
Extending the Finite Domain Solver of
GNU Prolog

Vincent Bloemen1, Daniel Diaz2, Machiel van der Bijl3, and Salvador Abreu4

1 University of Twente, Formal Methods and Tools group, The Netherlands
v.bloemen@student.utwente.nl

2 University of Paris 1-Sorbonne - CRI, France
daniel.diaz@univ-paris1.fr
3 Axini B.V., The Netherlands

vdbijl@axini.com
4 Universidade de Évora and CENTRIA, Portugal

spa@di.uevora.pt

Abstract. This paper describes three significant extensions for the Fi-
nite Domain solver of GNU Prolog. First, the solver now supports neg-
ative integers. Second, the solver detects and prevents integer overflows
from occurring. Third, the internal representation of sparse domains has
been redesigned to overcome its current limitations. The preliminary per-
formance evaluation shows a limited slowdown factor with respect to the
initial solver. This factor is widely counterbalanced by the new possi-
bilities and the robustness of the solver. Furthermore these results are
preliminary and we propose some directions to limit this overhead.

1 Introduction

Constraint Programming [1,7,16] emerged, in the late 1980s, as a successful
paradigm with which to tackle complex combinatorial problems in a declarative
manner [11]. However, the internals of constraint solvers, particularly those over
Finite Domains (FD) were wrapped in secrecy, only accessible to only a few
highly specialized engineers. From the user point of view, a constraint solver
was an opaque “black-box” providing a fixed set of (hopefully) highly optimized
constraints for which it ensures the consistency.

One major advancement in the development of constraint solvers over FD
is, without any doubt, the article from Van Hentenryck et al. [12]. This paper
proposed a “glass-box” approach based on a single primitive constraint whose
understanding is immediate. This was a real breakthrough with respect to the
previous way of thinking about solvers. This primitive takes the form X in r,
where X is an FD variable and r denotes a range (i.e. a set of values). An X in r
constraint enforces X to belong to the range denoted by r which can involve
other FD variables. An X in r constraint which depends on another variable
Y becomes store sensitive and must be (re)activated each time Y is updated, to
ensure the consistency. The X in r constraint can be seen as embedding the

core propagation mechanism. Indeed, it is possible to define different propagation
schemes for a given constraint, corresponding to different degrees of consistency.

It possible to define high-level constraints, such as equations or inequations,
in terms of X in r primitive constraints. It is worth noticing that these con-
straints are therefore not built into the theory. From the theoretical point of view,
it is only necessary to work at the primitive level as there is no need to give special
treatment to high-level constraints. This approach yielded significant advances in
solvers. From the implementation point of view, an important article is [5] which
proposed a complete machinery (data structures, compiler, instruction set) to
efficiently implement an FD solver based on X in r primitives. It also shows
how some optimizations at the primitive level can, in turn, be of great benefit
to all high-level constraints. The resulting system, called clp(FD), proved the
efficiency of the approach: the system was faster than CHIP, a highly optimized
black-box solver which was a reference at the time. This work has clearly inspired
most modern FD solvers (SICStus Prolog, bProlog, SWI Prolog’s clpfd, Choco,
Gecode, ...) but also solvers over other domains like booleans [4], intervals [10]
or sets [9,2]. Returning to FD constraints, a key point is the ability to reason
on the outcome of a constraint (success or failure). Again, the “RISC” approach
restricted the theoretical work about entailment at the primitive level [3]. This
allowed a new kind of constraints: reified constraints, in which a constraint be-
comes concretized. The “RISC” approach was also very convenient for constraint
retraction [6].

When GNU Prolog was developed, it reused the FD solver from clp(FD).
The X in r constraint was generalized to allow the definition of new high-level
constraints, e.g. other arithmetic, symbolic, reified and global constraints. Nev-
ertheless, the internals of the solver were kept largely unchanged. The outcome
is a fast FD solver, but also one with some limitations:

– First, the domain of FD variables is restricted to positive values (following
the original paper [12]). This is not restrictive from a theoretical point of
view: a problem can always be “translated” to natural numbers but, from a
practical point of view, there are several drawbacks: the translation is error-
prone, the resulting programs are difficult to read and can exhibit significant
performance degradation.

– Second, the domain representation uses a fixed-size bit-vector to encode
sparse domains. Even if this size can be controlled by the user, it is eas-
ily and frequently misused. In some cases, the user selects a very large value
for simplicity, without being aware of the waste of memory nor the loss of
efficiency this induces.

– Lastly, for efficiency reasons the GNU Prolog solver does not check for integer
overflows. This is generally not a problem when the domains of FD variables
are correctly specified, as all subsequent computation will not produce any
overflow. However, if one forgets to declare all domains, or does not declare
them at the beginning, an overflow can occur. This is the case of:

|?- X * Y #= Z.

No

2

Indeed, without any domain definition for X and Y the non-linear con-
straint X * Y #= Z will compute the upper bound of Z as 228 × 228 which
overflows 32 bits resulting in a negative value for the max, thus the fail-
ure (max < min). This behaviour is hard to understand and requires an
explanation. We admit this is not the Way of Prolog and does not help to
promote constraint programming to new users. We could raise an exception
(e.g. instantiation error or representation error) but this would still
be of little help to most users.

In this article we describe and report on initial results for the extension and
modification of the GNU Prolog FD solver to overcome these three limitations.
This is a preliminary work: special attention has been put on ensuring correct-
ness and the implementation is not yet optimized. Nevertheless the results are
encouraging, as we shall see, and there is ample room and directions to research
on performance improvements.

The remainder of this article is organized as follows: Section 2 introduces
some important aspects of the original FD solver required to understand the
modifications. Section 3 is devoted to the inclusion of negative values in FD
domains. Section 4 explains how integer overflow is handled in the new solver,
while Section 5 explains the new representation for sparse domains. A perfor-
mance evaluation may be found in Section 6. Section 7 provides some interesting
directions to optimize the overall performance. A short conclusion ends the pa-
per.

2 The GNU Prolog FD Solver

The GNU Prolog solver follows the “glass-box” approach introduced by Van
Hentenryck et al. in [12], in which the authors propose the use of a single prim-
itive constraint of the form X in r, where X is an FD variable and r denotes
a range (ie. a set of values). An X in r constraint enforces X to belong to the
range denoted by r which can be constant (e.g. the interval 1..10) but can also
use the following indexicals:

– dom(Y) representing the whole current domain of Y .
– min(Y) representing the minimum value of the current domain of Y .
– max(Y) representing the maximum value of the current domain of Y .
– val(Y) representing the final value of the variable of Y (when its domain is

reduced to a singleton). A constraint using this indexical is postponed until
Y is instantiated.

An X in r constraint which uses an indexical on another variable Y becomes
store sensitive and must be (re)activated each time Y is updated to ensure
the consistency. Thanks to X in r primitive constraints it is possible to define
high-level constraints such as equations or inequations. Obviously all solvers
offer a wide variety of predefined (high-level) constraints to the programmer.
Nevertheless, the experienced user can define his own constraints if needed.

3

The original FD solver of GNU Prolog is also based on indexicals. Its im-
plementation is widely based on its predecessor, clp(FD) [5]. In the rest of this
section we only describe some aspects of the original implementation which are
important later on. The interested reader can refer to [8] for missing details.

2.1 The FD definition language

The original X in r is not expressive enough to define all needed constraints
in practice. We thus defined the FD language: a specific language to define
the constraints of the GNU Prolog solver. Figure 1 shows the definition of the
constraint A×X = Y in the FD language:

ax_eq_y(int A, fdv X, fdv Y) /* here A != 0 */

{

start X in min(Y) /> A .. max(Y) /< A /* X = Y / A */

start Y in min(X) * A .. max(X) * A /* Y = X * A */

}

Fig. 1. Definition of the constraint A×X = Y in the FD language

The first line defines the constraint name (ax eq y) and its arguments to-
gether with their types (A is expected to be an integer, X and Y FD variables).
The start instruction installs and activates an X in r primitive. The first
primitive computes X from Y in the following way: each time a bound of Y is
modified the primitive is triggered to reduce the domain of X accordingly. The
operator /> (resp. /<) denote division rounded upwards (resp. downwards). Sim-
ilarly, the second primitive updates (the bounds) of Y with repect to X. This
is called bound consistency [1] : if a hole appears inside the domain of X (i.e. a
value V different from both the min and the max of X has beed removed from
the domain of X), the corresponding value A× V will not be removed from the
domain of Y . If wanted, such a propagation (called domain consistency) could
be specified using the dom indexical.

A compiler (called fd2c) translates an FD file to a C source file. The use
of the C language as target is motivated by the fact that all the GNU Prolog
system is written in C (so the integration is simple) but mainly by the fact that
modern C compilers produce very optimized code (this is of prime importance if
we consider that a primitive constraint can be awoken several thousand times in
a resolution). When compiled such a definition gives rise to different C functions:

– the main function: a public function (ax eq y) which mainly creates an envi-
ronment composed of the 3 arguments (A,X, Y) and invokes the installation
functions for the involved X in r primitives.

– the installation function: a private function for each X in r primitive which
is responsible for the installation of the primitive. This consists of installing

4

the dependencies (e.g. add a new dependency to Y , so that each time Y
is modified the primitive is re executed to update X) and the execution
function is invoked (this is the very first execution of the primitive).

– the execution function: a private function for each X in r primitive which
computes the actual value of r and enforces X ∈ r. This function will be
(re)executed each time an FD variable appearing in the definition of r is
updated.

2.2 Internal domain representations

There are 2 main representations of a domain (range):

– MinMax: only the min and the max are stored. This representation is used
for intervals (including 0..fd max integer).

– Sparse: this representation is used as soon as a hole appears in the domain of
the variable. In that case, in addition to the min and the max, a bit-vector
is used to record each value of the range.

01011011011010101

 :

10100101101010010

10010011101001101

 sparse range
(bit−vector allocated)

bit−vector

Ptr to bit−vector

 Max

 Min

Extra constrained?

empty range
(min > max)

 interval range
(bit−vector unused)

Ptr to bit−vector

 Max

 Min

Extra constrained?

Ptr to bit−vector

 Max

 Min

Extra constrained?

Fig. 2. Representations of a range

When an FD variable is created it uses a MinMax representation. As soon as
a “hole” appears it is transparently switched to a Sparse representation which
uses a bit-vector. For efficiency reasons all bit-vector have the same size inside
0..fd vector max. By default fd vector max equals 127 and can be redefined
via an environment variable or via a built-in predicate (this should be done
before any constraint is told). When a range becomes Sparse, some values are

5

possibly lost if fd vector max is less than the current max of the variable.
To inform the user of this source of incompleteness, GNU Prolog maintains
a flag to indicate that a range has been extra constrained by the solver (via
an imaginary constraint X in 0..fd vector max). The flag extra cstr associ-
ated to each range is updated by all operations, e.g. the intersection of two
ranges is extra-constrained iff both ranges are extra constrained, thus the re-
sulting flag is the logical and between the two flags. When a failure occurs on
a variable whose domain is extra constrained a message is displayed to inform
the user that some solutions can be lost since bit-vectors are too small. Fi-
nally an empty range is represented with min > max. This makes it possible
to perform an intersection between R1 and R2 in MinMax mode simply with
Max(min(R1),min(R2))..Min(max(R1),max(R2)) which returns min > max
if either R1 or R2 is empty. Figure 2 shows the different representations of a
range.

3 Supporting Negative Values

In this section we describe how the inclusion of negative values in FD variables
is realized. First we show why the current implementation does not support
negative values. Then we show how to address the problems by mainly focusing
on the implementation. This section only describes bound consistency; negative
values are handled similarly in domain consistency due to the new sparse design,
described in Section 5.

3.1 Current limitations

The current implementation does not support negative values, FD variables
stay within the bounds 0..fd max integer. Adding support for negative val-
ues seems obvious at a first glance, however some attention has to be paid.
The modifications concern constraints whose current implementation implicitly
utilize the fact that values are always positive, which is no longer valid. Other
modifications concern constraints which are sign sensitive from the interval arith-
metical point of view. This is the case for multiplication: if X is in min..max
then −X is in −max.. −min. Let us consider again the case of the constraint
A×X = Y whose current definition is presented in Figure 1. Presuming that A
can be negative the current definition will not update the domains of X and Y

correctly: in that case X will be constrained to dmin(Y)
A e..bmax(Y)

A c which pro-
duces an empty interval since min(X) > max(X). To support negative values
in FD variables, this instance, as well as other arithmetical constraints require
updating to handle negative values properly.

3.2 Method and approach

One possible approach to deal with negative numbers is to construct a map-
ping for negative values to natural numbers so that the arithmetic constraints

6

can continue to operate strictly on the positive domain. Another approach is
to update the constraints to be fully functional for both positive and negative
domains. The former is undesirable since the translation quickly becomes cum-
bersome and would carry a considerable performance impact. Aside from that,
several operations such as taking the power or root are affected by the variable
sign. As the latter approach is less error-prone and more robust, we chose to
implement it and thus need to reformulate several arithmetic constraints.

First, the initial domain bounds of FD variables are updated to range in
fd min integer..fd max integer. To remain backwards compatible, an envi-
ronment variable is created that, if set, will use the original bounds for FD
variables.

On updating the arithmetic constraints, all possible cases for each FD vari-
able need to be considered, that is < 0, = 0 and > 0 for both the min and max
of the variable. For instance, the A×X = Y constraint from Figure 1 is updated
as follows:

ax_eq_y(int A, fdv X, fdv Y) /* A != 0 */

{

start X in ite(A>0, min(Y), max(Y)) /> A /* X = Y / A */

.. ite(A>0, max(Y), min(Y)) /< A

start Y in ite(A>0, min(X), max(X)) * A /* Y = X * A */

.. ite(A>0, max(X), min(X)) * A

}

where ite represents an if-then-else expression (corresponding to the C opera-
tor ?:). This modification ensures that for all interpretations of A, X and Y the
domains are updated correctly.

A more complex example is the constraint XA = Y , where X and Y are FD
variables and A is an integer > 2. In the current version, this constraint is given
as follows:

x_power_a_eq_y(fdv X, int A, fdv Y) /* A > 2 */

{

start Y in Power(min(X), A)..Power(max(X), A)

start X in Nth_Root_Up(min(Y), A)..Nth_Root_Dn(max(Y), A)

}

With the introduction of negative values, the constraint is specified as:

x_power_a_eq_y(fdv X, int A, fdv Y) /* A > 2 */

{

start X in ite(is_even(A),

min_root(min(X), min(Y), max(Y), A),

ite(min(Y) < 0,

-Nth_Root_Dn(-min(Y), A),

Nth_Root_Up(min(Y), A)))

.. ite(is_even(A),

max_root(max(X), min(Y), max(Y), A),

7

ite(max(Y) < 0,

-Nth_Root_Up(-max(Y), A),

Nth_Root_Dn(max(Y), A)))

start Y in ite(min(X) < 0 && is_odd(A),

Power(min(X), A),

Power(closest_to_zero(min(X), max(X)), A))

.. ite(min(X) < 0 && is_even(A),

Power(Max(abs(min(X)), max(X)), A),

Power(max(X), A))

}

here, a couple of C functions and macros are introduced:

– Min and Max are used to compute the minimum resp. maximum of two values.
– is even and is odd return wether the variable is even or odd.
– min root and max root calculate the minimum and maximum value of± A

√
Y

that lie in the bounds of min(X)..max(X).
– Power and Nth Root refer to C functions that calculate the nth power and

nth root of a variable.
– closest to zero(A,B) returns the closest value to 0 in the interval A..B.

In this specification, Y can only include negative values if X contains negative
values and A is an odd number (e.g.−23 = −8). Similarly, if Y is strictly positive,
X can only take negative values if A is an even number (e.g. −24 = 16). In
short, the above constraint needs to distinguish between even and odd powers
of X, which was originally unnecessary. With this definition, the following query
correctly reduces the domains of X and Y :

|?- fd_domain([X,Y],-50,150), X ** 3 #= Y.

X = _#0(-3..5)

Y = _#17(-27..125)

The support for negative values in FD variables is achieved by carefully re-
designing the arithmetic constraints. An obvious side-effect of the modifications
is that some overhead is introduced, even when considering strictly positive FD
variables. The benchmark tests, see Section 6, will show the impact of the mod-
ifications compared to the original solver.

4 Handling Integer Overflows

4.1 Current limitations

The current implementation of GNU Prolog does not check for overflows. This
means that without preliminary domain definitions for X, Y and Z, the non-
linear constraint X × Y = Z will fail due to an overflow when computing the
upper bound of the domain of Z : 228 × 228. In 32-bit arithmetic, this overflow

8

causes a negative result for the upper bound and the constraint then fails since
min(X) > max(X).

At present, the user needs to adapt the variable bounds beforehand to prevent
this constraint from failing. To reduce the burden to the user and improve the
robustness of the solver, we propose a better way of handling overflows.

4.2 Method and approach

There are two approaches to handle overflows. One is to report the problem via
an ISO exception (e.g. evaluation error), thereby informing the user that the
domain definitions for the FD variables are too mild and should be made more
restrictive. The other approach is to instrument the solver to detect overflows
and cap the result. As placing less restrictions on the user and more robustness
for the solver is desirable, the second approach is chosen.

The key idea behind preventing overflows is to detect when one would occur
and provide means to restrict this from happening. For the solver this means
that when a multiplication or power operation is applied in a constraint, an
overflow prevention check should be considered. This can also be the case for
other arithmetic operations.

Consider again the constraint X × Y = Z. Because both 1 × 228 = 228 and
228×1 = 228, the maximum value that both X and Y can take is 228. Therefore
the following (and current implementation) for finding the domain for Z causes
an overflow:

start Z in min(X) * min(Y) .. max(X) * max(Y)

For this case and similar instances, the following function is designed to cap
results of arithmetic, thereby preventing overflows:

static int inline mult(int a, int b)

{

int64_t res = ((int64_t) a) * ((int64_t) b);

if (res > max_integer)

res = max_integer;

else if (res < min_integer)

res = min_integer;

return (int) res;

}

Since integers only need 29-bits, the 64-bit result is enough to check if an overflow
occurs and cap the result if needed. In the constraint definitions, the standard
multiplication gets replaced with a mult call when it could cause an overflow.
For the X × Y = Z constraint, this is as follows:1

start Z in mult(min(X), min(Y)) .. mult(max(X), max(Y))

1 The constraint is further modified for negative values, along the same lines.

9

As a consequence, the X × Y = Z constraint now gives the following result:

| ?- X * Y #= Z.

X = _#3(-268435456..268435455)

Y = _#20(-268435456..268435455)

Z = _#37(-268435456..268435455)

where -268435456 = fd min integer and 268435455 = fd max integer.
At first, we used mult for every applied multiplication in the constraint def-

initions. However, in some cases it is not necessary to check for overflows. For
instance, consider the implementations for ax eq y and x power a eq y of Sec-
tion 3.2. By first restricting the domain of X (in both cases), no overflow can
occur when the domain of Y is calculated. Note that if the domain of Y is com-
puted first, an overflow could happen. Note however, that such an optimization
is not possible for some constraints, for instance X × Y = Z, since the domains
of X and Y do not necessarily get reduced.

In conclusion, even if several overflow problems could be resolved by re-
arranging the order of execution, in general it is necessary to take preventive
measures.

5 New Domain Representation

5.1 Current limitations

In the current implementation, when a domain gets a hole, its representation
is switched to the Sparse form, which stores domains using a static-sized bit-
vector. The problem with this approach is that values which lie outside the
range 0..fd vector max are lost. An internal flag extra cstr is set when this
occurs to inform the user of lost values. Even though the user is able to globally
set fd vector max, there are several problems with this representation:

– The user has to know the variable bounds in advance; an over-estimate of
the domain size results in a waste of memory (and loss of efficiency).

– There is an upper-limit for fd vector max which is directly related to the
available memory space in bits. Also note that doing operations on a large
bit-vector can severely impact the performance.

– The current Sparse representation is unable to store negative values.

5.2 Method and approach

To deal with the limitations, a redesign is needed for the Sparse representation.
Some research has been done in representing sparse domains [13,14]. Consid-
ering the requirements – remain efficient while taking away the limitations –
there are several options for the redesign, while also considering alternatives and
variations:

10

1. Use a list of MinMax chunks: Store only the minimum and maximum of
consecutively set values. The values between two chunks are defined to be
all unset. This is especially effective if the number of holes is small or large
gaps exist in the domain.

2. Use a list of bit-vector chunks: Use a bit-vector together with an offset to
store all (un)set actual values. The values between two chunks can either be
defined as all set or all unset (possibly defined per chunk with a variable).
This is in particular effective on small domains with many holes.

3. A combination of (1) and (2): Determine per chunk whether it should be a
MinMax chunk or bit-vector chunk, so that the number of total chunks is
minimal. This takes the advantages of both individual options but it does
introduce extra overhead for determining which representation to choose and
operations between two different chunk representations can become difficult.

Note that all suggested model takes away the limitations of the current design.
Le Clément et al. [13] provide a more in-depth analysis on the different repre-
sentations with respect to their time complexities. Note that differences arise
for specific operations on domains: for instance, a value removal is done more
efficiently in a bit-vector while iteration is more efficient on MinMax chunks.

We initially opted for the combination of the MinMax and bit-vector chunks
because the extra overhead is presumed to not be a significant factor. For the
moment, however, we implemented a list of MinMax chunks. Its performance
compared to the original Sparse implementation shows a limited slowdown fac-
tor, as discussed in Section 6. Because of these results (a slowdown is expected
anyway, due to the new possibilities), the addition of a bit-vector representation
was postponed. We now discuss the new implementation using a list of MinMax
chunks.

Range

Chunk #1 Chunk #2
[6..9] [11..60]

[6..100]

Chunk #3
[80..100]

Range
min
max
first
last

Chunk
min
max
prev
next

Fig. 3. Left: UML diagram of the new Sparse range, right: example for repre-
senting the set of values {6..9,11..60,80..100}.

The domain initially uses a MinMax representation (just a Range instance)
which only stores min and max, with first and last being null pointers. When
a hole appears, the domain switches to the Sparse representation by adding
Chunk instances. The range keeps track of the first and last chunk of the list
and continues to maintain the min and max of the whole domain (range.min
= range.first.min). The list is a doubly-linked list for efficient insertion and

11

removal of chunks, each chunk maintains its minimum and maximum values.
This representation is depicted in Figure 3.

For every two consecutive chunks c1 and c2, we have c1.max + 1 < c2.min ;
chunks are sorted and always have at least one unset value between them. Fur-
thermore, ci.min ≤ ci.max.

Operations on Sparse ranges (e.g. intersection, union, ...) are efficiently done
by iterating over the chunks and updating these in place whenever possible. An
example of this is provided in Table 1 for intersecting two Sparse ranges. The
implementation only considers one chunk of each range at a time and the cases
are considered from top to bottom.

Case: Action (in pseudo code):

chunk 1.max < chunk 2.min - Remove chunk 1

- chunk 1 = chunk 1.next // advance chunk 1
chunk 1.max ≤ chunk 2.max - Create new chunk and set before chunk 1

with min = Max(chunk 1.min, chunk 2.min)
and max = Min(chunk 1.max, chunk 2.max)
- chunk 1 = chunk 1.next // advance chunk 1

chunk 1.min > chunk 2.max - chunk 2 = chunk 2.next // advance chunk 2

chunk 1.max > chunk 2.max - Create new chunk and set before chunk 1

with min = Max(chunk 1.min, chunk 2.min)
and max = Min(chunk 1.max, chunk 2.max)
- chunk 2 = chunk 2.next // advance chunk 2

Table 1. Implementation of the range intersection operation.

Because the solver may need to backtrack, domains need to be trailed. Mod-
ifications on domains can cause its chunks to disperse in memory, therefore all
chunks of the domain are saved on the trail, upon modification. A classical
timestamp technique is used to avoid trailing more than once per choice-point.

With this new implementation for the Sparse domain, it is now possible to
store negative values and the domain bounds are no longer limited to a static
arbitrary value, thereby rendering the extra cstr flag useless.

6 Performance Analysis

In this section we compare the original FD constraint solver to a version that
includes the new extensions. Table 2 presents the total execution times (in mil-
liseconds) for runs of several benchmarks. Neg + Ovfl consists of the negative
values extension and the overflow prevention (the Ovfl extension is implemented
simultaneously with Neg). Neg + Ovfl + Dom includes all three extensions pre-
sented in this article. Times are measured on a 64-bit i7 Processor, 2.40GHz×8
with 8GB memory running Linux (Ubuntu 13.10).2

2 The results can be reproduced with version 1.4.4 of GNU Prolog for the current
version and the git branch negative-domain for the new version.

12

Program Original Neg + Ovfl Neg + Ovfl + Dom
Time Time Speedup Time Speedup

queens 29 429 414 1.04 644 0.66
digit8 ff (×100) 787 1197 0.66 1082 0.73
qg5 11 (×10) 610 593 1.03 813 0.75
queens ff 100 156 153 1.02 201 0.77
partit 600 200 266 0.75 254 0.79
eq20 (×100) 189 249 0.76 228 0.83
crypta (×1000) 888 1016 0.87 1075 0.83
langford 32 551 549 1.00 646 0.85
magsq 11 810 802 1.01 923 0.88
multipl (×10) 567 577 0.98 604 0.94
magic 200 180 178 1.02 180 1.00
donald (×10) 167 158 1.06 166 1.00
alpha (×10) 409 407 1.00 396 1.03
interval 256 (×10) 217 205 1.06 140 1.55

Geometric mean 364 389 0.94 413 0.88

Table 2. Performance Impact of Extensions (times in ms.)

The original implementation and the benchmark tests are solely designed
for the positive domain. Therefore the domain bounds are restricted to positive
values (using the environment variable discussed in Section 3.2), while making
use of the updated constraint definitions. Multiple test runs show an estimated
standard deviation of 3 milliseconds. The annotation (×10) indicates that the
test time is formed from 10 consecutive executions (to reduce the effect of the
deviation).

On average, the introduction of negative domains + overflow detection pe-
nalizes the benchmarks by 6%. This slowdown is an expected consequence of
the increased complexity, and we are quite pleased that it turns out small. The
worst case is for digit8 ff with a 34% performance loss (see [15] for a definition
of “performance gain”). The reason for this is because the square root is often
calculated, which is slower as both the positive and negative solutions are con-
sidered in the predicates. The best case scenario is for donald, which exhibits
a 6% performance gain over the base version: the redesign for the predicates
actually improved the solver’s performance in several cases.

With the inclusion of the new Sparse domain alongside the other extensions,
on average the benchmarks suffer a performance loss of 12%. The worst case test
is queens 29 with 34% and the best case, interval 256, has a 55% performance
gain over the base version. The queens 29 test creates a lot of holes on a small
domain which is more efficient with a bit-vector than MinMax chunks. The
interval 256 test often iterates on domains: this is more efficient in the new
Sparse domain because finding the nth element is achieved in O(nr. of holes)
time. The base version has to iterate over the bit-vector until the nth element is
found, making the time complexity O(size of bit-vector).

13

Note that these benchmark tests do not utilize the enhanced capabilities of
the new solver. For instance, test programs that use the negative domain cannot
be tested in the original solver. It is therefore difficult to make a fair comparison.

7 Future Work

While the results show that the extensions only cause a limited slowdown factor,
there is much room for improvements.

The measures taken to prevent overflows can be optimized further. In the
new implementation, several unnecessary preventive checks are still being done:
for instance, for the constraint X + Y = Z no overflow detection is needed
when computing Z, since adding two 29-bit values cannot cause overflow in
32-bit arithmetic, yet it’s being checked for. Furthermore, when the run-time
domain bounds imply that no overflows can occur; for instance if X and Y are
in 0..10 there is no need to check for overflow in the constraint X×Y = Z, since
domains are reduced monotonically. As seen in section 3.2, supporting negative
numbers for XA = Y implies testing the parity of A. At present this is done
every time the constraint is reactivated, however, with a slightly more complex
compilation scheme, there will be two versions of the execution function (see 2.1):
one specialized for even As and another for odd. The installation function would
be responsible to select the adequate execution function, depending on the actual
value of A at run-time. This will entail enriching the FD language to be able to
express user-specified installation procedures.

It will definitely be interesting to combine our new Sparse domain represen-
tation with bit-vectors, whenever applicable. We will experiment in this direc-
tion. Similarly, instead of using a (doubly-linked) list for maintaining chunks,
a tree-structure is likely to be more efficient. Ohnishi et al. [14] describe how
a balanced tree structure is realized on interval chunks. Incorporation of this
structure should improve the time complexity on insertion and deletion from
O(n) to O(log n) (for n as the number of chunks) in worst case scenarios.

The added expressiveness allows us to tackle more complex problems, which
were previously hard or impossible to model. These will also have to be bench-
marked against other systems.

8 Conclusion

We presented a set of extensions to the GNU Prolog FD solver which allow
it to more gracefully handle real-world problems. Central to these is a domain
representation that, in order to gain generality, forgoes the compactness found
in the existing solver: we moved from static vectors to dynamic data structures.
The solver is now also capable of handling negative values and measures were
taken to improve its robustness and correctness. The result is a system which
can more easily model complex problems.

14

The performance evaluation of the initial, suboptimal, implementation shows
encouraging results: the slowdown is quite acceptable, in the order of 12%. Fur-
thermore, we have proposed ways to further reduce the impact of these design
options, and thus hope to reclaim the lost performance.

References

1. Krzysztof R. Apt. Principles of constraint programming. Cambridge University
Press, 2003.

2. Federico Bergenti, Alessandro Dal Palù, and Gianfranco Rossi. Integrating Fi-
nite Domain and Set Constraints into a Set-based Constraint Language. Fundam.
Inform., 96(3):227–252, 2009.

3. Björn Carlson, Mats Carlsson, and Daniel Diaz. Entailment of Finite Domain
Constraints. In Pascal Van Hentenryck, editor, ICLP, pages 339–353. MIT Press,
1994.

4. Philippe Codognet and Daniel Diaz. clp(B): Combining Simplicity and Efficiency
in Boolean Constraint Solving. In Manuel V. Hermenegildo and Jaan Penjam,
editors, PLILP, volume 844 of Lecture Notes in Computer Science, pages 244–260.
Springer, 1994.

5. Philippe Codognet and Daniel Diaz. Compiling Constraints in clp(FD). Journal
of Logic Programming, 27(3):185–226, 1996.

6. Philippe Codognet, Daniel Diaz, and Francesca Rossi. Constraint Retraction in
FD. In Vijay Chandru and V. Vinay, editors, FSTTCS, volume 1180 of Lecture
Notes in Computer Science, pages 168–179. Springer, 1996.

7. Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.
8. Daniel Diaz, Salvador Abreu, and Philippe Codognet. On the implementation of

GNU Prolog. TPLP, 12(1-2):253–282, 2012.
9. Carmen Gervet. Conjunto: Constraint Logic Programming with Finite Set Do-

mains. In Maurice Bruynooghe, editor, ILPS, pages 339–358. MIT Press, 1994.
10. Frédéric Goualard, Frédéric Benhamou, and Laurent Granvilliers. An Extension of

the WAM for Hybrid Interval Solvers. Journal of Functional and Logic Program-
ming, 1999(Special Issue 1), 1999.

11. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT
Press, 1989.

12. Pascal Van Hentenryck, Vijay A. Saraswat, and Yves Deville. Design, Implemen-
tation, and Evaluation of the Constraint Language cc(FD). In Andreas Podelski,
editor, Constraint Programming, volume 910 of Lecture Notes in Computer Science,
pages 293–316. Springer, 1994.

13. Vianney Le Clément de Saint-Marcq, Pierre Schaus, Christine Solnon, and
Christophe Lecoutre. Sparse-Sets for Domain Implementation. In CP workshop on
Techniques foR Implementing Constraint programming Systems (TRICS), pages
1–10, September 2013.

14. Shuji Ohnishi, Hiroaki Tasaka, and Naoyuki Tamura. Efficient Representation of
Discrete Sets for Constraint Programming. In Francesca Rossi, editor, CP, volume
2833 of Lecture Notes in Computer Science, pages 920–924. Springer, 2003.

15. David A Patterson and John L Hennessy. Computer Organization and Design: the
Hardware/Software Interface. Morgan Kaufmann, 2013.

16. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Elsevier, 2006.

15

