7

DR W A Sy
@ =4 VN &
ey 1S

UNIVERSIDADE DE EVORA

A complete Document Analysis and
Recognition system for GNU/Linux

Master’s Thesis in Computer Science Engineering

Joaquim Rocha

Supervisor: Luis Arriaga, PhD
December 2008

Esta dissertagdo ndo inclui as criticas e sugestdes feitas pelo jirs.

168
661

A complete Document Analysis and
Recognition system for GNU/Linux

Master’s Thesis in Computer Science Engineering

Joaquim Rocha

Supervisor: Luis Arriaga, PhD

voeT

Ji3 £6)

Esta dissertagdo ndo inclui as criticas e sugestoes feitas pelo jirt.

December 2008

Resumo

Um sistema completo de Anélise e
Reconhecimento de Documentos para GNU /Linux

Os motores de Reconhecimento Optico de Caracteres (OCR) comuns simples-
mente "1ém” uma imagem ndo considerando a sua estrutura ou formatagdo. A
formatacgéo de um documento é um assunto muito importante na compreensao de
um documento. Assim, o uso de motores de OCR ndo é suficiente para converter

fielmente uma imagem de um documento para um formato electroénico.

A Anslise e Reconhecimento de Documentos (DAR) engloba a tarefa de recon-
hecer a estrutura de um documento o que, combinado com um motor de OCR, pode
resultar numa conversio fiel de um documento para um formato editdvel. Estes
sistemas existem como aplicagdes comerciais sem uma verdadeira equivaléncia
em Software Livre actualmente e ndo estdao disponiveis para o sistema operativo

GNU/Linux.

O trabalho descrito neste relatério tenta responder a este problema ao oferecer
uma solugdo que combina componentes de Software Livre e sendo comparavel,

mesmo na sua fase inicial, a solugdes comerciais disponiveis.

Abstract

A complete Document Analysis and Recognition
system for GNU/Linux

Regular OCR engines simply "read” an image not considering its structure or
layout. A document’s layout is a very important matter in the understanding of a
document. Hence, using OCR engines is not enough to fairly convert an image of

a document to an editable format.

Document Analysis and Recognition (DAR) encompasses the task of recognizing
a document’s structure which combined with an OCR engine can result in a fair
conversion of a document to an editable format. Such systems exist as commer-
cial applications with no real equivalence in Free Software nowadays and are not
available for the GNU/Linux operating system.

The work described in this report attempts to answer this problem by offering

a solution combining only Free Software components and being comparable, even

in its early stage, to available commercial solutions.

i

Aknowledgements

This project wouldn’t be possible without the support from many people that
contributed for its final result.

First, I would like to express my appreciation and deep gratitude to Professor
Lufs Arriaga for being my supervisor in this project and for all his understanding,

attention and enthusiastic support.

I would also like to thank my colleagues, and friends who I couldn’t name all
here, that always supported me along the development of this work and other

projects.

I want also to express my gratitude to my girlfriend who was always there for

me with all her support and understanding.
Last but not least, I would like to thank my parents for their unconditional

support and belief, of whom I am truly proud of, and for educating me to become
the person I am today.

iii

Contents

Resumo i
Abstract ii
Aknowledgements iii
1 Introduction 1
L1 Motivation 2

1.2 General Concepts 3
1.3 Document Analysis and Recognition 3
1.4 Objectives 4
L5 Structure 5

2 State of the art 7
2.1 Optical Character Recognition 8
211 OCRHistory 8

2.1.2 Recent Solutions 8

2.2 Document Analysis and Recognition 10
23 DARHistory 10
24 Modernsystems 11
241 Mobiledevices. 11

24.2 Recentsolutions. 12

2.5 Conferences about DARand OCR 14

3 The System 15
31 Overview. 16

3.2 Technology and Development Tools 16
3.2.1 Python. i 16
3.22 PyGTK oo 18
323 PIL. e e e e 18
3.24 PyGooCanvas se e s 19
325 XML o e e e e e e 19
326 ODT . . . i e e e e e e e 20
3.27 ODFPy i 21
3.2.8 Ghostscript e e 22
329 UNpaper o i e 22

3.3 Architecture v v v v e e e e e e e e 23

Implementation 25

4.1 Layout Analysis 28
4.1.1 The sliding window algorithm 31
4.1.2 Retrieving blockso 37

4.2 Recognitiono oo 45
421 OCREnNgnes, 45
4292 Classification« e 47
4.2.3 Text properties recognition 48

4.3 Content representationo 53
431 DataboXes v v v i e e e e e e e e 53
432 Pagedatao 54

4.4 Exportation to editable formats 55
441 ExportationtoODT 56
44.2 Exportationto HTML 56
4.4.3 Adding support for more formats 57

OCRFeeder 58

5.1 Design and usability 59

5.2 Interface OVEIVIEW+« o v o v i i e i e 61
5.2.1 Document images area o .00 61
5.2.2 Selectable boxes area 00 oo e e 61

523 Boxeditorarea
53 Features
5.3.1 Adding document images
5.3.2 PDF importation
0.3.3 Exportation
5.3.4 Project loading and saving
0.3.5 Preferences
9.3.6 Editpage
9.3.7 Deleteimages
9.3.8 Zoom
939 OCRengines
9.3.10 Unpaper
5.3.11 Layout analysisand OCR
6 Testing
6.1 Features Comparison
6.2 Tests
6.2.1 Lyricsdocument
6.2.2 Make: magazine
6.2.3 Beautiful Code book page
6.24 The Search book cover
6.2.5 Linux Magazine page
6.3 General Appreciation
7 Conclusions and Future Work
7.1 Problems.
72 Fature Work
References

A Example of a project XML file

B Installation and usage

B.1 System Requirements

100
101
102

105

108

111

B.2 Imstallationon Ubuntu v oo
B.2.1 Installing the packages

B.3 Command line usage

..........................

vii

List of Figures

3.1
3.2

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

3.1
5.2
5.3
5.4
9.5
5.6

The system global architecture 23
A more detailed architecture diagram 24
Lyrics document image. 26
Recognized text for lyries. 27
Lyrics document with outlined format structure 28

Illustration of part of the detection algorithm for 1-column simple

documents 30
A not so simple document example 31
Binary representation 34
Example of contrasting colors 35
Optimization of the function to find contrast within a window . . . 36
AblockinaBRL 39
Distances and lines in typography 40
An example of extracharge 41
A simple block withalegend. 42
Font size and letter spacing detection 50
Text angle detection 52
OCRPFeeder Studio final paper prototype 60
OCRFeeder Studio main areas 62
Preferences dialog (appearance tab) 67
Papersizesdialog 68
Example of the OCR engines dialogs 69
Unpaper dialog 70

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

Test: Lyrics document with OCRFeeder 77

Test: Lyrics document with Omnipage 78
Test: Lyrics document with FineReader. 79
Lyrics document exported to ODT by OCRFeeder 80
Lyrics document exported to Doc by FineReader 81
Lyrics document exported to Doc by OmniPage 82
Test: Make: magazine with OCRFeeder 83
Test: Make: magazine with OmniPage 84
Test: Make: magazine with FineReader 85
Test: Beautiful Code book page with OCRFeeder 87
Test: Beautiful Code book page with OmniPage 88
Test: Beautiful Code book page with FineReader 89
Test: The Search book cover with OCRFeeder 91
Test: The Search book cover with OmniPage 92
Test: The Search book cover with FineReader 93
Test: Linux Magazine with OCRFeeder (automatic window size) . . 95
Test: Linux Magazine with OCRFeeder (manual window size) . .. 96
Test: Linux Magazine with OmniPage 97
Test: Linux Magazine with FineReader 98

List of Tables

6.1 Features comparison for several DAR and OCR solutions

Chapter 1

Introduction

1.1. Motivation Chapter 1. Introduction

This report describes the work done in a very specific area that relates to com-
puter vision, artificial intelligence and image processing — Document Analysis and
Recognition. The main purpose of this project is the creation of a system for
GNU/Linux capable of performing Document Layout Analysis (DAR) and Opti-
cal Character Recognition (OCR) on document images.

1.1 Motivation

Over the centuries, humanity have used paper to record information starting
with the Egyptians, Greeks and Romans who used a paper-like material called
papyrus [1]. While paper as we know it was first developed in China around the
27d [2], the use of papyrus dates back to 3500 B.C. and it was the first writing
material previous to the usage of paper [3].

Therefore, we owe the transfer of information, education and knowledge along
the times to the production and wide use of paper [1].

The generalized use of electronic documents to store and preserve information
is a big advance from paper and have been used since a while with all its advan-
tages (like searching, converting between formats, etc.) towards paper documents.
Therefore, it is of extremely importance to convert paper documents to electronic

formats.

Although there are good solutions available, mainly commercial ones, there is no
solution that fairly converts a document image into an editable document for the
GNU/Linux operating system. Even when considering other operating systems,
there is not a Free Software solution available for any system that can compare
itself to the top commercial solutions.

However, instead of "cloning” a commercial solution, this project tries to create
a complete and original system. This system was designed to be used by anyone

without having to spend much effort learning how to install or use it.

Outlining the contents of an image seems an easy task to do — even a child can

do it — but to develop such a system represents an interesting challenge. It is

2

1.2. General Concepts Chapter 1. Introduction

specially interesting because it’s an attempt to make a computer perform basic

functions of a human-being — to see and to write.

1.2 General Concepts

Optical Character Recognition (OCR) is a field of research of artificial intelli-
gence, pattern recognition and machine vision. By definition, OCR is the conver-
sion of an image of text by mechanical or electronic means to digital text (machine-
editable).

Although OCR is closely related and plays an important role in the develop-
ment of this project (even being present on its very name), this project is not
about OCR or the recognition of characters. It is about Document Analysis and

Recognition.

1.3 Document Analysis and Recognition

The main purpose of Document Analysis and Recognition (DAR) is to auto-
matically segment the text and graphical contents (also called zoning) of an image
which represents a document and then process them to recognize their logical role
in the document. Therefore, DAR encompasses two steps: geometric and logical
analysis [4]. While the former refers to the extraction of the regions of interest
(the homogeneous regions that contain a picture, a text paragraph, a logotype,
etc.) within a document image, the latter relates to the classification of each re-
gion according to its role in the document - that is, if a region represents a title,
a footnote, a column of text, an image’s caption, etc.

This project focus on the geometric analysis as it attempts to retrieve only the
regions not trying to find their role in the document.

DAR systems are related to several fields of computer science like image pro-
cessing, artificial intelligence, pattern recognition and even databases.

The output from an extraction performed by DAR techniques is preferably in

a format that may be processed by a machine. [5].

3

1.4. Objectives Chapter 1. Introduction

The name and acronym DAR is not as recognized as OCR. Often publications
or products use the acronym OCR when referring to DAR systems. The name
used for DAR also varies, beyond DAR, usually image analysis and recognition,
layout analysis, document analysis, document segmentation, document image un-
derstanding and other combinations can be read on references to DAR systems.

In this document however, a restriction to the use of the names DAR and layout
analysis is attempted in order to simplify the reading and understanding of this

report.

1.4 Objectives

The main objective of this project was to develop a DAR. and OCR system for
GNU/Linux. The system should analyze a document image, retrieving the location
and properties of its contents; after that, the system should perform OCR over the
contents and identify which of them are graphics and text; in the end, an editable

document format should be generated.

Since the number and variations of document layout formats can be countless,
the system should not be restricted to accept only a single type of document layout
or structure nor should it know the type previously — the objective was that the

system could analyze and retrieve the contents of a document with any layout.

Part of the challenge consisted in the fact that there were free OCR engines
available that offer good recognition rates but there was no direct way of getting
the contents of a document image — that is, most OCR solutions available only
return the text but little or no information about the layout. Hence, a technique
to retrieve this contents was developed from scratch (like it’s explained in further
chapters).

Another objective was that the development of this project would hopefully
result in a solution comparable to the commercial ones. By opting to develop
this project as Free and Open Source Software, it will make it possible for every
researcher or enthusiastic of DAR and OCR to extend and improve the ideas

4

1.5. Structure Chapter 1. Introduction

explored in the creation of it and hence continue towards the creation of a great
tool and make the conversion of document images on the GNU/Linux operating
system a solved problem.

1.5 Structure

This section describes this document’s structure and organization.

Chapter 1 gives an introduction to the work done, the motivation to do it and
the objectives behind it. Some general concepts are presented as well in order to
better identify the areas where this project belongs.

On Chapter 2 some of the main research done in the fields of OCR and DAR is
introduced since its early days until recent times. Modern systems are also covered
with the efforts dating back until around ten years ago and a brief presentation of
the most famous solutions is given. The most important conferences about OCR
and DAR are also mentioned.

Chapter 3 gives an overview about the project in what comes to choices about
the technology used and intentions for the development of the system. It also
presents two very simple diagrams that illustrate the system’s architecture.

The details about the implementation of this project are covered in Chapter 4.
The main algorithms created and used are explained using images and diagrams
for an easy understanding of them.

Chapter 5 explains major concepts and concerns about the design and usabil-
ity of the system. An overview about the graphical user interface and the main
features is also given.

On Chapter 6 an evaluation of the system is done by comparing its features to
other solutions either free and commercial ones. The same documents are tested
on OCRFeeder and on two of the a main solutions available currently and the
results are commented. The chapter finishes with a general appreciation of the
system considering the tests results the comparisons with other systems.

Chapter 7 presents the conclusions about the system and analyzes in a general

way its strengths and weaknesses as well as some problems and possible solutions

5

1.5. Structure Chapter 1. Introduction

for them. Future work and improvements on the system are also mentioned in this
chapter.

Chapter 2

State of the art

2.1. Optical Character Recognition Chapter 2. State of the art

This section gives an overview of the research in the fields of Document Anal-
ysis and Recognition since its early times until nowadays where several free and
commercial solutions are available.

Since Optical Character Recognition also plays a very important role in this

project, an overview of it is also given.

2.1 Optical Character Recognition

2.1.1 OCR History

Tauschek registered a patent on OCR in Germany in 1929, a U.S. patent on
OCR was registered later 1933 by Handel [6]. Although these represented great
efforts, the beginnings of Optical Character Recognition (OCR) in what comes
to computers date back to the 1950s where images of text and characters were
attempted to be captured by mechanical and optical means [7]. In the 1960s and
1970s, OCR was used in post offices, banks, hospitals, aircraft manufacturers, etc.
By then, the results given by OCR techniques presented too many faws due to
the state of the printed paper being analyzed — the conditions of the surface where
the text was printed, the type fonts and the residue left by typewriters difficulted
the process. Hence, OCR manufacturers had a big interest in the creation of stan-
dards in what comes to type fonts, ink and paper quality. Due to this, important
institutions like ANSI', ECMA? and ISO® came up with the development of new
fonts that could help accomplish high recognition rates.

2.1.2 Recent Solutions

Nowadays, OCR is much more developed and divulged than in its early years
achieving really high accuracy rates. Nonetheless, as [7] states:
7[...] 99% accuracy rates translates into 30 errors on a typical page containing
3,000 characters.”

L American National Standards Institution
2 European Computer Manufacturers Association
3 International Standards Organization

2.1. Optical Character Recognition Chapter 2. State of the art

There are many applications that provide Optical Character Recognition for
images. Some of these applications also feature Layout Analysis. It is even normal
nowadays to find an OCR application bundled with a cheap scanner device.

Commercial and free solutions are widely available. Considering only OCR en-
gines and not complete OCR and DAR, among the existing Free Software solutions

the most known ones are;

Ocrad

License: GNU General Public License*
Ocrad® is an OCR engine developed within of the GNU Project.

Gocr

License: GNU General Public License*

The GOCR? engine was developed by Joerg Schulenburg. Beyond reading text,
it can also translate bar codes.

Tesseract

License: Apache 2.0 License’

Tesseract® was first developed by Hewlett-Packard® (HP) from 1985 until 1995.
It was one of the top 3 OCR engines in the 1995 University of Nevada, Las Vegas
(UNLV) Accuracy test and after that year not much work was done on it until
it was released in 2006 by HP and UNLV. Since then it has been under active
development by Google.

4http://www.gnu.org/licenses/gpl-3.0.html
Shttp://www.gnu.org/software/ocrad/
6http://jocr.sourceforge.net
"http://www.apache.org/licenses/LICENSE-2.0
8http://code.google.com/p/tesseract-ocr
“http://www.hp.com

2.2. Document Analysis and Recognition Chapter 2. State of the art

2.2 Document Analysis and Recognition

According to [5], 85% of the new information stored on paper in the world is
office documents. This surely contributes to the fact that DAR is largely used to
process business related documents like obtaining the information from forms and
checks, organization of documents, etc.

Nevertheless, recently the uses of DAR have been moved to other types of docu-
ments like ancient documents, digital documents like PDF as well as other types
of images, for example images from surveillance and traffic cameras.

2.3 DAR History

In the early years of DAR, one of the first projects dedicated to the subject
received a very direct name — Document Analysis System [8]. This publication
from 1982 gave an overview of a system to convert printed documents to a way
that can be processed by a computer. The idea was to subdivide an image in
regions of a data type like text, graphics, etc. An approach to recognize font styles

and types was also studied that involved a pattern-matching method.

The Scientist’s Assistant (SA) was also an interesting project that appeared in
1991. The SA was a system designed to scan, perform OCR and tag a document
by using the Standard Generalized Markup Language (SGML) [9]. The conclusions
were that it would take more time to review and correct each scanned document
than by typing it from the beginning [10]. Another early effort in this field was
the Licensing Support System (LSS). This system would capture and track doc-
uments that belong to the Nuclear Regulatory Commission and a prototype was
built featuring both OCR and manual key entries. After the construction of the
prototype, it was concluded that the ” costs of conversion of hard copy documents
to electronic form dominate the life cycle of the Licensing Support System.” After
that, LSS responsibles claimed that this system would only be able to give min-
imum document format (no information about certain styling formats like italics

or bold type fonts) information [11].

10

2.4. Modern systems Chapter 2. State of the art

2.4 Modern systems

The Department of Computer Science of Cornell University presented a way
in 1995 that consists in two main steps: segmentation and classification [12]. In
the segmentation step, the type font shape and layout information is used. In the
classification step, the segmented content is compared with structure prototypes.
The information contained in the predefined prototypes is about the present or
not present symbols. If there is any previous information about the document’s
styles, it can be also used as additional help in the processing steps [13].

In 1998, in the University of Nevada, USA, the Information Science Research
Institute developed a project named Autotag. Its purpose is to automate the
conversion of general technical documents by performing a physical analysis, by
means of OCR, followed by a logical analysis of the document.

According to [14]:

” Autotag accepts a physical document representation as input. It analyzes and
combines the information contained in this form and maps it to a logical represen-
tation.”

Autotag takes the physical representation information (given by the used OCR
software) about the document being analyzed and converts that information into
another representation in SGML. For example, [14] refers that Scan WorX OCR
device from Xeroz would produce output in a format called XDOC which Auto-
tag then would convert to SGML. This conversion step exists so Autotag remains
device independent [14].

After the physical information retrieval, Autotag interprets the useful informa-
tion contained in it. To do this, and since the are many types of documents and
the logical representation changes from type to type, they focused on the relevant
logical components for scientific journal articles. This way, Autotag can retrieve

abstracts, authors names, tables, figures, etc. from this class of documents [14].

2.4.1 Mobile devices

The growing importance, power and variety of portable devices such as PDAs
and mobile phones have also resulted in the adaptation of DAR solutions for these

11

2.4. Modern systems Chapter 2. State of the art

kind of devices to process images captured by the devices’ cameras.

An example of this is the recognition of business cards. The smart phone Sony
Ericsson P990i is an example of this. A business card photo is taken using a
cellphone’s camera and the business card’s owner information like his or her name,

telephone, company name, etc, is stored in a database on the device.

2.4.2 Recent solutions

Nowadays there are recent solutions available that can be used with satisfactory
results depending on what’s needed. Bellow, some of the most known solutions

are presented.

ABBYY FineReader

License: Comercial

FineReader is a DAR and OCR software developed by the Russian company
ABBYY™. It’s first version was released in 1993 [15] and it can perform automatic
DAR and OCR as well as manual edition/correction of the results. To do this,
it features a graphical user interface (GUI) and its latest version (version 9.0
Professional Edition) is available only for Microsoft Windows.
Nuance OmniPage

License: Commercial

OmniPage is also a DAR and OCR software. It is developed by Nuance Commu-
nications!!. Like FineReader, OmniPage has a GUI where it’s possible to perform

automatic DAR and OCR as well as manual corrections and edition. Its latest

version (Professional 16) is available only for Microsoft Windows as well.

SimpleOCR

License: Freeware

Onttp://www.abbyy. com
Uhttp://www.nuance. com

12

2.4. Modern systems Chapter 2. State of the art

This program is developed by Cyril Cambien as an OCR solution but also a
royalty-free OCR SDK'? that can be used in other applications. It does not per-
form DAR and its GUI allows one only to manually select the parts of the image

that the engine is supposed to process. It is available only for Microsoft Windows.

Vividata OCR Shop XTR

License: Commercial

The OCR Shop XTR DAR and OCR solution was released in 2003 by Vividata'3.
It is available only for Linux and UNIX and can be only used from the command
line.

OCRopus

License: Apache 2.0 License'*

OCRopus is different than the previously commercial solutions. It is supported
by Google and leaded by Thomas Breuel from German Research Centre for Ar-
tificial Intelligence'®. It performs DAR and OCR, the latter is accomplished by
using Tesseract. The project is highly modular to be pluggable with more OCR
engines and DAR systems.

It does not have a GUI, instead it can be used from the command line. Another
particularity is that instead of exporting the recognized data to a widely used
document format like PDF or Doc, it generates hOCR!® files which are HTML
files with embedded OCR information.

It is officially developed for Linux although there are efforts to make it usable
on Microsoft Windows and Mac OS.

12 Software Development Kit
13http://www.vividata.com
14http://www.apache.org/licenses/LICENSE-2.0
15http://www.dfki.de
http://code.google.com/p/hocr-tools/

13

2.5. Conferences about DAR and OCR Chapter 2. State of the art

2.5 Conferences about DAR and OCR

Along with the years of research in the field of DAR and OCR, several important
workshops and conferences were created. Probably two of the most famous con-
ferences are the International Workshop on Frontiers in Handwriting Recognition

(IWFHR) and International Conference on Document Analysis and Recognition
(ICDAR).

14

Chapter 3

The System

15

3.1. Overview Chapter 3. The System

3.1 Overview

OCRPFeeder was designed to be used in two ways: as a command line tool and

as a full application with a complete graphical user interface.

Since this project is Free and Open Source Software, there was the concern
of using open source technology and open standards. All the used technology is
Free Software. Although the system was designed and implemented thinking on
its usage on the GNU/Linux operating system, most of the technology used is
fully supported on other operating systems. Also, the implementation, that is, the
code, was written in an independent way that will not require major changes if it

happens to be ported to other operating systems in the future.

3.2 Technology and Development Tools

This section presents a list of the technology and tools chosen for the develop-
ment of this project. It gives an overview of each of the technologies/tools without
going into very technical details, there will be also an explanation on why the

technologies were chosen.

3.2.1 Python

Python' is a general-purpose object-orientated programming language. It uses
garbage-collection to manage the memory and is both dynamically type checked
and strongly typed. Python focus on the readability and clearness of the code
as well as in the programmer’s productivity. Its strong introspection capabilities
make it very fast for a programmer to automate tasks that usually would require a
larger sum of code lines. It also features an extensive and useful standard library

for which the Python community often uses the phrase ” batteries included” .

Python was created in 1991 by Guido van Rossum at the Stichting Mathematisch

Centrum in Amsterdam and its name comes from Monty Python’s Flying Circus -

http://www.python.org

16

3.2. Technology and Development Tools Chapter 3. The System

the BBC comedy series of which Guido is a big fan [16]. It was originally designed
as a scripting language for the Amoeba system in which Guido was involved.

Its first version was released in January 1994 and in 1995, Guido continued his
work at Corporation for National Research Initiatives in Verginia, USA, releasing
several versions of Python. In 2001, the non-profit organization Python Software
Foundation? was founded and have been managing the open source licensing of
Python since version 2.1 [17].

Modularity and reuse should always be key concepts when it comes to write
code that may be then adapted by others. The below excerpt from [16] represents
how Python suits these needs:

” Besides being well designed, Python is also well tooled for modern software method-
ologies such as structured, modular, and object-oriented design, which allow code
to be written once and reused many times. In fact, due to the inherent power
and flexibility of the language, writing high-quality Python components that may
be applied in multiple contexts is almost automatic.”

Python also has excellent portability and the Python interpreter is available for
a large set of platforms, from major operating systems like GNU/Linux, Mac and
Windows to cellphones or even the .NET platform and the JAVA Virtual Machine.

Documentation also plays a very important role in every project for purposes
of understanding what the code does and how it does it. Python features what’s
called docstrings which standardize the way to write documentation in Python.
Docstrings are simply strings with the actual documentation text and go under

the declaration of classes, methods, etc.

The properties of Python make it very suitable for several areas of program-
ming like system programming, rapid prototyping, text processing, graphical user

interfaces (GUI) programming or web programming.

In this project, Python was chosen because it filled every requirement. It suited
every mandatory need like processing text, creating the GUI, abstracting certain

2 Python Software Foundation: http://www.python.org/psf/about/

17

3.2. Technology and Development Tools Chapter 3. The System

tasks and others.

3.2.2 PyGTK

GTK+3 is a toolkit to create multiplatform graphical user interfaces and was
created by Peter Mattis, Spencer Kimball and Josh MacDonald in 1997. GTK
stands for "The GIMP Toolkit” since it was originally developed for the GNU
Image Manipulation Program* (GIMP).

Although it was originally created for X Windows it is available for the most
common operating systems like GNU/Linux, Mac and Windows and was adopted
as the default graphical toolkit of GNOME® and XFCFE®. Beyond all the common
graphical interface components it supports, the main features of GTK+ include
theme support, thread safe, localization and internationalization among many oth-
ers [18].

PyGTK' is a set of Python wrappers for GTK+ that make it possible to create
GUI applications with all the GTK+ advantages.

Even though Python already includes a toolkit (Tk®) in its standard library,
PyGTK was the chosen toolkit for OCRFeeder because of all its advantages com-
paring to Tk, mainly accessibility, localization, internationalization and the object

oriented approach.

3.2.3 PIL

The Python Image Library® (PIL) is a powerful framework created by Fredrik
Lundh that allows operations on images like creation, manipulation or conversion
[19].

3GTK+: http://www.gtk.org

4GIMP: nttp://wew.gimp.org

SGNOME: http://www.gnome.org

6 XFCE: nttp://www.xfce.org

"PyGTK: http://www.pygtk.org

8 Tk: http://www.tcl.tk/

% Python Image Library: http://www.pythonware.com/products/pil

18

3.2. Technology and Development Tools Chapter 3. The System

OCRFeeder extensively uses PIL for all the advanced operations on images men-
tioned in Chapter 4. It was chosen because it is the most complete and powerful
imaging library available for Python.

3.2.4 PyGoocanvas

GooCanvas' is an advanced canvas widget for GTK+. It uses the cairo!! 2D
library that offers a powerful API for 2D drawing and vector graphics operations.
GooCanvas make it easy to contrel the vector elements that cairo provides for
example it allows to create geometrical forms, control their properties or check

which other forms are contained within given bounds.

PyGoocanvas'? is a Python wrapper for Goocanvas. It allows to use Goocanvas
powerful capabilities but using Python instead of C.

PyGoocanvas was chosen as it provides the needed tools to be able to do a very

important part of the graphical user interface, like Section 5.2.2 describes.

3.2.5 XML

XML stands for eXtended Markup Language and is an open standard recom-
mended by the W3C*? for document markup.

According to [20]:
" It defines a generic syntaz used to mark up data with simple human-readable tags.
It provides a standard format for computer documents that is flexible enough to be
customized for domains as diverse as web sites, electronic data interchange, vector
graphics, genealogy, real estate listings, object serialization, remote procedure calls,

voice mail systems, and more.”

10 GooCanvas: http://live.gnome.org/GooCanvas

1 Cairo: http://cairographics.org

12 pyGoocanvas: http://developer.berlios.de/projects/pygoocanvas
B3 World Wide Web Consortium: http://www.w3.org

19

3.2. Technology and Development Tools Chapter 3. The System

XML documents that should follow a certain schema can be validated according
to an XML schema rules. For example, an XML schema may define that an element
"person” must contain one (and only one) attribute called "name” but must not
contain an attribute "manufacturer” which belongs to an element "car”. If an
XML document must obey an certain schema, then it must include information
on where to find the schema. Documents that validate their schema are said to be

well-formed.

In this project, XML is used for:
e Storing the general preferences configurations;
e Storing the settings when saving a project;

e Specifying OCR engines’ settings;

The XML usage in OCRFeeder is covered in Sections 4.2.1 and 5.3.4. It was
chosen because of being an organized and standard way of representing and storing
data.

3.2.6 ODT

OpenDocument Text (ODT) is the format referring to text in the OpenDocument
Format (ODF).
The OpenDocument Format is a file format based in XML for office documents
like text, presentations, spreadsheets and graphics.

ODF was first started in 1999 by StarDivision for its office suite StarOffice and
Sun Microsystems'* then acquired the company the in the same year. In 2000, the
open specification of ODF started as Sun Microsystems released OpenOffice.org
[21] — a complete and cross-platform office suite derived from StarOffice and com-
patible with Microsoft Office formats.

“http: //www.sun. com

20

3.2. Technology and Development Tools Chapter 3. The System

ODF got approved as an OASIS' standard in May 2005 and in 2006 in the same
month, IS0 and IEC'" unanimously approved it as ISO/IEC 26300 [22].

Being an open standard by OASIS and vendor independent, ODF allows the cre-
ation of new solutions independent from office applications. It is free of licensing,
royalty payments or other restrictions.

Many countries and institutions have been supporting and adopting ODF.

After OpenOffice.org, many other programs began supporting ODF. Some widely
used programs that are an example of supporting ODF, either fully or partially,

are:

o Abiword®;

e Google Docs'?;

e IBM Lotus Symphony?;

e KOffice®.

For ODF openness and recognition as an ISO and OASIS standard together

with its portability and support by many applications, ODF was chosen as the
primary exportation format of OCRFeeder.

Section 4.4.1 describes how the ODT exportation is accomplished.

3.2.7 ODFPy

From the OpenDocument Fellowship®® [23]:
” Odfpy aims to be a complete API for OpenDocument in Python.”

15 Organization for the Advancement of Structured Information Standards: http://www.
oasis—open.org/

16 International Organization for Standardization: http://www.iso.org/

17 International Electrotechnical Committee http://www.iec.ch/

18http://www.abisource.com

19http://docs.google. com

2Onttp://symphony.lotus.com

2http: //www . koffice.org

22 OpenDocument Fellowship: http://opendocumentfellowship.com

21

3.2. Technology and Development Tools Chapter 3. The System

Hence, ODFPy offers a way to generate an ODF document using Python. It is

a complete API as it lies just above XML in what comes to abstraction, this way
it makes possible to control all ODF constructions.

ODFPy produces valid documents as it raises exceptions when an invalid action

(according to the XML schema) in the document generation occurs.

ODFPy was chosen as the way to generate ODT documents for this project due
to the easiness of generating valid the documents over the more ”manual” way of
doing it with a plain XML parser.

3.2.8 Ghostscript

Ghostscript?® is an interpreter for PostScript and Portable Document Format
(PDF) created by L. Peter Deutsch [24]. It provides a set of tools that allows for
operations such as viewing or converting the mentioned file formats and have been

ported to the many operating systems like GNU/Linux, Mac and Windows.

In this project, Ghostscript was chosen to convert PDF documents to images in

the PDF importation functionality (see Section 5.3.2).

3.2.9 Unpaper

Unpaper? is a tool developed by Jens Gulden to perform corrections on images
originated from scanned paper sheets. It is extremely useful as a pre-processing
tool for an OCR engine since it clears the image by removing the ”dust” and wipes
out other marks like, for example, dark edges usually created from a photocopy

machine. It can also rotate a text image to the correct angle.

This tool is used in this project as an optional plugin to clean images. The use

of Unpaper is presented on Section 3.2.9.

23 Ghostscript: http://ghostscript.com/awki
24 Unpaper: http://unpaper.berlios.de

22

3.3. Architecture Chapter 3. The System

3.3 Architecture

Modularity was a concept always present when designing the system due to all
its known advantages. Figure 3.1 shows the system architecture in a global way

for an easy understanding of it.

Document Analysis and Recognition

Image Layout

Images Input 9 . »| -ayout
Pre-processing Analysis

Y

OCR Engines Optical 'C-haracter
Recognition

k.

Document
Generation

Figure 3.1: The system global architecture

A more detailed yet simple diagram is shown in Figure 3.2. It outlines the
main modules and actions that occur on them, the next chapter will cover each of

the modules and actions in a more detailed and technical way.

23

3.3. Architecture

Document Generation

OpenDocument

Text Generation

Document Analysis and Recognition

Text Settings

Font Size

Calculation

Optical Character Recognition

Layout Analysis

Contents

Extraction

Image Pre-processing

Image Enhancement

(Unpaper) PDF Importation

Figure 3.2: A more detailed architecture diagram

24

Chapter 3. The System

Chapter 4

Implementation

25

Chapter 4. Implementation

OCRPFeeder is composed by two parts or particularly, two interfaces. These are
the command line interface (CLI) and the graphical user interface (GUI). Although
there are two different interfaces, the basis is the same.

For a printed document to be converted to an electronic format, simple OCR
tools are not enough. Most OCR engines available only perform OCR over the
text, returning the text it recognizes from the given document image. The output
does not contain any information about the layout, it doesn’t include any reference
whether the document followed a two-column format, three-column, had additional
information boxes, etc. So, there is the need to include layout analysis when
using such OCR engines in order to produce a fair electronic version of the input

document image.

Nine Inch Nails - Discipline

Am I still tough enough? And now it's starting up
Feels like i’m wearing down Feels like I'm losing touch
Is my visciousness Nothing matters to me
Losing ground? Nothing matters as much
Am [taking too much? I see you left a mark

Did I cross a line? Up and down my skin

I need my role in this I don't know where I end
Very clearly defined And where you begin

I need your discipline I need your discipline

I need your help I need your help

I need your discipline I need your discipline

You know once I start I cannot help myself You know once I start 1 cannot help myself

Once I start I cannot stop myself

Figure 4.1: Lyrics document image (preview of contents area)

26

Chapter 4. Implementation

To give a visual example, consider the clean document image shown in Figure 4.1

with the lyrics of a song!. If processed by the OCR engine Tesseract, for example:
$ tesseract nin_discipline.tiff lyrics_text

The result is a file? named lyrics_text.tzt with the text that Tesseract. The
generated text is illustrated in Figure 4.2.

Nine Inch Nails - Discipline

Am | still tough enough? And now it's starting up
Feels like tam Wearing down Feels like I'm losing touch
Is my visciousness Nothing matters to me
Losing ground™? Nothing matters as much
Am | taking too much'? | see you left a mark

Did | cross a line? Up and down my skin

I need my role in this I don't know where | end
Very clearly defined And Where you begin

I need your discipline I need your discipline

1 need your help I need your help

| need vour discipline 1 need your discipline
You know once | start | cannot help myself You know once | start | cannot help myself

Once | start | cannot stop myself

Figure 4.2: Recognized text for lyrics

As it shows, the text is recognized with a great success rate but all the format
structure is lost. Tesseract and most engines alike recognize the space between
the columns jumps as simple spaces between one word and another. Paragraph
information is also lost, the song’s chorus does not preserve the space which divides
it from the rest of the verses. The title doesn’t show up aligned or separated from
the song’s lyrics as well.

LThe song is Discipline by Nine Inch Nails, licensed under Creative Commons Attribution-
Noncommercial-Share Alike 3.0

2 Actually it generates two more files with the extensions .map and .raw but have no interest
for this example.

27

4.1. Layout Analysis Chapter 4. Implementation

From the above example, it is easy to see that using just an OCR engine is not
enough to produce an electronic version of a document image. It would work for
example if the objective was just extracting the words from the image for indexing

purposes.

4.1 Layout Analysis

To preserve the document’s original structure, layout analysis must be employed
in the process of converting the document to an electronic version. Using the
previous example of the lyrics document, if a person was asked to outline the
format structure in the document, the result would be something like the Figure
4.3.

Nine Inch Nails - Discipline
Am I still tough enough? And now it's starting up
Feels like i’m wearing down Feels like I'm losing touch
Is my visciousness Nothing matters to me
Losing ground? Nothing matters as much
Am] taking too much? I see you left a mark
Did I cross a line? Up and down my skin
1 need my role in this I don't know where I end
Very clearly defined And where you begin
I need your discipline I need your discipline
I need your help I need your help
I need your discipline I need your discipline
You know once I start [cannot help myself You know once I start I cannot help myself
Once I start I cannot stop myself

Figure 4.3: Lyrics document with outlined format structure

28

4.1. Layout Analysis Chapter 4. Implementation

To automatically find the regions of interest in a document is a challenging
problem. Raw images like the JPEG, PNG, PNM, or TIFF do not hold any useful
information abouts its contents when it comes to document images. They don'’t
keep information whether the graphics they hold represent a flower, a dog, a house,
a taxes form or a restaurant menu. For example, there is nothing present in the
JPEG format that tells whether it starts with a paragraph of text or has a picture
starting from the middle of the page until the end.

With a way to know the document’s structure it would be easier to perform
OCR on each retrieved ”piece” of the document and finally generate a version of
it in an editable electronic format.

For the purpose of simplifying, this section presents some figures that show
examples of possible document structures by presenting text as black lines instead

of real text, such as Figure 4.4.

If it was just dealing with simple documents with one column of text, the solution
was easier. For an example of this, consider Figure 4.4a. The layout format is
pretty simple and to retrieve the contents is rather easy. It may be accomplished
by going from top to bottom and tracking the white areas of width equal to the
image width and of height slightly greater than a pre-defined text line spacing.
The result of this step is illustrated in Figure 4.4b where the light blue rectangles
mark the white areas found. After the white areas are tracked, it is simple to get
the actual text areas. To find the horizontal beginning of the text in the retrieved
text areas, the white areas of it are also tracked in a similar way as before but now
horizontally.

The previously suggested algorithm is somewhat trivial and not enough for doc-
uments that don’t follow such simple structures because this algorithm only con-
siders the documents to be structured vertically. Figure 4.5 gives an example of a
"not so simple” structure. In this case, the document starts exactly as the previ-
ous mentioned ones to be then split in two columns with the left one representing
itself two paragraphs.

Obviously, the simple algorithm used before doesn’t work for documents like

29

4.1. Layout Analysis Chapter 4. Implementation

L L}
eSS ———————————errarrree— e rrrerv e re—————rreeeeereemr e
— — T e
L —————t—————TTE TS ———————————————
= —— Line sgate
et
_ e —————————————————————
A et e e
B e————————————————— e —————————————————————
SRS — ————
e 1 . S P
e et ot — Ao ————— A —————) e ——————————————————
0 e ——————— el
b ———
e —————
o
(a) 1-column simple document struc- (b) Detection of white areas vertically

ture

Figure 4.4: Illustration of part of the detection algorithm for 1-column simple
documents

this. For the document illustrated in Figure 4.5, when the algorithm reaches the
white space in the middle of the left column separating the paragraphs, it will still
detect the right column’s text and so, it assumes there is still text. A more flexible

approach is needed.

Instead of targeting a specific type of document, the approach taken in this
project was that it must be usable for virtually every document with any structure.
If the goal was converting scientific papers for example, then an approach similar
to those already mentioned in Chapter 2 involving structure patterns would be the
right way to go.

By targeting any time of document it means that the document can start for
example with a logotype, then the title, then text; or first the text in a 2-column

fashion and then a picture followed by its legend; or maybe even just a picture

30

4.1. Layout Analysis Chapter 4. Implementation

Figure 4.5: A not so simple document example

occupying the whole document area and nothing else. Combinations are endless.
So, this project accomplishes the task of retrieving the contents from a document
image by following a simple principle:

It doesn’t matter what structure is being analyzed, it only matters to retrieve
the contents.

Contents are any picture, any column, any paragraph which is part of a column,
any image caption, etc. However, creating a way to retrieve the contents that must

be suitable for many document structures isn’t a trivial task.

4.1.1 The sliding window algorithm

This section presents the actual algorithm created for getting the contents from
an image. For consistency, the parts that need to be retrieved will be mentioned
mainly as contents.

31

4.1. Layout Analysis Chapter 4. Implementation

If one looks randomly at a small part of a document image, that small part will
be either content or not; foreground or background; a region of interest or not.
This means that there is a binary condition — there is one thing or nothing — and
so, it means that for any part of the document, it can be categorized as 1 or 0.

This way, the theory behind the algorithm is a pretty simple concept:

If a document can be divided in several small pieces and each piece categorized
as 1 (if it is foreground) or 0 (if it is background), then it is possible to group blocks

of 1s and hence, outline the image contents.

The algorithm operates as follows:

1. A NzN pixel window runs trough the document from left to right, top to

bottom;

2. For every iteration, if there is at least one pixel within the window whose
color contrasts with the background, then it is assigned the value 1 otherwise

it is assigned the value 0;

3. After all windows are assigned a value, the ones who have been assigned the

value 1 are grouped;

4. Every time a group of 1s is gathered, every window in the group is reassigned

the value 0;
5. When the all windows have the value 0, the algorithm is finished.

Because the basis of this algorithm is a window ”sliding” through the image,
the algorithm was named the Sliding Window Algorithm.

The window size

The size of the window is NzN pixels. Hence, N needs to be set before the
algorithm starts. The problem is that document images may vary in size and so,
choosing a small size for the window might result in the window fitting within

the line spacing. On the other hand, a big window size might result in a window

32

4.1. Layout Analysis Chapter 4. Implementation

bigger than the space separating two paragraphs and so, considering them to be
part of the same content. For this, the window size needs to be carefully chosen
and ideally bigger than the line spacing, and smaller than the paragraph spacing.
OCRFeeder calculates the window size automatically. This calculation is as
follows:
N=H/60,bN e R,HeN

Where N is the window size and H is the document image’s height. The value
60 was considered to be the best one after testing several values.

Obviously, this is not flawless. It depends if the line and paragraph spacings
used in the document are “standard” and consistent. For example, a paragraph
spacing slightly greater than the line spacing might be enough for a human to
detect the structural separation of contents but small enough to fit within the
window automatically calculated.

Due to this problem, OCRFeeder lets the user decide whether to automatically

calculate the window size or to define it manually.

Binary Representation

Figure 4.6 represents a document divided in windows of size automatically cal-
culated. The figure is 450 pixel high and so, dividing its height by 60 will result
in 7.5. The resulting window size is correct because it doesn’t fit inside the line
spacing but fits inside the paragraph spacing. Although the number of pixels must
be an integer value, the window size is not rounded at this time because further
arithmetic operations will be performed with this value. This way it is more ac-
curate to do the operations with the value not rounded. Figure 4.6 also shows the

windows with the respective values already assigned.

The way to see if a pixel belongs to the images’ contents or to the background
is to check if its color contrasts with the background color.

Color contrast needs to exist between the contents and the background of a

document. If the document’s background color is white and the text written on it

is light yellow it is difficult for anyone to read it. According to [25]:

33

Chapter 4. Implementation

4.1. Layout Analysis

onpocaapaobnoDbDOD

apnoononoanbaononn
D000 0D00 000

]
L
(]

0n

[0

»aa0pDpanDbon

apoanpnaooda0DOODdODDN D

Scocococococoooe
B R - R
00 0GOcoCacOcac 00
Mo ccocccacacRCa S
e e R e R i T
Y U S Iy O Y R
.Uri.‘lli!ll]"ll
‘_..,f.fb.bll.’-.ltslt?.l.h.
.uf.1All,1!.lum]lllln
ufrtll‘l!..llalv.?.r&n.
R R e i R R e =
R e i il l a R eI =
u."lll,]ill]lfllﬂ
I lf.lllv..!ll..
SO A A -
<
=

u.v..-.lll,lt.n&ll...&.&ﬂ
B e
u....?llll!llll!llﬂ
D ‘ll‘]’ll’]]"ll
Tt o o ottty
S A A - D
Dttt ot - D
u,.‘.‘.hllr..!lu.“]v.r.tl(
U,-l‘l..all.l..ll.\l‘..ll..bﬂ.
U..i.-&ll]!ll.]l‘..ll\u
oTlell!l&ll!LL.
D,Qv.‘ lll-]’l!.]!'..ll.ﬂ.
SR i R el i R L o o e 1=
S e All]ﬂ.ll]!rll.
Dttt D
S e A A A . 4D
.J.in?lllli.llll.lll.n
oo e e B e R S I
B e
o b T o R e
el BT B
Uuﬂvlllplil\e};!?llﬂ
R R R e R IR I S
R B R P Sy e)
B e ol T ST B e
ENEY S A - % S-S N Sy Sl 45 95
DDttt D
R O S N LT
e i R R e i

oocooococooDomonooo

DOODODOONDOGODOD

oo UoUoUooODo oo

ooCUoDUToUoDoUDoODos

S ococococoocooDEen

unpua:,L::,u1::
L = B B I = I

Sooacaocac
P g g g
g 1B B

R i sl akedle Rt =
.H.Lln..!l.ll“,l..._uLla..‘...a.u OO DO el OO OO
R el R R R
DA it B At et DS A M AT D DD T D D4~ DS
.JLI]TIIIVI.»..JI.I.!).&.U.J.U.JQ.J:J.L,l..._.n..l.n
R Ll e B -
ol ST T [E == iy A S
o b 0D i e OO O D et O D OO
= ; Un.l]vnd.‘.mﬂu.uunuﬂl.lun.un\
DA S D T MM AT D DD C D DD =D
A A A A O G i e, AC A S0 S A S ema s
Ul.lllllllU.Ull’.!..on.UU -3 O D D (-]
S AN e AR D S A, as DS Semoooc
Tt e TS s e DS R e
S A A D O AT DO omMmoooc
ull;l.ll......lu.ul.lrll.tﬂ;uu = -] =]
T [y Sy ococaoocae |
SR N e e e - N) smeoooo
Smococoocoooococooceno oceocooce
o o0 O o O >
R e e T I B T - - - - -] cac
Rt I R T N
D1 e e S DT ST S S S O DS
R R R i bl e e - - -)
e T T B R N Y-
Tttt otk et ot kot ol e et e T SO S 0SS S DS D
e T T e N e Y - L L
e R e e R R R R
R e R R LRI TN - R A R)
R e b I b S S
I i N R N)
L Y Py Y PP I 7 e i S R R Y=
e e R e e L - - - - -
R e o L I B I = R = S e
R e R I T I L R R R R)
R e I B R R I =
R T R -
o scmcacocaocac
= D"occoococaoooe
oo L = RO
Soceooccoocco
veoooe e R R
R e e e N

10on

sentat

inary repre

Bi

Figure 4.6

34

4.1. Layout Analysis Chapter 4. Implementation

" [...] object detection depends in general on the color difference of the object

from the background.”

The document images are converted to grayscale before being analyzed. This
is done in order to simplify the calculation of the contrast between the different
elements in the document image. Grayscale images are simpler for this purpose
because they have only one channel (gray) per pixel instead of the three channels
of RGB images. By observation, the default value that OCRFeeder considers to be
the minimum distance the colors of two pixels is 120. Figure 4.7 shows an example
of two contrasting color with the difference of 120, the background color has the

value 240 and the inner square has the value 120.

Figure 4.7: Example of contrasting colors

Thus, color contrast can be calculated as the absolute value of the difference

between two colors as follows:
D=|A-B|,A,BeN

Where A and B are the two colors to be evaluated and D is the resulting

difference. If D is greater than or equal to 120, the window gets assigned the value

35

4.1. Layout Analysis Chapter 4. Implementation

1, otherwise it gets a 0.

Optimization

At first, from left to right, top to bottom, all pixels inside a window were be-
ing checked for contrast. Since the algorithm only needs to find one pixel that
contrasts with the background, the polynomial time for this, considering a 16x16
pixel window is, at most, O(256). This approach turned out to be considerably

slow, even when ran on a modern machine.

Figure 4.8: Optimization of the function to find contrast within a window

An optimization was needed so the performance was better. Since even a small
picture or a small font size are not likely to occupy only a single pixel, there is no

need to run through all the pixels in a window. Instead, the algorithm checks the

36

4.1. Layout Analysis Chapter 4. Implementation

pixels within an interval of two other pixels. Figure 4.8 depicts this optimization,
it shows a window of 16x16 pixels that partially overlays the character A. Each
square is a pixel, the blue dots represent the pixels being checked, the orange dots
represent the ones whose color contrasts with the background.

The resulting polynomial time for the same example is now at most O(25) (the
algorithm stops at the topmost pixel in column 8) because only 25 pixels out of

the 256 are checked. This is clearly a better approach than the previous one.

In the end, a string list with ”0” and ”1” characters is returned which was named
as the Binary Representation List and will make it easier to process and interpret
the contents in the image.

This concludes the explanation of the Sliding Window Algorithm. The next

subsection will explain how the groups of 1s in the Binary Representation are joint.

4.1.2 Retrieving blocks

After having the Binary Representation List (BRL), its information must be
processed in order for it to represent the actual contents in the original document
image. The 1s present in the list must be gathered in groups, this groups were
named blocks. Blocks act as bounding boxes that can be mapped in the image

and will contain its contents.

A block was defined as having five properties. These properties are:

e Start line: the line in the BRL where the block starts (the topmost 1). The
top edge of the block.

e Finish line: the line in the BRL where the block ends (the bottommost 1).
The bottom edge of the block.

e First one: the column in the BRL where the block starts (the leftmost 1).
The left edge of the block.

e Last one: the column in the BRL where the block starts (the rightmost 1).
The right edge of the block.

37

4.1. Layout Analysis Chapter 4. Implementation

e Liztra charge: extra adjustment to include half a window beyond its start or

finish line.

Figure 4.9 shows a block in a BRL. The procedure to retrieve the block infor-

mation is as follows:

1. Find the first not blank line (that has at least a 1), this will be the block’s

start line;
2. In that line, find the index of the first 1, this becomes the first one;
3. Go to the next line and check the index of the first 1:

e If the absolute value of the difference between this index and the first
one is greater than tolerance, then the previous line becomes the finish

line and enters step 4;

e Otherwise, if the new index is less than the first one, it becomes the

first one and repeats this step;

4. Store the block’s information and replace the block’s belonging 1s by 0s in
the BRL and restart from step 1 until the BRL has only 0s.

The property extra charge is explained ahead.

The tolerance is a predefined value that OCRFeeder defaults to 3. It means,
that a line only belongs to the block being currently created if the first 1 is not
more than two characters away from the block’s current first one.

After these three properties are found, the last one still needs to be found.
This is done by checking the first columns of zeros within the already found start
line and finish line and going right from the first one. The value of the last one
will be the index of the last 1 found in the block.

For a better understanding, here’s the algorithm applied to the example shown
in Figure 4.9 (all indexes considered start from 0).
The first line is blank and so, the next one is tested:
0000111111111111111111111000

the index of the first 1 found is 4, so the first one is set as 4. Next line’s first 1

38

4.1. Layout Analysis Chapter 4. Implementation

0000000000000000000000000000
0000111111111111111111111000
0001111111111111111111111000
0000011111111111111111100000
0001111111111111111111111100
0001111111111111111111110000
0011111111111111111111111000
0001111111111111111111111000
0000000000100000010001000000
0000000000000000000000000000

Figure 4.9: A block in a BRL

CoNOOTULLAWNRKRO

index is 3 so, it’s less than 4 and |3 — 4| < 3, the first one becomes 3:
0001111111111111111111111000
then, the first 1 has the index 5 which doesn’t modify the current properties:
0000011111111111111111100000
Lines 4 and 5 have their first 1 at the same index of 3, which is equal to the current
first one and so, everything stays the same. Moving on to line number 6, the index
of the first 1 is 2 which, according to the rules, becomes the new first one:
O011111111111111111111111000
Line number 7 also leaves the properties as they are but the index of the first 1
in line number 8 is 10. Since |2 — 10| = 8, is not interpreted as being part of the
block and so, the previous line (number 7) becomes the finish line.

At last, all columns from the value of the first one and delimited by start line
and finish line are checked until the first blank one is found. This occurs at column
26, so the last one is 25.

At this point, the block already has the main four properties and so, it can

already define a bounding box. Every block built is appended to a list containing

39

4.1. Layout Analysis Chapter 4. Implementation

all blocks retrieved so far. All 71”7 characters within the block’s area in the BRL are
then replaced by "0”. This is obviously done because the algorithm for retrieving
the blocks goes from top to bottom, left to right (starting from the upper left
corner) and restarts every time a block is retrieved. If that block’s belonging 1s
were not replaced by 0Os, it would find the same block again.

The extraction of blocks from the BRL is just one part of creating the blocks.
After having the list of all blocks, operations will be performed over it so all blocks

get the right interpretation.

Extra charge

Characters aren’t all the same height and this reflects in the BRL. In typography,
characters have identified distances and lines such as the baseline, ascent, cap-

height or x-height [26] like shown in Figure 4.10.

Cap-height Ascend

Paragraph ...

Descent

Baseline

Figure 4.10: Distances and lines in typography

This will result in something like the line 8 in Figure 4.9 because a line of
windows may have its lower edge ending at the baseline of a paragraph’s last line
that may have characters like "p”, 7j”, "¢” and thus causing the next line to have
a smaller number of 1s. It is also truth for characters in the paragraph’s first line
that may pass the x-height like, for example, "t”, 71", uppercase characters and

characters with diacritics like 74", 71", ete.

40

4.1. Layout Analysis Chapter 4. Implementation

——

== o
f= and
O
Q=
Q=
L Lt Ll

Bl
f=I=m

) 11
11
0

o:-u—n
o»- -
==

Ol—'i—'

Extra charge

Figure 4.11: An example of extra charge

7 A0

Figure 4.11 shows an example of the need of extra charge. The character "p
in the word "example” passes the bottom line and stays in a line that is not
considered as part of the block — the first 1 is too far from the block’s first one. To
solve this, extra charge is set so this block will include half of the line under the
finish line — like shown by the light blue rectangle. In this example the window is
too small which makes the part of the character "p” occupy the whole eztra charge
height, normally, characters’ parts do not occupy all that height.

So, the need of extra charge depends on the window size, font size, space from
the top where the paragraph starts, on the font family (fonts descents and diatrics
dimensions vary), etc.

Extra charge can be set with constant values that are interpreted as follows:
e TOP: Takes the half of the line after the block’s finish line;
e BOTTOM: Takes the half of the line before the block’s first line;

e BOTH: Takes both the half of the line before the block’s first line and the
line after the block’s finish line;

e NONE: Does not take anything.

With the definition of this special property, the block structure gets an extra
flexibility. Figure 4.12 shows the block presented previously in Figure 4.9 this time
with a legend to help understand what was told about the block’s structure. This

concludes the presentation of the block.

41

4.1. Layout Analysis Chapter 4. Implementation

Start line First column of zeros

0000000000000000000000000000
0000111111111111111111111000
0001111111111111111111111000 Lastone
0000011111111111111111100000
0001111111111111111111111100
0001111111111111111111110000
0011111111111111111111111000
0001111111111111111111111000
0000000000100000010001000000
0000000000000000000000000000

Finish line

First one

OO NOULAEWNRKRO

Extra charge

Figure 4.12: A simple block with a legend

42

4.1. Layout Analysis Chapter 4. Implementation

Operations over the blocks list

Although already presented, extra charge is not set for the respective block right
after it is created. It is set in the first operation performed over the blocks list. This
operation is performed by the function extendBlocksByBelongingSingles. What
it does is that it runs through the list and whenever a single block is found, and
depending on its position relatively to another block, the latter will be expanded
to include the single one. A single block is a block that occupies only one line in
the BRL. This can occur because in fact there are contents that occupy only one
line (for example one line of text, an horizontal line separator or an image), or
because of something like the case mentioned as an example for the extra charge -
a line in the BRL originated by parts of characters. This function deals with the
latter case.

To expand the blocks, the block class has four methods that increase the finish
line, decrease the start line, extra charge the top and extra charge the bottom.

Whenever it finds a single block it gets its surrounding blocks — blocks that start
one line after or finish one line before and horizontally contain the single block. For
example, the ones present on the already mentioned Figures 4.12 and 4.11. The
surrounding blocks are returned as the preceding and the succeeding blocks in

relation to the current single block. The following list describes the interpretation
of the results:

o If there is a preceding and a succeeding block then extra charge the bottom
of the first and extra charge the top of the latter. After this, check if the
preceding and the succeeding blocks can be joint and if so, join them.

e If there is a preceding block but no succeeding block, increase the preceding
block’s finish line by one and delete the single block;

e If there is a succeeding block but no preceding block, decrease the succeeding
block’s start line by one and delete the single block;

In the first case present in the list, two blocks can be joint if either the first

one or the last one properties on both blocks have the same value and one block

43

4.1. Layout Analysis Chapter 4. Implementation

vertically ends where the other starts. The function to join the two blocks sets the
preceding block’s finish line and first one with the value of the same properties
of the succeeding block. After the blocks are joint, the succeeding block must be

obviously removed from the blocks list.

Because several blocks may be joint, the function first performs a cleaning

action by removing any blocks from the blocks list that end up contained in other
blocks.

Whenever an extension or unification occurs, the function’s main loop starts
from the beginning because these actions originate new blocks that might need to

be extended themselves.

Once the extension of blocks is done. The function unifyBlocks will unify any
blocks that need to be joint. So, the functions first checks each block getting its
surrounding blocks and joining them with the block if they can be joint. Like the
previous function, this needs to start all over again whenever an unification occurs.

When there are no blocks left to be joint, for each block in the list, the func-
tion gets the blocks overlapped by it and joins them, deleting the block that was
overlapped. Again, when two of these blocks are joint, the blocks list is checked

again from the beginning.

Every content in the document image is now represented by a block. The block
class has a method called translateToUnits that given the window size, returns
the upper left and lower right corners, representing the block’s bounds, in pixels.
This is done by multiplying the block’s main properties — start and finish lines,
first and last ones — by the window size. Like mentioned before, the extra charge

takes half of the window size.

With the actual size of each block bounds in pixels, it is possible to clip each
block’s area from the original document image and then perform other operations
to retrieve more information about the image clip. This finishes the Layout Anal-

ysis section.

44

4.2. Recognition Chapter 4. Implementation

4.2 Recognition

This project does not try to classify each retrieved part of the document with
its logical role on it, that is, it does not try to classify contents as being the
abstract, left column, logotype, etc., instead, it only classifies the retrieved parts
as containing either text or graphics. OCR engines play an important role in this
task and so, they’re usage/configuration together with the classification of contents

is explained in this section.

4.2.1 OCR Engines

Like mentioned before, this project does not supply any OCR engine. The idea
is to use any OCR engine that is installed in the system and can be used from the
command line.

Configuration

The engines configuration should be independent from the source code, that
is, the configuration should involve no changes in the source code. For this, the
properties that are present in most OCR engines were enumerated and can be
configured using XML files. These XML files must reside in the engines folder
under the configurations folder of OCRFeeder — .ocrfeeder — within the user’s
home in the system. Considering the Tesseract OCR engine, the XML files should
look as follows:

<?xml version="1.0" encoding="UTF-8"7>

<engine>
<name>tesseract </name>
<image_format >TIFF</image_format>
<engine_path>/usr/bin/tesseract </engine_path>
<arguments>$IMAGE $FILE; cat $FILE. txt;</arguments>
<failure_string/>

</engine>

The elements under the document element engine are the most general prop-

erties that can be found in the engines based on what.was observed and the

45

4.2. Recognition Chapter 4. Implementation

Open Source engines tested. The name element contains the engines descriptive
name. All the engines tested had a defined input image format so, the element im-
age_format defines this format that must be the image format’s common extension
name, for example PBM, TIFF, JPEG, etc.

The path to the engine’s executable in the system must be also provided by
using the element engine_path.

In most cases, the engines usage need arguments and this can be specified
by the arguments element. Configuration arguments can be used as well as shell
script code but usually, only one argument is needed — the path to the image to be
processed. Since the purpose of XML here is to abstract the engines configuration
and the image path that the engines must process is something that varies, two
special variable names can be used inside the arguments element, those are $IM-
AGE and $FILE. The $IMAGE variable will be replaced by the path to the image
that needs to be processed; $FILE will be replaced by a temporary file name.

In this project the text recognized by the engines must be returned to the
standard output like most engines do and so, usually only the $IMAGE variable
is needed. Nevertheless, the engine used as an example above needs the $FILE
because it does not return the text to the standard output, instead it will generate
a text file with the recognized text which needs to be then returned to the standard
input, hence the need the use of the command cat.

To end, some engines replace unrecognized characters by a character or set
of characters, for example, the engines Ocrad and GOCR replace unrecognized
characters with ”_”. This property was called failure string and can be configured
using failure_string.

OCRFeeder sets default values to some elements if they are not used. Those are
image_format (defaults to PPM) and failure_string (defaults to an empty string,
thus it is only present in the example to show it can be used), the rest need to be
included in the XML.

Recognition

The engines are represented by the class Engine that provides methods to use

the engine. The way to use an engine is:

46

4.2. Recognition Chapter 4. Implementation

e Set the target image;

e Perform operation over that image.

The read method is the one that performs the actual optical character recog-
nition over the given image. This method replaces the $IMAGE and $FILE -
in case they are present in the arguments — with the path to the image and a
generated temporary and unique file name, respectively. The generated file name
will have the temporary folder path in the system has its prefix so it is created
under it. The temporary folder is configured in the project preferences, explained
in Section 5.3.5.

After the arguments replacement, it will run the command (the path to the
engine’s executable concatenated with the arguments) like if it was in a terminal
and get its output text. The file and the image are then deleted from the system
and the output text is encoded in the UTF-8 character set and returned.

Using XML and using all the mentioned properties, especially the arguments
allowing the engines’ configurations and shell script code, make it a flexible way
of defining an engine.

4.2.2 Classification

Getting the recognized text is the first step to perform the classification. The
classification of the document contents as either text or graphics is based on the
analysis of the output text from the used OCR engine. It was observed by analyzing
an image containing graphics and no text that the resulting text from the used
OCR engine was none or appeared to be jammed in the way that it had more
spaces, punctuation characters and failure characters (if the engine has it).

The classification algorithm first removes the leading and trailing white spaces
(new lines characters, spaces, tabulators) — this is called the stripped text in op-
posite to original text. The contents are classified as graphics if any of the cases
in the following list apply, and as text otherwise:

1. The stripped text is an empty string — contains no characters at all;

47

4.2. Recognition Chapter 4. Implementation

2. The engine contains failure characters and the number of failure characters

in the stripped text is more than half of its length;

3. The stripped text’s length after replacing any existing spaces, punctuation
characters and failure characters (in case the engine has such) is less than
half the length of the original stripped text;

At this point, having the recognized text, the type of content and the dimen-
sions and location of each of the contents, it is already possible to generate a
document that would could look like the original document image. However, sev-
eral other important properties — like the font face, size, alignment, etc. — would be
left behind when they constitute a vital information to produce a fair conversion

of the document.
4.2.3 Text properties recognition
In this project, the considered text properties were:

e Font face;

e Font size;

Font style;

e Font weight;

Text justification;
e Line spacing;

e Letter spacing;

Text angle.

The font face, style, weight, letter and line spacing and the text justification
are not automatically set. To find these properties is not on the objectives of this

project and none of the OCR programs used was able to recognize such properties.

48

4.2. Recognition Chapter 4. Implementation

The rest of the properties — font size and text angle — are automatically detected
and set by analyzing the image clip for the current block. The next paragraphs

explain this analysis.

Font size detection

For the font size, at the beginning a simple approach was thought: the font size
was approximately the size of the image clip height divided by the number of lines
in the recognized text.

This turned out to be less than efficient because of two problems, 1) the spaces
from the edges of the image clip to its actual text content, 2) the line spacing
was not considered and thus, would influence the text size. A new approach was

needed.

Thus for the new approach, the letters present in the image clip are actually
measured. This is accomplished by checking the colors of each line (from top to
bottom) of 1 pixel height and with the same width as the image. If the line contains
any pixel whose color contrasts with the background’s one, then it increases the
font size; if the font size is being increased (if the previous line increased the font
size) but the current line has no pixels contrasting with the background color, then
the current font size is stored in a list and the next time the font size is increased
it will start from 0. The background color is considered to be the most common
color in the image clip — the one that most pixels have.

In the end, there will be a list with the font sizes. The arithmetic average is
then calculated the values of the list; the value chosen for the font size is the one
present in the list which is greater than or equal to the calculated average value.

Figure 4.13 depicts this algorithm for a better understanding. The detection
starts at the vertical beginning of the text, thus the 1 pixel line starts at the top of
the character "T” (in the word "This”) and the font size gets the value 1, it goes
down until the vertical end of the character "p” (in the word "example”); after
this, the next lines have no pixels that contrast with the background color until it
reaches the top of the letters of the second sentence where a new font size starts

being calculated.

49

4.2. Recognition Chapter 4. Implementation

This is an example

_to show how the font

size and letter spacing

___are calculated.

Figure 4.13: Font size and letter spacing detection

[t’s easy to see from the blue (font sizes) rectangles that the sizes of each text
line differ and a first approach to get a balanced result was to calculate arithmetic
average of the sizes in the list. However, characters like "i” or characters with
diacritics can originate very small sizes in the list — that is, if there is no character
higher in size than, for example, the letter 4", its diacritic will be recognized as

if it was a line due to the space between it and the actual character.

As concluded in the tests (see Chapter 6), these sizes, although slightly different
from paragraphs of the same original font size, are very close to the original ones

and correct in most cases.

At this point, the sizes are still measured in pixels and must be converted to
points. This is done by converting the pixels to inches (see Section 4.3.2 further
in this chapter) and then dividing the value by 72 — since this is the value used
in the PostScript conventions, also called DTP point (DeskTop Publishing point)
[27].

50

4.2. Recognition Chapter 4. Implementation

Text angle detection

The used OCR engines can recognize text even if it isn’t 100% horizontal. How-
ever, if the angle is not just slightly greater or less than 0, the engines cannot
recognize it. So, the purpose of detecting the text angle is to rotate the image un-
til the text appears to be horizontal, use the engine to read it and when converting
it to an editable format, rotate the text to the original angle.

Consider the Figure 4.14a with the black text being the the original one. The
fastest way to rotate it until it gets horizontal is to rotate it negatively (clockwise).

What’s needed to be known is when to stop rotating it. The gray text was
rotated a number of degrees clockwise and as the orange line shows, its upper point
is lower than the original text’s upper point (shown by the blue line). Continuing
rotating the text will end up as shown in the Figure 4.14b where the upper point
of the text is higher (shown by the red line) than the previous upper point when
the text was in the horizontal. As a conclusion, the text must be rotated until the

maximum distance between its upper point and the image top.

The angle chosen to rotate the text in each iteration was 5 degrees because the
used OCR engines can read the text if it has a positive or negative angle of 5 and
the calculation would take too much time performing unnecessary checks if the

angle was 1.

However, if the text in the mentioned example was in the same angle but written
from top to bottom, rotating it with this algorithm would put it upside down.
Similar situations would occur if the text was written in other directions. Maybe
by checking the output text of each rotated image could be a good way to see
which of the rotations was correct but the problem is that performing OCR on
upside down text results in some valid characters but recognized incorrectly, that
is, a character "M” may be recognized as a "W” if it’s upside down, or an "E”

3N ’7’77
*

might be recognized as a "3”, an "i” as a etc.

So, although the rotation could be automatically detected, it would need the
user to manually choose which original text direction should be assumed before
the rotation starts. On top of it, rotating a text frame and placing it in the desired

point of the sheet using the PyODT API turned out to be too complex and with no

51

4.2. Recognition Chapter 4. Implementation

Figure 4.14: Text angle detection

satisfatory results. Plus, in what comes to other formats like HTML, text rotation
1s not supported. Due to all these facts, the rotation is able to be automatically
detected in OCRFeeder Studio but just to demonstrate the rotation algorithm,

rotation as a fully implemented feature was abandoned.

52

4.3. Content representation Chapter 4. Implementation

4.3 Content representation

4.3.1 Data boxes

To keep all the properties mentioned in the previous section, a more advanced
structure than the blocks previously presented was needed. This new structure
was called data boz. A data box acts as an enhanced version of a block because it
keeps the information about the bounds of an area like a block does but includes
advanced information about the type and properties of the content it represents.

A data box contains eight properties presented in the list bellow:

e z: the horizontal distance of the box’s upper left corner from the left edge

of the document image;

e y: the vertical distance of the box’s upper left corner from the upper edge
of the document image;

e width: the width of the bounding box it represents;
e height: the height of the bounding box it represents;

e image: the image clip of the original document image defined by the box’s

area,

e type: whether the box represents text or graphics in the document image,
by having the values TEXT_TYPE or IMAGE_TYPE, respectively;

e text data: contains some information about the font style, size and text angle;

e tert: the recognized text from the image clip;

Of course, the text and text data properties are only needed in case the box
represents text.

53

4.3. Content representation Chapter 4. Implementation

The text data property is represented by a class that contains many information
useful to represent the text as closer as possible to the original one present in the
document image. The following list shows a list of the properties the text data
holds:

o face: the type font face;

e size: the font size;

e line space: the line spacing;

o letter space: the letter spacing;

e justification: the justification or text alignment;

style: the font style like italic or normal;

weight: the font weight like bold or oblique;

e angle: the angle of the text.

With the data boxes, all the outlined contents present in a document image are
represented but there is one last set of properties that also define the document —

the page dimensions.

4.3.2 Page data

Until this point, all that was mentioned was the contents of a document image
or page but the page itself, particularly its dimensions, also represent an important
property of the document. A magazine page may have different dimensions than a
book page, a poster or a newspaper and so, to fairly convert the document image
it is necessary to also keep the original page dimensions.

This way the properties present in the page data are:

e pizel width: the width of the image in pixels;

e pizel height: the height of the image in pixels;

e image path: the path to the original document image in the system:;

54

4.4. Exportation to editable formats Chapter 4. Implementation

width: the width of the image in inches;

height: the height of the image in inches;

resolution: the image resolution in dpi (dots per inch);

data bozes: a list with the data boxes that belong to the page data.

Resolution

The resolution is an important property as it will be used to calculate the pic-
ture’s print dimensions (the real dimensions). In certain image formats, the reso-
lution is embedded on them and can be easily retrieved (for example in the PNG
format) whereas others do not include this information (like the PNM format).
For the latter, a resolution value of 300 dpi is assumed.

Hence, to find the image’s real size in inches, the image’s width and height in
pixels are divided by the image’s resolution. For example, an image with a height
of 2000 pixels and a resolution of 300 dpi is approximately 6.67 inches high. The
inch measurement unit was chosen instead of, for example, the centimeter, because
the resolution is given in dots per inch and so, by using the inch, no conversions

are needed at this point.

With the definition of the page data and the data boxes, the document can be
fairly represented as they store all the needed information to finally generate an
editable document format. This concludes the explanation of the main structures
created for this project.

4.4 Exportation to editable formats

In this section, the actual conversion of the the document image to an editable
document format is explained. For the first version of this project the exporta-
tion/conversion can be done to two formats — ODT and HTML.

55

4.4. Exportation to editable formats Chapter 4. Implementation

4.4.1 Exportation to ODT

ODT is the primary exportation format of OCRFeeder. The idea is to produce
an exact ODT version of the document image from the information that the page
data (and its data boxes) supplies. Two main kinds of objects are created in
document, text frames and images, depending whether a data box has the type
text or image, respectively.

The text frames will obviously have the text present in the data box as well as
all the text properties mentioned before (font face, size, style, etc.). The images
will be simply the image clip that the data box outlined.

For any data box, the way to place them is the same and very straightforward.
An image or text frame in the ODT document are placed according to the cor-
responding data box’s variables z and y after being converted to the print size
using the image’s resolution. For example, if a data box’s z and y variables are
respectively 200 and 100 pixels and the image’s resolution is 300 dpi, then the text
frame or image that the data box represents will be placed at 0.67 inches from the
document’s left edge and 0.33 inches from the document’s upper edge. The data
box’s width and height are analogously calculated from the same property of the

text frame or image.

4.4.2 Exportation to HTML

The exportation to HTML is a little different than the ODT one. To begin,
instead of generating only one file, this exportation will create a folder with the
name given by the user and inside the folder there will be the HTML files that
represent the exported pages, a style sheet file and a folder with images if the doc-
ument has such. The generated HTML files are named like index.html, page2.html,
paged.html, and so on. Every HTML file gets the elements’ styles from a generated
CSS file calles style.css. If the document contains any images, those will be inside
a folder called images.

The text contents originate paragraphs (the tag <p>) and the graphic contents
originate images (the tag). Both are placed in each HTML page in an

absolute position way, this will make the paragraphs and images behave similar

56

4.4. Exportation to editable formats Chapter 4. Implementation

to the frames in the ODT files (placed independently from each other). However,
since the contents are placed using real sizes and the HTML pages do not relate
to resolution, the results are not as good as in the ODT exportation.

Both the ODT and the HTML exportation deal with the styles in order not
to repeat unnecessary information. For example, if two paragraphs are added
and their font face, size, line spacing and other properties are equal, than this
information is stored only once. In the HTML this is done by creating a CSS class
and in the ODT this is done in the paragraph class.

By not repeating information, not only space is saved but also if the user edits
a paragraph style, the changes are also honored by all elements that implement
the changed style.

4.4.3 Adding support for more formats

A class called DocumentGeneration was created and has all the main methods
(some of them are abstract methods) necessary to perform export the page data
to a document format. This class was created to make it easy to implement other
exportations, this way, all classes that perform exportation should be subclasses
of this main class.

In further versions of this project, main document formats used widely should

be supported.

57

Chapter 5

OCRPFeeder

58

5.1. Design and usability Chapter 5. OCRFeeder

This project can actually be used in two ways, it can be used from the com-
mand line for automation and quick conversion of document images and it can
be used with a graphical user interface. OCRFeeder Studio is the main part of
this project featuring a graphical user interface. The GUI not only lets the user
choose the document images in a graphical way but also allows him or her to re-
view and edit what the document layout analysis algorithms have done before the
actual document conversion. Hence, the word "studio” was added to the name in
order to distinguish the two ways of using the project. All the features present in
OCRFeeder Studio give the user extra freedom to control what’s being done on

the conversion and hence, produce a better conversion.

This section presents all that a user can do with OCRFeeder Studio. Usability
was also a big concern while projecting the graphical user interface and so, some

concepts about it are also presented.

5.1 Design and usability

Before actually start building the GUI, it was designed using paper prototyping
techniques. Paper prototyping have been used since the 1980s to design and test
user interfaces [28]. It consists in drawing the GUI in paper dividing the compo-
nents. This way, GUI changes and replacements can be reviewed easily. Figure

5.1 shows the final paper prototype for the user interface of this project.

The GUI design and behavior of OCRFeeder Studio was built based on the
GNOME Human Interface Guidelines [29] (GNOME HIG). Like the name sug-
gests, GNOME HIG is a document that describes how to create graphical user
interfaces following the principles and philosophy of the GNOME interface. By
following the GNOME HIG the interface will look and behave in a familiar way
making users adapt to it faster. The interface will adapt to the user’s custom
properties like desktop themes, fonts, colors and be accessible even to users with

special needs.

59

5.1. Design and usability Chapter 5. OCRFeeder

Figure 5.1: OCRFeeder Studio final paper prototype

60

5.2. Interface overview Chapter 5. OCRFeeder

5.2 Interface overview

The user interface was thought to allow the user to add the document images,
perform the layout analysis automatically and manually edit the layout analysis

results. To perform this, three main areas were projected:
e The document images area;
e The selectable boxes area;

e The box editor area.

5.2.1 Document images area

Like it is shown in Figure 5.2, the left pane of OCRFeeder Studio is the document
images area. That’s where all added document images will take place and are
represented by a thumbnail version of the original images. The user can drag the
images within the area to reorder them, that will be the order of the pages when
the images are converted to an editable document format.

When the same image is added more than once, OCRFeeder Studio acts as
if different images were added but the added image’s name will have a suffix in
order to distinguish the images. For example if the image picture.jpeg is added,
the name will be picture.jpeg but the second time the user adds the same image,

the name will be picture.jpeg (2).

Pressing the right mouse button when an image is selected on the document
images area pops up a menu to remove that image. The program will ask for the
user’s confirmation and if the answer is affirmative, the image as well, as all the

work done on it, will be removed.

5.2.2 Selectable boxes area

When the user presses one of the images thumbnails, the original document
image will appear in the area in the center. This area is called the selectable bozes
area because that’s where the user can see the data boxes mentioned in Section

4.3.1. The data boxes are represented as rectangles that outline the contents.

61

5.2. Interface overview Chapter 5. OCRFeeder

Document images area

3

UTHEPH T ST 0] I
- ki ¥

Bie Bt Wew Bois Help

Bd ...

™ =
Nine Inch Nails - Discipline o Tem " image

oscar_mide £rg Am 1 shill tough enough? And now it's starting up I need yol F

Feels like i'm wearing down Feels like I'm losing touch

Is my visciousness Nuothing maiters 10 me I need yo'l

Nothing matters as much

A | taking too erseh? I see you left a mark 3
Dl | cross a line? Up and down my skin I need VOL =
1 neeed my rele in this 1 don't know where [end u 2
B Very clearly defined And where you begin Bounds
X 11373 v n6s
" wdth (909 [Height (267
1 need your discipline [need your discipline
ST oS 1iced your belp Ineed your help Jhot Broparties T
0o 1 meed your discipline I need your discipline R O
You know once | start | cannot help mysell’ You know onee | sturt | eannot belp st Style Angle

naad your draciphne
need your help
naed your draciphne

Onee 1 start | eannot stop myself bou mow once 1 start 1 cannot el il

|

'L 2 3 | Sk | .
Zeom: Page uze 227 % 10 70 Frsclution” 300 x 200

Selectable boxes area

Box editor area

Figure 5.2: OCRFeeder Studio main areas

62

5.2. Interface overview Chapter 5. OCRFeeder

Since there are no widgets in GTK that offer the selectable rectangles func-
tionality, a first version of the selectable boxes area was implemented using Cairo!
(particularly the Python bindings). Although Cairo provides a good way to create
and manipulate vector graphics, that control was too low-level to what was trying
to be accomplished. Hence, this first version didn’t offer much of the functionalities
that are now present in the selectable boxes but then a better way to develop it
was found in Goocanvas. Goocanvas saved much work that would be needed using
Cairo because it keeps track of any object present in the Canvas and offers many
useful methods over them (see Section 3.2.4 for an overview of the Goocanvas’
Python bindings). This final version of the selectable boxes area allows to set a
background image and create selectable boxes — rectangles — that can be selected,
dragged, colored and delete.

Like mentioned before, the selectable boxes represent the data boxes and hence,
when the user clicks a selectable box, the box editor that corresponds to that data

box is shown on the box editor area.

5.2.3 Box editor area

The box editor shows every property present in the data box. The whole area is
divided in frames that can be identified by their title label. From top to bottom,
the first frame contains the type of the window, pressing the image radio button
will change the respective selectable box’s color indicating that the data box is of
type image and the Text Properties frame will be grayed out not allowing the user
to use the text properties; the text radio button will change back the selectable
box’s color and the Text Properties becomes sensitive again. In Figure 5.2 the text
boxes are colored blue and the box outlining the album cover is colored green.

After that comes the image frame, the only one without a label because the
image contained in it suggests what it is — the image outlined by the data box.
This image is shown in its original size and works as a preview of the image.

The frames that follows the image one is the box’s bounds frame. In it, four
spin buttons control the box’s x, y, height and width properties. The Interactions

with these buttons will be immediately reflected in the respective selectable box

! Cairo: a library that provides a vector graphics API — http://www.cairographics.org

63

5.3. Features Chapter 5. OCRFeeder

in the selectable boxes area.

Finally the Text Properties frame controls the data box’s text properties but
also lets the user set them automatically by choosing the desired OCR engine
from the combo box and pressing the OK button. Under the combo box and the
OK button there are three tabs that show the data box’s text content, the text
style and the text angle. In the text content there is a text area where the text
recognized by the OCR engine will be and where the user can edit it. The text
style contains other three frames that allow to set the font face, text alignment
and the letter and line spacings. On the angle part, the text angle is shown as well
as a button to detect the angle automatically. Due to the problems mentioned in
section 4.2.3, the angle can be detected only for text that is written from the lower
left to the upper right of its bounding box.

5.3 Features

Although the functionalities above also represent features, they were explained
outside of this section because they constitute the program’s main action areas.

This section presents every other feature in this project.

5.3.1 Adding document images

Adding a document image is normally the first thing a user does when using
this project. Images can be added in the most common image formats like JPEG,
PNG, PNM, TIFF, etc.

One image can be added at a time selecting Add Image from the File menu, or

all the images in a folder can be added selecting Add Folder from the same menu.

5.3.2 PDF importation

Sometimes scanned documents images are converted to PDF documents and a
user might want to make an editable document from them. For this purpose, PDF
importation was implemented. The importation uses the Ghostscript command

line tool to convert the PDF documents into images and then adds the images

64

5.3. Features Chapter 5. OCRFeeder

like they were ordinary images. PDF documents can be imported from the menu
Import PDF of in the File menu.

5.3.3 Exportation

The exportation to the supported document formats explained in Section 4.4
can be done using the Ezport... menu (in the File menu) that pops up a dialog
with the exportation formats in a combo box.

Since ODT is the primary exportation format, the user can quickly export the
document images to an ODT file by using the corresponding button in the toolbar.

5.3.4 Project loading and saving

There might be a situation where the user is using this project to develop an
editable document from many document images. This task may take some time
and the user might want to close the program but be able to continue the work
later. To accomplish this, a file format called OCRF was created that represents

the project that the user was working on.

OCRF

The OCRF format is nothing more than a zip file that contains all the infor-
mation about the document images, page data and data boxes that the user was
working on. The actual document images are included in the file so the user can
use a project file in a machine that does not have the images used in the project.
For example, a user is using OCRFeeder at work, saves the project and wants to
continue working on his or her computer at home which doesn’t have the document
images used in work.

All the data about the pages, data boxes and images’ paths is stored in an
XML file called project.zml.

Saving the project

When saving the project all properties of each page data and data box object
are stored in a Python dictionary which is then converted to XML. For example,

65

5.3. Features Chapter 5. OCRFeeder

the data box’s method convertToDict returns a dictionary whose keys are the
names of the variables x, y, width, height, type, text and text_data and the values
are the values of the respective variables in the object instance. The text_data
key in the dictionary will be itself a dictionary as a result of the same method
convertToDict but from the TextData object instance.

The class responsible for saving the project is the ProjectSaver and after
calling the methods to convert the mentioned object instances to dictionaries,
it uses its method serialize which converts the dictionaries and the document
images information to XML and finally creates the project file.

The generated project.zml files should look like the example present in Ap-
pendix A.

The image elements hold the original and embedded names for the images, the
original name is the path to the image in the user’s system, the embedded name

is the image’s name in the images folder that is included in the zip file.

Loading the project

The way to load the project from a project file is pretty much the opposite of
saving it. The ProjectLoader unzips the project file in the configured temporary
folder, runs through the XML file and instantiates the page data, data box and text
data objects described in the file. To instantiate the page data object, it matches
the image_path element with the respective image element. If the original_name
element of the latter contains an existing path in the current system, that path
is used as the page data’s image; if the original path doesn’t exist, the embed-
ded image’s name is added to the path to the unzipped project folder and used
instead. This grants the possibility of using the project file in different machines

like mentioned before.

Appending a project

It is also possible to apppend a project. When a project is appended, all the
project information is loaded but instead of substituting what the user is doing,
it will append the images and the information to the already existing ones in the

current working project. A project can be append using the menu Append project

66

5.3. Features Chapter 5. OCRFeeder

in the File menu.

5.3.5 Preferences

Like many other graphical programs, OCRFeeder Studio also allows to set the
program’s preferences. The preferences dialog is called from the edit menu in the
menu bar. The dialog is divided in tabs, in the General tab, the temporary folder
and the window size can be set. The temporary folder is the folder used for storing
temporary files like image clips. The window size is related to the Sliding Window
Algorithm mentioned in Section 4.1.1, it allows to set a custom window size in

case the automatically calculated one doesn’t fill the user’s needs.

o Hrajuransss (€3]
General | Appearance | Tools |
Select boxes colors

| | Text fill color

l Rt | E Text stroke color

| 8 |
| | Image stroke color
| |

ihéigéncélﬁl QoK |

Figure 5.3: Preferences dialog (appearance tab)

In the Appearance tab (see Figure 5.3), the selectable boxes’ fill and stroke
colors can be set for the different types of boxes.

The Tools tab allows to set the path in the system for the Unpaper tool® as
well as the favorite OCR engine. The favorite OCR engine is the engine that will

be used to recognize the text when the layout analysis is performed.

2For an overview of Unpaper, consult the subsection 3.2.9 for an overview of Unpaper

67

5.3. Features Chapter 5. OCRFeeder

5.3.6 Edit page

w Huya alay =
Page size ———
A4 o

!_ [Seiat
Affected pages
@ Current
o All

| € cancel 3 & ok

Figure 5.4: Paper sizes dialog

To join documents with different page sizes or simply convert the documents
with a custom page size, the user may want to change the images’ corresponding
page size. This can be done by editing the page from the Edit page menu in the
Edit menu. Selecting this menu will pop up a dialog (see Figure 5.4) that allows
choosing a standard paper size or set a custom one and affect the currently selected

image or all images.

5.3.7 Delete images

The user can delete the currently selected image by clicking it with the second
mouse button or using the menu Delete page from the Edit menu. All images can

be deleted at once by using the menu Clear project under the Edit menu.

5.3.8 Zoom

In the menu View, the user can decrease and increase the zoom or set the zoom

to be the normal size.

68

5.3. Features Chapter 5. OCRFeeder

The zoom can also be quickly increased and decreased using the corresponding
toolbar buttons or by using the keys + and - when the selectable boxes area is

focused.

5.3.9 OCR engines

tesseract

W LSS ETACTIETIOTET \
w s i DHRTONTES] @ Name [tesseract]
OCR Engines e f .
Engme P image format | TIFF]
- Failure string l ’

Engine Path |/usr/bin/‘tesseract

7@%?'?5 Engine argumentsl $IMAGE $FILE; cat $FILE1
€ Close l € cancel ’ | & ok
(a) OCR engines dialog (b) OCR engine edit dialog

Figure 5.5: Example of the OCR engines dialogs

Apart from the XML files, the user can also create, edit or delete the OCR
engines from the graphical interface. This can be done using the menu OCR
Engines from the Tools menu. The dialog that pops up shows a list of the existing
OCR engines (Figure 5.5a) with add, edit (see Figure 5.5b) and delete buttons.
The creation and edition dialogs contains text entries that represent the XML

elements explained in the 4.2.1.

5.3.10 Unpaper

The Tools menu also contains a menu called Unpaper that provides an easy way
of using the command line tool with the same name. The main filter utilities of
Unpaper can be easily set in the dialog but an extra text entry can be also used to

apply extra options. Extra options should be used like they would the command

69

5.3. Features

Chapter 5. OCRFeeder

Ungziuar iuzgs Mrussasur

Preview

Preview

Black Filter

¥ Use

Noise Filter Intensity
e Default

_' Custom l
_ None

Gray Filter Size

e Default

_ Custom

_ None
Extra Options

© cancel

@ ox

Figure 5.6: Unpaper dialog

70

5.3. Features Chapter 5. OCRFeeder

line and in case any of the main filters is used as an option, it will override the
ones set directly from the widgets. As shown in Figure 5.6, the user can preview
the changes that Unpaper does to the image before applying them.

5.3.11 Layout analysis and OCR

The layout analysis and optical character recognition can be performed on the
currently selected document image by using the toolbar’s first button. When the
user presses this button, a progress bar is shown during the time the layout analysis
and optical text recognition occurs. This time depends of the complexity and size

of the image.

71

Chapter 6

Testing

72

6.1. Features Comparison Chapter 6. Testing

In this chapter, different types of documents are tested using OCRFeeder Studio
and the results are commented. In what comes to Layout Analysis, the tests are
not easily measured or numerable. For example, in a system to perform only
OCR, the tests could be measured by dividing the number of characters or words
recognized correctly by the total number of characters or words. In this project,
rather than measuring the tests anyhow, the tests are commented according to the

page segmentation accuracy, problems, font size detection, etc.

The following sections present the results obtained and comparisons with other
existing solutions. These results refer to the automatic layout analysis and recog-

nition not being present or considered, obviously, any manual correction.

The chosen solutions for the comparisons are:

e Nuance OmniPage Professional 16;

e SimpleOCR 3.1;

e ABBYY FineReader 9.0 Professional;
e Vividata OCR Shop XTR,;

e OCRopus (SVN version from November 15% 2008).

6.1 Features Comparison

This section compares the features of the chosen solutions. The criteria consid-

ered for this comparison is:

e License: the license under which the software is published;
e Operating Systems: the operating systems on which the software is available;

o Manual Zoning/Correction: whether the user can manually edit the regions

of interest;

73

6.2. Tests Chapter 6. Testing

o Automatic Layout Analysis: whether the software performs automatic layout
analysis or not;

o Graphical User Interface: whether the software provides a graphical user

interface;
e Input Formats: the file formats that the software can import;

e Ezportation Formats: the formats to which the software exports the docu-

ment;

o Project Saving/Loading: whether the software provides a way to save and

load a working project letting the user continue a previously started work;

o Image Enhancement: whether the software provides a way to perform some

kind of image enhancement (for example, removing the dust);

Table 6.1 presents the comparison between the mentioned solutions.

6.2 Tests

The tests will be performed with 5 different types of documents. The next
sections will present each document and the tests results as well as a compari-
son between the results of OCRFeeder Studio and the results of OmniPage and
FineReader. These solutions are perhaps two of the most advanced solutions avail-
able and are the ones more similar to OCRFeeder. Both of them were tested using
their trial versions since they are not freely available.

The tests are shown with no manual intervention, that is, the window size used
to find the images’ contents is the automatically calculated one and the text is the
one that the OCR engine recognized (with no manual corrections). The engine

Ocrad was used in all the tests.

All the images were scanned from the same device, the multi-function printer
HP Deskjet F370.

74

Chapter 6. Testing

6.2. Tests

TOI3RWIONU] YOO [BUOIHPPE Y314 TINLHo

JueuIedUey
Sox Sox ON) ON sox | -uy a8ew]
Surpeor]/Su
Sax ON ON sax ON sop | -aeg 1o0fo1g
IIT
pue IXI ‘ASD
Jaaa ‘Ldd
‘XSTX/STX
‘AIg ‘X0o0d
, -/00d “TAX
TINLH TINLH d4dd HIY | propy aosorory SeurIoq
pue LdO 2UDOH | ‘D0aX ‘IX.L SoA | pue IXI | "TNIH ‘dadd uorje}rodxy
1duogisod Jaad ‘mAfa
Add ‘Ndd~ ‘dJ1LL ‘SdX i)
‘DAL ‘dNg | | “ ‘ONd ‘dad ‘41T ‘ONd
‘WNd ‘ad1L | Dddl TANd ‘Wdd dINg PU® | ‘ogdr ‘Xdd syew
‘A1 ‘ONd | ‘JJLL ‘ONd | ‘pEadr 41D Sop | DAAr ‘AJIL | 'XOd ‘dAd | 104 ndup
90eJ
-PJU] I9S()
Sox ON OoN) Sox sox eoryderx)
To1091
-10) /8uruoy,
Sox ON ON sax Sox sox renuey
SISk
-[euy Inoder]
SO > So > S > SO A OZ S9 A Omu.maomwd{.
SO 9B\ Su199SAQ
Xnury xnury | XINQ ‘Xnurg SMOpPUI M\ SMOPUIA ‘SMOPUIA Sunyerad(
9sSudOIT TdD | 9sueor] gsd [eoIoWIIO)) [eIoIoWIwIO)) [eloIRWIIO)) [eloIoWIWIO)) 9sueoI]
HILX
1P3RIYDO sndoypQ | doys YDO | Ipedyaur | Ypooduig adeduwQ

suonMos YN PuB YV [eIeass Jo] uosiredwiod seinjes :1°9 9[qe],

75

6.2. Tests Chapter 6. Testing

6.2.1 Lyrics document

The lyrics example previously introduced in Chapter 4 was created for show-
ing an example of a two-column document with several paragraphs and an image.

This document was created using OpenOffice, printed and scanned.

OCRFeeder

The zoning shown is successful to what is expected ~ each text paragraph is
contained in a box marked as text, and the image is contained in a box marked
as graphics (see Figure 6.1). The text boxes have the respective recognized text
in the Text Properties of their box editors. It originated 5 individual text boxes
apart from the title because each paragraph is separated by a length greater than
the window size. The calculated font sizes were 13 points for the title text and 10

points for the rest of the paragraphs.

One extra block is shown that contain a "dot”, that’s originated by the dust
on the scanner. That dot contrasts with the background and hence gives the
impression of being something like a period as recognized by the OCR engine.

Dots like these are removed if the Unpaper tool is used with its defaults settings
and they can also be removed manually by clicking each of the boxes and pressing
the delete key.

OmniPage

OmniPage reads the image properly but the boxes are set differently than in
this project. Like seen on Figure 6.2, the paragraphs are not devided like in
OCRFeeder, two paragraphs on the left and on the right are joint whereas the last
paragraph has its own box. The calculated font sizes were 14 points for the title
and 11 points for the rest of the text.

76

6.2. Tests Chapter 6. Testing

'i!E..\.A,L T — i QENFuzelar Srgelly e A S
Fle Edit View Tools Help

BdS ...

wd]
\')é‘

Ol Text () "% Image

Nae Inch Neils - Disviplin

| I need your d.
I need your h-

o Lt sugh S 1l At ezt on |
Tfebe Fls Toy ko =

e
e b Lo timatite T | |

iy 10

v ity el At aher pi hegn o | {
: ~ Ineed vourd

1 vt gt diacipline o] Vol s coipie ¢ . [~

1 yous bl | Lo yow i i |] e [)‘

I rood vow: diwaptine 3 e Yo i { ‘BNt 000 2)

Vint e e § et] oot S0 1y Ao b umis b sl b gk

| Bounds

O ot Teenganp ayselt, / x 264 |2 Y 1111
width (847 2| Height [264

<D{<D]

| Text Properties

o
e
R

: ocrad

[Text Styio | Angle |
| I need your discipline
| I'need your help

| I need your discipline
'You know once | start | caMot help myself

{
|

|
(i ™

Zoom: 20% Page size: 7.97 x 10.59
.

| et W g = Bl

solution: 300 x 300

i’lul,_f

Figure 6.1: Test: Lyrics document with OCRFeeder

i

6.2. Tests Chapter 6. Testing

2= Untitled OmniPage Document - OmniPage

File Edit View Format Tools Process Help

OoH &

9.0 2 A

P 1-2-3 v | | __P LoadFiles vl @] Automatic
) Image Panel d

1 Style 1 v || Times New Roman v 14 viiB I U \§ - 3
(sle[elnlx[e™@® " ["[[|p|« « ‘"#5‘%'&'()’»’;
j‘iﬁzA-ll---1---|---§-vv|r-~3--v|---4
Did I cross a line? and dowr a

I need my role in this know wh

Very clearly defined where yo

I need your discipline Ineed yo

I need your help I need yor

I need your discipline Ineed yo

You know once [start I cannot help myself You knov

Once I st
v

=< >

Page 1 of 1

»

88 @ E T ForHelp, pressF1

Figure 6.2: Test: Lyrics document with Omnipage

78

6.2. Tests Chapter 6. Testing

FineReader

FineReader did not considered the image (didn’t put a box around it) but the
text paragraphs were in this case outlined in a very similar way to what OCRFeeder
did since it creates six text boxes like shown on Figure 6.3. The font sizes for
this solution were calculated as 12 anc. 9 points for the title and the rest of the

paragraphs, respectively.

%* Untitled document [1: Zoom] - ABBYY FineReader 9.0 Profpssional Edition
Flle Edlt Vlew Document Paqe Aleas Tools Help

T] B [=) [;
» ij J i i I o | PDF Document [v | | TimesNew ... v
! = % Select [B % v i
Sean Read Document {__i Recognition Area e Save | Exact copy 3| B 7 UXx
- QiR -~ S s
v 1 v
| | -
B 8% v @ | [# 9 i @[% ~@[A|T|B
i
Width x Height: 2390 x 3177 pixels | Style: [Stylez ¥
Color mode: Color » | Font: | TimesNewRoman v | .
" . : i R | Size: 9 @l Bz U
Source image: C:\Documents and Settings\...\nin_discipline =

| Area Propertties Image Properties | Text Properties

=0 @ 3 @[50 v @

Figure 6.3: Test: Lyrics document with FineReader

Generated Files

In what comes to generating a text document, none of the commercial solutions

used can generate an OpenDocument Text file so, the most similar format to

79

6.2. Tests

Chapter 6. Testing

this (so the results can be compared) is Doc. Figures 6.4, 6.5 and 6.6 show the

differences between the mentioned files opened with OpenOffice.

o sl diselpling serisgder - YuunOiilew ury Yisitee

File Edit View Insert VFgm'\at Table Ioolvs;i\g\;d;v; "j;‘ip
4AMREA TS o TU-2 6 @

~ | |Times New Roman v |12 - A A4

[A=~ R

& |Default

Qr-tF 2@ % [~ @

| [h-"-g.

o | B

™ X len-2:0:3-0.4.0.5.0.6-4-7:.

©9. 10

11-1‘2>l3-lA4~15-1AE-17‘1A8119‘22\

Am | still tough enough?
_eels like i'm wearinS down
© 7' my vi Li0ung_
Losing ground?

Am | tamg too much?

Did | cross a ling?

| need my role in this

Fe

a: i

Very clearly derlned
o
- I need your discipline
= I need your help
| need your discipline
- You know once | start | caMot help
i myself
]
-
-
<
o
©
~
<
R /me V[T
Pagel/1 Page7.9666666666710.59Master

Figure 6.4: Lyrics document exported to ODT by OCRFeeder

Nine Inch Nails - Discipline

And now It's starting Up
Feels like I'm losinS

touch

N(IthinS mdttcT t[) mc
Notbing m_wers as mucb
I'seeyou le_a _nark

up and down Iny skin

| don't mow where | end
And where you begin

| need your discipline
I nced your help

| need your discipline

You mow once start | caMot help
myself

Once | start | caMot stop Inyself

Lm &

Multiple Languages

90% INSRT STD

Since it’s the Layout Analysis that is being tested and because no other solu-

tion is able to export the documents to ODT, for the other tests, the document

generation is not evaluated.

6.2.2 Make: magazine

Description:

OCRFeeder

Page 86 of Volume 11 of the Make: magazine — [30].

Figure 6.7 shows the page segmentation for a scanned page of the Make mag-

azine. This is a good example to test because it has different kinds of elements

80

6.2. Tests

Chapter 6. Testing

§ ST e e £

Culy diselpling ilnzrsades - Ypaniillezury sz

T ———

Elle Edt View Insert Format Table Tools Window Help

a-@fe 4 K& 9% L0

@O e ® 1o @

w |style2 | v | [Times New Roman v s v & 4 A 3 : ‘ | 45| \)j'} h - - g - §

[N R L S T - R | 0.+ 1.+ 12 + 13-+ 14+ 15+ 16- . 17})

~ E

. |

Nme Inch Nails - Discipline |3

L B

& Am 1 still tough enough? Feels like {m losing touch Nothing mattess to me ‘ g

+ wearing down Ts my visciousness Nothing natters ssmuch I see you |

: Losing gound” Am [talng too left a mark Up and down my skin | "

™ much? Did] cross a kne” [nesdmy donlt know where | end And whers

: role in thus Very clearly defined youbegn

. And now it's starting up Feels like I'm

» Ineed your discipline 1 need your disciplne

s Ineed your help 1 need your help

Ineed your disciplne I need yous discipkne

b You know once I stat [cannot help myself You Inow once [start I cannot help myself

[

¢ Once I stest 1 cannot stop myself

©

> <

2 :
a
3

i R > I = " >

e -
R/ me VY= Y- O Ww @&
Pagel/1 Default English (USA) 110% INSRT | STD Sectionl

Figure 6.5: Lyrics document exported to Doc by FineReader

81

6.2. Tests Chapter 6. Testing

(homctmeewibpninr e < - Gt =
File Edit View Insert Format Table Tools Window Help
O g eec
. o 4 MR YR w &
& [style1 ~ | [Times New Roman v [1a
. 201l -
. Nine Inch Nails - Discipline
- 1
~ Am]1 still tough enough? Andnowit's startingup |
Feels like 'm wearing down Feels ke I'm losing touch |
™ 1s my visciownsss Nothmg matters to me
: Losing grownd? Nothing motters as muchl
& Am 1 teking too much? see youleft a mark Up
i Did I cross a line? end down my skin [dont
é I need my role in this know swhere I end And g
Very clearly defined whete you begn
©
) I need your discipline I need yours discipline
~ I need your help I need your help
: I need yous discipline I need you discipline |
® You know once I start I cennot help myself ¥ ouknow once | start I cannot help myself |
o
. Once I stat] cannot stop myself
S
-
b2
&
-
<; 2
ol al
< m . >
R/ me V[T @R FeEed- 0 AE 8
Pagel/1 Default English (USA) 90% | INSRT STD

Figure 6.6: Lyrics document exported to Doc by OmniPage

82

6.2. Tests Chapter 6. Testing

like big and tiny font sizes, with colored text and different font faces. The only
problem for OCRFeeder in this example is that the text "Spirits Guy” is to close
to the next paragraph for the calculated window size. Since the window size does
not fit in the space between those two paragraphs, then it joins both paragraphs
in the same box. This will obviously result in a wrong font size because the way

it is calculated (see the page 49 for an explanation of the font size calculation).

K4 i DLHEEPHEY ST O} . " T
Fle Edit View Tools Help

ié -8 N
; /

M a ke r O} Text) ™ Image -

oz

Spirits Guy

How Lance Winters went QT

from basement moonshiner Bounds
to celebrity vodka distiller. x [233] v |10 [
Sy ek width (746 || Height (233 |C
Wher mest of us sant soms teeuila; worun to e ligacr Text Properties
the weay hurne Fom wark. | sinters orefers ocrad tell O oK
¥ ta Mexicu e fine e 2 CACIUS E7C S = i)
ringig it ek L his laboratory in 0-square-hact Toxt | Style | Angle
2roraft hangar o o dormant r o the edge | -
J att disoiler al St Maker -~
o has three lirge]
ity Cases of }
A g e Lop sall ng ||
Mzrger One Vodis. 23 [1|
bl
- & 1)
Ll
1]
&
Il
@ D o e psiiiiial) |

Zoom: 20% Page size: 5.97 x 9.33 Resolution: 300 x 300
L

Figure 6.7: Test: Make: magazine with OCRFeeder

OmniPage

The layout analysis of OmniPage works better for the magazine page. Like

shown on Figure 6.8, it separates the mentioned paragraphs and hence, giving a

83

6.2. Tests Chapter 6. Testing

better result after performing OCR over the different parts.

&= Untitled OmniPage Document - OmniPage
File Edit View Format Tools Process Help

Do H S 8

(Mstylez v aral vss v||B| I U|E =

| ‘j$‘¢'£'nj¥_€vu.©‘®:":}"',‘. b« « }!'4.‘# si%{&'.

INLES

“ 4 Pagelofl » » T For Help, press F1

Figure 6.8: Test: Make: magazine with OmniPage

FineReader

FineReader also separates the big text paragraph from the one bellow it. How-
ever, it ignores the word ”"Maker” on the top and doesn’t consider it when exporting

the image to an editable format (see Figure 6.9).

6.2.3 Beautiful Code book page

Description: Page 323 of the Beautiful Code book — [31].

84

6.2. Tests Chapter 6. Testing

%* Untitled document [1: Zoom] - ABBYY FineReader 9.0 Professional Edition

File Edit Yiew Document Page Areas Tools Help QuickTasks
B) [N e e e s o]
ITl &2 |t (00C)
» ‘\ 11 Analyze) HI; /V‘ Microsoft Word [v
= | v | ik Select IZ] l}‘] x| == L v »
Read Document Recogmtlon Area| H 5 Q Save Edtable copy
i~ o
§ English v ;
them ik
TR % v|@ [%;j_-u o306 v|® [A|T[B|< >
Increase scanning resolution up to 300 dpi or greater, | Style:
| Font: >
[[Rescan | [_Re-open] | size: S
| /I\ Check Resolution I\ Add page again? i Text Properties

Maker | .

raaY

v

pirits Guy[

]'Jow Cance Winters went v
8 @ 3@~ o =159 v @

i

Figure 6.9: Test: Make: magazine with FineReader

85

6.2. Tests Chapter 6. Testing

This page was chosen because it contains a very complex picture from a layout
analysis point of view. The picture is in fact a diagram which combines graphics,
text, horizontal and verticals lines. The text paragraph that comes after the
diagram also presents a very usual problem when scanning images from big books
— the text near the book center is scanned while the page is slightly curled making
the text blurred out.

OCRFeeder

Like Figure 6.10 shows, OCRFeeder divides the diagram in two and detects the
text paragraph that follows as well as the footnote.

The reason why the two parts of the diagram are not classified was graphics is
because the used engine detected some text from the diagram as well the text right
on the side of it and, according to the classification rules previously explained, the
two blocks get classified as text.

Performing OCR over the main text paragraph results as expected, the char-
acters in the beginning of each text line (the blurred ones) are not well recognized
comparing to the rest of the text. The font sizes calculated for the main paragraph

and for the footnote were 9 and 5 points, respectively.

OmniPage

The font size calculated by OmniPage for the two paragraphs was the same as
the ones calculated by OCRFeeder. On the other hand it puts text boxes on top
of the diagram for some of its labels. Nonetheless, not all the labels are assigned

a text box and several parts of the diagram are cut as shown in Figure 6.11.

FineReader

The results from FineReader are similar to OmniPage in what comes to the
diagram (see Figure 6.12), it assigns text boxes to some labels but it cuts even
more parts of the diagram than OmniPage. The font sizes calculated for the main

paragraph and the footnote resulted in the same values as the ones calculated by
OCRFeeder and OmniPage.

86

6.2. Tests

Chapter 6. Testing

E'le Edit View Tools Help

.g -N +N

Zoom: 20% Page size: 5.99 x 8.94

Type——— _,,_.
@ Text O n Image

M an SOA base

_MLmhera\zer ann

SSURE 20-2.CIP AE

f Boundk
‘ X H
B 0

- :Jox
r‘f@-lm

dn SOA based on jZEE gave uS lhe ophon 14
_:herever appropriale in lhe design [If a large
—_=+_handle service requesls _lhoul remcmberir
‘ . on |hc uther hand, slateful session beans r
{--?-o- |_. manage persisted inforn_alion Ihat lhe £|
multlplo options in anY doslqn situation is
\ w"_-'-'_P_cations.
!

Y 1563

Height [893

DI,

i)

=+r-C middlcware, we implemenled a sIaIeIess se
1 = Thic cimn thn b mda frmn hic b iiin A
T R e e

Resolution: 300 x 300

Figure 6.10: Test: Beautiful Code book page with OCRFeeder

87

6.2. Tests

Chapter 6. Testing

2= Untitled OmniPage Document - OmniPage
File Edit View Format Tools Process Help

0OoH

| 1 Style 2

=l

v | Times New Roman

B I U |
[T T#Is]%[8] [

v [slg am¥ €™ol® " b«
2

IR S

[e

obyects
el sesiion beans)
Y

e
w

ARz gaeraty =ile movlay

20-2. CP's rwe-garad say vica<vian i archi v e

an SOA based on J2EE gave us the option to use these well-defined beans
herever appropriate in the design of a large enterprise application. Stateles
. v

b verblmand 1 Amve mbaba Foman mwn wmmssand $a bla

Lnwdln mnsemina

Page1of1 +

“ <

83 @ E T ForHelp, press F1

English Ln 033 Col 073

Figure 6.11: Test: Beautiful Code book page with OmniPage

88

6.2. Tests Chapter 6. Testing

% Untitled document [2: Text] - ABBYY FineReader 9.0 Professional Edition

Flle Edlt Vlew Docurnent Page Neas Tools Help QuickTasks
-y 3 B :éé‘ .“ 3 » ‘
%
J By . ’_]J g'/V ’ Microsoft Word [v F’ddml.m v
i select I LT »
Editable coj vw B oy ot
Recoqnltlon Area ﬁ T:l Q Save e | 5%
~] Y ~
===
* English | bl
.‘bmwﬁ“w‘ﬁm'.h‘;n | gl o
Maker o 3 - VA &
| Spirits Guy L= | = o =
|Ha i @[10% ve@ X |4 o i ©[3% ~v @ |AlTE
i —
- Increase scanning resolution up to 300 dpi or greater. | Style: | Style24 o
=l a | Font: | Palatino Linotype v ¥
! - [CRescan] [Re-open) |see: [w|B 7z U
! @ Check Resolution /i Add page again? q ‘ Text Properties
seiihses .
-
v

]

8 @ 3 W @ s V@

M |

Figure 6.12: Test: Beautiful Code book page with FineReader

89

6.2. Tests Chapter 6. Testing

6.2.4 The Search book cover

Description: Cover of the Portuguese edition of The Search book — [32].

OCRFeeder

A book cover is another interesting example as it combines different kinds of
elements. In this case the cover contains the a big and colorful title text. The
word "The” in the title is placed within the ”"Search” text height and thus, very
difficult to be read by an OCR engine.

Like shown in Figure 6.13, none of this page’s contents is classified as graphics
because every element contains text that gets recognized by the engine and so,
making the section be classified as text. Even the three columns in the publisher’s
logo (on the left bottom) is recognized as text — 7| | |”. Logos like this are obviously
very difficult, even for a human, to classify either as text or graphics.

The text inside the box on the bottom right is also accurately detected and so,

the box is classified as text.

OmniPage

This program identifies the book’s big title as being graphics. However, it clas-
sifies all the rest of the contents as text and for those that are contained or right
next to images, the text boxes cut partially or totally the images — for example
the publisher logo seems to be discarded, the graphics on the bottom right is com-
pletely replaced by a text box and the top image of the page, as well as the images
right under the title, are partially replaced (see Figure 6.14).

FineReader

Like Figure 6.15 shows, the title, the top graphics and the bottom right box are

ignored and not considered for exportation.

The rest of the text seems to be well recognized.

90

6.2. Tests

Chapter 6. Testing

[e ey s s ees B3 Fa sl Sinall i ey

fle Edit View Tools Help

'é -\ o+

Como o Google
mudoﬁ as regras do mﬂéclo
‘e revolucionou a cultura

John Battelle

Co-indador da roveia Wiy s fuadacar
dﬂ mmﬂ’yﬁ'&m <

7 7 =
¥ b Jd-ubyéub ‘
| Buslness Book of the Year, neti 30 oes (
{00 e nuuﬂwmm }

[lcasat vieas

(1)

Zoom: 20% Page size: 5.80 x8.91

ICH
Resolution: 300 x 300

® Text) & Image

Co-fundadc
da

R)

Bounds - ey
X [:4?- o ¥ [E 3
width (890 %} Height (178 [
1‘5‘,,?[‘?22@3 e (O RS |
| ocrad < I‘ Qox|

et | style | Angle

Co-fundador da revista Wired e f
da The Industy Standard

|
E
l
=5

Figure 6.13: Test: The Search book cover with OCRFeeder

91

6.2. Tests Chapter 6. Testing

&= Untitled OmniPage Document - OmniPage
File Edit View Format Tools Process Help

RECIEX] ~ -~ @&l

9 Style1

v seexkemo® " "

“ ¢ Pagelofl » ' 88 G ET ForHelp, pressF1

Figure 6.14: Test: The Search book cover with OmniPage

92

6.2. Tests Chapter 6. Testing

% Untitled document [1: Text] - ABBYY FineReader 9.0 Professional Edition

e o
|H2 L @|% v @ |
| Check the recognition language.

| Font:
!SiZE: . P 3 1]

C e)

| Image Properties | €) Check Resolution /i\ Warning = < j Text Properties

Q&JJ' o @ k9% v @

Figure 6.15: Test: The Search book cover with FineReader

93

6.2. Tests Chapter 6. Testing

6.2.5 Linux Magazine page

Description: Page 95 of the issue 25 of the Linux Magazine (Spanish edition) —
[33].

OCRFeeder

Figure 6.16 shows another curious example of how magazines’ layouts vary.
This page has more than 50% of it occupied by an image which contains some text

information itself.

Under the big image, there are three columns of text whose first paragraph has
the common style effect of having its first letter bigger than the rest of the text —
this effect is called a drop cap or initial. This makes the function to find the text
size not to work properly since it considers every line that the initial occupies to

be only a single line and hence results in a font size of 34 points.

Apart from this, OCRFeeder also considers the three paragraphs as being one.
This happens due to the window size automatically calculated. Since the space
between each paragraph is small and the window calculated doesn’t fit within it,
it simply doesn’t find a space there. The issue number in the bottom — ”Numero
257 — was classified as being graphics because the used search engine doesn’t give
any output after processing it. If the engine GOCR is chosen instead of Ocrad,

then the text is recognized and the font size results in 6 points.

If the window size is set manually to a size of, for example, 30 pixels instead of
being automatically calculated, than the three columns are correctly outlined this
time (see Figure 6.17). In this case, one can see how should be the correct font size
for the paragraphs in the columns - the columns without the initial are assigned a
font size of 9 points while the one with the initial has a font size of 32 points. Still
with the 30 pixel window, the page number text is this time recognized accurately

by the Ocrad engine.

The font size for the magazine’s web page text (in the bottom) and the issue

number is 6 points. The font size for the page number is 8 points.

94

6.2. Tests

Chapter 6. Testing

»

OCHFazelar Siyelly

(@)

Fle Edit View Tools Help
i .é -N N

|
r

e cafin
ulugars ¢4 lan alarmame v tan ot
« ume de oy sleplane medisee nms
14 umratscnty psites de 13
ive ded peraes imerruien

W LALS MAGAZNE £3

Page size: 7.88 x 11.62

Resolution: 300 x 300

(=] Type
Ol Text) "4 Image
WWW.LINU
(] B
Bounds —
x [[v (sl
Width |—5;_17: Height |K:

"

Text Properties
ocrad ¢ @ox

[Text IStyie Angle
WWW.LINUX-MAGAZINE.ES

| [

Figure 6.16: Test: Linux Magazine with OCRFeeder (automatic window size)

95

6.2. Tests

Chapter 6. Testing

-

W YCitFaadlar Seuclly

Fle Edit View Tools Help
S
= ‘; BRI

adn de tom!
L alarmame
v iy ou adoplarse mcd o
1a sumpaisoin pisite 15 1o
vivw del pecaue muTmAten

RN URDE BAGRINEFS

Page size: 7.88 x 11.62

~| Type
. Text (™ Image

WWW.LINU

(Gl TR B

Bounds

A

x |s70 2] v \'3390 2
width [570 | Height [60 2

Text Properties

ocrad [l v N4
R—

[Text | Style Angle
WWW.LINUX-MAGAZINE .ES

T
T

S SRR s 58}

Resolution: 300 x 300

Figure 6.17: Test: Linux Magazine with OCRFeeder (manual window size)

96

6.2. Tests Chapter 6. Testing

OmniPage

This solution detects the three columns automatically (see 6.18) and also sets
text boxes for the text placed on top of the image although it doesn’t recognize it
accurately. By putting text boxes on the text it attempts to recognize from the
image, part of the image is cut and replaced with the color red (as the background
of the text boxes).

The font size for the three columns text, the magazine’s web page address and

the issue number is 8 points. The page size is assigned with a font size of 12.

&= Untitled OmniPage Document - OmniPage
File Edit View Format Tools Process Help

QudHs% e [B[00

.ﬁ»ﬂ‘-"&‘r e Iil‘yﬁlé" I -

) 1-2-3 ¥ || P LoadFies VA [@] Automatic v | b _J SavetoFile e
(Y image Panel. . ¥ SRR AT

T ’h.ﬁ:u‘.)ﬁal_a-]
SHGL 1 Style 1 v | Verdana vz v|||B| 1 UllE =

1' ‘n 1S $¢£n¥€vu©®llu|v’,'§ e Talslwlal T(H*Imo

t ha ermpren

comercial de su

actualizada de

b

“ 4 Pagelofl » » B8 QZE T ForHelp, pressF1 English Ln 069 Col 002

Figure 6.18: Test: Linux Magazine with OmniPage

97

6.2. Tests Chapter 6. Testing

FineReader

Like OmniPage, this program also detects the text present on the image but
discards all of it only including small parts of it like Figure 6.19 shows. The
text is also detected as three columns and with the same font size as OCRFeeder
calculates — 9 points. However, it sets a font size of 10, 12 and 14 points to the

issue number, magazine’s web page and page size, respectively.

%3 Untitled document [1: Text] - ABBYY FineReader 9.0 Professional Edition

File Edit View Document Page Areas Tools Help

B i e e P s]

“1 anal 2 58 4 /| :
P " » & = Finaiyze = "L Vv ‘ Microsoft Word [v
f v g Select EI hj X i [§ »
Scan Open Read Document (.} Recognition Area| [T3 & Save Editable copy v :
& [: A
English v B :
v
Ald i olew vi@ | 4 Al o[wl@® AT
Wwidth x Height: 2381 x 3498 pixels Style:
Color mode: Color » | Font: ’
1 -,
Source image: C:\Documents and Settingsjay\Desk...\sca Size:
Area Properties Image Properties Text Properties
~
anune - j
CONCURSO... ¢LIBRE?
Ry
v

Wi

.

F

Ld
4

M D(x% V@

Figure 6.19: Test: Linux Magazine with FineReader

98

6.3. General Appreciation Chapter 6. Testing

6.3 General Appreciation

All but one of the images tested and presented in this section do not have a
plain white background. Because they were scanned with other pages on top of
them and have contents on the other side of the sheet, those contents still appear
in a translucent way in the resulting image.

Like the tests have shown, this is not a problem has only the real page contents
are considered. This means that the contrast function works as intended.

Tables were not considered when developing this project as it’s target was actual
text documents. If a spreadsheet, for example, is attempted to be converted, the
result would be something like what happened for the box on the bottom right on
the ”The Search” book page test.

As mentioned, these tests were supposed to have no previous configuration or
manual intervention on the programs’ settings. This means that whatever the
results were, they could always be corrected manually by the user until the docu-

ments were as most similar to the original ones as they could.

The graphical user interface is an important feature to be considered in the
tested solutions.

OCRFeeder’s GUI was designed according to the GNOME Human Interface
Guidelines like described in the Section 5.1. It is meant to be simple, intuitive and
easy.

OmniPage’s GUI, on the other hand, presents kinds of widgets and organizes
those in a not very familiar way. For example, the big buttons under the tool bar
contain a combo box under them which is not a very usable interface.

FineReader’s interface is more clear than OmniPage’s but still, all the infor-
mation and widgets present in the main areas make it look less clear than OCR-
Feeder’s. Of course one needs to consider that both these two commercial solutions
have a more advanced text editor than OCRFeeder.

99

Chapter 7

Conclusions and Future Work

100

7.1. Problems Chapter 7. Conclusions and Future Work

The purpose of this project was to create a Document Analysis and Recognition
and Optical Character Recognition system for the GNU/Linux operating system
that allows to perform automatic zoning, recognition of the type zones and text
and exportation to an editable format.

This purpose was clearly accomplished and even surpassed as OCRFeeder can
be compared with existing state-of-the-art solutions, either free and commercial
ones with a number of years of continuous development, like the previous chapter
proved with the tests.

The modular and extensible project architecture guarantee the project longevity
by make future work on the system easier, cleaner and more organized.

Comparing to the most modern systems it seems to be the first one that offers
OpenDocument Text exportation and uses this as the primary exportation format.
It is safe to affirm that OCRFeeder brings most of the features of commercial
solutions to GNU/Linux, hence being a pioneer in what comes to having a graphical
user interface, automatic layout analysis, manual correction/zoning and optical
character recognition on this operating system. Even on the Microsoft Windows
and Apple Mac OS operating systems, the free solutions found do not have the
functionalities this project offers.

7.1 Problems

Although very functional, OCRFeeder obviously presents some problems. This

section presents some of the problems and ideas for solutions to solve them.

Problem: The font size sometimes is not the correct one because the image is
skewed (which is normal when scanning images).

Possible solution: By being skewed, the vertical size of the text appears
bigger than it really is because algorithm to find the font size goes line by line
checking for the contrast (see page 49). The solution for this is to use the Unpaper
tool to correct the image’s skew before performing the layout analysis and font

size detection.

101

7.2. Future Work Chapter 7. Conclusions and Future Work

Problem: Text in columns is recognized as being only one paragraph (single
column).

Possible solution: This problem is related to the window size and hence,
a smaller window size must be manually set. This can be done by using the

Preferences menu under the Edit menu.

Problem: Images are recognized as parts of a paragraph.

Possible solution: This problem is usually because of the window size and
the solution is the same as the one for the previous presented problem.

However, if the case is an image that is floating in the middle of the text (which
is sometimes common in magazines) than the problem cannot be easily solved. A
possible solution for this that can be implemented in future work is to let the
selectable areas overlap in the graphical interface and when they do, the contents
of one area are not included in another. That is, if an area contains a whole
paragraph and another area contains an image that is floating in the middle of the
paragraph, than the image is erased (not considered) when the text recognition is

performed for the paragraph area.

Problem: Paragraphs with initials are set a wrong font size.

Possible solution: A possible solution for this problem that might be imple-
mented in the future is to vertically clip the paragraph image by half and perform
the font detection algorithm with the right part. Since in most cases the initial
does not occupy half for the paragraph horizontally, by considering only the right
half of the paragraph it should result in the correct font size.

7.2 Future Work

In future work, a solution to the problems mentioned above will be studied, the
HTML exportation will be improved and several extensions will be developed like
support for tables and spreadsheets.

Regarding the easiness of adding a document generator, exportation to other
popular document formats — like PDF, LaTex or ReStructuredText — is likely to

be one of the first extensions developed.

102

7.2. Future Work Chapter 7. Conclusions and Future Work

A useful feature would be to increase the input sources, that is, to make it able
to get the input images directly from a scanner device or a web cam.

A feature that would come against the principle of automatically detecting the
documents structure but could save time by improving the performance would be
to allow the user to set a pre-defined document structure for a set of documents.
For example, by knowing if a set of images have a two-column layout, a simple
adjustment of the two-columns could be done for each of the images and hence
saving time by not trying to detect every content in the image.

Porting the project to the Windows and Mac OS operating systems may also
become a reality. Making OCRFeeder available on more operating systems will
surely increase its usage and, since it is Free and Open Source Software, have more

developers contributing to it.

103

7.2. Future Work Chapter 7. Conclusions and Future Work

104

Bibliography

[1] Herbert Holik. Handbook of Paper and Board. Wiley-VCH, 2006.

[2] Michael Loewe and Eva Wilson. FEveryday Life In Early Imperial China.
Hackett Publishing, 2005.

[3] Jan Seaman Kelly and Brian S. LindblomHerbert Holik. Scientific Examina-
tion of Questioned Documents. CRC Press, 2nd edition, 2006.

[4] Nikolaos G. Bourbakis. Artificial Intelligence Methods and Applications.
World Scientific Pub Co Inc, 1992.

[5] Simone Marinai and Hiromichi Fujisawa. Machine Learning in Document
Analysis and Recognition. Springer, 2008.

[6] Mori et al. Historical review of ocr research and development. In Proceedings
of the IEEE, 1992.

[7] Mohammed Cheriet et al. Character Recognition Systems: A Guide for Stu-
dents and Practitioners. Wiley-Interscience, 2007.

[8] K. Y. Wong, R. G. Casey, and F. M. Wahl. Document analysis system. In
IBM Journal Res. Dev., 1982.

[9] C. F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

[10] Robert P. Futrelle et al. Document analysis, understanding, and knowledge
access. In Proceedings of the International Conference on Document Analysis
and Recognition (ICDAR), 1991.

105

[11] Science Applications Intl. Corp. Capture station simulation: Lessons learned,
final report, for the licensing support system. Technical report, November
1990.

[12] Kristen Summers. Toward a taxonomy of logical document structures. In In
Electronic Publishing and the Information Superhighway: Proceedings of the
Dartmouth Institute for Advanced Graduate Studies (DAGS), pages 124-133,
1995.

[13] Udo Kruschwitz. Intelligent Document Retrieval: Exploiting Markup Struc-
ture. Springer, 2005.

[14] K. Taghva, A. Condit, and J. Borsack. Autotag: a tool for creating structured

document collections from printed materials. Technical report, 1998.

[15] ABBYY. Abbyy history. http://www.abbyy.com/company, accessed on
November 20th, 2008.

[16] Mark Lutz. Programming Python. O’Reilly, 3rd edition, 2006.

[17] Guido van Rossum et al. Extending and embedding the python interpreter.
http://docs.python.org/ext/ , accessed on October 1st, 2008.

[18] Andrew Krause. Foundations of GTK+ Development. Apress, 2007.
[19] Mark Lutz and David Ascher. Learning Python. O'Reilly, 2nd edition, 2003.

[20] Elliotte Rusty Harold and W. Scott Means. XML in a Nutshell. O’Reilly, 3rd
edition, 2004.

[21] Karen Cegalis. Opendocument overview.
http://opendocument.xml.org/overview , accessed on September 30th,
2008.

[22] OpenDocument XML.org. History of opendocument.

http://opendocument.xml.org/milestones , accessed on September 30th,
2008.

106

[23] OpenDocument Fellowship. Odfpy - python api and tools.
http://opendocumentfellowship.com/projects/odfpy, accessed on September
30th, 2008.

[24] Stig HackVén. Interview with 1. peter deutsch. USENIX association’s monthly
;login: Magazine., 24(5), October 1998.

[25] Werner Backhaus, Reinhold Kliegl, and John Simon Werner. Color Vision:
Perspectives from Different Disciplines. Walter de Gruyter, 1998.

[26] Yannis Haralambous. Fonts & encodings. O’Reilly, 2007.

[27] Roger Hersch. Visual and Technical Aspects of Type. Cambridge University
Press, 1993.

[28] Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Design and
Refine User Interfaces. Morgan Kaufmann, 2003.

[29] Bryan Clark et al Gnome human interface guidelines.
http://library.gnome.org/devel /hig-book/2.24/index.html.en, accessed
on October 5th, 2008.

[30] Benjamin Tice Smith. Spirits guy. Make: Magazine, 11, August 2007.

[31] Andy Oram and Greg Wilson. Beautiful Code: Leading Programmers Ezplain
How They Think. O’Reilly, 2007.

[32] John Battelle. The Search: Como o Google Mudou as Regras do Negdcio e

Revolucionou a Cultura. Casa das Letras, 2006.

[33] José Maria Lancho. Concurso... jlibre? Linuz Magazine, (25), March 2007.

107

Appendix A

Example of a project XML file

<ocrfeeder>
<pages>
<PageData>
<data-boxes/>
<pixel_height >1169</pixel_height >
<resolution >(100, 100)</resolution>
<image_path>/home/user /Desktop/testl .png</image_path>
<pixel-width >826</pixel_width>
</PageData>
<PageData>
<data_boxes>
<DataBox>
<text>This is the detected text</text>
<height >160</height >
<width >748</width>
<text.data>
<TextData>
<style >STYLE NORMAI</style >
<line_space >0.0</line_space>
<angle >0.0</angle>
<weight >WEIGHT NORMAI</weight>
<justification >0</justification >
<face>Sans</face>
<letter_space >0.0</letter_space>
<size >13</size>
</TextData>

108

Appendix A

</text_data>
<y>267</y>
<x>962< /x>
<type>l</type>
</DataBox>
<DataBox>
<text>
Another example
of detected
text !
</text>
<height >481</height >
<width >641</width>
<text_data>
<TextData>
<style >SSTYLE NORMAI</style>
<line_space >3.12</line_space>
<angle >0.0</angle>
<weight SWEIGHT NORMAI</weight >
<justification >0</justification>
<face>Sans</face>
<letter_space >0.0</letter_space>
<size >10</size>
</TextData>
</text_data>
<y>534</y>
<x>267</x>
<type>l</type>
</DataBox>
<DataBox>
<text/>
<height >481</height >
<width >534</width>
<text_-data>
<TextData>
<style >STYLENORMAIL</style >
<line_space >0.0</line_space>
<angle >0.0</angle>
<weight SWEIGHT NORMAI</weight>

Appendix A

<justification >0</justification >
<face>Sans</face>
<letter_space >0.0</letter_space>
<size >1</size>
</TextData>
</text_data>
<y>534</y>
<x>1337< /x>
<type>0</type>
</DataBox>
</data_boxes>
<pixel_-height >3209</pixel_height >
<resolution >(300, 300)</resolution>
<image_path>/home/user /Desktop/test2.jpeg</image_path>
<pixel_width >2480</pixel_.width>
</PageData>
</pages>
<images>


</images>
</ocrfeeder>

Appendix B

Installation and usage

This chapter covers the installation and usage of this project.

B.1 System Requirements

The following list presents the system requirements for this project to run with
all its functionalities. Each dependence has the minimum version that should be
used. While newer versions are likely to keep working as well, older versions may

or may not work as they were not tested.

e Python (version 2.5);

PyGTK (version 2.13);

Python Image Library (version 1.1);

PyGoocanvas (version 0.12);

Ghostscript (version 8.63);

e Unpaper (version 0.3);

The module ODFPy (presented in Section 3.2.7) is included as part of this
project in order to make the installation and execution of the project easier.

111

Appendix B

Since this project doesn’t use a particular OCR engine, no engine was listed as
a dependence above. Nevertheless, the project is usable without an OCR engine.
The configuration XML file for the engine Ocrad is already included with the
project so only what’s needed to be installed for a first test is the Ocrad engine
itself. In case the user doesn’t want to use Ocrad, the configuration file that is
placed in the OCRFeeder configuration folder (see Section 4.2.1) must be deleted.
Other engines that might also be considered are the ones presented in Section
2.1.2.

B.2 Installation on Ubuntu

Since Ubuntu! is nowadays one of the most used Linux distributions, a complete
guide to install and run OCRFeeder on this operating system — its 8.10 version, to
be precise — is covered in this section. Since Ubuntu is based on Debian? which,
together with all its derivates, is on the top of the most used Linux distributions,
this guide should be helpful for Debian and other distributions based on it.

B.2.1 Installing the packages

The only packages needed to be installed on Ubuntu 8.10 is PyGoocanvas and
Unpaper, the rest of the dependences are already installed in a fresh install of this
version of Ubuntu. The engine Ocrad is also installed for the reasons explained in
the previous section. To install PyGoocanvas, Ocrad and Unpaper, the following

command should be executed as superuser:

apt-get install python-pygoocanvas ocrad unpaper

After all of the packages finish the installation, the project is ready to be exe-
cuted and used.

lhttp://www.ubuntu.com
2http://www.debian.org

Appendix B

B.3 Command line usage

Section 5.2 gives an overview of the graphical user interface and its usage not
being, for this reason, covered in this appendix.

This section explains the command line usage.

The command line interface part of OCRFeeder aims at users who want to
perform quick and unattended conversions of document images to editable formats.
It also makes this project usable from other applications.

Two parameters are mandatory: 1) the path to each document image to be
processed is given after the parameter ——images; 2) the name of the document
to be generated is given after the parameter ——o. For example:

$ ocrfeeder-cli --images ~/imagel.png ~/image2.jpeg

--0 converted_document

The pages of the generated documents honor the order of the given paths.

It is also possible to specify the format of the document to be generated (HTML
or ODT) with the option ——format. In case no format is specified, the images
will be exported to ODT. Continuing with the example above:

$ ocrfeeder-cli --images ~/imagel.png ~/image2.jpeg --format HTML
--o0 converted_document

OCRFeeder Studio can also be launched from the command line. Two options
can be used to load images right after the program initiates. Those are ——images
which will add the images given as the option’s arguments and ——dir that will add
all the images under a given directory path. The options can be used individually
or combined, for example:

$ ocrfeeder —-images ~/imagel.png ~/image2.jpeg
--dir ~/Desktop

For any usage the options and parameters can be given in any order.

