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Abstract

The Semantic Web represents an evolutionary step for the Internet where
data is modeled to be sema,ntically adequate also for machine agents. For
this meta-info to be useful, systems must be built whidr can process it in
order to infer knowledge.

We aim for the creation of a computational system, from a contextual
logic programming point of üew, that can process information from different
sourcm in different formats.

Throughout this thesis we describe a prototlpe with two components
which represent the main contributions of the work described herein:

o A core that is capable of representing Web ontologies;

o A back-end capable of mapping GNU ProloglCx to SPARQL queries;

The core system acts like a computational hub for knowledge modeled
by OWL ontologies that enables querying that representation. The back-end
provides functions for communicating with SPARQL agents so that the rea-
soning of the internal knowledge base can be merged with external ontologies.
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Resumo

X. P. T. 0 . - Um sistema de informação para represen-
tar e interrogar ontologias Web.

O termo Semanti,c Weô representa um pa"sso evolutivo para a Internet
onde os dados são modelados de forma a serem semarrticamente adequados
também para agentes informáticos.

A necessidade de sistemas informáticos que consigam processar estes da-
dos de forma a inferir conhecimento motivou o nosso objectivo: criar um sis-
tema que consiga processax informação, de um ponto de vista da progra,mação

em lógica contextual, ündo de diferente fontes em variados formatos.
Esta tee descreve um protótipo com dois componentm que representam

a principal contribuição do trabalho efectuado:

o Um sistema cepaz de representar ontologias Web;

o Um componente que traduz interrogações GNU Prolog/CX para SPARQL;

O sistema actua como um àuô computacional para conhecimento decrito por
ontologias OWL e permite fazer interrogações a essa base de conhecimento.
O componente adicional permite fazer interrogações a agentes SPARQL ex-
ternos, o gue possibilita juntar o conhecimento vindo de fontes externas com
o representado na base de conhecimento interno.
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Chapter 1

Introduction

The work presented in this thmis is the result of a two years masters
research that unifim the Semantic Web and Logic Programming topics in
order to deliver the implementation of XPTO 1 and a SPARQL (Simple
Protocol and RDF Query Language) back-end. XPTO is a contextual logic
programming system capable of acting as a computational hub of information
focused mainly in Web ontologies. The associated back-end is aimed to act
as a corrmunication socket with outside Semantic Web agents for querying
OWL (Web Ontology Language) Web ontologies using the SPARQL query
language.

Part of the work dmcribed herein has been previously prebented. An
initial description was shown in [LFA07]. Use cases a,nd examples were prs
sented in [FLA07].

1.1- Background
The Semantic Web. This phrase represents a concept that can bring

great excitement to some and at the same time indifference, or even disbelief
to others. Curiously, an identical phenomenon a.ffects Logrc Programming,
namely programming languages such re GNU Prolog {DC00l. Many see logic
programming as an important and powerful tool that can be used successfully
in a wide variety of situations, but for others it is only suitable for academic
projects associated with aúificial intelligence research.

The work presented in this thesis represents an effort to join together
these two loae-hate concepts/technologies by implementing an information
system capable of processing and reasoning over Web ontologim by means of

1XPTO is a recursive acronym that stands for XPTO Prolog Ttanslation for Ontologies.
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contextual logic programming

I haae a dream for the Web [i,n whi,ch computers] bee,ome e.apable

of analyzi,ng all the data on the Web [...]. A "Semantic Web",
whi,ch should make thi,s poss'i,ble, has get to emerge, but when i,t

does, the day-to-day mechanisms of trad,e, burvaucracy and our
ilaily li,ues ui,ll be handleil by machi,nes talki,ng to machi,nes. The

"i,ntelli,gent agents" people haae touteil for ages ui,ll finally mate-
ri,ali,ze. - Tim Berners-Lee; 1999.

As envisiond by Tim Berners-Lee, the Semantic Web will bring to life
software agents capable of dealing with marry daily needs in an almost fic-
tional way: computer agents that find the information they need and negoti-
ate with other similar agents in our behalf so they can manage our data, our
appointments, our calendar in an automated way. Web searches will become
intelligent and more accurate, data will be interchanged by all kinds of Web
services and our life will become better. However, the more sceptic claim
that the Semarrtic Web will represent only a little more than what we have
now, maybe a little smarter at the cost of extremely complex software.

As both the amount of information and its complexity grows frenetically
in our technological networked society, there is a need for smarter and more
refined computer support for personal and networked information that has

to blend the boundaries between personal and group data.

To reach the level of functionality reqúred in such a vision, a few tech-
nologim must emerge and mature, for instance:

o A data format of machine-readable documents with meta-data;

o Languagm to allow the presentation of that kind of data;

o Languages for querying these;

o Sharing and interchanglng of data by universal Web services;

o A trusted and secure layer for data sharing;

o Appropriate software agents;

The fact is that those technologies already exist and there is no need to
wait for new revolutionary technologies. For instance, we already have Web
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ontologies expressed as RDF/S (Resource Description Flamework Schema)
and OWL files and we have SPARQL and other query languages. The hard
work now is to improve those languages and protocols for standardization
purposm in order to allow an evolution from extensions of what already
exists to the emergence of advanced software agents that integrates logic,
semantics and artificial intelligence.

L.2 Motivation
The Semantic Web concept is recent. Although it was first idealized by

Tim-Berners Lee around 1994 when he founded the WSC - World Wi'de Web

Consort'i,um, it was in recent years that his vision has began to gain 566*
momentum. W3C is currently the main international standards organization
for the World Wide We! and is organized asi a consortium where member
organizations maintain full-time sta,ff for the purpose of working together in
the development of standards. They host a Semantic Web .FltQ (Flequently
Asked Questions) where the following question and associated answer can be

found:

1.3 What is the lsi,ller appliu,tion for the Semantic Web?

It i,s di,fficult to preili,ct what a ki,ller applicati,on is for a speci,fic

technology, and the prel,i,cti,on i,s often eryoneous. That said, the
i,ntqrat'ion of currently unbound and'independent, si,los of data i,n

a coherent applicati,on is certai,nly a good cnndidate.

The killer application idea is one of the thoughts that serye as a guide

when doing research. It is an appealing quest and presents itself as a desirable
goal.

As stated in the FAQ, integration of any kinds of data from any kind of
source in a single silo where it can be merged and used by several applications
represent one of the most dearly wanted concepts in the Semantic Web.

This ki,ller appli,cati,on scenario represent the miún purpose and motiva-
tion for the work presented in this thesis, as it is its intention to create the
foundations and first steps of a Semantic Web information system with ca-
pabilities for successfully responding these demands.

L.3 Objectives

Our main goal is to use contextual logic programming as a framework for
Semantic Web agents, in which knowledge representation and reasoning for

3



documents described by ontologies can be carried out. As such, we adopted
the GNU Prolog/CX framework paúly described in {AD03l which makes use

of persistence and prograrn structuring through the use of contexts [AN06].

Throughout this thesis, a prototype implementation of a Semantic Web
system is described, comprised of two main components:

1. A core that is capable of representing and reasoning over Web ontologies
from the perspective of contextual logic programming;

2. A back-end capable of mapping Prolog/CX queries to SPARQL queries,

thereby able to query external Semantic Web agents, returning the re'
sults as bindings for logic variables present in a GNU Prolog/CX pro
gram;

The presented system is also meant to be a foundation for a larger frame
work, setting sights on an information computational hub for transparent
reasoning over data coming from several difierent sources in any kind of for-
mat.

L.4 Related Work
Sema,ntic Web, Logic Programming and Web ontologies are the three

main topics to which the presented work relates. The implemented system is
meant to act as a Semantic Web system information agent, capable of com-
municating with other Semantic Web agents as a way for data and knowledge
interchange.

Since its emergence, the Semantic Web idea has been clearly exposed
both in goals and üsion. However, many decisións are yet to be made and
many problems and issues remain to be resolved. Among others, capabilities
for querying and data interchanging in the Semarrtic Web are two crucial
steps towards the success of the vision. These two steps represent the main
scope for the prmented work. Although a few different approaches to this
topic already exist, we propose a contribution that focus on a different point
of view of the problem. Some tools for data access information that already
exist are, for instance:

o Thea [Van06] - An OWL tool capable of parsing an OWL ontolggy
and representing [Van07] it using Logic Programming;
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o Râcer [Sof07] - An OWL reasoner and inference engine for the Seman-
tic Web;

o Protege [Pro06] - A Semantic Web platform that provides tools to
construct Web ontologres. It has a plug-in interface [KMRO ] that
allows integration with Web ontology reasoners such as Racer;

r Jena [Jen06] - An Open Source Java framework for the Semantic Web.

It provides API's for two Semantic Web languages (OWL and RDF)
and a SPARQL query engine;

o Pellet [SP04] - A reasoner for the OWL DL sub-language;

XPTO and the associated SPARQL back-end are also Semantic Web data
access tools. However, they both use contextual logic programming as the
mediator framework for Semantic Web.agents, in which knowledge repre-
sentation and reasoning for ontology documents can be conveniently carried
out. Modularity in Logic Programming is an old issue in the scientific logic
progrâmming cornmunity and has been recognized as an important and rel-
evant challenge. GNU ProloglcK is an implementation of the concepts of
contextual logic prograrnming for Prolog. Its view of modularity brings on
board the concept of unit - a unitary module, and context - a group of units
that represents a goal execution.

Our vision goes beyond a simple computational hub for data directly asso
ciated with Semantic Web languages as OWL and RDF and query languages

as SPARQL. Integration and reasoning over data from several sources and in
different formats is the ultimate goal to achieve, hopefully, in future work.

1.5 Thesis Organization
The remainder of this thesis is organized as follows: chapter 2 introduces

the Semantic Web concept and some of the most relevant technologies asse
ciated with it. Chapter 3 discusses the technologies used in the implemented
system and gives a perspective of the impact that Logic Programming may
have in the Semantic Web. The XPTO system is presented and discussed
in chapter 4 Next, in chapter 5 the implementation of a XPTO back-end for
the SPARQL query language is presented and discussed. FinaIIy, conclusions
are drawn and future possibilities are discussed in chapter 6.
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Chapter 2

Semantic Web

The purpose of this chapter is to introduce the Semantic Web. As a
concept [8L01] firstly enüsioned by Internet inventor Tim Berners-Lee, the
Semantic Web embracm meny ideas, technologies, advantages and issues that
are expected to be covered and discussed throughout the following sections.

For a more detailed introduction about this topic please consult the refer-
enced bibliography, for instance [Tho04] or [GriO ].

2.L Today's World Wide Wbb
There is no question that the Internet and the Wor{d Wide Web has been

changing our society from many years now. Since its first appearance among
the military and academy communities to the present day, the Internet has

revolutionized, among many other things, the way we corrmunicate with each

other, do business and access information. This technological revolution is
leading us toward a knowledge society where the computers, or more impor-
tantly the data and knowledge pool they represent, stand a.s one of the most
important aspects of our lives. Today's Internet is all about information and
communication, where us, humans beings, are the source and destination of
those technological instances. The majority of the Web pages and Internet
applications written are for human readability and comprehension, where
computers act as the technological vehicle to achieve that purpose. As.of
this writing, typical usm of the Web involve people's seeking and making use

of information, searching and communicating with other peoplq, purchas-

ing products via electronic commerce and using Web applications. Howevgr,

thme actiüties are not well supported by software tools, and the only one

we can not do without is search, clearly the main tool for using today's Web.

Nevertheless, there are some problems [Gri04] associated with its use:
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. Lots of pages retrieved, low precision on their relevance with regard to
our search. Too much can easily become as bad as too little;

o High sensitivity to vocabulary. Most of the times we do not get the
results we want because relevant documents use different terminology
from the original query, although semantically queries úould return
similar rmults;

o Results are single Web pages, and if we want information that is spread
over several documents, we must throvr different queúes, one at a time;

Despite great technological improvement achieved by most companies
with their search engines, the difficulty remains the same: the arnount of
information a,nd Web content outpaces technological progress, which makes
the Web a gigantic unorganized pile of information, where most of it is not
reliable.

One of the main obstacles against proüding better support to Web users

is that, at prment, the meaning of Web content is not machine readable.
Computers can adeptly paxse Web content for layout and routine processing,

but in general they have no reliable way to process the semantics. We can see

our bank statements, our photographs and our appointments in a calendar,
all this on the Web, using some great Web applications. But can we browse
our photos in our personal calendar to see what we were doing when we took
them? Can we see our bank statement lines in our calendar?

One way to achieve this vision is to struggle for a more intelligent Web,
where its contents is more machine processable, thus enabling the use of
techniques to take advantage of thee representations, which can be described
by meta-data that declares what the Web pages are, what they are capable
of doing, and how they might change over time.

This vision is called the Semantic Web, mainly propagated by the Word
Wide Web Consortium (W3C) [Con07], where the driving force is its director
Tim Berners-Lee, the very person who invented the Word Wide Web back in
the late eighties. It is importarrt to realize that the Semarrtic Web will not be
a technolory parallel to the World Wide Web; instead it will gradually evolve
out of the existing Web. Fbom this initiative he expects the realization of its
original plan for the Web, a vision where the meaning of information played

a more important role than it does in today's Web. In a seminal Scientific
American article in May 2001, Berners-Lee and his colleagues explain:

"The Semanti,c Web i,s not, a separate Web but an wtensi,on of the
current one, 'in whi,ch i,nformat'i,on is gi,uen well-defi,ned, mean'ing,

better enabli,ng computers and people to work i,n cooperati,on."

7



The above statement clearly tells a few of the most important facts about
the Semantic Web: its emergence, not as a new Internet but as an extension
of the current Web, the importance of. meani,ng in information published

on the Web and the desire for capabilities to allow a standardized global

access to data, in any format from any data source. Moreover, what ideally
describes the Semantic Web vision is to add a meta-data layer on the current
Web so that it can be sha,red, trusted and consumed by software agents in
order to proceed with their automated actions.

2.2 Evolution Towards the Semantic Web

As the originator and mentor of this vision Tim Berners-Lee puts it [E}L01],
the Semantic Web is a natural evolution of the Internet and, hopefirlly,
will provide the foundations for the emergence of intelligent systems and

agent layers over the World Wide Web. As said, the standard Web page

provides data oriented for human comprehension, which means a computer
agent can not intelligently reason about that information, and therefore, can
not act as an intelligent tool for a personal computer user. The Semantic
Web strives the creation of information technology that will allow explicit
machine-procmsable meta-data documents that describe the meaning and
semantics of the data published in the Web.

All this means a revolutionaxy move in some impoúant areas as the
Knowledge Management topic, which is, nowadays, one major organizational
issue prment on any competitive company and organization. Most informa-
tion is currently available in a weakly structured form, and with the arrival
of the Semantic Web, much more advanced knowledge management systems
can be adrieved: knowledge can be organized in conceptual silos according to
its meaning, euery answering over multiple documents will replace keyword-
based search and maintenance can be suppoúed by automated tools, which
will be capable of checking for inconsistencies and extract new knowledge.

The Semantic Web is the Internet of structured and organized informa-
tion. This structure will make it easier to perform actions over the Web, like
execute complex tasks búlt upon the results of knowledge reasoning.

2.2.L Search and the Semantic Web

As mentioned, current keyword searú still has some weaknesses and lim-
itations. Can the implementation of the Semantic Web progrms towards the

8



perfect Web search? As John Battelle states is his book The Su,rch [Bat05],
perfect search will require more than ubiquity and personalization. The vast
information now available is often meaningless unless it is somehow tagged
and organized. In 2002, Paul Ford wrote an essay entitled August 2009: How
Google bu,t Amazon anil eBay to the Semanti,c Web 1 that tied together Tim
Berners-Lee vision and the then-emerging power of Google:

"Enter Google. By 2002, i,t was the search eng'ine, and i,ts ad
sales were pi,cki,ng up. At the same ti,me, the conexpt of the uSe-

manti,c Web,' was gai,n'ing a li,ttle tracti,on [...]. So what's the
Semanti,c Web? At its heart, i,t is just a uay to descri,be thi,ngs

'in a way that, a computer u,n uunderstand,." Of course, what's
going on'is not understandi,ng, but logi,c, li,ke gou lenm i,n h'i,gh

school.'

Ford did not stop here and showed how, once the Semantic Web arrived,
Google would explode into a global marketplace that would tie together good
information about sale products and good search engines connecting them.
It is impossible to say that the Semantic Web will bring upon us the perfect
information search engine, but it will certainly bring very po\ rerful founda-
tions for better ones. For instance, the search engines will be able to look
for pagm that refer to a precise concept instead of collecting all the pages in
which certain and arnbiguous keywords occur. Moreover, the search engine
will be able to explore the generalization or specialization of inforrnation.
When a query fails to retrieve relevant documents about the asked euery,
the search engine may suggest a more general euery, or in the case where
there are thousands of hits, a more specific one. The search engine can also
be more proactive is this matter and run this follow up queries by itself.

2.2.2 Semantic Web vs Web 2.0

Another currently hot Internet topic is the so called Web 2.0. Considering
all that was written in this chapter about the Semantic Web and its role as

an evolution of the current Web, the reader might understandably think the
tag Web 2.0 frts as a natural narne for the Semantic Web, and then assume

that both are the saÍne concept. They are not, although at the time of this
writing this still represents a common misinterpretation.

Web 2.0 is all about Web applications, great looking Web design and,
more importantly, Web community. This means Web 2.0 is a way of building

lThe complete essay is available at http://www.ftrain.com/google-takes all.html
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services over the World Wide Web universe, using existing technolory, but
following some straight design principles. Author Paul Graham 2 described
in an essay called Web 2.0 3 three representative Web 2.0 guidelines:

1. Technolory. Web 2.0 applications function much like any desktop
one, which basically mearNt a Web application can now be more than
a simple collection of pages linked together. This is achieved using
good DOM a manipulation and AJAX, shorthand for Asgnchronous
JauaScript, and XML.

2. Democracy. Web 2.0 is about community and information sharing.
Sites like Wi,ki,ped,i,a, Di,gg,, Del.i,ci,o.u,s and Redd'i,t have revolutionized
what most people decided that count a.s news and where to we look for
inforrnation a,nd knowledge.

3. Don't mistreat users. If a Web page tends to be an application, it
must have a very good level of usability and a quality huúan-machine
interface, but more important it must know how to treat its users wêll.
During the Internet bubble a lot of popular sits were just too bad,
loaded with obtrusive elements that sent the mesage that this was

the'i,r síte, not the user's site.

All that said, it is impoúant to underline that Web 2.0 is not technology,
it is not AJAX, and it is not a featurm list. It is a concept without hard
boundaries, a set of design principlm and practices. The Web 2.0 concept
began in a conference brainstorming session between O'Reilly and Medialive
International, with the purpose of studying what all the companies that have
survived the collapse of the big Internet bubble have in common. Later, Tim
O'Reilly wrote an 6sey entitled What i,s Web 2.0 5 in which he explains his
vision about desigu patterns and business models for the next Internet based
generation of software.

Web 2.0 is all about people: let the users create, collaborate, share and
interact despite whatever back ends are used and how they work. The Se-

mantic Web is, in a way, on the opposite end: standardize all your data in
2Paul Gratram is an essayist, progra,mmer, a,nd programming language designer. He

founded the companies V'i,aWeb - later acquired by Yahoo and Y Comb'i,nator. He is a.lso

the author of the famous Hackers ü Pai,nters b@k.
3 http ://www.paulgraham.com/Web20.html
aThe Document Object Model (abbreüated DOM) is a trelike representation of the

HTML in the page. Using Javascript, one can manipulate page elements on the fly
6http://www.oreillynet.comlptb/aloreilly/tim/news 

1200510913D/what-is-Web
20.html
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one technology, encode it in another and let the machines loose on it. So, we

can think of Web 2.0 as high-level experience directly aimed for the personal

computer usqr and the Semantic Web as a low-level data solution. But the
great thing is hon, these two paths ca,n interact. Tim Berners-Lee presented

in a talk 6 his opinion about this matter and concluded with the idea that
both trends are good separately and great together. Kendall Clark, manag-
ing editor of. XML.corn and the managing principal of. Aark Ü Parsi,a LLC,
a Semantic Web company, presented one possible scenario:

"Imagi,ne bei,ng able to osk Fli,ckr 7 whether there is a picture
that matches sorne arbi,trary set of corwtra'ints; if so, then aski,ng

d,eli,ci,ous whether it has any URLs utith the same tag; finally,
tumi,ng the results of those two di,stributed, queri,es i,nto an RSS

1.0 feed. "

This and other scenarios are very promising and not too fa,r from happen.
ing. Web 2.0 is already a reality present in many Web site, and much more
are being built at this time. With the emergence of the Semantic Web, it is
only a question of time before scenarios like the one described above start
popping around the Web.

2.3 Semantic Web Technologies

Bi,tty qtoke up anil stooil aga'inst, the bathroom m'irror. As he looked' at his
cheek, he could understand, the grouing pai,n he was feeli,ng. He opened, his
laptop and begun to talk uith Beatrfu (a Semanti,c Web agent software): - I
want to make a dentist appoi,ntment lor nert week. Bu,tric began her duty by

checlci,ng Bi,lly's last rlentist appo'intment. Howeuer, this is the first time i,n

years that Bi,lly neds this type of checkout, so no lucle there. Ben'tri'x retri,eaed,

recommendati,ora detai,ls prouided, by Bi,lly's pri,mary care doctor agent and

tetched, a dental care office list. The first hi,t was Ad,am Ü Adam Faci,li,ti,es,

and commun'ication ui,th his agent began. Howeuer, thei'r sched,ule didn't haue

any auai,lable slot i,n the upcomi,ng weele. The second hit,, Milo Dental Health,
wos about fi,fteen miles awag from work, was aua'i,lable, but i,ts reputati'on uo,s

low'in the tru,sted, rating sentices. The nest hi,t was CTU Dental Care, and,

Beatri,x tried to match auai,lable appo'intment ti,mes wi,th Bi,lly's calendar. In
a few mi,nutes Beatrin returne,il two proposals, but unfortunately Bi,llg was not
happU nti,th ei,ther of them. Billy decided, to set, stricter t'i,me constraints and

6The talk is available at http://www.w3.org/2006/Talk§/ 1 1 O&swui-tbl/
TFlickr is a Web application (http://www.flickr.com) for publishing and shariug photos.
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asleed, Beatrin to try agai,n. The nert, altemati,ue uas a d,ental care office wi,th
great reputat'ion, only a few mi,les away from Bi,lly's work office, and, an open

ti,me slot, that made Bi,llg happg. Howeuer, Beatri,r was i,rwtalled onlg a few
days back, and so Bi,lly asked, Beatria to erplai,n some of her d,ecisi,ons. Beat-
rin prouided, appropriate i,nformati,on. Bi,llg wos satisfied,, anil asked, Beatri,r
to toke all the necessary steps to finali,ze the tosk.

The personal agent future scenario presented above is not science fiction;
it dom not require new revolutionary technology or an outrageous scientific
progress to be achieved. The challenge [Gri0 ] is more one of technolory
adoption rather than a scientific one. Partial solutions to all of the important
problem parts exist, where integration, standardization, adoption by users
and development of tools is what is most needed at this point. But, of course,
further advance in technolory witl lead to a more advanced Semantic Web
and will enable to step over the present difficulties.

Data About Data

The Web pages we calr see todg,y in the Internet are predominantly writ-
ten in HTML. This will prment the information in a way that is acceptable
for people to read and understand, but unorganized and meaninglms for
computer based engines. To step over this issue, the Semantic Web focuses
on adding information to Web pages: meta,data, information about informa-
tion. If HTML is replaced by a more appropriate language, then the standard
Web pagm could carry alongside their content information that brings mean-
ing to its information, data about data that captures the meaning of the data
prment on the Web page.

2.3.L Semantic Web Main Principles
Standardizing on the key technological components that enable the devel-

opment of the Semantic Web is one of the main goals of the Word Wide Web
Consortium for the Semantic Web. Around the end of 2001, Marja-Riitta
Koivunen and Eric Miller from W3 published a document 8 describing six
main Semantic Web principlm. Those are detailed next and viewed as major
steps and guidelines for the Semantic Web development:

1. Ever;rühing can be identified by URIs. An identifier is needed
to unequivocally name an instance or r6ource. Fortunately, the Web
already has this concept: the URI (Uniform Resource Identifier). This

sThe document is available at http://www.w3.org/2001 I L2 I semWehfin/w3csw
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gives the possibility of referring to a,n object with a,n identifier over-
coming problems related to different geographic locations. Thus, for
example, the city of Evora ca,n be referred to by the URI of its official
Web page (Figure 2.1).

Figure 2.1: Semantic Web identifiers

2. Resources and links can have t54pes. The current Web consists
of resources and links that represent the addressm of those resourees.

Although a human can easily distinguish a Dental Web service from
Mike's personal Web page, a machine will have some problems. There-
fore, each resource can have associated types to explicitly specify if it
is a document, a file, a person, etc.

3. Partial information is tolerated. Like the current Web, the Se-

mantic Web is unbounded. Semantic Web tools need to tolerate the
data decay that comes from problems like linked resources that cease

to exist or addresses that may be reused and still be able to function
in spite of that.

4. There is no need for absolute truth. Not everything fouud on the
Web is true and the Semantic Web does not change that in any way.
The applications can decide what they trust and what they do not by
using the context of the statement, like who said what and when and
what credentials they had for saying it.
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Figure 2.2: Objects evolution

6. Minimalist design. A major important dmr,gn goal is to make the
simple things simple and the complex things possible, aiming to stan-
dardize no more than is necessaÍy.

2.3.2 Semantic Web: a Layered View
Tim Berners-Lee's view and design of the Sema,ntic Web proceeds in steps,

each one building a layer on top of the other. This vision is represented in
Figure 2.3, which prments the classic layered Semantic Web scheme. This
approach is mearrt to simplify and ease the consensus over discussions about
each component, since usually there are several research groups moving in
different directions. In building one layer on top of another, two important
dmign principles should be followed:

5. Evolution is supported. Every Web defined concept has one or more
authors. However, each author can define the same concept in different
ways at different times. The Semantic Web aims to allow the com-
bination of all these definitions and not discard any past information
(See Figure 2.2). So, it uses descriptive conventions that can expand
as human understanüng expands. In addition, the conventions alloq'
efiective combination of the independent work of diverse communities
even when they use different vocabularies.

o Downward compatibility. Agents that fully understand a layer
should also be able to interpret information written in lower layers.
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o Upward partial understanding. Agents that fuIly understand a
layer should also be able to partially interpret higher layers.

WE

Figure 2.3: Semantic Web layers

At the bottom we find the URI and Uni,code layers. Those are meant to
make sure everyone uses international character sets and provide means for
identify objects in the Semantic Web. The XML layer makes sure sre can
integrate the Semantic Web definitions with the other XML based standards.
XML (Extensible Markup Language) boosts the functionatity of Web docu-
ments exchange by providing structure and means to identify information in
a flexible and adaptable way.

Above is the RDF and RDF-S [MM04j layer. RDF (Rmource Description
Ramework) is a basic data model for describing simple statements about
objects and, although RDF does not rely on XML, it commonly has an
XMLbased syntur, and therefore is commonly called RDF/XML e. RDF
Schema [MM04], whic]r is based on RDF, provides additional modeling prim-
itivm like classes and propeúim that enable the hierarchical organization of
Web documents. RDF-S is a language for the description of resources and
their typm and can be üewed as a limited and primitive language for de
scribing ontologies. Next is the Ontologg layer. It supports the evolution
of vocabularim as it can define relations between different concepts. Plus
the Di,gi,tal Si,gnature layer for detecting changes to documents, thme are the
Iayers that are currently being sta,ndardized in W3C working groups.

On top of the Ontology layer sits the Logi,c, Proof atd Ttnnt layers. Those
are currently being researdred and only simple application demonstrations

eAs a data model, RDF assumes several forms. Here we present it as XML documents,
bu it can also be presented in other formats hke a Tb,rlle serialization{Dav0fl.
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are being built. The purpose of the LoEi,c layer is to enable the writing of
rulm while lhe Proof layer executes rules and evaluates together with the
Tfutst layer for applications whether to trust the given proof or not. Most
of the work today is happening around the Ontology layet, and as already

observed 10 by Tim Berners-Lee, the higher layers are likely to take place

only in a near future.

Since its first publication, the layered approach has been used as one of
the main references for explaining the Semarrtic Web architecture. Howerrer,

as time went on it has sufiered several changes resulting of the constant

development of the Semantic Web teúnologies. At the time of this writing,
the latest version is illustrated in Figure 2.4.

Figure 2.4: §emantic Web layers, Iatest version

Note that Rules and the SPARQL query language axe no\r mentioned,
which points out the fact that how the Semantic Web data is going to be
queried is a very important aspect. Also note the Appli'cat'i,ons layet at the
top. Semantic Web appücations could be really impoúant since they could

loThe article is aveilable at http://www.xml.com/pub/al2üOLll2/xm12000/timbl.htnú
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help create tension aJnong software developers for convergence of Semantic

Web vocabularim. The Semantic Web stack is not written in stone and prob
ably will suffer more changm in the future. For instance, authors Bijan Parsia

and Ian Horrocks discuss in more detail the Semantic Web architecture and

also introduce an alternative two towers approach {HPPSH05].

As Figures 2.3 and 2.4 show, RDF is the main language for representing

and interchanglng information. Note that information is not data. Data is
what XML reprments in a document that, for example, is sent from point
A to point B. That data will probably have no use outside those two par-

ties, whereas RDF is designed to present information to be shared, published

and used by arrybody. This information is transported as triplm in the form
( Subject, Property, Object).

RDF, as a data model, can be expressed in several ways. Being the
underlying structure of any expression in RDF a collection of triples, those

can be better represented as a graph for human understanding. However, the
Semantic Web requires machine accessible and processable representations,
and therefore WBC developed a XML synta>r described in [KC07]. Figure
2.5 shows an example.

Figure 2.5: RDF syntax

Another used R.DF syntax is the Ttrrtle {Dav07l reprmentation. Not as

complex as the XML serialization and more complete that the graph triples
úew (it allows the use of prefixes), it is a great RDF representation for ped-

agogical purposes. Figure 2.6 shows the same graph presented in Figure 2.5,

1t

(rdf : Description
rdf : about= r'http : / / w,au .xpto . org/hattori_hanzo tr )

(ex: starred-in)
(ex : movie rdf : about=rhttp : / / vuu .xpüo . org/ki1l"_bill r' />

4/ exz starred-in)
</rdf: Descriptioa)
(rdf : Description

rdf : about=rlhttp: / /vwu .xpto. org,/pulp-f iction,)
(ex: sinilar-geure

rdf : resource="http : / /wwu .xpto . org/reservoir-dogs" />
</rdf: Description)

</rdf :R^DF>
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@prefix rdf : (http: / lwwa .w3.org/L999/O2/22-rdf-syntax-ns#>
@pref ix ex: (http : / /urn.xpto. org/>

ex:hattori-hanzo ex:starred-in ex:kil1-bilL
ex:kiLL-bilI rdf :t)?e ex:novie .

ex: pulp-fiction ex: sinilar-gênre ex: reservoir-dogs

this time in Thrtle notation.

Figure 2.6: Thrtle syntax

Note that RDF is not the only data model that can be useful in the
Semantic Web üsion: for instance, Top'ic Maps is another important data
model for reprmentation and interchange of knowledge. Topic Maps was

created to support highJevel indexing of sets of information resourcm in
order to make information easily findable. RDF was intended to support
the vision of the Semantic Web by providing structured meta-data about
resources. The two have significant conceptual differences although they
share a central objective: define a format for the exchange of knowledge
on the Web. Since both seem to have well established communities, it is
fundamental that they can integrate with each other in order to prevent
a partition of the Web into collections of incompatible resources. C,onsult

[LD01] for more details about this issue.

2.3.3 Web Ontologies

Merriam-Webster 11 dictionary definm ontolory as: "7- a branch of meta-
phgs'ics conc*med with the nature and, relati,ons of bei,ng; 2- a parti,cular the-
ory about the nature of being or the ki,nds of thi,ngs that haue exi,stence"

Although this definition introduces ontology as a term originated from phi-
losophy, the word ontology has become one of many that have been given a
Computer Science technical meaning different from the original one.

In the Computer Science context, an ontology is a data model that rep
resents a set of concepts within a particular domain and the relationships
between those concepts. For Web peg6, this means it provides a shared
understanding of the Web page domain. This is an important concept since
problems could arise because of different terminology usage. A zip code in

1 t http://www.m-w.com/dictionary/
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one application may be the area code in another. Thus, mapping a partic-
ular terminology to a shared ontology will enable sema,ntic interoperability
between ontologies.

Generally, an ontology consists of a finite set of terms and the relationship
between those terms. Thme terms denote some important concepts such as:

o Classes of objects (instances);

o Relationships between classm (hierarchy);

o Relationships between objects;

o Properties;

o Value restrictions;

o Disjointness statementsl

Figure 2.7 illustrates a simple ontology (introduced in [TF06]), repre
sented as a graph, that dmcribm a simple hierarchy of the books category
Wri,ti,ng, Nouel, Essay, Histori,c,al Noael, Hi,storical Essay, and the two books
The First Man i,n Rome and Bellum Ciuile.

For example, we can see that Histori,enl-Nouel is both a Nouel and an
Dssay and that books may optionally have translators, m fu the case with
Belli,um Ci,ai,le. Books, authors and translators are represented by nodes
without identifiers called bLank nodes and the only assumptions are based
on the subClass0f and instaace relations.

2.4 Wêb Ontology Languages

In order for ontology documents to start being used, two kinds of tech-
nologies must rise: description and query languages for ontologies. Together
these will allow not only the description of domains in a uniform manner but
also a way to retrieve information from those domains.

2.4.L Ontology Description Languages

There are languagm for representing information in the Semantic Web,
for instance: RDF, R"DF-S and OWL. RDF is the underlying la,nguage that is

capable of represent very simple information. RDF-S extends RDF, resulting
in a very simple ontology language. It has the same constructs that RDF

19
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Figure 2.7: Books ontolory example

has, but it adds some impoúant built in properties for defining relationships.

However, the Web Ontology Worki,ng Group of WBC identified a, number
of characteristics and use-casm for the Semantic Web that would r€quirc
more expressiveness than RDF and RDF-S can offer:

o Local constraints. For example, RDF-S does not have direct means
for stating that parents of people are parents.

o Conjunction. It is not possible to make thinks like mouins with at
least two producers.

o Definitions. Definitions like .4 Moui,e a,ctor i,s a rnale or female per-
son uith at, leost one nxovie participati,on also can not be represented

directly in RDF-S.

A richer ontolory modeling language was already defined, DAMLOIL
[DAR04, which was then taken as the starting point for the WBC Web

-rFtr

*:?2

*!F[
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Ontology Working Group in defining OWL [MvH05]. It has all the char-

acteristics needed to fit into the Semantic Web: it uses URIs for na,rnes,

information is also repreented as RDF triples and it is semantically com-
patible with RDF and RDF-S. However, OWL lays down a tradeoff between

exprmsive po\iler and computational difficulty because inference in OWL can

actually be undecidable. The need for restricting OWL became clear a,nd so

OWL was divided into three specim: OWL Lite, OWL DL and OWL Fhll.
OWL F\rll contains all the OWL language constructs, it is meant for

users who want maximum exprmsivenms, but offers no computational guar-

antem, i.e., not all conclusions are guaranteed to be computable and finished

in finite time. OWL DL is a sub-language of OWL which introduces some

constraints on the OWt la,nguage usage: these provide a maximal subset of
OWL against which there are guarantem that any query is decidable. OWL
Lite provides the basics for subclass hierarchy construction: subclasses and
property restrictions. The idea behind the Lite expressiveness limitations is

that they proüde a minimally useful subset of language features that are

straightforward for tool developers to support.

OWL: Classes, Properties and Instances

An OWL document has classes and instances of those classm, where a
class dmcribes a set of objects with a set of propertim and relations with
other objects. OWL documents are RDF documents and may start with a

collection of assertions that forms its header. Those assertions may contain
information like comments, version control and inclusion of other ontologies.

Classes are defined using an owl: Class element and, by default, all of
them are instancm of the predefined class owl:Thing. For exa,mple, we can

define a class Actor as illustrated in Figure 2.8.

Figure 2.8: OWL class

In OWL there are two kinds of properties:

L. datatgpe propeúies. Relations between a class instance and a literal

2t

(ow1 : Class rdf : ID=trÂctorrr)
<rdfs : subClass0f rdf :resource=tr#Person" /)

</owL: C1ass)



or datatype value. Note that OWt does not have any predefined data
typm. Instead, it allows the usage of XML Schema datatypes.

2. object properties. Relations between two classes.

Figure 2.9 shows an example of a.n object property and a datatype proP
eúy:

Figure 2.9: OWL object and datatype properties

Instances of classes (indiüduals) in OWL can be decla,red as in RDF or
using a clear syntax provided by OWL. Figure 2.10 shows an example of both
declarations of the Twi, Dri,aer movie.

Figure 2.10: OWL instances example

The examplm above represent only a brief overview of the OWL language.

For further details about the language, please consult the WSC OWL speci-

(owl : ObjectProperty rdf : ID='lisDirectedByr')
<rdfs : donain rdf : resourcê=rt#novi e" /)
(rdfs :range rdf :resource=rt#filmDirector" /)

</ owL: Obj ectProperty)

(ow1 : DatatlryeProperty rdf : ID="Movie genrê'r)
(rdf s ' rânge rdf : resource=tr&xsd; stringtt/)

</owL : Datat3rpeProperty>

(rdf :Descriptiou rdf : ID=rrtaxi driver")
(rdf : type rdf : resource="#Hovie"/)
(director rdf :resource=rr#Martin Scorcese" /)
<genre rdf : datatyrpe= " &xsd ; string " )dra.na, crine(/genre)

</rdf: Description)

(Movie rdf : ID=trtaxi drivertr)
(director rdf :resource="#Martin Scorcese" /)
<geDre rdf : datat3pe=rr&xsd; stringr')drama, crine </geare>

</Movie>
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fications that are spread arnong six documents.

At the time of this writing, OWL 1.1 is on its way (see {PSH0fl). This is
an OWL extension that is meant to bring a small but useful set of features
that have been requmted by users, for which effective reasoning algorithms
a,re nov/ available, and that OWL tool developers axe willing to support.

2.4.2 Ontology Querying
An open Semantic Web research issue has been the lack of a standard

query language. RDF query languagm have been in discussion at W3C since

the QL'98 12 workshop in December 1998. Development of XML querying
started around 1999 (XQuery) and since then its developers have also been

leading research about RDF querying languages. W3C wrote the RDF Data
Access Use Cases and, Requi,rements [CIa07] where it was recorded some use

case for RDF:

o Finding values for partially known graph structuresl

o Getting information about an identifiable object with unknown proP
erties;

o A human friendly syntax for queries for application developers;

o Running automated regular queries against RDF graphs;

o Querying aggregated RDF graphs;

o Running queries constrained with datatype expressionsl

o Querying a remote RDF server and getting streaming results back;

o Allowing alternate solutions to match in queries;

Query answering on the Semantic Web is complex, even more complex
than on the traditional Web because mean'ing must be properly understood
and processed. There a,re some different proposals and approaches for this
kind of query languagm, as stated by the rsearch presented by Tim F\rche
and Bry [TF06], ranging from pure selecti,on languages with limited expres-
sivity to general purpose languages suppoúing different data representation
formats and complex queries. However, as of this writing, only RDF query
languages are already in use, whereas other data modeling forrnalisms such as

12 http://www.w3.org/Tands I QL I qL98 I
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OWL are still an open research issue, and only a very small and incomplete
number of proposals 13 for querying Semantic Web data modeled a,fter for-
malisms other than RDF exists. F\rche and Bry presented a survey [BBFS05]
about R"DF query languages, where they diüded them into three group§:

1. Relational or pattern-based;

2. Reactive rule;

3. Navigational accms;

Languages following the first topic paradigm use selection constructs sim-
ilar to selection-projection-join, much like ,SQ.t does for relational databases;

here we can find language bke RQL and Xreryt. The second group uses, as

the name implies, reactive rule, but otherwise act very much like the first
group. For example, Algae is a la,nguage that uses reactive rulm. Languages

that belong to the final group use navigational access and path expressions

over patterns.

SPARQL

At the present day, one.specific RDF query language is starting to gain

some momentum: SPARQL [PS06]. Its name is a recursive acronym that
stands for SPARQL Protocol and RDF Query Language. It is undergoing
standardization by the RDF Data Access Working Group (DAWG) 1a of the
World Wide Web Consortium. Towards the status of WBC recommenda-
tion, it was released as a Candidate Recommendation in April 2006, but
returned to Working Dra,ft status in October 2006, due to two open issues 15.

Even Tim Berners-Lee stated 16 last year that the emergence of SPARQL will
make a big difference a,round the Sema,ntic Web, since the abiüty to correctly
querying ontolory documents is one major Semantic Web goal.

The SPARQL query language consists of the syntax and semantics for
asking and a"nswering queries against RDF graphs in a way much similar to
SQL. SPARQL contains capabilities for querying by triple patterns, conjunc-
tions, disjunctions, and optional patterns. Results of SPARQL queries can

be ordered, limited and offset in number, and prmented in several different
forms.

l3One known proposal is OWLQL, a p§ect lead by Stanford University - http://www-
ksl. stanford.edu/proj ects I owl-ql /

lahttp://www.w3.org/2001/sw/DataAccess/
16http://www.w3.org/TR/2006/WD-rdf-sparqlquery-2006 1004/
16This statement can be found in a 2006 article coJled Bemers-Lee looks tor Web's bi,g

leap in http://news.zdnet.co.uk/internet/0,1000000097,39270671,O0.htm?r:1
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Chapter 3

Logic Programming on the
Semantic Web

This chapter aims to introduce the reader to Logic from a Computer
Science point of view, to discuss why Logic Prograrnming can be an important
ally for the Semantic Web and to introduce the GNU Prolog/CX framework
used in our work.

In Computer Science, Logic and Logic Progra.rnming reprment wid+
ranging topics that have been the target of research and several use cases

from many yea,ffr now. The objective of this chapter is only to give a brief
introduction to thme topics, for a more detailed introduction please consult
the referenced bibtiography, for instance [Joh97] {Ba^402] [Ba^agg] or [Ant90].

S.L Logic in Computer Science

Enrico Fbanconi [Fra02] states that Logic in Computer Science can be
described as the discipline that studies the principlm of reasoning, used in
a way to achieve correct conclusions. An agenú is an entity that perceives

and acts according to an internal declarative body of knowledge. A logi,c

allows the representation in axioms of a particular domain and the drawing
of conclusions from the information contained on that domain. Important
characteristim are:

o E:qrressiveness: capable of representing a problem;

o Correctness: no false conclusions are drawn;

o Completeness: all correct conclusions are draurn;

ú
kl
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o Decidability: there exists a terminating algorithm to compute entail-
ment (logical implication);

o Complexity: what resources are needed for computing the solution;

There exists several type of logic [F]a02] and each one can be charac-

terized by what they commtt as prim'i,t'iaes. Generally speaking, Iogic pro
üdes [Gri04] three main characteristics:

L. Formal notation (language);

2. Formal semantics;

3. How implicit knowledge is made explicit;

Each logic has a syntax, a semantics and an inference procedure. Synta:<

describes how to write correct sentences, the semantics tells what a sentence

means and the inference procedure derivm results logically implied by the
premises. It indicates that automated reasoners can infer and deduce con-

clusions from the given knowledge. This knowledge, or a Knowledge Base
(KB), is a logic theory i.e, a set of sentences in a formal language.

Antoniou and Va,n Harmelen [Gri04] present logic as the foundation of
knowledge reprmentation and point a few reasons for the importance of logic
in Computer Science:

o It provide a high level language in which knowledge can be expressed;

o It has a well-understood formal semanticsl

o There exist proof systems that can derive statements from a set of
preüously stated premises;

r Proof systems should be sound - all derived statements follow seman-

tically from the premises;

o Proof systems should be complete - all logic consequences of the premises

can be derived from the proof system;

o It should be possible to trace back the proof that leads to a logic con-

sequence;
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For instance, Logic Programming is based on Fi'rst-order Prrl,icate Logi,c,

where a both sound and complete proof system does exist. By a result t of
logician Kurt Gôdel, more expressive classic logics - called hi'gh-order logi,cs

do not admit sound and complete proof systems.

3.1.1 First-order Predicate Logic

The base of Predicate Logic is Propositional Logic. Logics are character-
ized by what they commit to as pri,miti,ues atd, what is to be believed about
facts. Propositional Logic [Fra02] defines facts with three levels of beliefs by
a,n agent: tru,e, false and unknoun. An entai,lment is a logic implication of a
knowledge base: lsnowled,ge base KB entails the sentence s i'f and only i,f s i,s

trae'i,n all worlils where KB is true. The basic building block of Propositional
Logic are atomic statements and logical connectives and, or and not.

The fact that atomic formulas in Propositional Logic are just statements
which may be true of false means there are no internal structure in statements
and thus there can be no interpretation ofrelationship between objects. Let
us consider the follovuing statements in Figure 3.L:

beatrix is fenale.
bill is nale.
beatrix and bill are narried.

Figure 3.1-: Logic statements

ln Propositional Logic (Figure 3.2), the above statements are atomic
propositions, whereas in Predicate Logic (Figure 3.3) atomic statements uses

predicatm with constants as arguments.

beatrix-is-fena1e.
bill-is-naIe.
beatrix-and-bi11-are-narried

Figure 3.2: Statements in Propositional Logic

lFor more information consult the The Work of Kurt, Gõd,el by Stephen Cole Kleenq
J. Symb. Log. Journal,L976.

1

2

3
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female (beatrix) .

nale(bitl).
narried(beatrix, bill).

Figure 3.3: Statements in Predicate Logic

Predicate Logrc is the term used for symbolic formal systems like First-
order Logic or Second-order Logic. Another difference towards other sym-
bolic formal systems is the usage of variables that can be quantifi"d (".S.

existential and universal quantifiers). Predicate Logic (or strictly, First-order
Predicate Logrc) is an important knovvledge representation language. It al-
Iows the representation of fairly complex facts about a stated world and the
derivation of further facts with guara,ntees of soundness and completeness:
assuming that the initial facts were true then so a,re the conclusions. A First-
order Predicate Logic theory consists of a set of axioms and the statements
deducible from them, which is the base for Logrc Progra,rnming.

Logical reasoning is the process of drawing conclusions from premises us.
ing rulm of inference. Predicate Logic allows the posibility of reasoning
about propeúies and relationships of individual objects using several infer-
ence rule [Fha02]:

o Equivalences;

o Implications;

o Propositional logic inference rulesl

o Universal instantiation;

o Universal generalization;

o Existential instantiation;

o Existential generalization;

o Negation;

Sentencm in Predicate Logic are built up from atomic sentences, which
consist of a predicate name followed by a number of arguments. Each argu-
ment is a term, where a term can be a constant symbol, a variable symbol or
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a function expression. So, Predicate Logic sentence are constructed by com-
bining atomic sentences with logic connectives and quantifiers. The semantics

of Predicate Logic are defined in terms of the truth values of sentences. We
can determine the truth value of a sentence if we know the truth values of its
basic components. An i,nterpretati,on function determines the truth values of
the basic components, given some domain objects that we a,re concerned with.

One useful proof procedure for Predicate Logic is resoluti,orz. Resolution
is a proof procedure for proving goals by refutation: if a contradiction can

be derived from not P then P must be true. Resolution is a sound proof
procedure, which means that for something proved with resolution, we can
be sure it is a valid conclusion. However, there exist other problems when
looking at a proof procedure:

o Completeness: it may not be able to always prove something is true
even if it is true;

r Decidability: the procedure may never finish when tryrng to prove
something that is false (or true);

o Computational efficiency;

Note that the efficiency of a proof will often depend as much on how you
formulate your problem as on the general proof procedure used.

3.L.2 Description Logics

Description Logics [N803] emerge as subsets of First-order Logic that
dmcribe a family of knowledge reprmentation formalisms. It represents the
knowledge of a domain by defining the concepts of that domain and then us-

ing these concepts to specifu indiüduals and properties of objects occurring
in that domain.

A Dmcription Logic knowledge base can be given semantics by translat-
ing it into First-order Logic with equality: atomic concepts are translated
into unary predicatm, complex concepts into formulas with one free variable
and rolm into binary predicatm. It is based on concepts (or classes) that
represent sets of objects, roles (or propertim) that repreent relationships
between objects and individuals representing specific objects. For instance,
a concept such as Person is atomic. Making use of a set of concept construc-
tors, one can construct complex concepts that describe the conditions of a
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concept hke membershi,p. For example, the concept hasFather in Figure 3.4
describes objects that are related through the hasFather role with an object
from the Person concept.

hasfather . Person

Figure 3.4: ho.sFather concept

A Description Logic knowledge base typically consists of a TBox T and an
ABox A [8N03]. The first conteins axioms about the general structure of all
allovred worlds in the knowledge base and is therefore esentially similar to a
database schema. On the other hand, an ABox contains axioms that describe
the structure of a particular knowledge base world. For exa,mple, an axiom
that statm that each instance of the concept Person must be related by the
role hasFather wílh an instance of the concept Person is a Tbox axiom. An
ABox axiom can state, for example, that Mi,ke Poúnoy is a Drammer.

Nowadays, Description Logrc is already an important part of the Semantic
Web because of its use in the design of ontologies. Moreover, the OWL sub
languages OWL DL and OWL Lite are based on Dscription Logic.

3.2 Logic Programming
The most common way to describe logic is through mathematics, thus

Logic Programming can be seen as the use of mathematical logic for Com-
puter Science. The use of logic as the basis of progra^rnming languages such
as Prolog [Iva01] [SteOa] is quite recent, although logic as been used as a tool
for many yeaJs now in Computer Science. As opposed to the more main-
stream programming paradigms, Logrc Programming suggests that explicit
instructions for operations should not be given, but instead the knowledge
about the problem and the assumptions that are sufficient to solve it be
stated explicitly as logic axioms.

Logrc Programming is a set of knowledge reprmentatiel feslalisms cen-
tered around the notion of. rules and is appropriate for problem-solving tasks
in which two layers can be defined: a declarative representation language and
a theorem prover or model generator that is used as the problem solver. The
theorem prover is applied to the declarative sentences that have the form of
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implications, like illustrated in Figure 3.5 and treats those implications as

goal-reduction procedurm.

Figure 3.5: Logic programming implications

Numerous variants of these basic formalisms have been considered such

as rules with disjunctions in the rule heads or extensions with classical nega-

tion. 2

As stated in [Ste94], a program can be executed by meens of a problem
definition formalized as a logic statement to be proved called a goal. A goal in
Logic Programming is proved using Predicate Logrc resolution proof by c.on-

trad,iction [Gri04], i.e, by negating the goal and proving that a contradiction
is obtained using the logic program.

The execution itself is the act to try solving the problem, i.e, to prove the
goal given the assumptions in the logic prograrn. The goal statement proof
is done constructively. If succmsful, the unbound individuals proüded in the
goal are bounded to 'values, which constitute the output of the computation.
When the goal has no variables, the search space for solving the goal is an
and-or tree 3 determined by the reasoning system where the root of the tree
is the goal. Given any node in the tree and any clause whose head matches

the node, there exists a set of child nodes which correspond to the sub'
goals. Thme nodes aÍe grouped together by at anil. The alternative sets

that represents alternative ways of solüng the node are grouped together by
dÃ or. The fact that there are alternative ways of executing a logic program
has been characterised by the equations [SteOa] in Figure 3.6, whereas the
set of axioms represents a program and a computation represents different
theorem proving strategies.

Logic Programming focusm on efficient query answering over a bounded
data set. Nowadays it is seen as a general problem-solving formalism, capable
of succinctly expressing hard computational problems.

2For instance, a combination of these two features is commonly known as ar»wer set
programm'i,ng.

sAn and-or tree can be viewed as a parallel execution. It has or-nodes (called choice
points) that are created when there are multiple ways to solve a goal and and-nodes that
are created when a goal invokes several conjunctive subgoals.

D1", D2 and...and Dn implies H

To show/solve/prove H, show./solve/prove D1, D2 and...and Dn.
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Program= set of axions
conputation= constructive proof of a goal statem€nt fron a progran

Figure 3.6: Logic Programming equations

3.2.L Contextual Logic Programming

Modularity in Logic Programming is an old polemic concern among the
logic programming community and has been recognized as an impoúant and
relevant challenge.

The GNU Prolog/CX [AD03] is a,n implementation of the concepts of Con"
textual Logrc Progra,mming, based on Prolog. One of the main'advantages

in Contextual Logic Programming is the achievement of modularity, which
brings on board the concept of. uni,t, - a unitary module, and conteçt ' a group

of units that represents a program in which to specify a goal execution.

Contextual Logrc Programming (CXLP) is a simple yet powerful exten-
sion to the Prolog logic programming language which proúdes a mechanism
for modularity. In CxLP a finite set of Horn clauses with a given narne

is designated by uni,t. Abtet and Diaz [4D03] provide a revised specifica-
tion for CXLP, which emphasize the OOP aspects by means of a statefirl
model, allowed by the introduction of unit arguments. Informally, a unit is
a para,metric module, constituting the program's static definition block.

Unit decriptor terms can be instantiated and collected into a list to form
a contert, which ca,n be thought of as a dynamic property of computations.
A context specifies the actual prograrn (or theory) against which the curT ent
goal is to be reolved. In short, it specifies the set of preücates which are

applicable. These predicates have definitions which depend on the specific
units which make up the context. A more extensive description of CxLP may
be found in [4D03, AN06].

Some parallels can be made between Contextual Logrc Progra,mming
(CXLP) and Object Oriented Programming (OOP):

Context and object instance: A (possibly partly) bound context is a list
of units which can be dmcribed as alr object 'i,nstance. There is no
true analog for the class concept, units being conceptually similar to
components, although the contert term skeleton may come close;

Predicate and method: A predicate present in a unit is equivalent to a
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method definition in an OO setting;

Goal and message: a goal executed in a particular context can be inter-
preted as sending a message (the goal) to an object (the context);

Unit argument and instance'variable: unit arguments are variables whose

scope is the entire unit, muú like instance variables in OO;

GNU Prologlcx introduces a set of language operators called the contect
operators which modulate the context part of a computation.

ln a nutshell, when executing a goal G in a context C, a CxLP Engine
will traverse C looking for the first unit z that contains a definition for G's
predicate. G is then executed as if it were regular Prolog, in a new context
that is the suffix of the C which starts with unit u. Some of the most used

operations and operators in GNU Prologf CX arc:a

Context extension: U : > G, this operation extends the current context
with unit U and then reduces goal G;

Context switch: C : < G, attempts to evaluate goal G in context C, ig-
noring the current context;

Supercontext: : ^ G, evaluates goal G in the context resulting of removing
the top unit from the current contextl

Current context query: :< C, unific C with the current context;

Calling context query: :) C, unifies C with the calling context;

Lmy call: :# G, evaluates the goal G in the calling context;

3.3 Logic for the Semantic Wbb
Logic, in its reasoning and conclusion drawing form, is likely to play an

important role in the Semantic Web. Thomas Passin states [Tho04] that
Logic in the Semantic Web is expected to work in the following ways:

o Applying and evaluating rulm;

o Inferring facts that aren't explicitly stated;

o Providing capabilities for Semantic Web agents to explain why a con-
clusion has been rea,ched;

4For a more detailed and formal description, the reader is referred to [4D03]
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o Detecting contradictory statements;

o Representing knowledge;

o Merge information from different sources in a coherent way;

o Create software to execute queries to obtain information of Semantic
Web data repositoriesl

One way that the Semantic Web relates to the above topics is through
prograrns built with a series of IF-THEN-ELSE rules, often chained together.
A rule processor agent can work backward from one condition to describe
what steps were taken to get there. This means it is possible to ask if a

certain outcome is possible and how to get to it and therefore simulate a rea-

soner that has knowledge of a particular domain. For instance, Topic Maps
has been used to define sets of rules.

Logic can be used to represent knowledge whereas Web ontology docu-
ments supplies the concepts and terms. Logrc proüdes ways to make state
ments that define, use and rea.son about those concepts. These collections of
statements may come from different data sources such as relational databases,
Web pages or other knowledge basm and they may be expressed in many ways
such as RDF, OWL or Topic Maps.

In the Semantic Web, Logic will play a different role than many of the
other discussed components. Information is to be changed and processed

by a program that may in turn obtain more data from other sources spread
around the Internet. Ontologim will be shared and merged. However, Logic
is presented as a tool to be used and applied to information and not as in-
formation to be changed.

3.3.I- Inferring facts from Semantic 'Web data
Let us see a common example of a simple inference that involves knowl-

edge typically found in ontologies: imagine a faculty domain where all profes-

sors are faculty members, all faculty members are sta.ff members au.td lucarelli,
is a profmsor. This information is expressed in Figure 3.8, in Predicate Logic.

We can then infer the results shown in Figure 3.8.
The above example illustrates the fact that logic proüdes a natural way

to uncover ontological knowledge that is implicitly given. However, the ex-
ample is based on simple i,f c.ondi,ti,ons. More complicated and powerful ex-
pressiveness can lead to undecidability barriers, a,nd the more expressive a
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profêssor(X) -> faculty-nenber(X)
faculty-nenber(X) -> staff (I)
professor(lucare11i)

faculty (lucarelli)
staff (1ucare11i)
professor(x) -> staff(X)

Figure 3.7: Predicate Logic inference example (part 1)

Figure 3.8: Predicate Logic inference example (paú 2)

logic is, the more computationally expensive deducing conclusions becorues.

Nevertheless, the knowledge relevant for the Semantic Web seems to be of a
relatively rmtricted [GriO ] form and is expected to be supported by a wide
raJrge of reasoning tools.

One major advantage of logic usage in the Semantic Web is its capability
of providing etplanati,ons for conclusions, i.e, trace all the inference steps.
This kind of explanations are very important as they can act as proofs pre
sented in a human readable form, acting as a way for users to increase their
confidence in Semantic Web agents. Moreover, explanations will get an im-
portant role in agent interactions where one side will have to validate the
proof proüded by the other. Thomas Passin presents pho04] an interesting
exemple: a Web shop sends B, messa,ge to a private agent, üa its own agent
sayrng he owes 100 euros. When the latter agent asks for proof, he might get
this sequence response from the shop agent:

o Web log that indicates a purchase of product P for 90 euros;

o Delivery cost of 10 euros;

o Proof of delivery: [...];

o Rule from the shop terms:
purchase(X, P) & price(P, PRJCE) & costDelivery(P,Y)
& delivered(P, X) - owes(X, PRJCE+Y);

This example illustrates two important facts: logic must be usable in
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conjunction with different sources of data and be machine-processable as

well.

3.3.2 O,WL Ontologies and Description Logics

A knonldge representation can be viewed as a relating theory.to a paf,-

ticular world, üa formal models. An ontology is a particular knowledge base

that describw facts assumed lobe trueby a communi,ty of.users. This meâns

the power of an ontolory, in Computer Science, comes from the fact that it
can make domain assumptions explicit and therefore, provide data integra-
tion.

Ontology languages allou, users to write explicit, formal conceptualiza-
tions of domain models. They should have [GriO ]:

o A well-defined syntax;

o Efficient reasoning support;

o An agreed-upon formal semantics;

o Sufficient expressive power;

o Convenience of expreosion;

RDF and OWL languages can be viewed as specializations of Predicate
Logic that provide a syntax that fits its purpose well, i.e, Web languages

based on tags. They define reasonable subsets of logic that correspond
roughly to a Description Logrc, a subset of predicate Logic for which an
efficient proof system exits. The OWL language is based on Description log-
ics [BvHH+O5] or, more precisely, on a family of knowledge representation
formalisms based on First-order Logic and exhibiting a well understood com-
putational properties. OWL is a family of three ontology languages where
the first two are based on different subsets of Description Logics: OWL Lite,
OWL DL and the other one, OWL Full, which is meant for cases where maxi-
mum expressivenms is wanted with no decidability computational guarantees

[swMo4].

OW.L compatibiüty With Logic Programming

The incompatibility of the Open world assumption in OWL with the
closed world semarrtics of Logic Prograrnming has generated some discus-
sion and debate in the Semarrtic Web community and is one of the main
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issues when implementing Semantic Web software based on Logic Prograrn-

ing [MHRS06]. However, this dos not mean that Logic Progra,mming cannot

be used to reason over OWL Web ontologtm, far from it. What it does mean
is that there are some practical use cases which are difficult or impossi-
ble to realize with OWL but addressable by Logic Progra,rnming. Horrocks
prments [MHRS06] an overview of hos' OWL could be integrated with rules
without sacrificing semantic compatibility.

3.3.3 Impact of Logic on this Work
The developed system was implemented using Contextual Logrc Program-

ming, namely GNU Prolog/CX. The technology used was not based on a typ
ical rsearch and choice among different solutions, but instead the use of
Contextual Logic Programming was our motivation whereas the Semantic
Web our choice as a target research field to work with.

As already discussed, Logrc Programming based agents and software are

expected to have an important role on the Semantic Web. They cannot be

directly glued, togeíher and the existing issues on using Logic Progra,rnming
languagm within OWL documents can not be ignored. In the work presented

in this thesis, we tried to move forward in order to bring up the advantages

of using Contextual Logic Programming to represent and reason over OWL
ontologies.
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Chapter 4

XPTO - XPTO Prolog
Translation for Ontologies

The goal of the XPTO 1 system is to represent Web ontologies from the
perspective of Contextual Logic Programming and to enable querying that
representation. Web ontologiês can be reprmented with OWL which is sub
diüded into three sub-languages: OWL Lite, OWL DL and OWL F\ilI.

OWL DL emerged as the goal for the mapping and representation capa-
bility by XPTO since the specification of OWL F\rll does not to guarantee
computational completeness nor decidability still guaranteed by the OWL
DL language, i.e., that all conclusions are guaranteed to be computable and
that all computations will finish in finite time.

In XPTO, ontologies are treated ot a per fle basis. The information
repreented in the ontolory file is translated into GNU ProloglCX predicates
and units. This process is performed in two phasm: the ontology parsing
and the unit generation.

During the first phase, the ontolory file is parsed as a plain XML struc-
ture, resulting in a Prolog term representing the complete ontolory file. This
process is described in section 4.L. In the unit generation phase, the Prolog
term is transformed into a dictionary, a structure annotated with the neces-

sary information for the generation of the units. Subsequently the unit files
are created and loaded into the running instance of the program. Section 4.2
details this procms. Next, section 4.3 introduces the manner in whidr to
retrieve the information from the representation. After the information in
an ontology is transformed into a set of GNU ProloglcK units and inter-
face predicates, the possibilitim and capabüties of that representation are

lThis work was developed in cooperation with Nuno Lopes.
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equivalent to that of a Prolog program, with the benefit of a modulax pro-
gram structure, i.e, the ontolory may be queried as if it were a regular logic
program. In section 4.4 some realJife exarnplm of XPTO are introduced
and in section 4.5 we compa,re XPTO with similar systems and present the
paxser and query benchmark results. Finally in section 4.6 we draw some
conclusions and discuss future work.

4.L Ontology Parsing

The first step towards building the ontology representation is parsing.
The parser must be able to read an ontology from a document and represent
it in an adequate data structure.

In this phase, the ontolory is handled as a plain XML file and read in
using an available XML parser. Sevelal XML paxser libraries were considered
(mostly Prolog and C parsers and, for benchmark purposes, paxsers in other
languages such as Java, Python and Cu,rrl). The results of these benchma.rks
are presented in section 4.5.1.

The selected parser was the Expat XML parser [Coo06]. Two main rea-

sons influenced the choice of this parser: the results of the benchmark tests
and the easy integration of C and Prolog.

The Expat parses the XML by matching patterns in the text. This way
the parser incrementally creates a data structure representing the XML. Once
the end of the file is reached, a term is generated based on the created
structure and passed on to Prolog. This term is an accurate representation
of the XML file, apaú from the possible comments in the XML/RDF/OWL
file, there is no further loss of information in this transformation.

A.L.L Prolog Representation for XML Documents

The internal Prolog representation used for a XML structure is a list of
)hlElement, where an XnlElenent is a term of the following form:

node (ElenentNane, ElenentAttributeslist, ElenentChiLdlist ) .

Each part of the structure is detailed below:

ElementName: Represents the name of the XML element and is stored
as an atom or, for URJs, a compound term whose functor is '#' and
contains the URI and local part as arguments. In the case of the XML

I
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element narne does not contain the URJ part, the URI will be the empty
atom: ' '. This simplifies the handling of these elements within Prolog
since it is possible to access each part of the element directly.

ElementAttributeslist: ElenentAttributeslist is a list of the XML
node's attributes in the form AttributeNane = AttributeValue. At-
tributeName will also be of the form as ELementName.

SubElementslist: SubElenentslist is a list off all nodes that are exactly
one level below in the same branch of the XML document structure.
These may be other nodes (other elements of the same structure) or
element values which will be represented by its value.

For exa,mple (all the examples prmented in this chapter uses the I,Vize

OWL DL ontology [W3C06] which is a sample ontology used in the
OWL specification documents), this representation will produce the
structure repreented on Figure 4.2 for the XML code in Figure 4.1.

Figure 4.L: Vintage Class definition - wine.rdf

4.2 Ontology Mapping
XPTO is prepared to translate ontologies defined in OWL Lite or OWL

DL into Prolog. This mapping must allow for easy access to the information

<IDOCTYPE rdf:RDF I
<!ENTITY xsd ttbttpz / /wwu.v3.org/2O01lX}íLSchema*'r )
l>

<rdf : RDF :rn1ns : xsd ='htlup z / /www. w3 . org/ 2001, /l,lt[-Schena# r' )
<ow1 : C1ass rdf : ID=rrVintagelr)

<rdfs: subClass0f>
<owl: Restriction>

<owJ, : onProperty rdf : re s ource= ti #hasVint ageYear " /)
<or1 : cardinal ity rdf : dat atype= " &xsd ; aonNegat ive Inüeger r' )

1.

</or1: cardinality>
</owl: Restriction>

</rdfs: subClass0f>
</ovl: Class)

</rdf:RDF>
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lnode (rdf :' RDF', [:rmlns : xsd=' http : //www. w3. or g/zOOt /Xfn"Schena' ],
[node(ow1 :'Class', [rdf :'ID'='Vintage'J,

[node (rdf s : subClass0f , [],
[node(owI: 'Restriction' , [] ,

[node (owI : onProPertY,
[rdf : resource= * ( , , , hasVintageyear) ] ,
B),

node(owl : cardinality,
[rdf : datatlpe=# (' http z / / vrv . v3 . or g/ 2OO 1 /Iliff.Schena',

nonNegativelnteger) J,
['1',]
)l

)l
)l

)l
)l

Figure 4.2: Prolog XML Reprmentation of class Vintage

reprmented in the ontolory, using standard Prolog goals.

After the ontology is reprmented by a Prolog term, a dictionary data
structure will be generated with the necessaxy information to later create the
GNU ProloE/CX units. These generated units are then compiled and loaded

into the running program. Next we describe the proces of translating the
Prolog term into the incomplete structure and explain the representation of
the ontology using GNU Prolog/CX.

4.2.L Ontology representation

A GNU Prolog/CX unit is a named and parametrized set of Prolog pred-

icates. In XPTO, ontologies axe represented using un'its and thme will be
used to represent not only the whole ontology but also each OWL class and
property. This scheme is represented in Figure 4.3.

The information about the ontology is represented in a specific unit nemed
ontologies. This unit lists the namespaces, headers, classes and properties
of each loaded ontolory.

Each class and propeúy is defined in a unit na,med after the class or
property. Further information about each one can be found in its unit. This
naming schema for properties and classes does not present a problem in OWL
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Figure 4.3: Ontolory reprmentation schema: units

DL since, as stated in [SWM04], there could never exist a class with the sa.me

narne as a property:

"OWL DL requi,res a pai,ruise separat'i,on between classes, d,ata-

tqpes, ilatatgpe properti,es, object propert'ies, annotati,on proper-

t'ies, ontology properti,es, indi,uiduals, data aalues and the built-i,n
uocabulary, 'i.e., there uuld, neuer eri,st, for instance, a class wi,th

the same narne as a propertg."

The ontology indiüduals are represented in the unit iadividuals. It
contains the name of the individuals, individual relations and class member-
ships. In the following sections we describe the structure of these units and
discuss some alternative representations which we previously experimented
with.

0ntoLogy Unit

This unit represents the ontology information: XML narnespaces, ontol-
ogy headers, classm and properties. This is done by defining predicates for
each case: ns/3, header/3, class/2 and prop/2. Eranh predicate contains,
in the case of headers and namepacm, an entry with the ontology name, the
respective "abbreviation" and value and, for classes and properties, simply
the ontology name and the class or property narne. The ontolory na,me is

included in these predicates to allow the possibility of repreenting several

ontologie.
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Property Units

Each property unit contains the information relative to a specific property.
The type of the property (datatype or object) and, if specified any other
information such as domain and range, propeúy inheritance and property
relations.

Thme properties also define the method to access the value, girren the
individual na,rne that shall be retrieved preüously from the GNU Prologlcx
context. For example, the definition of a property and its representation are

show, respectively, in Figure 4.4 and Figure 4.5. An example of its usage is
shown if Figure 4.9 on page 50.

Figure 4.4: Locatedln property definition - wine.rdf

Figure 4.5: Locatedln property unit

Class Units

These units will represent each class of the ontolory and all information
relevant to it: this includes rmtrictions on the individual properties and class
inheritance.

It also includes a predicate classlane/l that provides the name of the
current class. This predicate is used in by the query engine to determine the

(owl : Obj ectProperty rdf : ID= " Iocatedlurr)
<rdf : t1rye rdf : resource="&ow1; TransÍtiveProperty" />
(rdf s : donaia rdf : resource=lrhttp : / /w:wu .w3. org/owl#Thing" /)
(rdfs'sangê rdf :resource=t'#Regiontr />

< / ocl : Obj ectProperty>

object(rdf : type('TransitiveProperty')) .

donain('lhing') .

range('Region') .

type(object).

:- r:nit(Locatedln).
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class that the query refers to. This process is dmcribed in more detail in
section 4.3.

Unnamed classes These are classes defined implicitly by a set of individ-
uals. They are represented internally by a unit (in the same marlner a§ a

na,med class) but, since they are not assigned a name, one is generated for
them. This generated name consists of the prefix 

-class- 
followed by a

sequential number.
An example of the use of unnarned classes, using an enumeration, is shown

in section 4.2.3.

Individuals Unit

This unit contains all the individuals, their properties and information
about individual relations. The individual properties are stored as triples,
much in the manner of RDF, defined in the predicate property/3. The first
argument of this predicate indicatm the name of the indiüdual, the second

corresponds to the property and the third argumsnf senfajns the value of the
property for that individual.

Class membership is defined in the predicate individual-cLass/2. Thi§
predicate lists aII the indiüduals, along with their class. Individuals from
unnamed classm are not included in this listing: they are only present in the
unit that represents the class. This is done to avoid unwanted repetitions
when querying the individuals that would be generated if the indiüduals of
the unnamed classes were listed as the other individuals. These individuals
are only available in the predicate individual./1 present in each unnarned
class unit.

Individual relations In this unit there are also predicates for defining
individual relations, such as differentFrom/2 and sameAs/2, each with
indiüdual narnes as their arguments. These indicate, respectively, that
the referred individuals are different or the same [MvH05]. The construc-
tor owL:AllDifferent is represented as several diffqrentFron statements,
each indiüdual preent in the constructor will generate one differentFron
statement relating it to every other individual in the list. This is detailed in
section 4.2.3.

4.2.2 Alternative representations

One approach to map an ontology that we experimented was to represent
each property a,nd class in the ontology as a unit and represent the individuals
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as an instantiation of the unit that reprments its class.

The units that represent each class have their arity determined by the
number of propeúim defined in the OWL document and one extra argument
to represent the individual name. This extra argument is referred internally
with the nalne "id" and thus any query asking for the argument "id" will
match the na,me of an OWL individual.

Another reprmentation would include in each class unit a list of the narnes

of its individuals, defined in the predicate iudividual/l, where each indi-
üdual would be represented in a unit na,med after the individuals name.

Alternate representations problems

The presented representations were tested as possible representations for
ontologies in XPTO but were later abandoned as we evolved to the one

described in section 4.2.1. Although thme were two alternatives we explored,
many more exist. The first representation was abandoned due to:

o The possibility of having an arbitrarily large number of arguments in
the class units arguments (equal to the number of properties defined in
the ontology);

o The fixed arity of the representation for the individuals was not appre
priate as some individuals may not have a rmlue for all the properties
and others may have values for properties that are not present in the
representation;

The second approach represents each individual in a separate unit and
this could pose a problem as the number of individuals irrcrease, both in
terms of representation and querylng.

The used reprmentation allows for a more effective individuals search with
SPARQL because it only focuses its queries on indiúduals and not classes.

The current reprmentation also allows for a more transparent switch of back-
end: by changing only the unit indiüduals one can access the ontology indi
viduals, individuals reprmented in a database or an external SPARQL agent.

4.2.3 Name analysis

Back to XPTO work-flow, the next proces in the loading of ontologies
consists in parsing the created term and building a dictionary structure with
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all the information needed to generate the units and predicates that will
represent the ontology.

The body of the ontology has information about all classes, properties,

individuals and relations between these elements. Ontology headers are also

stored to be included in the ontology definition unit.
The Symbol Table is implemented as an incomplete structure in Pro

log. It is split into four sections: ontology, classes, iudividuaLs and
properties. The properties and classes sections are each a dictionary where

the key is the narne of the element at hand. The ontology entry stores infor-
mation about the ontology, i.e, the information expressed in the owI:0ntoLogy
node; finatly the individuals entry stores all the information about individ-
uals. The information about individuals is also grouped by the predicates de-

fined in the individuals unit (indiviaual-class, ProPerty, differentFron
a,nd saneAs) as preüously dmcribed (section 4.2.L).

The term that reprments the ontolory is now parsed accordiug to the
specifications of the OWL language as detailed in [MvH05]. W" now present

some of the reprmentation or coding choices that were made.

Enumeration

An enumeration can be defined as an anonymous cla"ss that is defined
by a set of indiüduals and is used, for instance, wilh the All.ValuesFron
constructor as represented in Figure 4.6. Classe like this are represented

internally like a,ny other OWL class and, in order to do this, they are assigued

an internal narne (consists of the prefix 
-class- 

followed by a sequential
number). The individuals of these classes are listed directly in the unit
that reprments the class and are not present.in the individuals unit (as

explained in section 4.2.L).

AllDifferent

The owl:AllDifferent constructor indicates that all the indiüduals in
its list are different from each other and, as stated in section 4.2.1-, it is

represented as several differentFron statements. This is done to simplify
the reprmentation and computation by having only one repreentation for
the sarne type of information.

For each individual present in the owl:ALtDifferent list, we generate

owL:differentFron facts relating it to every other individual that comes

a,fter it in that list. Since the constructor owl: diff erentFron is symmetric,
this will relate all the individuals between them without generating redun-
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(owl: allValuesFron)
(owL: Class>

(owL : oneOf rdf :parseType=rrCollectionrt)
(owl :Thing rdf :about=rr#CheninBlaacGrape" />
(owL: Thiug rdf : about=r1#PinotBlancGraper' /)
(owl : Thing rdf : about=rr#sauvignonBlancGrape" /)

</owl: one0f)
</ouL: CLass)

</ owL: allValuesFron)

Figure 4.6: AllValuesFbom example

dant information. f[s instance, the element in Figure 4.7 will generate the
facts reprmentd in Figure 4.8 in the unit indiüduals

Figure 4.7: AllDifferent exa,mple

Document Checker Conformance

W3C defines [CR04] what actions an OWL document chee,ker should do.

As a syntax checker, it ihould receive a document as input and identify it as

being Lite, DL, F\rll or Other
Although XPTO does not currently perform complete conformance tests,

this is a subject marked as future work. Nevertheless, it already performs

some consistency tests which we nos, describe:

o A property ca,nnot be a subproperty of a property that is not of the
same t5rpe e.8., â DatatlpeProperty cannot be subproperty of an
0bjectProperty and vice versa;

<owL : Al}Different)
<owL : di st inctMenbers rdf : parseTlpe= "CoIIe ct i ou tr )

(vin:I{ineColor rdf : about="#Red" /)
(via:WineColor rdf :about="#l{hite'r /)
<vin:l'lineColor rdf : about=rr#Rosêr! /)

</owl : distinctHenbers)
</ owL: ALIDifferent)
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differentFron('Bed','l{hite' ) .

differeatFron('Red','Rose' ) .

differentFron('Wlite','Rose' ) .

Figure 4.8: AllDifferent representation

o Only constructs allowed by the selected owl variant are used, fur ep
ample, it is not possible to use owl:hasVaLue in OWL Lite or apply a

owL: IuverseFunctionalProperty to a datatype property in OWL
DL.

Namespaces and Annotations

Annotations are textual notes that can be deffned and used within OWI{
documents. There are five annotation properties predefined by OWL:

o owl:versionlnfo

o rdfs:label

o rdfs:comment

o rdfs:seeAlso

o rdfs:isDefinedBy

OWL DL allows annotations on classm, properties, indiüduals and on-
tology headers, but only under ceúain conditions described in {BvIIH+O5].
Annotations are currently being discarded by XPTO and a,re marked as fu-
ture work. One possible manner to repreent them would have been to define
a predicate annef,afisn/t in the unit of the element that the annotation cor-
responds to (property, class, etc).

Within the ontology headers are the namespaces. Those describe a precise

indication of what specific vocabularies are being used in the ontology docu-
ment. Namespaces provide a means of unambiguously interpreting identifiers
and making the rest of the ontology presentation much more readable.

The namespaces of the ontology are being stored by XPTO in the ontology
unit. However the namespaces are currently not being returned along with
the solutions to a query, i.e., the solutions are not URIs and are identified
only by the name or value of the element.
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4.2.4 Unit generation and loading
The unit generation process can be disassembled into three distinct steps:

Unit generation: The first step is to generate all the unit frles. For each

symbol in the dictionary, a unit with the sarne narne as the symbol is
generated.

Compilation: In order to be loaded into the running prograrn, each unit
must be compiled using the GNU Prolog/CX compiler. This means

the system, after parsing an ontology and generating the units, must
compile every Prolog file that contains a generated unit.

Loading: After all the units have been compiled they are ready to be loaded
into the program. This is done using the dynami,c loading of GNU Pro
log/CX. Loading each compiled unit makes the ontolory representation
fully integratd with the running program.

4.3 Querying an ontolory
At the end of reprmentation process the ontology is available to be queried

using the regular GNU Prolog/CX environment. The way to query the ontol-
ory is to búld a context using the units that represent the properties and
calling the goal item/O to activate the query resolution. The query must
be prefixed with the '/)' operator and optionally a class unit. Other units,
decribed later in section 4.3.L, can be added to the context to add further
query capabilities or be used as a filter for the results.

For convenience purposes there is also available the goal iten/l. This
goal will instantiate its argument, by backtrarcking, with the nemes of the
individuals that match the query. This is explained further in section 4.3.L.

By placing a class unit before the operator '/)' it is possible to access

only the indiüduats of that class, or all the individuals of the ontology if
the operator is used alone. If the query succeeds the iten/l predicate will
return, by backtrack, the name of the individuals that are valid for the query.

Querying property values can be achieved by adding to the context the unit
that represents the property (Figure 4.9) or by the inclusion of the unit
property/2 to access a value without knowing the narne of the propeúy. An
example is shonn in Figure 4.10.

The responsibility of setting up a complete query context lim with the

'/)' operator: it placm the individuals/O and access/O units in the con-
text. For example, for the query present in Figure 4.9, the complete context is
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I ?- 'Icel,Iírre' /> locatedln(L) :> hasFlavor(F) :> iten(I).

F = 'Moderate'
f = 'Selakslcel'Iine'
L = 'NewZealandRegion' ?

Figure 4.9: Ontology query (direct access)

| ?- 'IceWíte' /> properby(F,'Moderate') :>
property(locatedln,L) :> iten(I) .

F = hasFlavor
I = 'Se1a}slcelJiue'
L = 'NewZealandRegion' ?

Figure 4.10: unit property definition

shown in Figure 4.11. The individuals/O unit is the unit that contains the
individuals and property values. The unit access/O, partially represented in
Figure 4.L2, is rmponsible for accmsing the individuals of the ontology or a
specific ontology class by insta^ntiating the argument of the íten/t goal. This
is the indiüdual name that will be used by the other units in the context.

Figure 4.11: Query context example

There is also the possibility of defining custom predicates-that use this
operator in order to be used by a Prolog programmer (this is presented in
section 4.3.2).

4.3.L Units for refining ontology queries

We new present some units which may be used in the queries to retrieve
other values or perform additional operations:

I ?- iadividuals :> access :>

'Icelíine' :) locatedln(L) :> hasFlavor(F) :>
iten(I).
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% check if there is a class
% in the cotrtext and get the elenents

individuals(CL, I):-
individual-class(I, CL) .

individuaLs(CL, I):-
tCI.l :< superClass0f(C),
iudividuals(C, I).

:- unit(access)

% elenents of the class

% elenents of the subclasses

iten(A) : -
:# class-nane(CL),
indivíduals(Cl, A).

1l

Figure 4.12: Unit access

individual/1 Inctuding this unit in the context unifies the ar.gument of the
unit with the individual name. Using this unit proüdes a more explicit
query by asking the indiüdual name a,nd calling the goal iten/0. It
is also possible to query the indiüdual narne by using the item/l goal.

Use of this unit is shown in Figure 4.13.

Figure 4.1"3: Individual example

class/l If this unit is included in the context it will unify its argument with
the class of the matching individual (Figure 4.L4). This also allows to
restrict the results of the query to a specific class, i.e, not including the
individuals of the subclasses, as is the default behaviour when including
the class unit before the '/> ' operator.

Figure 4.14: Class example

I ?- /> individual(I) :) iten.
I = 'IühitehalllanePrimavera' ?

C = 'Desserthline'
I = 'líhitehalllanePrinavera' ?

I ?- /> class(C) :> iten(I).
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property/2 This unit allows to access the properties of the individual with-
out prior knowledge of its narne or to query for the property narne based

on the property ralue. The first argument is the property name and

the second the property value (Figure 4.15).

Figure 4.1"5: Property example

all/z Including this unit in the execution context is analogous to using a

findall in Prolog. The first argument is the element and the second

will be the list of the elements in the specified form' This allows to
retrieve the set of solutions for the variables present in the query, as

exemplified in Figure 4.L6.

Figure 4.16: All example

optional/l This unit receives as its argument another unit such as property/2
or a property unit and will succeed with the results if the unit spec-

ified in its argument succeeds. Otherwise it will succeed leaving a,ny

variables in its argument unbound. This is similar to the SPA.RQL

optional statement [PS06].

4.3.2 Native Prolog query representation

To make simple queries easier on Prolog prograrnmers, we created custom
predicates that encapsulate the contextual queries. The arguments to these

I ?- 'Icel,líre' /> individual(I) :) property(P,V) :) iten.

I = 'Selahslcel{ine'
P = locatedln
V = 'NesZealandRegion' ?

I ?- 'Chardonnay' /> individual(I):> all(I, L) :) iten.

L = ['BancroftChardomay',
, FOr-nanChardott, ay,,
' MountEdenVineyardEdnaValleyChardonnay',

' MonntadamGbardonnay',

' PeterMccoyChardonnay' J
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predicate must be defined explicitly after loading the ontology and fiollow

the conventions:

o The predicate functor is the name of the class;

o The first argument is the name of the indiüdual;

The arguments that are present in the predicate a,fber the individual name are

specified when defining the predicates. This specification requires indicating
the class for which to generate the predicate (that will be the functor of
the predicate) and a list of properties that corresponds to the sequence of
arguments after the i,ndi,uidual as shown for example in Figure 4.17. This
allows the user to choose whiú properties will be present in the geuerated
predicate. The generated Prolog representation is listed iu Figure 4.18.

Figure 4.17: Predicate definition exa,mple

Figure 4.18: Generated predicate

This approach is limited because of the fixed arity of the predicates. Some

indiüduals may not have a value for all the properties (an unbound variable
for that property will be returned in this case) and other individuals may have

properties that are not present in the predicate. It does, however, conform to
standard Prolog programming practice, by allowing the usage of positional
arguments. It is also possible to define, for each class, several predieates with
different arities each containing different properties to be queried.

4.4 Example Use Cases

We now present some use case exa,rnples for XPTO. First we compaxe

the exprmsiveness of XPTO queries with SPARQL 2. Then is presented a

2the SeAnqL hnguage is introduced in more detail in 5.1.

pred( 'Ice!íine' , [haeMaker,hasColorJ )

'Icetíine' (4, B, C) : -
'Icelüine' /> optional(hasMaker(B)) :>

optional (hasColor(C) ) : >

iten(Â).
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scenario in which we combine access to an ontology using the XPTO system

and access to data from a database using ISCO [4N06].

4.4.L SPARQL Query examples

We now show some SPARQL query examples and the corresponding query

performed using the syntax of XPTO. These examples queries are taken from
the SPARQL examples of [BBFSO5].

Example 1

This first query (Figure 4.19) is meant to show the selection and ex-

traction capabilities of SPARQL and the intended meaning is stated to be:

"select all Essays together with their authors (i.e. author itern.s and cor-
responding names)". The corresponding query in XPTO is shown in Fig-
ure 4.20.

In XPTO, the SELECT statement is not used internally, it is implicitly de-'

fined by the Prolog variablm present in the query. As stated in §ection 4.2.3,

the na,mmpaces are currently being ignored.

Figure 4.19: SPARQL Query example L

Figure 4.20: Query sxample 1 - internally

PREFIX books: httpz/ /exanple.orglbooks#
PREFIX rdf : http : / /.wwu.w3.org/L999/02/22-rü-synta:r-ns#
SFJ-ECT ?essay, ?author, ?authorNamê, ?ttransLator
FB0M http: / /example.orglbooks
IüHERE (?essay books:author ?author),

(?author books : authorNane ?authorNane)
0PTIONAL (?essay books:transLator ?transLator)

?- /> author(AUfiI0B) :> iten(ESSAY),
/) authorName(AUTHoRIIAIIE) :> iten(AUTIIoR),
/> optionaL(traaslator(TRANSLItT0R) ) :> iten(ESSAY) .
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Example 2

This query (Figure 4.21) is: "Invert the relation author (from a book to
an author) into a relation authored (from an author to a book)."

It intends to show the SPARQL ability to return RDF triples using the
CONSTBUCT statement. The developed sptem does not directly address this,
it allows only variable binding queries. In order to return the desired struc-
ture it would have to be done explicitly, using aditional Prolog goals. The
query that returns the data necessary is shown in Figure 4.22. The use of
the individuaL/1 unit has the sa,me effect as using'the iten/l goal.

Figure 4.21: SPARQL Query example 2

Figure 4.22: Qwry example 2 - internally

Example 3

This query is stated as: "Return the co-author relation between two
persons that stand in author relationships with the same book" (Figure 4.23).
The correspondent XPTO query is shown in Figure 4.24.

4.4.2 Data Integration: Databases and Ontologies

In this section we will demonstrate, with an example around the Periodic
Table, how to write a GNU Prologlcx program and, using XPTO, to query
over two different data sources, ns.mely database and ontologies.

PREFIX books: http:7/s:(aÍnFle . orglbooks#
CONSTRUCT (?y books:authored ?x)
FROM http://exâmFle.orglbooks
WHBE (?x books:author ?y)

I ?- /> author(Y) :> iudividuaL(X) :) iten,
I = authored(I,Y).
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PREF'IX books: http: / /exampLe.orglbooks#
C0NSTRUCT (?x books:co-author ?y)
FROI.Í http: //exanple. orglbooks
IrJHERE (?book books:author ?x)

(?book books:author ?y)
AND (?x neq ?y)

?- /> author(X) :> iten(BOOK),
/> author(Y) :> iten(B00K),
X\=y,
I = coauthor(X,Y).

Figure 4.23: SPARQL Query exa,mple 3

Figure 4.24: Q:uery exarnple 3 - internally

The Periodic Table

For exa,rnple purposm, we will use two data sources of inforr,ttation about
the periodic table 3. One will be a,n ontology 4 that describes the main cqrn-
ponents of the periodic table like Groups, Blocks and Elements na,rne and

the other a database with detailed information about each element. Com-
bining both, we can have access to information such as what are the detailed
characteristics of the elements that belong to a particular Group or Period.

Accessing the data

When analysing the definition of a Group in the referred Periodic Table
ontology, we can see that each group has, among others, a number, a narne

and elements. For example, part of group 10 is shown in (Figure 4.25).
Information about the periodic table elements is prment in a database

defined with ISCO [AN06]. Part of the table element definition is illustrated
in Figure 4.26.

Having both the referred ontolory loaded into our system and the database
accessible via ISCO, we caÍI write Prolog progra,ms to reason over both data

3A periodic table to use as â, reference can be found at http://www.webelements.com/
aWe used an OWL representation of the Periodic Table written by Miúael Cook:

http://www.daml.org/2003/0 1 /periodictable/

56



(Group rdf : ID="g3oup-101r)
t...1
(nunber rdf : datatype= " \&xsd ; integer " ) l0(/nr:mber)
(elenent rdf : resource=r'#Nit'/)
(eleneut rdf : resource="#Pd"/)
(element rdf : resource=rr#Pttr/>
(elenent rdf : resourcê="#Uuntt/)

Figure 4.25: Group 10

Figure 4.26: Element Table

nutable class êlênent
code:
DâME:

synbol:
grouP
color
classification
t...1

int. kêy.
text. unique
tert. unique
int.
tert.
int.
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ll

sets. Using the Group defined above by the ontology and the elenents table
defined in the database, we could ask, for example, what is the classification

and color of all the elements belonging to the group group-l0 as shown in
Figure 4.27.

Figure 4.27: Qlery exa,mple using ontologies and databases

Variables ELts{T and NUM will tie together both data sour@s and, using
the Prolog backtrack mechanism, CLA§SF, ELEMT and C0L0B will return all
the solutions available.

4.5 Experimental Assessment

This section presents the experimental assessment. We begin by com-
paring the XPTO parser with other XML parsers. Then we present the
bendrmarks of the representation of ontologie and compa,re it to other sim-
ilar systems.

4.5.L XML Parsers

Next are presented the benchmark rmults of the paxsers we tested. The
ontology documents used are a subset of the files used in the benchmark
process. It is an illustrative subset covering several üfferent file sizes, ranging
from 400KB to 99MB.

Tlest Conditions The parsers were tmted in a dedicated workstation: a
Intel Pentium 4 with hyper-thread running at 3.2Ghz with 1GB of RAM.

?- % access outology
'Group' /) elenent('ELEMT) :>

nnnber(-NtlM) :> iten(group-10),

% access DB using ISC0
elenent@ (group=-NlJM, nane=ELEI![T,

classif ication{LASSF, coLor=COL0R)

CTASSF = 'Metallic'
C0L0B = 'Iustrous, netalLic, silvery tinge'
ELEIÍT = 'nickel'
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Parse timm were measured using the tine(1) Linux command collecting
the elapsed tine, systen tine and user tin€ of 100 runs of the parser.

The final a,verage is obtained by. removing the 5 worst and brxt times and
calculating the average of the pslainilg times. As reported by tine(l)
the systen tine reprments the number of seconds used by the system in
operations for the process, the user tine is the number of seconds used

directly by the process and eLapsed tine corresponds to the real time (total
a,mount of time) used by the process. In order to time only the parse process

(not taking into account process allocation times, etc) the average time it
takm for each parser to read an empty flle is deducted from the parse time
of each file.

Libxml2, Libexpatl and Prolog overhead

The Expat XML paxser and Libxml2 are two of the available XML parsers

written in the C language. For instance, the Expat paxser {Coo06] is used

by the Mozi,lla brourser and Libxml2 by the Gnome Project fVei06l. Both
parserc were tmted in equal environments and in two different situations: as

standalone parcers and integrated with Prolog in order to time the overhead

of this integration. Table 4.1 and Figure 4.28 show the results obtained.
The times labeled as pL-expat and pL-1ib:rnL2 are those of each parser

integrated with Prolog. They do not return anything to Prolog, the difierence
is that they are catted from a Prolog proc6s. These benchmarls are only for
time the Prolog overhead.

Table 4.1: Libxml2 and Expat
Expat pl-expat libxml2 pl-libxml2File ( MB

0.04 0.06 0.07 0.08
0.07fi1e03 t L.2 0.03 0.04 0.07

0.25 0.30fileLO i 5.5 0.14 0.16
0.06 0.07fi1e13 ( 1.6 0.04 0.05

0.69 0.79 2.02 2.04L7

0.10 0.10fi1e19 ( 2.6 0.05 0.06
0.06 0.09 0.10file2l ( 2.3 0.05

hle22 L4.4 0.37 0.45 0.80 0.80

fiIe25 2L 0.55 0.63 0.97 0.97
1.84fr1e27 32.9 0.62 0.75 1.61

fi1e33 98 2.68 3.10 4.82 4.83

0.25 0.25fi1e34 I 4.5 0.L2 0.15
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Figure 4.28: Expat Library vs Libxml2

As Table 4.1. illustratm, h both tested cases the Expat library presents

better times that Libxml2. As we carl see from Table 4.1 and Figure 4.28,
the impact on integrating Prolog with Lib:<rnl2 is üúually irreleva,nt. For
Expat, on file 33 (98 MB) there is a 15% overhead. On the smaller files,
although the overhead percentage remains the sa,me, the impact is also not
relevant due to small times measured (under one second).

Comparison with other parsers

The XPTO parser (pl-expat-v2) uses the Expat library. It builds the
structures and terms that represent the XML file and returns the term to
Prolog, The implemented parser module was benchmarked against other
existing XML paxsers. Among the marry available XML parsers, we choose

the following:

PiLLoW (in GNU-Prolog): Pillow [GH01] is aWeb programminglibrary
developed at UPM - Technical University of Madrid that provides a
way of full World Wide Web connectivity for Logic Progtamming and
Constraint Logic Programing systems. It contains a module that imple-
ments predicates which generate and parse HTML/XML documents.

;;1
G'Eo
C'(u
11
o,

,É 0.1

pl-ex.pat

librm*
pl-libxml

:
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SWI-Prolog: This is a parser implemented in SWI-Prolog {Wie03l, which
paÍses a XML file into a Prolog term. It uses the SWI-Prolog SGM-
LIXML pa,rser, which means it allows for processing partial documents
and process the DTD (Document Type Definition) separately.

W4: W4 [Dam07] is a non-validating parser written in XSB Prolog by Carlos
Damrásio that produces a Prolog repreentation of the XML document.
It has support for XML Nammpaces, XML Base and complying to the
recommendations of XML Info Sets.

Jena: Jena [Jen06] is a Semantic Web framework for Java. Among other
tools, it has a RDF/XML parser called APR which can be used inte-
grated with Jena or as a standalone parser. Within the fra.mework, we

used two packages: one provides a set of abstractions and convenience

classes for accessing and manipulating ontologies represented in RDF,
and a,nother for creating and manipulating RDF graphs.

Ciao Prolog: Ciao [GH99] is a Prolog system that allows both restricting
and extending the la,nguage. It supports programming with functions,
constraints, objects and features a good base for distributed execution
and paxallel execution. It has a module that implements the predi-
cates of the PiLLoW package related to HTML/ XML generation and
parsing.

OCarnl: Objective Caml [Rém00] is a variant of the ML language. It
extends the core Calml language with an object-oriented layer and a
module system. To parse XML documents, we used the PXP tsto0fl
OCaml library: Polymorphic XML Parser.

Performing benchmarks with thee parsers enables the comparison of the
XPTO paxser not only with similar Prolog driven parsers but also with
parsers written in different programming languages and folloning different
paradigms. Table 4.2 shows all the parse timm measured for each of the files

and pq,6ers tmted, whgre pI-expat-v2 is the pa,rser used in XPTO,

Overall, the SWI paxser revels the bmt results, both in terms of parse

times and number of film paxsd. The XPTO pa,rser, as expected, presently

cannot handle the large files, however it preents good results for smaller
files (up to 6 MB). The W4 times are high due to the parser validation it
performs (in terms of encodings) and reprcents the whole information in the
file. The Ocaml, Pillow and Ciao parsers are not able to parse some files due

to not recognizing statements encountered.
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pillowpl-expat-v2 Jena ocaml swl w4ctao
9.96 2.940.19 2.08 t.40 0.333.70

0.19 3.55 1.15L.2 0.91 0.89 1.51fi1e03 I

16.745.5 t7.3 3.48 6.76 0.82fiIe10 I

0.20 3.25 L.62fiIe13 1.6 L.24 0.84 2.37 1.66
4.29 84.25frleLT (24.8

2.291.51 2.82 0.36 7.819 1.99 2.65
2.O52.20 1.58 1.66 0.30 6.63t.67

23.03 2.26 45.34fr1e22 t L4.4

10.89 25.20 3.39 63.86fi1e25 ( 2L
64.9732.9 39.03 4.75hle27 t

17.00fi1e33 9õ L27.37
0.79 13.43 4.46fileM 4.5 73.22 3.86

Table 4.2: Benchmark results seconds

Speedups

ln addition to the above results we calculated speedups. The purpose is to
compaxe the parser rmults using the times of one of the paJsers as base. This
enablm a better understanding of the results as they are directly compared
with a reference.

Table 4.3 shows the obtained results. For the base results we choose the
tirnm obtained by Jena since at the time of this writing it has one of the
most used parsers arnong our choicm. So, all the times present in Table 4.3
are calculated by diüding the Jena time by the parser time.

Table 4.3: rmults seconds . Jena used as

Figure 4.29 graphically illustratm the results obtained by our speed,up cú-

pl-expat-v2 ocarnl §wl w4 pillowFile ( MB clao
10.85 L.49 6.22 0.21 0.71fi1e02 (3,5) 0.56

1.69 0 7.9L 0.43 1.31fi1e03 (1.2) 1.66
0fi1e10 i b.b 0 0.20 0.51 4.22 0.2t

1.43 1.L.64 0.73 L.47fiIe13 1.6 1..92 2.83
0.53 4.L7 0.19 0.66fi1e19 ( 2.6 0.76 0.57
0.95 5.32 0.24 0.77fi1e21 ( 2.3 0.95 0.72

0 0 L0.2 0.51 0fr1e22 I 0
0fi1e25 I 2L 0 0 0.43 3.2L 0.17

4.91 0.29 0.87fi1e34 4.5 0 0.05 0
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MB crao pl-expat-v2 ocaml swl w4 pillowFile t

fiIe02 3,5 -44Yo 985Yo 49Yo 522Yo -79Y0 -29Yo

fiIe03 L.2 66Yo 69Yo 69LYo -57Yo 3L%
-79%fi1e10 t b.b -$OYo -49Yo 322Yo

-27Yo 47%fi1e13 I 1.6 92Yo 183% 43% LOMTo

2.tt -24% -43% -47T0 3L7Yo -8LYo -34YofileI9 I

-28Yo -íYo 432Yo -76Yo -23Yofi1e21 2.3 -5%
-49Yofr1e22 L4.4 920%
-83Yofi1e25 t 2t -57To 22LTo

39t% -717 -t3%fi1e34 ( 4.5 -95%

Table 4.4: Speedups results . Jena used as reference

culations. Analyzing the valum we can conclude that the parser we choose

as reference is not the one that presents the best rmults. The best nalues are
from the SWI Prolog parser.

For a better understanding of the rmults we can look at Table 4.4 where
thme are represented as percentages. Looking at our pa,rser results we can

conclude that it has better parsing times (in relation to Jena) for 3 files,
worse times for 4 files and that it can not parse two files that Jena can (the
two bigger onm). The largest difference is in fileO2, where XPTO presents

a measured time 985% better than Jena.

4.6.2 Ontology representation benchmarks

Next the benchmarks of the complete representation of the ontolory a,re

presented. For XPTO this includes the parse, narne analysis, generation,

compilation and loading of the units.
In addition to XPTO, in the tests were included other systems that pro

üde similar capabilitim: Thea and Pellet. These systems are briefly de
scribed next:

Thea [Van06] is an OWL paxser implemented in Prolog. It uses The SWI-
Prolog Semantic Web library to parse the OWL ontologies into RDF
triples and then builds the representation based on these rmults. The
ontology is represented as Prolog terms and its structure is further
dmcribed in [Van07].

Pellet [SP04] is a open source reasoner for the OWL DL ontologr language
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Figure 4.29: Speedup graph

developed at the Mindswap Lab 5 of the University of Ma,ryland. Pellet
contains a query engine which supports answering queries formulated
using SPARQL and supports reasoning with multiple ontologies.

Pellet also implements a species verification when paf,sing the ontology,
but the times were measured with this feature disabled. Thea represents the
ontology as predicates stored in its Prolog knowledge base. The representa'
tion of the ontology adopted in XPTO is decribed in section 4.2.L.

Table 4.5 contains the times calculated for all the systems. These times
were measured using the same method as described in section 4.5.L.

The values present in Table 4.5 allow us to compare the systems in'terms
of time of ontology reprmentation. We can state that Pellet is the fastest
of the benchmarked systems and that XPTO is, on avera,ge, 97.5% timm
slower than the Pellet system, as shourn in the speed,ups Table 4.6. The
XPTO system is further timed next in section 4.5.3 where explinations for
the slowdourn are given.

6 http: //mindswap.org/
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Table 4.5: Time semnds of the ontologies

Table 4.6: Performance of the

4.6.3 XPTO time analysis

In this section we analyze the time it takes for XPTO to pa,rse and
build the representation of each file. These times a,re measured using the
statistics/2 predicate of GNU Prolog, using the real-tine statistics key.6

The times are presented in Table 4.7 anLd the parts of the system that
were measured are:

parse: This represents the time it takes for the ontology file to be parsed

using Expat (as explained in section 4.L, page 39);

build: Time to build the dictionary;

print: Corresponds to the time used in generating the ontolory representa-
tion film;

compile: Time it takes to compile all the generated film;

load: Is thq time of dynamicaUy loading the ontolggy into the running in-
stance of the prograJn;

As presented in the average times of each step on Table 4.7, we can realize
that most of the time used to integrate the ontology into the system is spent
in external procmses: compiling and loading the ontology takm over 90% of
the process time.

GF\rrther information about this predicate can be found in the GNU Prolog manual
available at http : //srír, . gprolog . org/nanual/gprolog. htnl#htoc232

File I Thea XPTO Pellet
fi1e35 t 2.ó 2L.22 206.33 4.39

98.78 2.61fi1e36 (1.2) 6.96
fi1e37 t 2.2 105.15 204.9L 5.57

1.2 4.66 96.4 2.50fiIe38

Thea XPTO Pellet
2.3 -79.33% -97.87To 0.00Yofi1e35

fi1e36 1 L.2 -62.45Yo -97.35% 0.00%
fi1e371 2.2 -94.7LYo -97.28Y 0.00Yo

fi1e38 1 L.2 -46.29Yo -97.41Yo 0.00%
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File MB parse build print compile load
2.3 0.01 0.03 0.02 0.79 0.15

0.07L.2 0 0.04 0.02 0.E6

0.01 0.80 0.14hte37 12.2) 0.01 0.04
0.89 0.07fi1e38

'L.2'
0.01 0.03 0

Average o.76% 3.50% L.257 E3.50% LO.757o

Table 4.7: time of each of the time

This indicatm that the compilation process should be done separately
and build an executable with the representation of the ontology that can, at
a later time, be loaded and queried.

66



4.6 Conclusion

This chapter presented a prototype system for representing ontologies.
The adrieved implementation covers our initial objectives: we obtained a
functional system that can reason over ontologies from a contextual program-
ming point of view. The prmented and discussed results are not optimal and
showed us where we can improve the system's performance.

Currently there may be only one ontolory loaded at a particular time.
This represents one of the major shortcomings of the current state of the
work. The objective is to be able to load an arbitrary number of ontologies
and perform mixed queries over these. In order to achieve this some changes

will have to be made to the representation. These include changrng the na,me

of the units (and unit file) to avoid narne clashes, and altering the query
method described in section 4.3 to take into account the several ontologies.
The unit individuaLs will also have to be changed to guarantee the separa-
tion of individuals of the loaded ontologies, possibly becoming several units,
one for each loaded ontology.

The fully support of a well defined OWL sub-language is also work that
has to be accomplished in future work. The parser is simple and not very
robust. It should be improved in order to be more efficient and to handle
larger ontologies.
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Chapter 5

SPARQL Back-end for
Contextual Logic Agents

XPTO is an ontology mapping engine that aims for the creation of a logic
layer over ontologim. Accms to this system provides a way for reasoning over
ontologies by means of Logic Programming. However, the work done with
XPTO is mea,nt to be üewed as the foundation of a hub system in which
different entry and exit plug-ins for data acc6s can be used. For exa,mple,
the ontolory representation and access proüded by XPTO can be used by a
SPARQL Fbont-end that receives a SPARQL query about an ontology loaded
in the system and returns the solution.

This chapter presents a back-end for XPTO that aims to transparently
merge the reasoning of the system's internal knowledge base with external
ontologim available from third parties, by means of the SPARQL query lan-
guage. To achieve this, we developed a system that provides functions for
communicating with Web SPARQL agents for ontology queryrng purposes.
It proüdes the system with the ability to pass a SPARQL query to an arbi-
trary SPARQL Web agent and get the solution, encapsulating the results as

bindings for logic variables.
This SPARQL baek=end grants XPTO capabilities for writing GNU Pre

log/CX programs to reason simultaneously over local and external ontologies.
But equally impoúant, this back end implementation proüdes roots for, as

future work, implementing access and reasoning capabilities for as mauy dif-
ferent data sources as possible, as shown in Figure 5.1.

The remainder of this chapter is organizsd as follows: first, sections 5.1
and 5.2 introducm SPARQL and its query protocol. Then, section 5.3 intro-
duces and describes the implementation of the XPTO SPARQL back-end.
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Frgure 5.L: System architecture

Finally in section 5.4 we present some results and draw conclusions.

5.1- Querying with SPARQT

SPARQL is a Semantic Web query language developed by the W3C work-
ing group. At the time of this writing, one of the most important open re-
search issúe in the Semantic Web is the lack of a query language standard
specification that can access data described by ontologies. There exists a

variety of Semantic Web query languages projects [TF06], ranging from pure

selection languages with limited expressivity to general purpose languages
supporting different data repreentation formats and complex queries. How-
ever, none of them is currently referenced as standa,rd. Among all the posi
bilitim, our choice was to use SPARQL {PS06]. SPARQL is a query language

that is suitable for both local and remote use and access. For remote use,

the SPARQL Protocol for R^DF [Cla06] has been designed and is introduced
in more detail in section 5.2.

SPARQL was desigued to meet the requirements and design goals de
scribed in the R"DF Data Access Use Cases [Cla0fl document. It provides
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capabilities for:

o Extracting information in the form of URIs, blank nodes, plain and
typed literals;

o Extracting RDF sub-graphs;

o Constructing new RDF graphs based on information present in the
queried graphs;

As the first item of the previous list statm, information can take the form
of URJs - Uniform Rmource Identifier (or IRIsl - Intemati,onal Resourte
Identi,fiers, which a,re a generalization of URIs and URLs). Blank nodes are
variables that have no narne but can be referenced within a graph pattern.
In order to better understand R"DF concepts, let's look at Table 5.1, which
draws a comparison between XML and RDF querying:

XML to R"DFuçr -y ur
Concept XML RDF
Model Document or Thee Set of tiplm :

RDF graph
Atomic Units Elements, Attributes, Text Tbiples, URIs,

Blank Nodm, Text
Identifiers Element/Attribute Name, IDs URls
Dmcribed by DTDs, WBC XML Schema RDF Schema

The main difference resides in the data model. XML is a structured doc-
ument, usually in a tree form. RDF is a graph data model, a set of triples
in the form (§uâject, Pred;icate, Object).

As a query language, SPARQL is data oriented, which means there is no
query inference in the query language itself, it only queries the information
held in the models. It provides Semantic Web users with a query language
in much the same fashion as SQL provides relational database users with a
query language: It does not do more than take the description of what is
wanted, in the form of a query returning that information in the form of a
set of bindings or a,n RDF graph.

llnternationalized Resource
http: //www .ietf .or g I rtc / rfc3987.txt

Identifiers, described by RFC3987 at

Table 5.1:
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5.1.1 How to write SPARQL queries

An RDF graph is a set of triplm in the form (Subiect, Pred'icate, Ob-

ject). The SPARQL queries are based on matching graph pa,tterns, where

the simplest graph pattern is similar to an RDF pattern, but with the possi-

bility of a variable instead of an RDF term in the subject, predicate or object
positions. The combination of triple patterns results in a basic graph pattern.

Let us study a first query exa,mple. Given the RDF graph in Figure 5.2,

we want to write a SPARQL query to find who is the director of a moüe
from the information in the given RDF graph.

Figure 5.2: RDF graph exa,mple

The query (Figure 5.3) has two parts, a SELECT and a I{HERE clause. The
first is rmponsible for identifying the variables that will appear in the query
results and the second encapsulates the triple patterns. The result will match
the variable d'irector wíth "Datfid Fi,ncher".

Figure 5.3: SPARQL query example

SPARQL Syntax

The terms between <> axe URIs. SPARQL provides two different kinds
of abbreüations for URIs:

1. PREFIX. This keyword associates a prefix label with an URI. A prefixed

narne is a prefix label and a local part separated by a.colon ":". A pre-

fixed name is mapped to an URI by concatenating the URI associated

<http : //exanple . orglmovie/noviel>
<http: / /xpto. org/persons/director) "David Fincher'r.

SELECT ?director
I.'HERE

{
<http: / / exanple. orglnovie/noviel>
<http : / /xpto. orglpersons/director) ?director
)
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with the prefix and the local part. The prefix label or the local part
may be empty.

2. BASE. This keyword defines the base URJ used to resolve relative URIs.

The general syntax for literals is a string with either an optional lan-
guage tag (introduced by @) or an optional data type URI or prefixed

narne. A string can be written enclosed in quotes; either double " " or single
For convenience, integers and decimals can be written directly with-

out quote but using explicit URI data types: xsd:integer, xsd:decinaL
and xsd:doubIe. Boolean values can also be written without quotes, using

xsd:booIeaa.
Query variables have global scope. The use of a given rmriable name any-

where in a query always identifies the sarne variable. Although variables are

prefixed by either rr?x or '$u, both characters are not part of the variable
narne. For example, $uane and ?uane identify the same variable in a query.

As shown in Table 5.1, an RDF node can be an UR[, a literal or a blank
node. A blank node is a node that is not a URI reference or a literal. In
the RDF Abstract Syntax specification {KC07], a blank node is iust a unique

node that can be used in one or more R"DF statements, but has no intrinsic
narne. In SPARQL, blenk nodes in graph patterns act as non-distinguished
variables, not as referencm to specific blank nodm in the data being queried.

Graph patterns

SPARQL is all about graph pattern matching, where complex graph pat-

terns can be formed by combining smaller patterns in various ways:

o Basic, where a set of triple patterns must match;

o Group, where a set of graph patterns must all match;

o Optlonal, where additional patterns may extend thesoluiio-4; - - - -
o Alternative, where two or more possible patterns are tried;

e Patterns on Narned Graphs, where patterns are matched against
narned grephs;

Figure 5.4 illustrates a, query with a group graph pattern (delimited with

{}) of one basic graph pattern. Using the keyword FILIER, a constraint can
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PREFIX foaf : <http : / ltcpto.org/foaf/>
SELECT ?name ?nbox
IüHERE T

?x foaf:nane ?nane
?x foaf:mbox ?nbox
FILTER regex(?name, "Mr. Freach")

)

Figure 5.4: SPARQL Group graph pattern

be applied to the query in order to iestrict the solutioÍrs over the whole group

in which the filter appears
In basic graph patterns, the entire query pattern must match in order to

give a solution. However, it is useful, in certain scenarios, to not reject the
solution because some part of the query pattern does not match. OPTIONAL

matching proüde this facility which means that if the optional part does

not match, it creates no bindings but does not eliminate the solution. Figure
5.5 illustrates an exarnple of a SPARQL query that uses a constraint in an
optional graph pattern.

Ergure 5.5: SPARQL optional group graph pattern

Supposing that in the RDF graph we have two movies, one with length
equal to 90 minutes and other vdth 130, the solutious would be the ones

shown in Table 5.2.
Matching alternative graph patterns can be done using the UNION key-

word between graph patterns. If more than one of the alternatives matches,

all the possible pattern solutions are returned.

dc: <http: / /xpto.org/dc/objects/>
ns: <http:/ /xpto.orglns#>
?title ?Iength
{ Zx ac:title ?titIe

0PTIONÂL { ?x us:leagtb ?Ieagth
FILTER (?Iength < 120) )

)

PREFIX
PREFIX

SFJECT

ICHENE
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title lensth

"The Departed"
"Reservoir Dogs" 99

Table 5.2: Solutions to 5.5 query

In the preüous examplm, all the queries have been shown executed against
a single Braph, the default graph of an RDF data'set which acts as the active
graph. An RDF data-set comprises one default graph which does not have a
narne and zero or more na,med Braph, where each named graph is identified
by an URI. The grâph that is used for matching a basic graph pattern is the
active graph. The GRAPH keyword is used to make the active graph one of all
of the named graphs in the data-set for part of the query.

A SPARQL query may specify the data-set using the FR0M and FRot'Í

NAfim clauses. They both indicate that the data-set should include graphs

that are obtained from reprmentations of the rmources identified by the grven

URJs. The data-set rmulting from these clauses is:

o A default graph consisting of the RDF merge of the graphs referred to
in the FROM clauses;

o A set of (URI, graph) pairs, one from each FROM NAMED clause;

If there is no FROM clause, i.e, a default graph, but there is one or more
FROM NAMED clauses, then the data-set includes an empty graph for the
default graph. The query in Figure 5.6 matchm the graph pattern against
each of the named graphs in the data-set and forms solutions which have the
src variable bound to URIs of the graph being matched. The graph pattern
is matched with the active graph being each one of the two narned graphs in
the data-set.

The query result gives the narne of the graphs where the information was
found and the value for julm's nickname, as showed in Table 5.3.

Table 5.3: Solutions to the ln 5.6
src narne

http : / /example. org/ foa,f/j ules "JuIm Winnfield"
http : / /example. org/ foaf/brett uPit'

Query patterns generate an unordered collection of solutions. These solu-
tions are then treated as a sequence where initially there is no specific order.
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PREFIX persoD: <http: / /xpto.org/persons/)

SET.ECT ?src ?nane
FBOM NAMED <http : / /xpto. org/persons/ju1es)
FB0M NAMED <http : / lxpto. orglpersons/brett)
I{HERE

{
GRAPH ?src
{ ?x person:nbox (nailto: julesGwork.example)

?x persou:uick ?nane
)

)

Figure 5.6: Named graphs

However, SPARQL has sequence modifiers constructors that can then be ap
plied to create a different sequence. The following list comprism the solution
sequence modifiers available:

o Order: order the solutions;

o Projection: choose certain variables;

o Distinct: ensure solutions in the sequence are unique;

o Reduced: permit elimination of some non-unique solutions;

o Offset: control where the solutions start from in the overall sequence

of solutions;

o Limit: restrict the number of solutions;

Query Forms

SPARQL has four query forms. Each one of them uses the solutions from
pattern matching to form result sets. The query forms are:

SELECT: returns all, or a subset of, the variablm bound in a query pattern
match. SELECT * is used to select all the rnriables in the query. The
SFÍECT form is currently the only implemented form by the back end
of XPTO, whereas the other three are marked as future work.
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CONSTRUCT: returns an R^DF graph constructed by substituting vari-
ables in a set of triple template.

DESCRIBE: returns an RDF graph that describe the resources found.

ASK: returns a boolea,n indicating whether a query pattern.matches or not.

Among those query return forms, two of them return variable bindings
and the other two return RDF graphs. For the first group {sEI.EcT and ASK),

results can be thought of as a table with one row per query solution, where
some cells may be empty because a variable is not bound in that particular
solution (see exa,rnple in Figure 5.2). These result sets can be serialized into
either XML or an R"DF graph; for the XML serialization, an XML format is
dmcribed in the W3C Candidate Recommendation SPARQL Query Rcsults
XML Fonnaú document [8806]. This document describes an XML format
for the variable binding and boolean result formats provided by SPARQL .

Let us exempliÍy this by first looking at the RDF triples present in Figure
5.7 (expressed in Thrtle syntax [Dav0fl):

Figure 5.7: T\rrtle RDF graph example

Given this RDF Braph, Figure 5.8 shows a query that selects the narnes of
persons that are known by persons present in the triples and their nicknames
if any.

This will result in the set composed by the names Butld md O-Ren Ishi'i,,

and the nickname of. Cotton Mouth. The XML format is presented in Figure
5.9. The head tag encapsulates the variables that are to be return and the
resuLts tag encapsulatm all the bindings for those variables.

This section presented an introduction and an overview of the SPARQL
query language. Most of the aspects focused a,re the onm that have impor-
tance and are relenant in the work done with the back end presented next
in this chapter. For further details consult the three SPARQL specifications

[PS06, Cla06, 8806].

@prefix persou: <http: //xpto.org/persons/)
_:a
_.c[

_.cl

-:b
_:c

Person:Dame
person:knows
person:knows
persoD:nanê

Perso[:uame
person:nick

'rBeatrix Kiddo"

-:b
_:c
xBuddu

"0-Ren Isbiiil
ItCotton Mouthrl
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PREFIX persons: <http : / /xpto.orglpersons/)
SELECT ?name ?nick
t,HME

t ?x persons:knows ?y.
?y persons:trame ?nane
0PTIONAL { ?y persous:nick ?nick }

)

Figure 5.8: Nickname SPARQL query example

5.2 Querying an external SPAR,QT agent

As a data access language for the Sernantic Web, SPARQL is suitable for
both local and remote use. For remote use, the W3C group is working on
a SPARQL protocol for Web agents communication [Cla06]. This document
describes means of conveying SPARQL querim to SPARQL query services

and how the query results are returned to the requesting entity, where bind-
ings like HTTP and SOAP 2 have been introduced to a,chieve connectivity.

6.2.L SPARQL Protocol
SPARQL protocol uses the Web Services Description Language (WSDL)

[RC07] in order to describe a way to elaborate SPARQL querie to a SPARQL
query procmsing seruice and returning the query rmults. This protocol, de-

veloped by the W3C RDF Data Access Working Group (DAWG) as part
of the Semantic Web activity, is described in two ways: as an independent
abstract interface and as IITIP and SOAP bindings to this interface.

SparqlQuery is the only protocols interface and it contains one opera-
tion, query, which is used to specify a SPARQL query string. The query

operation is described as an In-Ozú message exchange pattern, which means

it consists of exactly two messages, where the first is the .[n - query requmt
and the second is the Out - q'uery result.

The content of an .In message is composed of two further parts: one

SPARQL query string and zero or one RDF data-set descriptions. The query

2Simple Object Access Protocol is a protocol for exchanging XML based messages in a
decentralized, distributed environment. Consult the appropriate W3C specification [FN01
for detailed information.
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1t

<?:rml version='l1. 0"?>
<sparql :rmlus= " ht tp : / / v,au, w3, or g/ 2005/ sparqL-results# " )

(head)
(varÍab1e name=t'Banett/)
(variable nane=rtnickrr/)

</head>
(results)

(result)
<binding ua.nê='ruamer')

<1 iteral)Budd</ I iteraL)
</binding>

(/resuLt)
(resuLt)

<binding Ea.ne="aa.net')
(1iteral>0-Reu I shiÍ</Iitera1)

</biudiug>
<bindiug uanê="nick")

(1 iteral)Cottou Mouth</l,iteral)
</bindiug>

(/result>
(/resuLts)

</sparql>

Figure 5.9: XML response format for query in Fi.gure 5.8

string is defined as a sequence of cha,racters in the language defined by the
SPARQL grarnma,r, starting with the query production. The RDF data-
set description is formed by zero or one default RDF graphs composed by
the merge of zero or more default or named graphs (fnOU and FR0M NAMED

keywords in SPARQL, rmpectively). The Out mmsage is an instance of an
XML Schema type called query-result composed of either:

1. A SPARQL results document in response to a $ELECT or a ASK query
form;

2. An RDF graph in rmponse to a DESCRIBE or CONSTBUCT query form;

If an operation fault rises, the quêry operation contained in the SparqlQuery
interface may return, in place of the Ouú message, either the predefined
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MalfomedQuery or QueryRequestRefused mmsage, both also defined in
XML Súema.

HTTP Bindings

The SparqlQuery interface described above is an abstract operation,
which means it requires specific protocol bindings in order to become an
invocable and usable operation. Next we describe the HTTP binding to the
SPARQL protocol as it is the one used by the implemented XPTO back-end.

There exists two HTTP bindings: queryHttpGet and queryHttpPost. The
query operation binding use the HTTP cET with the following serialization
types constraints:

o Input: application/x-www-form-urlenconded and application/:<ml

o Output: application/sparql-results*xml and application/rdf+xml

Let us see a simple exa,mple. Figure 5.10 shows a query that is sent to
some SPARQL query service located, say, at http://ryto.org/ser"ui,ce/sparql/.
The operation is illustrated in the IÍITP trace presented in Figure 5.11.

Figure 5.10: SPARQL simple Query examptre

Figure 5.11: SPARQL external query operation

In the GET request there is an URL encoded SPARQL query and the
location of an IÍITP server. Note that the query is encoded: spaces axe

PREFIX dc : <http : / /t<pto.orglnovies/)
SET.trCT ?novie ?director
I{HERE t ?novie dc:directed ?director }

GET /sparql/?query=PREFll+dc : +&1t'
http : / lxpto. orglnovie s/ e,gt ; %13SElECT+?novie+?director%1
{+?novie+dc : directed+?director+}
Host: xpto.orglservice/
User-agent : sparql-client/O. 1
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HTTP/l.1 200 0K

Date: Fri, 010 Apr 2007 15:45:32 GMT

Server: Apache/1.3.29 (Uaix) PIIF/4.3.4 DAV/1.0.3
Connection: close
Cont ent -Ty.pe : appl i c at i oa/ sparql-re sult s+xml

<?:m1 versioa=" 1 .0u?>
<sparql:<nlns='rhttp : / / vww . u3. orgl2005/sparqJ.-result s# " >

(head)
(variabLe Bane="novíe" /)
(variable uame= "director" /)

</head>
(results distinct="falseI ordered="fa].se'r)

(/results>
</sparqt>

replaced by the plus symbol u+" and new lines are replaced by "%13",
which is a hexadecimal value of the new line character number. The result
is presented in Figure 5.12.

Figure 5.12: SPARQL external query result

Figure 5.13: SPARQL external HTTP trace example

Note that in this example the RDF data-set is not specified in the query
nor in the protocol. The RDF data-set can be specified in the query or
directly in the protocol or in both query string and in the protocol. In the
case where it is specified in both sides, the specification indicatm that the
protocol must be the RDF data-set consumed by the query operation. Figure
5.13 shows an IIIIP trace where the RDF data-set to be used is passed in

GET /sparql/?querp<EncodedQuery)&
def ault -graph-uri=ht tp : / / wuu . other . xpt o2 . or g/ aovie s2 HTTP/ 1 . 1

Host : wsw. other.xpto2. org
User-agent : ny-sparql--cJ.ient/0 . 1
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the protocol, identified by the value of the defauLt-.graph-uri pararneter.
Anther possible.scenario is if the Web service only takes queries against a
specific predefined data-set. In this case, there is no need for an explicit the
data-set via query or protocol.

5.3 Back-End Processor

We now describe a SPARQL back-end for XPTO that is capable of com-
municating with SPARQL Web agents. This enables writing GNU Pre
log/CX prograrns to reason simultaneously over local and external ontologies.

5.3.1 Architecture
The back-end engine provides XPTO with a means for querying external

Semantic Web services in SPARQL. Although it can be viewed as a single
independent component, the purpose is to integrate it in a manner that
it will allow the XPTO-using prograrnmer to query external and internal
ontologies using the same query syntax and declarative context mechanics
as the internal system. This will allow to transparently query internal and
external ontologies and merge their results in the same program. Figure 5.14
illustrates the architecture of XPTO with the integration of the SPARQL
back-end component.

To achieve this level of functionality we developed a GNU Prolog/CX to
SPARQL engine that satisfies the following requirements:

o Tbanslate a partially bound GNU Prolog/Cx goal into SPARQL;

o Send the SPARQL query to the specified Semantic Web SPARQL ser-

vice;

o Fetch the XML result file, parse it and return the solutions as Prolog
variable bindings using the GNU Prolog/CX backtrack mechanism to
iterate over sets of answers;

Although the queries are meant to have the same syntax as the ones exe-

cuted by XPTO, there is additional information that is needed to be provided
to the external agent if the SPARQL protocol [Cla06] is to be used. This in-
cludes, alnong others, the url of the service, the data format of the response
and, possibly, an ontology URI. The latter means that external agents such

as the'XIÍL A:myknife Semantic Web service [Dod06] that is used through-
out this section to illustrate the back-end functionality may have capabilities
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Figure 5.L4: System architecture

for querying ontologie from any given Internet location. The response for-
mat can rnry from different typm like simple HTML for Internet browsing
purposes, or the SPARQL Query Rmults XML Fbrmat tBB06l for agents
like ours.

6.3.2 Prolog/CX to SPARQL mapping

SPARQL is a rment language and is still undergoing an evolution pro
cess. It has many different constructs, forms and capabilities. The XPTO
back-end that we preent here is currently functional, whiú means it can
successfully flanslate a GNU Prolog/CX query into SPARQL, communicate
with outside agents, get the rmponse and return the solutions as bindings
to Prolog rmriable. At the time of this writing there are limitations on the
querim which can be generated:

r Querim must form basics graph patterns (simple triple patterns);

o Only produce the SEI.ECT query form;

o Data sets defined by the clause FR0M and FROM NAIiIED must be defined
as facts;

82



r:

o Abbreviations must be defined as facts;

A SPARQL query in the back-end environment is a GNU PrologíCX
context execution similar to the ones defined by the XPTO main mapping
engrne. The query is always composed of three parts:

L. One URJ of the external Semantic Web service;

2. One or more property retrictions;

3. An execution predicate which refers indiüduals;

Frgure 5.15 illustrates a definition of a back-end query and its three com-
ponents.

QUffi,Y := sparql(IIRl) /> pt ... PB :> ITEM

tRI := URL

P := property(VALIIE) or where(Pn0P, VALTE)

ITBiI := iten(INDMDUAL)

Figure 5.15: Ba,ck-End Query Definition

As the above figure shows, on the left side of the '/)' operator are.the
connection parameters a,nd on the right the query propertim and individuals.

The main syntactic difference between the two types of queries (local and
external) reside on the left side of the XPTO operator '/)' . There are two
query situations for local querie and one for external:

L. A class narne for local reasoning over ob.iects from that class;

2. Operator by itself for direct SPAnQL-like local reasoning, i.e, query
variables on properties and/or individuals;

3. A compound term with functor sparql/l which identifies the target
external SPARQL agent;

Note, howerrer, that para,meters other than the URJ of the external Web
Service may be needed for the external query execution. As disctssed in sec-

tion 5.2.1 and defined in the SPARQL Protocol for RDF [Cla06], two more
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paxameters ca,n be specified: a response file format and the location of the
ontolory which the system wants to query. The latter is used with Web Ser-

üces attached not only to one ontology but capable of querying, inSPARQL,
any other ontologr in the Web, given its locatiou. Each Web Service adopts
one rsponse format para,meter, although the sender can specify in the query
what format the reponse should take. Thee para,meters must be present in
the progra,m knowledge base as Prolog facts or made available in the execu-

tion context.

The context execution that composes the query is neccmarily different
from the querie that reason over local ontologim, as there is no connetion
between what is includd, as propertim, in the context execution and what-
ever data is loadd into the main engine of XPTO, i.e, the properties in a
back-end query are not a,ssociated with existing predicates that are present

in the query context. This means that although the query has the form of
a GNU Prolog/CX context execution with the predicate iten/l as goal, its
execution is handled differently. The goal is not executd by any unit that
appeam in the context on the right side of the euery, mostly brcause what
is written as propertic of the query will not exist as orplicit units in our
system and thus, in order for a query context to be formed, the prograürmer

must have prior knowledge of the structure of the ontolory being queried.
If no properties na,rre or individuals are known, it is possible to query for
what properties a certain indiüdual has, as detailed next in this section.

On the left side of the main operator '/)' the external agent is specified
and on the right side, the goals and query restrictions. The úght úde of the
operator encode the query that must be mapped to SPARQL. One way to
do this is to translate that inf.ormation into RDF triples, much in the sa,me

way a database is translated into triples, i.e, for each of the n stated ptnP
erties about an individual, the back-end must translate it to (a-1) triples.
The triplm are extracted by the union of each property term of the right
side and the item term, whiú represents the subject of the triple. Frgure
5.16 shows an exarnple.

The query in Figure 5.16 asks for individuals that have the properties
propertyl and property2 and what their values are. All unbound Prolog
variables repreent variables in the triples. If more than one solution is avail-
able for the query, all the results are retrieved using the Prolog backtracking
mechanism. To state a value in the query and therefore apply a restriction
to the solution, a Prolog atomic value can be used to bond a Prolog variable.
In the preüous exa,mple, the substitution of the variablm V1 and IND for
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propertyl(V1):>
property202) :> iten(IND) .

Translates into the RDF triples:
(?IND, propertyl, ?V1)
(?IIiÍD, property2, ?V2)

lbe query:
sparql('uri. org') />

Figure 5.16: Back-End triples generation, Exa,mple L

uolueX and i,nill respectively trenslates to the triplm in Figure 5.17

Figure 5.1-7: Generated triples

The query scheme explained so far only is usefirl if the nalnes of the prop-

ertim of the ontolory are knoutn. To ask for a propert5l na,me, i.e, to geneiate
an RDF triple where the propeúy position is a rmriable, the back-end unit
wbiete/2 should be use. Figure 5.18 illustratm an exa,mple which queries for
all the properties and their values for the individual na,rred i,ndi,uid'ualA.

Figure 5.18: Back-End triplm generation, rrhere clause Example

Note that this clause can also be used like a single ask property, by
grounding the first argument to a Prolog atom na,med with some property
that describes the individual.

(indl, propertyl, valueX)
(ind1, property2, ?Y2)

the Query:
sparql.('uri. org') /> shere(PR0P, VAL) :> iten('individualA')

TraasLates into the RDF triples:
('individualA', ?PR0P, ?VAL)
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The triplm generation proces dividm the GNU Prolog/CX query infor-
mation into two parts: the variablm, i.e, what is asked and the triple sets.

This will result in a direct and transparent translation to §PARQL, where

the rmriables in the query will be the SELECI§PARQL clause arguments and
the triples will form the sets iu the IJIIERE SPARQL clause. For example, the
query prmented in Figure 5.18 wiU be translated into the SPARQL.query
presented in Figure 5.19

Figure 5.19: GNU Prolog/CX to SPARQL Example L

The GNU Prolog/CX to SPARQI, trla.nslation scheme presented in this
section covers simple SPARQL clauses and forms. Other SPARQL query
forms like CONSTRUCT or DESCBIBE or query patterns like ORIIER or OPTIONAL

are not implemented or necesary at this point. The generation of §PABQL
which satisfies the Prolog operational semantics is the goal of the present

work.

5.3.3 Web Agents Communication
After the SPARQL query is constructed, a communication process must

be ca,rried out between the back-end and the Semantic Web SPARQL service
that is to be used. The back-end implements a simple connection model
divided into the following steps:

_ 
1, Eslablish connection;

2. Send query;

3. Receive the response;

4. Close connectionl

Before the query it is sent, some transformation work must be done, i.e,
the query must be encodd accordingly to the SPARQL Protocol for RDF

SEX.ECT ?prop, ?va1
IilHENE

t
'individual.A' ?prop ?val
)
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[Cla06] (see section 5.2.1). This includes appending optional information to
the query like the prefu, the default URI or the response'frle tormat.

After encoding the query the back-end starts the communication process

with the.external agent. This represents the Establish connecti,on step in the
above sequence and includm the validation of the Web service:

o Open the communications;

o Verify whether the external host is up and ready for communication;

After the connection is etablished, the query is then sent. If everything
went well, the external agent response is received and the connection is closed.

This reprments the remaining steps in the back-end query execution list.
Figure 5.3.L prments the communication process.

After receiving the reponse and closing the connection, the proce§s re-

turns to the Prolog side. The XML format that represents the'solutions to
the query follows the specification described in the SPARQL Query Results

XML Format [B806], described in section 5.2.1. The XML whic]r contains

all the existing solutions for the query is then parsed. Figure 5.9 in sub
section 5.2.1 shows an exa,mple of a XML resPonse returued by an ex,ternal

agent. Finally, the back-end will proüde each logic solution to the query
present in the XML, one at a time if more than one are arm,ilable.

6.9.4 Examples and Query solutions

To better illustrate how the back-end operatm, let us focus on a real ex-

a,nrple. The SPARQL service used is hosted at wnlarmglmi,fe.org {Dod06l and

Algorithm 5.3.1: ExtpRuar, CouuuNrcATIoN Pnocess(4zeryr

if, (connedi,onsueres s f ul)
(soclcet ? querA

I repeat
r r- - - | resutt <- read,(socket)then (

I unttl
I soclcetCtosed,;

[return (result)

error + " N oJtasnamer esponse."
return (error)else

)
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is called XAK 3. The XAK SPARQL query service implements the SPARQL
Protocol for RDF {Cla06l and it proúdes a §PAB.QL query engine for RDF
data available on the Internet. The XAK query engine also extends the stan-
dard protocol to provide suppoú for multiple output formats.

The following are the most relevant features that characterize XAK:

Base URJ,: http : //:rnla:rnyknif e . orglap L / rü / sparql,/query ;

Requested Methods Supported: GEI and POST. A GET of the Base URL
without any pa,rameters will return an III1L form suitable for experi-
menting with the query service. POST is almost equivalent to€ET and
should be used in exceptional cases. The SPARQL Protocol notes that
" {GEfl shoulil be used, escept i,n coses where the UilL-encod'ed, query

erce*ds practi,cable li,mi,ts;"

Request Parameters: The request paraureters supporüed by this service,
with the exception of. forrnat, are specified in the SPARQL Protocol for
RDF [Cla06]. Table 5.4 summarise their use;

Table 5.4: XAK

Response Codes: The follorring HTTP response codes wül be returned by
this service:

o 200 - successfirl query;

sThe XML Army Knife is a project by Leigh Dodds. For more information visit his
Web page at http://www.ldodds.com/

Para,rneter Notes

URL encoded SPARQT queryquery
query-uri UR"L from which query

can be fetched. Extension to the SPARQL protocol
Absolute URL of RDF data source(s)
to populate the background graph

defauLt-graph-uri

naned-graph-uri Absolute URL of RDF data source{s)
to be used as na,med graphs
Fbrmat for results. Extension to the §PARQL
protocol. Values depeud on type of query.

format

xslt-uri Absolute UR"L of XSLIT stylesheet to apply
to SEL,ECT query results (ONLY). Extension to
the SPARQL protocol.
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o 400 - malformed query;

o 500 - error processing query or fetching data;

Response Format: By default responses to §ELECT queries from this ser-

úce will conform to the SPARQL Query Results XML Fbrrnat tr8806].
As specified in that document, the MIME type will be applicati,on/sparql-
results+rml;

Additional Response Formats (su,ecr): The format parameter can be
used to select one of the alternate output formats present in Table 5.5;

Table 5.5: Additioml XAK formats

The first forrnat is an htnl document containing query summary and
tabular results. The second format is a json a serialization of reults
and the javascript format generates an btnl table with a SPARQL
class CSS style associated with it.

XAK supports most of the impoúant specifications stated in the SPARQL
Protocol for RDF [Cla06], which makes it a reasonable test case for using with
the back-end. The description dom not mention any tie to a speci§c ontolory
and states the support of the parameters d,efault-graph-uri, and named,-graph-

zri, which mearxl an external ontology must be used for querying purposes.

The W'i,ne OWL DL ontology WBC06] is a sa,mple ontolory usd in the
OWL speification documents and will serve as the use case ontology in this
section. The Wi,ne ontology defines classes, propeúie and indiüduals about
different kinds of winm and, with SPARQL, it is possible to query for RDF' -tríples abôút thê information that exists in the ontologl. Among othêi§lthe
IceWiue class definm two propertim: basBody and hasCoLor (Figures 5.20
and 5.21 respectively).

These two propeúies state that an lceWi,ne indiüdual should have, o'meag

others, valum for the husBod,g and husColor propertim. The first must be
one of two kinds: Med,ium or Full and the latter should be White. The

4For more information about the JSON serialization please visit http://wwwjson.org/

Format Value MIMD type
html text/html
J§On appücation /sparql-resultstj son
jamscript application /j ava.script
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(rdfs: subClass0f,>
(owI:Restriction>

(oul : onProperty rdf :resource=o*hasBody" /)
<owl: allValuesFron>

<owL: Class>
<oul : oneOf rdf : parseTlrye=nCollectionn)

<owl :lhiug rdf : about="#Meditrn" /)
<oul:Thiug rdf : about=o*fulLn />

</owl:oneOf>
</ou1:Class>

</ouI: allValuesFron)
</osl: Bestriction>

</rdfs: subClass0f>

Figure 5.20: hasBodg lceWine property

(osl : iutersecti on0f rdf : parseTSrpe= n Colle ct ion r' )
<owI:Class rdf : about=í#LateHarvestn /)
<or1 :Class rdf : about="*DessertUíten />
(owl:Bestrictiou>

(orl- :onProperty rdf :resource=u#hasColor" />
<owl :haeVaLue rdf :resourceÉn*!íhiten />

</or1: Restriction>
I / oYL z intersectiou0f >

Frgure 5.27: hosColor lceWine property

first property is defined as a subúoss restriction for the lceWi,ne indiüduals
where each one of them must have a value for the property hasBod,y. In the
other hand, the ho^sColor property is defined first as an indiüdual intersec-
tion of two classe (Loteflantesú and DesseúWi,ne) omrd srcond as a value
property restriction that they must have, whiú is the Whi,te color.

Figure 5.22 shows an example of a back-end query that asks XAK to
search the Wi,ne ontolory for all the individuals that have both of these
propeúies.

The GNU Prolog/CX query in Figure 5.22 has no ground Prolog atoms
besides the url that identific XAK.It includes two specified properüies, thus
originating two RDF triples, one for each property. Figure 5.23 shorus the
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?- sparql (' }rttg : I / m3arayloif e . org/api/rdf lspatqL/' ) I >

hasBody(A) :> hasCotor(B) :> iten(IND).

Figure 5.22: Baekend GNU Prolog/CX query to XAK

correspondent SPARQL generated code.

Figure 5.23: Generated SPARQL for the query in Figure 5.22

After the SPARQL generation, the code is sent to XAK. In order to
succmsfrrlly communicate with it, the back-end must first encode the query
as specified in the SPARQL Protocol for RDF [Cla06] and etablish the values

of some para,meters (Figure 5.24 shou,s the generated string that is sent over
to XAK):

o The base zrl is directly obtained from the query;

o The request method is GEf,, so the query is encoded and sent as ân

HTTP CEf, requestl

o The request para.meters used are query arrd defuult-Eraph-uri,. The first
identifies the query and the second'the location of the ta,rget ontology.
At this point, both must be defined in the back-end Prolog knowledge
base as facts;

o Prefix value. Should also be defined as a fact;

o The response format is omitted so that the default §PA.RQL Query
Reults XML Format is used;

If a succesful query response code is retutned, a fiIe with the solutions
is received. This file is in the SPARQL Query Reults XML Format {8806I
(See section 5.1.1) and includes one solution. This XML file is then parsed

SELECT ?id ?hasColor ?hasBody
UITENE T

?íd :hasColor ?hasColor.
?id :hasBody ?hasBody.
)
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GET http : //:rnlarayloif e. orglapi/rdf /sparql/query?def ault-graph-uri
=http . // , .u3 . orgl2O01/sw/l{eb0ut/guide-src/riae . owl&queryÉ

PREFIX+ : +<http : //www .u3. org/ 2OO1/sw/Ueb0nt/guide-src / vírrelâ3>
+ssLect+? id+?hasCoLor+?hasBody+where+d?id+ : hasColor+?hasColor+ . +

? id+ : hasBody+?hasBody)

Figure 5.24: Back-end encoded query example

and the solution rmlue are returned as bindings fior Prolog rmriables as illtrv'
trated by the last linm in Figure 5.25.

Figure 5.25: GNU Prolog/CX query t'o XAK and the returned solution

The solution presents only one individual, Selakslcel\Iine, and the rml-

ues Medium and White for propertia hasBody alord hosColor respectively.
This means the whole ontolory orüy has one individual that has those two
properties defined. Figure 5.26 shows the definition of §elakslce\üine found
in the ontolory.

So there exists only one indiüdual that has values for both hasColor and
hasBoily propertie. Let us try a more general query and ask for all tbe indi'
üduals that have the hasFlauor propeúy and what its rmlue is. As there are

several individuats with this propeúy defined (44), the Prolog backlrachi,ng

mecha.nism is used to fetch atl the solutions, one at a time. Figure 5.27shows

the query and the first three solutions.
Naturally, the property hosFlauor is defind in most of the individuals of

the Wi,ne ontology. As can be seen in Figure 5.27,the first returned solutions

are the winm Corbans Pri,uateBi,n Sauuignon Blonc, Chateau De Meursault
Meursaalt and PeterMccoy ChardonnayQ.The first has a Strong flavour and

?- sparql (' http : //xnLa:myfoif e . org/api/rdf /sparql /' ) I >

hasBody(A) :> hasColor(B) :> iten(IND).

A = 'http : //rrr . uB . org /2OOL/ st ltCeb0nt/guide-src/uine#Meditrm'
B =' http : / / vuv .y3 . orgl 2OOt / ag/Iíeb0ut/guide-src/wine#l{hite'
IND =, http z / / vcv . Y3 . org/ 2AOí/ sw/I{eb0at/guide-src/viae#Selalrsl{ine' ?
(4 ns) ao
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<IceUiae rdf, : ID=mSelalslçeUine")
(Locatedln rdf : resource='r#NewZealandRegioun />
<hasMaler rdf :resource="#Se1aksr' /)
<hasFlavor rdf :resource=n#Moderatett /)
<hasBody rdf:reeource=r'*Medirun'r /)
<hasColor rdf :resource=n#lJhite",/)

</Icetíine>

?- sparql ( 'http : //:rnlarnyloife . orglapi/rdf I aparqL/ ' ) />
hasFlavor(F) :> lten(I).

F =' http : / /wrw . u3 . org I 2OO U su I fl eb0at /guide -src/
wine*CorbansPrivateBinSauvignonBlan c'

I =' http : //wur. w3. org / 2OOt / su /Veb0nt/guide-src/wiue#Stroug' ?

F =' http : //wnr. 13 . org / 2OO L / su lWeb0at /,guid e- sr c /
wine#Chat eauDeMeursaultMeurs ault'

f =, http : //www. 13 . org / 20OL / sv ltdeb0nt/guide-src/wine#1,Íoderate, ?

F =' http : //www . w3 . org I 200 7 / sy / Heb0nt/guide - sr c /
rine*Pet erMc coyCtardonnayQ'

I =' http : //rwu. w3. org / 2OOt / sy lil eb0utlguide-src/wiae#I'[oderate' ?

I

2

3

4

6

6

7

E

I
to

ll

t2

13

t4

Frgure 5.26: OWL Definition of the SelokslceWi,ze wine

Figure 5.27: XAK errarnple 2, udth more than one solution returned

the other two are Mod,erate.

5.4 Results and Conclusions

The XPTO back-end presentd in this càapter is still work in progress.

With the current capabilities, one can use the e:<prmsiveness of Logic Pro
gra,mming to perform basic querie to an ontology via a third party SPARQL
Web Service. These capabilities can then be combined with other GNU

Prolog/CX data access forms for reasoning over different data repositorie.
Fbr exa,mple, an application ca.n rxle indifferently local data provided by the
XPTO engine, external data through the SPARQL back-end and data resid-
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ing in a relational data base accessed using ISCO {AN06].

Although no proper benchmarks were measured, the oçerimental work
revealed no particular performance issum on the back-end side, which means

that practically only the XAK connection will introduce some latencies. Fbr

instance, the complete procesing time for the Wi,ne examples are no longer

that 20 milliseonds. The first (1 solution) take { ms, and the second (44 se
lutions) takes 12 ms to return all of them. Note, however, that the generation

of SPARQL is currently done in a per-query basis. Oue important feature to
be implemented in future work is to allow the generation of SPARQL code

for a composite (e.g. conjunction) of GNU Prolog/CX queries.

The communication proces can also be improved. Flor instance, the
implementation of a query cache, eventually backed up by an relational
database, in order to avoid to establish, in the sa,me program, redundant
connections that asks for previously sent queries.
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Chapter 6

Conclusion

When the research for this work began, the Semantic Web was emerg-

ing as a hot topic in mâny conferences and workshops around the globe.

Nowadays, only two years later, we already have a few Semantic Web yearly
conference and almost every other conference about Internet technologies
conteins a Semantic Web workshop. The s^.-e happened with documenta-
tion, where the number of books, articles and Web sites about the Semantic
Web are much larger today then they were two years ago. This means that
the Semantic Web concept is growing at a great speed and, hopefirlly, will
help to improve the Internet as it is today.

Being on board the "Semantic Web train" gave us ,great opportunities:
we followed the development of tectrnologie like OWL and SPARQL from
a very early stage and we had the oppoúunity to communicate and share

thoughts with people actively working on the W3C document specifications
about Semantic Web technologies.

The motirm,tion for this work envisioned the development of an inÍorma-
tion system for the Semantic Web with capabilitim to, with'some work, evolve

into an information hub capable of merging any kind of data from any kind
of source in a way it could be used to retrieve and reason over knowledge.

One.of our goals was the building of a contextual logic progralmming

framework for the Semantic Web, in which reasoni4g for documents decribed
by ontologies could be carried out. Within a reasonable set of limitations, this
was achieved with the implementation of XPTO. It can paxse and reprment
OWt ontologie from a perspective of contextual logic programming, where
access to this system proüdm a way for reasoning over a previously loaded
ontolory by meens of logic prograrnming.

The loaded ontology is reprmented by several GNU Prolog/CX units that
map all the information, entitim and relations present in the ontolory to a
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GNU Prolog/CX point of view. Querying can then be performed through the
use ofcontexts that include the units in the representation using the operator

'/>t .

The fact that it currently dom uot support a well-defined OWL sub
language in its fullness is one of its main limitations. Another major short-
coming of the current state of the work is that it cannot preseutly work with
more than one ontology at a time. The objective is to be able to load an
arbitrary number of ontologie and perform mixed queries over these. The
paxser works, but it is not very robust yet nor can it handle large ontologim.

The other major goal was the development of a back-end for the SPARQL
language. This has been accomplished and a subsystem capable of mapping
GNU Prologl0Kto SPARQL queries was implemented. With the current ca'
pabilities, one can use the e:çressiveness and abstraction power of logic pro-
gramming to perform basic querim to an ontolory üa a third party SPARQL
Web Service.

One of the major difficulties was the choice of the Semantiô Web tech-
nologies to be used and supported by the system. As of this writing there
a,re no standard OWt query languages yet, theclosest thing being SPARQL,
which is itself being worked on with the intent of dmigning such a standard.

More importantly, it is an RDF query language, which creatm some limita-
tions when used to query ontologim described in OWL. Despite all the efiorts
being made, it is a matter that is still work in progress with many unsettled
issues [Bij06].

The base of the Semantic Web architecture is reasonably etablished as

a starting point, i.e, how the Semantic Web inforrnation will be represented

with WBC sta,ndard recommendations such as OWL and H:DF. However, the
fact that the top layers of the Semantic Web architecture are still suffering
drangm and the fact that SPARQL just dropped a step back from WBC
candidate recommendation to working dra,ft clearly reflects the amount of
work that has yet to be done yet for establishing standards in querying the
Semantic Web.

6.I- F\rture Wbrk
Along the road we had to make tough decisions and move along in order

to achieve the goals we set out for. This process necessarily originated some

limitations in our work that we marked as subjects to be improved upon, as

future work:

o Supporting a well-defined OWL sublanguage is necssary in order to
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provide reliable, trusted semantic Web agents whiú will be usable in
wider application scenarios. We are working tourards providing'cor-
rect OWL DL compatibility at the reasoning level over the interual
representation;

o A crucial goal is to proüde the core with capabillties for working with
several ontologies at a time. Although it is not relevant for the purpose

of this work, it is an essential feature for any Semantic Web application
software and we intend to use GNU Prolog/CX's versatile modularity
mechanisms to effectively deal úth this issue. [n order to achieve this
some change will have to be made to the representation. Thee include
changmg the name of the units (and unit file) to avoid name clashes,

and altering the query method to take into account the several ontole
gies. The unit individuals will also have to be changed to guarantee

the separation of individuals of the loaded ontologim, possibly becom-
ing several units, one for each loaded ontolory;

o The XPTO pa,rser is basic and not very flexible. It should be more

efficient.and more robust in order to handle larger ontologies;

o The back-end generation of SPARQL is currently done in a per'Et'ery

basis. One important feature to be implemented in future work is to
extend the mapping engine to allow the generation of SPARQL code

for a composite (e.g. conjunction) of GNU Prolog/CX queries;

o The back-end communication process can also be improved. For in-
stance, by implementing a query cache system backed up by an internal
database. This would allow a more retricted control of the connections
in order to not establish, in the same progra,m, redundant connections
that ask for preüously sent queriesl

6.2 Final Considerations
- XPTO provide-aa abstraction repreentation layer for Web ontologies
that can be accessed by logrc progra.ms. With the additional back-end ca-

pabilities, one can take advantage of the abstraction capabüties of Logic
Progra,mming to query ontologies üa a third party SPARQL Web Service.

A XPTO represented ontolory can then be used with other GNU Pro
log/CX data access forms for reasoning over different data repositories. Fbr

exa,mple, an application can indifferently use local data providd by the
XPTO engine, external data through the SPARQL back-end and data re-

siding in a relational data base accessed using ISCO [AN06]. This scenario
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brings us some steps closer to our initial intentions about creating an infor-
mation repository that can access and reason, from a GNU Prolog/CX point
of view, over data from different sources.
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