
An E↵ective Fingers Detection Method
for Braille Touchscreen Keyboard

on Tablet Devices

Puthnith Var, Teresa Gonçalves, and Miguel Barão

Departamento de Informática,
Universidade de Évora, Portugal

puthnith@gmail.com,{tcg,mjsb}@uevora.pt

Abstract. In last decade, tablet devices become more convenient and
comfortable electronic devices than laptop. Its touchscreen’s property
creates a natural feeling for users while moving objects that appear on
the screen. However, the loss of pressing-buttons sensation requires the
users to look at the screen during touching and gesturing, and every
taps provide the same feeling to the users’ fingers. This type of problem
discourages the visual impaired people to use the devices. Therefore, the
paper aims to challenge the di�culty to hearten them to compose with
and use tablet devices more than to only listen to the devices’ audio. Ad-
ditionally, learn how to type in a new way is tragedy. The new approach
is developed to create an e↵ective fingers detection for braille touchscreen
keyboard application and to provide the same method of typing like they
press buttons of their old style braille keyboard. The proposed method
can track and identify all the eight fingers in both upright and upside-
down directions of the tablet devices. The paper also explains in detail
of every steps of the method and forms a complete algorithm at the end
with the considerate analysis and results. The proposed method fulfills
the requirement for the visual impaired people.

Keywords: fingers detection, braille, touchscreen, keyboard, tablet

1 Introduction

In the last few decades, technology has changed the way humans communicate
and made their life easier. People can send e-mails and text messages, share ideas,
and get feedbacks in just a few seconds. The use of laptops is reduced by smart
phones and tablets for texting, talking, and sharing any moment of their life
on social networkings such as Facebook and Twitter. These devices provide not
only communication but also games, books, newspapers, movies, music, camera
and more. The touchscreen technology helps users to interact with the devices
in many di↵erent ways such drawing, scrolling through contents, pinch or zoom
and rotate their photos.

However, touching on the screen’s virtual keyboard provides di↵erent sensa-
tions and natural feelings than pressing buttons on computer’s keyboard. On a

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

1

2 Puthnith Var, Teresa Gonçalves, and Miguel Barão

computer’s keyboard, the users are able to rest their fingers during typing and
it allows them to recognize buttons staying under their fingers along with the
sense of knowing a key is pressed or being pressed. However, this type of feeling,
the touch-and-press action, is not possible to obtain while typing or touching
on smart phone and tablet devices despite the fact that it is being touched or
pressed lightly or heavily. Typically, the users are required to look at the device’s
screen to know whether they touch the right area of the virtual buttons or not.

After all, this type of the touchscreen devices discourage people who are
visual impaired. When they touch the screen, they cannot track the location of
the virtual buttons. Even though some devices provide responding voice [2][3]
which is not much comfortable, the devices create problem of not letting the users
to express their own thoughts and feedbacks as written texts. They, however, can
record their voices but doing it in public places such as bus or train is disturbing
and loses their privacy. Thus, the system has to be more intelligent to detect the
fingers location to provide eyes-free composing and it is strongly required for the
visual impaired people.

People with visual impairments use braille characters [1] to read by touching
and they compose with a device called braille keyboard. In order to compose
on a tablet device, they need an extended braille keyboard hardware that is
connected to the device via the Bluetooth technology or a cable. The way they
read or understand is di↵erent from examining by touch on a surface of rough
braille letters. They listen to a responded voice or audio [2][3] from the tablet to
get information by touching on the tablet’s screen. However, composing without
looking at the screen has been implemented by many companies and researchers.
They provide di↵erent methods to help people to text faster without looking at
a device’s screen. Tinwala and MacKenzie’s system [4] was developed based on
gra�ti strokes for eyes-free text entry. However the gra�ti strokes is slow com-
paring to tapping and users can write in di↵erent ways from the defined gra�ti
strokes. Bonner, Brudvik, Abowd, and Edwards [5] divided the touchscreen area
into many di↵erent blocks and the users have to learn and remember each blocks
to compose words or sentences. Besides, the systems in [4][5] do not focus on
only fingers detection development and the systems target normal people rather
than visual impaired people, which is helpless. Frey, Southern and Romero [6]
built the Braille Touch application only for smart phone devices which allows
users to type braille letters on the defined areas of fingers. The evaluation in
[7] of the application, made by the developers and their colleagues, is accept-
able but it only applies to the small screen’s size devices which is useless to deal
with fingers detection. Azenkot, Wobbrock, Prasain, and Ladner [8] designed the
Perkinput fingers detection using Maximum likelihood to detect which fingers
touch the screen based on user-set reference points. However, the method works
with only six fingers and the device is required to be in the upright position.
A Stanford student, Adam Duran [9], developed the Touchscreen Braille Writer
application which allows users to type the braille letters on a tablet device with
eight fingers. However, the fingers detection method is restricted to the upright
position in landscape mode. Inpris company [10] built the UpSense application

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

2

An E↵ective Fingers Detection Method for Braille Touchscreen on Tablets 3

to help both normal and visual impaired people to type faster on the tablet de-
vices. Unfortunately, they implemented a lot of gestures which require users to
learn and the fingers detection is limited and works only in the upright position.
The state of the art shows that the careless of fingers detection at the fingers
calibration or initialization step can lead to wrong detection in the identifying
braille letters.

The paper aims to challenge the di�culty to hearten the visual impaired
people to compose with tablet devices. We deal with eight fingers on the touch-
screen of tablet devices. Our proposed algorithm provides the users to use the
devices in upright or upside-down position of landscape or portrait mode. Along
with the feature, if a visual impaired person suddenly change his position, the
algorithm automatically corrects the location of the user’s hands so that the user
can type correctly.

The paper is divided into 4 sections. The second section is our proposed
method which simplifies in detail of the proposed fingers detection method. An
analysis and results shows how good the proposed method applied to a touch-
screen devices is in the third section. The fourth section provides a conclusion
and further works which gives a brief summary on what we have done and what
our next paces are.

2 Proposed Method

Upright
Position

Little
Ring

Middle

Index

Thumb

Lefthand Righthand

Touchscreen Device

Home
Button

Touch point of each hand digit

Fig. 1. The natural position and shape of a user’s hands putting on a touchscreen
device: The direction of the hands points toward each other rather than forms parallel
lines.

The multiple-touch feature provides many possibilities to enhance the way
people use smart phone and tablet devices such as gesturing with fingers. A tablet

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

3

4 Puthnith Var, Teresa Gonçalves, and Miguel Barão

device’s gesture recognizer sends information to the device how a user’s fingers
perform on the device’s screen such as the location and the events of each touch in
2 dimensional coordinate system. The touch’s events are: touches-began tells the
screen that a use began to touch, touches-moved informs that the touchpoints’
locations have changed, touches-ended tells that the fingers are lifted o↵ the
screen and touches-canceled informs when there is any interruption such as a
phone call during gesturing. Thus, it provides a rich ability to identify and
classify the natural gestures of a user’s hands such as tap, swipe, pan, scroll, zoom
or pinch, rotate, scroll, long press, and so on. Unfortunately, identifing which
fingers are touching on the screen is unavailable. A smart phone or table device
cannot give a specific information of which part of a human body is touching
its screen. Likely, a toe or nose’s point can also tap on the screen. Therefore,
to handle multiple touches or fingers at the same time on a device’s screen for
people with visual impairments is the most arduous. The proposed method aims
to identify all the 8 fingers for braille touchscreen keyboard application.

A single tap on a device’s screen makes no probability to identify which finger
or hand digit it is. However, to identify the hand digits, the proposed method
studies with 8 touches at the same time, which typically focuses on dealing with
the braille virtual keyboard for visual impaired people. We begin with a study
of a pattern of a human’s fingers.

Fig. 1 shows the natural position and shape of a user’s hands using a tablet
device’s touchscreen keyboard. The direction of the left and right hands intersects
each other by preference more than parallel lines. This is because the parallel
hands’ direction is di�cult to achieve on the not-too-big touchscreen when a user
uses the tablet close to his body. In addition, it is rare that people try to type
on a tablet far away from them. The intersecting direction of hands provides the
method more accurate to detect all the 8 fingers.

The paper experiments 4 fingers of both hands: index, middle, ring, and little
fingers. The thumb fingers are excluded because visual impaired people use only
6 fingers to compose a braille letter and the 2 little fingers to go backward and
forward, or to delete and space. The thumb fingers are used for understanding
the typed braille characters. Fortunately, the tablet device can produce an ac-
knowledgment voice which is used to give feedback to the users to know what
they are doing.

The proposed algorithm are divided into five parts. The first part is finding 2
groups of touchpoints which is assigned to the left and right hands at the end of
the algorithm. Finding slopes and hands direction of the 2 groups are described
in the second and third parts, respectively. We provides the defined fingers for
both hands in the fourth part. In the last part, we assemble all the techniques
described in the previous parts and give the complete proposed algorithm.

2.1 Touchpoints Grouping

The proposed method first requires a user to put all the 8 fingers on a device’s
screen gently and naturally. A tablet device provides the 8 touchpoints’ locations
on the screen with random time sequence of the touches. Thus, there is no

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

4

An E↵ective Fingers Detection Method for Braille Touchscreen on Tablets 5

information in which touchpoints are located at the left and right sides of the
screen, even though the user put his hands at the same time. In this section, we
use hand digits instead of the name of the fingers to avoid the confusion which
the algorithm may swap the hands at the last decision. There are two matrices
group A and B which are the groups of four identified touchpoints [a1, a2, a3, a4]
and [b1, b2, b3, b4], respectively. The matrices A and B are defined as below:

A = [a1, a2, a3, a4]
> (1)

B = [b1, b2, b3, b4]
> (2)

It is noted that the group A is always a set of 4 touchpoints located at the left
area and the group B is another set of 4 touchpoints located at the right area
of the touchscreen.

Upright
Position

Touchscreen Device

x = 0 Left Edge Right Edge x = WIDTH

WIDTH

H
E

IG
H

T

p(0, 0)

a1(x, y)

the minimal
perpendicular length
from a touch point

to an edge of screen

the minimal
distance between

2 touch points

a touch point
Group A

Group B

a2
a3

a4

b4

b3
b2 b1

Fig. 2. The illustration of the measurement of the 8 touchpoints’ location on a touch-
screen device: to identify each group’s touchpoints, the perpendicular length from each
touchpoint to the edges of the screen and the distance between 2 touchpoints are cal-
culated. Basically, the point a

1

and b
1

is the closest or minimal points to the left and
right edges of the screen, respectively.

Fig. 2 shows that the 4 touchpoints of the group A and B are located at the
left and right areas, respectively. It is noted that the left area can be bigger,
smaller or equal to the right area according to the point a4. The areas are
identified at the end of this part.

Each point p 2 P that contains an ordered pair (x
p

, y
p

) for a horizontal x
and a vertical y lengths from the origin, respectively, is defined as follow:

P = {p1, p2, p3, p4, p5, p6, p7, p8} (3)

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

5

6 Puthnith Var, Teresa Gonçalves, and Miguel Barão

P is a set of the 8 random unidentified touchpoints on a tablet device’s screen
ordered by the time sequence of touches made by a user.

We know that the identified touchpoint a1 in group A (1) is the point that
has the minimal perpendicular length to the left edge comparing with other
touchpoints. Thus, the point a1 is defined as the minimal or shortest x

p

length
of p 2 P because the left edge has x = 0. The identified points a2, a3, and a4
are found using the distance measurement between 2 touchpoints. In this case,
we prevent the touchpoints that have the same x or y length. The perpendicular
length and distance between points are defined as below:

Length(C, o) = c
min

|x
c

� x
o

| (4)

Distance(C, o) = c
min

 q
(x

c

� x
o

)2 + (y
c

� y
o

)2
!

(5)

C is a given set of points where C = c1, c2, . . . , cN and c
min

2 C is constraints
on (1 6 min 6 N). o is a given point which is used to compare with the points
in the set C.

From the equation (1), (4), and (5), we define the group A function of x,
where x = {1, 2, 3, 4} is a touchpoint’s index of A(x) (1). The A(x) function is
defined as below:

A(x) =

⇢
Length(AE1, 0) if x = 1
Distance(AE

x

, A(x� 1)) otherwise
(6)

AE is an unidentified subset of P created to eliminate the unidentified touch-
points in the set P that assigns to the identified touchpoints in the group A
where AE

x

= AE(x�1) r {A(x� 1)} and AE1 = P .
The equation (6) shows that the identified touchpoint a1 is always the closest

point to the left edge and other touchpoints in the group A (1) are recognized
after finding the point a1. After an unidentified touchpoint p 2 AE is assigned to
an identified touchpoint a 2 A, the point p is removed from AE. This eliminates
the zero distance finding in the next touchpoint. The identified touchpoint a2,
a3, a4 has the minimal distance of a touchpoint p 2 AE comparing with a1, a2,
a3, respectively.

The recognized points b1, b2, b3, and b4 in the group B (2) are identified
using the similar procedure. However, we use the unidentified subset AE instead
of the set P . In this case, less computational execution time and improving
system performance can be achieved. From the equation (2), (4), and (5), we
define the B function of x as below:

B(x) =

⇢
Length(BE1,WIDTH) if x = 1
Distance(BE

x

, B(x� 1)) otherwise
(7)

where x = {1, 2, 3, 4} is a touchpoint’s index the matrix group B and BE is
the subset of AE which is created for eliminating the unidentified points that

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

6

An E↵ective Fingers Detection Method for Braille Touchscreen on Tablets 7

is assigned to the points in the group B. BE
x

= BE(x�1) r {B(x � 1)} and
BE1 = AE

size(A)+1 where size(C) returns the number of element in a set of
points C.

Likewise, in equation (7), we first find the identified point b1 in the matrix
group B (2). However, we look for an unidentified point p 2 BE that has the
|x

p

�WIDTH| minimal length rather than x
p

length because we compare the
point p with the right edge of the screen with the horizontal value x = WIDTH.
Therefore, the recognized points b2, b3, and b4 have the minimal distance of
touchpoint p 2 BE comparing with the points b1, b2, and b3, respectively.

After the matrices group A and B are defined, the algorithm requires them
to be validated. The algorithm requires the 8 touchpoints are composed by 2
hands rather than random touchpoints. The validation lessens the complexity in
the next part.

p
2

p
3

p
4

p
1

p
1

p
2

p
3

p
4

p
1

p
3

p
4

p
2

Valid Distance

p
1
p

4
 <

p
1
p

3

p
2
p

4

p
1
p

2

p
2
p

3

p
3
p

4

<

p
1
p

3
 > p

1
p

4

Invalid Distance

p
2
p

3
 > p

1
p

3

Invalid Distance

Fig. 3. The Fingers Validation technique: in order to be recognized as the 4 fingers of
a hand, the identified touchpoints p

3

and p
4

have to be in between the points p
1

and
p
2

. The proposed valid distance has to be satisfied.

Fingers Validation We suppose there is a group Q = [p1, p2, p3, p4]> to be
validated. Fig. 3 shows the proposed valid distance used for recognizing the
4 hand digits of a hand: little, ring, middle, and index fingers. The distances
{p1p2, p2p3, p3p4} are shorter than the distances {p1p3, p2p4}. The distance p1p4
is the longest comparing with the others. If the valid distance is not fulfilled,
another identified point p 2 Q is selected to be point p1 where p is the next
minimal perpendicular length to the related edge of a device’s screen. Thus,
the identified points p2, p3, and p4 are re-identified again using the equation in
(6) or (7) accordingly. In case that the valid distance is not satisfied after each
point in Q takes turn to be the point p1, the user are required to re-input the

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

7

8 Puthnith Var, Teresa Gonçalves, and Miguel Barão

hands again. In other words, if the user tries to form a shape of the hands in
inappropriate ways, the algorithm rejects the given touchpoints.

Fingers Validation Algorithm

FingersGroup* fingersValidation(FingersGroup* Q, float edge) {
int count = 1;
BOOL x = TRUE;
do {

x = validDistance(Q);
if (x) break;
else {

count++;
if (count < size(Q)) Q = nextMinimalLength(Q, edge);
else break;

}
} while (1);
if (count == size(Q)) reinput();
else return Q;
return nil;

}

After the fingers validation is verified, we have the 2 valid groups of fingers
or touchpoints. We then can define that the left area is the area from the left
edge to the identified point a4 of the group A (1) and the right area is the area
from the point a4 to the right edge. However, there is also a case when a user
tries to put the left hand over right hand or vice versa. In this case, the left area
may contain some identified points of group B (2). There is no issue at all with
the case.

2.2 Slopes Identifying

This section, we deal with identifying the slope of each group. By understanding
the slope and the shape, which describes in the next part, we can distinguish
which group is the left or right hand. The slope helps to reduce the complexity
in the next part.

In this part, we study over 2 important touchpoints of each group, the 1st
and 4th identified touchpoints. Fig. 4 shows 4 di↵erent types of slope that can
possibly be happened, negative, positive, zero, and no slopes. We suppose that
there is a group Q = [p1, p2, p3, p4]> to be examined. An alpha ↵ is the angle
(0 6 ↵ 6 ⇡/2) at the intesecting point between the horizontal line at the point
p1 and the line p1p4. If the tangent of the alpha tan(↵) < 0 or tan(↵) > 0,
the algorithm identifies the slope as negative or positive slope, respectively. Both
slopes are defined as one slope which will be used in the next part. If the alpha
is zero (↵ = 0), we identify as zero slope. The last slope is no slope. It happens
when the alpha is equal to ⇡/2 (↵ = ⇡/2). In this case, the proposed algorithm
requires the user to re-input the hands again. However, its probability is so small

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

8

An E↵ective Fingers Detection Method for Braille Touchscreen on Tablets 9

p
4

p
3

p
2

p
1

Positive Slope

tan(α) < 0

p
1

p
2

p
3

p
4

Negative Slope

No Slope

tan(α) = infinity

tan(α) = 0

p
1

p
2

p
3

p
4

Zero Slope

p
4

p
3

p
2

p
1

tan(α) > 0

α

α

α

α

Fig. 4. Slopes Identifying: there are 4 types of slope, negative, positive, zero and no
slopes. The probability of zero and no slopes are smaller than 0.5%. However, those
cases are needed to avoid errors and strengthen the performance.

and it rarely happens. In the next section, we describe how the proposed method
recognize the hands direction with the one slope and zero slope, accordingly.

2.3 Hands Direction Recognizing

The proposed algorithm provides a user the ability to use a tablet device in both
upright and upside-down positions of the landscape or portrait mode. The user
is able to distinguish whether the device is in the upright position or not. In this
part, the hands direction is recognized di↵erently according to the slopes that
are identified in part 2.2.

There are only 2 types of hands direction, up and down directions. The 2
groups (1)(2) are required to be whether they both points upward or downward.
In case of one-up-one-down direction, the proposed method rejects the input
fingers and asks the user to re-input again. This prevents the user’s confusion
of left and right areas. We study a vector that is projected from the line p1p4
according to the slope found in part 2.2. Basically, we can understand a hand is
up or down correspondingly to the vector. However, the 4 touchpoints of a group
can stay in the same line or have the same slope. In this case, finding the direction
of the vector is probably impossible. Thus, the proposed algorithm decides to
choose up direction due to high probability that users use tablet devices in the
upright position.

One Slope If the slope is not zero, the hands direction recognition has more

mathematical equations. Fig. 5 show the three steps of finding the vector
��!
SM

where M is the intersection point of the lines p1p2 and p3p4 and S is the foot

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

9

10 Puthnith Var, Teresa Gonçalves, and Miguel Barão

M is
the intersection point
of 2 lines p

1
p
2
 and p

4
p
3

p
1

p
2

p
3

p
4

M

S is
the foot of perpendicular point

from point M
to line p

1
p
4

p
1

p
4

M(x
M
, y

M
)

S(x
S
, y

S
)

d |y
M

- y
S
|

|x
M

- x
S
|

Ix + Jy + K = 0

slope = m
2

slope = m
1

SM is the vector
to identify a hand direction

M

S

SM

slope = m
3

Fig. 5. Hands Direction Recognizing for one slope: To find a hand direction of the
��!
SM,

points M and S are required. The point M is the intersection point of the lines p
1

p
2

and p
3

p
4

. The point S is the foot of perpendicular from the point M to the line p
1

p
4

.

of perpendicular from the point M to the line p1p4. The point M(x
M

, y
M

) is
defined as follow:

x
M

=
b2 � b1
m1 �m2

y
M

= �b1m2 � b2m1

m1 �m2

(8)

The variables m1, m2 and b1, b2 are the slopes and y-intercepts of the line p1p2
and p4p3, respectively. The equation of a line is written as y = mx+ b.

The point S(x
S

, y
S

) is Fig. 5 is defined as follow:

x
S

=
x
M

+m3yM �m3b3
m2

3 + 1

y
S

= �m3xM

+m2
3yM + b3

m2
3 + 1

(9)

The variables m3 and b3 are the slope and y-intercept of the line p1p4. The
equation of the line p1p4 can be written as �m3x+ y� b3 = 0. Thu,s I = �m3,
J = 1 and K = �b3 as Ix + Jy + K = 0. The x

S

and y
S

are derived from
xS�xM

I

= yS�yM

J

= �(IxM+JyM+K)
I

2+J

2 .

The vector
��!
SM shows the direction of each hand points to. If the vector is

has negative in y axis, it is the up direction. The down direction is when the
vector has positive in y axis.

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

10

An E↵ective Fingers Detection Method for Braille Touchscreen on Tablets 11

Zero Slope If the slope is zero or flat, the hands direction recognition is easier
and simpler to be recognized. The vector ���!p1p2 and ���!p4p3 tells the exact direction
of both hands point to.

Hands Detection Algorithm If the direction is up, this means a user use
the touchscreen device in upright direction. Thus, we define the matrices group
A (1) and B (2) as the left hand and the right hand, respectively. However, if
the direction is down, the tablet device is used in upside-down direction. Thus,
the matrices group A is the right hand, and group B is the left hand. In this
perspective, if one group is identified as the left hand, another group has to be
the right hand. The script below is the hands direction recognizing procedure.

Hands Detection Algorithm

Hands* handsDirection(FingersGroup* A, FingersGroup* B) {
if (direction(A) == UP && direction(B) == UP) {

A.hand = LEFT;
B.hand = RIGHT;

}
else if (direction(A) == DOWN && direction(B) == DOWN) {

A.hand = RIGHT;
B.hand = LEFT;

else {
return nil;

}
Hands* Hs = HandsInitial(A, B);
return Hs;

}

direction method uses the one slope or zero slope algorithm accordingly to return
UP or DOWN signal from the input group A and B.

2.4 Fingers Defining

Until this part, we are able to identify which group (A in (1) and B in (2)) is
the left or right hand. Thus, we define hand digits accordingly to the left and
right hands. If the group A is the left hand and the group B is the right hand,
we define:

L = [ll, lr, lm, li]> (10)

R = [rl, rr, rm, ri]> (11)

L = A

2

664

ll
lr
lm
li

3

775 =

2

664

a1
a2
a3
a4

3

775 R = B

2

664

rl
rr
rm
ri

3

775 =

2

664

b1
b2
b3
b4

3

775 (12)

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

11

12 Puthnith Var, Teresa Gonçalves, and Miguel Barão

L is the matrix of the left hand where ll, lr, lm, and li are the left hand digits,
little, ring, middle, and index fingers, respectively. R is the matrix of the right
hand where rl, rr, rm, and ri are the right hand digits. Thus, the group A and
B are equal to the left hand matrix L and the right hand matrix R, respectively.

If group A is the right hand and group B is the left hand, we inverse the
equation (12) as R = A and L = B.

F =

2

66666666664

ll
lr
lm
li2

664

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

3

775⇥

2

664

rl
rr
rm
ri

3

775

3

77777777775

=

L

aD ⇥R

�
= [ll, lr, lm, li, ri, rm, rr, rl]> (13)

aD is the anti-diagonal identity matrix used to swap all rows in the matrix
R. The equation in (13) identifies the fingers and hands after the matrices in
equation (12) are assigned. F is a matrix of the 8 hand digits which is used for
identifying braille characters in braille touchscreen keyboard.

2.5 The Proposed Algorithm

The complete proposed algorithm of fingers detection for braille touchscreen
keyboard application is written in pseudocode as shown below.

The Proposed Algorithm for Fingers Detection

Divide all given 8 touches points into two groups -> A and B
Use equation (6) and (7) to group
Validate each group using the valid distance in Fig. 3

Identify the slope of each group -> slopes (one, zero)
Ask the user to re-input the fingers if the slope is infinity

Recognize the hands direction of the two groups -> LEFT and RIGHT
Hand Direction is:
If (all points = same slope) UP
Else

If (one slope)
Use equation (8) and (9) to find points M and S
Find vector SM

Else / zero slope
Find vector p1p2 and p4p3

If (y axis of the vector = negative) UP
Else DOWN

Use Hands Detection Algorithm -> LEFT or RIGHT hand
Define the fingers accordingly to LEFT or RIGHT hand of each group

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

12

An E↵ective Fingers Detection Method for Braille Touchscreen on Tablets 13

-> all hand digits are assigned
Use equation (10), (11), and (12) to assign to all fingers
Use equation (13) to identify braille letters

3 Analysis and Results

The proposed method is designed to implement at the calibration or initialization
step of a braille touchscreen keyboard application on tablet devices. The method
requires 8 touchpoints from a user and provides the system with an accurate
information of each hand digits. It is flexible to any position of the user’s hand
which allows the user to use the device straightforwardly.

The proposed fingers detection method is created specifically for a braille
touchscreen keyboard, which does not apply to any general fingers detection
that a user can touch on a tablet device’s screen in di↵erent forms and positions
of the fingers. This is not a drawback of the system because to understand every
positions of a user’s fingers, the fingers’ preference is provided and it requires
a large computational execution and time. This is not the case of the paper to
deal with.

The proposed algorithm identifies accurately all the 8 given touchpoints with
the hand digits. However, a user can imitate the proposed shape, hands direction,
and slope in di↵erent ways. For example, they can use the right hand instead of
the left hand and vice versa by crossing the hands. In this case, the alogrithm
will provide them an incorrect information. The algorithm only gives the right
information if the user input the fingers in the natural way. However, after the
input, the user than can change the hands to any forms he likes without a↵ecting
the change of the fingers order.

Another case, if the user puts the device in the landscape mode and tries to
use it as the portrait mode, the proposed algorithm definitely rejects the input
fingers because the directions of the hands are opposite each other.

However, the user can put one hand on top of another hand in the case of
the 2 hands stay far away from each other. In this case, the user may use the
tablet device in portrait mode which only provides him a small space to align the
hands horizontally. The proposed algorithm provides a great fingers detection
for this case because after 4 adjacent touchpoints are eliminated or grouped, the
remaining 4 touchpoints are selected to be another group.

Eventually, the performance and results are acceptable and accurate for im-
plementing in a virtual touchscreen keyboard on tablet devices for people with
visual impairments.

4 Conclusion and Further Works

In conclusion, we can see that tablet devices provide a lot of advantages and
functionalities to aid people in many di↵erent ways. However, the devices can-
not fulfill the requirement of people with visual impairments because of the

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

13

14 Puthnith Var, Teresa Gonçalves, and Miguel Barão

lack of pressing buttons sensation. Therefore, the paper challenges the di�culty
and provides the proposed algorithm to deal with the problem. We see that the
method provides the accurate hand digits of all the given touchpoints. The al-
gorithm rejects all the invalid given touchpoints if they cannot recognize as a
human’s left and right hands. Furthermore, a user can use a tablet device in any
position whether it is upright or upside-down of the landscape or portrait mode.
This gives them a wild range of uses of the keyboard. With this result, we are
grateful to work on our next paces which we expected to provide the best braille
touchscreen keyboard application to people with visual impairments.

This paper is our first step to let visual impaired people be able to com-
pose and express their thoughts on smart phone and tablet devices. This paper
only deal with fingers dection method for tablet devices. Thus, fingers detection
method on smart phone devices is also our next pace. Besides, we planned to
work on fingers prediction which analyzes and tracks the change of the fingers’
location and provides the best estimation. The complete braille touch keyboard
application will be implemented using all the algorithms we have done and are
working on. Finally, we hope that the output of the research gives advantages
to not only the people with visual impairments but also to the researchers and
developers to contribute and build a better world together. Living in this world,
we are all equal and we can do everything as long as there is hope.

Acknowledgements

I would like to express my noteworthy thanks of gratitude to my professors
Miguel Barão and Teresa Gonçalves who gave me the golden idea and opportu-
nity to use my kownledge to help visual impaired people, which also provided
me in doing a lot of research and knowing many new things.

I also would like to thank my parents, my sister Puthneath Var, my fiancée
Rithreaksa Khourn, my friend Prakash Poudyal, who lended me a helping hand
to finalizing the paper within the limited time.

References

1. Braille, L.: Procedure for writing words, music and plain song using dots for the use
of the blind and made available to them. Royal Institution Of Blind Youth, Paris
(1829).

2. Speech Enabled Eyes Free Android Applications http://code.google.com/p/

eyes-free/

3. VoiceOver http://www.apple.com/accessibility/iphone/vision.html
4. Tinwala, H., MacKenzie, I. S. Eyes-Free Text Entry on a Touchscreen Phone. In:

Proceedings of the IEEE Toronto International Conference Science and Technology
for Humanity TIC-STH 2009, 83-89. Toronto (2009)

5. Bonner, M., Brudvik, J., Abowd, G., Edwards, K.: No-Look Notes: Accessible Eyes-
Free Multi-Touch Text Entry. In: Proceedings of Eighth International Conference
on Pervasive Computing, pp. 409–426. Springer, Heidelberg (2010)

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

14

An E↵ective Fingers Detection Method for Braille Touchscreen on Tablets 15

6. Frey, B., Southern, C., Romero, M.: BrailleTouch: Mobile Texting for the Visually
Impaired. In: Proceedings of Human-Computer Interaction International, HCII. Or-
lando (2011)

7. Southern, C., Clawson, J., Frey, B., Abowd, G., Romero, M.: An Evaluation of
BrailleTouch: Mobile Touchscreen Text Entry for the Visually Impaired. MobileHCI
2012, San Francisco (2012)

8. Azenkot, S., Wobbrock, J. O., Prasain, S., Ladner, R. E.: Input Finger Detection
for Nonvisual Touch Screen Text Entry in Perkinput. In: Proceedings of Graphics
Interface, Canadian Information Processing Society, Toronto (2012)

9. Stanford Summer Course Yields Touchscreen Braille Writer http://news.

stanford.edu/news/2011/october/touchscreen-braille-writer-100711.html

10. Inpris UpSense http://www.inprisltd.com/

Actas das 5

as
Jornadas de Informática da Universidade de Évora — JIUE2015

15

