
Chapter 17
Systoles on Compact Riemann Surfaces
with Symbolic Dynamics

Clara Grácio

Abstract In this chapter, systolic inequalities are established, precise values are
computed, and their behavior is also examined with the variation of the Fenchel–
Nielsen coordinates on a compact Riemann surface of genus 2.

17.1 Introduction

The metric and geometric structure of surfaces may be studied by using the closed
geodesics spectrum and the Laplace–Beltrami operator spectrum. It is not easy to
obtain these spectra and even more difficult is to describe their dependence on the
parameters which determine the metric and geometric structure of a surface. The
dependence of such spectra dependence is examined using a boundary map when a
Riemann surface M of genus 2, thus with negative curvature, is considered.

From a classical point of view the hyperelliptic surfaces are the simplest Riemann
surfaces [12]. They can be denned by an algebraic curve y2 = F (x) where F (x)
is a polynomial of degree 2τ + 1 or 2τ + 2 with distinct roots (τ is the genus of
the surface). Hyperelliptic surfaces of genus τ are characterized by the fact that the
number of different Weierstrass points is minimal, namely 2τ +2 (the fixed points of
the hyperelliptic involution), while the weight of each Weierstrass point is maximal,
namely 1

2τ (τ − 1).
For our purposes, two results for surfaces (see [17]) are significant:

Theorem 17.1 A closed surface M of genus t = 2 is hyperelliptic if and only if M
contains 2t−2 different simple closed geodesics which all intersect at the same point
and mutually intersect in no other point.

Theorem 17.2 All closed surfaces of genus 2 are hyperelliptic.
The systole of a compact Riemann surface is defined as the minimum length of

a noncontractile curve. In the 1990s, a number of studies developed this concept:
in particular, the article published by Schmutz Schaller (see [17]) that spurred the

C. Grácio ( )
CIMA-UE-DMAT, School of Science and Technology,
University of Évora, Rua Romao Ramalho 59, Évora, Portugal
e-mail: mgracio@uevora.pt

© Springer International Publishing Switzerland 2015 269
R. López-Ruiz et al. (eds.), Nonlinear Maps and their Applications,
Springer Proceedings in Mathematics & Statistics 112, DOI 10.1007/978-3-319-12328-8_17



270 C. Grácio

search for maximum surfaces for the systole; also important is the contribution of
Bavard (see [1]), which provides a good theoretical framework, modeled on network
analysis.

The aim of the present chapter is to provide an understanding of the behavior
of systolic quantities on a compact Riemann surface over the geodesic length spec-
trum of M , endowed with a metric of constant curvature −1. The use of symbolic
dynamics, a powerful tool which allows the explicit calculation of the parameters
considered, is an essential feature of this study.

The chapter is organized as follows: Sect. 17.2 introduces a geometric description
of the surface and defines the Teichmuller space and the global coordinate system,
coordinates of Fenchel–Nielsen. The method described in this section involve de-
composing a Riemann surface into a set of “pairs of pants” using three simple closed
geodesic. The Riemann surface is represented by a quotient space M = H 2/G

of the upper half-plane H 2 using a Fuchsian group G which is isomorphic to the
fundamental group of M . In Sect. 17.3 a detailed construction of the fundamental
domain is given, side-pairing transformations are determined, and the boundary map
is obtained. These constructions are the main element of the computations which
follow. In Sect. 17.4 the generators of the fundamental group are obtained, and the
identification, enumeration, and codification of orbits is carried out. Finally, in Sect.
17.5, explicit values are calculated for the geodesic length spectrum and systolic
inequalities are obtained, which is the main objective of this work, reflecting the be-
havior of the systoles spectrum with the variation of the parameters that characterize
the Riemann surface. Applying the main theorems, in the final section, upper and
lower limits are determined for the systoles length spectrum under deformation of
the surface.

17.2 Geometric Description and Fenchel–Nielsen Coordinates

Let C be the Riemann sphere and GL+
2 (R) the 2×2 matrices group with real entries

and a positive determinant. Let us consider the action given by this group of Mobius
transformations

(g, z) → gz = az + b

cz + d
, g =

⎛
⎝a b

c d

⎞
⎠

where g(−d/c) is interpreted as ∞, and g(∞) as a/c. It is observed that

(λa) z + (λb)

(λc) z + (λd)
= az + b

cz + d
for any matrices

⎛
⎝a b

c d

⎞
⎠ ∈ GL+

2 (R) and λ ∈ R, so

any Mobius transformation can be realized by an element of SL2(R). Furthermore,
a Mobius transformation

gz = az + b

cz + d
, a, b, c, d ∈ R, ad − bc = 1
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determines the matrix
(
a b
c d

)
less than signal, and SL2(R) contains the elements

1 =
(

1 0
0 1

)
and −1 =

(−1 0
0 −1

)
which act trivially. Then the quotient group is

considered

PSL2(R) = SL2(R)/ {±1} .
Given a surface M of negative curvature and genus g = 2, the universal covering

surface of M is given by the hyperbolic plane which can be represented by the

Poincaré disk, D2 = {z ∈ C : |z| < 1}, with metric ds2 = dz·dz

(1 − |z|2)2
or upper

half-plane, H 2 = {z = x + iy : y < 0}, with metric ds2 = dz·dz

y2
. In both

realizations, the isometry group is made up of the linear fractional transformations

h(z) = az + b

cz + d
. In the half-plane H 2, the matrices A =

⎛
⎝a b

c d

⎞
⎠, a d − b c = 1

belong to SL2(R), the real unimodular group. Schematically:

Aut(H 2) ∼= PSL(2, R) = SL(2, R)/ {±I }
Aut(D2) ∼= PSU (1, 1) = SU (1, 1)/ {±I }

The covering group G is a Fuchsian model of M. In this case considering the
half-plane H 2, then G is a subgroup of Aut(H 2)

The Fuchsian model of a closed Riemann surface of genus g(≥2) may thus be
characterized exactly. An element of a Fuchsian model of a closed Riemann surface
of genus g(≥2) is the identity map either a hyperbolic transformation (see [13]).

The pair (M, δ) denotes a Riemann surface M equipped with a conformal struc-
ture δ (an equivalence class of metrics). When there is no risk of confusion, it is
denoted only by M.

Let gi : [0, 1] → M, i = 1, 2 be curves, such that g1(0) = g2(0) = p0 and
g1(1) = g2(1) = p1. It can be said thatg1 andg2 are homotopic if there is a continuous
map g : [0, 1] × [0, 1] → M such that g : {0} × [0, 1] = p0, g : {1} × [0, 1] = p1,
g : [0, 1] × {0} = g1 e g : [0, 1] × {1} = g2.

For any p0 ∈ M, the fundamental groupπ1(M,p0) is the group of the homotopy
classes g : [0, 1] → M such that g(0) = g(1) = p0, i.e., the group of classes of
closed paths with p0 as a starting and terminal point. Often a system of generators
Σp = {[Aj

]
,
[
Bj

]}g
j=1 of a fundamental group π1(M,p) of a genus 2 closed Rie-

mann surface M is called a mark in M. Since the choice of base point is irrelevant,
the group π1(M) is called the fundamental group of M.

Let us consider the triple(M, δ, f ), where δ is a conformal structure and f :
M → M is a diffeomorphism.



272 C. Grácio

Two triples (M, δi , fi), i = 1, 2 are considered equivalent if there is a conformal
map k : (M, δ1) → (M, δ2) for which the diagram

M f1→ (M, δ1)
f2↘ ↓ k

(M, δ2)

commutes by homotopy, i.e., f2 ◦ f −1
1 and k are homotopic.

Definition 17.1 The space consisting of those equivalence classes, is called the
Teichmüller space and is denoted by Tg (where g is the genus of M).

In 1940, Teichmüller showed that Tg (g ≥ 2) is homeomorphic to R
6g−6. One way

to realize this homeomorphism is through F-N coordinates. The Teichmüller space
Tg of genus g is given by a system of generators of the fundamental group of closed
Riemann surface M of genus g. The set of generators is denoted by

{[
αj

]
,
[
βj

]}g
j=1.

As both an Fuchsian model G of M and G′ = h−1Gh, for any h ∈ Aut(E), are
Fuchsian models of M, it is necessary to establish a normalization that allows to
define what we call canonical system of generators. The conditions of normalization
are:

(i) The generator βg has the attractive fixed point at∞ and the repulsive fixed point
at 0.

(ii) The generator αg has the attractive fixed point at 1.
(iii) The axes of these two generators are disjoint.

Such a system of generators satisfies a single fundamental relationship (obtaining
the presentation of this discrete group), i.e.:

α1 ◦ β1 ◦ α−1
1 ◦ β−1

1 ◦ ... ◦ αg ◦ βg ◦ α−1
g ◦ β−1

g = id. (17.1)

In order to obtain a geometric image of the correspondence between the Riemann
surface M and its Fuchsian model G, let us use the concept of fundamental domain
for G.

Definition 17.2 Let E = D2,H 2 and F is an open subset of E. It is said that F is
a fundamental domain for G if it satisfies the following conditions:

(i) g(F ) ∩ F = ∅ for any g ∈ G, with g 
= id .
(ii) If F is the closure of F in E, then E =⋃ g(F ), g ∈ G.

(iii) The boundary ∂F of F in E is of measure zero (with respect to Lebesgue
measure).

The family {g(F ) : g ∈ G} is called a pavimentation of E. This means that the
Riemann surface M = E/G is considered to be F , with points on ∂F identified by
groupG. In this chapter, H 2 is the universal covering space of M and the fundamental
group G, is a subgroup of SL2(R).
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Fig. 17.1 Two pants decomposition

A domain of three circles is homeomorphic to the set

P =
{

z ∈ C : |z| ≤ 1,

∣∣∣∣z − 1

2

∣∣∣∣ ≥ 1

4
,

∣∣∣∣z + 1

2

∣∣∣∣ ≥ 1

4

}
,

(a sphere with three holes in it), equipped with the hyperbolic metric, where the
three components of boundary geodesics are simple. As explained above, P is usu-
ally called a “pair of pants.” The complex structure of P is uniquely determined
by the hyperbolic lengths of the ordered boundary components of P . M may be
decomposed into a union of two “pairs of pants” (surfaces of genus zero with three
boundary circles) (see Fig. 17.1).

Figure 17.2 represents an example of decomposition and gluing. This figure is
considered j = 1, i.e., geodesic L1.

In this figure ci are the points of intersection between the geodesic L1 and the
geodesics D1,i . The link between these geodesics is forged by means of another
geodesic D1,i , with minimum length. Denoted by T1, the arc with the orientation of
L1 between the points c1 and c2 and the length of T1 is denoted τ1. Then the twist
parameter for L1 is defined by

θ1 = 2π
τ1

l1
. (17.2)

And, similarly, θj is well defined, module 2π

θj = 2π
τj

lj
, j=1,2,3.

Definition 17.3 LetL1,L2,L3 be the oriented decomposition curves. The functions
lj and θj , j = 1, 2, 3 denote the lengths and angles of torsion (twist) of L1,L2,L3

used for gluing the pieces. This system of coordinates {lj , θj }j=1,2,3 is called the
Fenchel–Nielsen (F-N) coordinate system.
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Fig. 17.2 Example of decomposition and gluing

17.3 Construction of Fundamental Domain and Definition
of Boundary Map

A chain on a surface M is a set of four simple closed nondividing geodesics, labeled
γ1, γ2, γ3, γ4, where γ2 intersects γ1 exactly once; γ3 intersects γ2 exactly once and
is disjoint from γ1; γ4 intersects γ3 exactly once and is disjoint from both γ1 and γ2.
It is assumed throughout that these geodesics are directed so that, in terms of the
homology intersection number, γi × γi+1 = +1.

Given the chain γ1, γ2, γ3, γ4, it can easily be seen that there are unique simple
closed geodesics γ5 and γ6 so that γ5 intersects γ4 exactly once and is disjoint from
γ1, γ2, and γ3; and γ6 intersects both γ5 and γ1 exactly once and is disjoint from the
other γi . As above, it may be assumed that these geodesics are also directed so that,
using cyclic ordering, γi × γi+1 = +1. This set of six geodesics is called a geodesic
necklace (see[14] and Figure 17.3).

If the surface M0 is cut along the geodesics of a chain, a simply connected subsur-
face is obtained. It follows that elements A0, B0, C0, D0 may generate π1(M00), and,
conversely, the shortest geodesics in the free homotopy class of loops, corresponding
to A0, B0, C0, D0, are, respectively, γ1, γ2, γ3, γ4. There are several possible choices
for these elements; let us adopt Maskit’s choice, which yields to defining relation:
A0B0D0A

−1
0 C−1

0 D−1
0 C0B

−1
0 = 1 (see [13]).
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Fig. 17.3 Geodesic necklace

A particular system of generators of a Fuchsian group is obtained, (denoted by
G0) and our surface (nondeformed) M0 is given by M0 = H 2/G0. It is possible to
express explicitly the matrices A0, B0, C0, D0, E0, F0 ∈ SL(2, R) (see [8], [14]).

A point in T can be regarded as being an equivalence class of orientation-
preserving homeomorphisms h of H 2. Two such homeomorphisms are equivalent if
the corresponding representations are equivalent; two such representations, A and
B are equivalent if there is an element S ∈ PSL(2, R) so that SAS−1 = B. When
the rule of the decomposition (the way of gluing, see Fig. 17.2) and the lengths of
closed geodesics are chosen, the decomposition is determined. The set of lengths of
all geodesics used in the decomposition into pants, and the set of so-called twisting
angles used to glue the pieces, provide a way of realizing this homeomorphism.

As this group G0 is discrete, consisting only of hyperbolic elements, the surface,
M0, represented byG0, is our base surface. But our aim is to study the dependence of
dynamic properties on the parameters which implies the variation of these parameters,
forcing the consideration of the deformation spaces of the space base defined above.
Deformation spaceD is defined as the space of representationsϕ : G0 → PSL(2, R).

The image of the group G = ϕ(G0) is a discrete group with M = H 2/G a closed
Riemann surface of genus 2.

Let us consider the chain γ1, γ2, γ3, γ4 in M which is decomposed along these
geodesics in 4 hexagons triangles. These geodesics are the shortest length of the
class of homotopy corresponding to some elements hi (i = 1, ..., 6) of π1(M), the
fundamental group of M. Building up hexagon H1, as can be seen in Fig. 17.4,
whose sides si are arcs γi , these arcs are contained in the axes of the hyperbolic
transformations hi (i = 1, ..., 6). The translation distance of these axes (measured
counterclockwise) along the axes is 2 li where li denotes the length of γi = l(γi).

From this initial hexagon H1 the fundamental domain can be constructed by
reflection and symmetry operations that reflect the decomposition of surface M
along the geodesics (that form the chain γ1 , γ2, γ3, γ4 chosen). In this construction,
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Fig. 17.4 Hexagons H1
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Fig. 17.5 Hexagons H1 ∪H2

a reflection on the axis of h4 is considered, while hexagon H1 is reflected in another
hexagon H2, see Fig. 17.5.

Finally, with the reflection in relation to the imaginary axis (symmetry) the other
two hexagonsH3 andH4 are obtained, building the dodecagon that is the fundamental
domain: F = H1 ∪H2 ∪H3 ∪H4, see Fig. 17.6.

If this is not the case, it means that the glue is different and the fundamental
domain is different as shown in Fig. 17.7.

This construction depends on the original choice of geodesic chain {γi}, and the
form of gluing, i.e., the parameters considered.

Definition 17.4 Let us consider a geodesic necklace on a closed Riemann surface
M. When all the geodesics have the same length and there is no twist in the collage,
it may be said that the regular case for the fundamental domain of a closed Riemann
surface M in the F-N coordinates is being considered.

However, the form of the generators of the Fuchsian group G may be determined
(for all cases) ([6], [14]).
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Fig. 17.6 Fundamental domain F = H1 ∪H2 ∪H3 ∪H4

Fig. 17.7 Two dodecagons with twist angles zero (α1 = α2 = α3 = 0) and one with angles
α1,α2,α3 
= 0

Let us consider once more hexagon H1. γ , the axis of h, which is also common
among the orthogonal axes h1 and h3, and is chosen as a reference geodesic segment.
Let μ′ = |γ |, and let us consider the ray joining the origin of the axes to the point of
intersection between h and h1, determining an angle μ between the axis of h3 and
this radius. Then, by using hyperbolic geometry, μ is defined by coth μ = cosh μ

(see [3]).
The point of intersection between h and h3 is denoted by P and the point of

intersection between h2 and h3 by P2. The other parameters are given by the angles
of gluing. Then σ is determined by the distance between the intersection of h with
h3 and the intersection of h2 with h3. Note that if h2 = h then σ is equal to zero. The
other two parameters τ and ρ are determined by angle θ2 and θ3 between h2, h3, and
h3, h4, respectively, see Fig. 17.8. Schematically: l1 = l(γ1), l2 = l(γ2), l3 = l(γ3),
l4 = l(γ4), μ = arc coth (cosh μ′), σ = |P − P2|, τ = arc tanh (cos (θ2)), and
ρ = arc tanh (− cos (θ3)).
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Fig. 17.8 Representation of the parameters in the hexagon

Through the operations of reflection and symmetry (as exemplified above) the
following representations (see [9] and [14]) are obtained:

A = 1

sinh μ

⎛
⎝sinh (μ− α) sinh α

− sinh α sinh (μ+ α)

⎞
⎠ ,C =

⎛
⎝eγ 0

0 e−γ

⎞
⎠ ,

B = 1

cosh τ

⎛
⎝cosh (τ + β) eσ sinh β

e−σ sinh β cosh (τ − β)

⎞
⎠ ,D = 1

cosh ρ

⎛
⎝cosh (ρ − δ) −eσ+γ sinh δ

−e−σ−γ sinh δ cosh (ρ + δ)

⎞
⎠.

Teichmüller space T of genus 2 is given by a system of generators of a Fuchsian
group, the fundamental group of the surface of the closed Riemann surface M of
genus 2. A particular system of generators determined by following expressions may
be considered: h1 = B, h2 = A, h3 = F , h4 = E, h5 = BD, h6 = DF−1.
h7 = h−1

1 , ...,h12 = h−1
6 (see Fig.17.9).

Proposition 17.1 If the twist angles are zero, σ1 = σ2 = σ3 = 0, then the
fundamental domain is a right-angle polygon.

Proof If τ = 0, then θ2 = π
2 so the axes of B and C are orthogonal; if σ = 0 then

P = P2 so h2 ≡ h. With this equality and the definition of h it may be concluded
that the axis of h2 is orthogonal to the axes of both h3 and h1; if ρ = 0, then θ3 = π

2 ,
which implies that the axes of h3 and h4 are orthogonal. As we have a hyperbolic
hexagon with three direct consecutive internal angles it may be concluded that the
other three also are right angles and, thus, H1 is a right-angled hexagon. As the
hyperbolic reflection maintains the angles invariant, the resulting polygon F is a
right-angled polygon.

This construction depends on the choice of original geodesics γi , i = 1, ..., 4.
The chain is then dependent on the parameters %i = %(γi). The sides are obtained
by the intersection of the axes, and are geodesic segments. The single point which
is the intersection between two consecutive sides is called a vertex.The circular arc
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Fig. 17.9 Axes h1,...,h12 and terminal points {pi , qi}, i = 1, ..., 12 on ∂F

that contains a side si intersects the real axis at two points pi and qi (see Fig.17.9).
The sides are labeled s1, ..., s12 reading counterclockwise from zero.

It is known (see [3]) that if F is any locally finite fundamental domain for a
Fuchsian group G, then

{g ∈ G : g(F) ∩ F = φ}
generates G. The fundamental domain F is a bounded fundamental polygon whose
boundary ∂F consists of the 12 geodesic segments s1, ..., s12. There is a bijection:

Ψ : LF → GF ; Ψ (g) = F ∩ g(F)

between the set of the sides of F and the set of elements g in G for which F ∩ g(F)
is a side of F . These pairing transformations g : si → sj identifying the sides
(side-pairing), elements of GF , i.e., generate the group G.

The identification rule chosen is

s1 , -s7 ; s2 , -s12; s3 , - s5;

s4 , -s10; s6 , -s8 ; s9 , -s11

(17.3)

Adopting this choice, formulas for the side pairing transformations g1, ..., g12

are calculated and the generators gi = gi(%1, %2, %3, σ1, σ2, σ3), i = 1, ..., 12,
where %1, %2, %3, σ1, σ2, σ3 are the F-N coordinates, are explicitly obtained. With the
linear fractional transformations defined above the boundary map may be obtained:
fΓ : ∂F → ∂F , defined by piecewise linear fractional transformations in the
partition P = { Ii = [pi ,pi+1), i = 1, ..., 11, [p12,p1)}, which is orbit equivalent
to the action of the fundamental group G on ∂F .

Adopting the identification rule, (17.3) formulas for the side pairing transfor-
mations g1, ..., g6, g7 = g−1

1 , ..., g12 = g−1
6 may be determined. This means that

s7 = g1(s1), ..., s9 = g6(s11), s1 = g7(s7), ..., s11 = g12(s9).
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Let gi(z) = (aiz + bi) /(ciz + di) for gi(sj ) = sk , with
⎧⎪⎪⎨
⎪⎪⎩

ri = (qi − pi)/2,

ci = 1/(rj rk)1/2,

bi = (aidi − 1)/ci

then the following system of equations is solved
⎧⎨
⎩

(aipj + bi)/(cipj + di) = qk ,

(aiqj + bi)/(ciqj + di) = pk

and {ai , di} is determined, i = 1, ..., 12. With {ai , di} the generatorsgi = gi(%1, %2, %3,
σ1, σ2, σ3), i = 1, ..., 12 are computed. The system of generators of G is denoted by
G0.

Let the partition be Q = {Ii = [pi ,pi+1), i = 1, ..., 11, [p12,p1)}. Although this
is not a Markov partition it may be refined so as to obtain one that is. One way of
doing this is to introduce the lateral limits p±

i of the discontinuity points pi (see [9]).
By means of fractional linear transformations carried out on Q, the boundary map

fG : ∂F → ∂F is defined, represented by:

fG :
⋃

i=1,...,12

Ii →
⋃

i=1,...,12

Ii ; fG(x)|Ii = gi(x), i = 1, .., 12.

17.4 Fundamental Group

The boundary map fG determines the associated Markov matrix A. This matrix is
given by (see [6])

aij =
⎧⎨
⎩

1 if Ii ⊂ fG(Ii)

0 otherwise.

The identification, enumeration, and codification of orbits use symbolic dynamics
through constructions that involves the geometry of the surface and the algebraic
structure of its fundamental group G. The action of this fundamental group on the
Poincaré upper half plane boundary is shown to be orbit equivalent to the Markov
map, fG, which has been defined, and codification is obtained by the expansion of
the boundary points.

Definition 17.5 Letxi0 be an element of the limit set of G . As it belongs to one of
the intervalsIi0 of the Markov partitionW the image underfG(xi0 ) = gi0 (xi0 ) = xi1 ,
is another boundary pointxi1 . The pointxi1 belongs to the intervalsIi1 sofG(xi1 ) =
gi2 (xi1 ) = xi2 .This process is repeated successively obtaining the (fG−expansion)
of boundary point x. This sequence is called the word associated with the point x.
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Example 17.1

(1) Consider the regular dodecagon: l1 = l2 = l3 = log (2 + √
3) and σ1 = σ2 =

σ3 = 0.
x = 1.5− > word 1− > 6, 12, 3, 8, 7, 3, 3, 7, 2, 3, 6, 12, 3, 8
x = 2.0− > word 2− > 11, 7, 11, 6, 10, 5, 11, 12, 3, 12, 3, 3, 10, 6

(2) Consider the dodecagon: l1 = log (2 +√
3) + 0.3, l2 = l3 = log (2 +√

3) and
σ1 = σ2 = σ3 = 0.
x = 1.5− > word 1− > 6, 10, 7, 2, 10, 2, 7, 10, 12, 3, 4, 7, 7, 7
x = 2.0− > word 2− > 12, 6, 10, 7, 9, 12, 5, 4, 8, 7, 4, 1, 5, 4.

Proposition 17.2 Each point of the limit set is associated with a single word. This
word is the fG−expansion boundary point. The admissibility of a given block or
word is given by the Markov matrix A.

Proof The Markov matrix A identifies the possible transitions between states and
the associated subshift of finite type, (ΣA, σ ), is identified by the limit set. Thus the
occurrences in the limit set are given by the admissibility in subshift of finite type,
therefore by A.

The representation (codification) of a geodesic γ in H 2(or D2) is the juxtaposition
of fG−expansions of its extreme points γ− and γ+ on the real axis (or the unit
circle Σ).

γ � γ−.γ+ � ...gi2gi1 .hi1hi2 ... where gi2 , gi1 ,hi1 ,hi2 ∈ G0.

Definition 17.6 Given g ∈ G (and γ ∈ calM) we define its word length |g| to
be the smallest number of elements from G needed in a presentation of g, i.e.,
|g| = inf{n : g = g1...gn with g1, ..., gn ∈ G0}; for a closed geodesic γ and
associated class [h] in G, we denote |γ | = inf{|g| : g ∈ G e [g] = [h]}, that is the
word length of γ ; the geometric length of γ is given by %(γ ) = ∫

γ
m(z) |dz| and is

dependent on the metric of the surface.
By convention, |e| = 0, where e is the identity element in G.

Theorem 17.3 Admissible geodesics are conjugate underG if and only if the
corresponding sequences are shift equivalent.

Proof See [9].

Theorem 17.4 On surfaces of negative curvature there is a bijection between closed
geodesic, γ , in M and conjugacy classes of the fundamental group G associated
with the fundamental domain F, i.e., each conjugacy class [gγ ] to G represents a
closed geodesic, γ , in M.

Proof See [15].
These results establish equivalence between concepts and different mathematical

spaces.
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Proposition 17.3 With a finite number of exceptions there is a bijection between
the closed geodesic, γ ∈ M (word length |γ | and length %(γ )) and the primitive
periodic orbits of period k, O(x) = {x, f (x), f 2(x), ..., f k(x)}.
Proof See [16].

Schematically:

Periodic points forfG ↔ Admissible sequences for the shiftσ

/ /
Primitive closed geodesics in M ←→ Conjugacy classes inG

If the elements of group G are viewed as matrices in SL2(R), then the identifi-
cation of the matrices g and −g in PSL2(R) = SL2(R)/{±1} may be understood
automatically. The following proposition allows for the identification of conjugacy
classes, by algebraic methods, using the traces of these elements.

Proposition 17.4 Consider two elements g and h of group G. Its conjugacy classes
are equal, if and only if, the squares of its traces are also equal. That is,

[g] = [h] ⇔ tr2(g) = tr2(h).

Proof See [3].
The identification of the conjugacy classes is dependent on traces of matrices that

represent the elements of the group; but these matrices are, in turn, dependent on
the choice of the parameters of F-N. Consequently, the following conclusion may be
drawn:

Proposition 17.5 The conjugacy classes of the fundamental group are dependent
of the Fenchel–Nielsen coordinates.

Example 17.2 If words of length 1 are considered for the case of regular domain
(l1 = l2 = l3 = log (2 +√

3) and σ1 = σ2 = σ3 = 0) there is only one conjugacy
class (Table 17.4), while, for example, for l1 = l2 = log (2 + √

3), l3 = 1.7 and
σ1 = σ2 = σ3 = 0 4 distinct classes of conjugation are obtained (Table 17.5).

⎡
⎣tr(gi) 4 4 −4 −4 4 4 4 4 4 4 −4 −4

tr2(gi) 16 16 16 16 16 16 16 16 16 16 16 16

⎤
⎦

⎧⎨
⎩
l1 = l2 = l3 = log (2 +√

3), σ1 = σ2 = σ3 = 0

1 distinct class
(17.4)

⎡
⎣tr(gi) −4 5.65663 −8.96989 2.89726 −8.96989 5.65663

tr2(gi) 16 16 16 16 16 16
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..... 4 5.65663 8.96989 2.89726 8.96989 5.65663

..... 16 16 16 16 16 16

⎤
⎦

⎧⎨
⎩
l1 = l2 = log (2 +√

3), l3 = 1.7, σ1 = σ2 = σ3 = 0

4 distinct classes
(17.5)

17.5 Systolic Inequalities

In order to examine systolic quantities, the spectrum length of the closed geodesics
must be determined. This spectrum may be determined by means of the trace of the
matrix associated with the boundary map. As g is an element of group G, its length
is obtained by the expression (see [3]):

l(g) = 2 cosh−1

[
tr(g)

2

]
.

Consider two examples with the same word length, |g| = 1 (examples 17.6, 17.7),
but different choices of F-N parameters:

Example 17.3
⎡
⎣gi g1 g2 g3 ... g10 g11 g12

l(gi) 2.63392 2.63392 2.63392 ... 2.63392. 2.63392 2.63392.

⎤
⎦

⎧⎨
⎩
l1 = l2 = l3 = log (2 +√

3), σ1 = σ2 = σ3 = 0

1 distinct class, word length, |g| = 1.
(17.6)

Example 17.4
⎡
⎣gi g1 g2 g3 g4 g5 g6

l(gi) 3.4 2.63392 3.85452 1.60608 3.85452 2.63392

... g7 g8 g9 g10 g11 g12

... 3.4 2.63392 3.85452 1.60608 3.85452 2.63392

⎤
⎦ (17.7)

⎧⎨
⎩
l1 = l2 = log (2 +√

3), l3 = 1.7, σ1 = σ2 = σ3 = 0

4 distinct classes, word length, |g| = 1.

Consider two examples with the same Fenchel–Nielsen parameters but different
word lengths, |g| = 1 and |g| = 2 (examples 17.8, 17.9). Let us choose the regular
case, %1 = %2 = %3 = log (2 +√

3) and σ1 = σ2 = σ3 = 0.
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Example 17.5 If the word length, |g| = 1, then there is just one distinct element of
the geodesic length spectrum that is, %(g) � 2.63392.

gi %(gi) = li

g1 l1 = 2.63392...

... ...

g12 l12 = 2.63392...

(17.8)

Example 17.6 If the word length, |g| = 2, we have 9 distinct conjugacy classes,
then there are 9 distinct values for the length spectrum. Some values:

g1.gi �%(g1gi) g2.gi �%(g2gi) g3.gi �%(g3gi)

g1.g1 5.26783 g2.g1 4.12687 g3.g1 5.98645

g1.g2 4.12687 g2.g2 5.26783 g3.g2 6.51323

g1.g3 5.98645 g2.g3 6.51323 g3.g3 5.26783

g1.g4 4.12687 g2.g4 5.98645 g3.g4 4.12687

g1.g5 2.63392 g2.g5 4.58486 g3.g5 0

g1.g6 4.12687 g2.g6 7.82325 g3.g6 4.58486

g1.g7 0 g2.g7 4.12687 g3.g7 2.63392

g1.g8 4.12687 g2.g8 7.05099 g3.g8 6.51323

g1.g9 2.63392 g2.g9 6.51323 g3.g9 7.05099

g1.g10 4.12687 g2.g10 2.63392 g3.g10 4.12687

g1.g11 5.98645 g2.g11 4.58486 g3.g11 7.82325

g1.g12 4.12687 g2.g12 0 g3.g12 4.58486

(17.9)

(...)

Every simple closed curve in the plane satisfies the inequality

A

π
≤
(

L

2π

)2

where L is the length of the curve and A is the area of the region it bounds. This
is a classical isoperimetric inequality. In the 1950s, C. Loewer and P. Pu proved a
classical isosystolic inequality(this result was not published, see [4]).

Let RP
2 be the real projective plane endowed with an arbitrary metric, i.e., an

embedding in some R
n. Then

(
L

π

)2

≤ A

2π
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where A is its total area and L is the length of its shortest noncontractible loop.
Similarly, every metric torus T

2 satisfies the inequality

L2 ≤ 2√
3
A

In the 1970s, Marcel Berger began studying a new Riemannian invariant, which
came to be know as the systole.

The systole of a compact Riemann surface is defined as the minimal length of
a noncontractile curve, (by abuse language one employs the same word for the
curves carrying out this length). The geometry of systoles was studied by Schmutz
within the framework of hyperbolic geometry (see [17] and [18]) and Bavard (see
[1]) in the context of abelian manifolds. The notion of systole, in particular, led to
the characterization of arithmetic groups using the length spectrum. The study of
systoles also provided geometrical answers to the Schottky problem on the Jacobian
Riemann surface. This approach was developed by Buser and Sarnak in (to see [5])
Gromov in (to see [10]).

sysπ1(M,m) denoted as the shortest length of a noncontractible loop of M .

sysπ1(M,m) = min
|γ |
=0,γ∈M

length(γ )

The systolic ratio SR of (M,m) is defined as

SR(M,m) = sysπ1(M,m)2

vol(M,m)
, (17.10)

and the optimal systolic ratio of M as

SR(M) = sup
m

SR(M,m), (17.11)

where m runs over the space of all metrics, (see [11]).
The optimal systolic ratio of a genus 2 surface is unknown, but it satisfies the

Loewner inequality SR(M) ≤ 2/
√

3, the best available upper bound for the optimal
systolic ratio of an arbitrary genus 2 surface, (see [12]). However, the latter ratio
is known for the Klein bottle, in addition to the torus, and also the real projective
plane. It should be noted that averaging a conformal metric by hyperelliptic involution
improves the systolic ratio of the metric. Systolic geometry has recently experienced a
period of great development, (see [10], [11]). Thus, a surface is Loewner ifSR(M) ≤
2/
√

3, and in (see [12]) it has recently been shown that the genus 2 surface is Loewner.
In the case of hyperbolic surfaces, a compact surface, is entirely determined by

a decomposition into a “pair of pants” and 6g − 6 real parameters, the F-N coor-
dinates. The regular domain choice corresponds, in geometric terms, to considing
the non-deformed surface M = H 2/G . With the explicit computation of geodesic
length, explicit inequalities are obtained that show the dependence of systoles on
F-N parameters. The variations of F-N coordinates modifies the metric structure of
the surface and this implies the alteration of systole length.
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Fig. 17.10 Systoles with Fenchel–Nielsen coordinates variation

Let M0 be a closed, nondeformed, surface with genus g = 2 and %0 =
max {%(γ (t))} the maximum of the shortest closed geodesic lengths onM0The
following result may be introduced:

Theorem 17.5 Let M be a closed surface with genus g = 2. Thus the length l(γ )
of every systole, γ , verifies the inequality l(γ ) ≤ %0 .

It is established that the regular case is a lower bound for systoles with F-N
coordinates variation (see Fig. 17.10). Each line represents systole behavior for each
F-N parameter: the blue line for %3; the magenta line for %3 and the green line for %1.
The fundamental domain that was constructed in the previous section is a dodecagon.
In order to maintain this structure in the present study, it was necessary to establish
the possible intervals of variation for each of the F-N coordinates.

Computation of the values of systoles lengths was carried out considering these
intervals.

Corollary L et M be a closed, non-deformed, surface with genus g = 2. Then

sysπ1(M ,m) ≤ log (2 +√
3)

for every systole, γ ∈ M.
However, our aim is a more global (not just two cases), study of this length

spectrum with F-N coordinates, in order to provide an understanding of how the
geodesic length spectrum behaves under deformation of the surface. Let us recall
that these coordinates constitute a system of global coordinates in Teichmüller space
T . If considering the variation of the lengths, in function of the coordinates of
F-N, also considering the maximum value as the minimum value of these lengths,
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Fig. 17.11 Upper and lower limits of shortest closed geodesic length

the maximum and the minimum, respectively, are obtained, with the regular case.
This regular case corresponds, in geometric terms, to surface M0 being a closed,
non-deformed, surface with genusg = 2.

Definition 17.7 Let M0be a closed, non-deformed, surface with genusg = 2 and
%0 = max {%(γ (t))} the maximum of the shortest closed geodesic length onM

It may be clearly observed (see Fig. 17.11), that it is in the regular case that the
upper/lower limits of the shortest closed geodesic length are reached. In the figure,
each of the F-N coordinates covers all the possible values (different limits for each
%i) so that the basic domain remains a dodecagon. Thus the following is obtained:

Theorem 17.6 LetM be a closed surface with genusg = 2. Thus the length l(γ )
of every systole,γ , verifies the inequality%(γ ) ≤ %0.

17.6 Final Considerations

In this chapter new insights have been provided into the study of the systoles length
spectrum under deformation of a compact Riemann surface endowed with a metric
of constant curvature −1. Rigorous detailed constructions have been achieved using
the techniques of symbolic dynamics. Systolic inequalities that determine the upper
limits of the systoles lengths spectrum have been established.
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