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Abstract

Soft-power is a relatively new player in the foreign affairs sciences. In-
stead of using coercion, characteristic of hard-power, it grows on the attrac-
tion of shared values. Multi-agent simulations are a tool of choice to study
the social nature of soft-power, where realistic scenarios requiring heteroge-
nous agents, acting rationally with respect to their own, individual, rewards
can be explored.

The work described here is an experiment where deliberation results
from a simple individual markov decision process that tries to incorporate
elements inspired by soft-power. The resulting policies are then analyzed
and tested in a virtual multi-agent simulation.

According to Robert Nye [6], in the context of foreign affairs, power is “the
ability to get the outcomes one wants” and “having the capabilities to affect the
behavior of others to make those things happen.” He argues that material, hard,
resources are not enough to explain power and proposes another face of power,
coined soft-power, that rests on the attraction of shared values. Soft-power players
choose (co-opt) to work (cooperate) together, instead of being coerced to.

The role of individual values and the possibility of co-optation versus coercion
can, arguably, be transported from the foreign affairs area to other social sciences,
where agents interact to achieve common and individual goals. For example, mo-
tivated co-workers is a common goal for leaders; to build bridges from individual
to institutional values (e.g. Google’s motto, “don’t be evil”1) can be described as
exercises of soft-power.

Multi-agent models and computer simulations have became desirable, indeed
unavoidable, tools to study social interactions. However, developing multi-agent
models where the potential of individual deliberation is cripped is a dangerous
game: Generalization of homogeneity in individuals is a common, old and actual,

1and not “do no evil”, as is usually stated.
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source of error and tragedy. The rush to understand the complexities of social
interactions in simple terms overlooks the many individual deliberation processes
that, in one hand, often drive the social dynamics out of local minima and, in
the other hand, settle on diverse values and perception of the world states and
dynamics.

Fortunately, individual deliberation can be formalized without bounds. Many
authors argue that rational decision, based in Bernoulli’s formula [3]

α∗ (x) = arg max
α

∑
x′

p(x′|x, α)u(x′) (1)

is not adequate as a model of human deliberation because (a) humans are noto-
riously bad at assigning realistic values to transition probabilities p(x′|x, α) and
utilities u(x′) and (b) the number of pairs (α, x′) is too large to compute α∗ in real-
time. These statements are not in cause here: the volume of evidence supporting
(a) is immense and (b) is directly observable.

However, such claims do not necessarily imply that Bernoulli’s formula is wrong
as an approximate model of human deliberation. Claim (a) merely implies that
human deliberation doesn’t use exact p() and u() functions. Moreover, at the
population level, when individual evaluation errors tend to cancel out, there is
some evidence that human behavior respects formula (1). For example, according
to the general belief in economy sciences, (e.g. Grayson in [4]), the utility of money
is proportional to the logarithm of the quantity. Under this supposition Bernoulli’s
formula predicts the well-known (to economy) behavior where wealth people tend
to avoid risk while poor people tend to adopt it.

So, assuming that humans do indeed “have” some transition model, p(), and
utility, u(), functions, possibly (perhaps certainly) erroneous ones, there is no
reason to rule out Bernoulli’s formula as a model of human deliberation: the
program is good but the input is bad. Moreover, it seems that good approximations,
and not complexity of the computation is the real issue: dogs catch objects in flight,
although the trajectories are described by differential equations.

A model of human deliberation based in formula (1) might be adequate under
the condition that at least one of “p()”, “u()” or “arg maxα

∑
x′” is not completely

evaluated. In addition, the theory of rational decision, spawned from Bernoulli’s
formula, is a well studied mathematical framework rich in concepts, techniques and
algorithms. In particular, Markov Decision Processes (MDP) express, in a compact
language, the problem of finding an optimal policy given the transition model and
(local) rewards.2 The general structure of MDP problems is depicted in figure 1.
For deliberation problems in particular, MDPs are extended to Dynamic Decision

2A reward measures the present state (and possibly the action and the successor state) whereas
utility encompasses all the infinite horizons visible from the present state.
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Networks (DDN), where the state x is factorized into features x = 〈f1, . . . , fn〉.
The major limitation of MDPs, and therefore of MDP based DDNs, is the assump-
tion of complete observability of the current state. The realistic generalization to
partially observable environments is formalized with Partially Observable Markov
Decision Processes (POMDP) but finding exact solutions (i.e. approximating ex-
actly the utility function) is known to be computationally intractable. However,
recent results [10] provide algorithms able to approximate in real-time problems
up to 1054 states.

In summary, soft-power, growing from shared values, accounts for a psycho-
logical face of power and rational decision might contribute with an adequate
framework to model individual deliberation. These two ideas guide a process of
exploration of models of rational deliberation incorporating elements from soft-
power, the resulting policies from such models and multi-agent simulations, where
individual agents follow such policies.

1 Deliberation and Soft-power

The task of defining a model of rational deliberation incorporating elements from
soft-power can be divided into:

1. select an appropriate framework to express rational decision problems;

2. select deliberation features representing, at least partially, soft-power and

3. express the factors of step 2 in an instance of the framework of step 1.

In this section is formulated a general model of deliberation with soft-power
features. It starts with a brief overview of MDP and proceeds to the statement of
soft-power features and their interdependencies within the DDN framework.

1.1 Markov Decision Processes

Markov Decision Processes define the problem of finding an utility function, u(x),
given a transition model, p(x′|x, α), and a (local) reward function, r(x [, x′, α]).
The transition model expresses the markov condition: the (stochastic) state suc-
cessor, x′, depends solely on the current state, x, and on an (agent controlled)
action, α; the reward function, r(x [, x′, α]), depends on the current state and,
possibly, on the action, α and the successor state, x′.

It turns out that Value-Iteration (VI) [8], a common algorithm to approxi-
mate the utility function, provides, en passant, an optimal policy, π∗ — a function
that associates states to actions (α∗ = π∗ (x)) and that, by following such policy,
the expected accumulated reward (i.e. the expected utility) is maximized.
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Figure 1: Structure of a MDP problem. Arrows denote dependency and nodes vari-
ables. The current state is x and the successor state is x′, α is an (agent controlled)
action and ρ is the (local) reward. The probability distribution p(x′|x, α) is the
transition model and r(x [, x′, α]) the reward function. From the transition model
and the reward function, the VI algorithm produces approximations to the utility
function, u(x), and intermediary calculations promptly provide an approximation
of the optimal policy, π∗.

The policy computed by the VI algorithm solves the deliberation problem of
equation (1) since the task of selecting the optimal action, α∗, given the current
state, x, is given by π∗:

α∗ (x) ≈ π∗ (x) . (2)

Ideally, given a transition model and reward function, the VI algorithm is
used once, before “run-time”, and the resulting approximate policy, π̃, defines the
agent behavior. At “run-time”, the agent merely (1) determines the current state,
x, (hence the assumption of complete observability) and (2) uses the computed
policy, π̃, to choose the action associated to the current state, α = π̃ (x). In
summary, MDP enables reactive agents with optimal behaviors. Of course, this
procedure has too many weaknesses for real-world applications.

The paramount issue with MDPs is not the computational complexity of find-
ing the optimal policy3 but, instead, the methodological assumption that the agent
always knows exactly the current environment’s state. In POMDPs the assump-
tion of complete observability is replaced by a sensor model. This class of problems
was, until recently, computationally untreatable [7], even for limited applications.
However, recent adaptations [9] of Monte-Carlo Tree-search algorithms [5], origi-

3Which is not insignificant, O
(
|dom(x)|2 × |dom(a)|

)
, but feasible.
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nally applied to the game of Go [2] and Multiarmed bandit problems [1], handle
large and complex POMDP problems.

1.2 Deliberation Features and Interdependencies

Despite its limitations, the formal and theoretical advantages of MDPs and DDNs
provide a natural and rich framework to study deliberation with soft-power factors.

Perhaps the key core concept of soft-power is that of individual and social
values. A distinctive assumption of soft-power is that shared values facilitate co-
optation which, in turn, promotes cooperation that can be (grossly) translated as
an effect in incoming and outgoing resources. Besides soft-power considerations,
deliberation is directed to the realization of individual goals, that can be stated
in terms of minimizing a “distance” from the (current, factual) situation to the
(target, ideal) situation expressed by the values. The progress from the present
situation towards the values depends on the available resources thus, indirectly,
on cooperation and shared values. In short,

situation is the current, factual, “state-of-affairs”;

values describe a target, ideal, situation;

goal is static in the sense that can be formulated as minimizing the distance from
the current situation to the values ;

cooperation results from shared values, provides and consumes resources;

resources are the means to achieve the goal;

So a simple model of deliberation can be defined as a DDN for states x, such
that

x = 〈s, v, r, g, i, o〉 (3)

where, using DDN terminology, features 〈s, v, r, g, i, o〉 are described in table 1.
The features, together with the agent action, interact to influence the value of
the successor state (that, nevertheless, is described by a stochastic, markovian
process). This evolution, from the current state to the successor state is the
(agent’s) transition model. The most general form would be

p(x′|x, α) = f (x′, x, α) (4)

but specific (non-)interdependencies can be expressed stating the influences in each
feature evolution. For example, the supposition that situation evolution depends
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Table 1: Description of features. A decision state x is factorized into features
〈s, v, r, g, i, o〉. In this table only the denotation column is of consequence in
computations.
name denotation representing soft-power?
situation s current, factual, “state-of-affairs”
values v target, ideal, “state-of-affairs” yes
resources r means to progress towards values
group-values g perception of social values yes
income i (resource) contributions received
outgoing o (resource) contributions given

only on the current values and resources (i.e., that doesn’t depend on current
group-values, income, outgoing or action), can be expressed by

p(s′|s, v, r, g, i, o, α) = p(s′|s, v, r)

or, more succinctly, stating that situation evolution is given by

p(s′|s, v, r) .

The specification of every feature dependencies refines the general equation (4).
The deliberation model explored here has the following interactions:

situation: p(s′|s, v, r) situation evolution, s, v, r → s′, depends on current values
and resources;

values: p(v′|v, α) values evolution, v, α → v′, depends only on the agent will,
expressed by his action selection;

resources: p(r′|r, i, o, α) resources evolution, r, i, o, α→ r′, depends on the agent
action, as well as on cooperation (income and outgoing resources);

group-values: p(g′|g, v, o) group-values evolution, g, v, o → g′, can be affected
by the volume of outgoing contributions;

income: p(i′|i, g, v) (cooperation) income, i, g, v → g′, depends on the relation of
individual values and group-values;

outgoing: p(o′|o, r, α) (cooperation) outgoing, o, r, α→ o′, results from the agent
deliberation and available resources;
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Figure 2: Soft-power DDN model. This diagram shows the interdependence of the
features.

The resulting diagram for the transition model is depicted in figure 2. The
agent’s transition model results from joining all the interdependencies stated above
into a single (probability) function of the deliberation state evolution:

p(x′|x, α) = p(s′|s, v, r)p(v′|v, α)p(r′|r, i, o, α)×
p(g′|g, v, o)p(i′|i, g, v)p(o′|o, r, α) (5)

In addition, the agent “goal”, defined in terms of a “distance” between the situation
and the values, can be expressed by a reward function that depends only on the
current situation and values:

r(x) = r(s, v) (6)

A major limitation that could be pointed to this model is the lack of explicit
individual-to-individual expression of soft-power. Indeed, the perception of soft-
power seems amalgamated into a single variable, g. Formally, this shortcoming
can be easily solved by expanding g = 〈g1, . . . , gN〉 where each gi is the individual
perception of (another) agent’s i individual values. The same expansion can be
applied to incoming and outgoing resources. Furthermore, if different kinds of
resources (e.g. human resources, stored goods, etc.) are to be accounted, so the
variable r can be made multi-dimensional.
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2 Policies Analysis

A general DDN model for deliberation with soft-power is defined in sub-section
1.2. The structure of the transition model is set in equation (5) and the reward
function in equation (6). The VI algorithm applied to specific instances of such
transition model and reward function returns an approximation of the optimal
policy, π̃.

One possible implementation of policies, for small scale problems, is using
dictionaries, an indexed data structure. In this case state values are the indices
and actions are the associated data. If P is a state-action dictionary then the
action, α, to be executed in state x is given by

α = π (x) = P [x].

Also the implementation of the transition model and the reward function can be
based on dictionaries. For example, the transition of the situation variable can be
defined by

p(s′|s, v, r) = S[s′, s, v, r].

Of course, the explicit expression of such tables is a tedious work. Denoting
by dom(var) the domain of var ∈ {α, s, v, r, g, i, o} and |X| the cardinality of set
X, at each deliberation step, the agent can choose one of |dom(α)| actions. Also,
the unprocessed input of the VI algorithm is a list of seven dictionaries, for the
transition model and reward function, with sizes easy to find: for example, a table
representing p(s′|s, v, r) has |dom(s)|2 × |dom(v)| × |dom(r)| keys.

2.1 A Minimal Case

If each feature can take one of two different values and the agent can choose
one of two actions, there are 64 = 26 deliberation states and the model requires
104 = 4 × 24 + 23 + 25 parameters, plus 4 for the reward function. In this case,
since there are 64 deliberation states, the policy output of the VI algorithm is a
dictionary with 64 keys.

Instead of having hand-written the 104 + 4 parameters, the transition model
and the reward function can both be generated by a set of adequate rules. Sup-
posing that the transition probabilities of the various variables result from direct
observations (entailing a posteriori, empiric, probabilities), these probabilities can
be computed from a complete set of rules that define the number of observations
of each possible scenario. For example, to define p(s′|s, v, r), the rule

s-obs(s’, s, v, r) := r == 1 and s’ == v ? 3 : 1
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states that, in all possible transitions x = (s, v, r, g, i, o) → x′ = (s′, v′, r′, g′, i′, o′)
each case that matches the condition r = 1 ∧ s′ = v has 3 observations and each
one of the remaining cases has one observation. This observation rule creates a
bias towards the cases r = 1, s′ = v in the transition probability of s, v, r → s′

that can be translated as “when resources are high, r = 1, the cases where the next
situation matches the values, s′ = v, are more probable”.

The complete transition model, with formal rules detailed in Appendix A, can
be defined for each feature:

situation: It is more probable that the next situation equals the values when re-
sources are high.

values: Action “0” tends to keep the current values.

resources: Action “1” tends to increase resources and action “0” to decrease.

group-values: The group-values approach individual values but faster if outgoing-
cooperation is high.

income: High income is more probable when values match group-values.

outgoing: High outgoing is more probable when resources are high and action is
“0”.

The reward function valorizes states where the situation equals the values,
s = v, and gives a penalty otherwise. The reward function is defined by

reward: states where the situation equals the values, s = v, have a positive reward
and other states have a negative reward.

reward(s, v) := s == v ? +1 : -1

These rules entail a explicit transition model and reward function. Then, with
these inputs, the VI algorithm returns an approximation of the optimal policy,
assigning an action for each one of the 64 possible deliberation states. Appendix
B shows the output policy. It turns out that, by direct examination, such policy
can be simplified to the following rule:

action(s, v, r, g, i, o) :=

r == 1 ? 0

: ( g == 0 ? 1

: v == o ? 0 : 1

)
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An immediate, attractive, interpretation of this rule is that wealth agents can
insist on current values, regardless of all other variables. Also, neither the current
situation, s, nor income, i, are relevant to deliberation — a clear sign of the
shortcomings of this particular instance as a candidate model of real-world soft-
power cases.

3 Multi-agent Simulation
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Figure 3: Average and normalized performance over time. This double plot shows
data from a set of 30 simulations where average agent performance —the accu-
mulated reward divided by the “agent age”— is recorded after some time (in the
horizontal axis). The profile of agents applying the policy computed by the DDN
model (P1 and P3) is represented with thick lines versus random agents (P2 and
P4), with thin lines. Solid lines (P1 and P2) show the average performance and
the dashed lines (P3 and P4) normalize these values by the theoretic maximum
performance value.

The previous section ended with an interpretation of the policy returned from
the VI algorithm, given a certain transition model and reward function. An im-
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mediate quest from that point on is to find out how does that particular policy
affects the agent performance.

One possibility to study the policy performance is through simulation. But
the environment evolution doesn’t need to comply with rules of the transition
model of the agent: agents can be mistaken about the environment evolution.
More specifically, the rules that guided the environment simulation, described in
Appendix C, do not match the transition model from subsection 2.1.

The simulation procedure places an agent implementing some policy in a virtual
environment and the values of successive rewards are recorded. The performance
of a reference agent, with random action selection, is also recorded. The simulation
results are summarized in figure 3.

4 Discussion

4.1 What Was Done

This work starts properly, in section 1.2, by proposing a basic model of ratio-
nal deliberation with (intended) soft-power features (situation, values, resources,
etc), formalized within the DDN framework, that encompasses MDPs has a “ra-
tionality” engine. Soft-power is directly expressed in this model by two features:
values and group-values. Further influence of these features transit into the full
deliberation state.

In subsection 2.1 is defined a minimal case of that model, using the rules in
appendix A to generate a transition model and reward function. These are then
processed by the VI algorithm that outputs an approximation of the optimal policy
(for the minimial case), shown in appendix B.

Such policy defines the behavior of agents in a multi-agent simulation, where
the performance of such agents is related, in section 3, to the performance of agents
behaving randomly. The environment evolution in this simulation is guided by the
stochastic rules in appendix C.

4.2 What Remains To Be Done

The features and interdependencies of the proposed model lack any justification.
Therefore, it is mandatory to ground the structure of the model with real cases
and previous studies. Until such relations can be made, this work remains little
more than an abstract exercise. Candidates to provide such links include, but are
not limited to, the social sciences in general (psychology, economy, international
affairs, etc.).
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Soft-power can not be reduced, as is done here, to group and individual values
features. Only the aspect of cooperation, by itself, provides a vast field of research.
Furthermore, there is clear need to frame any reasonable model of individual de-
liberation within a sound psychologic background.

On a different line of future development, the assumption of complete observ-
ability, to support a MDP based model, is not realistic. This can be fixed by
moving to a POMDP framework, where recent results provide hope for feasible
computational approaches.

A Transition Model Rules

These rules define the agent’s belief about the transition model of the environment
and are used by the agent to compute an (believed to be) optimal policy.

situation: It is more probable that the next situation equals the values when re-
sources are high.

s-obs(s’, s, v, r) := r == 1 and s’ == v ? 3 : 1

values: Action “0” tends to keep the current values.

v-obs(v’, v, alpha) :=

alpha == 0 ? (v’ == v ? 3 : 1)

: 1

resources: Action “1” tends to increase resources and action “0” to decrease.

r-obs(r’, r, i, o, alpha) :=

alpha == 1 ? (r’ == 1 ? 2 : 1)

: (r’ == 1 ? 1 : 2)

group-values: The group-values approach individual values but faster if outgoing-
cooperation is high.

g-obs(g’, g, v, o) :=

g’ == v ? 2

: (o == 1 ? 1 : 2)

income: High income is more probable when values match group-values.

12



i-obs(i’, i, v, g) :=

i’ == 1 and v == g ? 2

: 1

outgoing: High outgoing is more probable when resources are high and action is
“0”.

o-obs(o’, o, r, alpha) :=

alpha == 0 and r == 1 and o’ == 1 ? 2

: 1

B Approximate Optimal Policy

This table lists the policy computed by the VI algorithm given the transition
model derived from the rules in appendix A and reward in subsection 2.1.

s v r g i o α s v r g i o α s v r g i o α
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1
0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1
0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0
0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0
0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1
0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1
0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0
0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0
0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0
0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 1
1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1
1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 0
1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0
1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0
1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0
1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1
1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 0
1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0
1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0
1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0
1 1 1 1 1 1 0
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C Environment Evolution Rules

These rules define the environment state evolution. Reading prob(p) as “true
with probability p”, the successor state, x′, generated by the environment, when
the agent is in state x and chooses action α is defined by the following rules:

if action α = 0 :

s’ := r == 1 ? ( prob(0.6) ? v : s )

: ( prob(0.4) ? v : s )

v’ := prob(0.9) ? v

: 1 - v

r’ := r == 1 ? ( prob(0.4) ? r : 1 - r )

: r

g’ := g == v ? ( prob(0.9) ? v : 1 - v )

: ( prob(0.8) ? g : 1 - g )

i’ := g == v ? ( prob(0.6) ? 1 : 0 )

: ( prob(0.4) ? 1 : 0 )

o’ := r == 1 ? ( prob(0.3) ? 1 : 0 )

: ( prob(0.1) ? 1 : 0 )

if action α = 1 :

s’ := r == 1 ? ( prob(0.6) ? v : s )

: ( prob(0.4) ? v : s )

v’ := prob(0.2) ? v : 1 - v

r’ := prob(0.6) ? 1 : 0

g’ := prob(0.1) ? 1 - g : g

i’ := g == v ? ( prob(0.6) ? 1 : 0 )

: ( prob(0.4) ? 1 : 0 )

o’ := r == 1 ? ( prob(0.3) ? 1 : 0 )

: ( prob(0.1) ? 1 : 0 )
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