/2jtetab*k1;
p1eq=maxc(p1eq);
tetahat1=p1eq/k1;
/*** check if �rm 1 operates and has full coverage **/
if (p1eq eq(tetab*k1))and (p1eq ge c1);
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=2;
goto nefound;
endif;
/*** check if �rm 1 operates and does not have full coverage **/
if (p1eq eq ((c1+k1*(tetab+1))/2)) and (tetahat1 le (tetab+1)) and (p1eq ge c1); /*check

if we are in this case */
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=3;
goto nefound;
endif;
endif;
/***********************************************************************/
/****** Cases where only �rm 1 has zero demand ***********************/
/***********************************************************************/
if (k1 le k1dmin or k1 ge k1dmax) and (k2 gt k2dmin and k2 lt k2dmax); /* in this case

only �rm 2 operates */
p1mat[iterk1,iterk2]=c1;
if k1 eq 0;
pi1mat[iterk1,iterk2]=0;
else;
pi1mat[iterk1,iterk2]=-fcost1;
endif;
p2eq=(c2+k2*(tetab+1)-t)/2jk2*tetab-t;
p2eq=maxc(p2eq);
/*** check if �rm 2 operates and has full coverage **/
if p2eq eq (k2*tetab-t) and p2eq ge c2;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
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typeeq=4;
goto nefound;
endif;
/*** check if �rm 2 operates and does not have full coverage **/
tetahat2=(p2eq+t)/k2;
if p2eq eq (c2+k2*(tetab+1)-t)/2 and tetahat2 le (tetab+1) and p2eq ge c2; /*check if we

are in this case */
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=5;
goto nefound;
endif;
endif;
/***********************************************************************/
/****** Cases when k2 = k1 (but with positive demand) *****************/
/***********************************************************************/
if k2 eq k1;
if t eq 0;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
typeeq=6;
else;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
/**** check if there is partial coverage *******************/
p1eq=(c1+k1*(tetab+1))/2;
p1eqc=p1eqj(c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
if tetahat1 gt tetab and tetahat1 le (tetab+1) and p1eq ge c1;
pi1eq=(tetab+1-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=7;
goto nefound;
endif;
p1eqc=(k1*tetab)j(c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
if tetahat1 le tetab and p1eq ge c1;
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pi1eq=(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=8;
goto nefound;
endif;
endif;
endif;
/***********************************************************************/
/****** Cases when k2 > k1 ********************************************/
/***********************************************************************/
if k2 gt k1;
/**** check if NE has full coverage and both �rms operate ******/
p1eq=((1-tetab)*(k2-k1)+2*c1+c2+t)/3;
p2eq=((tetab+2)*(k2-k1)+2*c2+c1-t)/3;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetahat1=p1eq/k1;
if tetahat1 le tetab and tetastar ge tetab and tetastar le (tetab+1)and p1eq ge c1 and p2eq

ge c2; /*check if we are in this case */
pi1eq=((p2eq-p1eq+t)/(k2-k1)-tetab)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=9;
goto nefound; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if NE does not have full coverage and both �rms operate **/
p1eq=(k1*(tetab+1)*(k2-k1)+2*c1*k2+c2*k1+t*k1)/(4*k2-k1);
p2eq=(2*k2*(tetab+1)*(k2-k1)+c1*k2+2*c2*k2-t*(2*k2-k1))/(4*k2-k1);
tetahat1=p1eq/k1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
if tetahat1 gt tetab and tetahat1 le tetastar and tetastar le (tetab+1)and p1eq ge c1 and

p2eq ge c2; /*check if we are in this case */
pi1eq=((p2eq-p1eq+t)/(k2-k1)-(p1eq/k1))*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=10;
goto nefound; /* NE was found so we can jump to the end of the if loop */
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endif;
/**** check if NE has full coverage and both �rms operate but in a kink case******/
p1eq=tetab*k1;
p2eq=((tetab+1)*(k2-k1)+c2-t+p1eq)/2;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetahat1=p1eq/k1;
if tetastar ge tetab and tetastar le (tetab+1)and p1eq ge c1 and p2eq ge c2; /*check if, given

prices, we are in this case */
pi1eq=((p2eq-p1eq+t)/(k2-k1)-tetab)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=101;
goto nefound; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if in the NE only �rm 2 operates and does not have full coverage **/
p2eqc=((c2+k2*(tetab+1)-t)/2)j((k2*c1/k1)-t);
p2eq=minc(p2eqc);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
if tetastar le tetahat2 and tetahat2 ge tetab and tetahat2 le (tetab+1) and p2eq ge c2;
p1mat[iterk1,iterk2]=p1eq;
pi1mat[iterk1,iterk2]=-fcost1;
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=11;
goto nefound;
endif;
/*** check if in the NE only �rm 2 operates and has full coverage **/
p2eqc=(tetab*k2-t)j(tetab*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
p2eq=p2eqj((tetab+1)*(k2-k1)+c2-t+p1eq)/2;
p2eq=maxc(p2eq);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-tetab;
tetadif=abs(tetadif);
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if tetastar le tetab and tetahat2 le tetab and p2eq ge c2; /* check if, given prices, we are in
this case */

p1mat[iterk1,iterk2]=p1eq;
pi1mat[iterk1,iterk2]=-fcost1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=12;
goto nefound;
endif;
if tetadif le tol and tetahat2 le tetab and p2eq ge c2; /* check if, given prices, we are in this

case */
p1mat[iterk1,iterk2]=p1eq;
pi1mat[iterk1,iterk2]=-fcost1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=121;
goto nefound;
endif;
/**** check if NE only �rm 2 operates and has full coverage but in a kink case******/
p1eq=c1;
p2eqc=(tetab*k2-t)j(tetab*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetahat1=p1eq/k1;
tetahat2=(p2eq+t)/k2;
if tetastar eq tetab and tetahat2 le tetab and p2eq ge c2; /*check if, given prices, we are in

this case */
pi1eq=-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
pi2eq=((tetab+1)-(p2eq-p1eq+t)/(k2-k1))*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=121;
goto nefound; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if in the NE only �rm 1 operates and does not have full coverage **/
p1eqc=((c1+k1*(tetab+1))/2)j((tetab+1)*(k1-k2)+c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
p2eq=c2;
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tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
if tetastar ge (tetab+1) and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
p2mat[iterk1,iterk2]=c2;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=13;
goto nefound;
endif;
if tetadif le tol and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
p2mat[iterk1,iterk2]=c2;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=131;
goto nefound;
endif;
/*** check if in the NE only �rm 1 operates and has full coverage **/
p1eqc=(tetab*k1)j((tetab+1)*(k1-k2)+c2+t);
p1eq=minc(p1eqc);
tetahat1=p1eq/k1;
p2eq=c2;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
tetadif1=tetahat1-tetab;
tetadif1=abs(tetadif1);
if tetastar ge (tetab+1) and tetahat1 le tetab and p1eq ge c1; /*check if, given prices, we

are in this case */
p2mat[iterk1,iterk2]=p2eq;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=14;
goto nefound;
endif;
if tetadif le tol and tetahat1 le tetab and p1eq ge c1;
p2mat[iterk1,iterk2]=p2eq;
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pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=141;
goto nefound;
endif;
if tetadif1 le tol and tetastar ge (tetab+1) and p1eq ge c1;
p2mat[iterk1,iterk2]=p2eq;
pi2mat[iterk1,iterk2]=-fcost2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=142;
goto nefound;
endif;
endif;
/***********************************************************************/
/****** Cases when k1 > k2 ********************************************/
/***********************************************************************/
/**** check if NE has full coverage and both �rms operate ******/
if k1 gt k2;
p1eq=((tetab+2)*(k1-k2)+2*c1+c2+t)/3;
p2eq=((1-tetab)*(k1-k2)+2*c2+c1-t)/3;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetahat2=(p2eq+t)/k2;
if tetahat2 le tetab and tetastar ge tetab and tetastar le (tetab+1) and p1eq ge c1 and p2eq

ge c2; /*check if we are in this case */
pi2eq=((p1eq-p2eq-t)/(k1-k2)-tetab)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
pi1eq=((tetab+1)-(p1eq-p2eq-t)/(k1-k2))*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=15;
goto nefound; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if NE does not have full coverage and both �rms operate **/
p1eq=(2*k1*(tetab+1)*(k1-k2)+k1*(2*c1+c2+t))/(4*k1-k2);
p2eq=(k2*(tetab+1)*(k1-k2)+2*k1*c2+k2*c1-t*(2*k1-k2))/(4*k1-k2);
tetahat2=(p2eq+t)/k2;
tetastar=(p1eq-p2eq-t)/(k1-k2);
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if tetahat2 ge tetab and tetahat2 le tetastar and tetastar le (tetab+1)and p1eq ge c1 and
p2eq ge c2; /*check if we are in this case */

pi2eq=(tetastar-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
pi1eq=((tetab+1)-tetastar)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=16;
goto nefound; /* NE was found so we can jump to the end of the if loop */
endif;
/**** check if NE has full coverage and both �rms operate but we are in a kink case ******/
p2eq=tetab*k2-t;
p1eq=((tetab+1)*(k1-k2)+c1+p2eq+t)/2;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetahat2=(p2eq+t)/k2;
if tetastar ge tetab and tetastar le (tetab+1) and p1eq ge c1 and p2eq ge c2; /*check if,

given prices, we are in this case */
pi2eq=((p1eq-p2eq-t)/(k1-k2)-tetab)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
pi1eq=((tetab+1)-(p1eq-p2eq-t)/(k1-k2))*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=161;
goto nefound; /* NE was found so we can jump to the end of the if loop */
endif;
/*** check if in the NE only �rm 1 operates and does not have full coverage **/
p1eqc=((c1+k1*(tetab+1))/2)j(k1*(c2+t)/k2);
p1eq=minc(p1eqc);
p2eq=c2;
tetahat1=p1eq/k1;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetadif=tetastar-tetahat1;
tetadif=abs(tetadif);
if tetastar le tetahat1 and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=17;
goto nefound;
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endif;
if tetadif le tol and tetahat1 ge tetab and tetahat1 le (tetab+1) and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=((tetab+1)-tetahat1)*(p1eq-c1)-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=171;
goto nefound;
endif;
/*** check if in the NE only �rm 1 operates and has full coverage **/
p1eqc=(tetab*k1)j(tetab*(k1-k2)+c2+t);
p1eq=minc(p1eqc);
p2eq=c2;
tetahat1=p1eq/k1;
tetastar=(p1eq-p2eq-t)/(k1-k2);
tetadif=tetastar-tetab;
tetadif=abs(tetadif);
if tetastar le tetab and tetahat1 le tetab and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=18;
goto nefound;
endif;
if tetadif le tol and tetahat1 le tetab and p1eq ge c1;
pi2mat[iterk1,iterk2]=-fcost2;
p2mat[iterk1,iterk2]=c2;
pi1eq=p1eq-c1-fcost1;
pi1mat[iterk1,iterk2]=pi1eq;
p1mat[iterk1,iterk2]=p1eq;
typeeq=181;
goto nefound;
endif;
/*** check if in the NE only �rm 2 operates and does not have full coverage **/
p2eqc=((c2+k2*(tetab+1)-t)/2)j((tetab+1)*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
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tetadif=abs(tetadif);
if tetastar ge (tetab+1) and tetahat2 ge tetab and tetahat2 le (tetab+1) and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=19;
goto nefound;
endif;
if tetadif le tol and tetahat2 ge tetab and tetahat2 le (tetab+1) and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=((tetab+1)-tetahat2)*(p2eq-c2)-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=191;
goto nefound;
endif;
/*** check if in the NE only �rm 2 operates and has full coverage **/
p2eqc=(tetab*k2-t)j((tetab+1)*(k2-k1)+c1-t);
p2eq=minc(p2eqc);
tetahat2=(p2eq+t)/k2;
p1eq=c1;
tetastar=(p2eq-p1eq+t)/(k2-k1);
tetadif=tetastar-(tetab+1);
tetadif=abs(tetadif);
tetadif1=tetahat2-tetab;
tetadif1=abs(tetadif1);
if tetastar ge (tetab+1) and tetahat2 le tetab and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=20;
goto nefound;
endif;
if tetadif le tol and tetahat2 le tetab and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
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p2mat[iterk1,iterk2]=p2eq;
typeeq=201;
goto nefound;
endif;
if tetadif1 le tol and tetastar ge (tetab+1) and p2eq ge c2;
pi1mat[iterk1,iterk2]=-fcost1;
p1mat[iterk1,iterk2]=c1;
pi2eq=p2eq-c2-fcost2;
pi2mat[iterk1,iterk2]=pi2eq;
p2mat[iterk1,iterk2]=p2eq;
typeeq=202;
goto nefound;
endif;
endif;
endif;
endif;
nefound:
if nspne eq 1;
k1eqmat1[itert,itertb]=k1eq; /*save the SPNE of k1 in a matrix */
k2eqmat1[itert,itertb]=k2eq;
/* save the NE pro�t of �rm 1 in a matrix, where each row corresponds to a value of k1,

and each columnn to the value of k2 */
pi1eqmat1[itert,itertb]=pi1eq;
/* save the NE pro�t of �rm 2 in a matrix, where each row corresponds to a value of k1,

and each columnn to the value of k2 */
pi2eqmat1[itert,itertb]=pi2eq;
typemat1[itert,itertb]=typeeq;
endif;
if nspne eq 2;
k1eqmat2[itert,itertb]=k1eq; /*save the SPNE of k1 in a matrix */
k2eqmat2[itert,itertb]=k2eq;
/* save the NE pro�t of �rm 1 in a matrix, where each row corresponds to a value of k1,

and each columnn to the value of k2 */
pi1eqmat2[itert,itertb]=pi1eq;
/* save the NE pro�t of �rm 2 in a matrix, where each row corresponds to a value of k1,

and each columnn to the value of k2 */
pi2eqmat2[itert,itertb]=pi2eq;
typemat2[itert,itertb]=typeeq;
endif;
notane:
iterk2=iterk2+1;
endo;
iterk1=iterk1+1;
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endo;
nspnemat[itert,itertb]=nspne;
tetab=tetab+saltetab;
itertb=itertb+1;
endo;
t=t+saltot;
itert=itert+1;
endo;
print "no de equilíbrios";
print nspnemat;
print "k1 equilíbrio - primeira matriz";
print k1eqmat1;
print "k2 equilíbrio - primeira matriz";
print k2eqmat1;
print "tipo de equilíbrio - primeira matriz";
print typemat1;
print "Lucro 1 de equilíbrio - primeira matriz";
print pi1eqmat1;
print "Lucro 2 de equilíbrio - primeira matriz";
print pi2eqmat1;
print "k1 equilíbrio - segunda matriz";
print k1eqmat2;
print "k2 equilíbrio - segunda matriz";
print k2eqmat2;
print "tipo de equilíbrio - segunda matriz";
print typemat2;
print "Lucro 1 de equilíbrio - segunda matriz";
print pi1eqmat2;
print "Lucro 2 de equilíbrio - segunda matriz";
print pi2eqmat2;
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Conclusion

This thesis studied the supply side of the housing market taking into account the strategic

interactions that occur between urban land developers. The thesis started by reviewing

the literature on new housing supply, concluding that there are very few studies where

strategic interactions are taken into account. Next we developed a vertical di¤erentiation

model with two urban land developers. The two producers �rst simultaneously decide the

quality of housing and then compete in prices. We assumed that one of the producers

stays at the CBD while the other has a more decentralized location. Moreover, our model

assumed that a quality improvement has �xed costs but it also increases the marginal

production cost. In this chapter we summarize the main conclusions of our study.

The literature review allowed us to conclude that housing supply is understudied com-

paring with the extensive literature on housing demand. In spite of this, various studies

have been undertaken, mainly empirical studies but also some theoretical studies. Rela-

tively to the empirical studies, there are some studies using cross section or panel data

sets for metropolitan areas, but most of the studies use aggregated time series data. Cu-

riously, in spite of the di¤erences regarding the type of data and econometric estimation

methods, the main results are quite consistent across studies. Excluding some earlier

studies like Muth (1960) and Follain (1979), we can reject a perfectly elastic supply of

housing. Most studies �nd an elastic housing supply but there are some studies that ob-

tain below unit elasticities. The studies that distinguish between short run and long run

elasticities reveal that price elasticity of housing supply is lower in the short run. More-

over, the studies that allow comparisons across countries or regions show that there are

signi�cant di¤erences in supply elasticities between countries and regions. For instance,
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the values of the price elasticity of supply are higher in the USA than in the UK. Regard-

ing the other determinants of housing supply, most empirical results are according to the

theoretical predictions. For instance, �nancial costs, in�ation and sales delay in�uence

negatively the housing supply. However there are also some results which are unexpected,

namely the inconclusive results with respect to the impact of construction costs. One

possible explanation for this inconclusive results is the di¢ culty in measuring accurately

the construction costs.

Our review on the articles that use game theory/ industrial organization models of

housing supply showed that the strategic interaction between land developers or construc-

tors is still understudied and hence there is a lot of potential in exploring this type of

models. We believe that there is a need to increase our understanding of the behavior

of constructors and land developers. This deeper understanding can come from the de-

velopment of theoretical models predicting their decisions in a context where there exists

strategic interactions between land developers and the estimation of empirical models

based on micro data. Strategic interaction models of housing supply may allow us to

understand how land developers make their decisions regarding the house location and

house quality, may allow us to explore the market structure of the housing market and

test if the market is competitive or if the land developers have some oligopolistic power.

By using data where the unit of analysis is the land developer, we may be able to re-

solve some counter-intuitive results such as those obtained with respect to the impact of

construction costs.

Most of the literature on housing markets assumes that the housing industry is per-

fectly competitive, but there is a growing support for imperfect competition models

(Arnott and Igarashi, 2000; Baudewyns, 2000). The existence of di¤erences in the hous-

ing quality, di¤erences in housing accessibility, di¤erences in households tastes, can be

sources of market power and lead to strategic interactions between the urban land devel-

opers. Therefore, in this study we applied game theory and industrial organization tools

to model housing supply. In chapters 3 and 4, we developed a dynamic duopoly game with

two stages. Our model is naturally a vertical di¤erentiation model. This type of models
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has been extensively studied in the literature in industrial economics, including models

with endogenous quality choice. However most of the literature that we have reviewed

consists of general theoretical models, that do not take into account the speci�cities of

the housing market, such as the location of the house.

The literature on vertical product di¤erentiation models, speci�cally with endogenous

quality choice, can be divided according to the assumption that is made about the nature

of the costs of quality improvement. Some authors like Lambertini (2012) assume that

there are �xed costs of quality improvement while variable costs do not change with

quality. This assumption is reasonable when producers improve quality by advertising or

by research and development. Other authors like Aoki (1996), argue that higher quality

requires more expensive inputs or a more specialized labour force. Motta (1993) compares

the two assumptions about the nature of the costs of quality improvement however he

does not incorporate simultaneously the two types of costs. The model developed in this

thesis, assumes that a quality improvement has �xed costs and also variable costs. Thus

a quality improvement has cost implications both for the price-stage game as well as for

the quality-stage game. This is a contribution to the literature on vertical di¤erentiation,

since none of the existent studies incorporates simultaneously these two types of costs of

increasing quality. Another contribution of our study is that we analyzed if there is full

or partial coverage of the market in the subgame perfect equilibrium whereas most of the

studies on vertical di¤erential models consider either full coverage or partial coverage.

In the third and fourth chapter we analyzed a dynamic model with two ULDs, where

producers �rst decide the housing quality and then compete in prices. We assume that

one of the producers stays at the CBD while the other has a more decentralized location.

Our model also considers, in the utility function a transport cost by unit of distance. In

the third chapter we solved the price competition game, considering the qualities chosen

in the �rst stage as given. In chapter 4 we solved the �rst stage of the game, �nding the

equilibrium qualities for di¤erent combinations of the unit transportation cost and the

quality valuation parameter.

In chapter 3, we derived analytically the Nash equilibrium of the price-game, for given
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quality levels. Our analysis is very exhaustive as we explore all the possible cases both

in terms of who operates in the market, in some cases only one ULD operates in the

market and in others both operate, as well as in terms of the market coverage, in some

cases we have full coverage of the market and in others we have partial coverage of the

market. Because of this, the third chapter is an important contribution to the quality

di¤erentiation literature. We used numerical analysis, utilizing a Gauss program to obtain

and characterize the Nash equilibrium of the price competition game, the equilibrium type,

equilibrium prices and equilibrium pro�ts for the di¤erent quality levels.

The results show that with nil transportation costs, the equilibrium price of a ur-

ban land developer is increasing with its housing quality, for given values of the quality

of the other urban land developer. This result is also valid with positive unit cost of

transportation. On the other hand, the equilibrium price of a urban land developer is a

non-monotonic function of the quality of the rival ULD. In particular, for intermediate

values of the other ULD quality, there is a U shaped relationship between the equilibrium

price of a ULD and the housing quality of the other ULD. This result is also valid with

positive transportation costs. This interesting result is due to the existence of direct and

strategic e¤ects. When the housing quality of the rival ULD increases, the demand of

the ULD decreases, which tends to decrease price. However, an increase in the housing

quality of the rival, increases the rival�s demand and the rival�s marginal cost, and hence

the rival has an incentive to increase its price. Since prices are strategic complements

this implies that the ULD increases its price. The non-monotonic relationship happens

because for lower values of the rival ULD housing quality, the direct e¤ect dominates,

whereas for higher values of the rival�s quality the strategic e¤ect dominates.

When the quality of an ULD is nil or very high, this ULD has zero demand and

the other ULD is a monopolist. In this case the monopolist ULD optimal pro�t is a

concave function of its housing quality: the equilibrium pro�t �rst grows with quality, up

to a maximum, and then falls and becomes equal to zero. This result is also valid with

positive unit cost of transportation. However when the two ULD have intermediate levels

of quality and the unit transportation cost is nil, the equilibrium pro�t functions may have
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two local maxima (one where the ULD chooses a quality lower than the rival, the other one

where the ULD chooses a quality higher than the rival). Therefore, the equilibrium pro�t

functions show the bene�ts of di¤erentiating the housing quality. Moreover the result

shows that, when the other ULD has a low quality it is better to di¤erentiate by choosing

a higher quality, whereas when the rival has a high quality it is better to di¤erentiate by

choosing a lower quality. On the other hand, with positive unit transportation costs and

intermediate quality levels, the ULD located at the periphery prefers to di¤erentiate but

the ULD located at the CBD may be better o¤ by choosing a quality level equal to the

rival�s one and «exploiting» its locational advantage.

In chapter 4 we solved numerically the �rst stage of the quality-price game, by using

a Gauss program. We �rst analyzed the best response function for the two ULDs. For nil

unit transportation cost, we can a¢ rm that if the rival ULD o¤ers low housing quality, it

is optimal for the ULD to di¤erentiate by o¤ering higher quality. Conversely, if the rival

o¤ers a high quality, it is optimal for the ULD to di¤erentiate by o¤ering a lower quality.

Finally, when the rival ULD o¤ers a very high quality (so high that rival�s marginal costs

are so high that the rival has no demand unless its price is below marginal costs), the

ULD o¤ers the optimal monopoly quality. The best response functions are discontinuous,

and there are two SPNE, that involves quality di¤erentiation. If we have positive unit

transportation costs, the best response function of ULD 2 is almost the same has the one

with nil unit transportation costs, except when the unit transportation cost is high. In

this case, if ULD 1 o¤ers intermediate quality, ULD 2 may be better o¤ by choosing nil

quality. Furthermore, the best response function of ULD 1 has same interesting features.

In particular, for intermediate values of the quality o¤ered by the rival, ULD 1 best

response may be to o¤er the same quality and there are more values of the quality o¤ered

by ULD 2, for which ULD 1 is a monopoly.

Based on the numerical analysis of chapter 4, we concluded that the type of equilibria

that happens depends on the combinations of the parameters (unit transportation cost

and the lowest consumer�s quality valuation). When the housing quality valuation is

small and for low values of the unit cost of transportation, in equilibrium both urban
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land developers operate but with partial coverage of the market. For higher values of the

unit transportation cost, we have an equilibrium where the ULD 1 is a monopoly with

partial coverage. Moreover we may also have cases where no equilibria exists. For higher

values of the housing quality valuation parameter, we have two similar types of equilibria

where the two ULDs operate with full coverage. These results are quite intuitive. The

fact that the market is fully covered when the consumers value a lot housing quality is

expected, because in this case the two urban land developers have interest in serving

all the consumers. Similarly, when the valuation of the housing quality is lower and

transportation costs are higher it is also natural that in equilibrium only ULD 1 operates

with partial coverage, since this ULD has a locational advantage as the consumers do not

incur in transportation costs if the buy a house from ULD 1.

In chapter 4, we also studied how the equilibrium values of qualities and pro�ts change

with the unit transportation cost and with the quality valuation parameter. Our numerical

results showed that, for given values of the unit cost of transportation, the equilibrium

qualities and the equilibrium pro�ts of both ULDs are increasing with the valuation of

housing quality. Moreover, the equilibrium pro�ts of the urban land developer located at

the CBD (ULD 1), when we have a high value of the lowest valuation of housing quality,

are increasing with the unit transportation cost. And for ULD 2 ( the ULD located far

away from the CBD), the equilibrium pro�ts decreases with the unit cost of transportation,

this re�ects the disadvantage of this ULD with the unit cost of transportation.

Regarding future research we have some suggestions that can improve the study of

strategic interactions among urban land developers. The �rst one, is to consider the

location as endogenous. This implies one more stage in the model. In this case the urban

land developers �rst choose the location of their construction, in the second stage they

choose the quality and in the last stage they compete in prices. In such a model it will be

important to consider that di¤erent locations may have di¤erent land prices. A second

improvement may be to study the social optimality of the market equilibrium outcomes,

by including a welfare measure, that can be incorporated in the Gauss program. A �nal

suggestion is to study the implications of changes in the marginal cost function. We
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assumed that marginal production costs are a convex function of the quality level, but it

would be interesting to explore what would happen under other assumptions relatively to

the way marginal production costs change with the quality.
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