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Abstract. The brain tissue classification from magnetic resonance images provides valuable
insight in neurological research study. A significant number of computational methods have
been developed for pixel classification of magnetic resonance brain images. Here, we have
shown a comparative study of various machine learning methods for this. The results of
the classifiers are evaluated through prediction error analysis and several other performance
measures. It is noticed from the results that the Support Vector Machine outperformed
other classifiers. The superiority of the results is also established through statistical tests
called Friedman test.
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1 Introduction

Machine learning is a kind of data processing technique that deals with developing program to
learn from past data. Machine learning techniques helps us to solve highly complicated problems
in a efficient way by formulating programs to imitate some of the facets of human mind [1]. Thus,
the application of machine learning in intelligent computer programs improves the efficiency and
accuracy in decisions making situations. Classification is the most widely used machine learning
technique which is capable of separating non-overlapping data in to different segments. Therefore,
classification is a process of finding a set of models which distinguishes class labels of different
data objects [2].

However, the design of classifier is a crucial task in machine learning research. For a given
classification task, the classifier considers both the complexity in it, as well as the size of the
training dataset. Theoretically the optimal classifiers are not necessarily the best practical choice
if they are offering higher complexity. It has been noticed that, the performance of the classifiers
depends on the application and the information available for the given problem. Here, an overview
of the application of four classifiers which includes Support Vector Machine (SVM) [3], k -Nearest
Neighbor (k -NN) [4], Decision Tree (DT) [5] and Naive Bayesian (NB) [6, 7] are provided in Table 1.
It shows the importance of classification methods and its wide range of application areas.

To further describe the application of classifiers and compare the performance of the afore-
mentioned classifiers among themselves, a comparative study is required. Since, the classification
of Magnetic Resonance (MR) brain images into different tissue classes is very important in clini-
cal study and neurological pathology. Also the MR images are inherently noisy and imprecise in
nature, hence, classification is a challenging task for these types of images. Here, a comparative
study of MR brain image classification is performed with the use of machine learning methods like
Support Vector Machine, k -Nearest Neighbor, Decision Tree and Naive Bayesian classifiers. The
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Table 1. Summary of Applications of Classifiers in Engineering Problems

Area Types of Classifier Applied with References

Feature extraction SVM: [8–10], k -NN: [11], DT: [12]
Micro-array data analysis SVM: [13–15], k -NN: [16], NB: [17].
Multi-sensor data fusion SVM: [18], k -NN: [19], NB: [20], DT: [21].
Optimal power flow SVM: [22], k -NN: [23], NB: [24].
Parameter estimation of SVM: [25–27], k -NN: [28], DT: [29], NB: [30].
chemical process
Remote sensing SVM: [31], k -NN: [32], DT: [33], NB: [34].
Sentiment analysis SVM: [35], k -NN: [36], DT: [37], NB: [38].
Signal processing SVM: [39], k -NN: [40], DT: [41], NB: [42].

performance of these classifiers is demonstrated on several normal and multiple sclerosis lesion
MR brain images. Effectiveness of these classification results is established quantitatively, visually
and statistically.

The paper is organized as follows. Section 2 briefly describes the background of various clas-
sification techniques along with the overview of datasets. In Section 3, the performance of the
classifiers are shown on several normal and multiple sclerosis lesion magnetic resonance brain
images. Finally, Section 4 concludes the paper.

2 Methods and Materials

2.1 Machine Learning Methods

Support Vector Machine: The Support Vector Machine (SVM) is a state-of-the-art classifi-
cation method introduced in 1992 by Boser et al. [3]. For a binary classification training data
problem, suppose a data set consists of N feature vectors (xi, yi), where yi ∈ {+1,−1}, denotes
the class label for the data point xi. The problem of finding the weight vector ν can be formulated
as minimizing the following function:

L(ν) =
1

2
‖ν‖

2
(1)

subject to

yi[ν · φ(xi) + b] ≥ 1, i = 1, . . . , N (2)

Here, b is the bias and the function φ(x) maps the input vector to the feature vector. The SVM
classifier for the case on linearly inseparable data is given by

f(x) =

N
∑

i=1

yiβiK(xi, x) + b (3)

where K is the kernel matrix, and N is the number of input patterns having nonzero values of
the Langrangian multipliers βi. These N input patterns are called support vectors, and hence the
name SVM. The Langrangian multipliers βi can be obtained by maximizing the following:

Q(β) =

N
∑

i=1

βi −
1

2

N
∑

i=1

N
∑

j=1

yiyjβiβjK(xi, xj) (4)

subject to
N
∑

i=1

yiβi = 0 0 ≤ βi ≥ C, i = 1, ...., N (5)
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where C is the cost parameter, which controls the number of non separable points. Increasing C
will increase the number of support vectors thus allowing fewer errors, but making the boundary
separating the two classes more complex. On the other hand, a low value of C allows more non
separable points, and therefore, has a simpler boundary. Only a small fraction of the βi coefficients
are nonzero. The corresponding pairs of xi entries are known as support vectors and they fully
define the decision function. Geometrically, the support vectors are the points lying near the
separating hyperplane. K(xi, xj) = φ(xi).φ(xj) is called the kernel function. The kernel function
may be linear or nonlinear, like Polynomial, Sigmoidal, Radial Basis Functions (RBF), etc. RBF
kernels are of the following form:

K(xi, xj) = e−γ|xi−xj |
2

(6)

where xi denotes the ith data point and γ is the weight. In this paper, the above mentioned RBF
kernel is used. In addition, the extended version of the two-class SVM that deals with multiclass
classification problem by designing a number of one against all two-class SVMs, is used here.

Naive Bayesian Classifier: The Naive Bayes (NB) classifier [6, 7] is developed based on the
Bayes’ theorem. It assumes that the attributes or features are conditionally independent for the
given class label y to compute the class-conditional probability. Therefore, the assumption of
conditional independence is defined as follows:

P (X|Y = y) =

n
∏

i=1

P (Xi|Y = y), (7)

where attribute set {X1, X2, ..., Xn}
T consists of n attributes. Thereafter, it uses to compute

the conditional probability of each Xi for given Y . In order to classify a test data, the classifier
computes the posterior probability for each class Y and it is defined as follows:

P (Y |X) =
P (Y )

∏n

i=1
P (Xi|Y )

P (X)
. (8)

Here, the posterior probabilities are computed by multiplying the priori probabilities with the
class-conditional probabilities. The priori probability of each class is calculated by the fraction of
training points that belong to each class.

k-Nearest Neighbor: The traditional k-NN algorithm is well-known and widely used for its
simplicity and easy implementation [4]. In k-NN classifiers, each unlabeled data point is classified
by the majority voting of its k-nearest neighbors in the training set. Its performance thus depends
crucially on the distance metric used to identify nearest neighbors. In the absence of prior knowl-
edge, most k-NN classifiers use simple Euclidean metric to measure the distance between data
points represented as vector inputs [43]. The class label assigned to a test data point is determined
by the majority voting of its k nearest neighbors. For example, for the test data points, if we
consider 5-NN algorithm and found 3 nearest neighbor data points are belonging in class c1 and
other 2 data points in class c2, then the test data point should belong to class c1.

Decision Tree: C4.5 [5] is a widely used Decision Tree generating algorithm and the extended
version of ID3 algorithm. Both the algorithms have been developed by Ross Quinlan. Moreover,
the Decision Trees generated by C4.5 are often used for classification, hence, it is also known as
statistical classifier. To classify the data points, C4.5 uses the concept of entropy to build the
Decision Trees from a set of training data. For this purpose, at every step, the highest information
gained attribute is considered. Based on that attribute, decision is taken to split the training
set into one or two subsets. The process will continue recursively until all nodes are exhausted.
Thereafter, depending on user given parameters, C4.5 prunes the generated tree in order to classify
the test data points.
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2.2 Datasets

The MR Brain Images of normal brain and multiple sclerosis lesions brain are obtained from the
Brainweb database [44]. The images are available in three bands: T1-weighted, T2-weighted and
proton density (pd)-weighted. In our experiment, all bands are considered together for classifi-
cation. The images correspond to the 1 mm slice thickness, 3% noise (relative to the brightest
tissue) and with 20% intensity nonuniformity. The images of size 217 × 181 are available in 181
different Z planes. For the normal brain image data, the images of the Z planes Z10, Z60 and Z130
are considered. Similarly for the multiple sclerosis lesions brain image data the images of Z planes
Z40, Z90 and Z140 are used for our experiments. The ground truth information of these images
is also available at the Brainweb website [44]. From the ground truth information, it is observed
that each of the Z planes Z10, Z60 and Z130 for normal brain images contains nine classes and for
brain images of multiple sclerosis lesions, Z planes Z40, Z90 and Z140 are having classes of nine,
eleven and nine, respectively.

 

 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. (a), (b) and (c) are original T1-weighted MR images of the normal brains in Z10, Z60 and Z130
planes respectively, (d), (e) and (f) are MR images of the normal brains classified by SVM classifier in
Z10, Z60 and Z130 planes respectively, and (g), (h) and (i) are MR images of the normal brain classified
by k -NN classifier in Z10, Z60 and Z130 planes respectively.
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3 Empirical Results

In this section, the experimental results of the compared machine learning methods are analyzed.
For this purpose, different measures of the classifiers, i.e., prediction error analysis, evaluation
of other validity measures like Kappa-Index (KI) [45], Minkowski Score (MS) [46] and Adjusted
Rand Index (ARI) [47] as well as statistical tests of the prediction errors are discussed in following
subsections.

In this experiment, the parameters of SVM such as γ for kernel function and the soft margin C
(cost parameter), are set to be 0.5 and 2.0, respectively. Note that, RBF (Radial Basis Function)
kernel is used here for SVM. The k value for the k-NN classifier is chosen as 13 for the satisfactory
operation of the classifier and for the case of DT, C4.5 classifier is used.

3.1 Results and Discussions

We compare the performance of Machine Learning Methods like SVM, k-NN, C4.5 or DT and NB,
in this section. As there are no separate training and testing data for the aforementioned images,
hence these image pixels are randomly divided into 70% training dataset and 30% testing dataset
to compute the error rate of each classifier.

Table 2. Average values of Prediction error (In %) of different Classifiers for MR brain images

MR Image Machine Learning Method

SVM k-NN DT NB

Normal Z10 10.39 10.47 11.29 10.74
Brain Z60 11.18 11.19 11.26 11.46

Z130 10.11 10.47 11.16 11.26

Multiple Z40 18.89 19.53 19.77 19.25
Sclerosis Z90 10.71 10.99 11.21 11.55
Lesion Brain Z140 09.09 09.79 10.92 10.63

Table 2 shows the average results of prediction error produced by different classifiers for MR
images of the above mentioned Z planes of normal and multiple sclerosis lesions brains. It is evident
from the table that for all the images, the SVM classifier produces better average prediction error
values compared to that produced by the other classifiers. It also appears that k -NN classifier
perform reasonably good in terms of predicting average error values. Figures 1(a) to (c) show the
original MR normal brain images in T1 band projected on Z10, Z60 and Z130 planes, respectively.
Figures 1(d) to (f) and (g) to (i) show the segmented images of MR normal brain for SVM and
k -NN on Z10, Z60 and Z130 planes, respectively. It appears from these figures that the SVM
classifier has identified the different tissue classes of the normal brain images reasonably well.

On the other hand, Table 3 reports the average values of KI, MS and ARI of different classifiers
for MR brain images. The KI, MS and ARI values are also found better for SVM. Moreover, it is
observed that the results of SVM and k -NN are superior in their corresponding groups while the
SVM performs better than the k -NN. Figures 2(a) to (c) show the T1-weighted original images
corresponding to the Z planes Z40, Z90 and Z140 for the multiple sclerosis lesions brain image
data. The corresponding segmented images obtained by SVM and k -NN classifier are also shown
in Figures 2(d) to (f) and (g) to (i), respectively. It is clear from the figures that the SVM classifier
has identified the different homogeneous regions of the images very well. Hence, form the above
quantitative and visual results for both the brain image datasets it is evident that the SVM
classifier outperforms all its competitors.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. (a), (b) and (c) are original T1-weighted MR images of the multiple sclerosis lesions brains in Z40,
Z90 and Z140 planes respectively, (d), (e) and (f) are MR images of the multiple sclerosis lesions brains
classified by SVM classifier in Z40, Z90 and Z140 planes respectively, and (g), (h) and (i) are MR images of
the multiple sclerosis lesions brains classified by k -NN classifier in Z40, Z90 and Z140 planes respectively.

Table 3. Average values of KI, MS and ARI over 20 runs of different classifiers for MR brain images

Classifier Normal Brain Multiple Sclerosis Lesion Brain

Z10 Z60 Z130 Z40 Z90 Z140

KI MS ARI KI MS ARI KI MS ARI KI MS ARI KI MS ARI KI MS ARI

SVM 0.83 0.45 0.67 0.86 0.39 0.80 0.85 0.45 0.67 0.77 0.48 0.61 0.85 0.44 0.71 0.87 0.39 0.80
k-NN 0.87 0.39 0.80 0.87 0.37 0.80 0.87 0.37 0.80 0.81 0.44 0.71 0.89 0.36 0.81 0.08 0.39 0.80
DT 0.82 0.44 0.71 0.83 0.45 0.68 0.78 0.45 0.68 0.77 0.47 0.66 0.81 0.45 0.68 0.76 0.48 0.61
NB 0.89 0.34 0.85 0.86 0.39 0.80 0.84 0.45 0.67 0.82 0.44 0.71 0.87 0.39 0.80 0.86 0.39 0.80

3.2 Statistical Significance Test

Statistical significance of the results produced by different classifiers, are analyzed at here. For
this purpose, Friedman test [48, 49] is conducted. Generally, Friedman test ranks the classifiers for
each dataset separately. To compute the average rank Rj , let r

j
i be the rank of the jth algorithm

for ith dataset where the number of datasets and algorithms are N and Q respectively. Therefore
the average rank Rj =

1

N

∑

i r
j
i .
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Under the null-hypothesis, which states that all the algorithms are equivalent and so their
ranks Rj should be equal. The Friedman statistic (chi square value) is computed as follows:

χ2

F =
12N

Q(Q+ 1)





∑

j

R2

j −
Q(Q+ 1)2

4



 (9)

The Friedman statistic is distributed according to χ2

F with Q−1 degrees of freedom, when N > 10
and Q > 5. For a smaller number of algorithms and data sets, exact critical values are computed
[50, 51].

Table 4. The Friedman ranks of all classifiers for MR brain images

MR Image Machine Learning Method

SVM k-NN DT NB

Normal Z10 3 2.5 4 3.5
Brain Z60 3.5 2.5 3 4

Z130 2 2.5 3.5 4

Multiple Z40 2.5 3.5 4 3
Sclerosis Z90 2.5 3 3.5 4
Lesion Brain Z140 2 3 4 3.5

Average Rank 2.583 2.833 3.666 3.666

Table 4 reports the ranks of different classifiers for different images as well as average ranks
for each classifier. From Friedman test the average rank for the classifiers SVM, k-NN, DT and
NB are computed as 2.583, 2.833, 3.666 and 3.666, respectively. Moreover, from this average ranks
using Equation 9, χ2

F is computed as 31.693. Therefore, its corresponding p value is 0.11 × 10−4

at α = 0.05 significance level, which emphasize the acceptance of alternative hypothesis strongly.
So, the results produced by the SVM are statistically significant.

4 Conclusion

In this paper, a comparative study of various machine learning methods for multispectral Magnetic
Resonance brain images is conducted. For the machine learning methods, Support Vector Machine,
k -Nearest Neighbor, Naive Bayesian and C4.5 or Decision Tree are used. The classification results
reveals that the average values of prediction errors produced by the Support Vector Machine
are better than the other classifiers. The investigation of Kappa-Index, Minkowski Score and
Adjusted Rand Index indicates the same for Support Vector Machine. Furthermore, statistical
test also shows that the average error values produced by Support Vector Machine are statistically
significant. Finally, considering all conducted tests and statistics, it is established that the results
of Support Vector Machine are quantitatively, visually and statistically superior than other three
classifiers.
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