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Abstract

This dissertation describes efforts tomove toward the study of soil and themanagement of yield variability
through research that explored and evaluated the potential of some techniques to provide greater under-
standing and knowledge of an agricultural field, even in situations where there is no prior knowledge of its
behavior. The first experiment used a principal components analysis (PCA) in the study of the spatial and
temporal variability of maize grain yield. The results of this experiment demonstrated that the 1st and 2nd

principal components could be used to identify field zones with different spatial and temporal behaviors.
The second experiment applied stochastic and sequential Gaussian simulation techniques to spatially and
temporally forecast and model maize productivity. This technique enabled the modeling of spatial uncer-
tainty in maize productivity based on probabilistic maps with different confidence levels. The third exper-
iment examined different fertilization input scenarios based on yield/nutrient inputs ratio and break-even
yields to optimize agronomic, economic and environmental support decisions. According to the results,
it is possible to reduce agricultural production costs through the differential management of inputs. The
outcomes showed that differential management decisions can maximize returns and reduce activity risk
without having to implement major changes on the farm.

Keywords:maize yield; yield principal components analysis; yield stochastic simulation; differential inputs dis-
tribution; management zones
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Sumário

Otimização da produtividade e dos fatores de produção nomilho de regadio

O presente trabalho de investigação, que considerou três estudos, explora e avalia o potencial de alguns
modelos no estudo da gestão da variabilidade espacial e temporal da produtividade e dos nutrientes no
âmbito da produção de regadio. O primeiro estudo focou a utilização da técnica estatística Análise de Com-
ponentes Principais (ACP) no estudo da variabilidade temporal da produtividade da cultura do milho na
região do Alto Alentejo. Os resultados desta experiência mostraram que as duas primeiras componentes
principais permitem identificar zonas da parcela agrícola com diferente comportamento espacial e am-
biental. No segundo estudo avaliou-se o desempenho da simulação sequencial Gaussiana na previsão e
modelação da produtividade da cultura do milho. Esta técnica permitiu modelar a incerteza espacial da
produtividade com base em mapas de probabilidade com diferentes níveis de confiança. O terceiro es-
tudo avaliou diferentes cenários de fertilização a partir do rácio produtividade/nutrientes e do breakeven
da produtividade de forma a otimizar, em termos agronómicos, económicos e ambientais, as tomadas de
decisão. De acordo com os resultados obtidos, foi possível obter uma redução substancial dos custos de
produção através da sugestão da aplicação diferenciada da fertilização. Os resultados mostraram que é
possível reduzir os riscos, quer económicos quer ambientais, da atividade agrícola sem grandes alterações
no processo produtivo da exploração agrícola.

Palavras-chave: produtividade da cultura milho, análise de componentes principais, simulação estocástica,
fertilização diferenciada, zonas de gestão localizada
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1
Introduction

To produce more food and reduce economic and environmental costs, agricultural activities need to combine
smart technologies with smart agro-processes. Traditional farming considers the management of agronomic
fields tobeuniformdespite the spatial variability that canbe foundwithin a field. Precisionagriculture accounts
for the spatial variability of fields and promotes site-specific management to increase economic returns and
minimize environmental impacts [BBSM07, MTM10].

In Portugal, little research has been done on the delineation of management zones, and there is a general lack
of literature on this subject. However, some researchers have developed studies of variable rate pasture appli-
cations (e.g., [PSM+05, SSMds14]), spatial yield variability (e.g., [Mar06, MRSM12]), topography (e.g., [MA05]) and
soil mechanical resistance (e.g., [CaEF+12]).

Every day, agriculture is confrontedwith numerous challenges, so the adoptionofmodern technologyby global
agriculture is inevitable, and Portugal is not an exception. In the future, agriculture will be severely competitive
and challenging, and all of the available tools, technology and knowledge will be necessary to sustainably in-
tensify this activity.

Geographic information systems and geostatistical tools can be used to develop thematic maps of soils, yields
and other parameters, which are extremely important for spatially and temporally efficient agricultural ma-
nagement.

1
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The accurate mapping of yield-limiting factors remains a challenge for researchers [CC08]. Topographic at-
tributes, soil properties and climate constraints interact to influence the spatial and temporal variability in
yields. However, this variability is not an independent phenomenon; it reflects within-field variation of the soil
yield potential [PJABa06] and can be an important factor for the delineation of within-field management zones
[Bla00, FWWB00, Mar06].

Applying site-specificpracticeswill improvenet returnsandminimizeenvironmental impacts [LWHT10, SPdS+10,
SSS14]. In other words, modern agriculture is technologically demanding, so there is a need for more research,
and farmmanagers must exercise best practices to achieve yield and environmental targets.

1.1 Objectives

The purpose of this work is to explore several useful strategies that have been developed to assess the spatial
and temporal variability in yield. These strategies are intended to improve future agronomical prescriptions and
allow for a more accurate estimation of variable rate management to reduce risks and enhance environmental
and economic benefits.
This dissertation is divided into three parts:

i) The first part (Chapter 2) is an introduction to the problems addressed in themanuscripts onwhich this thesis
is based, and it provides an overview of the theoretical foundation of the dissertation;

ii) The second part (Chapters 3, 4, 5) is comprised of three scientific manuscripts that have already been pub-
lished or submitted for publication in international peer-reviewed journals, and theywere developed to answer
several research questions:

• a) Chapter 3 describes how the multivariate principal components analysis technique can be simulta-
neously used to delineate yield management zones and to identify specific locations inside a field with
temporal yield resilience, i.e., to calculate the temporal risk associated with maize yield;

• b) Chapter 4 explores the possibility of using stochastic simulation techniques to forecast maize produc-
tivity and model spatial and temporal uncertainty using probabilistic yield maps when there is a lack of
data;

• c) Finally, Chapter 5 presents a yield/input ratio approach and yield break-even as potential tools to help
farmers and managers 1) optimize agronomic inputs, 2) delineate management zones, and 3) reduce
economic and environmental risks from production;

iii) The third part (Chapter 6) integrates all of the scientific discussions and conclusions presented in this docu-
ment and considers the implications for further research.



2
Scientific background

2.1 Precision agriculture

Precision agriculture (PA) is also known as precision farming or site-specific crop management. The term first
appeared in 1990 as the title of aworkshop in Great Falls, Montana, whichwas sponsored byMontana StateUni-
versity, but researchers had previously used the terms “site-specific cropmanagement” or “site-specific agricul-
ture” [Oli10].

There aremany definitions for precision agriculture (PA), but all of themdescribe a crop production systemwith
low inputs and high efficiency as well as environmental and economic benefits.

According to Schellberg et al. [SHG+08], PA is “an innovative, integrated and internationally standardized ap-
proach that aims to increase the efficiency of resource use and to reduce the uncertainty of decisions required
to control variation on farms”.

Another example is the more detailed definition by Sudduth [Sud99], who defined PA as “a management sys-
tem of crop production practices and inputs such as seed, fertilizers and pesticides that are variably applied
within a field. Input rates are based on the needs for optimum production at each within-field location. Since
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over-application and under-application of agrochemicals are both minimized, this strategy has the potential
for maximizing profitability and minimizing environmental impacts”.

In fact, PA is as old as agriculture itself. In the early days, each farmer knew each portion of his landwell and cul-
tivated and devoted his attention to fields based on their characteristics, thus ensuring enough food to sustain
his family. However, in recent decades, the need to produce more food and the growth of cultivated areas has
led farmers to treat fields as homogeneous zones, so management is based on the average needs for fertilizer,
water and pesticide inputs. For a long time, site-specific crop management was ignored.

The adoption of PA gradually occurred overmany years, but PA is currently a fact thanks to a set of technologies
such asGlobal Navigation Satellite Systems (GNSS), geographic information systems (GIS), remote sensing, sen-
sors and data-acquisition systems, computer science, simulationmodels, agricultural machinery, and variable
rate application systems (VRT), as well as the interest of humans in better practices .

The spatial and temporal variability of soil and crop factors are the basis for PA [ZWW02]. Spatial variability
refers to how soil properties and production vary in space. Temporal variation is a major source of production
risk because it is difficult to control; it occurs over years due toweather or seasonal events [Toz09]. However, the
power of new technologies in the collection, storage, processing and display of spatial data makes it possible
to obtain comprehensive information about yield variability in space and time [ZWW02].

However, the way forward is not to present PA as a solution for all or to impose the system on farmers but to
assist them and share information so that they can put questions to PA experts.

As reported by Schellberg et al. [SHG+08], “the key to successful future PA is not only to collect relevant data but
also to convert them into useful information and then derive consequential decisions and rigorously evaluate
risks and benefits”.

2.2 Spatial and temporal variability

The spatial and temporal variability of the soil, yield and crop attributes are the basis for PA, and several ap-
proaches can be used to study yield variability. It is challenging to identify and comprehend spatial and tem-
poral variability because there are many parameters involved in the production process. Therefore, some au-
thors consider the spatial and temporal variability of different factors, such as yield variability, crop variability,
field variability, soil variability, variability in anomalous factors, andmanagement variability [ZWW02]. Other re-
searchers incorporatedifferent typesof data sets todefine zoneswithmoreor less uniformproductionpotential
[KZN+14].

2.2.1 Yield

The goal of the spatial and temporal analysis of yield variability is to delineate areas with consistent yield pat-
terns to develop practices that can optimize crop production.

The availability of yield monitors equipped with GNSS, which can generate spatially dense data at relatively
low cost, has stimulated the study of spatial and temporal yield variability and interest in the site-specific ap-
plication of crop inputs [LCD99]. This simple method of data collection has encouraged several researchers to
analyze yield variability over space and time. Diker et al. [DHB04] showed that spatial and temporal yield can
be analyzed with multi-year data to detect broad patterns that are preserved over time. With only a few years
of yield data, a farmer or manager can try to identify the yield-limiting factors in similar and dissimilar zones. If
possible, the farmer should amend the problem in the subsequent years of production, but the causes of vari-
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ability can change with time and the type of crop [VPG03]. As evidenced by Blackmore at al. [BGF03], temporal
variability is generally much higher than spatial variability, so care must be taken when defining areas of low
and high productivity as potential zones for site-specific management.

According to Diacono et al. [DCT+12], when crops grow in a rain-fed Mediterranean environment, the different
spatial yield distributions from one cropping season to another may be mainly due to the influence of meteo-
rological conditions. This conclusion is in agreement with other results, such as those of Link et al. [LGC04] in
Germany, who found that maize grain yield was affected by climatic variations from year to year over six years,
or those of Basso et al. [BCC+09], who concluded that soil water content was the main factor affecting spatial
variability in yield.

When a temporal trend in yield is identified in a given part of a field over multiple years, its effect can be cal-
culated, and Blackmore et al. [BGF03] and Marques da Silva [Mar06] proposed a modified standard deviation
function to quantify this variance. This function was able to detect spatial changes over time, e.g., parts of a
field where yield is always close to the mean (low temporal variance) and parts that are temporally unstable
because they sometimes produce above-average yields but produce below-average yields at other times (high
temporal variance). Consequently, Blackmore et al. [BGF03] and Marques da Silva [Mar06] divided their tem-
poral variance and spatial variability maps into four homogeneous classes: (1) high yielding areas – zones in
which the yield is above the inter-annual mean; (2) low yielding areas – zones in which the yield is below the
inter-annual mean; (3) stable areas – zones with low inter-annual spatial variance (based on an arbitrarily de-
fined threshold) and (4) unstable areas – zones with high inter-annual spatial variance (based on an arbitrarily
defined threshold).

Theanalysis of differentpatternsof yield in spaceand timecanbe further applied to theanalysis of other factors,
such as crop density, crop height, crop nutrient stress, crop water stress, crop biophysical properties, crop leaf
chlorophyll content, and crop grain quality [ZWW02, DMV07]. Crop models can be used to better understand
the effects of these factors, which are directly related to the plants, and the processes involved in crop growth
and thus identify the spatial and temporal variability in yield. The study of the daily growth of crops under a few
stresses, such as water, nitrogen (N), temperature or pests, with different models has been used to identify the
causes of spatial variability in yield [BBP02].

In Italy, Basso et al. [BBSM07] studied the growth of corn, soybeans and wheat (under crop rotation) using
models that simulate the responses of crop growth and development to different environmental conditions.
These models incorporate different types of information, such as soil data (sand, silt and clay content, bulk
density, organic carbon and water limits), the standard deviations of temporal yield data calculated according
to Blackmore [Bla00] and Blackmore et al. [BGF03], weather data (incoming solar radiation, air temperature
and rainfall), and yield data from yield monitoring systems during different growing seasons. The models were
applied to two areas identified as stable, i.e., with higher or lower than average yields and lower temporal vari-
ance over time. The difference between the annual simulated and measured yield data was acceptable, but
the long-term simulated yield data varied for all crops, which confirmed the influence of climatic data and soil
properties on the average yield [BBSM07].

2.2.2 Soil

The spatial variability of crop production reflects the variability in soil fertility, which depends on physical and
chemical soil properties [AHMU04, PGZ+07].

Although the geological and pedological processes of soil formation determine the spatial variability in the soil,
some physical soil properties can be altered over time due to soil erosion and management practices, such as
tillage [ITJ+05, VVS+08]. For example, Iqbal et al. [ITJ+05] identified the higher soil bulk density in subsurface
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horizons, which restricts downward watermovement, as perhaps being due to the compaction of fine sandy or
fine silt layers by heavy machinery.

In 2005, a study of the spatial variability of the physical soil properties of three fields over three years became
important to the delineation of different zones with distinct maize yield potentials. Soil properties were re-
latively homogeneous inside each zone but were significantly different between zones, so the available water,
and thus nutrient uptake, may have differed from zone to zone, reflecting the potential productivity of each
area [MKR+05]. Cox et al. [CGWA03] and Guo et al. [GMB12] made similar observations and found that the clay
content was an adequate criterion for dividing fields into areas of equal productivity. These authors suggested
that the higher yield in areas with higher clay content is related to the availability of more plant-available water
during thedryperiodsof thegrowing season [CGWA03,GMB12]because soil texture is oneof themost important
factors influencing the water-holding capacity of the soil [SSL+04, GMB12].

In addition to the physical soil properties, other researchers have studied chemical properties and/or nutrient
status to better understand the variability in yield across fields. Ping et al. [PGZ+07] found low temporal variabi-
lity in pH, cation exchange capacity (CEC), calcium (Ca) and texture over time, and other studies [KB00, LGC04]
have found that soil properties, such as organic matter (OM), pH, phosphorous (P), potassium (K), magnesium
(Mg) and nitrogen content do not directly explain the spatial variability in yield. In fact, the nutrient response
patterns within a field often do not mimic yield patterns, which implies that there are other factors, such as
topographic attributes, that affect crop yields [KB00, LGC04].

2.2.3 Topography

Actually, some researches have shown that, in general, the spatial variabilities in soil and yield are very closely
associated with their position on the landscape. For instance, Aimrun et al. [AAR+09] studied the distribution
of several chemical soil properties, and the lowest positions in the study area exhibited high total N, available P,
exchangeable K, Ca, Mg and total organic carbon values comparedwith the highest positions, which is probably
due to the dynamics of surface runoff water.

Guo et al. [GMB12] found that topography, combinedwith other factors, explained up to 70.1%of the variability
in cotton yield, which agrees with the results of Kaspar et al. [KCJ+03], who, in a study over four dry years in
Iowa, found that topography explained 78% of the spatial variability in maize yield due to the effects of soil
properties, soil erosion and water availability.

Curvature is an important topographic factor that determines the movement of water and nutrients in the soil,
and the influence of the curvature profile on yield is more obvious in dry years than in wet years [KKKM11,
KZN+14]. Usually, a convex curvature is associated with soil erosion, and a concave curvature is associated
with soil, water and nutrient deposition [GMB12]. Although this does not always happen, concave areas should
theoretically have greater water and nutrient availability and thus bemore productive [KB02, SSL+04, BCC+09,
GMB12].

This conclusion is supported by the work of Kravchenko and Bullock [KB00] and Lund et al.[LWH01], who found
that several fields, which were located lower in the landscape and in depressions (concave surface), had higher
OMandmoisture contents,whichare very importantduringperiodsofdrought. In some fields, thesedepression
zones also had higher P, K and CEC values [LWH01]. On the other hand, the excessive amounts of water that
accumulate in concave surfaces during wet periods can reduce yield [KB00]. The same result was observed
by Kitchen et al. [KSM+05] and Vitharana et al. [VVS+08], i.e., greater crop productivity occurred lower in the
landscape, although the crops in lower landscape positions could be destroyed during extreme rain events or
under predominantly wet climatic conditions. According to Vitharana [VVS+08], crop production is likely to be
more variable between years in such areas than in other areas.
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These findingswere also similar to thoseofMarquesdaSilva [Mar06], who in seven trial fields in aMediterranean
environment, observed that yield stability is related to the distance to flow accumulation lines. Maize yield
increased with a decrease in this distance.

Nevertheless, some studies have found inconsistent or insignificant correlations between landscape position
and yield, OM, P, K, Mg, Ca and CEC (e.g., [CGWA03, KPF+04, SCMaC08, GMB12]). Presumably, this is due to
changes in the parent material across the landscape [KB00] or to erosion processes at positions higher in the
landscape; the additionalmoisture stored in the clay in the upper layer of eroded soilmay produce better yields
[LWH01, MS08, GMB12, KZN+14]. Machado et al. [MBA+02] also observed higher productivity in sorghum grain
at high elevations where there was high water availability and higher clay and silt fractions compared with low
elevations. These examples show that there are many soil properties that can promote yield variability, and
these factors vary from one location to another.

2.2.4 Other sources

There are many other factors that contribute to spatial and temporal variability. For example, between-year
variations in solar radiation, air temperature, air humidity, and precipitation may affect the temporal variation
in yield.

Crop pests and/or diseases may also play an important role in spatial and temporal yield variability, and di-
seases in the soil can have a huge impact on the sustainability of yields and crops. Blackmore et al. [BGF03],
Jaynes [JCK05], Di Virgilio et al. [DMV07] andZhanget al. [ZWW02] also reported thatweed infestations, damage
fromwild animals (birds, wild boars, etc.), and wind damage are factors that can cause anomalous variabilities
in crop production.

Other anomalous factors, such as malfunctioning irrigation systems (e.g., a damaged sprinkler) or poorly de-
signed irrigation systems can cause a high degree of yield variability as shown by Marques da Silva[Mar06].

2.3 Management zones

Amanagement zone is a part of an agricultural field that is homogeneous in terms of yield-limiting factors and
in which a specific crop input is applied at a single rate with the objective of providing economic and/or en-
vironmental benefits. The variability in the field determines the size and number of subdivisions that might
justify different management regimes [ZWW02]. As opposed to traditional, uniformmanagement, site-specific
management is based on a field data set that allows for the differentiation of management practices, such as
fertilization, crop-seeding rate, hybrid crops, tillage, and weed and pest control, [ZWW02, OSn07, VVS+08].

Obtaining reliable information about the distribution of soil properties to produce representative maps is the
greatest challenge toprogress in site-specificmanagement [KO03]. Several studieshaveevaluated thepotential
of different approaches (numerous methods based on one or multiple information sources) to identify zones
that justify different management strategies to achieve the effective implementation of variable rate applica-
tion technology [CLS+08, FWWB00, PCCB13]. For example, in the study by Miao et al. [MMRS05], an approach
that integrated soil and landscape variability, spatial trends in yields and temporal stability proved to be more
effective than other strategies in which researchers only used information about the soil, landscape or yield to
identify management zones. Kravchenko and Bullock [KB00] and Peralta et al. [PCCB13] also suggested that
integrating soil properties with topography was useful for understanding yield variability and delineating site-
specific management zones.

Combining topographic attributes, such as elevation, slope, flow accumulation lines, and curvature with infor-
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mation about yield variability is more comprehensive [MS06], but topography may not be enough to delineate
site-specific management units [CGWA03, SSL+04].

Kitchen et al. [KSM+05] reported that the combination of elevation variables and apparent electrical conduc-
tivity were promising for delineating management zones on claypan soil. These variables generated 60-70%
agreement between yield productivity and elevation-based productivity zones [KSM+05].

Other authors have proposed the use of detailed soil surveys based on a high density of observations (intensive
sampling) or target soil sampling using an appropriate technology, such as ECa patterns, to define the different
management zones [LCD99, FB04, TL05].

Diker et al. [DHB04] used only the variability in yield over time and space as the basis for delineating ma-
nagement zones; a zone was identified by the number of years in which yield was equal to or greater than the
average yield in a given year. The combination of statistically similar yield classes made it possible to define
three response zones with low, medium and high yields.

Some authors [ZSJ+10, KKKM11, DCT+12, KZN+14] have also highlighted that integrating remote sensing im-
agerywith yield and field data provides reliable tools to support zonemanagement delineation and to estimate
the optimal number of zones.

Ortega and Santibáñez [OSn07] proposed threemethods based on cluster analysis, principal component anal-
ysis and coefficients of variation to delineate homogeneousmanagement zones usingmanually collected yield
samples and soil chemical properties. The three methods were adequate and similar, and because the spatial
and temporal variability in yield is affected by several factors, the authors noted that the identification of the
variables responsible for this variability is as important as themethodology. Therefore, because it is impossible
to determine all of the factors that affect yield, Ortega and Santibáñez [OSn07] suggested identifying andmea-
suring only those variables that are most relevant to yield determination when building different management
zones.

2.4 Evaluating variability

2.4.1 Grid sampling

Several authors have tested different methods for the management of yield variability (e.g., [HMC03, JCK05,
KSM+05, CLS+08]), and the most common approach is the intensive sampling of the field to identify different
soil fertility levels and to estimate the capacity of the soil to supply nutrients. It is important to note that the
samples must be representative so that experts can recommend a fertilizer with accuracy and precision.

In general, grid sampling is based on the subdivision of a field into a systematic arrangement of small areas
or cells, and it can provide an accurate basis for variable rate application. However, there is no grid size that
is suitable for the entire extent of a farm with so many diverse features [FWWB00]. For example, some studies
[LGC04, LGBC06] have shown that larger grids better describe temporal yield variability, and smaller grids ade-
quately describe spatial yield variability . Another study in a cool temperate grassland in Irelandwith sandy clay
loam soil, demonstrated that to estimate K and P, the optimal sample size for soil K was about twice as large as
that for soil P [SWB+00]. Shi et al.[SWB+00] also noted that, in addition to sample size, a combination of field
size, arrangement and shape ought to be considered when developing sampling schemes to map soil nutrient
distributions. Because of this, some authors (e.g., [SWB+00, PGZ+07, HABF13, PdJBBA14]) have experimented
with different grid sizes and schemes, such as triangular grids. Fields that express high spatial variability over a
small scalemay require fine grid-spacing as exemplified by Cambardella and Karlen [CK99] for an organic field.

Nanni et al. [NPD+11] evaluated several grid resolutions to sample the soil attributes in a field that was usually
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cultivatedwith sugarcane, anda samplingdensity finer than1 sampleha−1wasnecessary to capture the spatial
variability of P and K. According to these authors, the need for a higher sampling density for P and K is related to
the fact that these attributes are more sensitive to management practices than others (e.g., clay). Taylor et al.
[TWEG03], Peralta and Costa [PC13] andNanni et al. [NPD+11] also suggested partitioning the field into specific
management zones as well as the use of stratified sampling to reduce the number of soil samples or the use of
other tools, such as soil electrical conductivity.

2.4.2 Sensors

Monitoring and control systems allow for the assessment of yield or physical-chemical soil characteristics, and
they simultaneously reduce the amount of work needed in the laboratory to improve yield efficiency [SKW+].
These systems consist of devices with sensors that can quickly measure a large number of sample points in
real time and thus provide a description of the spatial variability of the soil and yield [Ada06]. To improve the
quality of the information and to facilitate data acquisition, a wide variety of sensors have been developedwith
an emphasis on yield and soil sensors [ZWW02]. Maps can be generated from these sensors and processedwith
other layers with spatial information [AHMU04].

Thus, harvesting equipment with yield sensor systems have been or are being developed, and they are widely
available for many of the major crops. Yield sensors can instantaneously record georeferenced yield data at
harvest, and the yield monitoring systems permit the yield variability to be displayed. The resulting yield maps
represent the interaction betweenmany soil properties and production inputs, so they provide important infor-
mation for the development of cropmanagement strategies [DHB04, SD07]. These yieldmapsmake it possible
to measure the variability in yield over time and space, and when yield data are collected over multiple years,
the maps can be used to measure temporal variability. For example, yield maps enable researchers to identify
areas where the yield has been equal, greater or lower than the average yield over time [DHB04].

A wide variety of soil sensors that are involved in the real time (on-the-go) detection and acquisition of data for
specific soil attributes have been described in the literature and are commercially available or in development.
Adamchuket al. [AHMU04] andAdamchuk [Ada06] highlighted the followingmeasurement systems: i) electrical
and electromagnetic sensors thatmeasure the effect of soil composition on resistivity/conductivity or electrical
capacitance; ii) optical and radiometric sensors that use electromagnetic waves to detect the level of energy
absorbed/reflected by soil particles; iii) mechanical sensors that measure the resulting forces through a tool
that engages with the soil; iv) acoustic sensors that quantify the sound produced by a tool that interacts with
the soil; v) pneumatic sensors that assess the ease of injecting air into the soil; vi) electrochemical sensors that
use ion-selective membranes that produce voltage in response to the activity of selected ions.

Despite the existence of various soil sensors, the electrical and electromagnetic sensors are commercially avail-
able and commonly used in agriculture. These sensors provide measurements that cannot be used directly
because their absolute value is dependent on the physical and chemical properties of the soil. However, these
sensors provide valuable information about soil differences and similarities that make it possible to divide the
soil into management zones with common features [AHMU04].

Soil electrical conductivity sensors

Although the relationship between yield and ECa is not simple, measurements of soil ECa have demonstrated
a close relationship between soil CEC and soil texture, which influences the water-holding capacity/drainage of
the soil. In this way, ECa maps can be a very interesting tool when there is a strong relationship with the crop
yield maps [LWH01, PC13].
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Traditionally, soil-paste electrical conductivity measurements were used to assess soil conductivity and to de-
termine its salinity andmoisture content [RMSA89], but this process is slow, labor-intensive, expensive and suf-
fers from high local-scale variability associated with small soil core samples [CL05a].

To determine the most accurate and precise fertilizer application, an intensive and representative approach
to soil core sampling is required, but this method depends on laboratory analysis of the representative soil
samples and is time consuming and costly [EDNW00, HMC03]. Therefore, detailed soilmapping requires the use
of more expeditious tools to identify and assess the spatial variability of the soil properties that influence the
spatial variability in yield. The fact that ECa sensors are fast, simple, accurateand reasonablypricedmakes them
someof themost interesting andwidely used tools in the investigation of the relationship between ECa and soil
properties [AHMU04, CLOK06]. The theories and principles of the measurement of soil ECa and a description
of the methods underlying these sensors are well documented by Rhoades et al. [RCL99], Corwin and Lesch
[CL03, CL05b, CL05a, CL05c] and Friedman [Fri05].

The commercially available sensors that enable direct, instantaneousmeasurements of bulk ECa in situ are es-
sentiallybasedon two typesofmethods: direct contactwith the soil (e.g., Veris® 3100sensor, Veris Technologies®,
Salina, Kansas, US) and indirect contactwith the soil bymeans of electromagnetic induction (EMI) (e.g., Geonics
EM38®, Mississauga, Ontario, Canada) [CL05a, JED+05, RCL99].

Themeasurementof electrical conductivitybydirect contact relieson thecreationofanelectrical circuit through
one pair of coulter-electrodes that injects a known voltage into the soil. Another pair of coulter-electrodes, in
direct contact with the soil, measure the voltage from the first pair [AHMU04, CL03, CL05a, GAHT09]. As the
coulters roll through a field, the distance between them defines the effective measurement depth [AHMU04],
whichmeasures the degree of difficulty that amaterial imposes on the passage of a given electric current. This
method is also called the electrical resistivity method (ER).

The electromagnetic induction method uses a transmitter coil to induce a magnetic field in the soil and a re-
ceiver coil to measure the response; there is no direct contact with the soil [AHMU04, CL03, CL05a, GAHT09].

The electrical resistivity method is an invasive technique that is less susceptible to metal interference when
compared to EMI. The depth of the measurements can be easily changed by altering the spacing between the
electrodes, and it is well suited for field-scale applications and does not require daily calibration. The disad-
vantage of this system is that it requires good contact between the soil and the coulter-electrodes, so it may
not work properly in dry or stony soils. Furthermore, ER sensors are usually much heavier than EMI sensors
[CL05a, GAHT09, LCD00].

The electromagnetic induction method is a non-invasive technique that is well suited for field-scale applica-
tions, and it workswell in dry or stony soils and is able to collect data on soils coveredwith vegetation preferably
when the crop is not very densely developed. The disadvantages of this system are that i) it needs daily calibra-
tion; ii) it is susceptible to outsidemetal interference, and iii) it is hard to change the depth of themeasurements
[CL05a, GAHT09, LCD00].

Even though Fleming et al. [FWWB00] documented differences in the conductivity values from both methods,
other authors have founds the results of these methods to be similar in terms of conductivity and their rela-
tionship with the physical and chemical soil properties [SSM13, SSdS14, SKB+03]. Some studies have found
that the ECa valuesmeasured by direct contact weremuch lower than thosemeasured by the electromagnetic
inductionmethod, which is probably due to i) the complex ECa spatial patterns caused by texture variability; ii)
the influenceof bedrockweathering; iii) the erosionof certain high-elevationareas of the landscape; iv) different
measurement depths;(v) variation in the depth of the clay content and/or vi) variation in the vegetation layer
and its moisture content [PCCB13, SSM13, SSdS14, SPC13, SKW+]. Some authors have also observed that the
ER method presents the greatest temporal stability under wide variations in the moisture contents of the soil
and vegetative ground cover [SSM13, SSdS14, SPC13, SKW+]. Althoughbothmethodsmeasure ECamagnitudes
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differently, they both provide useful and consistent information about ECa spatial patterns [AES06, PPCA13].

Relationship between ECa and soil properties

Although the first agricultural studies using electrical conductivity were related to the salinity of the soil [CL05a],
conductivity has recently been used to successfully measure some physical and chemical soil properties that
often determine the productivity of a field [Ame07, HMC03, RPPLS11].

The continuous macro- and micro-pores, which exist between soil particles and are filled with water, are re-
sponsible for the transmission of electricity in soils. Thus, soils with more fine particles have a high specific
surface area, greater particle-particle contact and a greater number of small pores that retain water for longer
periods of time and are better conductors of electricity [CL03, SPC13].

In non-saline soils, ECa is strongly correlated with texture; sands have low conductivity, silts have medium
conductivity, and clays exhibit high conductivity [GMB12, LCD99, LWH01]. This finding is consistent with the
results of other studies (e.g., [CO05, JCK05, JKS+05, RPPLS11, SPC13, SSdS14]) that showed that ECa was sig-
nificantly correlated with clay, silt, and sand contents, as well as CEC, soil moisture, elevation and slope. In
general, CEC and soil moisture strongly correlate with clay and consequently are highly correlated with ECa
[BKE09, HYE+04, MF11, SKW+].

Research has shown that stable soil properties, such as clay, sand, exchange cations and subsoil structure, have
a greater impact on the spatial patterns of ECa than transient properties, such as soil water and temperature
[AES06, FB04]. However, Kachanoski et al. [KWG88] and Hartsock [HMT+00] found that soil moisture had a
greater effect on ECa in soils with low clay content.

Innon-saline soils, the strong relationshipbetweenECa and texture causes theobservedpatterns,which remain
in place throughout the year [GMB12]. Although the conductivity values changewith different soil moisture lev-
els, soil temperatures, and topsoil densities, the ECa maps maintain similar patterns over time [FB04, KKKM11,
LCD99, SSdS14].

However, someauthors have reportedweak relationships betweenECa and some soil properties such as poros-
ity, pH, clay content, and salinity in some fields [BKE09, SPMS10], and Kühn et al. [KBW+09] reported a greater
impact by organic matter and CaCO3 than clay in relation to ECa. This is probably due to a combination of sev-
eral factors, such as the salt content in relatively dry regions [KBW+09] or by variations in the low clay content
of the soil [MHS+03].

Direct relationships between ECa and the nutrient levels in the soil, such as phosphorous (P), potassium (K),
calcium (Ca), magnesium (Mg), manganese (Mn), zinc (Zn), and copper (Cu) are not always consistent [HMC03],
so it is hard to define a single relationship between ECa and soil properties and soil nutrient concentrations
[HMC03]. According to Heiniger et al. [HMC03], salinity, soil texture or soil moisture can mask the response of
ECa to changing nutrient levels in the soil, so they suggest dividing a field into small areas with similar texture,
which would improve the accuracy of ECa for evaluating changes in the concentration of nutrients in the soil.

Rodríguez-Pérez et al. [RPPLS11] and Hartsock et al. [HMT+00] found a strong correlation of sodium (Na), Mg,
clay and sand with the ECa measurements, and Peralta and Costa [PC13] demonstrated a negative correlation
between Zn2+, Mn2+, Fe2+ and Cu2+ concentrations and ECa. In the study by Jung et al. [JKS+05], 60% of the
variation in silt, clay and CEC could be predicted through the ECa, and the findings of Heiniger et al. [HMC03]
indicated that the cases with a strongly significant relationship (R2 ranging from 0.51 to 0.75) between ECa and
soil nutrients occurred when the nutrient was associated with those properties that directly influence ECa: vol-
umetric water content, volumetric content of the soil particles, CEC, and the dissolved salts in the soil solution.
For instance, ECa was directly related to the levels of Ca and Mg when they were associated with differences in
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CEC across the field or when ECa was closely associated with the level of P when it was linked to salinity due to
the application of animal manure [HMC03].

The works of Mueller et al. [MHS+03], Jung et al. [JKS+05] and Peralta et al. [PCCB13] demonstrated a strong
relationship between ECa and Ca, Mg, clay and CEC. Nevertheless, the association between ECa and P was low,
perhaps due to the lower conductance of the inorganic phosphorus ions that aremore common in soil (H2PO−

4

and H2PO2−
4 ) compared to other ionic species, such as Ca2+ and Mg2+, or as a consequence of the type of

fertilizer and the tillage system [JKS+05, PCCB13]. The strong relationship between ECa and exchangeable Mg
observed by Hedley et al. [HYE+04] reflected the dominant claymineralogy of the soil, i.e., chlorites weathering
to illites and releasing Mg into the soil solution.

In 2009, Aimrun et al. [AAR+09]found a significant relationship between ECa values measured by a Veris sensor
and clay, available P and exchangeable K. The highest ECa values were recorded in the lowest position on the
landscape, probably due to the accumulation of soluble salts at these places from surface runoff water and to
the higher clay and soil moisture contents [AAR+09]. This behavior is consistent with the results of Serrano et
al. [SPMS10], Basso et al. [BCC+09] and Vitharana et al. [VVS+08]. An inverse relationship, i.e., higher ECa values
observed in higher positions, was found by Lund et al. [LWH01] and Marques da Silva and Silva [MS08] due to
the higher clay content resulting from erosion.

Although productivity is not directly related to ECa, this can be useful in the study of yield variability, especially
in fields where productivity is very dependent on the water-holding capacity of the soil. More clay, silt, CEC
and less sand are soil properties that are consistently positively related to productivity [MA05, SKW+] due to
the higher capacity of the soil to retain moisture and nutrients [MKR+05]. These properties can be indirectly
measured by ECa [GMB12].

2.5 Variable-rate technology

Variable-rate technology (VRT) refers to any technology that enables producers to vary the rate of crop inputs,
and its aim is to increase crop production profitability, reduce negative environment impacts and promote sus-
tainablemanagement practices. To achieve these goals, it is crucial to assess the spatial and temporal variabil-
ity of crops and soil attributes to delineate different management zones and to determine how to manage the
variable rate inputs [FWWB00, PGZ+07].

There are two basic technologies used to implement variable rate application (VRA): sensor-based and map-
based. Sensor-based VRA does not require a map or a positioning system; real-time sensors measure soil pro-
perties or crop characteristics using sensors “on-the-go”. This information is processed and immediately used
to control a variable-rate applicator, so it is not necessary touse aDifferential GlobalNavigationSatellite System
(DGNSS) [EMP01, GAHT09].

Map-based VRA is a technology supported by electronic maps, also called prescription maps, and a DGNSS
must be used. Therefore, to implement this method, a map of the previously measured target item is required.
Thus, the optimal management zone configuration is the key to precision farming because this information is
essential to the preparation of the prescription maps used for variable rate inputs.

There are many candidate inputs for variable-rate application, such as N, P, K, lime, seeds, pesticides, manure
soil amendments, water and tillage practices. Therefore, spatial variabilitymaps based on a set of field data are
important for site-specific farming by variable-rate technology [AKA+11, ITJ+05, PC13, ZWW02].

It is important to note that not all fields and farms economically benefit by using VRA technology, but even in
such situations, theenvironmental benefits and thepossibility of increasing cropproduction shouldbecarefully
evaluated [GAHT09].
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Abstract

Multitemporal yield maps integrate spatial and temporal variability conditioned by different production
processes and factors. This is influential to enhance decision making. This study aims at the development
of a tool that may quantify a production risk. The emphasis is on the identification and characterization
of the spatial and temporal variability of maize yield by means of a Principal Components Analysis (PCA)
multivariate technique. PCA of multitemporal maize yield data allowed for the following: a) the compari-
son of the production risk in different agricultural fields; b) the interpretation of the spatial variation of the
average temporal productivity; and c) the temporal productivity resilience. The results showed that it is
possible to define four management zones for site-specific treatment: i) zones of high productivity (high
PC1 values) and stable over time (intermediate PC2 values); ii) zones of high productivity (high PC1 values)
and non-stable over time (low or high PC2 values); iii) zones of low productivity (low PC1 values) and stable
over time (intermediate PC2 values); and iv) zones of low productivity (low PC1 values) and non-stable over
time (low or high PC2 values). This knowledge can assist producers in two ways: i) between-fields compar-
ison based on field risk, especially whenmaize prices decrease; and ii) intra-field comparison based on the
average temporal yield, indicated by the first PCA axis and temporal yield stability indicated by the second
PCA axis.

Keywords: field risk; Principal Components Analysis; maize yield; spatial and temporal analysis

3.1 Introduction

Obtaining georeferenced data of soil physical and chemical properties allows for the delineation of areas with
a similar yield (e.g., [AAR+09, AZK07, CL05b, CLOK06, Goo98a, ITJ+05, LCD00]). However, crop yield is not al-
ways correlated with soil physical and chemical properties. The interaction of these factors with i) climate (e.g.,
[BJCK00, MBA+02]); ii) topography (e.g., [JCK05, KKKM11, MS06, MS08, SSL+04]); iii) nutrition (e.g., [BJCK00]);
and iv) pests and diseases [BJCK00, JCK05] affect the spatial and temporal crop productivity. Thus, multitem-
poral productivity maps typically reflect the spatial and temporal variability of this set of interactions involved
in the production process, thereby constituting a basic tool for decisionmaking. Several studies have been de-
veloped to understand spatial variability and its interaction with temporal variability [BGF03, DCT+12, LGC04].
Diker et al. [DHB04] studied the maize yield variability in two irrigated fields and although the spatial yield
distribution changed over time, it was possible to classify the area into low, medium and high productivity
management zones. Other authors also observed multitemporal yield variations based on the factors of water
availability and dry and wet years [BJCK00, KKKM11, SSL+04]. Blackmore et al. [BGF03] and Marques da Silva
and Silva [MS06] analysed the spatial and temporal variability of barley, wheat, rapeseed andmaize and found
a high degree of inter-annual variability. Marques da Silva and Silva [MS06] proved that the interaction between
topography and the irrigation system noticeably affected the spatial and temporal yield variability. These au-
thors showed that increasing the watered area by means of a centre pivot led to an increase in the spatial and
temporal production instability. Marques da Silva et al. [MRSM12] introduced the Rasch model to study spa-
tial and temporal yield variability. These authors showed how this model allows for the development of yield
potential probabilistic maps.

One of the great difficulties in analysing these types of spatial databases is their dimension and redundancy
of variables. Principal Components Analysis (PCA) is a multivariate statistical technique that decreases the
complexity of the data with the least possible loss of information. This technique makes it possible to bet-
ter understand the relationships between variables and thus extract information components relevant to the
understanding of the phenomenon under investigation.

The PCAmethod has been used by several authors to study different problems related to yield crops. For exam-
ple, Carroll and Olivier [CO05] used the PCA method to study spatial relationships between soil physical prop-



3.2. MATERIALS AND METHODS 15

erties and soil apparent electrical conductivity (ECa), and Islam et al. [IVL+11] and Vitharana et al. [VVS+08]
applied PCA to identify and extract themain factors affecting soil fertility. Several authors applied PCA andmul-
tiple regression analysis to predict soybean and rice yield [CGWA03, KWJ89, YLK+01]. Moral et al. [MTM10] used
PCA to study the spatial variability of five well-correlated soil properties.

The goal of this work is to verify whether the use of PCA for these types of multi-spatial-temporal yield data
allows us to delineate yield management zones for maize and to simultaneously calculate the temporal risk
that may be associated with the yield of a given field or a specific location inside a field.

This paper is organized as follows. In section 2, we present the Materials and Methods where we mention the
following: i) the collection and processing of yield data; ii) data and geostatistical analysis; and iii) Principal
Components Analysis methodology description. In section 3, we present the results and discussion. Finally, in
section 4, we provide some concluding comments.

3.2 Materials and Methods

3.2.1 Collecting and processing yield data

This studywas conductedusingmaize yield data collected from twoagricultural fields, Azarento andBemposta,
with an area of approximately 60 ha and 30 ha, respectively, irrigated by centre pivot. The fields are located in
Herdade do Cego, at Fronteira (Lat: +39.09307; Long: -7.611332), in the Alentejo region of southern Portugal.

According to the FAO [FAO14], the soils of these fields are classified as Luvisols and Vertisols.

The topography of the region can be characterized as undulating. The altitude varies from 196 to 230 m in the
Azarento field and from191 to 220m in the Bemposta field. The slopes vary from0 to 12 degrees in the Azarento
field and from 0 to 13 degrees in the Bemposta field. The climate of this area is typically Mediterranean (Csa
climate according to the Koppen classification). The average annual rainfall is 600mm (20 years), with a hot dry
season from June to September and maximum temperatures that occasionally exceed 40ºC. The winters are
mild, with minimum temperatures rarely below 0ºC.

The considered yield years were 2002-2004 and 2007 for Azarento and 2002-2004, 2006-2008 and 2010 for Be-
mposta. The maize was sown in late April/early May and harvested in September/October. The farmer used a
reduced tillage system, involving a small subsoiler (300 mm in depth) prior to sowing.

A CLAAS Lexion 450 combine harvester (produced by CLAAS, Harsewinkel, Germany) that was equipped with a
combine electronic board information system (CEBIS) was used, which provided instantaneous yield and grain
moisture data with less than 5% error. The combine harvester was equippedwith a 6m cutting header; a differ-
ential GPSPilot; a grain photoelectric sensing (themagnitude of signal of the light receptor is used to determine
the flow rate of the grain); and a grain moisture sensor (by sensing the dielectric properties of the harvested
grain), both located near the top of the clean grain elevator. The weight of the collected grain was adjusted for
dry grain moisture (140 g kg−1 of moisture).

The resulting yield map not only shows the yield variation across the field but also characteristic errors, then it
is important the preparation of the yield maps so that these errors are kept to a minimum. Thus, before data
analysis it was applied to the raw data a filtering process in accordance with themethodologies of Blackmoore
and More (1999): removal of production values located outside the study field; removal of production values
with speed records lower than 1 km h−1 and greater than 10 km h−1; removal of output production values
below 0.5 t and above 24 t; and elimination of the production points located at a zero distance between them.
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3.2.2 Data analysis

Exploratory data analysis

The SPSS®: software (IBM Corp., Armonk, New York, USA [IBM10]) and ArcGISTM : Geostatistical Analyst tool
(ESRI, Redlands, USA [ESR09]) were used in the spatial yield data exploratory analysis to check for the presence
of global and local outliers, trends, normality and data directional dependence. Box-plots, histograms andNor-
mal QQPlots were examined to observe extreme values and identify possible outliers. The 1st quartile (Q1) and
the 3rd quartile (Q3) yield data indicated values to be eliminated, i.e., the values exceeding Q3+3(Q3-Q1) and
those lower than Q1-3(Q3-Q1) (e.g., [MRSP10]). Local outliers were eliminated considering the Voronoi analy-
sis (ArcGISTM : Geostatistical Analyst tool; ESRI, [ESR09]). Voronoi maps were constructed from a number of
polygons that formed around each sampling point.

These polygons were created so that every location within a polygon was closer to the sample point in that
polygon compared with any other sample point; this is influential to compute a variety of local statistics. The
Voronoi Map tool provides a number of methods for calculating and assigning values to polygons.

Clustermethodwas used to identify possible outliers. The clustermethod identifies those cells that are dissimi-
lar to their surroundingneighbours. All of the cellswereplaced into five class intervals, and if the class interval of
a cell was different from each of its neighbours, the cell was coloured grey to distinguish it from its neighbours.
When a cluster equalled -1, it was considered a local outlier [ESR09].

Geostatistical analysis

The maize yield spatial dependence analysis was conducted with standardized yield data using SpaceStatTM

software (BioMedware, Ann Arbor, USA [Bio12]) and ArcGISTM : Geostatistical Analyst (ESRI, Redlands, USA
[ESR09]). The trend analysis tool in Arcmap was used to explore the global trends in the data. The trends were
analysed based on direction and the order of the line that fit the trend. The variograms were assessed in dif-
ferent directions to identify whether there were directional influences affecting the data. These directional in-
fluences will affect the accuracy of the surface created. The analysis using Geostatistical Analyst tool indicated
that the interpolation model should not account for the anisotropy. The data revealed no trend or isotropic
behaviour [IS89, Oli10].

The spatial structure of each year of maize data was characterized by experimental variograms that were cal-
culated from experimental data using Matheron’s equation [Oli10]:

γ(h) =
1

2N(h)

n∑
i=1

[Z(xi + h)− Z(xi)]
2 (3.1)

where xi and xi+h are the sampling locations that are separated by a distance h; Z(xi) and Z(xi+h) are the mea-
sured values of variable Z at the corresponding locations that are separated by a distance h, and N(h) is the
total number of sample pairs within the distance interval h and the given direction. All of the pairs of points that
were separated by distance h (lag) were used to calculate the experimental variogram.

Spherical andexponential theoreticalmodelswere fitted to theempirical omni-directional variograms [Goo98b,
Oli10]. The models were fitted using the following cross-validation statistics. The best model was the one with
amean error (ME) and standardizedmean (MS) nearest to zero, the smallest rootmean squared prediction error
(RMSE), the average standard error nearest the root mean squared prediction error and the standardized root
mean squared prediction error (RMSS) nearest to 1 [IS89, ESR09].
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The variogram structural properties were used in the construction of maps using ordinary kriging for each yield
year, performed on a regular resolution grid of 6 m. All maps were drawn using ArcGISTM : Spatial/3D analyst
tools [ESR09].

A yield surface with a 6 m resolution grid, the same as the combined width, was obtained considering an ordi-
nary kriging interpolator and the variogram structural properties. All maps were drawn using ArcGISTM : Spa-
tial/3D analyst tools [ESR09].

Principal components analysis (PCA)

The fundamental contributions to the development of the PCA were made by Pearson [Pea04] and later by
Hotelling [Hot33], and this multivariate approach is now incorporated into mathematical statistics [LMP95].
However, only after the 1960’s was it possible to apply PCA to the processing of multivariate data with the use
of computing platforms.

In most studies each individual is represented by a large number of variables. The individual study of each
variable does not consider the relationships that may exist between them (which is usually themost important
aspect). The data analysis techniques must therefore take into account multidimensional data. PCA is a linear
factorial method and it is a technique suited to explore the underlying structure of such data.

Themain goal of PCA is to search for synthesis variables called principal components. The PCA aims to identify
a structure of a set of variables that are related to each other to construct a measurement scale for factors that
control the initial variables. PCA is a method of reducing the complexity of the data with the least possible
loss of information. If two or more variables are interrelated, it means that they share a common characteristic
that may not be directly observable. Thus, through the correlations observed between variables, PCA creates
common factors and structural relationships that link the factors to the variables. The most general method is
the ”measure of sampling adequacy of the Kaiser-Meyer-Olkin” (KMO), proposed by Kaiser [Kai70] and Kaiser
and Rice [KR74]. The KMOmeasures the homogeneity of variables, comparing simple correlations with partial
correlations observed between variables.

The new components can then be used as indicators that summarize the available information on the original
variables. These components are linear combinations of the initial variables; they are not correlated with each
other, and they exhibitmaximumvariance. The study and interpretation of the variance-covariance structure of
a given phenomenon, measured by multiple variables to reveal the relationships between variables, between
individuals and between individuals and variables, is the primary objective of the PCA. The reduction of the
dimensionality of the representative points of the samples, although the statistical information present in the
original p-variables is the same as that of the main p-components, makes it possible to obtain more than 80%
of that information in only two or three main components [Pea04].

PCA was performed using ArcGISTM : Spatial/3D analyst tools [ESR09]. The variables used for each field were
the maize yield of each year. Standardization to mean 0 and variance 1, using the field mean of each year as a
reference, was needed to ensure themulti-temporal data were comparable and to homogenize the variance in
themultivariate analysis. PCAwas applied to the correlationmatrix to extract the eigenvectors and eigenvalues.

Annual normalized maize yield variables were processed to develop new artificial variables using PCA. These
new artificial variables consisted of a linear combination of the original variables and were designated as the
principal components. In this particular case, eachyearof production for each tested fieldhadadifferentweight
in each obtained component. The components are mutually orthogonal, that is, each component carries dif-
ferent statistical information [Jac80]. For each component, the ArcGISTM : Spatial Analyst Tool [ESR09] created
a raster surface with the same resolution of the original data. All contour lines were obtained using ArcGISTM :
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Spatial Analyst Tool [ESR09].

3.3 Results

3.3.1 Grain yield descriptive statistics

All summary statistics of the maize yield are shown in Table 3.1. Considerable variability was found for most
variables, with a medium coefficient of variation. The variability was higher in 2002 and 2003 for both fields.
In 2003, the Azarento field yield showed a nearly symmetrical distribution, whereas a negative asymmetry was
observed in the remaining years. The presence of some values with low productivity in 2002, 2004 and 2007
resulted in a left skewing of the yield distribution but all the skewness coefficients exhibited values <1 or > -1.
Although a linear geostatistic does not require a normal distribution, a variogram is based on variances, and
any asymmetry with skewness values higher or lower than these values should be examined [Oli10]. Therefore,
although the data did not follow a normal distribution when using the Kolmogorov-Smirnov procedure with
Lilliefors Significance Correction, no transformation was used for the geostatistical analyses. In the autocorre-
lation scale at approximately 60 to 70m (Fig. 3.1), it was found that yield data had a near normal distribution. In
the Bemposta field, the maize yields for 2002, 2003 and 2010 revealed approximately symmetric distributions.
The yield data from other years showed a moderate negative asymmetry with a similar magnitude. The data
dispersion around the mean was similar to the variation observed in the Azarento field (Table 3.1).

Table 3.1: Summary statistics for grain yield at the Azarento and Bemposta agricultural fields.

Yield Year Mean Standard Minimum Maximum Coefficient Skewness
deviation of

(t ha−1) (t ha−1) (t ha−1) (t ha−1) variation
Azarento
2002 12.57 4.966 0.505 23.986 0.395 -0.292
2003 08.34 3.175 0.504 22.886 0.381 0.008
2004 12.66 3.833 0.506 23.968 0.303 -0.664
2007 12.55 3.582 0.503 23.913 0.285 -0.464
Bemposta
2002 12.03 4.741 0.500 23.980 0.394 0.134
2003 08.99 3.082 0.502 22.787 0.394 0.343
2004 10.84 2.955 0.544 23.657 0.273 -0.553
2006 12.77 3.446 0.508 23.933 0.270 -0.568
2007 13.28 4.307 0.511 23.951 0.324 -0.288
2008 14.86 3.908 0.565 23.908 0.263 -0.744
2010 12.23 3.282 0.518 23.887 0.268 -0.092
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Figure 3.1: (a) 2002 yield variogram for the Azarento field; (b) 2006 yield variogram for the Bemposta
field.

3.3.2 Grain yield spatial dependence

The omnidirectional variogram parameters computed for the yearly maize yield data for the Azarento and Be-
mposta fields displayed in Figures 3.1a and 3.1b are shown in Table 3.2.

Oliver [Oli10] showed that in presence of a large set of data, nested variation is often observed, and a combina-
tion of two or more simple models can be used tomodel such variation. A spherical model with two structures
showed the best fit for Azarento (Table 3.2, Fig. 3.1a). In this field, there was a strong spatial autocorrelation
in the first 60 m and a smoother autocorrelation from 60 m to 160 m. In the Bemposta field, an exponential
model with a single structure was the best fit (Table 3.2, Fig. 3.1b). The variogram ranges had a strong spatial
autocorrelation in the first 60 m, which was cancelled or disappeared thereafter.

The yearly maize yield data for Bemposta appeared to vary more consistently than the yearly maize yield data
for Azarento, as shown by the smaller nugget effect and the larger range of its variograms. These differences are
probably related to differences in topography.

According to the C0/(C0+C) ratio (Table 3.2), all years yield of Azarento and the 2004 yield of Bemposta showed a
moderated spatial dependence. The remaining yield years of Bemposta indicated a strong spatial dependence
[CMP+94]. The spatial dependencebetter explains the yield variation in theBemposta field than in the Azarento
field, with a higher random error caused by a higher nugget effect.

3.3.3 Principal Components Analysis

The 4 yield years (4 variables) in the Azarento pivot and the 7 yield years (7 variables) in the Bemposta pivot
were subjected to a Principal Components Analysis performed on the Pearson’s correlation matrix coefficient.
In each pivot, all yield years (all variables) showed significant correlations (P<0.05).

In the case of the Azarento field, the higher correlations were always high and positive between the 2002, 2003
and 2004 yields and ranged from 0.75 to 0.81. The correlations of these yields with the 2007 yield were lower
but still positive and significant.

In the case of the Bemposta field, positive correlations were found between all years. These years showed
correlations from 0.5 to 0.7, but the 2004 yield revealed a weak (0.33) positive correlation with the 2007 and
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Table 3.2: Maize yield data variogram parameters for Azarento (2 structures) and Bemposta agricultural
fields.

Yield Year Lag Nr. Model Nugget Sill Range SD1 SDD2

Lags Effect
(m) Co (m) (%)

Azarento
2002 6 40 Spherical 0.37 0.42 69.0 36.5 Mod

0.23 210.7
2003 6 40 Spherical 0.34 0.32 55.5 34.8 Mod

0.31 240.7
2004 6 40 Spherical 0.31 0.37 57.8 32.0 Mod

0.28 179.3
2007 6 40 Spherical 0.37 0.29 49.6 34.3 Mod

0.41 313.1
Bemposta
2002 6 25 Exponential 0.20 0.83 135.0 19.5 Strong
2003 6 25 Exponential 0.21 0.80 108.0 20.8 Strong
2004 6 25 Exponential 0.30 0.73 120.0 29.1 Mod
2006 6 25 Exponential 0.07 0.87 67.5 7.4 Strong
2007 6 25 Exponential 0.10 0.66 99.0 13.2 Strong
2008 6 25 Exponential 0.13 0.64 84.0 16.8 Strong
2010 6 25 Exponential 0.20 0.69 97.5 22.5 Strong

1SD=Spatial Dependence (Co/Co+C): (SD<25%=strong spatial dependency (Strong); SD between 25 and 75%=moderate
spatial dependence (Mod.); SD>75% weak spatial dependence; SD≈ 100%= random); 2SDD=Spatial dependence degree

(Cambardella et al. 1994)
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2002 yields and amoderate (0.50) correlation with the 2003 and 2010 yields. The eigenvalues and eigenvectors
were extracted from the correlation matrix (Table 3.3).

The results of the Kaiser Meyer Olikin (KMO) method showed suitability of only one factor, with KMO=0.827 in
Azarento and KMO=0.852 in Bemposta, indicating that factor analysis was appropriate. Despite the Principal
Components Analysis having revealed that only one component was significant according to the Kaiser crite-
rion (to retain the eigenvalues greater than 1), we considered the first two principal components for the multi-
temporal yield database for both fields. The values of the eigenvector loadings for each year and thepercentage
of the variance explained by the first two axes for the Bemposta and Azarento fields are shown in Table 3.3. Each
major component (Table 3.3; Figs. 3.3c, 3.3.d, 3.5c and 3.5d) is a linear combination of all the original variables
(Figs. 3.2 and 3.4) and attempts to explain the overall variability. The eigenvalue analysis revealed that the first
(PC1) and second components (PC2) together accounted for 88.8% and 77.3% of the yield data variance in the
Azarento and Bemposta fields, respectively.

3.4 Discussion

The 1st component, PC1 (Figs. 3.3c and 3.5c), refers to the first orthogonal axis that explained 76.9% and 64.1%
of the total variancepresented in theoriginal data for the Azarento andBemposta fields, respectively (Table 3.3).
In the Azarento field, the eigenvector loadings (Table 3.3) between PC1 and 2002, 2003 and 2004 (Fig. 3.2) were
close to 0.50 and showed a slight increase from the 2002 to the 2004 yield. Although not very different, the 2007
yield showed that something different occurred because it is the only year that PC2 was negatively correlated
with yield.

In the Bemposta field, the eigenvector loadings (Table 3.3) between PC1 and the yield ranged between 0.31 and
0.43. Bemposta PC2 correlated negatively with the 2004 and 2008 data. The productivities of 2006 and 2007
contributed the most to PC1, with a 0.43 factor loading (Table 3.3).

Table 3.3: Values of the eigenvector loadings for each variable and percentage of explained variance by the
first two axes for Bemposta and Azarento fields.

PC1 PC2 PC1 PC2
Yield Variable Bemposta Azarento

Eigenvectors Eigenvectors
Yield 2002 0.39 0.49 0.51 0.18
Yield 2003 0.35 0.07 0.52 0.37
Yield 2004 0.31 -0.64 0.54 0.19
Yield 2006 0.43 0.15
Yield 2007 0.43 0.38 0.43 -0.89
Yield 2008 0.37 -0.41
Yield 2010 0.35 0.18
Eigenvalue 2.19 0.45 1.40 0.22
Total explained variance (%) 64.1 13.2 76.9 11.9

With a total explained variance of 100% in the 1st component (PC1), one could say that all studied yield years
were equal. Considering this and a comparison between the two different fields, one could say that the higher
the explained variance in the 1st component, the more stable a field would be over time. Based on a com-
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Figure 3.2: Standardized maize yield maps for the Azarento field: (a) yield in 2002; (b) yield in 2003; (c)
yield in 2004; (d) yield in 2007.
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Figure 3.3: Azarento field: (a) temporal yield standard deviation; (b) average temporal maize yield; c) first
principal component scores; (d) second principal component scores.
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Figure 3.4: Standardized maize yield maps for the Bemposta field: (a) yield in 2002; (b) yield in 2003; (c)
yield in 2004; (d) yield in 2006; (e) yield n 2007; (f) yield in 2008; (g) yield in 2010.
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Figure 3.5: Bemposta field: (a) Temporal yield standard deviation; (b) Average temporal maize yield; (c)
First principal component scores; (d) Second principal component scores.
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parison of the Azarento and Bemposta variance explained by PC1, and if we could consider that the analysis
was carried out for the same number of years, we could say that the Azarento field is a more stable field from
a temporal perspective because the 1st component explains more variance over time; stating this in another
way, the Azarento field becomes more redundant over time and this information is of major importance when
producers have to choose between two production fields and want to reduce yield risks.

APC1comparativeanalysis of both fields (Figs. 3.3cand3.5c)withbothof theaverage temporal yieldmaps (Figs.
3.3b and 3.5b), allows us to observe that the highest values of PC1 coincide with the highest average temporal
yield areas, whereas lower PC1 values coincide with the lower average temporal yield areas. The same can be
confirmed in Figure 3.6, which shows 300 random yield observations in each of the fields, where one can see
that when PC1 increases, the average temporal yield of the Azarento (4 years) and Bemposta fields (7 years) also
increases.

When comparing the PC1 values of the two fields, we found that the PC1 upper limit of the Bemposta field (9.93)
was greater than the PC1 upper limit of the Azarento field (7.32) (Figs. 3.3c and 3.5c). A similar discrepancy can
be observed considering the 300 random observations (Fig. 3.6).

This means that the Bemposta field reached a higher average temporal yield value and therefore, produced
more, on average, than the Azarento field in some years (Table 3.1). PC1 values close to zero indicate lower
average temporal yield values, whereas PC1 values close to the maximum indicate the opposite (Fig. 3.6).

As shown in Figure 3.6, the point of intersection of the y-axis was lower for the Azarento field (-2.14) compared
with theBemposta field (-1.85); however, theAzarento field hadahigher linear regression slope (0.50), indicating
that theaverage temporal yieldperunit of PC1 increasedmore rapidly comparedwith theBemposta field (which
exhibited a slope of 0.38).

Figure 3.6: Plot of the first principal component scores (PC1) vs. the average temporal yield of 300 random
yield observations in the Azarento and Bemposta fields.

Considering thePC1 for intra-field analysis, it is possible todelineate areasof highor lowaverage temporal yield,
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which enables site-specific management with consequent economic and environmental benefits. It should
be noted that when performing an intra-field analysis, PC1 does not provide any information on the average
temporal yield variability.

The 2nd component, PC2 (Figs. 3.3d and 3.5d), refers to the second orthogonal axis, which explained 11.9%
and 13.2% of the total variance present in the original Azarento and Bemposta field data, respectively (Table
3.3). In the Azarento field, PC2 (Fig. 3.3d) was positively (0.18 to 0.37) related to the 2002, 2003 and 2004 yield
and negatively (-0.89) to the 2007 yield (Table 3.3). In the Bemposta field, PC2 (Fig. 3.5d) was positively related
mainly to the 2002 (0.49) and 2007 (0.38) yield and negatively to the 2004 (-0.64) and 2008 (-0.41) yield (Table
3.3).

The 2nd component showed similar PC2 limit values in both fields (0 to 5.4 in Azarento, and 0 to 5.6 in Bemposta;
Figs. 3.3d and 3.5d). The second component appeared to have a parabolic association with the temporal yield
standard deviation, and showed significant (P<0.05) R2 values of 0.62 and 0.51 for the Azarento and Bemposta
fields, respectively (Figs. 3.3a, 3.5a and 3.7). In the Azarento field, the PC2 values tended to be located primarily
around the midpoint of the PC2, while in the Bemposta field, the PC2 values appeared to be more distributed
within the confines above (Fig. 3.7). This figure also demonstrates that higher and lower PC2 values show that
the temporal yield standard deviation values were consistently higher than 0.5. On the other hand, Figure 3.7
clearly shows that intermediate values of PC2 are related to areas with lower temporal yield variability, i.e., the
temporal yield standard deviation values were consistently less than 0.5.

Figure 3.7: Plot of the second principal component scores (PC2) vs. the temporal yield standard deviation
for 300 random yield observations in the Azarento and Bemposta fields.

Thereby, this 2nd component (Figs. 3.3d and 3.5d) seems to identify regions of the field where low PC2 values
(e.g., between 0 and 2, Figs. 3.3d and 3.5d) and high PC2 values (e.g., between 4 and 6, Figs. 3.3d and 3.5d), with
low or high yield, indicate areas of high temporal yield variability. These results lead us to believe that in both
fields, temporal instability of productivity occurs mainly in areas with low and high PC2 values, with high or low
productivity of the yield area. These areas have a potentially high production risk. Therefore, PC2 identifies
areas of higher or lower temporal yield resilience. In other words, if the yield in an intra-field zone changes
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readily over time (up or down), PC2 is close to themaximumorminimum; if the yield in an intra-field zone does
not change that much over time, PC2 is close to intermediate values.

3.5 Conclusions

Based on results wemay conclude that: i) in a between-field average temporal yield comparison, the field with
the highest absolute temporal yield average and the highest explained variance by means of PC1, will be the
more productive and the least risky. This is fundamental for ranking all agricultural fields in terms of the maize
temporal yield risk; ii) in an intra-field yield temporal analysis, the 1st component makes it possible to observe
that the highest PC1 values coincide with the highest average temporal yield areas and the lowest PC1 val-
ues coincide with the lowest average temporal yield areas; iii) in an intra-field yield temporal analysis, the 2nd

component makes it possible to observe that low and high values of PC2 indicate areas of high temporal yield
variability, and intermediate values of PC2 indicate areas of low temporal yield variability.

Considering the first two components in an intra-field temporal yield analysis, one can define management
zones for site-specific treatment: i) zones of high productivity (high PC1 values) and stable over time (interme-
diate PC2 values); ii) zones of high productivity (high PC1 values) and non-stable over time (low or high PC2
values); iii) zones of low productivity (low PC1 values) and stable over time (intermediate PC2 values); and iv)
zones of low productivity (low PC1 values) and non-stable over time (low or high PC2 values).

This information is valuable for producers as anexploratory study andmayenhancedecision-makingprocesses
and the selection of agricultural fields or parts of agricultural fields considering their temporal redundancy by
means of the overall variability explained by PC1. One may choose parts of a field with a higher absolute tem-
poral yield average, higher PC1 values and median PC2 values to optimize production factors and to reduce
economic risk of the activity.
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Abstract

There is emerging interest in evaluating the uncertainty of agricultural production to support the production
process and for guidance in decision making. The main objective of this work was to estimate the spatial
and temporal maize yield uncertainty using stochastic simulation techniques to reduce the economic risk
considering the producer risk profile and the international prices of maize and inputs. The results showed
that i) the class yield percentage variation in yield stochastic simulation depends on the sampling density;
ii) higher sampling densities promote an overestimation of low and high yield values compared to those of
real yield data; iii) reducing sampling density promotes the low and high values of overestimation reduction
while increasing the central classes values compared to those of real yield data; iv) the ideal point density
for yield stochastic simulation is approximately 65 points ha−1; v) in Mediterranean environments, more
than 3 to 4 years’ worth of real yield data considered as a whole do not seem to improve the field level of
confidence when cropping irrigated maize; and vi) the number of equi-probable surfaces that were generated
by sequential Gaussian simulation helped to calculate the yield class uncertainty and permitted the study
of class yield probabilities for a particular position of the field and, therefore, to manage the yield risk and
support future decisions. The approach that is presented in this paper may increase prior knowledge of
agricultural field behavior in the absence of multi-year data, thereby increasing the possibility of reducing
economic risks.

Keywords: stochastic simulation, maize, yield spatial and temporal uncertainty, risk management

4.1 Introduction

The availability of sophisticated technologies that can be applied to agriculture has provided greater guidance
in the development of the production process and greater impact on decision making.

Defining low and high potential stable zones for site-specific management is particularly difficult because tem-
poral variability is generally higher than spacevariability for cropsandsoil properties [CC08]. Therefore, different
tools and large amounts of geo-referenced information have been used to characterize soil differences within
crop production fields with accuracy.

According to Batchelor et al. [BBP02], different crop growth models have been used to simulate the effect of
management, weather, genetic, water stress and other yield limiting factors. In precision agriculture, these
models are used to understand the spatial variability and provide guidance for the site-specific management
decisions of crop inputs.

Generally, cropmodels are developed and tested at the scale of small and homogeneous areas, assuming that
inputs are uniform for all spatial area [BBP02, HJ00]. However, as described by Hansen and Jones [HJ00], even
under these conditions, new properties and processes appear as a result of new components (e.g., human and
economic subsystems) or interactions among neighboring components of the system (e.g., intercrop competi-
tion), which may condition the results. These authors indicate potential approaches that are related to input
sampling and calibration for controlling or minimizing the effects of those components or interactions.

The connectionbetweencropgrowthmodels andclimatepredictiondependson theassumption that themod-
els can capture the response to climate variability that occurs year to year [HJ00].

Basso et al. [BCC+09] used a crop model that simulates plant growth and development responses to environ-
mental conditions, genetics and management strategies. The interactions with plant parameters, topography,
soil attributes, and remotely sensed data increased the possibilities of observing yield variability over the years
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[BCC+09]. The remote sensing imagery provides timely spatial information of soil and crop variability through-
out the season [BBP02], which is important to target sampling and to provide spatial input for crop models
[BRP+01].

To control all of the factors that are involved in the production process through models is not easy, and crop
models are not perfect. Others techniques introduce new challenges for accurately defining the spatial and
temporal yield and soil variability. The use of geostatistical tools hasmade it possible to characterize the spatial
and temporal distribution of physico-chemical properties of soils e.g., [AKA+11, CK99, MTM10, NMMK12], to
better understand the complex relationships that occur between soil properties and environmental factors and
to sustainability intensify the production process [AZK07, DMV07, DCT+12, Goo98b].

Geostatistical techniques, such as kriging,make it possible to estimate attributes in unsampled locations based
on the spatial continuity of the data [Goo99, Soa06]. These estimation techniques smooth the details of local
spatial variability as shown by Goovaerts [Goo98b] with pH data on pasture. This kriging smoothing algorithm
leads to an over-estimation of small values and an underestimation of large values [Goo98b, Goo99]. However,
this technique permits themapping and discriminating of areaswhere the studied variable had large and small
values [Soa06].

The inability of the estimationprocedures toproduce extremeattributes hasmade the applicationof stochastic
simulation procedures relevant to the study of soils and plants. In stochastic simulation, the aim is not to min-
imize the error variance but to reproduce the variability of the attributes being studied in a probabilistic way;
that is, it is intended to generate a set of values that reproduce the histogram and variogrammodel of sample
data [Goo98b, Goo99, Goo00].

An intermediateapproach, simulatedannealing, hasbeendiscussedbyGoovaerts [Goo98b,Goo99,Goo00].This
approach enabled the author [Goo98b] to create maps of soil contamination by zinc, with a balance between
the estimation and simulation, depending on the desired weight constraint (histogram and variogram repro-
duction or minimum error variance at each location).

Estimating the yield uncertainty in agriculture is somewhat important, especially if one tries to achieve eco-
nomic optimization. The main objective of this work was to study the stochastic and sequential Gaussian sim-
ulation techniques and determine i) if they can be useful in forecasting and modeling maize productivity; ii) if
they can be useful in modeling spatial and temporal uncertainty by means of probabilistic yield maps; and iii)
if they can help producers to reduce overall risks.

4.2 Materials and Methods

4.2.1 Details of the field experimental site and the collection of yield data

This study was conducted on two center-pivot fields near Fronteira (Lat: +39.09307; Long: -7.611332) in the
Alentejo region of southern Portugal. The considered maize yield years were 2002, 2003, 2004 and 2007 for the
Azarento field (60 ha) and 2002, 2003, 2004, 2006, 2007, 2008 and 2010 for the Bemposta field (30 ha). Irrigated
maizewas sown in late April/earlyMayandharvested inSeptember/October. The farmersuseda reduced tillage
system involving a small subsoiler (300 mm in depth) prior to sowing.

The soils are classified mainly as Luvisols and Vertisols [FAO14]. The altitude varies from 192 m to 230 m and
the slope from 0 to 24% (see supplementary material - Appendix A).

ACLAASLEXION450combineharvester (producedbyCLAAS,Harsewinkel, Germany)wasusedandwasequipped
with a combine electronic board information system (CEBIS), providing instantaneous yield and grainmoisture
data with a less than 5% error. The combine harvester was equipped with a 6 m cutting header; a differential
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GPS Pilot;a grain photoelectric sensing (the magnitude of signal of the light receptor is used to determine the
flow rate of the grain); and a grain moisture sensor (by sensing the dielectric properties of the harvested grain),
both near the top of the clean grain elevator. To eliminate the identifiable errors, the yield data were processed
using the methodology of Blackmore and Moore [BM99] (see subsection 3.2.1), and the weight of the collected
grain was adjusted for grain moisture (140 g kg−1). The yearly maize yield data were standardized with a mean
equal to zero and a standard deviation equal to one in order to reduce the weather influence from one year to
the other.

4.2.2 Data processing and analysis

An exploratory data analysis of maize productivity was performed to detect the presence of global outliers and
trends and to test data normality using SPSS® software (IBM Corp., Armonk, New York, USA [IBM10]). The yield
data did not follow a normal distribution when using procedures of Kolmogorov-Smirnov with Lilliefors sig-
nificance correction. However, the data transformations did not improve the data distribution, possibly be-
cause yield data have an almost symmetric distribution, with skewness near to zero. According to Kroulík et
al. [KMKP06] and Panagopoulos et al. [PdJBBA14], data under these conditions can be considered normally
distributed because they have a skewness range between -1 and 1.

The severe outliers were eliminated annually using the 1st (Q1) and 3rd (Q3) quartiles yield data; the values
exceeding Q3+3(Q3-Q1) and inferiors to Q1-3(Q3-Q1) were eliminated [MRSP10].

The SpaceStatTM (BioMedware, Ann Arbor, USA [Bio12]) and ArcGISTM (ESRI, Redlands, USA [ESR09]) software
programswereused todetect thepresenceof trends, global and local outliers anddatadirectional dependence
and to perform amaize yield structural analysis with previously standardized data.

Voronoimapswere constructed considering the polygons that formedaroundeach sampling point, allowing us
to compute a variety of local statistics. The detection of outliers consisted of the identification of the cells that
were dissimilar to their surrounding neighbors. All of the cells were placed into five class intervals, and if the
class interval of a cell was different from each of its neighbors, the cell was considered a local outlier(ArcGISTM :
Geostatistical Analyst tool, (ESRI, Redlands, USA [ESR09]).

The spatial structure analysis for each variable was performed using experimental variograms that were calcu-
lated from experimental data using Matheron’s equation [Oli10]:

γ(h) =
1

2N(h)

n∑
i=1

[Z(xi + h)− Z(xi)]
2 (4.1)

where xi and xi+h are the sampling locations that are separated by a distance h; Z(xi) and Z(xi+h) are the mea-
sured values of variable Z at the corresponding locations that are separated by a distance h, and N(h) is the
total number of sample pairs within the distance interval h and the given direction. All of the pairs of points that
were separated by distance h (lag) were used to calculate the experimental variogram.

The experimental omnidirectional variogramswere fitted to standardmodels in order to capture themain char-
acteristics of maize productivity [Goo98b, Goo99, Oli10] by minimizing the weighted sum of squares (WSS) of
the differences between the experimental and theoretical variogram models and considering the study area
and prior knowledge [Goo98b]. Following cross-validation statistics, the choice of the best model was based
on the lowest root mean square error [ESR09, IS89].

The interpolation of the considered maize yield years was performed by ordinary kriging, which estimates val-
ues as a linear combination of closer observations considering two criteria: non-bias and minimization of the
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estimation variance [Goo98b, Goo99]. The analysis of yield spatial variability was performed in a 6 m × 6 m
square mesh using the ArcGISTM software geostatistical analyst extension [ESR09] .

The spatial dependence was calculated with spatial class ratios that were similar to those that were presented
by Cambardella et al. [CMP+94].

The forecastingandmodelingofmaizeproductivitywereperformedusing sequentialGaussian simulation tech-
niques provided in the SGeMS software suite (Stanford Geostatistical Modeling Software, [Rem02]). The simula-
tion reproduces the variance of input data, both in a univariate sense (via. the histogram) and spatially (through
the variogram), therefore it is preferred to kriging for applications where the spatial variation of the measured
fieldmust be preserved [Goo99, VBJ02] . The sequential Gaussian simulation assumes that themarginal distri-
bution function of the variable to simulate has a Gaussian distribution. The respective data transformationwas
accomplishedwithin limits equal to theminimumandmaximumsampling before the application of sequential
Gaussian simulation. The applied algorithmdefines a randompath throughall grid nodes. Simple kriging of the
nodes in the path helps generating a local distribution. A new value is then drawn from this local distribution.
This added to the nodes in the random path and the next node is simulated, and so on [Goo99, VBJ02] .

Data standardization was performed before the application of sequential Gaussian simulation. Considering
the previous knowledge of Sequential Gaussian simulation techniques, one hundred equi-probable scenarios
of maize yield were tested and generated using SGeMS (Stanford Geostatistical Modeling Software, [Rem02])
for 30, 65, 125 and 150 to 250 points ha−1 of the 2002 real yield, randomly chosen data. Of all of the previous
simulations, the best simulation trial was then replicated for all of the years and fields.

All of the yield surfaces that were generated each year and in each simulation were analyzed using ArcGISTM

software, [ESR09] and classified into 10 standard distribution yield classes: 1st (< -1); 2nd (-1 to -0.75); 3rd (-0.75
to -0.50); 4th (-0.50 to -0.25); 5th (-0.25 to 0); 6th (0 to 0.25); 7th (0.25 to 0.50); 8th (0.50 to 0.75); 9th (0.75 to 1); and
10th (> 1).

4.3 Results and Discussion

4.3.1 Exploratory and spatial structure analyses

The exploratory data analysis was performed in order to understand the basic features of the yield data. Due
to extremely high temperatures during the pollination time, the 2003 yield year (Table 4.1) had a relatively low
average yield (8.34 tha−1) compared to those of the other yield years. The coefficient of variation (Table 4.1)
showed a low to medium variability in every year.

The spatial behaviorof themaize yieldwasassessedby variogrammodelswhoseparameters are shown inTable
4.2. Spatial variation was characterized by spherical (2 structures) and exponential models in the Azarento and
Bemposta fields, respectively (Table 4.2).

Within each field, all of the yearly set and subset yield variograms showed a similar shape with a nugget effect
and were still on the same order of magnitude (Table 4.2 and Fig. 4.1); however, in 2007, the Azarento field had
a greater range of spatial dependence. According to Cambardella et al. [CMP+94], the Azarento field showed
a moderate maize yield spatial dependency, while the Bemposta field showed a stronger maize yield spatial
dependency.
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Table 4.1: Summary statistics for grain yield in Azarento and Bemposta agricultural fields.

Yield Year Mean Standard Minimum Maximum Coefficient Skewness
deviation of

(t ha−1) (t ha−1) (t ha−1) (t ha−1) variation
Azarento
2002 12.57 4.966 0.505 23.986 0.395 -0.292
2003 08.34 3.175 0.504 22.886 0.381 0.008
2004 12.66 3.833 0.506 23.968 0.303 -0.664
2007 12.55 3.582 0.503 23.913 0.285 -0.464
Bemposta
2002 12.03 4.741 0.500 23.980 0.394 0.134
2003 08.99 3.082 0.502 22.787 0.394 0.343
2004 10.84 2.955 0.544 23.657 0.273 -0.553
2006 12.77 3.446 0.508 23.933 0.270 -0.568
2007 13.28 4.307 0.511 23.951 0.324 -0.288
2008 14.86 3.908 0.565 23.908 0.263 -0.744
2010 12.23 3.282 0.518 23.887 0.268 -0.092

Figure 4.1: Maize yield variogram - 2002.
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Table 4.2: Maize yield data variogram parameters for Azarento (2 structures) and Bemposta agricultural
fields.

Yield Year Lag Nr. Model Nugget Sill Range SD1 SDD2

Lags Effect
(m) Co (m) (%)

Azarento
2002 6 40 Spherical 0.37 0.42 69.0 36.5 Mod

0.23 210.7
2003 6 40 Spherical 0.34 0.32 55.5 34.8 Mod

0.31 240.7
2004 6 40 Spherical 0.31 0.37 57.8 32.0 Mod

0.28 179.3
2007 6 40 Spherical 0.37 0.29 49.6 34.3 Mod

0.41 313.1
Bemposta
2002 6 25 Exponential 0.20 0.83 135.0 19.5 Strong
2003 6 25 Exponential 0.21 0.80 108.0 20.8 Strong
2004 6 25 Exponential 0.30 0.73 120.0 29.1 Mod
2006 6 25 Exponential 0.07 0.87 67.5 7.4 Strong
2007 6 25 Exponential 0.10 0.66 99.0 13.2 Strong
2008 6 25 Exponential 0.13 0.64 84.0 16.8 Strong
2010 6 25 Exponential 0.20 0.69 97.5 22.5 Strong

1SD=Spatial Dependence (Co/Co+C): (SD<25%=strong spatial dependency (Strong); SD between 25 and 75%=moderate
spatial dependence (Mod.); SD>75% weak spatial dependence; SD≈ 100%= random); 2SDD=Spatial dependence degree

(Cambardella et al. 1994)
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4.3.2 Real Yield Data

Table 4.3 (Azarento field) shows that in 2002, 2003, 2004 and 2007, the percentage of the standard productivity
in each classwasmore or less stable from year to year. In percentage terms, the smallest difference (Ymax-Ymin)
for all of the years (0.97 percentage points) occurred in class 2; the biggest difference for all of the years (3.62
percentage points) occurred in class 8; and the global difference average was approximately 2.4 percentage
points (Table 4.3, data averageof column10). Onaverage, 65%of the total fieldproductionwasbetweenclasses
3 and 8. With the exception of classes 2, 3, and 9, which showed yield percentages of approximately 7% to 9%,
most of the classes had a yield percentage of approximately 10% to 12% while maintaining a reasonable yield
percentage stability in each class productivity over time (Table 4.3).

Similar results were found for Bemposta field (Table 4.4); the analysis of 7 yield years confirms that on average,
65%of the total field production is locatedbetween classes 3 and 8. Nevertheless, Bemposta field, forwhich the
global difference average is approximately 4.56 percentage points (Table 4.4, data average of column 13), has
higher yield values compared to Azarento field (Table 4.3), possibly due to the different number of yield years
and their respective yield variability. In percentage terms, the smallest yield difference was also encountered
in class 2 (2.46 percentage points), and the biggest was encountered in the two extreme classes (classes 1 and
10).

Table 4.3: Percentages of yield standard classes for real yield in the Azarento field.
Y02 Y03 Y04 Y07 YMin YMax YMed (2) - (1)

Yield Yield standard (%) (%) (%) (%) (%) (%) (%) (%)
classes interval (1) (2)

1 <-1.00 9.91 11.51 11.67 9.07 9.07 11.67 10.54 2.60
2 -1.00 to -0.75 6.34 6.51 5.89 6.86 5.89 6.86 6.40 0.97
3 -0.75 to -0.50 9.15 7.60 7.77 10.07 7.70 10.07 8.65 2.37
4 -0.50 to -0.25 10.28 9.72 8.65 11.84 8.65 11.84 10.12 3.19
5 -0.25 to 0.00 11.43 12.52 11.00 12.37 11.00 12.52 11.83 1.52
6 0.00 to 0.25 12.69 13.12 11.93 12.19 11.93 13.12 12.48 1.19
7 0.25 to 0.50 10.55 11.54 13.06 10.68 10.55 13.06 11.46 2.51
8 0.50 to 0.75 11.02 9.00 12.62 10.28 9.00 12.62 10.73 3.62
9 0.75 to 1.00 8.90 8.15 10.25 6.83 6.83 10.25 8.53 3.42
10 >1.00 9.73 10.33 7.18 9.82 7.18 10.33 9.27 3.15

YMin - Minimum yield class percentage; YMax - Maximum yield class percentage; YMed - Average real yield class
percentage; Y02; Y03; Y04; Y07 - Real yield 2002; 2003; 2004 and 2007

4.3.3 Yield Stochastic Simulations

In order to determine the influence of data density on the stochastic simulation results, 30, 65, 125 and 150 to
250 points ha−1 of the initial data were tested.

From Tables 4.5 and 4.6 and considering all of the simulated yield classes, if a 200 points ha−1 (SY02) density is
used, there is an overestimation of the lower yield values (Table 4.5, 14.79%; Table 4.6, 10.94%) and the higher
yield values (Table 4.5, 15.35%; Table 4.6, 18.17%) compared to the real yield values, as represented by YMed
(Tables 4.5 and 4.6). This phenomenon is also visible in Figures 4.2a and 4.2b when comparing both of the
curves. When decreasing the point density in the simulations, the overestimation effect of the border classes
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Table 4.4: Percentages of yield standard classes for real yield in the Bemposta field.
Yield Yield standard Y02 Y03 Y04 Y06 Y07 Y08 Y10 YMin YMax YMed (2) - (1)
classes interval (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

(1) (2)
1 <-1.00 8.13 9.29 9.43 10.42 12.21 8.47 6.24 6.24 12.21 9.17 5.97
2 -1.00 to -0.75 6.59 5.62 7.20 5.12 6.20 4.75 6.24 4.75 7.20 5.96 2.46
3 -0.75 to -0.50 9.15 8.15 8.34 6.24 8.43 6.96 9.91 6.24 9.91 8.17 3.66
4 -0.50 to -0.25 10.96 9.67 11.75 10.24 9.58 9.73 12.73 9.58 12.73 10.67 3.15
5 -0.25 to 0.00 13.74 12.01 12.46 10.50 9.67 11.36 15.02 9.67 15.02 12.11 5.35
6 0.00 to 0.25 12.59 14.18 12.39 11.71 10.57 13.23 12.33 10.57 14.18 12.43 3.61
7 0.25 to 0.50 9.92 13.26 10.38 13.57 9.96 12.93 11.51 9.92 13.57 11.65 3.65
8 0.50 to 0.75 6.26 11.57 8.97 11.49 9.44 10.90 9.21 6.26 11.57 9.69 5.32
9 0.75 to 1.00 5.37 7.86 8.63 7.61 8.67 9.81 5.69 5.37 9.81 7.66 4.44
10 >1.00 17.29 8.39 10.45 13.09 15.26 11.87 11.13 8.39 17.29 12.50 8.90
YMin - Minimum yield class percentage; YMax - Maximum yield class percentage; YMed - Average real yield class

percentage; Y02; Y03; Y04; Y06; Y07; Y08; Y10 - Real yield 2002; 2003; 2004; 2006; 2007; 2008 and 2010

(classes 1 and 10) diminishes, while the central classes increase their weight, as shown in Tables 4.5 and 4.6 and
in Figures 4.2a and 4.2b.

Looking at Tables 4.5 and 4.6 and Figures 4.2a and 4.2b, it is possible to perceive that the YMed curve, represent-
ing the yield average pattern that was found in the 4 and 7 years of real data, is very similar to the curves that
were obtainedwith the lower simulation data densities, at 30 and 65 points ha−1 curves. The average real yield
(YMed), with the exception of classes 5 and 6 (Azarento) and classes 7, 8 and 9 (Bemposta), follows a very similar
pattern of 65 points ha−1 curves. However, the reduction effect of extremely high values (class 10) as observed
in low-density data (30 and 65 points ha−1) in the Azarento field (Fig. 4.2a) is not presentwith the same intensity
as in the Bemposta field (Fig. 4.2b). This result may have occurred because, in 2002 (year basis for simulated
data), the percentage of the field area with higher yield data was atypically high in the Bemposta field (Table
4.4), and the stochastic simulation addresses the variability of the data [Goo98b]. Considering the above and
for these particular fields, it was found that the optimal yield simulation data density is approximately 65 points
ha−1.

Thus, for all of the yield years that were considered in Azarento and Bemposta, one hundred stochastic simu-
lations per year were performed considering a simulation data density of 65 points ha−1 of real data density.
Tables 4.7 and 4.8 present these results.

Tables 4.7 and 4.8 show that the stochastic simulation presented an inter annual consistency considering a sim-
ulation data density of approximately 65 points ha−1. In percentage points, the smallest multi-year amplitude
(SYmax-SYmin) occurred in class 2, with 1.37 percentage points (Table 4.7, Azarento) and 2.67 percentage points
(Table 4.8, Bemposta). In addition, in both fields, the biggest multi-year amplitude (SYmax-SYmin) occurred in
class 1, with 4.39 and 5.66 percentage points for Azarento andBemposta, respectively (Tables 4.7 and 4.8). How-
ever, the average multi-year amplitude was lower in Azarento (2.9 percentage points - obtained by averaging,
column 9 in Table 4.7) compared to that in Bemposta (3.8 percentage points - obtained by averaging, column
12 in Table 4.8).

Approximately 65% of the total field has a simulated production between classes 3 and 8 (Tables 4.7 and 4.8)
in both fields, which is similar to real yield data that were previously reported (Tables 4.3 and 4.4). With the
exception of classes 2, 3, and 9, which presented yield percentages of approximately 6% to 9%, all of the other
classes presented a yield percentage of approximately 10% to 13%, maintaining a reasonable yield stability
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Table 4.5: Percentages of yield standard classes for the 2002 simulated yield data in the Azarento field
considering 30, 65, 125 and 200 points ha−1 of yield data positions randomly.

Yield classes SY02 SY02 SY02 SY02 YMed
(200 pts ha−1) (125 pts ha−1) (65 pts ha−1) (30 pts ha−1)

(%) (%) (%) (%) (%)
1 14.79 12.47 11.06 8.47 10.54
2 6.28 6.51 6.4 6.37 6.40
3 7.55 8.68 8.70 9.65 8.65
4 8.45 9.29 9.85 11.73 10.12
5 9.54 9.94 10.76 13.08 11.83
6 10.73 11.30 11.75 12.94 12.48
7 9.75 10.56 11.75 10.88 11.46
8 9.30 9.81 10.80 9.53 10.73
9 8.26 8.93 9.02 8.94 8.53
10 15.35 12.51 9.90 8.42 9.27

SY02 - Simulated yield 2002; YMed - Average real yield class percentage from Table 4.3; pts ha−1 - points ha−1

Table 4.6: Percentages of yield standard classes for the 2002 simulated yield data in the Bemposta field
considering 30, 65, 125 and 200 points ha−1 of yield data positions randomly.

Yield classes SY02 SY02 SY02 SY02 YMed
(200 pts ha−1) (125 pts ha−1) (65 pts ha−1) (30 pts ha−1)

(%) (%) (%) (%) (%)
1 10.94 9.96 7.41 6.51 9.17
2 6.34 6.40 7.33 6.30 5.96
3 8.21 8.87 9.78 10.47 8.17
4 10.42 10.42 11.32 13.11 10.67
5 11.94 12.12 12.92 13.81 12.11
6 11.10 11.59 11.21 11.33 12.43
7 9.78 9.81 9.97 10.47 11.65
8 7.23 6.99 7.19 7.16 9.69
9 5.88 5.88 6.17 6.32 7.66
10 18.17 17.96 16.70 14.50 12.50

SY02 - Simulated yield 2002; YMed - Average real yield class percentage from Table 4.3; pts ha−1 - points ha−1
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Table 4.7: Percentages of the yield standard classes for simulated yield data in the Azarento field considering
65 points ha−1 of yield data positions for 2002, 2003, 2004 and 2007.
Yield SY02 SY03 SY04 SY07 SYMin SYMax SYMed (2) - (1)
classes (65 pts ha−1) (65 pts ha−1) (65 pts ha−1) (65 pts ha−1) (1) (2)

(%) (%) (%) (%) (%) (%) (%) (%)
1 11.06 10.42 11.88 7.49 7.49 11.88 10.21 4.39
2 6.4 7.22 5.85 6.51 5.85 7.22 6.50 1.37
3 8.7 8.32 7.53 9.62 7.53 9.62 8.54 2.09
4 9.85 10.26 8.74 12.36 8.74 12.36 10.30 3.62
5 10.76 12.94 10.43 13.1 10.43 13.1 11.81 2.67
6 11.75 13.77 12.52 12.28 11.75 13.77 12.58 2.02
7 11.75 11.12 13.29 11.6 11.12 13.29 11.94 2.17
8 10.8 8.15 11.61 10.86 8.15 11.61 10.36 3.46
9 9.02 6.88 10.34 6.43 6.43 10.34 8.17 3.91
10 9.9 10.92 7.82 9.74 7.82 10.92 9.60 3.1

SY02; SY03; SY04; SY07 - Simulated yield 2002; 2003; 2004 and 2007; SYMin - Simulated yield minimum class percentage;
SYMax - Simulated yield maximum class percentage; SYMed - Average simulated yield class percentage; pts ha−1 - points
ha−1

percentage throughout the analyzed period.

This result indicates that the point sampling density affects the yield stochastic simulation results: i) a denser
sampling stochastic simulation tends to distribute the yield evenly, and ii) a less dense sampling stochastic
simulation tends to concentrate the yield in central classes.

Tables 4.9 and 4.10 present the difference between the real yield data (Tables 4.3 and 4.4) and the stochastic
simulated yield data (Tables 4.7 and 4.8); the yield percentages differences are minimal. In both of the fields,
≈ 45% of the yield classes showed yield differences lower than |0.5| percentage points; ≈ 37% of the yield
classes showed yield differences lower than |1.0| percentage points; and ≈ 19% of the yield classes showed
yield differences higher than |1.0| percentage points and lower than |1.58| and |2.14| in Azarento and Bemposta
fields, respectively.

This fact can also be observed on Figures 4.3 and 4.4, where there is a strong correlation between the real yield
relative percentage curves and the simulated yield relative percentage curves (see supplementary material for
the Bemposta field curves - Appendix A).

The differences between theminimum,maximumand average yield values (Table 4.11) per yield class between
real yield data (Tables 4.3 and 4.4) and simulated yield data (Tables 4.7 and 4.8) are normally less than 1 per-
centage point (≈ 80% ) for both of the analyzed fields.

These results indicate that the yield stochastic simulationmaybean interesting tool for interpreting yield trends
over time because it permits a high number of temporal repetitions considering a relatively small spatial and
temporal sampling basis.
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Table 4.9: Percentage differences between real yield and yield simulation classes considering ≈ 65% points
ha−1 of yield data positions (Azarento).

Yield classes Y02- SY02 Y03- SY03 Y04- SY04 Y07- SY07
(%) (%) (%) (%)

1 -1.15 1.09 -0.21 1.58
2 -0.06 -0.71 0.04 0.35
3 0.45 -0.72 0.24 0.45
4 0.43 -0.54 -0.09 -0.52
5 0.67 -0.42 0.57 -0.73
6 0.94 -0.65 -0.59 -0.09
7 -1.2 0.42 -0.23 -0.92
8 0.22 0.85 1.01 -0.58
9 -0.12 1.27 -0.09 0.4
10 -0.17 -0.59 -0.64 0.08

Y02; Y03; Y04; Y07 - Real yield 2002; 2003; 2004 and 2007
SY02; SY03; SY04; SY07 – Simulated yield 2002; 2003; 2004 and 2007

Table 4.10: Percentage differences between real yield and yield simulation classes considering ≈ 65% points
ha−1 of yield data positions (Bemposta).

Yield classes Y02- SY02 Y03- SY03 Y04- SY04 Y06- SY06 Y07- SY07 Y08- SY08 Y10- SY10

(%) (%) (%) (%) (%) (%) (%)
1 0.72 -0.66 -1.17 2.12 1.19 0.90 -0.23
2 -0.73 0.56 0.87 0.61 -0.52 0.07 -0.09
3 -0.64 0.73 0.00 -1.02 -0.16 -0.16 0.07
4 -0.35 -0.34 1.61 -1.04 -0.45 -0.11 1.04
5 0.83 0.08 0.47 -1.66 -0.16 -0.80 0.28
6 1.38 1.17 -1.09 -0.45 0.07 -0.03 0.79
7 -0.05 -1.07 -0.41 0.68 0.14 0.46 0.94
8 -0.94 -0.35 -0.38 -0.57 0.08 -1.22 0.52
9 -0.80 0.52 0.61 -0.47 0.15 0.15 -1.17
10 0.58 -0.62 -0.53 1.80 -0.34 0.75 -2.14

Y02; Y03; Y04; Y06; Y07, Y08; Y10 - Real yield 2002; 2003; 2004; 2006; 2007 and 2010
SY02; SY03; SY04; SY06; SY07; SY08; SY10 - Simulated yield 2002; 2003; 2004; 2006; 2007 and 2010
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Figure 4.2: Field area percentage according to different standard yield classes and different initial point
densities for stochastic simulation: (a) Azarento field; (b) Bemposta field.
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Table 4.11: Percentage differences of minimum, maximum and average yield values per yield class between
real yield data and simulated yield data, considering ≈ 65% points ha−1 of yield data.

Yield YMin- SYMin YMax - SYMax YMed - SYMed YMin- SYMin YMax - SYMax YMed - SYMed

classes (%) (%) (%) (%) (%) (%)
Azarento Bemposta

1 1.580 -0.210 0.327 0.54 0.85 1.07
2 0.040 -0.360 -0.095 0.11 -0.11 -0.25
3 0.170 0.450 0.108 -0.91 0.01 -0.59
4 -0.090 -0.520 -0.183 0.04 0.94 -0.05
5 0.570 -0.580 0.023 -1.23 0.77 -0.19
6 0.180 -0.650 -0.100 0.39 -0.87 -0.57
7 -0.570 -0.230 -0.480 -0.03 0.31 0.10
8 0.850 1.010 0.375 -1.19 -0.24 0.15
9 0.400 -0.090 0.362 -0.65 0.22 -0.15
10 -0.640 -0.590 -0.325 -1.61 1.90 0.47

YMin –yield minimum class percentage; YMax –yield maximum class percentage; SYMin – Simulated yield minimum class
percentage; SYMax – Simulated yield maximum class

Figure 4.4: Average real yield and simulated yield (≈ 65% points ha−1) field area percentage according to
different standard yield classes and considering 4 years (Azarento field).
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Table 4.12: Field area percentage below the yield average according to 95%, 90%, 80%, 70%, 60% and
50% confidence levels, considering yield simulations from ≈ 65% points ha−1 of real yield data.

Yield simulation data Confidence level

(number of simulations) 95% 90% 80% 70% 60% 50%

Azarento - field area (%)

SY02 (100) 14.89 18.25 25.31 32.45 39.24 45.61

SY03 (100) 14.89 19.68 27.67 34.08 41.11 48.48

SY04 (100) 14.79 18.33 24.61 30.53 35.91 41.62

SY07 (100) 14.70 18.51 26.69 34.74 41.94 48.61

SY02+SY03 (200) 6.77 12.39 21.93 31.38 38.68 47.69

SY02+SY03+SY04 (300) 5.37 10.47 20.14 28.34 36.27 44.23

SY02+SY03+SY04+SY07 (400) 3.00 8.00 17.61 26.67 35.74 44.85

Bemposta - field area (%)

SY02 (100) 18.52 23.50 31.59 38.59 44.53 50.54

SY03 (100) 16.35 19.42 25.03 31.25 37.72 43.60

SY04 (100) 14.78 19.23 26.57 33.16 39.70 45.50

SY06 (100) 13.00 15.86 21.37 27.82 34.93 41.56

SY07 (100) 19.76 24.46 31.30 36.97 41.61 45.93

SY08 (100) 13.31 16.43 22.35 28.67 34.27 40.39

SY10 (100) 17.14 21.89 30.07 37.26 44.03 51.11

SY02+SY03 (200) 8.34 13.28 23.11 31.29 38.36 47.35

SY02+SY03+SY04 (300) 3.42 7.35 16.82 25.63 36.16 45.55

SY02+SY03+SY04+SY06 (400) 2.10 5.45 14.91 24.55 34.45 44.22

SY02+SY03+SY04+SY06+SY07 (500) 1.51 4.65 14.33 24.79 34.33 44.75

SY02+SY03+SY04+SY06+SY07+SY08 (600) 1.02 4.06 13.36 23.55 33.57 43.11

SY02+SY03+SY04+SY06+SY07+SY08 +SY10(700) 0.84 4.17 13.39 23.98 34.45 44.07
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Table 4.13: Field area percentageabove-yield average according to 95%, 90%, 80%, 70%, 60% and 50%
confidence levels, considering yield simulations from ≈ 65% points ha−1 of real yield data.

Yield simulation data Confidence level

(number of simulations) 95% 90% 80% 70% 60% 50%

Azarento - field area (%)

SY02 (100) 18.52 23.70 33.13 40.83 48.13 55.04

SY03 (100) 18.61 23.10 29.74 36.91 44.27 52.30

SY04 (100) 23.43 29.32 38.48 46.06 53.02 58.98

SY07 (100) 20.18 24.34 32.45 39.26 45.79 51.95

SY02+SY03 (200) 8.20 15.13 27.39 37.85 45.65 54.47

SY02+SY03+SY04 (300) 6.74 14.99 28.31 37.99 47.67 56.08

SY02+SY03+SY04+SY07 (400) 4.41 11.54 24.67 35.95 46.34 55.49

Bemposta - field area (%)

SY02 (100) 23.53 27.35 33.11 38.70 44.31 49.96

SY03 (100) 19.89 25.07 34.79 43.13 50.33 56.85

SY04 (100) 25.88 29.58 37.06 42.94 49.01 55.07

SY06 (100) 26.20 31.90 40.50 47.19 53.26 59.09

SY07 (100) 29.61 34.11 40.58 45.48 50.07 54.44

SY08 (100) 28.60 33.99 42.13 48.59 54.37 60.26

SY10 (100) 23.09 26.97 33.66 39.40 44.34 49.76

SY02+SY03 (200) 11.33 17.14 27.95 37.31 45.93 55.05

SY02+SY03+SY04 (300) 7.20 12.29 23.61 34.11 44.34 54.78

SY02+SY03+SY04+SY06 (400) 6.88 12.85 24.49 36.07 46.46 56.05

SY02+SY03+SY04+SY06+SY07 (500) 7.11 13.12 24.38 35.54 45.71 55.48

SY02+SY03+SY04+SY06+SY07+SY08 (600) 6.88 12.93 24.75 36.32 46.74 57.07

SY02+SY03+SY04+SY06+SY07+SY08 +SY10(700) 6.68 12.58 24.30 35.17 45.35 56.05
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Figure 4.5: Below-average yield areas with 80% confidence considering 2002, 2003, 2004 and 2007 simu-
lation data analyzed independently (Azarento field).
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Figure 4.6: Above average yield areas with 80% confidence considering 2002, 2003, 2004 and 2007 simu-
lation data analyzed independently (Azarento field).
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Figure 4.7: Below-average (a) and above-average (b) yield areas with 80% confidence considering 2002,
2003, 2004 and 2007 simulation yield data grouped together (Azarento field).
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4.3.4 Yield classes and their occurrence probability

Considering the number of replications that can be obtained with stochastic simulation, it is relatively easy
to calculate a certain probability from a yield estimate. Thus, it is possible to obtain with a certain statistical
confidence the yield area that is associated with a certain yield class. With one year’s data and with a 95%
confidence level, the below-average Azarento field area is approximately 15%, regardless of the considered year
(Table 4.12). However, considering two yield years simultaneouslywith the same statistical confidence level, the
below-yield average field area is reduced to approximately 7% (Table 4.12).

Table 4.12 also shows that the Bemposta field has the same behavior as that of the Azarento field. However,
for higher confidence levels, the average area decreases faster in the Bemposta field than in the Azarento field
when adding another yield year over a span of seven years, reflecting a higher inter-annual yield variability for
Bemposta compared to Azarento field.

Thus, including a new year’s data, for the same statistical confidence level, the below average field percentage
area normally decreases; however, this reduction is felt more quickly at higher statistical levels, such as 95%,
than at lower statistical levels, such as 50% (Table 4.12).

The above-average yield areas (Table 4.13) present with similar behavior; however, for the same statistical con-
fidence level, the fields show a greater area percentage, suggesting that above-average yield areas are more
stable (trusted) from the point of view of multiyear productivity compared to the below-average yield areas.

With a set of 3 to 4 years’ worth of data, introducing 1 year more does not appear to change the field area per-
centage regardless of the considered level of confidence (Tables 4.12 and 4.13). Considering previous results,
one may say that 3 to 4 years’ worth of data are required to make robust probabilistic previsions. This type of
study (Tables 4.12 and 4.13) may be performed for any yield class and field and may thus support producers
in their decision making: 1) it makes it possible to map with a given confidence level (producer risk profile)
the yield areas under study (Figs. 4.5 and 4.6; for Bemposta field, see supplementary material - Appendix A);
2) considering the surrounding yield risk (e.g., international price of maize, international price of inputs, etc.), it
enables producers tomake safe decisions about which areas should or should not be subjected to production.
In other words, with a relatively high surrounding risk (e.g., low international price of maize and relatively high
input prices), the decision makers should consider higher levels of confidence (e.g., 80% - 90%) when making
their decisions, and with a relatively low surrounding yield risk (e.g., high international maize price andmoder-
ate input prices), decisionmakersmay consider lower levels of confidence (e.g., 60% - 70%) whenmaking their
decisions.

Considering the years 2002, 2003, 2004 and 2007 individually for the Azarento field and the areas with produc-
tivity below (Fig. 4.5) and above (Fig. 4.6) the yield average, at the 80% confidence level, it is possible to detect a
multiyear spatial trend; however, there is still some spatial-temporal variability (the sameoccurred inBemposta
field (see supplementarymaterial - Appendix A)). Considering the 4 (Azarento) and 7 (Bemposta) yield years that
were analyzed together in a grouped way, the spatial variability below the (Fig. 4.7a) and above the (Fig. 4.7b)
yield average for a statistical confidence level of 80% decreases, consolidating the below- and above-yield av-
erage areas surrounding a particular location (see supplementary material for the Bemposta field - Appendix
A).

Although this technique can be used with only a year’s worth of data, a greater number of years are without
doubt the most beneficial from the statistical and the spatial confidence points of view. From what has been
said in the previous paragraph, at least 3 to 4 years considered together are recommended to obtain robust
probabilistic estimates.
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4.4 Conclusions

It was found that i) the class yield percentage variation in yield stochastic simulation depends on the sampling
density; ii) higher sampling densities in stochastic simulation, such as 150 to 250 yield points ha−1, promote an
over-estimation of low and high yield values compared to real yield data; iii) reducing the sampling density in
stochastic simulation promotes the reduction of low and high values while increasing the values of the central
classes compared to the real yield data; iv) the ideal point density for yield stochastic simulation in this particu-
lar studywas approximately 65 points ha−1 compared to real yield data; v) the overall coincidence between real
yield data and stochastic simulation yield datawas greaterwhen considering themulti-annual yield average; vi)
the number of equi-probable surfaces that were generated by sequential Gaussian simulation helped to repro-
duce the main yield classes of uncertainty compared to those of real year yield data; vii) this approach permits
the study of class yield probabilities for a particular position in the field and therefore to manage the yield risk
and support future decisions; viii) 3 to 4 years of real yield data processed together are recommended to draw
robust yield uncertainty maps by means of stochastic simulation; and ix) the innovative approach presented
heremay increase the agricultural field prior knowledge in the absence of longmulti-year yield databases, pro-
moting a better management strategy according to the producer risk profile and the international prices of
maize and inputs.
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Abstract

This study aims to evaluate the agronomic, economic and environmental properties of maize phosphorus
(P) and potassium (K) fertilization. The study was performed in a 56.5 ha experimental field, and different
fertilization scenarios were proposed based on the yield/input ratio, taking into consideration the field sur-
face yield and the actual maize price. Considering a 2015 maize price of 175 € t−1 and the direct crop cost
structure of about 1890 € ha−1 (typical in the Mediterranean region), the break-even yield was≈ 11 t ha−1.
The results indicate that i) in agricultural fields subject to uniform fertilization formany years, with variable
nutrient extractions, the budget of soil inputs is also variable; ii) the yield/input ratio (e.g., P and K) can help
farmers and managers optimize agronomic inputs and reduce economic and environmental risks; and iii)
differential fertilization of this specific experimental field could save approximately 200 € ha−1.

Keywords: phosphorus, yield/input ratio, break-even yield

5.1 Introduction

Maintaining a soil nutrient balance is fundamental formaintaining good soil health in all agricultural production
systems. The increase of nutrient inputs to answer the demands for more food in a growing world population
has contributed to the nutrient soil imbalance.

Phosphorus (P) is a nutrient commonly provided in all fertilization programs because it is an essential element
for plant growth. However, the addition of P to soil and the consequent plant uptake requires knowledge of the
P distribution and dynamic in the soil.

The soil P dynamics involve the interaction of microbes, plants and fauna, and to understand the processes
involved, it is important to know the P behaviour. The immobilization, mineralization and redistribution of P
depends upon the physic-chemical soil properties [SPdS+10, ST87]. Phosphorus can be found in the soil in
organic and mineral forms, the latter more so than the former. The organic form can only be absorbed by
plants after the mineralization process as it is dependent upon the mineral P availability; soil temperature; soil
moisture content; appropriate balance between P, carbon, nitrogen and sulphur [San95, ST87]; residue man-
agement and cultivation practices [DEP98, WTC+11].

The mineral form, the main fraction of P in non-organic soils, is generally held with more or less energy and
therefore is not directly available to plants; only a small part is available in the soil solution and can be readily
utilized by plants [San95].

Soils rich in allophane minerals or in iron, aluminium oxides/hydroxides and in clay minerals, particularly the
1:1 type, have a great ability to adsorb phosphorus in forms that are not absorbable by plants [San95, Sha95].
The presence of high calcium carbonate (CaCO3) and soil pH also dominate the P available to plants [San95,
Sha95]. The precipitation of P essentially occurswhen the soil pH is between 7.5 and 8. Above pH 8, the calcium
is precipitated to form calcium carbonate, and calcium is thus removed. However, in very alkaline soils, less
soluble secondary phosphates (H2PO2−

4 ) predominate that are less absorbed by plants [San95, Sha95].

The studies of Horta et al. [HMMT13] inMediterranean soils showed that P sorption processes depend upon the
soil depth: predominantly, precipitation in C horizons; adsorption in A horizons; and both processes occurring
in B horizons.

To achieve a correct understanding of soil P dynamic, it is also important to study the balance between the
supplied and the available P [SPdS+10].
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The phosphorus accumulation in soil, especially in the topsoil, due to its low mobility, is a consequence of
the consecutive addition of phosphate fertilizers [WEF01]. This accumulation occurs mainly in inorganic forms,
with different degrees of binding energy. However, the static nature of the phosphor can be disturbed by man
causing a higher bioavailability and mobility of this nutrient in the soil [San95].

The following are direct consequences of this phosphorus accumulation as a result of many years of excessive
applications are: i) rising production costs; ii) uneven soil P distributions due to regular P applications and
irregular plant extractions; and iii) eutrophication of water bodies and water reservoirs due the P transferences
between excessive soil concentrations and soil water runoffs [San95, Sha95, WEF01].

Thereby, it is fundamental to assess the potential soil phosphorus losses in different scenarios. Horta and Tor-
rent [HT07] evaluated the ability of the Olsen method to predict the P release capacity in runoff and drainage
water for acid soils with different parent materials and indicated as the threshold levels of 20 to 50 mg Kg−1 of
soil. On basic rocks soils, under a sub-humid Mediterranean climate, Horta et al. [HMMT13] showed a eutroph-
ication risk when the P values exceed 13 mg Kg−1 (Olsen method) in runoff and surface waters.

According to Torrent et al. [TBGS07], the proportion of soils falling into high P classes was generally great and
has consistently increased from1980until recent years. A great effort is beingmade to reduce the inputsof some
fertilizers, to avoid over-enrichment and to achieve more sustainable practices of land use. One of the goals of
P variable rate applications is to have adequate levels of P in the field, improving its efficiency [SPdS+10].

Potassium in soils is mainly in the following mineral forms: a) structural K of minerals; b) fixed K or interlayer K
(fixed in 2:1 layer clayminerals, such as illite andmontemorillonite); c) exchangeable K; and d) K in soil solution
[San95]. These forms constitute a dynamic system in equilibrium with a reversible transfer between them but
only a minor part of soil K is in solution.

The availability of K differs greatlywith soil type and is affectedbyphysico-chemical properties of the soil [JK08].
When k fertilizer is applied to a soil, K enters in the soil solution and then equilibrates the different K min-
eral forms depending, mainly, on the amount and type of clay, the total cation exchange capacity, and soil
pH [AEJ04, San95, SSS14, Sha90].

Like other nutrients, K in the soil solution is directly taken by plants, but is also easily dragged by leaching be-
cause it has no chemical retention [San95]. However, K in the soil solution represents a very small fraction of
the total K in soil and its leaching does not result directly in eutrophication (Alfaro et al. 2004; Santos 1995).
[AJG04, San95]. Alfaro et al. (2004) showed that the amount of potassium leaching losses was related to the
soil type, but the chemistry of the soil was not as important as its hydrology in controlling the dynamics of K
leaching.

According to Jalali et Kolahchi (2008) the movement of K in soil is markedly affected by the extent of sorption
by soil. These authors found a significant relationship between K leaching and simple measurements of ex-
changeable K. Therefore, such relationships can provide useful estimates of leaching and thus aid in the control
of losses.

Although K is little dragged by leaching in well supplied colloids soils, K over-fertilization can lead to nutritional
imbalances with other cations, reducing the absorption of Ca and Mg (ionic antagonism).

Therefore it should be avoided excess K levels in soil and it should be included agricultural practices that en-
hance the efficiency of nutrient conversion and reduce the losses, e.g. using site-specific management.

Thewithin-field P and K spatial variation is a key issue forminimizing fertilization costs and reducing P eutroph-
ication risks.

This study aims to improve the economic, agronomic and environmental efficiency of maize production based
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on: i) the maize international market price fluctuations; ii) the yield level from which profit can be generated
(break-even yield); and iii) the yield/input ratio. The article focus is on phosphorous, but the samemethodology
can be adopted for other crop inputs, such has potassium, water, etc.

5.2 Materials and methods

5.2.1 Study field

The investigated field has 56.5 ha and is located in the “Herdade de Cego” farm near Fronteira (Lat: +39.09307;
Long: -7.611332) in the Alentejo region of southern Portugal. The climate of this area is typically Mediterranean
(Csa climate according to theKoppen classification). The average annual rainfall is 600mm(20 years), with a hot
dry season from June to September with maximum temperatures that occasionally exceed 40◦C. . The winters
are mild, with minimum temperatures rarely below 0◦C.

The field predominant soils are classified as Luvisols and Vertisols [FAO14]. The farmer used a reduced tillage
system involving a small subsoiler (300 mm in depth) prior to sowing.

The considered yield yearswere 2002, 2004 and 2007, andmaizewas sown in late April/early May and harvested
in September/October. Because maize is grown under irrigation, year-to-year yield variation should not occur
based on water availability.

ACLAASLEXION450combineharvester (producedbyCLAAS,Harsewinkel, Germany)wasusedandwasequipped
with a combine electronic board information system (CEBIS), providing instantaneous yield and grainmoisture
data with less than 5% error. The combine harvester was equipped with a 6 m cutting header; a differential
GPS Pilot; a grain photoelectric sensing (the magnitude of signal of the light receptor is used to determine the
flow rate of the grain); and a grain moisture sensor (by sensing the dielectric properties of the harvested grain),
which were near the top of the clean grain elevator. The yield data were cleaned to remove errors as described
in Blackmore and Moore [BM99] (see subsection 3.2.1), and the weight of the collected grain was adjusted for
grain moisture (140 g kg−1 of moisture).

5.2.2 Digital elevation model

Elevationdata collectedby a “TrimbleRTK/PP-4700” global position system (GPS)were used for a topographical
survey of the irrigated area. The track pointswere collected approximately every 5m, with 5m spacing between
swaths and an accuracy of ±2 cm vertically and horizontally. An irregular network of triangles (TIN) was calcu-
lated on the basis of the point data. A digital elevation model (DEM) was generated on a 6 m grid from point
elevations using the 3D Analyst extension in the ArcGis software. Terrain attributes, such as elevation and slope,
were calculated from the DEM using ArcGis 9.3. The altitude varies from 196m to 230m and the slope from 0 to
22% (Fig. 5.1a).

5.2.3 Apparent soil electrical conductivity measurements (ECa survey)

The apparent soil electrical conductivity (ECa) wasmeasured using a Veris 2000XAMapping System (Veris Tech-
nol., Salina, Kansas, US) equipped with a GPS receiver.

The (ECa) sensor consisted of four aligned rotating coulters on a tool bar. The Veris 2000XA was attached to a
farm tractor that crossed the field on bare soil at a speed of 10 km h−1 along parallel tracks 10-15 m apart. The
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coulter-electrodes penetrated the soil surface approximately 6 cm. Geo-referenced data points were logged ev-
ery second (approximately 3 m of travel), and the assumed depth for conductivity measured with the coulters
was 0.60 m (Veris Technol., Salina, Kansas, US). Data with negative values and data with the same coordinates
were removed because they indicate poor soil-sensor contact and sensor immobilization, respectively. Mea-
surements were made in autumn, and the moisture content varied from 17.8% to 19.3%. A ECa surface (Fig.
4.1b) with 6 m resolution grid was obtained considering an ordinary kriging interpolation and the variogram
structural properties (Table 4.1).

5.2.4 Soil sampling and laboratory procedures

Before the spring-summer crops and basal fertilization, 120 soil samples were taken at a depth of 0-20 cm (Fig.
5.1a).

Tenstratawere selected for soil samplingbasedon thestratified sampling strategiesofHirzel andGuisan [HG02].
The strata were built from three sources of spatial information: soil apparent electrical conductivity (ECa); ele-
vation and yield.

Equal-stratified sampling was used, with each stratum having twelve sampling points. For each stratum, the
12 points were randomly generated, with a minimum distance of 3 m between the sampling points (Fig. 5.1a).
Based on these procedures, performedwith the ArcGIS 9.3 software (ESRI, Redlands, USA [ESR09]), soil samples
were collected with a mechanical probe.

At each of the sampling points, a composite (1 Kg) sample was obtained by mixing four subsample soil cores
within 2-3maround the designated sampling point of the topsoil (0-20 cm). The core sampleswere dried under
forced air at 35◦C for 48 hours, and stones and debris were removed and sieved through a 2 mm mesh sieve
before analyses.

Thecollectedsoil sampleswereanalysed forbioavailablephosphorus (mg(P2O5) Kg−1) andpotassium(mg(K2O
Kg−1) by the Égner-Riehmmethod.

5.2.5 Data analysis

The summary statistics for yield grainmaize, phosphorus andpotassiumwere calculated todetect thepresence
of global outliers and trends and to describe the variation of the yield in the three considered years using SPSS
software (IIBM Corp., Armonk, New York, USA [IBM10]).

Data normality was tested by skewness and kurtosis after taking into account the normal distribution of data
when the skewness ranges between -1 and 1 [Oli10, PdJBBA14, KMKP06].

Local outliers were eliminated by considering the Voronoi analysis (ArcGISTM: Geostatistical Analyst tool; (ESRI,
Redlands, USA[ESR09]). The cluster method was used to identify those cells that are dissimilar to their sur-
rounding neighbours. When a cluster equalled -1, it was considered to be a local outlier [ESR09].

Themaize yield spatial structural analysis, soil properties and ECa were performed using the SpaceStatTM soft-
ware (BioMedware, Ann Arbor, USA [Bio12]) and ArcGISTM : Geostatistical Analyst (ESRI, Redlands, USA[ESR09]).
The trend analysis tool in Arcmap was used to explore the global trends in the data. The trends were analysed
basedon thedirectionand theorderof the line that fitted the trend. The yielddata revealedno trendor isotropic
behaviour [IS89, Oli10]. Phosphorus (P) and potassium (K) showed a quadratic trend removed by second-order
polynomials [JVKL03].
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Figure 5.1: (a) Digital elevation model (DEM): contour, slope and soil sampling points; (b) ECa spatial
distributionm.
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The experimental omnidirectional variograms were calculated to determinate how samples were related to
each other in space using Matheron’s equation [Oli10]. The experimental omnidirectional variograms were fit-
ted to standard models to capture the main characteristics of maize productivity and soil properties [Goo98b,
Goo99, Oli10]. This was accomplished by minimizing the weighted sum of squares (WSS) of the differences be-
tween the experimental and theoretical variogrammodels and considering the study area and prior knowledge
[Goo99]. Following cross-validation statistics, the choice of the best model was based on the lowest root mean
square error [ESR09, IS89].

Spatial yield and potassium variation were characterized by spherical models (2 structures) and phosphorus
and ECa variation by exponential models (Table 5.1). The interpolation of the considered variables was per-
formed by ordinary kriging in a 6 m x 6 m grid, and all maps were drawn using ArcGISTM : Spatial/3D analyst
tools (ESRI, Redlands, USA [ESR09]). The spatial dependence was calculated with spatial class ratios that were
similar to those that were presented in previous work [CMP+94].

Table 5.1: Phosphorus, potassium, apparent soil electrical conductivity and yield of 2007 data variogram
parameters.

Variable Lag Nr. Model Nugget Sill Range SD1 SDD2

Lags Effect

(m) Co (m) (%)

Phosphorus 25 10 Exponential 650 2200 159 22.8 Strong

Potassium 25 8 Exponential 985 2980 65 24.8 Strong

CEa 2 30 Exponential 5.9 36.5 102 13.9 Strong

Yield 2007 6 40 Spherical 0.37 0.429 49.6 34.3 Mod

0.41 313.1
1SD=Spatial Dependence (Co/Co+C): (SD<25%=strong spatial dependency (Strong); SD between 25 and 75%=moderate
spatial dependence (Mod.); SD>75% weak spatial dependence; SD≈ 100%= random); 2SDD=Spatial dependence degree

(Cambardella et al. 1994); ECa apparent soil electrical conductivity

The yield temporal variance at a specific field point [BGF03] for the three analysed years was calculated consid-
ering the following equation equation [BGF03, MS06]:

δ2i =

∑i=n
i=2 (Yt,i − Y t)

2

n
(5.1)

Where δ2i is the yield temporal variance at a specific field point i; t is time in years (2002-2004-2007); Yt,i is the
yield for year t at point i; n is the number of observed years; andY t is themean yield for thewhole field for years
n.

From the temporal variance, the standard temporal deviation has been estimated. The low values of the stan-
dard temporal deviation indicate areas of the field where the yield changes little over time [BGF03]. These
results allow one to build a standard temporal deviation map (Fig. 5.2b).
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5.2.6 Yield/input ratio

The ratio between yield and inputs of phosphorus (Pyr) andpotassium (Kyr) is the ratio of theproductivity of the
previous yearand theconcentrationof thenutrient in the soil before thenewcropcycle. This aids indetermining
which parts of the field have the greatest productivity per unit of available nutrient. The yield/input ratio and
yield data can be brought together to optimize field nutrition.

As an example (case study), the yield/phosphorus (Pyr) and yield/potassium (Kyr) ratios were calculated con-
sidering the 2007 yield as follows: 2007 yield (t ha−1)/soil nutrient concentration (mg Kg−1).

5.2.7 Crop budget

The maize production costs (without amortizations) were 1890 € ha−1 (2015 prices) based on the farm crop
management structure under study (see supplementary material - Appendix B). The break-even yield was cal-
culated considering the previous crop costs and an expected maize price of 175 € t−1 (2015 prices). The break-
even yield was 10.77 t ha−1: this indicates the yield level from which we can generate profit, i.e., the point at
which expenses and revenue are equal.

5.3 Results

5.3.1 Productivity maps of P and K

In the study field (Fig. 5.1), a variable average yielddistributionwasobserved in spaceand time (Fig. 5.2a). Some
areas were more temporally stable than others, characterized by a temporal standard deviation from 0.1 to 9.3
t ha−1 (Fig.5.2b). Considering the average yield of the three studied years (2002, 2004 and 2007), the minimum
andmaximum yield varied between 0.5 and 20 t ha−1. However, the field average yield was similar in the three
considered years (average≈ 12.5% t ha−1), (Table 5.2; Fig. 5.2a).

The field spatial and temporal yield variability induces differential soil nutrient extraction and consequently
differential soil nutrient concentrations for regular field fertilization; sometimes, more productive places are
less fertile in terms of the soil nutrient concentrations.

The experimental field soil phosphorus and potassiumbioavailability changes in space (Fig. 5.3a and 5.3b), and
this can be the result of: i) geological and pedological complex processes; ii) differential nutrient extractions,
mentioned above; or iii) differential nutrient immobilization depending on the soil type and its constituents
[AEO03, BJPG03, Sha95, WEF01].

The average soil P and K contents were, respectively 119mg Kg−1 and 135mg Kg−1, with P ranging from 36mg
Kg−1 to 266mg Kg−1 (standard deviation: σP =32mg Kg−1) and potassium ranging from 48mg Kg−1 to 425mg
Kg−1 (standard deviation: σK=36mgKg−1). Asmentioned above, this high P and K spatial variability (Figs. 5.3a
and 5.3b) likely results fromP and K differential extractions (see Fig. 5.2a for different potential extractions) that
are not compensated for with many years of fertilizing uniformly.

Given the above and assuming the fertilizers’ optimization, two types of information were considered to calcu-
late differential fertilizationmaps: i) a yieldmap (in this particular example the 2007 yieldmapwas considered,
rather similar to the yield averagemap in Fig. 5.2a); and ii) a bioavailability inputsmap (e.g., Figs. 5.3a and 5.3b),
which in this case was obtained with the methodology described in subchapter 5.2.5.
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Table 5.2: Grain yield summary statistics for the Azarento field.
Year Mean Standard Minimum Maximum Coefficient Skewness

deviation of variation
t ha−1 t ha−1 t ha−1 t ha−1

2002 12.57 4.966 0.505 20.2 0.395 -0.292
2004 12.66 3.833 0.506 19.9 0.303 -0.664
2007 12.55 3.582 0.503 19.6 0.285 -0.464

Figure 5.2: Maize yield spatial statistics: (a) yield average and (b) yield standard deviation.
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Figure 5.3: The soil (a) phosphorus and (b) potassium spatial distribution.
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5.3.2 Yield/nutrient input ratio of phosphorus and potassium

Considering a yieldmap (e.g., 2007 yield) and the available nutrientsmap from the experimental field (e.g., Figs.
5.3a and 5.3b), it is possible to calculate the ratio between yield and phosphorus (Pyr , t ha−1 (mg Kg−1) −1,
Fig.5.4a) and the ratio between yield and potassium (Kyr , t ha−1 (mg Kg−1)−1, Fig. 5.4b), dividing the yield by
the inputs availability.

With the yield/P and yield/K ratios, it is possible to understand which field areas have higher yield returns per
unit of inputs availability and thus understand if the differential allocation of nutrients can be managed more
efficiently when considering the desired productivity and the soil richness inputs threshold.

Figures 5.2, 5.3 and 5.4 show that the same yield/input ratio can be achieved with different yield and soil inputs
concentration levels. In view of the above, it was considered relevant to calculate the 2015 break-even of the
field, i.e., the productivity from which there is a positive net income, which in this particular case, given the
assumptions presented in chapter 5.2, is 10.77 t ha−1.

Figure 5.4: Spatial distribution of the yield/input ratio of (a) phosphorus (Pyr) and (b) potassium ((Kyr).

Considering theabove, theexperimental fieldwasdivided in5 zones thatwereobtainedby considering the yield
surface and the iyield/input ratio surface. A threshold value of 0.12 t ha−1 (mg Kg−1) −1 was used to consider
a good yield, and the nutrient soil concentration threshold values (P and K) were 18 t ha−1 and 150 mg Kg−1
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respectively. The following example is focused on P, but the same procedure can be used for any other input.

Zone 1 – field cells with yields below the break-even and with yield/input ratio below 0.12 t ha−1

(mg Kg−1)−1.

Zone 1 represents approximately 23% of the field, and it is characterized by low yield values (mean≈ 9 t ha−1)
and high values of bioavailable phosphorus (Figs. 5.3a, 5.4a and 5.5; Table 5.3). On average, the P content was
125 mg Kg−1, ranging between 60 and 266 mg Kg−1 (Table 5.3). For this field region and for K, the average con-
centration was 129 mg Kg−1, ranging between 48 and 319 mg Kg−1 (Fig. 5.3b; Table 5.4). The average richness
levels of P and K in this particular region made it possible to conclude that the limiting yield factor may not be
associated with their soil availability but rather with other yield-controlling factors, such as irrigation.

Zone 2 – field cells with yields below the break-even and with yield/input ratio above 0.12 t ha−1

(mg Kg−1)−1.

Zone 2 represents approximately 2.95% of the field, and it is characterized by low productivity values (mean
≈ 10 t ha−1) and low values of bioavailable phosphorus (Figs. 5.3a, 5.4a, and 5.5; Table 5.3). This area shows,
respectively, a P and K average concentration of 70 mg Kg−1 and 112 mg Kg−1 (Figs. 5.3a and 5.3b; Tables
5.3 and 5.4). Any positive change in the price of maize (lowering of the break-even line) can result in a marked
decrease of this area or even in its extinction.

Figure 5.5: Yield/phosphorus ratio zones (Z1, Z2, Z3, Z4 and Z5) according the 2007 maize yield; (Y+
higher yield; Y- lower yield; P+ higher phosphorus soil concentration; P- lower phosphorus soil concentra-
tion).
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Zone 3 – field cells with yields above the break-even and with yield/input ratio below 0.12 t
ha−1(mg Kg−1)−1.

Zone 3 represents approximately 36.78% of the field, and it is characterized by medium to high productivity
values (average≈ 13 t ha−1) (Figs. 5.2a, 5.5; Table 5.2). The average contents of bioavailable P and K in the soil
were identical, approximately 141mg Kg−1 (Figs. 5.3a and 5.3b; Tables 5.2 and 5.3), but with different standard
deviations (σP =26.76mg Kg−1 and σK=39.51mg Kg−1). However, in general, the levels of these nutrients were
high, and only in rare cases were the concentrations slightly less than 100 mg Kg−1, causing the yield/P and
yield/K low ratios.

Zone 4 and 5 – field cells with yields above the break-even and with yield/input ratio above 0.12
t ha−1(mg Kg−1)−1.

Zones 4 and 5 represent approximately 37.09% (Z4=28.35%; Z5=7.84%) of the field and are characterized by
productivity values between 10.77 and 16 t ha−1 in Z4 and above 16 t ha−1 in Z5 (Figs. 5.2a and 5.5; Tables 5.3
and 5.4).

Although on average the phosphorus contents differ little between the two zones (Z4≈ 95mg Kg−1; Z5≈ 110
mg Kg−1, (Fig. 5.3a; Table 5.3)), there were a larger number of sites in Z4, particularly those with lower yield,
that recorded levels of P always less than 100 mg Kg−1.

For K values, there were on average higher values in Z5 (150 mg Kg−1) than in Z4 (129 mg Kg−1), and while the
Z4 lowest values of K always followed the lowest P values, the same did not occur in Z5 (Fig. 5.3b; Table 5.4). In
Z4, the lowest values of P and K were mainly in the places of lower productivity.

The Z4 and Z5 zones showed high yield/input ratios because there were low nutrient contents in the soil when
compared with the Z3 zone (Figs. 5.4a and 5.5; Table 5.3).

Table 5.3: Soil P levels and yield/P racio according to Z1, Z2, Z3, Z4 and Z5 zones.
Zone Yield Area Yield Min. Max. Aver. Min. Max. Aver.

Average P P P Pyr Pyr Pyr

t ha-1 % (ha) t ha−1 mg Kg−1 mg Kg−1 mg Kg−1 * * *

Z1 <10.77 23.18 (13.10) 9.09 60 266 125 0.020 0.120 0.077

Z2 <10.77 2.95 (1.67) 10.00 40 89 70 0.120 0.260 0.145

Z3 >10.77 36.78 (20.79) 13.03 91 251 140 0.044 0.120 0.095

Z4 >10.7 and <16 28.35 (16.03) 13.63 36 133 94 0.120 0.360 0.148

Z5 >16 8.74 (4.94) 17.10 63 148 110 0.120 0.266 0.158

Min. minimum; Max. maximum; Aver. average; Pyr yield/P racio; *t ha−1 (mg Kg−1)−1
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Table 5.4: Soil K levels and yield/K racio according to Z1, Z2, Z3, Z4 and Z5 zones.
Zone Yield Area Yield Min. Max. Aver. Min. Max. Aver.

t ha-1 % (ha) Average K K K Kyr Kyr Kyr

t ha−1 mg Kg−1 mg Kg−1 mg Kg−1 * * *

Z1 <10.77 23.18 (13.10) 9.09 48 319 129 0.024 0.218 0.075

Z2 <10.77 2.95 (1.67) 10.00 49 163 112 0.057 0.206 0.093

Z3 >10.77 36.78 (20.79) 13.03 51 425 142 0.030 0.224 0.098

Z4 >10.7 and <16 28.35 (16.03) 13.63 51 293 129 0.050 0.284 0.113

Z5 >16 8.74 (4.94) 17.10 62 277 150 0.058 0.270 0.119

Min. minimum; Max. maximum; Aver. average; (Kyr yield/K racio; *t ha−1 (mg Kg−1)−1

5.4 Discussion

5.4.1 Differential fertilization - decision making

As seen in Fig. 5.5 (e.g., Z1, Z2, Z3, Z4 e Z5), it is possible to infer that the form and size of these areas can be
different every year either by the movement of the break-even line (parallel to the X-axis) or by the movement
of the line that defines the yield/input ratio threshold determined by the farm manager (parallel to the Y-axis).
The break-even line can move depending upon the maize price and/or changes in the production costs, and
the yield/input ratio threshold line can be moved depending on the market risk, including the economic con-
tingency of the company and the changing yield/input ratio technical requirements.

As an example and considering a fixed cost structure, onemay say that the threshold break-even line falls when
the price of maize goes up (more areas have positive net income) or the threshold line rises when the price of
maize goes down (fewer areas have positive net income) (Fig.5.5). The yield/input ratio threshold line will move
more to the right if the market risk is higher and the financial availability of the company is smaller, and the
opposite is also true.

Normally, the farm manager faces two extreme situations from the standpoint of maize production cycles: i)
low international maize price; ii) and high international maize price.

Maize low International prices

When the farm manager must make decisions about P and K fertilization opportunities in a cost-cutting sit-
uation, he should consider the following: (1) first, it is important to determine whether both nutrients have
the same yield/input ratio, and this is achieved considering the results of Fig. 5.6. This figure shows that the
yield/input ratios of P and K in this field are very similar (points almost equally distributed above and below the
unit slope line). However, if there were a greater number of points on the quadrant of yield/P when compared
to yield/K (Fig. 5.6), then the farmmanager could consider fertilizing only with P in a cost reduction perspective;
and (2) after deciding which macro-nutrient or macro nutrients he should use, it is essential to look at Fig. 5.5
(P example). In this figure, it is possible to realize that the fertilization areas, in a cost-cutting situation, are the
areas that have higher yield/input ratios and are above the break-even line; in short, they are like the Z4 and Z5
zones.
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High international price of maize

When the farm manager must make decisions about P and K fertilization opportunities in a favourable price
situation, he must consider the same methodology presented above to be efficient, but at the same time he
can take additional risks to maximize yield. In this particular situation, the farm manager could consider fer-
tilizing Z3, Z4 and Z5 zones. He could also consider fertilizing Z2 and Z1 zones (in this order); however, these
zones have yield-controlling factors that are independent from nutrients, and while they are not controlled, it
is environmentally and economically unreasonable to fertilize them.

Figure 5.6: One-to-one straight line comparison between yield/phosphorus racio (Pyr) and yield/potassium
racio ((Kyr).

5.4.2 Differential fertilization - economic aspects

To realize the economic impact that a differential fertilization strategy would have in this particular field, it is
necessary to consider the following assumptions:

(1) the farmmanager will fertilize with P and K;

(2) the Z1 zone (≈ 23% of the field area) is not fertilized because it is under the break-even; presents medium
to very high soil bioavailable P and K contents, and it is susceptible to other yield controls (Fig. 5.7; Tables 5.3
and 5.4);

(3) the Z2 zone (≈ 2.95%of the field area) is not fertilized because it is under the break-even and it is susceptible
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to other yield controls (Fig. 5.7);

(4) the Z3 zone fertilization (≈ 37% of the area of the field), when performed, is always with the objective of
maintaining the soil fertility level, which here is relatively high. For this particular zone, an expected average
yield of approximately 13 t ha−1 was considered (Fig. 5.7; Tables 5.3 and 5.4);

(5) the Z4 (≈ 28.35% of the area of the field) and the Z5 (≈ 8.74% of the area of the field) zone fertilizations
considered their average production potentials, which were, respectively 13.6 t ha−1 and 17 t ha−1 (Fig. 5.7;
Tables 5.3 and 5.4).

Figure 5.7: Management zones (Z1, Z2, Z3, Z4 and Z5) according to the 2007 maize yield and yield/input
ratio of 0.12 t ha−1 (mg Kg−1) −1.

The following scenarios were also considered:

Scenario 1 (S1) - based on the farm manager’s normal strategy, a P and K constant and uniform application
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based on a yield target average of approximately 15 t ha−1 was considered. This scenario was considered as
the reference scenario;

Scenario 2 (S2) - In all aspects similar to scenario 1; however, the yield target average was considered to be 12.6
t ha−1, the real field multi-annual average productivity;

Scenario 3 (S3) - considering a variable rate application of P and K to maximize production (maize high price)
and return, thus fertilizing zones Z3, Z4 and Z5 (Fig. 4.7). The particular zones’ average yield were considered
as the target yield for these particular zones (Z3=13.03 t ha−1, Z4=13.63 t ha−1 and Z5=17.10 t ha−1);

Scenario 4 (S4) - considering a variable rate application of P and K to minimize costs (maize low price) and
maximize return, thus fertilizing zones Z4 and Z5 (Fig. 4.7) with the following yield targets: Z4=13.63 t ha−1 and
Z5=17.10 t ha−1, the average yield for these particular zones.

Scenario 1 showed high fertilization costs (15263 €, Table 5.5) that reflect an excessive fertilization (Table 5.6)
driven by an average target yield above the real yield temporal average. The nutrients distribution is conducted
in a constant anduniformway, andbecauseof that it is agronomically (Z1 andZ3), economically (Z1andZ2) and
environmentally (Z1, Z2 and Z3) inefficient (Table 5.6). These inefficient phosphate applications are the main
cause of their accumulation in agricultural soils [MM02], promoting P diffusive pollution [Sha95, WEF01]and
leading in most cases to eutrophication processes [MM02].

In scenario 2, the fertilization costs fell 59% (6218 €, Table 5.5), as did the amount of applied nutrients (Table
5.6). Despite the amendment in relation to scenario 1 (yield target close to the yield average of the field), the
nutrients distribution continues to be conducted in a constant and uniformway and is therefore agronomically,
economically and environmentally inefficient (Table 5.6).

In scenario 3, the costs were reduced when compared to the reference scenario (S1) by approximately 61%
(5932 €, Table 5.5), despite the fact that the number of fertilizer units was increased (Table 5.6) in the Z3, Z4
and Z5 zones compared to the same zones of scenario 2. In short, scenario 3 would approximately reach the
fertilization costs of scenario 2 but would be agronomically and environmentally more efficient.

In scenario 4, the scenario with a lowmaize prices situation, only Z4 and Z5 zones are fertilized (Tables 5.5 and
5.6). This strategywould reduce field fertilizationcostsbyapproximately 73% (4051€, Table 5.5)whencompared
to scenario 1 (S1), increasing the economic, agronomic and environmental inputs’ efficiency.

It couldbeargued that this fertilization strategy (Table 5.6), used for a long time,woulddecrease the field fertility
level. Thismay not be possible because a nutrient soil reduction immediately promotes a yield/input ratio rise,
causing the cells from Z3 areas to migrate to Z4 or Z5 (Fig. 5.5) areas, provided that they are above the break-
even line.

The savings (≈200 € ha−1) presented in scenario 4 only consider the costs associated with P and K, but using
the samemethodology to improve nitrogen applications can significantly increase the savings.

5.5 Conclusions

The results of this study suggest the following: i) to optimize maize inputs and reduce economical risks, the
following relevant information is needed: yieldmaps, inputmaps, costs associatedwith the activity and the ex-
pectedmaizeprice; ii) fromprevious information, it is possible toderive theyield/input ratiosand thebreak-even
productivity, setting up a differential fertilization strategy; iii) the best savings scenario (≈200 € ha−1) consid-
ered the differential fertilization in areas above the break-even productivity and above a yield/phosphorus ratio
of 0.12 t ha−1 (mgKg−1)−1; and (iv) this differential fertilization strategy achieves the best economic, agronomic
and environmental efficiency.
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Table 5.5: Fertilization scenarios.
Scenarios S1 S2 S3 S4

Average Average Average Average

Zone (ha) yield yield yield yield

t ha−1 t ha−1 t ha−1

Z1 (13.10) 15.00 (F) 12.60 (F) 9.09 (NF) 9.09 (NF)
Z2 (1.67) 15.00 (F) 12.60 (F) 10.00 (NF) 10.00 (NF)
Z3 (20.79) 15.00 (F) 12.60 (F) 13.03 (F) 13.03 (NF)
Z4 (16.03) 15.00 (F) 12.60 (F) 13.63 (F) 13.63 (F)
Z5 (4.94) 15.00 (F) 12.60 (F) 17.10 (F) 17.10 (F)

Fertilized area, ha 56.53 56.53 41.76 20.97
Total fertilizer costs, € 15263 6218 5932 4051
Fertilizer cost per ha, € ha−1 270 110 105 72
Cost reduction compared to S1, % 0% 59% 61% 73%

NF not fertilized; F fertilized; S1 scenario 1; S2 scenario 2; S3 scenario 3; S4 scenario 4

Table 5.6: Fertilizer units applied in each scenario.
Zone Scenario 1 Scenario 2 Scenario 3 Scenario 4

PFU KFU PFU KFU PFU KFU PFU KFU
(Kg ha−1) (Kg ha−1) (Kg ha−1) (Kg ha−1) (Kg ha−1) (Kg ha−1) (Kg ha−1) (Kg ha−1)

Z1 135 90 37.5 55 - - - -
Z2 135 90 37.5 55 - - - -
Z3 135 90 37.5 55 22.5 54.0 - -
Z4 135 90 37.5 55 71.3 77.5 71.3 77.5
Z5 135 90 37.5 55 97.5 107.0 97.5 107.0

PFU Phosphorus Fertilizer Units (P2O5); KFU Potassium Fertilizer Units (K2O)
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General Discussion, Future Work and

Conclusions

6.1 General discussion

The ultimate goal of the agricultural production system is to be economically, environmentally and socially
sustainable. This dissertation presents three different approaches used to determine yield and field variability,
which can support management decisions within the framework of precision agriculture.

Crop yields are the integrated result of all of the factors that affect crop growth and productivity [DHB04], so the
analysis of crop yields in space and timemay provide useful information about which factors interact and how
they influence crop yields. With this in mind, the principal component analysis (PCA) multivariate technique
was used in the first study to extract information from two fields (Azarento and Bemposta) about the maize
produced over a certain number of years. This study demonstrated that the use of PCA effectively identified
spatial and temporal trends and assisted in the identification of areaswith higher and lower risks to production.
The analysis showed that the first (PC1) and second components (PC2) together accounted for 88.8%and77.3%
of the variance in the yield data from the Azarento and Bemposta fields, respectively. Although only a small
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portion of these values relates to the variance explained by PC2 (11.9% in Azarento and 13.2% in Bemposta),
this component was fundamental to the identification of the regions with different yields and possibly different
management potentials.

The meaning of the PC2 values presented in the respective maps (Chapter 3) was better understood through
the analysis and interpretation of the parabolic association between PC2 and the temporal standard deviation
of the yield. The lowandhighPC2 values corresponding to lowor high yields indicated areaswith high temporal
yield variability. These areas have a higher potential production risk, and as Diker et al. [DHB04] emphasized,
special attention should be paid to them in the subsequent years to identify the yield-limiting factors and, if
possible, amend the problem.

The areas with intermediate PC2 values (between 2 and 4) presented a low yield temporal standard deviation,
which means that they were more stable over time. These results are consistent with those reported by Black-
moreet al. [BGF03] andMarquesdaSilva [Mar06], whodefineddifferent zonesbasedonyield temporal standard
deviation.

Our approach indicates another possible application of this multivariate technique that may be important to
the identification of areas of high yield stability over time. Therefore, the novelty of the present work is not in
the PCA itself, but in its application to the study of yield variability on agricultural fields.

To implement the PCA, it is necessary to have data from several years of crop productivity, but this is not always
the case. Therefore, the second paper proposed another approach that is particularly suitable for these situ-
ations. Considering the absence of multi-year data, the main goal of this research was to estimate the spatial
and temporal uncertainty in maize yield using stochastic simulation techniques (sequential Gaussian simula-
tion (SGS)) to reduce the economic risk to the fields.

Currently, the availability of yield monitors makes it easy to obtain data at high densities, so to determine the
influence of data density on the stochastic simulation results, 30, 65, 125 and 150 to 250 of the initial data points
ha−1 were tested. The results showed that sampling density affected the stochastic yield simulation results.
Under the conditions of this study, the ideal point density for the stochastic yield simulationwas approximately
65 points ha−1 compared to the real yield data.

By comparing the simulation resultswith the real yield data, it was possible to verify that higher sampling densi-
ties promoted an over-estimation of the lowandhigh yields (yield border classes). In contrast, a lower sampling
density promotedanover-estimationaround theaverage yield (central classes) anda reduction in the yield bor-
der classes.

At 65points ha−1, the results of the stochastic simulationsperformed for each year’s yield in both fields revealed
a strong correlation between the percentage of the field area per class of the real yield and the simulated yield
data. Combining both fields and taking all years and classes into account, 80% of the differences between the
real yield and the simulated yield data per yield class were reduced to less than 1 percentage point. These re-
sults suggest that stochastic simulation is a useful tool for interpreting trends in yield that permits themapping
and identification of focal areas based on a number of repetitions.

The number of equi-probable surfaces that were generated by the sequential Gaussian simulation was used to
calculate a certain probability from a yield estimate with a certain degree of statistical confidence. Consider-
ing any given year and any confidence level, the results were similar for both fields if each year was analyzed
individually. Both fields showed a greater area percentage with above-average yield at all confidence levels,
suggesting that these areas were more stable than those with below-average yields (Chapter 4).

In both fields, the field area percentages were very different depending on the level of confidence. The parcel
area percentages were high at low confidence levels (50% and 60%), and area percentages were low for high
confidence levels (90% and 95%), (Chapter 4).
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Including data for a new year, the percentages of the below- and above-average field areas normally decreased
but did so more quickly at higher levels of statistical significance (95% and 90%). Nevertheless, despite taking
more than one year into account, from 3 to 4 years, the results revealed that the introduction of one year has
not changed the field area percentage at any level of confidence (Chapter 4).

This study suggests that stochastic simulation can help farmmanagers as a decision support tool as probability
maps with different confidence levels allow farmers to make decisions based on production risk. For example,
accounting for the international price of maize will influence the break-even yield point.

Another way to reduce economic and environmental risks is to focus on themanagement of inputs. In Mediter-
ranean regions, including Portugal, excessive phosphorus is commonly applied to the soil [TBGS07]; the normal
strategy is to evenly apply P and K based on an average yield target. Normally, the applied Pmoves slowly into
the soil, and its accumulation increases the risk of water eutrophication due to leaching [Sha95].

With this inmind, the third study examined different fertilization scenarios based on yield/input ratios by taking
the field surface yield, the soil input maps (derived from the ECa maps and others) and the actual maize price
into consideration.

The experimental field presented high spatial variability in soil P and K (Chapter 5), which was probably due to
the differential extraction rates of P and K, which had not been corrected due tomany years of uniform fertiliza-
tion. The study indicated that crop yield does not always increase with increasingly higher values of P and K, so
the yield spatial variability cannot be attributed to P and K because the concentrations of these nutrients in the
Azarento soil were relatively high and therefore not limiting factors to plant growth. Taking these results into
account, the field was divided into 5 zones (Chapter 5) depending on maize yield, the yield/phosphorus ratio
(0.12 t ha−1 (mg Kg−1)−1) and yield break-even (10.77 t ha−1) values.

The different characteristics of each zone made it possible to calculate a P and K variable rate fertilizer appli-
cation in accordance with the break-even line and the yield/input ratio threshold, as determined by the farm
manager, whose movements depend on the price of maize and the market risk, respectively. Being unable
to change certain yield-limiting factors, some of them structural, the rationing of nutrients, in particular phos-
phorus, can help farmers increase productivity in highly yield/input ratio areas by increasing the phosphorus
reserves in the soil; P can be saved where the yield/input ratio is low through interactions with other yield-
limiting factors, such as areas with poor drainage, excessive slopes and soil structure problems.

As was highlighted in this work, it is possible to reduce risks and achieve the best economic, agronomic and
environmental efficiency if fertilization is in accordance with the productive potential of each zone and if the
non-fertilization areas are below break-even and/or below a defined yield/input ratio value for P or another
input. This strategy is supported by Zhang et al. [ZWW02] who advises that when certain parts of a field always
produce below the break-even line, they must be isolated for the development of site-specific management.

This work presented amethodology that allows for the optimization of agronomic, economic and environmen-
tal inputs based on the yield break-even, theyield/input ratios and the variable rate inputs application. Con-
sidering only P and K, the savings could reach 200 € ha−1 (2015 maize and input prices) when compared with
traditional fertilization application.

6.2 Future work

This work positively contributes to better cropmanagement tominimize environmental problems and increase
economic returns. However, some issues have remained unresolved during this research but are challenging
topics for future investigation.
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Future research should address the following topics:

1- N is responsible for half of the cost of NPK in maize productions, so how can N differential management
applications be optimized? Through proximal, drone-mounted N sensors? Intelligent N fertilizers? Future work
should aim to reduce the same amount of N when compared to PK;

2- The yield/input ratios technique can be applied to other type of inputs, such as water, seed density, etc.,
which would allow farmers to be more conscious about their fields and the variability in spatial and temporal
economic risks while optimizing their activities at the same time;

3 –Minimal and direct seedling, herbicide optimization, and proximal drone-transported NDVI sensors can play
an important role in the optimization of maize economics because high yield/input ratios in productive areas
should not be limited by a high concentration of weeds. Therefore yield/herbicide ratios should also be con-
sidered in the future.

6.3 Conclusions

Precision agriculture has provided farmers with greater awareness about the spatial and temporal variability in
soil and yield, even in small areas. Farmers are increasingly concerned about trying to adjust production inputs
to local needs and to improve the profitability of crop production.

Oneof themain contributionsof the currentdissertationwas to reveal different approaches to soilmanagement
and yield variability.

The exploratory multivariate technique, principal component analysis (PCA), allowed the study of the spatial
and temporal variability in maize yield and demonstrated its usefulness as a technique to delineate manage-
ment zones for site-specific treatments. Average temporal yieldwas indicatedby the first PCAaxis, and temporal
yield stability was indicated by the second PCA axis. This informationmade it possible to identify fourmanage-
ment zones: i) zones of high productivity (high PC1 values) that are stable over time (intermediate PC2 values);
ii) zones of high productivity (high PC1 values) but unstable over time (low or high PC2 values); iii) zones of low
productivity (low PC1 values) that are stable over time (intermediate PC2 values); iv) zones of low productivity
(low PC1 values) that are unstable over time (low or high PC2 values).

When PCA is applied tomultiple years of yield data, it can be a powerful tool in decision-making processes and
in the selection of agricultural fields, or parts of agricultural fields if considering their temporal redundancy.
The results indicate that field areas with higher PC1 and median PC2 values should be chosen by producers to
optimize production factors and reduce economic risk.

The stochastic simulation represented the spatial and temporal heterogeneity in yield in a probabilistic way.
The use of historic crop yield data (4 and 7 years for the Azarento and Bemposta fields, respectively) made it
possible to display time trends and verify the inter-annual yield variability. In Mediterranean environments, 3
to 4 years of real yield data processed together will allow for the creation of robust yield uncertainty maps to
better manage the yield risk and support future decisions.

This knowledge is important in the absence of long-term, multi-year yield databases in that it will help farmers
define the most appropriate strategies for their fields and respective crops in advance. The simulation, com-
bined with other techniques, statistical or not, can be a powerful risk management tool that can complement
the decisions of the producer. Due to the costs of intensive sampling and soil analysis and the limited life of the
results, this technique has the potential to help farmers when they do not know the history of a field.

Usually P and K fertilizer applications are greater than crop removal, which normally causes nutrient accumu-
lation in the soil over time.
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During the study, it was demonstrated that the yield/phosphorus ratio and the field yield break-even point were
effective for the design of variable input rate applications, thus improving resource-use efficiencies.

Site-specific P and K management allowed for the distribution of both fertilizers within the field only where it
was needed, and it avoided nutrient deficiencies or excesses while providing greater agronomic and economic
returns and profitability.

This work suggests that variable input management optimization requires i) a yield map, ii) input maps (de-
rived with intelligent sampling based on soil ECa surveys), and iii) the international product price and the crop
account.

With the savings from P and K variable rate applications, a farmer with 250 ha could pay for the VRT fertilization
(liquid) equipment in one year.

In short, inefficient processes should not be allowed in agriculture, especially when technology is available and
affordable.
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Figure A.1: DEMs for: (a) Azarento field; b) Bemposta field.
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Figure A.4: Average real yield and simulated yield (≈ 65 points ha−1) field area percentage according to
different standard yield classes and considering 7 years (Bemposta field).
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Figure A.5: Below average yield areas with 80% of confidence considering 2002, 2003, 2004 and 2006,
simulation data analyzed independently (Bemposta field)
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Figure A.6: Below average yield areas with 80% of confidence considering 2007, 2008 and 2010 simulation
data analyzed independently (Bemposta field)
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Figure A.7: Above average yield areas with 80% of confidence considering 2002, 2003, 2004 and 2006
simulation data analyzed independently (Bemposta field).
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Figure A.8: Above average yield areas with 80% of confidence considering 2007, 2008 and 2010 simulation
data analyzed independently (Bemposta field).
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Figure A.9: Below average (a) and above average (b) yield areas with 80% of confidence considering 2002,
2003, 2004, 2006, 2007, 2008 and 2010 simulation yield data grouped together (Bemposta field)
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Table B.1: Maize production costs
Maize production costs : breakeven calculation basis

Herdade do Cego - Azarento Field
CROP: grain maize Field area (m2) 565380

Yield (dry weight)* 12,6 ton ha−1

Price 175 € ha−1

Quantity Unit price Value
COSTS OF PRODUCTION:

SEEDS
FAO 600 (doses) 1,8 130 234

FERTILIZERS
Humifosfato 15 (ton) 0,9 300 270
Nitro+Zn (ton) 0,8 305 244

PESTICIDES
Total herbicide (L) 3 3,5 10,5
Residual herbicide (L) 4 13,6 54,4
Post-emergent herbicide (L) 3 10 30
Insecticide (2 applications) 0,6 63 37,8

TRACTION
Products applications 4 15 60
Mobilization-Fertilization 1 80 80
Sowing 1 40 40
soil cultivation 1 40 40
Harvest 1 85 85
Transport (ton)** 14,06 4 56,2
Irrigation / energy / water 7500 0,033 247,5

OUTROS
Land Rental*** 1 100 100
Reviews and repairs 1 100 100
Dryer**** 14,06 14 196,8

PRODUCTION COST 1886,3 € ha−1

*average of the three years of maize yield considered
*Transport with a very short distance (dryer is owned by the farmer)
**The farmer manager owns the land. Therefore it was considered a rental but low price
*** Reference moisture 14%; moisture at harvest 23%
Depreciation: not counted because the services were calculated as if they were rented
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