
A Local Search Algorithm for SMTI and its
extension to HRT Problems

Danny Munera1, Daniel Diaz1, Salvador Abreu2, Francesca Rossi3,
Vijay Saraswat4, and Philippe Codognet5

1 University of Paris 1 / CRI
Danny.Munera@malix.univ-paris1.fr, Daniel.Diaz@univ-paris1.fr

2 University of Évora / LISP / CRI
spa@di.uevora.pt

3 University of Padova / Harvard University
frossi@math.unipd.it

4 IBM TJ Watson Research Center
vsaraswa@us.ibm.com

5 JFLI-CNRS / UPMC / University of Tokyo
codognet@is.s.u-tokyo.ac.jp

Abstract. Hospitals/Residents with Ties (HRT) forms a class of problems
with many applications, some of which are of considerable size. Solving
these problems has been shown to be NP-hard. In previous work, we de-
veloped a local search algorithm which displays very high performance in
solving Stable Matching with Ties and Incomplete lists (SMTI) problems.
In this paper, we propose a method to tackle HRT problems with a slightly
modified version of our SMTI solver. We describe our method and provide
an initial performance assessment, which turns out to show that the re-
sulting solver can deal with significant HRT problems, providing optimal
solutions in most cases, in a very short time.

1 Introduction

In 1962, Gale and Shapley introduced the Stable Matching (SM) problem [4]. An
SM instance of size n involves a set of n men and a set of n women, each of whom
has ranked all members of the other set in strict order of preference. Solving such a
problem consists of finding a matching, i.e. a one-to-one matching between the men
and the women. In addition the matching must be stable, meaning that there is
no man-woman pair where both would rather marry each other than their current
partner – such a pair is called a blocking pair. Gale and Shapley proved that such
a stable matching always exists and proposed an O(n2) algorithm (called GS in
what follows) to find one.

However, requiring each member to rank all members of the opposite sex in
a strict order is too strong a restriction for many real-life, large-scale applica-
tions. A natural variant of SM is the Stable Matching with Ties and Incomplete
Lists (SMTI) problem [14, 17]. In SMTI, the preference lists may include ties (to
express indifference) and may be incomplete (to express that some partners are
unacceptable). More formally, an SMTI instance of size n consists of n men and n
women, and a preference list for each of them, which contains some of the people
of the other gender. Such preference lists are weak orders, that is, total orders

possibly containing ties. Given an SMTI instance, a matching M is a set of pairs
(m,w) representing a (possibly partial) one-to-one matching of men and women.
If a man m is not matched in M (i.e. for no w is it the case that (m,w) ∈M), we
say that m is single in M (similarly for women). The size of a matching M is the
cardinality of M , denoted |M |.

With the introduction of ties in the preference lists, three different notions of
stability may be used [10, 17, 14]. As we consider only weak stability (the most
challenging), we simply call it stability. In the context of M , a pair (m,w) is a
Blocking Pair (BP) iff (a) m and w accept each other and (b) m is either single
in M or strictly prefers w to his current wife, and (c) w is either single in M or
strictly prefers m to her current husband. A matching M is stable iff it has no
blocking pairs.

A (weakly) stable matching always exists and can be found with variants of
the GS algorithm. Since any given SMTI instance may have stable matchings of
different sizes, a natural requirement is to find one of maximum cardinality. This
optimization problem (called MAX-SMTI) has many real-life applications [17, 14]
and has attracted a lot of research in recent years because of that: car sharing or
bipartite market sharing, job markets and social networks. Many of these appli-
cations involve very large sets. Unfortunately, the MAX-SMTI problem has been
shown to be NP-hard, even for very restricted cases (e.g. only men declare ties,
ties are of length two, the whole list is a tie) [13, 17].

We have recently proposed a Local Search (LS) algorithm for the SMTI prob-
lem [19]. For this, an SMTI problem is first modeled as a permutation problem and
then solved by the Adaptive Search (AS) method [1, 2]. Basically, starting from a
random matching, our algorithm iteratively tries to improve the current matching
by performing a swap between two variables (i.e. two men exchange their part-
ner). For this, a limited neighbourhood is explored and the most promising swap
is selected based on a heuristic which selects the most significant blocking pair to
fix and/or a single man to marry. The algorithm stops when a perfect matching
is found (a stable matching with no singles) or when a given timeout is reached
(in which case the best matching found so far is returned). This algorithm turned
out to have very high performance and is able to optimally solve several large
instances.

Another very useful variant of SM is the Hospitals / Residents problem with
Ties (HRT) [12, 11, 17]. An HRT instance consists of two sets: the residents R =
{r1, . . . rn1} who apply to the hospitals H = {h1, . . . hn2}. The preference list of a
resident ri ∈ R consists of the ordered list of acceptable hospitals (a subset of H).
The preference list of a hospital hj ∈ H contains the ordered list of residents (a
subset of R) who consider hj acceptable. All preference lists are allowed to contain
ties. In addition, each hospital hj ∈ H has a capacity cj indicating the maximum
number of positions it offers.

The problem consists of finding a stable matching between residents and hos-
pitals satisfying both the preference lists (the matching must be stable) and the
capacities (each resident being assigned to at most one hospital and the number
of residents assigned to any hospital hj must not exceed cj). At any stage during
the matching process, a hospital hj with aj assignees is said to be over-subscribed
if aj > cj , full if aj = cj , and under-subscribed if aj < cj .

The previously discussed notion of weak stability can be adapted to HRT: in
the context of M , a pair (r, h) give rise to a blocking pair iff (a) r and h accept

each other and (b) r is either unassigned in M or strictly prefers h to his assigned
hospital, and (c) h is either under-subscribed or strictly prefers r to the worst
resident assigned to it. As for SMTI, a matching M is stable iff it has no blocking
pairs.

HRT problem has many practical applications, e.g. assignment of applicants
to positions in job markets. In the medical employment domain, there are na-
tional programs in various countries such as the Scottish Foundation Allocation
Scheme (SFAS), the Canadian Resident Matching Service (CARMS) or the Na-
tional Resident Matching Program (NRMP) in the USA. Obviously, such programs
involve very large sets. Unfortunately, as for SMTI, the problem of finding a stable
matching of maximum cardinality (called MAX-HRT) for a given instance of HRT
is NP-hard (even for restricted cases, e.g. if the ties are only allowed on one side).
Finding an efficient algorithm to solve HRT problems is thus a true challenge with
many real applications.

We deem it interesting to see if we can attack the HRT problem with our LS
algorithm. While SMTI is a special case of HRT (where each hospital has capacity
one) we chose to adopt a reverse approach, considering an HRT as a special case
of SMTI so as to keep the main lines of our algorithm (permutation-based, which
ensures a compact memory representation and an implicit modeling of the all-
different constraint). To this end, we can use the so-called cloning technique [9]
which basically consists of creating cj copies of the hospital hj , each of capacity
1, and to use these copies (inside a tie) each time this hospital is referenced in a
resident’s preference list. Strictly speaking, the resulting problem instance is not
exactly an STMI instance since the resulting sets (residents and cloned hospitals)
can have different sizes but it is trivial to add dummy elements (residents or
hospitals). The extension of our algorithm to deal with this feature is very simple.
All of this makes HRT and SMTI equivalent problems.

This RISC -like approach is analogous to what occurs with SAT modeling:
the object formulation is often voluminous and cumbersome but its resolution by
the best SAT solvers is very efficient – often faster than what is obtained with
dedicated solvers which take higher-level formulations, such as CSP or constraint
programming. Upon dealing with hard problem instances, we try to improve the
solver at low level, meaning that the techniques which we may come up with to
better solve HRT will also benefit SMTI, in the general case. We stress that our LS
algorithm gets much better performance than complete methods (i.e. enumerative,
branch and bound, linear and integer programming, etc.), even though we do not
always reach the optimum solution.

As the rest of this paper will show, we manage to get very competitive per-
formance on real-world data sets of considerable size and difficulty. We are also
convinced that this will further benefit from the efficiency improvements we ex-
plored in [19], namely parallelism.

2 A Local Search Method for SMTI

Local search is a meta-heuristic method for solving optimization problems. It re-
quires a cost function to evaluate the quality of a given assignment of variables
(i.e. a configuration). The method also needs a transition function which defines,
for each configuration, a set of neighbours. The simplest Local Search algorithm

starts from a random configuration, explores the neighbourhood, selects a promis-
ing neighbour and moves to it. This iterative process continues until a solution is
found. In this paper, we use a Local Search method developed by our team: the
Adaptive Search method [1].

Adaptive Search (AS) is a generic, domain-independent, constraint-based local
search method. This meta-heuristic takes advantage of the modeling of the problem
in terms of constraints and variables, in order to guide the search more precisely
than a single global cost function.

The error function in AS is a heuristic value which stands for the degree of
satisfaction of the constraints. The method combines the error for each constraint
to obtain a global cost and then, for each variable, AS projects constraint errors
on the involved variables. AS repairs the worst variable (highest error) with the
best (most promising) available value.

AS also includes an adaptive memory inspired by Tabu Search [8] in which
each variable leading to a local minimum is marked and cannot be selected for
the next few iterations. A local minimum is a configuration for which none of the
neighbours improve the current cost. Finally, the algorithm also includes partial
resets in order to escape stagnation around local minima.

For this work we use a particular implementation of AS, specialized for permu-
tation problems. In this case all n variables have the same initial domain of size n
and are subject to an implicit all-different constraint.

2.1 AS Model for SMTI Problems

We recently developed an efficient Adaptive Search model to solve SMTI prob-
lems (AS-SMTI). In this section we sketch the main features of the modeling; the
interested reader may refer to [19] for details.

To use AS, we model the SMTI problem as a permutation problem: we define a
sequence of n variables (X1 . . . Xn) which take for values permutations of the vector
(1 . . . n). Xi = j is interpreted as either (mi, wj) ∈ M , or mi is single if wj is not
on its preference list. Note that this interpretation remains valid when the values
of any two variables are swapped (this is how value assignment is implemented in
permutation problems).

The AS method seeks to improve the stability of a matching by removing
blocking pairs (BPs). Some BPs may be useless in that fixing them does not
improve things since the man involved remains part of another BP. To avoid this,
the method focuses only on the so-called undominated blocking pairs [15, 5]. Let
(m,w) and (m,w′) be BPs. BP (m,w) dominates (from the men’s point of view)
BP (m,w′) iff m prefers w to w′. A BP (m,w) is undominated iff there is no other
BP dominating (m,w). In the following we only consider undominated BPs, which
we simply call BPs.

Adaptive Search relies on a global objective function (called cost function) to
measure the degree of error of a configuration. The cost function of a matching M
is defined as follows:

cost(M) = #BP (M)× n + #Singles(M)

where #BP (M) is the number of BPs in M , and #Singles(M) is the number
of single men in M . The number of BPs is weighted with n to prioritize stable

matchings over matchings with fewer singles. A matching M is stable iff cost(M) <
n, and perfect iff cost(M) = 0. AS stops as soon as the cost function reaches 0 or
when a given time limit is hit, in which case it returns the best matching found
so far.

The AS-SMTI modeling defines the function R(w,m) as the rank of m in the
preference list of w, ranging over 1..(n+1), with i < j implying w prefers (man with
rank) i to (man with rank) j, and R(w,m) = n + 1 iff m is not in the preference
list of w. The implementation does some straightforward pre-computation to avoid
the linear cost of recomputing R(w,m). The algorithm computes the BPs in the
match M , going through all men in the problem. For each men m, let w the current
partner of m such that (m,w) ∈ M , AS-SMTI verifies in the preference list of m
if there is a woman w′ with a higher level of preference than w. If w′ exists, let
m′ the current partner of w′ such that (m′, w′) ∈ M , the algorithm checks in the
preference list of w′ if the man m has a higher level of preference than m′. If this
happens, the algorithm has found the BP (m,w′). The associated error for this BP
is determined by the following expression: R(w′,m′)−R(w′,m). Thus, the further
the assigned man is from the BP (in the preference list of w′), the larger the error.

It is worth noticing that while (undominated) BPs are considered from the
men point of view, the associated errors are computed from the women point
of view. Since preference lists can include ties, a man can be implied in several
undominated BPs. For efficiency and simplicity reasons, AS-SMTI only considers
the first encountered BP for a given man m and computes its error as explained
above. Other strategies exist to aggregate the error associated to all BPs (select
the maximum error, the average error, randomly one error, . . .).

At each iteration, AS selects the “worst” variable from the current matching
M to improve it (the man involved in the BP with the largest error as explained
above). In case of several man have the same highest cost, one is selected randomly.
AS then fixes the culprit by swapping Xm and Xm′ . In short, AS considers all BPs,
chooses the variable corresponding to the worst one, fixes it by moving to a new
configuration and re-evaluates the cost of the resulting matching. This heuristic
avoids the cost of fixing all BPs, one by one.

In most cases, the resulting matching improves on the current one, and AS
continues iteratively. When this is not the case, AS has reached a minimum (global
or local). As AS has no way of knowing when the optimum has been reached (except
when the cost is 0) it handles both cases similarly trying to escape the minimum
invoking a “reset” procedure. This procedure slightly alters the current assignment
of variables, trying to fix the 2 worst BPs and/or to assign a woman to a single
man. The reset procedure is stochastic; it will also fix the second worst variable
with a probability p: good results are obtained with a high value, e.g. p ' 0.98. This
procedure turns out to be very effective: while preserving most of the configuration
(no more than 2 swaps are performed), it enables AS to escape all local minima
and reach very good solutions.

AS stops when one of the following conditions is reached: (a) a perfect solution
has been found (i.e. cost = 0), (b) a given target cost T is reached (it is possible to
ask the solver to find a solution with at most T singles) or (c) a timeout is reached
(in which case the best solution found so far is returned).

a)

 0
 100

 200
 300

 400Iterations
 0.1

 0.3

 0.5

 0.7

 0.9

p1
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

A
v
er

ag
e

n
u
m

b
er

 o
f

b
lo

ck
in

g
 p

ai
rs

b)

 0
 100

 200
 300

 400Iterations
 0.1

 0.3

 0.5

 0.7

 0.9

p1
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

A
v
er

ag
e

n
u
m

b
er

 o
f

si
n
g
le

s

Fig. 1: a) average number of BP b) average number of singles
when solving SMTI problems (n = 100, p2 = 0.5, varying p1)

2.2 Performance evaluation on SMTI problems

We present here an evaluation of our AS-SMTI algorithm. For this, we used a
dataset composed of random problems created using the generator described in [6]
which takes three parameters: the size (n), the probability of incompleteness (p1)
and the probability of ties (p2). Given a triple, (n, p1, p2), a SMTI problem instance
with n men and n women is generated as follows: for each man and woman, the
algorithm generates a random permutation of size n, as a preference list. Then, the
algorithm iterates over each object in the preference lists, and with a probability
p1, this object is deleted from the preference list. Finally, the algorithm iterates
again over each remaining object (in the men and women preference lists) and
with a probability p2, a tie is created between the current object and the previous
one.

For a given combination of p1 and p2 100 different problems were generated.
Since AS is a stochastic procedure, each problem is solved 50 times and results
are averaged. We used an X10 implementation of AS running sequentially on an
AMD Opteron 6380 clocked at 2.5 GHz, i.e. using only one core.

The first experiment analyzes the number of iterations needed to solve an
SMTI problem. Every 10 iterations, the solver reports the number of BPs and
the number of singles of the current configuration. Due to space limitation, we
here consider problems of size 100, for different values of p1 in [0.1, 0.9] and for
p2 = 0.5 (ties may appear in both sides). Figure 1 presents the averaged results of
this experimentation. It appears that the average number of BPs quickly decreases.
For instance, on average, after 200 iterations, a stable matching is already reached
in 99, 88% of the cases. It is worth noticing that some difficult instances can require
more iterations (the maximum observed has been 460 iterations for a problem
generated with p1 = 0.5). Figure 1 b) shows the evolution of the number of singles
with respect to the number of iterations. Again, this number quickly decreases. It
is worth noticing that when the incompleteness of the problem is high (e.g. when
p1 = 0.9), some problems do not have a perfect solution and the number of singles
does not fall below some boundary value.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
er

 o
f

it
er

at
io

n
s

Size of the problem

a)

number of iterations

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 200 300 400 500 600 700 800 900 1000

E
x
ec

u
ti

o
n
 t

im
e

(s
)

Size of the problem

b)

execution time
O(n

2
 log(n))

Fig. 2: Runtime behaviour of AS-SMTI: a) number of iterations, b) execution time
(varying the size of the problem, p1=0.5 p2=0.5)

The second experiment analyzes the scalability of the AS-SMTI algorithm. For
this we fixed the parameters p1 and p2 to 0.5, and we varied the size n of the
problem in the range of [100, 1000] using steps of 100. Figure 2 shows the curves
corresponding to the number of iterations and to the runtime when varying n. We
can observe that the number of iterations to obtain a perfect solution for SMTI
problems varies linearly from 200 iterations for n = 100 to 2000 iterations for
n = 1000, with a corresponding runtime in O(n2 log n). Obviously, the results of
this test cannot be generalized and we plan to extend the experimentation with
other values for p1 and p2.

Finally, we compared our AS solver with McDermid’s method (MD) [18], a
very efficient 3/2-approximation algorithm, as implemented in [20]. For this test
we used a data set composed of SMTI problems of size n = 100, with p1 ranging
over [0.1, 0.9] and p2 over [0, 1], with step 0.1. With MD, for each (p1, p2) pair, we
solved the 100 instances once and averaged the the execution time.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
n
ta

g
e

o
f

P
er

fe
ct

 S
o
lu

ti
o
n
s

Probability of ties p2

AS p1=0.6
MD p1=0.6
AS p1=0.7

MD p1=0.7
AS p1=0.8

MD p1=0.8
AS p1=0.9

MD p1=0.9

(a)

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

E
x
ec

u
ti

o
n

 t
im

e
(s

)

MD

AS

Probability of incompleteness p1

Probability of ties p2

E
x
ec

u
ti

o
n

 t
im

e
(s

)

(b)

Fig. 3: AS vs. MD: a) quality of solutions b) execution time.

Figure 3a compares the quality of solutions. The percentage of perfect stable
matchings found by the AS algorithm is considerably higher than those found by
MD, in particular using a probability of ties p2 ∈ [0.1..0.8].

Figure 3b compares the execution times, as a 3D chart. In many cases, AS
is up to an order of magnitude faster than MD. With higher probability of in-
completeness (e.g. p1 = 0.9), MD outperforms AS. This can be explained by the
time-complexity of MD which is proportional to the total length of the preference
lists, i.e. it linearly decreases as p1 increases. The MD algorithm seems to perform
faster than our AS approach only when p1 = 0.9. We note that MD always re-
turns the same, single and (sub)optimal solution, while AS will yield more than
one solution, with observably better quality. Moreover, a solution quality vs. per-
formance trade-off is always possible in AS, by tweaking the timeout parameter.
A complete comparison of the AS-SMTI algorithm with a state-of-the-art Local
Search method [5] and a SAT encoding of the SMTI problem [7] may be found
in [19].

3 Solving HRT Problems

In this section, we propose an algorithm to solve the HRT problem based on
the algorithm presented above (we call this extension AS-HRT). Our goal is to
obtain an HRT solver with minimum changes in the AS-SMTI algorithm. For
this purpose, AS-HRT resorts to the “cloning” technique described in [3, 9, 21].
The main idea in cloning an HRT problem is to define a match between residents
and positions instead of hospitals. A position being a single post offered by a
hospital (a hospital hj can offer cj positions), each position can only be assigned
to only one resident (capacity equal to one). To convert an HRT problem into
an SMTI formulation, we create a new set of positions composed of the single
positions offered by the hospitals. Each position has the same preference list as its
“root” hospital. In the residents’ preference lists, each hospital hj is replaced by a
sequence composed of the associated cj positions (all forming a tie). The resulting
equivalent SMTI problem consists of matching residents and positions. The main
drawback of the cloning process is a significant increase in the size of the problem
(but this remains manageable with modern computers).

Using cloning we may convert an HRT problem into an (asymmetric) SMTI
problem, in a polynomial time. We use the term “asymmetric” because the re-
sulting SMTI problem can have sets of different sizes. More formally, an asym-
metric SMTI problem is specified by (a) two sets M and W of cardinality m
and n respectively, (b) a ranking function R : M × W → {1 . . . n + 1} and
R : W × M → {1 . . .m + 1} (we use the same name R for the ranking func-
tion for men and women). Note that the only point of generality over the standard
SMTI formulation is that m is not required to be identical to n. From the AS-
SMTI algorithm this comes down handling a vector of max(m,n) values with some
“dummy” values for missing elements.

It is interesting to characterize the cj clones in the resulting SMTI problem
since they play the same role (they are interchangeable). Given an SMTI instance,
m1,m2 ∈ M are said to be equivalent (written m1 ∼ m2) if ∀w,R(m1, w) =
R(m2, w). Similarly, w1, w2 ∈ W are said to be equivalent if ∀m,R(w1,m) =
R(w2,m). Note that ∼ is an equivalence relation.

A given SMTI problem may have equivalent elements or not. When we translate
an HRT problem into SMTI we get equivalences: the cj elements corresponding to
a hospital hj are all equivalent to each other.

When walking through several matchings, it would be nice to avoid explor-
ing equivalent matchings (i.e. those whose difference only concerns equivalent ele-
ments). Indeed, only one matching from an equivalence class needs to be examined.
It is worth observing that given a matching M if (m,w) and (m′, w′) ∈ M give
rise to a blocking pair (m,w′), then m 6∼ m′ and w 6∼ w′. Therefore, the swap
executed by the main loop of the AS-SMTI algorithm to fix a BP already ensures
that a matching is not changed to an equivalent matching. However, it is not the
case of the reset procedure invoked to escape a local minimum which performs
some random swaps. We have not yet improved this point (if a reset procedure
swaps two equivalent elements the local minimum is not escaped and another reset
will occur resulting in a waste of time). To be fully aware of equivalences in the
current AS-SMTI algorithm, we should first compute equivalences upfront (this
is an easy linear operation) and avoid swaps between equivalent elements in the
reset procedure. We plan to do this in a second version of the algorithm.

3.1 Implementation

To implement the extension to HRT problems, we developed a pre-processor and a
post-processor (see Figure 4). The pre-processor converts an HRT problem instance
I into an equivalent SMTI problem instance I ′. The post-processor systems takes
the match found by the AS-SMTI solver for I ′ and converts back into HRT match
form. The resulting HRT match is the solution to the initial problem.

HRT problem Pre-process
HRT -> SMTI

Equivalent
SMTI problem

AS - SMTI
solver

 SMTI

match

Post-process
Match

SMTI → HRT

Mapping

Information

HRT
match

HRT Solver

Fig. 4: Description of the solver extension to solve HRT problems

3.2 Preliminary Performance Evaluation

We did preliminary experiments to assess the performance of the HRT extension
to AS-SMTI. We used a data set composed by randomly generated problems,6

with the the same parameters as in [16]:

– Number of residents n1 = 300 (size of the problem).

6 The data set was kindly provided by Augustine Kwanashie and David F. Manlove from
the University of Glasgow, UK, and is the same as that in [16].

– Number of hospitals n2 = 21.
– Length of the residents’ preference list l = 5.
– Total number of positions C = 300.
– Tie density td ranging over [0, 1] with step 0.1.

For each td value, we used 10000 instances. The experiment was carried out on a
machine with 4× 16-core AMD Opteron 6380 CPUs, running at 2.5 GHz and 128
GB of RAM, using only 1 core. We solve each problem instance once, collecting
the maximum size of the match and the execution time. We tested the timeout for
AS-SMTI solver at 50, 100, 200, 400 and 1000ms.

Figure 5a shows the maximum size of the match found by AS-HRT, varying
the tie density and using different timeout limits. We also include the optimal
match size found with the Integer Programming method developed in [16]. AS-
HRT almost reaches the optimal match size when using low values of the tie density
(td < 0.6) and when the tie density is 1. These results are obtained even with low
timeout values, i.e. 50ms. When the tie density is between 0.6 and 0.9, AS-HRT
does not always reach the optimal solution: yet in these cases, the minimum ratio
to the optimal size we obtained was 0.998 times (for the td = 0.9).

 297

 297.5

 298

 298.5

 299

 299.5

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.

m
at

ch
 s

iz
e

Tie density

Optimal
50ms

100ms
200ms
400ms

1000ms

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
ex

ec
u
ti

o
n
 t

im
e

(s
)

Tie density

50ms
100ms
200ms
400ms

1000ms

(b)

Fig. 5: AS-HRT: a) match size and b) execution time (size=300, varying td)

Figure 5b presents the average execution time of AS-HRT. The results show that
when using td = 1, the execution time to get the optimal solution is almost con-
stant, at about 40ms. When the tie density decreases, the average execution time
tends to be the same as the chosen timeout value. This behaviour can be ex-
plained because, when the optimal solution of a problem instance is not perfect
(|M | < 300), the AS-SMTI method, which doesn’t know this, will keep trying to
improve on it until the timeout is reached.

4 Conclusions and Future Work

We recently developed a Local Search solver for SMTI problems based on the
Adaptive Search method. To use this, we need to model problems as permutations
and provide some heuristics based on the study of relevant blocking pairs to guide
the search process, in order to iteratively improve the current matching. A reset

procedure is invoked when the solver is trapped in local minima. This solver is
very efficient and can solve optimally large instances quickly. For the most difficult
problems, it is possible to tune the trade-off between solution quality and solving
performance by tweaking the timeout parameter.

On the top of this solver, we have built a solver for HRT which basically maps
an HRT problem to an equivalent SMTI problem using the cloning technique. This
required a slight modification to the core solver. We also characterized the result-
ing clones with the notion of equivalence which captures the fact that clones are
interchangeable and thus it is not desirable to replace a matching by another which
is equivalent (i.e. one that only differs in equivalent elements). We showed that
the core LS algorithm mainly satisfies this property, save in the reset procedure.
We have plans to improve on this situation.

We presented a preliminary experimental evaluation based on thousands of
problems of size 300. The solver already performs very well: using a timeout of
1s, it reaches the optimal solution for most of the instances. For the most difficult
instances, when the optimum is not reached within this timeout, the returned solu-
tions are very good with size within a factor 0.998 w.r.t. the optimal solution. We
plan to experiment with other dataset reflecting a more realistic case of the HRT
problem, e.g. modeling the popularity or unpopularity of the hospitals. Moreover,
we also plan to use larger problem instances, as a future development.

There are several avenues for improvement, of which we name a few: we already
mentioned how to take equivalence into account in the reset procedure. It is also
possible to see if other problem reduction techniques are fruitful (e.g. those men-
tioned in [16] for the IP formulation). It would also be interesting to start from a
pertinent solution, instead of a pure random assignment: this could be done with
the help of a very fast approximation algorithm. The size of this solution could be
also used as a lower bound.

Finally, as our base method is amenable to massive parallelisation, we will
explore parallelism to tackle both hard and large problem instances, as we already
did in [19].

Acknowledgments

We would like to thank Augustine Kwanashie and David F. Manlove from the
University of Glasgow, for kindly providing us with the extensive HRT data sets.

References

1. P. Codognet and D. Diaz. Yet Another Local Search Method for Constraint Solving.
In K. Steinhöfel, editor, Stochastic Algorithms: Foundations and Applications, pages
342–344. Springer Berlin Heidelberg, London, 2001.

2. P. Codognet and D. Diaz. An Efficient Library for Solving CSP with Local Search.
In 5th international Conference on Metaheuristics, pages 1–6, Kyoto, Japan, 2003.

3. L. Dubins and D. Freedman. Machiavelli and the Gale-Shapley Algorithm. American
mathematical monthly, 88(7):485–494, 1981.

4. D. Gale and L. Shapley. College Admissions and the Stability of Marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

5. M. Gelain, M. Pini, F. Rossi, K. Venable, and T. Walsh. Local Search Approaches
in Stable Matching Problems. Algorithms, 6(4):591–617, Oct. 2013.

6. I. Gent and P. Prosser. An Empirical Study of the Stable Marriage Problem with
Ties and Incomplete Lists. In in ECAI 2002, pages 141–145. IOS Press, 2002.

7. I. Gent, P. Prosser, B. Smith, and T. Walsh. SAT Encodings of the Stable Mar-
riage Problem with Ties and Incomplete Lists. In SAT, volume 8, pages 133–140,
Cincinnati, USA, 2002.

8. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, July 1997.
9. D. Gusfield and R. Irving. The Stable Marriage Problem: Structure and Algorithms.

MIT press, 1989.
10. R. Irving. Stable Marriage and Indifference. Discrete Applied Mathematics,

48(3):261–272, Feb. 1994.
11. R. Irving and D. Manlove. Finding Large Stable Matchings. ACM Journal of Ex-

perimental Algorithmics, 14(September), 2009.
12. R. Irving, D. Manlove, and S. Scott. The Hospitals/Residents Problem with Ties.

In 7th Scandinavian Workshop on Algorithm Theory, SWAT’00 Lecture Notes in
Computer Science, number i, pages 259–271, Berlin, 2000.

13. K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable Marriage with Incomplete
Lists and Ties. In In Proceedings of ICALP 99: the 26th International Colloquium on
Automata, Languages and Programming, number ii, pages 443–452. Springer-Verlag,
1999.

14. K. Iwama and S. Miyazaki. A Survey of the Stable Marriage Problem and its Variants.
In International Conference on Informatics Education and Research for Knowledge-
Circulating Society , ICKS’08, number i, pages 131–136. IEEE Press, 2008.

15. F. Klijn and J. Masso. Weak Stability and a Bargaining Set for the Marriage Model.
Games and Economic Behavior, 42(1):91–100, 2003.

16. A. Kwanashie and D. Manlove. An Integer Programming Approach to the Hospi-
tal/Residents Problem with Ties. CoRR, abs/1308.4:1–10, Aug. 2013.

17. D. Manlove, R. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard Variants of
Stable Marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.

18. E. McDermid. A 3/2-approximation Algorithm for General Stable Marriage. In
International Colloquium on Automata, Languages and Programming, ICALP’2009,
pages 689–700, Rhodes, Greece, 2009.

19. D. Munera, D. Diaz, S. Abreu, F. Rossi, V. Saraswat, and P. Codognet. Solving
Hard Stable Matching Problems via Local Search and Cooperative Parallelization.
In AAAI, 2015.

20. A. Podhradsky. Stable Marriage Problem Algorithms. Master’s thesis, Masaryk
University, 2010.

21. A. Roth and O. Sotomayor. Two Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Econometric Society Monographs, 18, 1990.

