
,7

lrlo -"- l"-{
UNIVERSIDAOE DE EYORA

A complete Document AnalYsis and
Recognition system for GNU fl-inux

Master's Thesis in Computer Science Engineering

Joaquim Rocha

Supervisor: Luís Arriaga, PhD

December 2008

T]E
168
661

Esta di,ssertaçõ,o nõ,o i,nclui as críti,cas e sugestões fei'tas pelo júri.

A complete Document A-n-ql-Xtr§ and
Recogttitiott system for GNU/Linux

Master's Thesis in Computer Science Engineering

Joaquim Rocha

Supervisor: Luís Arriaga, PhD

December 2008

,,1 tl 6 Á)

Esta d,i,sser7,açõ,o não i.nclui, as crít,icas e sugestões Jei,tas pelo júri'.

Resumo

Um sistema completo de Análise e

Reconhecimento de Docúmentos para GNU/Linux

Os motores de Reconhecimento Óptico de Caracteres (OCR) comuns simples-

mente ,,1êm,, uma imagem não considerando a sua estrutura ou formatação. A

formatação de um documento é um assunto muito importante na compreensáo de

um documento. Assim, o uso de motores de OCR não é suficiente para converter

fi.elmente uma imagem de um documento para um formato electrónico'

A Análise e Reconhecimento de Documentos (DAR) engloba a tarefa de recon-

hecer a estrutura de um documento o que, combinado com um rnotor de OCR, pode

resultar numa conversáo fiel de um documento para um formato editável' Estes

sistemas existem como aplicações comerciais Sem uma verdadeira equivalência

em software Liwe actualmente e não estão disponíveis paxa o sistema operativo

GNU/Linux.

O trabalho descrito neste relatório tenta responder a este problema ao oferecer

uma solução que combina componentes de Software Livre e sendo comparável,

mesmo na sua fase inicial, a soluções comerciais disponíveis.

I

Abstract

A complete Document Analysis and Recognition
system for GNIJ/Linux

Regular ocR engines simply "read" an image not considering its structure or
layout. A document's layout is a very important matter in the understanding of a
document. Hence, using OCR engines is not enough to fairly convert an image of
a document to an editable format

Document Analysis and Recognition (DAR) encompasses the task of recognizing
a document's structure which combined with an OCR engine can result in a fair
conversion of a document to an editable format. Such systems exist as commer-
cial applications with no real equivalence in Flee Software nowadays and are not
available for the GNU/Linux operating system.

The work described in this report attempts to answer this problem by offering
a solution combining only Flee Software components and being comparable, even
in its early stage, to available commercial solutions.

Aknowledgements

This project wouldn't be possible without the support from many people that

contributed for its final result.

First, I would like to express my appreciation and deep gratitude to Professor

Luís Arriaga for being my supervisor in this project and for all his understanding,

attention and enthusiastic support.

I would also like to thank my colleagues, and friends who I couldn't name all

here, that always supported me along the development of this work and other

projects.

I want also to express my gratitude to my girlfriend who was always there for

me with all her support and understanding.

Last but not least, I would like to thank my parents for their unconditional

support and belief, of whom I am truly proud of, and for educating me to become

the person I am today.

111

Contents

Resumo

Abstract

Aknowledgements

1 Introduction
1.1 Motivation

L.2 General Concepts

1.3 Document Analysis and Recognition
L.4 Objectives

1.5 Structure

2 State of the art
2.L Optical Character Recognition .

2.1.L OCR History

2.1.2 Recent Solutions

2.2 Document Analysis and Recognition
2.3 DAR History

2.4 Modern systems

2.4.L Mobile devices

2.4.2 Recent solutions

2.5 Conferences about DAR and OCR

3 The System
3.1 Overview

I

ll

ul

1

2

3

3

4

5

7

8

8

8

10

10

11

11

L2

t4

lv

15

16

3.2 Technology and Development Tools 16

16

18

18

L9

19

20

2l
22

22

23

25

28

31

37

45

45

47

48

53

53

54

55

56

56

57

58

59

61

61

61

3.2.t

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

3.2.7

Python. . .

PyGTK

PIL.....
PyGoocanvas

XML

ODT

ODFPy

3.2.8 GhostscriPt

3.2.9 Unpaper '

3.3 Architecture

4 Implementation
4.7 Layout AnalYsis

A.L.L The stiding window algorithm

4.L.2 Retrieving blocks

4.2 Recognition

4.2.1 OCR Engines

4.2.2 Classification

4.2.3 Text properties recognition .

4.3

4.4

Content representation

4.3.L Data boxes

4.3.2 Page data

Exportation to editable formats

4.4.L Exportation to ODT

4.4.2 Exportation to HTML

4.4.3 Adding support for more formats

5 OCRFeeder

5.1 Design and usabilitY

5.2 Interface overview '

5.2.L Document images area

5.2.2 Selectable boxes area

v

5.3

5.2.3 Box editor area

Features

5.3.1 Adding document images .

5.3.2 PDF importation

5.3.3 Exportation

5.3.4 Project loading and saving .

5.3.5 Preferences

5.3.6 Edit page

5.3.7 Delete images

5.3.8 Zoom

5.3.9 OCR engines

5.3.10 Unpaper

5.3.11 Layout analysis and OCR

63

64

64

64

65

65

67

68

68

68

69

69

7T

72

73

74

76

80

84

90

94

99

6 Testing
6.1 Features Comparison

6.2 Tests

6.2.7 Lyrics document

6.2.2 Make: magazine

6.2.3 Beautiful Code book page

6.2.4 The Search book cover

6.2.5 Limrx Magazine page .

6.3 General Appreciation

7 Conclusions and F\rture Wbrk
7.L Problems

7.2 Future Work

References

A Example of a project XML file

B Installation and usâge

B.1 System Requirements

100

..101

..L02

105

108

111

.111

vl

8.2 Installation on Ubuntu

8.2.L Installing the Packages

B.3 Command line usage

. .1L2

..TL2

..113

vll

List of Figures

The system global architecture .

A more detailed architecture diagram

4.7 Lyrics document image.

4.2 Recognized text for lyrics.

3.1

3.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.LL

4.12

4.13

4.t4

23

24

26

27

28

30

31

Lyrics document with outlined format structure
Illustration of part of the detection algorithm for l-column simple
documents

A not so simple document example

Binary representation .

Example of contrasting colors

optimization of the function to find contrast within a window
A block in a BRL

Distances and lines in typography .

An example of extra charge

A simple block with a legend

Font size and letter spacing detection

Text angle detection

OCRFeeder Studio final paper prototype

OCRFeeder Studio main areas

Preferences dialog (appearance tab) . .

Paper sizes dialog . . .

Example of the OCR engines dialogs

Unpaper dialog

34

35

36

5.1

5.2

5.3

5.4

5.5

5.6

39

40

4t
42

50

52

60

62

67

68

69

70

vIIl

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.L2

6.13

6.L4

6.15

6.16

6.L7

6.18

6.19

Test:

Test:

Test:

Test:

Test:

Test:

Test: Lyrics document with OCRFeeder

Test: Lyrics document with Omnipage

Test: Lyrics document with FineReader

Lyrics document exported to ODT by OCRFeeder

Lyrics document exported to Doc by FineReader

Lyrics document exported to Doc by OmniPage

Test: Make: magazine with OCRFeeder

Test: Make: magazine with OmniPage

Test: Make: magazine with FineReader

Test: Beautiful Code book page with OCRFeeder

Test: Beautiful Code book page with OmniPage

Test: Beautiful Code book page with FineReader

Test: The Search book cover with OCRFeeder

The Search book cover with OmniPage

The Search book cover with FineReader

Linux Magazine with OCRFeeder (automatic window size)

Linux Magazine with OCRFeeder (manual window size)

Linux Magazine with OmniPage

Linux Magazine with FineReader

77

78

79

80

81

82

83

84

85

87

88

89

91

92

93

95

96

97

98

rx

List of Tables

6.1 Features comparison for severat DAR and OCR solutions 75

x

Chapter 1

Introduction

1

1.1. Motivation Chapter 1. Introduction

This report describes the work done in a very specific area that relates to com-
puter vision, artificial intelligence an«l image processing - Document Analysis and
Recognition. The main purpose of this project is the creation of a system for
GNU/Limrx capable of performing Document Layout Analysis (DAR) and opti-
cal Character Recognition (OCR) on document images.

1.1 Motivation

Over the centuries, humanity have used paper to record information starting
with the Egyptians, Greeks and Romans who used a paperJike material called
papvrus [1]. While paper as we know it was first developed in China around the
2o 121,, the use of papyrus dates back to 3500 B.C. and it was the first writing
material previous to the usage of paper [3].

Therefore, we owe the transfer of information, education and knowledge along
the times to the production and wide use of paper [1].

The generalized use of electronic documents to store and preserve information
is a big advance from paper and have been used since a while with all its advan-
tages (like searching, converting between formats, etc.) toward.s paper documents.
Therefore, it is of extremely importance to convert paper documents to electronic
formats.

Although there are good solutions available, mainly commercial ones, there is no
solution that fairly converts a document image into an editable document for the
GNU/Linux operating system. Even when considering other operating systems,

there is not a Free Software solution available for any system that can compare

itself to the top commercial solutions.

However, instead of "cloning" a commercial solution, this project tries to create

a complete and original system. This system was designed to be used by anyone

without having to spend much effort learning how to install or use it.

Outlining the contents of an image seems an easy task to do - even a child can

do it - but to develop such a system represents an interesting challenge. It is

2

1.2. General Concepts Chapter 1. Introduction

specially interesting because it's an attempt to make a computer perform basic

functions of a human-being - to see and to write.

L.2 General Concepts

Optical Character Recognition (OCR) is a field of research of artificial intelli-

gence, pattern recognition and machine vision. By definition, OCR is the conver-

sion of an image of text by mechanical or electronic means to digital text (machine-

editable).

Atthough OCR is closely related and plays an important role in the develop-

ment of this project (even being present on its very name), this project is not

about OCR or the recognition of characters. It is about Document Analysis and

Recognition.

1.3 Document Analysis and Recognition

The main purpose of Document Analysis and Recognition (DAR) is to auto-

matically segment the text and graphical contents (also called zoning) of an image

which represents a document and then process them to recognize their logical role

in the document. Therefore, DAR encompa,sses two steps: geometric and logical

anatysis [4]. White the former refers to the extraction of the regions of interest

(the homogeneous regions that contain a picture, a text paragraph, a logotype,

etc.) within a document image, the latter relates to the classification of each re-

gion according to its role in the document - that is, if a region represents a title,

a footnote, a column of text, an image's caption, etc.

This project focus on the geometric analysis as it attempts to retrieve only the

regions not trying to find their role in the document.

DAR systems are related to several fields of computer science like image pro-

cessing, artificial intelligence, pattern recognition and even databases.

The output from an extraction performed by DAR techniques is preferably in

a format that may be processed by a machine. [5].

3

1.4. Objectives Chapter 1. Introduction

The name and acronym DAR is not as recognized as OCR. Often publications
or products use the acronym OCR when referring to DAR systems. The name
used for DAR also varies, beyond DAR, usually i,mage analysi,s and recogni,ti,on,

layout analys'is, document analysi,s, d,ocument segmentati,on, d,ocument i,mage un-
derstandi,ng and other combinations can be read on references to DAR systems.

In this document however, a restriction to the use of the names DAR and,layout
analysi,s is attempted in order to simplify the reading and understanding of this
report.

L.4 Objectives

The main objective of this project was to develop a DAR and OCR system for
GNU/Limrx. The system should analyzea document image, retrieving the location
and properties of its contents; after that, the system should perform OCR over the
contents and identify which of them are graphics and text; in the end, an editable
document format should be generated.

Since the number and variations of document layout formats can be countless,
the system should not be restricted to accept only a single type of document layout
or structure nor should it know the type previously - the objective was that the
system could analyze and retrieve the contents of a document with any layout.

Part of the challenge consisted in the fact that there were free OCR engines
available that offer good recognition rates but there was no direct way of getting
the contents of a document image - that is, most OCR solutions available only
return the text but little or no information about the layout. Hence, a technique
to retrieve this contents wa"s developed from scratch (like it's explained in further
chapters).

Another objective was that the development of this project would hopefully
result in a solution comparable to the commercial ones. By opting to develop
this project as Flee and Open Source Software, it wilt make it possible for every
researcher or enthusiastic of DAR and OCR to extend and improve the ideas

4

1.5. Structure Chapter 1. Introduction

explored in the creation of it and hence continue towards the creation of a great

tool and make the conversion of document images on the GNU/Linux operating

system a solved problem.

1.5 Structure

This section describes this document's structure and organization.

Chapter L gives an introduction to the work done, the motivation to do it and

the objectives behind it. Some general concepts are presented as weII in order to

better identify the areas where this project belongs.

On Chapter 2 some of the main research done in the fields of OCR and DAR is

introduced since its early days until recent times. Modern systems are also covered

with the efforts dating back until around ten years ago and a brief presentation of

the most famous solutions is given. The most important conferences about OCR

and DAR are also mentioned.

Chapter 3 gives an overview about the project in what comes to choices about

the technology used and intentions for the development of the system. It also

presents two very simple diagrams that illustrate the system's architecture.

The details about the implementation of this project are covered in Chapter 4.

The main algorithms created and used are explained using images and dia$ams

for an easy understanding of them.

Chapter 5 explains major concepts and concerns about the design and usabil-

ity of the system. An overview about the graphical user interface and the main

features is also given.

On Chapter 6 an evaluation of the system is done by comparing its features to

other solutions either free and commercial ones. The same documents are tested

on OCRFeeder and on two of the a main solutions available currently and the

results are commented. The chapter finishes with a general appreciation of the

system considering the tests results the comparisons with other systems.

Chapter 7 presents the conclusions about the system and analyzes in a general

way its strengths and weaknesses as well as some problems and possible solutions

b

1-.5. Structure Chapter L. Introduction

for them. F\rture work and improvements on the system are also mentioned in this
chapter.

6

Chapter 2

State of the art

7

2.1. Optical Character Recognition Chapter 2. State of the art

This section gives an overview of the resea.rch in the fields of Document Anal-
ysis and Recognition since its early times until nowadays where several free and
commercial solutions are available.

Since Optical Character Recognition also plays a very important role in this
project, an overview of it is also given.

2.L Optical Character Recognition

2.L.1 OCR History

Tauschek registered a patent on oCR in Germany ín lg2g, a U.S. patent on
OCR was registered later 1933 by Handel [6]. Atthough these represented great
efforts, the beginnings of Optical Character Recognition (OCR) in what comes

to computers date back to the 1950s where images of text and characters were
attempted to be captured by mechanical and optical means [7]. In the 1960s and
1970s, OCR was used in post offices, banks, hospitals, aircraft manufacturers, etc.
By then, the results given by OCR techniques presented too many flaws due to
the state of the printed paper being analyzed - the conditions of the surface where
the text was printed, the type fonts and the residue lefb by typewriters difficulted
the process. Hence, OCR manufacturers had a big interest in the creation of stan-
dards in what comes to type fonts, ink and paper quality. Due to this, important
institutions like ANSIT, ECMA2 and .I^9o3 came up with the development of new
fonts that could help accomptish high recognition rates.

2.t.2 Recent Solutions

Nowadays, OCR is much more developed and divulged than in its early years
achieving really high accuracy rates. Nonetheless, as [7] states:

" [...] 99% accuracy rates translates i,nto 30 errors on a typical page conta,ini,ng

3,000 characters."

L American National Stand,ard,s Insti,tution
2 European Computer Manufacturers Associ,ati,on
3 International Stand,ard,s Organi,zation

8

2.L. Optical Character Recognition Chapter 2. State of the art

There are many applications that provide Optical Character Recognition for

images. Some of these applications also feature Layout Analysis. It is even normal

nowadays to find an OCR application bundled with a cheap scanner device.

Commercial and free solutions are widely available. Considering only OCR en-

gines and not complete OCR and DAR, among the existing Flee Software solutions

the most known ones are:

Ocrad

License: GNU General Public Licensea

Ocrads is an OCR engine developed within of the GNU Project.

Gocr

License: GNU General Public Licensea

The GOCR6 engine was developed by Joerg Schulenburg. Beyond reading text,
it can also translate bar codes.

Tesseract

License: Apache 2.0 LicenseT

Tesseractg was first developed by Hewlett-Packarde (HP) from 1985 until 1995.

It was one of the top 3 OCR engines in the L995 Uni,aersi,ty of Neuada, Las Vegas

(UNLV) Accuracy test and after that year not much work was done on it until
it was released in 2006 by HP and UNLV. Since then it has been under active

development by Google.

ahttp
: / / wuw . gott.orgl1 icens es/gpl- 3 . 0 . htnl-

shttp : / /wuy . gtu.orglsoftwar e / ocrad./
6http : / / iocr.sourceforge. net
Thttp: / /vwu .apache . org/liceuses/LlCENsE-2. O
shttp: //cod,e. google . con/p/tesseract-ocr
ehttp

: //www. hp . con

I

2.2. Docrtment Analysis and Recognition Chapter 2. State of the art

2.2 Document Analysis and Recognition

According to [5], 85% of the new information stored on paper in the world is

office documents. This surely contributes to the fact that DAR is largely used to
process business related documents like obtaining the information from forms and

checks, organization of documents, etc.

Nevertheless, recently the uses of DAR have been moved to other types of docu-

ments like ancient documents, digital documents like PDF as well as other types

of images, for example images from surveillance and traffic cameras.

2.3 DAR History

In the early years of DAR, one of the first projects dedicated to the subject

received a very direct name - Document Analgsi,s System l8). This publication

from 1982 gave an overview of a system to convert printed documents to a way

that can be processed by a computer. The idea was to subdivide an image in

regions of a data type like text, graphics, etc. An approach to recognize font styles

and types was also studied that involved a pattern-matching method.

The Sc'ienti,st's Assi,stant (SA) was also an interesting project that appeared in

1991. The SA was a system designed to scan, perform OCR and tag a document

by using the Standard Generali,zed, Markup Language (SGML) [9]. The conclusions

were that it would take more time to review and correct each scanned document

than by typing it from the beginning [10]. Another early effort in this field was

the Li,censi,ng Support System (LSS). This system would capture and track doc-

uments that belong to the Nuclear Regulatory Commission and a prototype was

built featuring both OCR and manual key entries. After the construction of the

prototype, it was concluded that the " costs of conuersi,on of hard copg documents

to electroni,c form dom'inate the li,fe cgcle of the Li,cens'ing Suppor"t System." After
that, LSS responsibles claimed that this system would only be able to give min-

imum document format (no information about certain styling formats like italics

or bold type fonts) information [11].

10

2.4. Modern systems Chapter 2. State of the art

2.4 ModerÍI systems

The Department of Computer Sci,ence of. Comell Uni,aersi,ty presented a way

in 1995 that consists in two main steps: segmentati,on ard classi,ficati,on lL2l. In

the segmentation step, the type font shape and layout information is used. In the

classification step, the segmented content is compared with structure prototypes.

The information contained in the predefined prototypes is about the present or

not present symbols. If there is any previous information about the document's

styles, it can be also used as additional help in the processing steps [13].

In 1998, in the Uni,uersi,ty of Neuada, USA, the Informati,on Sci,ence Research

Insti,tute developed a project named Autotag. Its purpose is to automate the

conversion of general technical documents by performing a physical analysis, by

means of OCR, followed by a logical analysis of the document.

According to [14]:

" Autotag accepk a physical document representat'ion as i,nput. It analyzes and

combi,nes the i,nformati,on contai,ned, i,n this form and nxaps i,t to a logi,cal represen-

tati,on."

Autotag takes the physical representation information (given by the used OCR

software) about the document being analyzed and converts that information into

another representation in SGML. For exa.mple, [14] refers that ScanWorX OCR

device from Xeror would produce output in a format called XDOC which Auto-

tag then would convert to SGML. This conversion step exists so Autotag remains

device independent [14].

After the physical information retrieval, Autotag interprets the useful informa-

tion contained in it. To do this, and since the are many types of documents and

the logical representation changes from type to type, they focused on the relevant

Iogical components for scientific journal articles. This way, Autotag can retrieve

abstracts, authors names, tables, figures, etc. from this class of documents [14].

2.4.L Mobile devices

The growing importance, power and variety of portable devices such as PDAs

and mobile phones have also resulted in the adaptation of DAR solutions for these

11

2.4. Modern systems Chapter 2. State of the art

kind of devices to process images captured by the devices' cameras.

An example of this is the recognition of business cards. The smart phone Sony

Ericsson P990i is an example of this. A business card photo is taken using a

cellphone's caJnera and the business card's owner information like his or her name,

telephone, company name, etc, is stored in a databa.se on the device.

2.4.2 Recent solutions

Nowadays there are recent solutions available that can be used with satisfactory

results depending on what's needed. Bellow, some of the most known solutions

are presented.

ABBYY FineReader

License: Comercial

Fi,nefueader is a DAR and OCR sofbware developed by the Russian company

ABBYYTI. It's first version was released in 1993 [15] and it can perform automatic

DAR and OCR as well as manual edition/correction of the results. To do this,

it features a graphical user interface (GUI) and its latest version (version 9.0

Professional Edition) is available only for Microsofb Windows.

Nuance OmniPage

License: Commercial

Omni,Page is also a DAR and OCR sofbware. It is developed by Nuance Commu-

ni,cati,onsrL. Like FineReader, OmniPage has a GUI where it's possible to perform

automatic DAR and OCR as well as manual corrections and edition. Its latest

version (Professional 16) is available only for Microsoft Windows as well.

SimpleOCR

License: Fleeware
lohttp: / /wwv.abbyy. coro
llhttp: / /v,nw .utance. com

t2

2.4. Modern systems Chapter 2. State of the art

This program is developed by Cyril Cambi,en as an OCR solution but also a

royalty-free OCR SDK12 that can be used in other applications. It does not per-

form DAR and its GUI allows one only to manually select the parts of the image

that the engine is supposed to process. It is available only for Microsoft Windows.

Vividata OCR Shop XTR

License: Commercial

The OCR Shop XTR DAR and OCR solution was released in 2003 by Vi,ui,datarl.

It is available only for Linux and UNIX and can be only used from the command

line.

OCRopus

License: Apache 2.0 Licensela

OCRopus is different than the previously commercial solutions. It is supported

by Google and leaded by Thomas Breuel ftom German Research Centre for Ar-
ti,fi,ci,al Intelli,gencers. It performs DAR and OCR, the latter is accomplished by

using Tesseract. The project is highly modular to be pluggable with more OCR

engines and DAR systems.

It does not have a GUI, instead it can be used from the command line. Another

particularity is that instead of exporting the recognized data to a widely used

document format like PDF or Doc, it generates hOCRr6 files which are HTML

files with embedded OCR information.

It is officially developed for Linux although there are efforts to make it usable

on Microsoft Windows and Mac OS.

L2 Software Deaelopment Ki,t
13http : / /vsw .vivídata. con
lahttp: / /vw,e .apache. org/licenses/LlCENSE-2 . O
15http: //www. dfki . de
16http

: / / code . googLe . con/p/hocr-too1s/

13

2.5. Conferences about DAR and OCR Chapter 2. State of the art

2.5 Conferences about DAR and OCR

Along with the years of research in the field of DAR and OCR, several important

workshops and conferences were created. Probably two of the most famous con-

ferences are the Intemati,onal Workshop on Fronti,ers i,n Handwriti,ng Recogni,ti,on

(IWFHR) and Internati,onal Conference on Document Analysi,s and Recogni,ti,on

(rcDAR).

L4

Chapter 3

The System

15

3.1. Overview Chapter 3. The System

S.L Overview

OCRFeeder was designed to be used in two ways: as a command line tool and

as a full application with a complete graphical user interface.

Since this project is Flee and Open Source Software, there was the concern

of using open source technology and open standards. All the used technology is

Fbee Software. Although the system was designed and implemented thinking on

its usage on the GNU/Limrx operating system, most of the technology used is

fully supported on other operating systems. Also, the implementation, that is, the

code, was written in an independent way that will not require major changes if it
happens to be ported to other operating systems in the future.

3.2 Technology and Development Tools

This section presents a list of the technology and tools chosen for the develop-

ment of this project. It gives an overview of each of the technologies/tools without
going into very technical details, there will be also an explanation on why the

technologies were chosen.

3.2.L Python

Pythonl is a general-purpose object-orientated programming language. It uses

garbage-collection to manage the memory and is both dynamically type checked

and strongly typed. Python focus on the readability and clearness of the code

as well as in the programmer's productivity. Its strong introspection capabilities

make it very fast for a programmer to automate tasks that usually would require a

larger sum of code lines. It also features an extensive and useful standard library
for which the Python community often uses the phrase " batteri,es i,ncluded" .

Python was created in 1991 by Guido van Rossum at the Sti,chti,ng Mathemati,sch

Centrum in Amsterdam and its name comes ftom Monty Python's Flyi,ng Ci,rcus -

thttp
: / /vww .python. org

I_6

3.2. Technology and Development Tools Chapter 3. The System

the BBC comedy series of which Guido is a big fan [16]. It was originally designed

as a scripting language for the Amoeba system in which Guido was involved.

Its first version was released in January 1994 and in 1995, Guido continued his

work at Corporati,on for Nati,onal Research In'i,tiati,ues in Verginia, USA, releasing

several versions of Python. [n 2001, the non-profit organization Python Software

Foundati,on2 was founded and have been managing the open source licensing of

Python since version 2.1 [17].

Modularity and reuse should always be key concepts when it comes to write

code that may be then adapted by others. The below excerpt from [16] represents

how Python suits these needs:

" Besid,es bei,ng well desi,gned, Python i,s also well tooled for modern software method-

ologi,es such as structured,, modular, and object-oriented desi,gn, wh'ich allow code

to be wri,tten once and, reused, n'LanA ti,mes. In fact, due to the i,nherent power

and fleri,bi,li,ty of the language, writi,ng hi,gh-quali,ty Python components that may

be appli,ed i,n multi,ple conterts i,s almost automat'ic."

Python also has excellent portability and the Python interpreter is available for

a large set of platforms, from major operating systems like GNU/Linux, Mac and

Windows to cellphones or even the .NET platform and the JAVA Virtual Machine.

Documentation also plays a very important role in every project for purposes

of understanding what the code does and how it does it. Python features what's

called docstri,ngs which standa,rdize the way to write documentation in Python.

Docstrings are simply strings with the actual documentation text and go under

the declaration of classes, methods, etc.

The properties of Python make it very suitable for several a,reas of program-

ming like system progrâmming, rapid prototyping, text processing, graphical user

interfaces (GUI) programming or web progrâ.mming.

In this project, Python was chosen because it fllled every requirement. It suited

every mandatory need like processing text, creating the GUI, abstracting certain

2 Python S oftware Foundat'i,on: laatp t / / vwl. python. or g/ psf / aboat /

L7

3.2. Technology and Development Tools Chapter 3. The System

tasks and others.

3.2.2 PyGTK

GTK+S is a toolkit to create multiplatform graphical user interfaces and was

created by Peter Mattis, Spencer Kimball and Josh MacDonald in 1997. GTK
stands for "The GIMP Toolkit" since it was originally developed for the GNU

Image Mani,pulati,on Programa (GIMP).

Although it was originally created for X Wi,ndows it is available for the most

common operating systems like GNU/Linux, Mac and Windows and was adopted

as the default graphical toolkit of GNOME5 and XFCE6. Beyond all the common

graphical interface components it supports, the main features of GTK+ include

theme support, thread safe, localizatíon and internationalization among many oth-

ers [18].

PyGTKT is a set of Python wrappers for GTK* that make it possible to create

GUI applications with all the GTK* advantages.

Even though Python already includes a toolkit gk') in its standard library,

PyGTK was the chosen toolkit for OCRFeeder because of all its advantages com-

paring to Tk, mainly accessibility,Iocalization, internationalization and the object

oriented approach.

3.2.3 PIt
The Pgthon Image Li,brarye (PIL) is a powerful framework created by Fhedrik

Lundh that allows operations on images like creation, manipulation or conversion

[1e].

3 GTK+: http : / /wwu. gtk. org
4 GIMP;]ottp / /vwr. ginp. org
5 GNOME: http: //www. gnorne. org
6 XFCE: lnttp / /vru.xf ce. org
7 PyGTK: http: / /vuu.pygtk. org
8 flc: http: / /vreu .tct.tY/
e Python Image Li,brary: lattp / /vuu. pythonware. con/products/p1l

18

3.2. Technology and Development Tools Chapter 3. The System

OCRFeeder extensively uses PIL for all the advanced operations on images men-

tioned in Chapter 4. It was chosen because it is the most complete and powerful

imaging library available for Python.

3.2.4 PyGoocanvas

GooCanuaslo is an advanced canvas widget for GTK+. It uses the cairoLt 2D

library that offers a powerful API for 2D drawing and vector graphics operations.

GooCanvas make it easy to control the vector elements that cairo provides for

example it allows to create geometrical forms, control their properties or check

which other forms are contained within given bounds.

PyGoocanuasr2 ís a Python wrapper for Goocanvas. It allows to use Goocanvas

powerful capabilities but using Python instead of C.

PyGoocanvas was chosen as it provides the needed tools to be able to do a very

important part of the graphical user interface, like Section 5.2.2 describes.

3.2.5 XML

XML stands for eXtended Markup Language and is an open standard recom-

mended by the WSCrs for document markup.

According to [20]:

" It defines a generic syntar used to mark up data wi,th si,mple human-readable tags.

It prouides a stand,ard format for computer documents that is fl,eri,ble enough to be

customized, for domai,ns as di,aerse as web s'ites, electroni,c data i,nterchange, uector

graphi,cs, genealogy, real estate l'isti,ngs, object seri,ali,zati,on, remote procedure calls,

aoi,ce mai,l systems, and more."

Lo GooCanaos: hiutpz / /Live. gDone. orglGooCaavas
rr Ca'i,ro: }itlup: / /caírographics. org
L2 PyGoocanuas: http: //developer. berlios . de/proj ects/pygoocaavas
L3 World Wide Web Consort'i,um: http: //www. w3. org

19

3.2. Technology and Development Tools Chapter 3. The System

XML documents that should follow a certain schema can be validated according

to an XML schema rules. For example, an XML schema may define that an element

"person" must contain one (and only one) attribute called "name" but must not
contain an attribute "manufacturer" which belongs to an element "car". If an

XML document must obey an certain schema, then it must include information

on where to find the schema. Documents that validate their schema are said to be

well-formed.

In this project, XML is used for:

o Storing the general preferences configurations;

o Storing the settings when saving a project;

o Specifying OCR engines' settings;

The XML usage in OCRFeeder is covered in Sections 4.2.1 and 5.3.4. It was

chosen because of being an organized and standard way of representing and storing

data.

3.2.6 ODT

OpenDocument Tert (ODT) is the format referring to text in the OpenDocument,

Format (ODF).

The OpenDocument Format is a file format based in XML for office documents

like text, presentations, spreadsheets and graphics.

ODF was first started in 1999 by StarDi,ui,sion for its office slite StarOffice and

Sun Mi,crosystemsLa then acquired the company the in the same year. In 2000, the
open specification of ODF started as Sun Microsystems released OpenOffice.org

[21] - a complete and cross-platform office suite derived from StarOffice and com-

patible wíth Mi,crosoft Office formats.

lahttp : //www . sun. con

20

3.2. Technolory and Development Tools Chapter 3. The System

ODF got approved as an OASISLí standard in May 2005 and in 2006 in the same

month, ISOL6 arLd IECtr unanimously approved it as ISO/IEC 26300122).

Being arr open standard by OASIS and vendor independent, ODF allows the cre-

ation of new solutions independent from office applications. It is free of licensing,

royalty payments or other restrictions.

Many countries and institutions have been supporting and adopting ODF.

After OpenOffice.org, many other progrâms began supporting ODF. Some widely

used programs that are an example of supporting ODF, either fully or partially,

are:

o Abi,word,Ls;

o Google Docsre;

o IBM Lotus Sgmphony2o;

o KOffice2L.

For ODF openness and recognition as an ISO and OASIS standard together

with its portability and support by many applications, ODF was chosen as the

primary exportation format of OCRFeeder.

Section 4.4.1 describes how the ODT exportation is accomplished.

3.2.7 ODFPy

Ftom the OpenDocument Fellowshi,p2z lZe):

" OdÍpA ai,ms to be a complete API for OpenDocument i,n Python."
73 Organi,zati.on for the Adaancement of Strr,ctured, Informati,on Stand,ard,st }rttpl. / /wru.

oasi.s-open. orgl
L6 Internat'ional Organ'i,zat'i,on for Stand,ard,i,zati,on: http: / /wuo .iso. orgl
Lr Intemati,onal Electrotechni,cal Commi,ttee http: //www. iec. chl
18http: //www. abisource. com
lehttp : / /docs. google. con
2ohttp: //synphouy. lotus . com
2lhttp

: / lwwu .kofÍ.ice . org
22 O pen D o cum,ent Fellow shi,p : http z / /opendo cunentf eI lowship . c on

2l

3.2. Technology and Development Tools Chapter 3. The System

Hence, ODFPy offers a wây to generate an ODF document using Python. It is

a complete API as it lies just above XML in what comes to abstraction, this way

it makes possible to control all ODF constructions.

ODFPy produces valid documents as it raises exceptions when an invalid action

(according to the XML schema) in the document generation occurs.

ODFPy was chosen as the way to generate ODT documents for this project due

to the easiness of generating valid the documents over the more "manual" way of
doing it with a plain XML parser.

3.2.8 Ghostscript

Ghostscripú2s is an interpreter for Postscript and Portable Document Format

(PDF) created by L. Peter Deutsch 1241. It provides a set of tools that allows for

operations such as viewing or converting the mentioned file formats and have been

ported to the many operating systems like GNU/Linux, Mac and Windows.

In this project, Ghostscript was chosen to convert PDF documents to images in
the PDF importation functionality (see Section 5.3.2).

3.2.9 Unpaper

Unpaper2a is a tool developed by Jens Gulden to perform corrections on images

originated from scanned paper sheets. It is extremely useful as a pre-processing

tool for an OCR engine since it clears the image by removing the "dust" and wipes

out other marks like, for example, dark edges usually created from a photocopy

machine. It can also rotate a text image to the correct angle.

This tool is used in this project as an optional plugin to clean images. The use

of Unpaper is presented on Section 3.2.9.

23 Ghostscripú: http: //ghostscript . con/awki
2a (Jnpaper: http: //unpaper. berlios . de

22

3.3. Architecture Chapter 3. The System

3.3 Architecture

Modularity was a concept aiways present when designing the system due to all

its known advantages. Figure 3.1 shows the system architecture in a global way

for an easy understanding of it.

Document Analysis and Recognition

Figure 3.1: The system global architecture

A more detailed yet simple diagram is shown in Figure 3.2. It outlines the

main modules and actions that occur on them, the next chapter will cover each of

the modules and actions in a more detailed and technical way.

lmages lnput lmage
Pre-processing

Layout
Analysis

OCR Engines Optical Character
Recognition

Document
Generation

23

3.3. Architecture Chapter 3. The System

OpenDoeumênt
Text GêneÍation

Document Generation

Document Analysis and Recognition

Text Settlngs

Optlcal Character Recognition

l

,t.'..: .

:

Layout Analysis

lmage Pre-processing

Figure 3.2: A more detailed architecture diagram

Font Size
Calculation

Slldlng Wlndow
Algorithm

Contents
Extraction

lrraqe Er'rlran(en'rent
(Unp.rper) PDF lmportation

24

Chapter 4

Implementation

. í.1- . -,

l\,

Itr

25

Chapter 4. fmplementation

OCRFeeder is composed by two parts or particularly, two interfaces. These are

the command line interface (CLI) and the graphical user interface (GUI). Although
there are two different interfaces, the basis is the same.

For a printed document to be converted to an electronic format, simple OCR

tools are not enough. Most OCR engines available only perform OCR over the

text, returning the text it recognizes from the given document image. The output
does not contain any information about the layout, it doesn't include any reference

whether the document followed a two-column format, three-column, had additional

information boxes, etc. So, there is the need to include layout analysis when

using such OCR engines in order to produce a fair electronic version of the input
document image.

Nine Inch Nails - Discipline

Am I still tough enough?
Feels like i'm wearing down
Is my visciousness
Losing ground?
Am I taking too much?
Didlcrossaline?
I need my role in this
Very clearly defined

I need your discipline
I need your help
I need your discipline
You know once I start I cannot help myself

And now it's starting up
Feels like Im losing touch
Nothing matters to me
Nothing matters as much
I see you left a mark
Up and down my skin
I don't know where I end
And where you begin

I need your discipline
I need your help
I need your discipline
You know once I start I cannot help myself

Once I start I cannot stop myself

Figure 4.1: Lyrics document image (preview of contents area)

26

Chapter 4. Implementation

To give a visual sxample, consider the clean document image shown in Figure 4.1

with the lyrics of a songl. If processed by the OCR engine Tesseract, fs1 s)cample:

$ tesseract nin-discipline.tiff lyrics-text

The result is a file2 named lyrics-tert.trt with the text that Tesseract. The

generated text is illustrated in Figure 4.2.

Nine lnch Na'lts - Dlscipline
Am I sttlt tough enough?
Feels llke iam Wearlng dovrrn

ls my visciousness
Losing ground'?
Am I taktng too much'?
Didlcrossaline?
I need my rote ln thts
Very clearly defined
I need your discipllne
I need your help
I need your disclpllne
You know once I start I cannot help rnyself
Once I start I cannot stop myself

And now it's starting up
Feels llke l'm loslng touch
Noúlng matters to me

Nothing matters as much
I see you left a mark

Up and dov'rn my skln
I don't know where I end
And Where you begln
I need your discipline
I need your help

I need your dlsclpline
You know once I start I cannot help nryself

Figure 4.2: Recognized text for lyrics

As it shows, the text is recognized with a great success rate but all the format

structure is lost. Tesseract and most engines alike recognize the space between

the columns jumps as simple spaces between one word and another. Paragraph

information is also lost, the song's chorus does not preserve the space which divides

it from the rest of the verses. The title doesn't show up aligned or separated from

the song's lyrics as well.

lThe song is Disci,pli,ne by Ni,ne Inch Na,ils, Iicensed under Creative Commons Attribution-
Noncommercial-Share Alike 3.0

2Actually it generates two more files with the extensioÍ§ .nxo,p and .raw but have no interest
for this sxample.

27

4.1. Layout Analysis Chapter 4. knplementation

Fhom the above example, it is easy to see that using just an OCR engine is not

enough to produce an electronic version of a document image. It would work for
example if the objective was just extracting the words from the image for indexing
purposes.

4.L Layout Analysis

To preserve the document's original structure, layout analysis must be employed

in the process of converting the document to an electronic version. Using the
previous example of the lyrics document, if a person was asked to outline the

format structure in the document, the result would be something like the Figure

4.3.

Nine Inch Nails - Discipline

Am I still tough enough?
Feels like i'm wearing down
Is my visciousness
Losing ground?
Am I t-king too much?
Didlcrossaline?
I need my role in this
Very clearly defined

I need your discipline
I need your help
I need your discipline
You know once I start I cannot help myself

And now it's staÍing up
Feels like I'm losing touch
Nothing matters to me
Nothing matters as much
I see you left a mark
Up and down my skin
I don't know where I end
And where you begin

I need your discipline
I need your help
I need your discipline
You know once I start I cannot help myself

Once I start I cannot stop myself

Figure 4,3: Lyrics document with outlined format structure

28

4.L. Layout Analysis Chapter 4. Implementation

To automatically find the regions of interest in a document is a challenging

problem. Raw images like the JPEG, PNG, PNM, or TIFF do not hold any useful

information abouts its contents when it comes to document images. They don't

keep information whether the graphics they hold represent a flower, a dog, a house,

a taxes form or a restaurant menu. For example, there is nothing present in the

JPEG format that tells whether it starts with a paragraph of text or has a picture

starting from the middle of the page until the end.

With a way to know the document's structure it would be easier to perform

OCR on each retrieved "piece" of the document and finally generate a version of

it in an editable electronic format.

For the purpose of simplifying, this section presents some figures that show

examples of possible document structures by presenting text as black lines instead

of real text, such as Figure 4.4.

If it was just dealing with simple documents with one column of text, the solution

was easier. For an example of this, consider Figure 4.4a. The layout format is
pretty simple and to retrieve the contents is rather easy. It may be accomplished

by going from top to bottom and tracking the white areas of width equal to the

image width and of height slightly greater than a pre-deflned text line spacing.

The result of this step is illustrated in Figure 4.4b where the light blue rectangles

mark the white areas found. After the white areas are tracked, it is simple to get

the actual text areas. To find the horizontal beginning of the text in the retrieved

text areas, the white areas of it are also tracked in a similar way as before but now

horizontally.

The previously suggested algorithm is somewhat trivial and not enough for doc-

uments that don't follow such simple structures because this algorithm only con-

siders the documents to be structured vertically. Figure 4.5 gives an example of a

"not so simple" structure. In this case, the document starts exactly as the previ-

ous mentioned ones to be then split in two columns with the Ieft one representing

itself two paragraphs.

Obviously, the simple algorithm used before doesn't work for documents like

29

4.L. Layout Analysis Chapter 4. Implementation

flrriE9

(a) l-column simple document struc-
ture

(b) Detection of white areas vertically

Figure 4.4: Illustration of part of the detection algorithm for l-column simple
documents

this. For the document illustrated in Figure 4.5, when the algorithm reaches the

white space in the middle of the left column separating the paragraphs, it will still
detect the right column's text and so, it assumes there is still text. A more flexible

approach is needed.

Instead of targeting a specific type of document, the approach taken in this
project was that it must be usable for virtually every document with any structure.

If the goal was converting scientific papers for example, then arl approach sirnilar

to those already mentioned in Chapter 2 involving structure patterns would be the

right way to go.

By targeting any time of document it means that the document can start for

example with a logotype, then the title, then text; or first the text in a 2-column

fashion and then a picture followed by its legend; or maybe even just a picture

30

4.L. Layout Analysis Chapter 4. Implementation

--

t--

-

Figure 4.5: A not so simple document example

occupying the whole document area and nothing else. Combinations are endless.

So, this project accomplishes the task of retrieving the contents from a document

image by following a simple principle:

It iloesn't matter what structure i,s bei,ng analyzed, it only matters to retri,eue

the contents.

Contents are any picture, any column, any paragraph which is part of a column,

any image caption, etc. However, creating a way to retrieve the contents that must

be suitable for many document structures isn't a trivial task.

A.L.L The sliding window algorithm

This section presents the actual algorithm created for getting the contents from

an image. For consistency the parts that need to be retrieved will be mentioned

mainly as contents.

31

4.L. Layout Analysis Chapter 4. Implementation

lf one looks randomly at a small part of a document image, that small part will
be either content or not; foreground or background; a region of interest or not.
This means that there is a binary condition - there is one thi,ng or nothi,ng - and

so, it means that for any part of the document, it can be categorized as 1 or 0.

This way, the theory behind the algorithm is a pretty simple concept:

If a document can be d,i,ai,d,ed in seueral small pi,eces and each pi,ece categorized,

as 1 (i,f i,t 'is foreground,) or 0 (i,Í it i,s background), then i,t i,s possi,ble to group blocks

of 1s and hence, outli,ne the i,mage contents.

The algorithm operates as follows:

1. A NzN pixel window runs trough the document from left to right, top to
bottom;

2. For every iteration, if there is at least one pixel within the window whose

color contrasts with the background, then it is assigned the value 1 otherwise

it is assigned the value 0;

3. After all windows are assigned a value, the ones who have been assigned the

value 1 are grouped;

4. Every time a group of 1s is gathered, every window in the group is reassigned

the value 0;

5. When the all windows have the value 0, the algorithrn is flnished.

Because the basis of this algorithm is a window "sliding" through the image,

the algorithm was named the Sli,di,ng W,indow Algori,thm.

The window size

The size of the window is /úrN pixels. Hence, N needs to be set before the

algorithm starts. The problem is that document images may vary in size and so,

choosing a small size for the window might result in the window fitting within
the line spacing. On the other hand, a big window size might result in a window

32

4.1. Layout Analysis Chapter 4. Implementation

bigger than the space separating two paragraphs and so, considering them to be

part of the same content. For this, the window size needs to be carefully chosen

and ideally bigger than the line spacing, and smaller than the paragraph spacing.

OCRFeeder calculates the window size automatically. This calculation is as

follows:

N: Hl60,N € R.,// e N

Where l[is the window size and // is the document image's height. The value

60 was considered to be the best one after testing several values.

Obviously, this is not flawless. It depends if the line and paragraph spacings

used in the document are "standard" and consistent. For example, a paragraph

spacing slightly greater than the line spacing might be enough for a human to

detect the structural separation of contents but small enough to fit within the

window automatically calculated.

Due to this problem, OCRFeeder lets the user decide whether to automatically

calculate the window size or to define it manually.

Binary Representation

Figure 4.6 represents a document divided in windows of size automatically cal-

culated. The figure is 450 pixel high and so, dividing its height bv 60 will result

in 7.5. The resulting window size is correct because it doesn't fit inside the line

spacing but fits inside the paragraph spacing. Although the number of pixels must

be an integer value, the window size is not rounded at this time because further

arithmetic operations will be performed with this value. This way it is more ac-

curate to do the operations with the value not rounded. Figure 4.6 also shows the

windows with the respective values already assigned.

The way to see if a pixel belongs to the images' contents or to the background

is to check if its color contrasts with the background color.

Color contrast needs to exist between the contents and the background of a

document. If the document's background color is white and the text written on it
is light yellow it is difficult for anyone to read it. According to [25]:

33

4.L. Layout Analysis Chapter 4. Implementation

.o
-o
.0
,o
,ü
o'0

.o
.0
0
I
o

.g
o

.0
o

.,t
o

-0I

o
o

0

.l
o
{,Ô

0'd

,o
o

'o
'ú'
.0.
. [.
0'ú"

,0

o

0
à'

_r]
.o

.0.
0

u'0'
'0'
.0.
o'0'
0'

.0.
o'o
ü''0'

o
0'
,,
0
o.
0
ü'
o.
o
0-
ü'
0'
o
0

,0,
o

n

0

'ú
0
ô

t,
'ú
o'o
,0
'o

'o
'ô

!
0

'0

.o
0'ú

.o
0

'o
ô'+

0
ü
0'o

'0
,c
o'0

'0

0'0

0

,0
0
q

"9o-o

.ú

,o
o

,o

.o
0-n

o
o,§

'D
'0
'ü.0

E-0'
'o

.0.

.o.
0,0,

^0.o

0'0
'.n

0
o
0
o
0
o

0
o

o
0
n
0
o
0

0
'ü

0
o'o
'ô

"{to'0

n
.ô
.{
o
o
,Ô

,o
o
{
ó

o

:0
0

,o
o

:0
0

io
o

-o
0
h'0

,0
0'0

,0
o

,o
0

:r
'D'o
,0

,o

'o
o
.s
Ê
6

,t

0'ô
,0

0o'oo
'li :ü'ü" ú
'o o:o o'ô 'ô'ô- ú

00
ü'0
0.0
o.o
00
ú.0
0.0
DO
00
ü'0
0.0
o0

.o
ü'tl
o
.ô
0,Ú

'o
:ô
o
't)

o,Ô
,o
'6
,o

.ô
o'o
'o

,o
+

ô
o
o'o

.o
§,Ú

{
.ô
o'!
st
n'ü
{'n
o
o
h'ô

c
0
ú
'0
'ü

D"ú

0,0

0.ít

'0

ü
'o'ú
'0

:ú
0
'ü
'0

o !ót
0001
ú0,rt
0ü'o!
"o.o o l
000t
.ü 0 ô.I
ilotll
.0. 0 0-l
o000'ô ü'ô ü
00_o0
o o_o.0
rl 0ü0
0'üàú
.t 0.0_ 0
.ú 0.o 0
o0+0
ô'0'o' ü
0000
o oc o
o 00 0

.g
o
ô .!

I
,l

t'l
'I

ô
0

oo
ó"ü-

'ô

0
ü

o

0'ô
.0.
,0.
Íl'n'

,q,
o
0'ü.
0,0

0

o.
0
o'
0'
ú
0
ú'
0
ú
0
ô'
0

I'l
!,l
'I
I
I
I

Il
lr,l

üü
0.0
00

ü
0

0'o lq
'o
lo

0-0

ü
0
0
0

0
0
ü
0

ô
0'ü

"0

'ô

o'ô
o

0
0

.0
o
0'ú

.0

.T
0

o-,t

') .!
I't

"i

,ü
0
'ú
'o
'0
'0
:ú

0
'0

0
,ú

I
0
0
.l
I
I
I

,I
0'0

"00
0'0

,o

lo
:ú
'0

0

"ü
c
o
0'ü

0

o
o

a 'ü

0'h

0
'.0

.q
,Ú

q
.o
o

0"ô

0'ü

0'0

0
lr
0

'ü

.t
0

,ü
.0
.o
0,ú

.0t
0
0
0,ü

0

.l
0
0

.0

.I
0

,0
.0
o

o
§
o,o

0ü
0o

Figure 4.6: Binary representation

34

4.1. Layout Analysis Chapter 4. Implementation

" [..] object detecti,on depends i,n general on the color difference of the object

from the background."

The document images are converted to grayscale before being analyzed. This

is done in order to simplify the calculation of the contrast between the different

elements in the document image. Grayscale images are simpler for this purpose

because they have only one channel (gruy) per pixel instead of the three channels

of RGB images. By observation, the default value that OCRFeeder considers to be

the minimum distance the colors of two pixels is 120. Figure 4.7 shows an example

of two contrasting color with the difference oÍ L20, the background color has the

value 240 and the inner square has the value 120.

Figure 4.7: Example of contrasting colors

Thus, color contrast can be calculated as the absolute value of the difference

between two colors as follows:

D:lA-Bl,Á,BeN

Where Á and B are the two colors to be evaluated and D is the resulting

rlifferr:nce. If D is greater than or equal to I20, the window gets assigned the value

35

4.L. Layout Analysis Chapter 4. Implementation

1, otherwise it gets a 0.

Optimization

At first, from left to right, top to bottom, all pixels inside a window were be-

ing checked for contrast. Since the algorithm only needs to find one pixel that
contrasts with the background, the polynomial time for this, considering a 16x16

pixel window is, at most, 0(256). This approach turned out to be considerably

slow, even when ran on a modern machine.

Figure 4.8: optimization of the function to find contrast within a window

An optimization was needed so the performance wa^s better. Since even â small
picture or a small font size are not likely to occupy only a single pixel, there is no

need to run through all the pixels in a window. Instead, the algorithm checks the

Ir

36

4.1. Layout Analysis Chapter 4. Implementation

pixels within an interval of two other pixels. Figure 4.8 depicts this optimrzatiot',

it shows a window of 16x16 pixels that partially overlays the character A. Each

square is a pixel, the blue dots represent the pixels being checked, the orange dots

represent the ones whose color contrasts with the background.

The resulting polynomial time for the same example is now at most O(25) (the

algorithm stops at the topmost pixel in column 8) because only 25 pixels out of

the 256 are checked. This is clearly a better approach than the previous one.

In the end, a string list with "0" ând " 1" characters is returned which was named

as the Binary Representation Li,st and will make it easier to process and interpret

the contents in the image.

This concludes the explanation of the Sliding Window Algorithm. The next

subsection will explain how the groups of 1s in the Binary Representation are joint.

4.1.2 Retrieving blocks

After having the Binary Representation List (BRL), its information must be

processed in order for it to represent the actual contents in the original document

image. The 1s present in the list must be gathered in groups, this groups were

named blocks. Blocks act as bounding boxes that can be mapped in the image

and will contain its contents.

A block was defined as having five properties. These properties are:

o Start li,ne: the line in the BRL where the block starts (the topmost 1). The

top edge of the block.

o Fi,ni,sh li,ne: the line in the BRL where the block ends (the bottommost 1).

The bottom edge of the block.

o First one: the column in the BRL where the block starts (the leftmost 1).

The left edge of the block.

c Last one: the column in the BRL where the block starts (the rightmost 1).

The right edge of the block.

37

4.L. Layout Analysis Chapter 4. Implementation

o Ertra charge: extra adjustment to include half a window beyond its start or
firrish linc

Figure 4.9 shows a block in a BRL. The procedure to retrieve the block infor-
mation is as follows:

1. Find the first not blank line (that has at least a 1), this will be the block's
start li,ne;

2. In that line, find the index of the first 1, this becomes the first one;

3. Go to the next line and check the index of the first 1:

o If tlrc absolttte valtre of tltc rliffcrr:ncc betwcen this inrlcx anrl th«: .f,rsú

one rs greater than tolerance, then the previous line becomes the finish
line and enters step 4;

o otherwise, if the new index is less than the first one, it becomes the

fi"rst one and repeats this step;

4. Store the block's information and replace the block's belonging 1s by 0s in
the BRL and restart from step 1 until the BRL has only 0s.

The property ertra charge is explained ahead.

The tolerance is a predefined value that OCRFeeder defaults to 3. It means,

that a line only belongs to the block being currently created if the first 1 is not
more than two characters away from the block's current fi,rst one.

After these three properties are found, the last one stlll needs to be found.
This is done by checking the first columns of zeros within the alreacly found súarú

line and fi"nish line and going right from the first one. The value of the last one

will be the index of the last 1 found in the block.

For a better understanding, here's the algorithm applied to the example shown
in Figure 4.9 (all indexes considered start from 0).

The first line is blank and so, the next one is tested:

00001 1 11 1i 111 1 1 11 1 1 1 1 1 1 1 1000

the ittrltrx «rf the first 1 Íourtrl is 4, so tlx:, fi,r'st ort,e rs sct as 4. Next line's first 1

38

4.1. Layout Analysis Chapter 4. Implementation

0 0000000000000000000000000000
1 00001r1111111111111111111000
2 00011111111111 11111111111000
3 000001111111r.r.1111111 1100000
4 0001111111111111111111111100
5 0001111111111111111111110000
6 00t 1 1 111111111 1111111t 111000
7 0001111111.111111111111111000
I 000000000010000001000r.000000
I 0000000000000000000000000000

Figure 4.9: A block in a BRL

index is 3 so, it's less than 4 and l3 - 4l < 3, the fi,rst one becomes 3:

0001 11 11 11 1 111111 11 1 11 1 11000

then, the first t has the index 5 which doesn't modify the current properties:

000001 11 1 11 111 111 1 11 11100000

Lines 4 and 5 have their first 1 at the same index of 3, which is equal to the current

fi,rst one and so, everything stays the same. Moving on to line number 6, the index

of tlrc first 1 is 2 which, ar:cordirrg to the rules, trt-,cornes thc new first one:

0011 11 11 11 1 111 11 1 1 11 11 1 11000

Line number 7 also leaves the properties as they are but the index of the first 1

in line number 8 is 10. Since 12 - 101 : 8, is not interpreted as being part of the

block and so, the previous line (number 7) becomes the fini,sh li,ne.

At last, all columns from the value of the first one and delimited by start li,ne

and fi,nish line arc checked until the first blank one is found. This occurs at column

26, so the last one is 25.

At this point, the block already ha^s the main four properties and so, it can

alrearly rk:finc a bounrling trox. Evcry bkrck built is appen«lerl to a list contaitting

39

4.1. Layout Analysis Chapter 4. Implementation

all blocks retrieved so far. All " 1" characters within the block's area in the BRL are

then replaced by " 0" . This is obviously done because the algorithm for retrieving

the blocks goes from top to bottom, left to right (starting from the upper left

corner) and restarts every time a block is retrieved. If that block's belonging 1s

were not replaced by 0s, it would find the same block again.

The extraction of blocks from the BRL is just one part of creating the blocks.

After having the list of all blocks, operations will be performed over it so all blocks

get the right interpretation.

Extra charge

Characters aren't all the same height and this reflects in the BRL. In typographv.

characters have identified distances and lines such as the baseline, ascent, cap-

height or x-height [26] like shown in Figure 4.10.

Cap-height Ascend

x-height

Baseline

Descent

Figure 4.10: Distances and lines in typography

This will result in something like the line 8 in Figure 4.9 because a line of
windows may have its lower edge ending at the baseline of a paragraph's last line

that may have characters like "p", "j", "ç" and thus causing the next line to have

a smaller number of 1s. It is also truth for characters in the paragraph's first line

that may pass the x-height like, for example, "t", " 1", uppercase characters and

characters with rliacritics likc "á", "ii", ctr;.

40

4.1. Layout Analysis Chapter 4. Implementation

0 1 1 1 1 1 1 1 1 1 1 1 1
11 1l.'

0 Í 00 0 0 0 0 0 0 0

Extra charge

Figure 4.11: An example of extra charge

Figure 4.11 shows an example of the need of ertra charge. The character "p"
in the word "example" passes the bottom line and stays in a line that is not

considered as part of the block - the first 1 is too far from the block's first one. To

solve this, ertra charge is set so this block will include half of the line under the

fini,sh li,ne - like shown by the light blue rectangle. In this example the window is

too small which makes the part of the character " p" occupy the whole ertra charge

height, normally, characters' parts do not occupy all that height.

So, the need of ertra charge depends on the window size, font size, space from

the top where the paragraph starts, on the font family (fonts descents and diatrics

dimensions vary), etc.

Ertra charge can be set with constant values that are interpreted as follows:

c TOP: Takes the half of the line after the block's fi,ni,sh l'ine;

o BOTTOM: Takes the half of the line before the block's first li,ne;

o BOTH: Takes both the half of the line before the block's first line and the

line after the block's .fini,sh li,ne;

t NONE: Does not take anything

With the definition of this special property, the block structure gets an extra

flexibility. Figure 4.12 shows the block presented previously in Figure 4.9 this time

with a legend to help understand what was told about the block's structure. This

concludes the presentation of the block.

4L

4.L. Layout Analysis Chapter 4. Implementation

Start line First column of zeros

0 0000000000000000000000000000
1 0000111111111111111111111000
2 00011 1 L11111111LLt 11L111L000 Last one

3 0000011111111111111111100000
4 0001.1111L11u.111111111111100

First one, 000111111r111r111111r1110000
6 00111111111111111111111L1000
7 0001111 11111111 11111,11111000
I 0000000000100000010001000000
I 0000000000000000000000000000

Finish llne Extra charge

Figure 4.12: A simple block with a legend

42

4.1. Layout Analysis Chapter 4. Implementation

Operations over the blocks list

Atthough already presented, ertra charge is not set for the respective block right

after it is created. It is set in the first operation performed over the blocks list. This

operation is performed by the function extendBlocksByBelongingSingles. What

it does is that it runs through the list and whenever a si,ngle block ís found, and

depending on its position relatively to another block, the latter will be expanded

to include the single one. A single biock is a block that occupies only one line in

the BRL. This can occur because in fact there are contents that occupy only one

tine (for example one line of text, an horizontal line separator or an image), or

because of something like the case mentioned a.s an example for the extra charge -
a line in the BRL originated by parts of characters. This function deals with the

latter case.

To expand the blocks, the block class has four methods that increase the finish

line, decrease the start line, extra charge the top and extra charge the bottom.

Whenever it finds a single block it gets its surrounding blocks - blocks that start

one line after or finish one line before and horizontally contain the single block. For

example, the ones present on the already mentioned Figures 4.L2 and 4.11. The

surrounding blocks are returned as the preceding and the succeeding blocks in

relation to the current single block. The following list describes the interpretation

of the results:

o If there is a preceding and a succeeding block then extra charge the bottom

of the first and extra charge the top of the latter. After this, check if the

preceding and the succeeding blocks can be joint and if so, join them.

o If there is a preceding block but no succeeding block, increase the preceding

block's finish line by one and delete the single block;

o If there is a succeeding block but no preceding block, decrease the succeeding

block's start line by one and delete the single block;

In the first case present in the list, two blocks can be joint if either the first
one ot the last one pÍoperties on both blocks have the same value and one block

43

4.L. Layout Analysis Chapter 4. Implementation

vertically ends where the other starts. The function to join the two blocks sets the
preceding block's fini,sh li,ne and first one with the value of the same properties

of the succeeding block. After the blocks are joint, the succeeding block must be

obviously removed from the blocks list.

Because several blocks may be joint, the function first performs a cleaning

action by removing any blocks from the blocks list that end up contained in other
blocks.

Whenever an extension or unification occurs, the function's main loop starts
from the beginning because these actions originate new blocks that might need to
be extended themselves.

Once the extension of blocks is done. The function unifyBlocks will unify any

blocks that need to be joint. So, the functions first checks each block getting its
surrounding blocks and joining them with the block if they can be joint. Like the
previous function, this needs to start aII over again whenever an unification occurs.

When there are no blocks left to be joint, for each block in the list, the func-

tion gets the blocks overlapped by it and joins them, deleting the block that was

overlapped. Again, when two of these blocks are joint, the blocks list is checked

again from the beginning.

Every content in the document image is now represented by a block. The block

class has a method called translateToUnits that given the window size, returns

the upper left and lower right corners, representing the block's bounds, in pixels.

This is done by multiplying the block's main properties - start and finish lines,

first and last ones - by the window size. Like mentioned before, the extra charge

takes half of the window size.

With the actual size of each block bounds in pixels, it is possible to clip each

block's area from the original document image and then perform other operations

to retrieve more information about the image clip. This finishes the Layout Anal-
ysis section.

44

4.2. Recognition Chapter 4. Implementation

4.2 Recognition

This project does not try to classify each retrieved part of the document with

its logical role on it, that is, it does not try to classify contents as being the

abstract, left column, logotype, etc., instead, it only classifies the retrieved parts

as containing either tert or graphi,cs. OCR engines play an impoúant role in this

task and so, they're usage/configuration together with the classification of contents

is explained in this section.

4.2.L OCR Engines

Like mentioned before, this project does not supply any OCR engine. The idea

is to use any OCR engine that is installed in the system and can be used from the

command line.

Configuration

The engines conflguration should be independent from the source code, that

is, the configuration should involve no changes in the source code. For this, the

properties that are present in most OCR engines were enumerated and can be

configured using XML files. These XML files must reside in the engines folder

under the configurations folder of OCRFbeder - .ocrfeeder - within the user's

home in the system. Considering the Tesseract OCR engine, the XML files should

look as follows:

<?xml version :" 1..0" encoding:"Lll[F-8"?)
<engine>

<name>t e s s e r ac t </name>
<image-format >TIFF</im age-fo rm at)
(engine-path)/usr / bin / t esseract </engine-path >
<arguments>$IMAcE $FILE ; cat $FILE. txt ;</arguments>
<failure-strir-gl>

</engine >

The elements under the document element engi,ne are the most general prop-

erties that can be found in the engines based on what..was observed and the

45

4.2. Recognition Chapter 4. Implementation

Open Source engines tested. The name element contains the engines descriptive

name. All the engines tested harl a defined input image format so, the element drn-

age-format defines this format that must be the image format's common extension

name, for example PBM, TIFF, JPEG, etc.

The path to the engine's executable in the system must be also provided by

using the element engi,ne-path.

In most cases, the engines usage need arguments and this can be specified

by the arguments element. Configuration arguments can be used as well as shell

script code but usually, only one argument is needed - the path to the image to be

processed. Since the purpose of XML here is to abstract the engines configuration

and the image path that the engines must process is something that varies, two

special variable names can be used inside the arguments element, those arc $IM-
AGE a;nd $FILE. The $INIAGE varíable will be replaced by the path to the image

that needs to be processed; SFILE will be replaced by a temporary file name.

In this project the text recognized by the engines must be returned to the

standard output like most engines do and so, usually only the §IMAGE variable

is needed. Nevertheless, the engine used as an example above needs the $FILE
because it does not return the text to the standard output, instead it will generate

a text file with the recognized text which needs to be then returned to the standard

input, hence the need the use of the command caú.

To end, some engines replace unrecognized characters by a character or set

of characters, for example, the engines Ocrad and GOCR replace unrecognized

characters with "-". This property was called failure string and can be configured

using f ai,lure -string.
OCRFeeder sets default values to some elements if they are not used. Those are

'image-formaú (defaults to PPM) and fai,lure-stri,ng (defaults to an empty string,

thus it is only present in the example to show it can be used), the rest need to be

included in the XML.

Recognition

The engines are represented by the class Engi,ne that provides methods to use

the engine. The way to use an engine is:

46

4.2. Recognition Chapter 4. Implementation

o Set the target image;

o Perform operation over that image.

The read method is the one that performs the actual optical character recog-

nition over the given image. This method replaces the $IMAGE and $FILE -
in case they are present in the arguments - with the path to the image and a

generated temporary and unique file name, respectively. The generated file name

will have the temporary folder path in the system has its prefix so it is created

under it. The temporary folder is configured in the project preferences, explained

in Section 5.3.5.

After the arguments replacement, it will run the command (the path to the

engine's executable concatenated with the arguments) like if it was in a terminal

and get its output text. The file and the image are then deleted from the system

and the output text is encoded in the UTF-9 character set and returned.

Using XML and using all the mentioned properties, especially the arguments

allowing the engines' configurations and shell script code, make it a flexible wây

of defining an engine.

4.2.2 Classification

Getting the recognized text is the first step to perform the classification. The

classification of the document contents as either text or graphics is based on the

analysis of the output text from the used OCR engine. It was observed by analyzing

an image containing graphics and no text that the resulting text from the used

OCR engine wa,s none or a,ppeared to be jammed in the way that it had more

spaces, punctuation characters and failure characters (if the engine has it).
The classification algorithm first removes the leading and trailing white spaces

(new lines characters, spaces, tabulators) - this is called the stripped text in op-

posite to original text. The contents are classified as graphics if any of the cases

in the following list apply, and as text otherwise:

1. The stripped text is an empty string - contains no characters at all;

47

4.2. Recognition Chapter 4. Implementation

2. The engine contains failure characters and the number of failure characters

in the stripped text is more than half of its length;

3. The stripped text's length afber replacing any existing spaces, punctuation

characters and failure characters (in case the engine has such) is less than
half the length of the original stripped text;

At this point, having the recognized text, the type of content and the dimen-

sions and location of each of the contents, it is already possible to generate a

document that would could look like the original document image. However, sev-

eral other important properties - like the font face, size, alignment, etc. - would be

left behind when they constitute a vital information to produce a fair conversion

of the document.

4.2.3 Text properties recognition

ln this project, the considered text properties were:

o Fbnt face;

o Font size;

o Font style;

o Font weight;

o Text justification;

o Line spacing;

o Letter spacing;

o Text angle.

The font face, style, weight, letter and line spacing and the text justification

are not automatically set. To find these properties is not on the objectives of this
project and none of the OCR programs used was able to recognize such properties.

48

4.2. Recognition Chapter 4. Implementation

The rest of the properties - font size and text angle - are automatically detected

and set by analyzing the image clip for the current block. The next paragraphs

explain this analysis.

Font size detection

For the font size, at the beginning a simple approach was thought: the font size

wâs approximately the size of the image clip height divided by the number of lines

in the recognized text.

This turned out to be less than efficient because of two problems, 1) the spaces

from the edges of the image clip to its actual text content, 2) the line spacing

was not considered and thus, would influence the text size. A new approach was

needed.

Thus for the new approach, the letters present in the image clip are actually

measured. This is accomplished by checking the colors of each line (from top to

bottom) of 1 pixel height and with the same width as the image. If the line contains

any pixel whose color contrasts with the background's one, then it increases the

font size; if the font size is being increased (if the previous line increased the font

size) but the current line has no pixels contrasting with the background color, then

the current font size is stored in a list and the next time the font size is increased

it will start from 0. The background color is considered to be the most common

color in the image clip the one that most pixels have.

In the end, there will be a list with the font sizes. The arithmetic average is

then calculated the values of the list; the value chosen for the font size is the one

present in the list which is greater than or equal to the calculated average value.

Figure 4.13 depicts this algorithm for a better understanding. The detection

starts at the vertical beginning of the text, thus the 1 pixel line starts at the top of

the character "T" (in the word "This") and the font size gets the value 1, it goes

down until the vertical end of the character "p" (in the word "example"); after

this, the next lines have no pixels that contrast with the background color until it
reaches the top of the letters of the second sentence where a new font size starts

being calculated.

49

4.2. Recognition Chapter 4. Implementation

This is an exam ple

srze an etter s acr n
are ca CU atec

Figure 4.13: Font size and letter spacing detection

It's easy to see from the blue (font sizes) rectangles that the sizes of each text
line differ and a first approach to get a balanced result was to calculate arithmetic
average of the sizes in the list. However, characters like "i" or characters with
diacritics can originate very small sizes in the list that is, if there is no character

higher in size than, for example, the letter "á", its diacritic will be recognized as

if it was a line due to the space between it and the actual character.

As concluded in the tests (see Chapter 6), these sizes, although slightly different

from paragraphs of the same original font size, are very close to the original ones

and correct in most cases.

At this point, the sizes are still measured in pixels and must be converted to
points. This is done by converting the pixels to inches (see Section 4.3.2 further
in this chapter) and then dividing the value by 72 - since this is the value used

in the PostScri,pt conventions, also called DTP point (DeskTop Publi,shi,ng point)

[27).

50

4.2. Recognition Chapter 4. Implementation

Text angle detection

The used OCR engines can recognize text even if it isn't 100% horizontal. How-

ever, if the angle is not just slightly greater or less than 0, the engines cannot

recognize it. So, the purpose of detecting the text angle is to rotate the image un-

til the text appears to be horizontal, use the engine to read it and when converting

it to an editable format, rotate the text to the original angle.

Consider the Figure 4.I4a with the black text being the the original one. The

fastest way to rotate it until it gets horizontal is to rotate it negatively (clockwise).

What's needed to be known is when to stop rotating it. The gray text was

rotated a number of degrees clockwise and as the orange line shows, its upper point

is lower than the original text's upper point (shown by the blue line). Continuing

rotating the text will end up as shown in the Figure 4.L4b where the upper point

of the text is higher (shown by the red line) than the previous upper point when

the text was in the horizontal. As a conclusion, the text must be rotated until the

maximum distance between its upper point and the image top.

The angle chosen to rotate the text in each iteration was 5 degrees because the

used OCR engines can read the text if it has a positive or negative angle of 5 and

the calculation would take too much time performing unnecessary checks if the

angle was 1.

However, if the text in the mentioned example was in the same angle but written

from top to bottom, rotating it with this algorithm would put it upside down.

Similar situations would occur if the text was written in other directions. Maybe

by checking the output text of each rotated image could be a good way to see

which of the rotations was correct but the problem is that performing OCR on

upside down text results in some valid characters but recognized incorrectly, that

is, a character "M" may be recognized as â "\!r" if it's upside down, or an "E"
might be recognized as à"3", an "i" âs a "!", etc.

So, although the rotation could be automatically detected, it would need the

user to manually choose which original text direction should be assumed before

the rotation starts. On top of it, rotating a text frame and placing it in the desired

point of the sheet using the PyODT API turned out to be too complex and with no

51

4.2. Recognition Chapter 4. Implementation

\@
§

toFsu

..'u#'
'li+"TP-r\ tL -

o-

I§
õhE
f roo

rn
I]

ple
Êle

Figure 4.14: Text angle detection

satisfatory results. Plus, in what comes to other formats like HTML, text rotation
is not supported. Due to all these facts, the rotation is able to be automatically

detected in OCRFeeder Studio but just to demonstrate the rotation algorithm,
rotation as a fully implemented feature was abandoned.

52

4.3. Content representation Chapter 4. Implementation

4.3 Content representation

4.3.L Data boxes

To keep all the properties mentioned in the previous section, a more advanced

structure than the blocks previously presented was needed. This new structure

was called data bor. A data box acts as an enhanced version of a block because it

keeps the information about the bounds of an area like a block does but includes

advanced information about the type and properties of the content it represents.

A data box contains eight properties presented in the list bellow:

o r: the horizontal distance of the box's upper left corner from the left edge

of the document image;

o y: the vertical distance of the box's upper left corner from the upper edge

of the document image;

o wi,d,th: the width of the bounding box it represents;

o he'ight: the height of the bounding box it represents;

o i,mage: the image clip of the original document image defined by the box's

ârea;

o type; whether the box represents text or graphics in the document image,

by having the values TEXT-TYPE or IMAGE-TYPE, respectively;

o tert data: corúains some information about the font style, size and text angle;

o tert: the recognized text from the image clip;

Of course, the text and text data properties are only needed in case the box

represents text.

53

4.3. Content representation Chapter 4. Implementation

The text data property is represented by a class that contains many information
useful to represent the text as closer as possible to the original one present in the
document image. The following list shows a list of the properties the text data
holds:

o face: the type font face;

o s,ize: the font size;

o li,ne space; the line spacing;

o letter space'. the letter spacing;

o justi,fi,cati,on: lhejustification or text alignment;

o stgle: the font style like italic or normal;

o wei,ght: the font weight like bold or oblique;

o angle: the angle of the text.

With the data boxes, all the outlined contents present in a document image are
represented but there is one last set of properties that also define the document -
the page dimensions.

4.3.2 Page data

Until this point, all that was mentioned was the contents of a document image
or page but the page itself, particularly its dimensions, also represent an important
property of the document. A magazine page may have different dimensions than a
book page, a poster or a newspaper and so, to fairly convert the document image

it is necessary to also keep the original page dimensions.

This way the properties present in the page data are:

o p'irel wi,dth: the width of the image in pixels;

o pi,rel hei,ght: the height of the image in pixels;

o i,mage path: the path to the original document image in the system;

54

4.4. Exportation to editable formats Chapter 4. Implementation

o w'idth: the width of the image in inches;

o hei,ght: the height of the image in inches;

o resoluti,on: the image resolution ín dpi, (dots per i'nch);

o d,ata bores: a list with the data boxes that belong to the page data.

Resolution

The resolution is an important property as it will be used to calculate the pic-

ture's print dimensions (the real dimensions). In certain image formats, the reso-

lution is embedded on them and can be easily retrieved (for exa,mple in the PNG

format) whereas others do not include this information (like the PNM format).

For the latter, a resolution value of 300 dpi is assumed.

Hence, to find the image's real size in inches, the image's width and height in

pixels are divided by the image's resolution. For exa.mple, an image with a height

of 2000 pixels and a resolution of 300 dpi is approximately 6.67 inches high. The

inch measurement unit was chosen instead of, for example, the centimeter, because

the resolution is given in dots per inch and so, by using the inch, no conversions

are needed at this point.

With the definition of the page data and the data boxes, the document can be

fairly represented as they store all the needed information to finally generate an

editable document format. This concludes the explanation of the main structures

created for this project.

4.4 Exportation to editable formats

In this section, the actual conversion of the the document image to an editable

document format is explained. For the first version of this project the exporta-

tion/conversion can be done to two formats - ODT and HTML.

oô

4.4. Exportation to editable formats Chapter 4. Implementation

4.4.L Exportation to ODT

ODT is the primary exportation format of OCRFeeder. The idea is to produce

an exact ODT version of the document image from the information that the page

data (and its data boxes) supplies. Two main kinds of objects are created in
document, text frames and images, depending whether a data box has the type
text or image, respectively.

The text frames will obviously have the text present in the data box as well as

all the text properties mentioned before (font face, size, style, etc.). The images

will be simply the image clip that the data box outlined.

For any data box, the way to place them is the same and very straightforward.
An image or text frame in the ODT document are placed according to the cor-

responding data box's variables r and g afier being converted to the print size

using the image's resolution. For example, if a data box's r and g variables are

respectively 200 and 100 pixels and the image's resolution is 300 dpi, then the text
frame or image that the data box represents will be placed at 0.67 inches from the
document's left edge and 0.33 inches from the document's upper edge. The data
box's width and height are analogously calculated from the same property of the
text frame or image.

4.4.2 Exportation to HTML
The exportation to HTML is a little different than the ODT one. To begin,

instead of generating only one file, this exportation will create a folder with the
name given by the user and inside the folder there will be the HTML files that
represent the exported pages, a style sheet file and a folder with images if the doc-

ument has such. The generated HTML files are named like i,nder.html,, pageL.html,

page?.htm[and so on. Every HTML file gets the elements' styles from a generated

C^9,S file calles style.css. If the document contains any images, those will be inside
a folder called 'images.

The text contents originate paragraphs (the tag <p>) and the graphic contents

originate images (the tag). Both are placed in each HTML page in an

absolute position way, this will make the paragraphs and images behave similar

56

4.4. Exportation to editable formats Chapter 4. Implementation

to the frames in the ODT files (placed independently from each other). However,

since the contents are placed using real sizes and the HTML pages do not relate

to resolution, the results are not as good as in the ODT exportation.

Both the ODT and the HTML exportation deal with the styles in order not

to repeat unnecessary information. For example, if two paragraphs are added

and their font face, size, line spacing and other properties are equal, than this

information is stored only once. In the HTML this is done by creating a CSS class

and in the ODT this is done in the paragraph class.

By not repeating information, not only space is saved but also if the user edits

a parâgrâph style, the changes are also honored by all elements that implement

the changed style.

4.4.3 Adding support for more formats

A class called DocumentGeneration was created and has all the main methods

(some of them are abstract methods) necessary to perform export the page data

to a document format. This class was created to make it easy to implement other

exportations, this way, all classes that perform exportation should be subclasses

of this main class.

In further versions of this project, main document formats used widely should

be supported.

57

Chapter 5

OCRFeeder

58

5.1. Design and usability Chapter 5. OCRFeeder

This project can actually be used in two ways, it can be used from the com-

mand line for automation and quick conversion of document images and it can

be used with a graphical user interface. OCRFeeder Studio is the main part of

this project featuring a graphical user interface. The GUI not only lets the user

choose the document images in a graphical way but also allows him or her to re-

view and edit what the document layout analysis algorithms have done before the

actual document conversion. Hence, the word "studio" was added to the name in

order to distinguish the two ways of using the project. All the features present in

OCRFeeder Studio give the user extra freedom to control what's being done on

the conversion and hence, produce a better conversion.

This section presents all that a user can do with OCRFeeder Studio. Usability

was also a big concern while projecting the graphical user interface and so, some

concepts about it are also presented.

5.1 Design and usability

Before actually start building the GUI, it was designed using paper prototyping

techniques. Paper prototyping have been used since the 1980s to design and test

user interfaces [28]. It consists in drawing the GUI in paper dividing the compo-

nents. This way, GUI changes and replacements can be reviewed easily. Figure

5.1 shows the final paper prototype for the user interface of this project.

The GUI design and behavior of OCRFeeder Studio was built based on the

GNOME Human Interface Guidelines [29] (GNOME HIG). Like the name sug-

gests, GNOME HIG is a document that describes how to create graphical user

interfaces following the principles and philosophy of the GNOME interface. By

following the GNONIE HIG the interface will look and behave in a familiar way

making users adapt to it fa,ster. The interface will adapt to the user's custom

properties like desktop themes, fonts, colors and be accessible even to users with

special needs.

59

5.1. Design and usability Chapter 5. OCRFeeder

Figure 5.1: OCRFeeder Studio final paper prototype

60

5.2. Interface overvrew Chapter 5. OCRFeeder

5.2 Interface overview

The user interface was thought to allow the user to add the document images,

perform the layout analysis automatically and manually edit the layout analysis

results. To perform this, three main areas were projected:

o The document images area;

o The selectable boxes area;

o The box editor area.

5.2.L Document images area

Like it is shown in Figure 5.2, the left pane of OCRFeeder Studio is the document

images area. That's where all added document images will take place and are

represented by a thumbnail version of the original images. The user can drag the

images within the area to reorder them, that will be the order of the pages when

the images are converted to an editable document format.

When the same image is added more than once, OCRFeeder Studio acts as

if different images were added but the added image's nâme will have a suffix in

order to distinguish the images. For example if the image pi,cture.jpeg is added,

the name will be p'icture.jpeg but the second time the user adds the same image,

the name will be picture.jpeg (2).

Pressing the right mouse button when an image is selected on the document

images area pops up a menu to remove that image. The program will ask for the

user's confirmation and if the answer is affirmative, the image as well, as all the

work done on it, will be removed.

5.2.2 Selectable boxes area

When the user presses one of the images thumbnails, the original document

image will appear in the area in the center. This area is called the selectable bores

area because that's where the user can see the data boxes mentioned in Section

4.3.I. The data boxes are represented a-s rectangles that outline the contents.

61

5.2. Interface overview Chapter 5. OCRFeeder

Document images area

Àr. C, trml.

I
I

need
need

T

Hglr

gü

..t.,...
t.,'l:t;t

oBar-íl!l.façf
i

_l
nPnotaL_ffill

F9

,ffi OEe | *ai lrrnrd

1tr |t!$
)ú didlln.

Selectable boxes area

Box editor area

Figure 5.2: OCRFeeder Studio main areas

62

5.2. Interface overview Chapter 5. OCRFeeder

Since there are no widgets in GTK that offer the selectable rectangles func-

tionality, a fi.rst version of the selectable boxes area was implemented using Cai,roL

(particularly the Python bindings). Although Cairo provides a good way to create

and manipulate vector graphics, that control was too low-level to what was trying

to be accomplished. Hence, this first version didn't offer much of the functionalities

that are now present in the selectable boxes but then a better way to develop it
was found in Goocanvas. Goocanvas saved much work that would be needed using

Cairo because it keeps track of any object present in the Canvas and offers many

usefrrl methods over them (see Section 3.2.4 for an overview of the Goocanvas'

Python bindings). This final version of the selectable boxes area allows to set a

background image and create selectable boxes - rectangles - that can be selected,

dragged, colored and delete.

Like mentioned before, the selectable boxes represent the data boxes and hence,

when the user clicks a selectable box, the box editor that corresponds to that data

box is shown on the box editor area.

5.2.3 Box editor €rrea

The box editor shows every property present in the data box. The whole area is

divided in frames that can be identified by their title label. From top to bottom,

the first frame contains the type of the window, pressing lhe i,mage radio button

will change the respective selectable box's color indicating that the data box is of

type image and the Tert Proper-ti,es frame will be grayed out not allowing the user

to use the text properties; tbe tert radio button will change back the selectable

box's color and the Tert Properti,es becomes sensitive again. In Figure 5.2 the text
boxes are colored blue and the box outlining the album cover is colored gIeen.

After that comes the image frame, the only one without a label because the

image contained in it suggests what it is - the image outlined by the data box.

This image is shown in its original size and works as a preview of the image.

The frames that follows the image one is the box's bounds frame. In it, four

spin buttons control the box's x, y, height and width properties. The Interactions

with these buttons will be immediately reflected in the respective selectable box

rCairo: a library that provides a vector graphics API - bitlup://wvw.cairographics.org

63

5.3. Features Chapter 5. OCRFeeder

in the selectable boxes area.

Finally the Tert Properti,es frame controls the data box's text properties but
also lets the user set them automatically by choosing the desired OCR engine

from the combo box and pressing the OK button. Under the combo box and the

OK button there are three tabs that show the data box's text content, the text
style and the text angle. In the text content there is a text area where the text
recognized by the OCR engine will be and where the user can edit it. The text
style contains other three frames that allow to set the font face, text alignment

and the letter and line spacings. On the angle part, the text angle is shown as well

as a button to detect the angle automatically. Due to the problems mentioned in
section 4.2.3, the angle can be detected only for text that is written from the lower

left to the upper right of its bounding box.

5.3 Features

Although the functionalities above also represent features, they were explained

outside of this section because they constitute the program's main action areas.

This section presents every other feature in this project.

5.3.1 Adding document images

Adding a document image is normally the first thing a user does when using

this project. Images can be added in the most common image formats like JPEG,

PNG, PNM, TIFF, etc.

One image can be added at a time selecting Add Image from the File menu, or

all the images in a folder can be added selecting Add Folder from the same menu.

5.3.2 PDF importation

Sometimes scanned documents images are converted to PDF documents and a

user might want to make an editable document from them. For this purpose, PDF

importation was implemented. The importation uses the Ghostscript command

line tool to convert the PDF documents into images and then adds the images

64

5.3. Features Chapter 5. OCRFeeder

like they were ordinary images. PDF documents can be imported from the menu

Import PDF of in the Fi,le meut.

5.3.3 Exportation

The exportation to the supported document formats explained in Section 4.4

can be done using the Erport.. menu (in the Fi,le menn) that pops up a dialog

with the exportation formats in a combo box.

Since ODT is the primary exportation format, the user can quickly export the

document images to an ODT file by using the corresponding button in the toolbar.

5.3.4 Project loading and saving

There might be a situation where the user is using this project to develop an

editable document from many document images. This task may take some time

and the user might want to close the progrâ,m but be able to continue the work

later. To accomplish this, a file format called OCRF was created that represents

the project that the user was working otr.

OCRF

The OCRF format is nothing more than a zip file that contains all the infor-

mation about the document images, page data and data boxes that the user wa,s

working on. The actual document images are included in the file so the user can

use a project file in a machine that does not have the images used in the project.

For example, a user is using OCRFeeder at work, saves the project and wants to

continue working on his or her computer at home which doesn't have the document

images used in work.

AII the data about the pages, data boxes and images' paths is stored in an

XML file called project.rml.

Saving the project

When saving the project all properties of each page data and data box object

are stored in a Python dictionary which is then converted to XML. p61 sxample,

65

5.3. Features Chapter 5. OCRFeeder

the data box's method convertToDict returns a dictionary whose keys are the
names of the variables x, y, width, height, type, text and text-data and the values

are the values of the respective variables in the object instance. The text-data
key in the dictionary will be itself a dictionary a,s a result of the same method
convertToDict but from the TextData object instance.

The class responsible for saving the project is the ProjectSaver and after
calling the methods to convert the mentioned object instances to dictionaries,

it uses its method serialize which converts the dictionaries and the document

images information to XML and finally creates the project file.

The generated project.rml files should look like the example present in Ap
pendix A.

The i,mage elements hold the original and embedded names for the images, the
original name is the path to the image in the user's system, the embedded name

is the image's name in the i,mages folder that is included in the zip file.

Loading the project

The way to load the project from a project fi.le is pretty much the opposite of
saving it. The Projectloader unzips the project file in the configured temporary
folder, runs through the XML file and instantiates the page data, data box and text
data objects described in the file. To instantiate the page data object, it matches

the 'image-path element with the respective i,mage element. If the origi,nal-name

element of the latter contains an existing path in the current system, that path

is used as the page data's image; if the original path doesn't exist, the embed-

ded image's name is added to the path to the unzipped project folder and used

instead. This grants the possibility of using the proiect file in different machines

like mentioned before.

Appending a project

It is also possible to apppend a project. When a project is appended, all the
project information is loaded but instead of substituting what the user is doing,

it will append the images and the information to the already existing ones in the
current working project. A project can be append using the menu Append project

66

5.3. Features Chapter 5. OCRFeeder

in the File mem.

5.3.5 Preferences

Like many other graphical programs, OCRFeeder Studio also allows to set the

program's preferences. The preferences dialog is called from the edit menu in the

menu bar. The diatog is divided in tabs, in the General tab, the temporary folder

and the window size can be set. The temporary folder is the folder used for storing

temporary files like image clips. The window size is related to the Sliding Window

Algorithm mentioned in Section 4.1.L, it allows to set a custom window size in

case the automatically calculated one doesn't fill the user's needs.

Figure 5.3: Preferences dialog (appearance tab)

In the Appearance tab (see Figure 5.3), the selectable boxes' fill and stroke

colors can be set for the different types of boxes.

The Tools tab allows to set the path in the system for the Unpaper too12 as

well as the favorite OCR engine. The favorite OCR engine is the engine that will

be used to recognize the text when the layout analysis is performed.

2For an overview of Unpaper, consult the subsection 3.2.9 for an overview of Unpaper

I!
I
I

TelC fi[color

Tort stroke color

lmage fill color

lmage stroke color

§elect boxcr colog
Appearance

@§ancel Oqr

67

5.3. Features Chapter 5. OCRFeeder

5.3.6 Edit page

Figure 5.4: Paper sizes dialog

To join documents with different page sizes or simply convert the documents

with a custom page size, the user may want to change the images' corresponding

page size. This can be done by editing the page from the Ed,i,t page menu in the
Edit merut Selecting this menu will pop up a dialog (see Figure 5.4) that allows
choosing a standard paper size or set a custom one and affect the currently selected

image or all images.

5.3.7 Delete images

The user can delete the currently selected image by clicking it with the second

mouse button or using the menu Delete page from the Edi,t menu. AII images can

be deleted at once by using the menu Clear project under the Edi,t menu.

5.3.8 Zoorn

In the menu V'iew, the user can decrease and increase the zoom or set the zoom

to be the normal size.

68

r:a içr,t[t I ;H ê

@Çancel gsx

O Current

o All

a

5.3. Features Chapter 5. OCRFeeder

The zoom can also be quickly increased and decreased using the corresponding

toolbar buttons or by using the keys * and - when the selectable boxes area is

focused.

5.3.9 OCR engines

(a) OCR engines dialog (b) OCR engine edit dialog

Figure 5.5: Example of the OCR engines dialogs

Apart from the XI{L files, the user can also create, edit or delete the OCR

engines from the graphical interface. This can be done using the menu OCÀ

Engi,nes from the ?ools menu. The dialog that pops up shows a list of the existing

OCR engines (Figure 5.5a) with add, edit (see Figure 5.5b) and delete buttons.

The creation and edition dialogs contains text entries that represent the XML

elements explained in the 4.2.1.

5.3.10 Unpaper

The Tools menu also contains a menu called Unpaper that provides an easy way

of using the command line tool with the same name. The main filter utilities of

Unpaper can be easily set in the dialog but an extra text entry can be also used to

apply extra options. Extra options should be used like they would the command

i Cait

i +ada

,ocR

Engine

tessêrâct

gocr §Delete

Oçtot.

tessêrect

TIFF

/usr/bin/tesseract

$li/tAGE $Fll-E; cat $FILE

Namê

lmage format

Éeilure string

Engine Path

@eancel Oqx

Engine

69

5.3. Features Chapter 5. OCRFeeder

lÉ l$rrr r.râ.ur. ,
^.r

Prerview

@Çancel Oqr

Et Use

,glack

€)Arâ

O custom

rO None

,-Gray Hher

O Defaut

O Custom
lo None

Figure 5.6: Unpaper dialog

70

5.3. Features Cha 5. OCRFeeder

line and in case any of the main filters is used as an option, it will override the

ones set directly from the widgets. As shown in Figure 5.6, the user can preview

the changes that Unpaper does to the image before applying them.

5.3.11 Layout analysis and OCR,

The layout analysis and optical character recognition can be performed on the

currently selected document image by using the toolbar's first button. When the

user presses this button, a progress bar is shown during the time the layout analysis

and optical text recognition occurs. This time depends of the complexity and size

of the image.

71.

Chapter 6

Testing

72

6.1. Features Comparison Chapter 6. Testing

In this chapter, different types of documents are tested using OCRFeeder Studio

and the results are commented. In what comes to Layout Analysis, the tests are

not easily measured or numerable. For exa.mple, in a system to perform only

OCR, the tests could be measured by dividing the number of characters or words

recognized correctly by the total number of characters or words. In this project,

rather than measuring the tests anyhow, the tests are commented according to the

page segmentation accuracy, problems, font size detection, etc.

The following sections present the results obtained and comparisons with other

existing solutions. These results refer to the automatic layout analysis and recog-

nition not being present or considered, obviously, any manual correction.

The chosen solutions for the comparisons âre:

o Nuance OmniPage Professional 16;

o SimpleOCR 3.1;

o ABBYY FineReader 9.0 Professional;

o Vividata OCR Shop XTR;

o OCRopus (SVN version from November 15th 2008).

6.I- Features Comparison

This section compares the features of the chosen solutions. The criteria consid-

ered for this comparison is:

o Li,cense: the license under which the software is published;

c Operati,ng Systems; the operating systems on which the software is available;

o Manual Zoni,ng/Coryecti,on: whether the user can manually edit the regions

of interest;

73

6.2. Tests Chapter 6. Testing

o Automati,c Layout Analys'is: whether the software performs automatic layout

analysis or not;

o Graphi,cal User Interface: whether the software provides a graphical user

interface;

c Input Formats: the file formats that the sofbware can import;

o Erportat'i,on Formaús: the formats to which the software exports the docu-

ment;

o Project Saui,ng/Loadi,ng: whether the software provides a way to save and

load a working project letting the user continue a previously started work;

o Image Enhancement: whelher the software provides â way to perform some

kind of image enhancement (for example, removing the dust);

Table 6.1 presents the comparison between the mentioned solutions.

6.2 Tests

The tests will be performed with 5 different types of documents. The next

sections will present each document and the tests results as well as a compari-

son between the results of OCRFeeder Studio and the results of OmniPage and

FineReader. These solutions are perhaps two of the most advanced solutions avail-

able and are the ones more similar to OCRFeeder. Both of them were tested using

their trial versions since they are not freely available.

The tests are shown with no manual intervention, that is, the window size used

to find the images' contents is the automatically calculated one and the text is the

one that the OCR engine recognized (with no manual corrections). The engine

Ocrad was used in all the tests.

All the images were scanred from the same device, the multi-function printer

HP Deskjet F370.

74

6.2. Tests Chapter 6. Testing

Ê{
0)

a)

Êú()
o

o
ú)

c)()
Ê
FI
À()

x

F] >q ,q >q

8ãÊ

gE'9e
ÀErÊqÀ

cd

Ê
ts'>
âEr

§
rn

.q)

a
lJro

Ê4
Oo

0)a
c)
O

F1

a
Êa

x
a

Fl É
oz oz

r=oEE]EÀ

o>zzÀÀ

§
ú
O

É{
oz rq

o
a

úúOh
OX

d
alio

É

O

X
z
x)

FI ,q
oz oz

o o>f,l Z o.À AÀ
l-€

.g,r

HEHEEoÊ.Ê.FrÀ

OFI
\)à
âHXE
É{ rr.XâtsÀ oz oz

lr
0)Ed
o)úo

Étr

d
()
Ho

o()

0
6

>q >e * # >q >q ,q

d
C.)Írq)

O

çn

Bo
H

Ê z
o

.o)
a

.o)

fÍlÀ^
á

tr.,.Êa
h-ú
tid

d

É+ r=.

ãH oz oz

q.)
b0
d
0.

C€

olro

o()

9-
€oÊa
Bg ,q >q

a
o)

X O E.9?
RHEH.-

tsL'H'â
À

95 9e s-
ÊaÊÀ(JÊ

ã5BE áE'ü
"E.dE "i

ã§EãâEã= >e ,q

oo
o()

FI

ho
.= th

ÊHt{ (U

9ü,!3 >'(, En

J
(§

.ã<
d
dDtrÉ3 9,
ã s"'9,

I,-
o
O

(€ boÉ

(§Xc)
àN x

I
L.
G)+)

cÉHa

§s8u>,§

Êt

Ê

Di{ cn

áHÉÉ
H

.9€
§.3
itr cÉoÉo. !-1

õÉ

,Ê .i't
E§'='--
E9p

IH
rn

q)

HDB
EE

a

+i

o0
ú
C)o
(ü

ú

dtr
0)

a)
rt)

-o

oa
trd

a
o
0)k
+)
d

-otrr

J
(Cj
q)

Ê

H

€
d

lr
.P

ú
Oo
(ú
Éo€

€
B
Ê
à
F{

§

75

6.2. Tests Chapter 6. Testing

6.2.L Lyrics document

The lyrics example previously introduced in Chapter 4 was created for show-

ing an example of a two-column document with several paragraphs and an image.

This document was created using OpenOffice, printed and scanned.

OCRFeeder

The zoning shown is successful to what is expected - each text paragraph is

contained in a box marked as text, and the image is contained in a box marked

as graphics (see Figure 6.1). The text boxes have the respective recognized text
in the Tert Properti,es of. their box editors. It originated 5 individual text boxes

apart from the title because each paragraph is separated by a length greater than
the window size. The calculated font sizes were 13 points for the title text and 10

points for the rest of the paragraphs.

One extra block is shown that contain a "dot", that's originated by the dust

on the scanner. That dot contrasts with the background and hence gives the

impression of being something like a period as recognized by the OCR engine.

Dots like these are removed if the Unpaper tool is used with its defaults settings

and they can also be removed manually by clicking each of the boxes and pressing

the delete key.

OmniPage

OmniPage reads the image properly but the boxes are set differently than in
this project. Like seen on Figure 6.2, the paragraphs are not devided like in
OCRFeeder, two paragraphs on the left and on the right are joint whereas the last

paragraph has its own box. The calculated font sizes were 14 points for the title
and 11 points for the rest of the text.

76

6.2. Tests Chapter 6. Testing

6b Edr § Dolt Hdp

J 7E j-r .r

z.m{íi 2O.A

':"

o bü O Êrmg.

T

Psg€ rizs: 7.97 x 10.59 Drdúin: 300 x 300

Figure 6.1: Test: Lyrics document with OCRFeeder

I

I need your
I ned your

2dt 1111

ea7 2Aa

Y

H.iCr

x
U,Íül

Ooxerad

M

nrcdludrcifnr
lmmr ttJt crMot h.lp mydf

nrcd 1ou hdp

77

6.2. Tests Chapter 6. Testing

"- UntillEd OmniPage Documenl - OmniPage

File Edit View Formôt Toob Process H?lp

D -;Ff)"'? ER
n ..CJf,*n.",&3*".&.{-r

-,-,)LoadFiles v Q Automatic w)JSavetoFile

a

í Stylel w TimesNewRomm vr4w[1U==

t ,1ií.§6§ffi

(

..'r! I

Did I cross aüne?
I need my role m ttus

Very clearly defined

I need your úscipline
I need yorx help
I need yor:r discipline
You lcnow once I staÍt I carmot help myself

R' , 3 r,.,4
UI

and dowr r
know wh,
where yo

I need yo
I need yo'
I need yo.

You knov

Once I st

o\
9\

:)
)

,' , Pôoetofl , Ê
=

T For Hêlp, prcsÍ Fl

Figure 6.2: Test: Lyrics document with Omnipage

78

6.2. Tests Chapter 6. Testing

FineReader

FineReader did not considered the irnage (didn't put a box around it) but the

text paragraphs were in this case outlined in a very similar way to what OCRFeeder

did since it creates six text boxes like shown on Figure 6.3. The font sizes for

this solution were calculated as 12 and. 9 points for the title and the rest of the

paragraphs, respectively.

Fila Edt Vitr Docmt Pô9ô Areõ Íodr H€b QlckTa*s

tl nn+ze fr1 Tãv Y3 +{l
ri 5êlêct ![6.§
i--i nacoqÍÊimera Eí É ú'

POF Doormt I v Times Nm... v

copy v B.rUx'

-r rr êk:jô lÁlÍrl-l
*yh: @@= -

. vl
m: TiffiN#Rffi v
stsê: i,ó .. w_] n r q

fcd Propcdicr

mçi
à

opá Raad Docunst 5àvc

»

ffi=lI ÊEI

ti-?-ltt
gl ! il ,' [ero- _ ..:ç El

t'Jiüh x lirirJt: 2390 x 3lr, pkds

coloÍ rFde: Colu

Y
t'

li
sorcê inôgÊr Cr\Do«mênts md 5ôth$1.,,\nh_discipkÍ

Area Propaties tnqp Plopsticr : :

tG];:ti(il;1ffi1ft1

lffii]
H#I h
§::i;;,"'-

,Pn'-

* tl 13 -l'

Figure 6.3: Test: Lyrics document with FineReader

Generated Files

In what comes to generating a text dr)cürrerrt, none of the commercial solutions

used can generate an OpenDocurnent Text file so, the most similar format t<r

Y
Érl

(a Untitled document [1: Toom] ABBYY FineReader 9.0 lll." 5anal I dition

Enclsh

79

6.2. Tests 6. Testing

this (so the results can be compared) is Doc. Figures 6.4,, 6.5 and 6.6 show the
rlifferences between the mentioned files opened with OpenOffice.

Eí. Edit yi.r ln..Ê Fqmü TrU. Ioob yÍndd H.lp

Etr-mE*E r

ffi Íp*ril-]j Fromn E Ír, [:] A á A trBE trEEtr à.d.E-

\ /.oVEê *r'O- ; -8-i-:,'*- D EE al
P.rl/l P.$7.S66ô66710.59Hú MdDt.bngu.9.r iS Em:SD

Figure 6.4: Lyrics document exported to ODT by OCRFeeder

Since it's the Layout Analysis that is being tested and because no other solu-

tion is able to export the documents to ODT, for the other tests, the document

generation is not evaluated.

6.2.2 Make: magazine

Description: Page 86 of Volume 11 of the Make: magazine - [30]

OCRFeeder

Figure 6.7 shows the page segmentation for a scanned page of the Make mag-

azite. This is a good example to test because it has different kinds of elements

!0

Nlnê lmh N6lls - Disipllne

h I *llltdgh -oqht lndnd t r.bnrEup
-..b [b !I !!l!d§ tu F-13 l*. h htD§
E hyYl u0uL tüh
b.lr|o §óurúl MI]hS mdÍ.Í to$f
h I llM too Nó, ltúliOe mjlEr - !i!i;!
Ord I ma.&r? I sryouL. E
I mad my ôh h lhl! up .d d(Pn lDi atin
bry d..dyd$bt ldoff n*wh.ol od

hdúrEFu b.gh

I n..dpur dlriplin.
I ÉdFu h.b
I Dadyour dtadplna
You kndft.lÉÉ r§!t! h.lp

I m.dlour dl*lpflm
I rclyou h.lp
I m.dprdElpli[
You ffi dc. I aü r ilu!! h.F

Onc. r rffi r têllgl rtop lgdru

80

6.2. Tests Chapter 6. Testing

-! _Étre Et ricô ?ffi * ea' J .r
il lfir-I-]lÍ"m -T;lÍ, I;l A, A

rtrqEei
à-d'E.

'§e1ffi4+e
trEE trtrtrE

\ /SIVEÉf gi .O.;.EI.E'*. D EE Ig

Figure 6.5: Lyrics document exported to Doc by FineReader

!Íu háNú.Dicifh.

tu.ldl.drçqd

6rI d llraimiEtúel!
íôaeãt.rygÉie l

ldafdlArl!&fto
DÉ!Dial mr.ha?lD.ôry
úa&Yqú.tÉd
dr"..!Érçrúqr§_.

lôitGHitfrbr
tlôaFbr.dtíp
Lâ.rúttdôEryôl
rrdtbrtuldHrto
l*br

YoEqq!t rd! .d!I!Eg.

íilrtõ&;lb --*
rDúEÔEíT.
Ig§le*.!E{_1Í.!ld!i-Írt_-

8L

6.2. Tests Chapter 6. Testing

r1 l4

!i 'EEs @.trnn trtl 16BÊ'J í!'É'8n'lãi A+E rm-rre.
El. Ãdt yhr htm Fm* rrbL l@L tÍiudlw H.lp

m A'A trtr8 trtrtrtr à.d.8.

\ /roVEÉ r,-$ E'I,'*.D EE lr
iPari ii ihiid ôiÉ laar .D { I l

Figure 6.6: Lyrics document exported to Doc by OmniPage

|riEmtr xritr- oiupti*

tdFeih

Y-rytsã,e !.rE!.I essdElryr[-

tu.1rÍl dô9nF.!

NúitrdiNE
l..L & h binabh

Ndnfddid6l
r.r your.fi . o.rt Up
6úd6!r&Id
btuld6

eldrqhqE
l.ú [h rú il:iôa h
l'rylnrie§,'r
h.i{and
hItúi{bood

IÉ.aFbb
Ydbil 4.1.óI.dEhqd-

82

6.2. Tests Chapter 6. Testing

like big and tiny font sizes, with colored text and different font faces. The only

problem for OCRFeeder in this example is that the text "Spirits Guy" is to close

to the next paragraph for the calculated window size. Since the window size does

not fit in the spâce between those two paragraphs, then it joins both paragraphs

in the same box. This will obviously result in a wrong font size because the way

it is calculated (see the page 49 for an explanation of the font size calculation).

É. EÕ !áü Ibol3 H.h

IÍ'
r-r

O ;* bú O f, knagor

233 140

7a6

Yx
urüh H.iúa

Ooxocred

bc/.1

t

Z@mt 21rrrÉ ragc :izer -cz
x e.:r ,Srolrim: 3IX' x :ilro

Figure 6.7: Test: Make: magazine with OCRFeeder

OmniPage

The layout analysis of OmniPage works better for the magazine page. Like

shown on Figure 6.8, it separates the mentioned paragraphs and hence, giving a

83

6.2. Tests Chapter 6. Testing

better result after performing OCR over the different parts.

"'- Unlillcd OmniPag,e Document OmniPage E
Filê Edt Ylcw Foím* Tods Prtr#s lldp

DsLlllêql In lEBl

) r -2.:
*e5hnl
P.-*:lt'-;

lo

);/ SmtoFilc eAutomtic

T
) l,íl

r ul I
»)

N

I a
.

--Maker

lil -
.-,

« . PêgBloft) »;gsiÊET FüHclp,píessFl

Figure 6.8: Test: Make: magazine with OmniPage

FineReader

FineReader also separates the big text paragraph from the one bellow it. How-

ever, it ignores the word " Maker" on the top and doesn't consider it when exporting
the image to an editable format (see Figure 6.9).

6.2.3 Beautiful Code book page

Description: Page 323 of the Beautiful Code book - [31]

84

m
lEl
r§l
@

tr
E.:
üá

6
_ft.

o\
c(
!r

ír-r Inrage Panel

I 5tylâ2 Y B -53v IIArlôl .l

6.2. Tests Chapter 6. Testing

t1 Untilled documenl [1: Zooml À8BYY FineReader 9.0 Proíessionat tdition [it".ltx
File Edt ltew Oocura* Pàgê Areas Tods Help Qricklôsk

ttv

m

VÉ +úl
=l

tf e.syr"

li sete€t E[
Rsad Domant i i--i n*oq,ti* tr"" EI

-dJ-rl : lx -w-l+ l[
scanning resoltbn Lp to 300 dpi tr grêàttr

§
*

ffi:

E
ffi RlUX'sctr Op6t

=H
(, l-

Yv

i»d:lJ ü
sh/cl

Fmt:

Sieel

ô lAlÍ lí (

Rê-sEil fR"-"p-l Í skr--l

À Check Resolutim $eOd ryeg aryr?

]au

li Tcd ProocÍti.t

MAKET
\:

d ê LF-% alo

Figure 6.9: Test: N{ake: magazine with FineReader

Ecütabh copy w

MicrosoftWotdI ww
5aYc

utn S

85

6.2. Tests Chapter 6. Testing

This page was chosen because it contains a very complex picture from a layout

analysis point of view. The picture is in fact a diagram which combines graphics,

text, horizontal and verticals lines. The text paragraph that comes after the

diagram also presents a very usual problem when scanning images from big books

- the text near the book center is scanned while the page is slightly curled making

the text blurred out.

OCRFeeder

Like Figure 6.10 shows, OCRFeeder divides the diagram in two and detects the

text paragraph that follows as well as the footnote.

The reason why the two parts of the diagram are not classified was graphics is

because the used engine detected some text from the diagram as well the text right
on the side of it and, according to the classification rules previously explained, the

two blocks get classified as text.

Performing OCR over the main text paragraph results as expected, the char-

acters in the beginning of each text line (the blurred ones) are not well recognized

comparing to the rest of the text. The font sizes calculated for the main paragraph

and for the footnote were 9 and 5 points, respectively.

OmniPage

The font size calculated by OmniPage for the two paragraphs was the same as

the ones calculated by OCRFeeder. On the other hand it puts text boxes on top

of the diagram for some of its labels. Nonetheless, not all the labels are assigned

a text box and several parts of the diagram are cut as shown in Figure 6.11.

FineReader

The results from FineReader are similar to OmniPage in what comes to the

diagram (see Figure 6.12), it assigns text boxes to some labels but it cuts even

more parts of the diagram than OmniPage. The font sizes calculated for the main

paragraph and the footnote resulted in the same values as the ones calculated by

OCRFeeder and OmniPage.

86

6.2. Tests Chapter 6. Testing

O !}rrEg!

E 20-2.ClP's

AN SOA

1363

8031519

Y

H.agtr

x

wiüh

É)oíocrrd

nÍ-c rúrdlcm, m lnpbreded a slalelcs

lhrlh*irÍom-rlionpmirt dmanaga
situ*ion ItanYn d.iignoptimrrukDl.

_P-caiont.

o,2.2 cD,r rNica.oriaírtathnc-irred
SOA based lhelJs-Edn oplbn

n e-,';h.ffi tÍ lrge
3êMC9hmdo rcçrcsls

lhcOn hrnd,úh.r bornrtattEn

P.!to siz.: 5,99 x 8,9i1zootíÍ2ú

Éc Eü !áa Foh Ellp

JfE às r]

Figure 6.10: Test: Beautiful Code book page with OCRFeeder

87

6.2. Tests Chapter 6. Testing

tl'[;ç"- Untitled OmniPage Documenl - OmniPage

Filê Edt Vi# FoÍÍiôt Tools ProcÊr' H+

Files .l

I
»)

t
1

+ Drúrlií

ry

,mr!ffi

20-2. ffisàcffi{ffiEüx&

mdt

an SOA boed on J2EE gwc ru tlro optbn to use tlÉec ryell-(hfrmd hcue
.}awar apprcpràla in lhc dceign of r larga cntarpú* applicrtion. Stâlcl6r
L^-!l^ ---;-- *4..^-.- .-:.t^.+ **^-L^ri---r, â.-.6 L* Àrã $-n^{.^ .L- !nrt{

Q autom*t

1WZ

) r-z-:);,/ Sarc to FIc

Íircr f&tr RoMí stybe Y In / ulm
lEr

l§r
@

E
E.
tr
$
&
o\

i\
:)

FI TeHt tditor

)

2

1

5Br

«r pàlE1ofl i»lElÊlill T FtrHêh, prêrrFl Engkh Ln O33 Cd Í]73

Figure 6.11: Test: Beautiful Code book page with OmniPage

88

6.2. Tests Chapter 6. Testing

ta Untitled document [2: Text] ÀBBYY FineReader 9.0 Proíessional tdition Í:.IEíF
Fi[ê Edt vi# Documênt Pàgê Arêàr Tmlí HÊb Quit*Íd<s

i tl enety."
[M;**-yrqq1 rl PdàliÉLiro.., ?

i1 select

Rcàd Docunã* i,-j necoqntionA.eaiEÍ G d 5âvê LES+gl '- BJUx'
v +úl,V-E

opn

EIEE
E[8,Í ry!)

5cür

;
I I

r-;;-' I
:i

Spiítscuy
i

;-l
ll
É-*-À

.! -J ,fJ rf 14.g,-w,+ rÉ
Incrêrc *àilÍÍlg rêsohtion r+ to 300 dpi or gÍeôttr.

3 d.Il ditÍt,,:t,5 l-rlÍl
st*: [*yÉ4--__-._g

I Rê<m Rlopsn
Fd*: PCàttrtilôtD w

slb siÉ: f". -l e r u

O CÉ"f. n".arri* SAdd pagc ag.h? i
- (: Tcd Prop.lta6. ti

P \:

àg tÍr:- ! .d 2596 vi o

Figure 6.12: Test: Beautiful Code book page with FineReader

Engli*r

89

6.2. Tests Chapter 6. Testing

6.2.4 The Search book cover

Description: Cover of the Portuguese edition of The Search book - [32]

OCRFeeder

A lrook covor is arrothcr interesting cxarnple as it cornbines <liffererrt kirrrls of

elements. In this case the cover contains the a big and colorful title text. The

word "The" in the title is placed within the "Search" text height and thus, very

difficult to be read by an OCR engine.

Like shown in Figure 6.13, none of this page's contents is classified as graphics

because every element contains text that gets recognized by the engine and so,

making the section be classified as text. Even the three columns in the publisher's

logo (on the left bottom) is recognized as text " I I 1". Logos like this are obviously

very difficult, even for a human, to classify either as text or graphics.

The text inside the box on the bottom right is also accurately detected and so,

tltc box is r,lassificrl as tr:xt.

OmniPage

This prograrn identifies the book's big title as being graphics. However, it clas-

sifies all the rest of the contents as text and for those that are contained or right

next to images, the text boxes cut partially or totally the images - for example

the publisher logo seems to be discarded, the graphics on the bottom right is com-

pletely replaced by a text box and the top image of the pâge, as well as the images

right under the title, are partially replaced (see Figure 6.14).

FineReader

Like Figure 6.15 shows, the title, the top graphics and the bottom right box are

ignored and not considered for exportation.

The rest of the text seems to be well recognized.

90

6.2. Tests Chapter 6. Testing

Co-fundadt
da

1602445

890 178

x

urrdrr

Y

HrúCa

ocrad Oox
sb.rEú

deÍfi. hduÊg stadrd
r*út. u/irad e

z.oo6t 2c/,A Paglg sizs; 5.80 x 8.91

m
§ffi

ru

Etohlion: 3OO x 3OO

Eib Edr yiü, Ibob Hch

Jg -\ +\

O r; tc O I rnag.

9(aôg.pnm

Figure 6.13: Test: The Search book cover with OCRFeeder

91

6.2. Tests Chapter 6. Testing

I r-e-:

Ariàl 7çtrat, lI ln r

Q automtti[ã!stl -|

l4
E
E.

-E,Ê

fr.
o\
c(
3)

m

Fllê Edt Viu Fdmàt Tools Prfiêr, Hclp

Drklttà l'r itrEl lo

)1,(
l. *

4

lPs.ü.-er.-l

The

efrrc.
{ . ú1t. }

« (PôqÊtd1 > » lSSlÊlillT Fqr-telp,ilê5sFl

Figure 6.14: Test: The Search book cover with OmniPage

92

6.2. Tests Chapter 6. Testing

t1 Untitled document [1: Teí] ÂBBYY FineReader 9.0 Professional tdition [lt..lE-

I DorureÍ*
Fle E* yrr{ Docur* PqE Araas Toob llelp Qld<Task

v +úl
Reàd Docmcnt

tf a.ayr"
. : lt Selcct

l.; *-*r,***l

EIEIg
trEJ
H6d Bllrx'5cÕ Opên

I J êtrs* .lo iÉ
:.

racogrrti:n languago

jl:l -U à
style:

Foí*:

Íê:

., l-{,1Í lrl

[í 31q

lmage Properties , O Chmk Fesolution Awaningl l r, Trd PÍoc.Ític3 ir

r
+s

hI tÍ -9. r:J ü 2s% w ü

+_=:+l

Figure 6.15: Test: The Search book cover with FineReader

Edtabh coy v

IwY)

93

6.2. Tests Chapter 6. Testing

6.2.5 Linux Magazine page

Description: Page g5 of the issue 25 of the Linux Magazine (Spanish edition) -
[33]

OCRFeeder

Figure 6.16 shows another curious example of how magazines' layouts vary.

This page has more than 50% of it occupied by an image which contains some text
information itself.

Under the big image, there are three columns of text whose first paragraph has

the common style effect of having its first letter bigger than the rest of the text -
this effect is called a drop co,p or i,ni,ti,al. This makes the function to find the text
size not to work properly since it considers every line that the initial occupies to
be only a single line and hence results in a font size of 34 points.

Apart from this, OCRFeeder also considers the three paragraphs as being one.

This happens due to the window size automatically calculated. Since the space

between each paragraph is small and the window calculated doesn't fit within it,
it simply doesn't find a space there. The issue number in the bottom - "Número

25" - was classified as being graphics because the used search engine doesn't give

any output after processing it. If the engine GOCR is chosen instead of Ocrad,

then the text is recognized and the font size results in 6 points.

If the window size is set manually to a size of, for example, 30 pixels instead of
being automatically calculated, than the three columns are correctly outlined this

time (see Figure 6.17). In this case, one can see how should be the correct font size

for the paragraphs in the columns - the columns without the initial are assigned a

font size of 9 points while the one with the initial has a font size of 32 points. Still
with the 30 pixel window, the page number text is this time recognized accurately

by the Ocrad engine.

The font size for the magazine's web page text (in the bottom) and the issue

number is 6 points. The font size for the page number is 8 points.

94

6.2. Tests Chapter 6. Testing

,alrF1"i"r itl,]l,

.,, .i.,,..ll t.r.,

".. .,r*i ;n,..

Ele Edit yiry Iools Help

-é -\.\
ia rype

WWW.LINU

-rli----
Bounds

a Text !l lmagê

it

' l=g'
xeistrt

I
rro l

? (rqx

x

Múh

a7t

58r

Text Prcperties

ocmd

Text SV6 Anglo

WVA,V.UNUX.MAGAZINE.ES

*,.r.rÁ-à :. rl.jk: :ri (h I
:r.!i.r,r- .r--.. rrSr: ri -,
!rrrrirr.:r.'anif

Zoomi 2oqt Resolutioni 300 x 300

Figure 6.16: Test: Linux Nlagazine with OCRFeeder (automatic window size)

95

6.2. Tests Chapter 6. Testing

570

9CilF33Ca, ,ruells
tilê Edit Viêw Iool5 Help

iJ -\+\
ial]Ype

a, Text i., tl lmage

WWW. LIN U

c g)sK

Bounds

x 870

Li

L:::rl
160width Height

Text P.opertieg

] ocad

l-r"rtl sty'" ersl"
WWVILINUX.MAGAZINE,ES

I =..- - -.-rl-.= =,;,.1-1-i.fr
Zoofri 2ú,ri Pagê sizê:7.8a x 11.62 Resolution: 3OO x 3OO

Figure 6.17: Test: Linux X{agazine with OCRFeeder (manual window size)

96

6.2. Tests Chapter 6. Testing

OmniPage

This solution detects the three columns automatically (see 6.18) and also sets

text boxes for the text placed on top of the image although it doesn't recognize it
accurately. By putting text boxes on the text it attempts to recognize from the

image, part of the image is cut and replaced with the color red (as the background

of the text boxes).

The font size for the three columns text, the magazine's web page address and

the issue number is 8 points. The page size is assigned with a font size of L2.

'- [Jnlitlcd OmniPage Documenl OmniPage E-1.. l"
Fla E* Vlm Fsmat Tods Process ltdp

DrLliàq I EEL[tq:.-' . -- --!.11
oItrr

-ÉEErrEÊrrI r-z-:
-r)

LoadFlo Admatic

.

I

l-
L.,

l{ »t

)

I

rt

t

Sava to Fih

12vvãdanaI styla r v r ul
Text tdator

rnlrnclo listo para Ia qratt tttit_.;rar-iOrt'i

NCURSO... I
@

B
a:
'ld,

e
_ft,

o\
e\
3)

E

« { Pôgclofl } » lilltl=lT FflHelp,pÍêsíFl Endi*t

Figure 6.18: Test: Limrx Magazine with OmniPage

tn(E9 Cd(x)2

97

6.2. Tests Chapter 6. Testing

FineReader

Like OmniPage, this program also detects the text present on the image but
discards all of it only including small parts of it like Figure 6.19 shows. The
text is also detected as three columns and with the same font size as OCRFeeder

calculates 9 points. However, it sets a font size of L0, L2 and 14 points to the
issue number, magazine's web page and page size, respectively.

Filâ Edit Viet{ Docffit Pàgê Arêôs Tods Hêlp QuirdTôsks

lrfiãmtr$m.ErÊ:v r:§ Y)
5àvê

MicÍosoítWoÍdI wi

Edilêble copy Y

!fo iAiíI il

ll 1ux"5côn Opên

=
f i3 -!-

Reâd Documênt r--i Recognition Area El É d

Width x Height: 2381 x 3{98 pix.k

.: Cohrmodel Color

Soucê imêge: Cr\Documents ild sêttings\làylDêsk...\scô

AreaProperties lmagnPtogertic I ,

v

.1

-{l!,3
Stylê:

Fontl

size:

Tcxt Propaticr

IllL"

il

\.-:

w
!g 2596 v ,#

Figure 6.19: Test: Linux Magazine with FineReader

ta Untitled document [1; Teí] ÂBBYY FineReader 9.0 Proíessionat tdilion

English

cot{cuRso.., eUBRE?

98

6.3. General Appreciation Chapter 6. Testing

6.3 General Appreciation

AII but one of the images tested and presented in this section do not have a

plain white background. Because they were scanned with other pages on top of

them and have contents on the other side of the sheet, those contents still appear

in a translucent way in the resulting image.

Like the tests have shown, this is not a problem has only the real page contents

are considered. This meâ.ns that the contrast function works as intended.

Tables were not considered when developing this project as it's target was actual

text documents. If a spreadsheet, for sxa.mple, is attempted to be converted, the

result would be something like what happened for the box on the bottom right on

the "The Search" book page test.

As mentioned, these tests were supposed to have no previous configuration or

manual intervention on the programs' settings. This means that whatever the

results were, they could always be corrected manually by the user until the docu-

ments were as most similar to the original ones as they could.

The graphical user interface is an important feature to be considered in the

tested solutions.

OCRFeeder's GUI was designed according to the GNOME Human Interface

Guidelines like described in the Section 5.1. It is meant to be simple, intuitive and

easy.

OmniPage's GUI, on the other hand, presents kinds of widgets and organizes

those in a not very familiar way. For example, the big buttons under the tool bar

contain a combo box under them which is not a very usable interface.

FineReader's interface is more clear than OmniPage's but still, all the infor-

mation and widgets present in the main areas make it look less clear than OCR-

Feeder's. Of course one needs to consider that both these two commercial solutions

have a more advanced text editor than OCRFeeder.

99

Chapter 7

Conclusions and Fbture Work

100

7.1. Problems Chapter 7. Conclusions and Fnture Work

The purpose of this project was to create a Document Analysis and Recognition

and Optical Character Recognition system for the GNU/Linux operating system

that allows to perform automatic zoning, recognition of the t54pe zones and text

and exportation to an editable format.

This purpose was clearly accomplished and even surpassed as OCRFeeder can

be compared with existing state-of-the-art solutions, either free and commercial

ones with a number of years of continuous development, like the previous chapter

proved with the tests.

The modular and extensible project architecture guarantee the project longevity

by make future work on the system easier, cleaner and more organized.

Comparing to the most modern systems it seems to be the first one that offers

OpenDocument Text exportation and uses this as the primary exportation format.

It is safe to a,ffirm that OCRFeeder brings most of the features of commercial

solutions to GNU/Limrx, hence being a pioneer in what comes to having a graphical

user interface, automatic layout analysis, manual correction f zorntg and optical

character recognition on this operating system. Even on the Microsoft Windows

and Apple Mac OS operating systems, the free solutions found do not have the

functionalities this project offers.

7.L Problems

Although very functional, OCRFeeder obviously presents some problems. This

section presents some of the problems and ideas for solutions to solve them.

Problem: The font size sometimes is not the correct one because the image is

skewed (which is normal when scanning images).

Possible solution: By being skewed, the vertical size of the text appears

bigger than it really is because algorithm to find the font size goes line by line

checking for the contrast (see page 49). The solution for this is to use the Unpaper

tool to correct the image's skew before performing the layout analysis and font

size detection.

- ír

101

'',,iúiffi

7.2. Future'Work Chapter 7. Conclusions and Future Work

Problem: Text in columns is recognized as being only one paragraph (single

column).

Possible solution: This problem is related to the window size and hence,

a smaller window size must be manually set. This can be done by using the
Preference.s menu under the Edi,t menu.

Problem: Images are recognized as parts of a paragraph.

Possible solution: This problem is usually because of the window size and

the solution is the same âs the one for the previous presented problem.

However, if the case is an image that is floating in the middle of the text (which

is sometimes common in magazines) than the problem cannot be easily solved. A
possible solution for this that can be implemented in future work is to let the
selectable areas overlap in the graphical interface and when they do, the contents

of one area are not included in another, That is, if an area contains a whole
paragraph and another area contains an image that is floating in the middle of the
paragraph, than the image is erased (not considered) when the text recognition is
performed for the paragraph area.

Problem: Paragraphs with initials are set a wrong font size.

Possible solution: A possible solution for this problem that might be imple-
mented in the future is to vertically clip the paragraph image by half and perform

the font detection algorithm with the right part. Since in most cases the initial
does not occupy half for the paragraph horizontally, by considering only the right
half of the paragraph it should result in the correct font size.

7.2 F\rture Work

In future work, a solution to the problems mentioned above will be studied, the
HTML exportation will be improved and several extensions will be developed like
support for tables and spreadsheets.

Regarding the easiness of adding a document generator, exportation to other
popular document formats - like PDF, LaTex or ReStructuredText - is likely to
be one of the first extensions developed.

LOz

7.2. Future Work Chapter 7. Conclusions and Future Wbrk

A useful feature would be to increase the input sources, that is, to make it able

to get the input images directly from a scâ.nner device or a web ca,tn.

A feature that would come against the principle of automatically detecting the

documents structure but could save time by improving the performance would be

to allow the user to set a pre.defined document structure for a set of documents.

For example, by knowing if a set of images have a two-column layout, a simple

adjustment of the two-columns could be done for each of the images and hence

saving time by not trying to detect every content in the image.

Porting the project to the Windows and Mac OS operating systems may also

become a reality. Making OCRFeeder available on more operating systems will

surely increase its usage and, since it is Free and Open Source Software, have more

developers contributing to it.

103

7.2. Future Wbrk Chapter 7. Conclusions and Future Work

LO4

Bibliography

[1] Herbert Holik. Handbook of Paper and Board. Wiley-VCH, 2006.

[2] Michael Loewe and Eva Wilson. Eueryday Li,fe In Earlg Imperial Chi'na.

Hackett Publishing, 2005.

[3] Jan Seaman Kelly and Brian S. LindblomHerbert Holik. Sci,enti,fic Erami,na-

ti,on of Questi,oned Documents. CRC Press, 2nd edition, 2006.

[4] Nikolaos G. Bourbakis. Arti,fici,al Intelli,gence Methods and Appli,cati,ons.

World Scientific Pub Co Inc, 1992.

[5] Simone Marinai and Hiromichi Fujisawa. Machi,ne Leami,ng i,n Document

Analysi,s and Recogni,ti,on- Springer, 2008.

[6] Mori et al. Historical review of ocr research and development. In Proceedi,ngs

of the IEEE, L992.

[7] Mohammed Cheriet et al. Character Recogni,ti,on Systems: A Gui,de for Stu-

dents and Practi,ti,oners. Wiley-Interscience, 2007.

[8] K. Y. Wong, R. G. Casey, and F. M. Wahl. Document analysis system. In

IBM Journal Res. Deu.,1982.

[9] C. F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

[10] Robert P. F\rtrelle et al. Document analysis, understanding, and knowledge

access. In Proceedi,ngs of the Internati,onal Conferenre on Document Analys'i,s

and Recogn'iti,on (I C DA R), 1991.

105

[11] Science Applications Intl. Corp. Capture station simulation: Lessons learned,

final report, for the licensing support system. Technical report, November

1990.

[12] Kristen Summers. Toward a taxonomy of logical document structures. In In
Electroni,c Publi,shi,ng and the Informati,on Superh,ighway: Proceedi,ngs of the

Dartmouth Insti,tute for Aduanced, Graduate Studi,es (DAGS),, pâges 124-lg},
1995.

[13] Udo Kruschwitz. Intelli,gent Document Retrieual: Erploi,ti,ng Marleup Struc-
ture. Springer, 2005.

[14] K. Taghva, A. Condit, and J. Borsack. Autotag: a tool for creating structured

document collections from printed materials. Technical report, 1998.

[15] ABBYY. Abbyy history. http://www.abbyy.com/company, accessed on

November 20th, 2008.

[16] Mark L:utz. Programmi,ng Python O'Reilly, 3rd edition, 2006.

[17] Guido van Rossum et al. Extending and embedding the python interpreter.

http:lldocs.python.orglextl , accessed on October 1st, 2008.

[18] Andrew Krause. Foundati,ons of GTK+ Deuelopmenú. Apress,2007.

[19] Mark Lutz and David Ascher. Learning Python. O'Reilly, 2nd edition, 2003.

[20] Elliotte Rusty Harold and W. Scott Means. XML i,n a Nutshel/. O'Reilly, Brd

edition, 2004.

[21] Karen Cegalis.

http : I / opendocument.xml. org/overview

2008.

Opendocument overview.

accessed on September 30th,

[22] OpenDocument XML.org. History of opendocument.

http:l lopendocument.xml.org/milestones, accessed on September 30th,

2008.

106

[23] OpenDocument Fellowship. Odfoy - python api and tools.

http://opendocumentfellowship.com/projects/odfoy, accessed on September

30th, 2008.

[24] Stig HackVân. Interview with I. peter deutsch. USENIX associ,ati,on's monthly

;logi,n: Magazi,ne., 24(5), October 1998.

[25] Werner Backhaus, Reinhold Kliegl, and John Simon Werner. Color Vi,si,on:

Perspecti,ues from Di,fferent Di,sci,pli,nes. Walter de Gruyter, 1998.

[26] Yannis Haralambots. Fonts ü encod'ings. O'Reilly, 2007.

[27] Roger Hersch. Vi,sual and Tu,hni,cal Aspects of Type. Cambridge University

Press, 1993.

[28] Carolyn Snyder. Paper Prototypi,ng: The Fast and Easy Way to Desi,gn and

Refine User Interfaces. Morgan Kaufmann, 2003.

[29] Bryan Clark et al. Gnome human interface guidelines.

bttp I ll\bra,ry.gnome.org/devel/hig-book/2.24f irdex.html.en, accessed

on October 5th, 2008.

[30] Benjamin Tice Smith. Spirits gay. Make: Magazi,ne, 1.L, August 2007,

[31] Andy Orarn and Greg Wilson. Beauti,ful Code: Leadi,ng Programmers Etplai'n

How Theg Thi,nk. O'Reilly, 2007.

[32] John Battelle. The Search: Como o Google Mudou as Regras d,o Neg6ci'o e

Reuoluc'ionou a Cultura. Casa das Letras, 2006.

[33] José María Lancho. Concurso... ilibre? Li,ru,r Magazi,ne, (25), March2007.

LO7

Appendix A

Example of a project XML file

<ocrfeeder >
<pages>

<PageData>
<data-boxes/>

<pixel-height >1169</pixel-height >
(resolution >(100, 100)</resolution>
<image-path >/home/ user / Desktop / t e s t 1 . png</image-path)
<pixel-width >826</ pixel-width >

</PageData>
<PageData)

<data-boxes >
<DataBox>
(text>This is the detected text</text>
<height >160</height >
<width >748</width>
(text -data)

<TextData>
(s t y I e >STYLENORMAk/ s t y I e >
<line-space >0.0</ line-space >
<angle >0.0</angle>
< w e i g h t >WEGIIIJI{ORMAk/ w e i g ht >
<j ustification >0</j ustification >
<face >Sans</face >
(letter-space >0.0</ Ietter-space >
(size >L3<f size>
</TextData>

108

Appendix A

</text-data >
<y>267<ly>
<x>962<f x>
(type >1</type>

</DataBox>
<DataBox>

(text)
Another example
of detected
text !

</text >
<height >481</height >
(width >641</width>
(text -data)

<TextData)
(s t y Ie XTYTE§ORMAk/ st yle >
<line -s pa ce >3.12< f line -sp ace >
(angle >0.0</angle>
< w e i ght >WEIGIIINORIVIAÍ</ w e i g ht >
(j ustif ication >0</j ustif ication)
(face >Sans</face >
<letter-space >0.0</ letter-space)
(size >10</size >

</TextData>
</text-data >
<Y>534</Y>
<x>2671f x)
<type >1</type)

</DataBox>
(DataBox)

<text/>
<height >481</height >
<width >534</width>
(text -data)

(TextData)
(s t y I e XTYLENORI\L\k/ s t y le >
<line-space >0.0</ line-space >
(angle >0.0</angle>
<we i gh t >WEIGIIINORMAk/we i g ht >

Appendix A

(j ustificat ion >0</j ustification)
(face >Sans</face >
(letter-space >0.0</ letter-space)
(size >t<f size>

(/TextData>
</t ext -dat a >
<y>534</y>
<x>1337</x>
<type >0</type >

</DataBox>
(/data-boxes)
<pixel-height >3209</ pixel-height >
(resolution >(300, 300)(/resolution>
(image-path >/home/ user / Desktop / t e s t 2 . j peg </image-path>
<p ixel -widt h >2480</ p ixel -w idt h >

</PageData>
</pages>
<images)

(image)
<ori ginal-name > lhome I user / Desktop / t e s t 1 . png</original_name >
<embedded-name)tes t 1 . png</embedded-name>

</image>
(image)
(original-name > /home I user / Desktop / t es t 2 . j peg </ori ginal_name >
<embedded-name) t e s t 2 . pr.g< I embedded-name>

</image>
</images>

</ocrfeeder >

Appendix B

Installation and usage

This chapter covers the installation and usage of this project

8.L System Requirements

The following list presents the system requirements for this project to run with

all its functionalities. Each dependence has the minimum version that should be

used. While newer versions are likely to keep working as well, older versions may

or may not work as they were not tested.

o Python (version 2.5);

o PyGTK (version 2.LB);

o Python Image Library (version L.1);

o PyGoocanvas (version 0.12);

o Ghostscript (version 8.63);

o Unpaper (version 0.3);

The module ODFPy (presented in Section 3.2.7) is included as part of this

project in order to make the installation and execution of the project easier.

111

Appendix B

Since this project doesn't use a particular OCR engine, no engine was listed as

a dependence above. Nevertheless, the project is usable without an OCR engine.

The configuration XML file for the engine Ocrad is already included with the
project so only what's needed to be installed for a first test is the Ocrad engine

itself. In case the user doesn't want to use Ocrad, the configuration file that is

placed in the OCRFeeder configuration folder (see Section 4.2.L) must be deleted.

Other engines that might also be considered are the ones presented in Section

2.1.2.

8.2 Installation on Ubuntu

Since Ubuntul is nowadays one of the most used Linux distributions, a complete

guide to install and run OCRFeeder on this operating system - its 8.10 version, to

be precise - is covered in this section. Since Ubuntu is based on Debian2 which,

together with all its derivates, is on the top of the most used Limrx distributions,

this guide should be helpful for Debian and other distributions based on it.

8.2.L Installing the packages

The only packages needed to be installed on Ubuntu 8.10 is PyGoocanvas and

Unpaper, the rest of the dependences are already installed in a fresh install of this
version of Ubuntu. The engine Ocrad is also installed for the reasons explained in
the previous section. To install PyGoocanvas, Ocrad and Unpaper, the following

command should be executed as superuser:

apt-get install python-pygoocanvas ocrad unpaper

After all of the packages finish the installation, the project is ready to be exe-

cuted and used.

thttp: //www. ubuntu. corr
2http: / /vws.debían. org

Appendix B

E}.3 Command line usage

Section 5.2 gives an overview of the graphical user interface and its usage not

being, for this reason, covered in this appendix.

This section explains the command line usage.

The command line interface part of OCRFeeder aims at users who want to
perform quick and unattended conversions of document images to editable formats.

It also makes this project usable from other applications.

Two parameters are mandatory: 1) the path to each document image to be

processed is given after the parameter --'i,mages; 2) the name of the document

to be generated is given after the parameter --o For example:

$ ocrfeeder-cli --inages -/inagel.png -/inage2.jpeg

--o converted-document

The pages of the generated documents honor the order of the given paths.

It is also possible to specify the format of the document to be generated (HTML

or ODT) with the option --format In case no format is specified, the images

will be exported to ODT. Continuing with the example above:

$ ocrfeeder-cIi --inages -/imagel.png -/inage2. jpeg --fomat HTMI

--o converted-docunent

OCRFeeder Studio can also be launched from the command line. Two options

can be used to load images right after the program initiates. Those xe --i,mages
which will add the images given as the option's arguments and --di,r that will add

all the images under a given directory path. The options can be used individually

or combined, for example:

$ ocrfeeder --inages -/imagel.png - /ímage2. jpeg

--dir -/Desktop

For any usage the options and para,rneters can be given in any order.

