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Abstract

The Semantic Web represents an evolutionary step for the Internet where
data is modeled to be semantically adequate also for machine agents. For
this meta-info to be useful, systems must be built which can process it in
order to infer knowledge.

We aim for the creation of a computational system, from a contextual
logic programming point of view, that can process information from different
sources in different formats.

Throughout this thesis we describe a prototype with two components
which represent the main contributions of the work described herein:

e A core that is capable of representing Web ontologies;
e A back-end capable of mapping GNU Prolog/CX to SPARQL queries;

The core systemn acts like a computational hub for knowledge modeled
by OWL ontologies that enables querying that representation. The back-end
provides functions for communicating with SPARQL agents so that the rea-
soning of the internal knowledge base can be merged with external ontologies.



Resumo

X.P.T.0. - Um sistema de informagao para represen-
tar e interrogar ontologias Web.

O termo Semantic Web representa um passo evolutivo para a Internet
onde os dados sdo modelados de forma a serem semanticamente adequados
também para agentes informaticos.

A necessidade de sistemas informéticos que consigam processar estes da-
dos de forma a inferir conhecimento motivou o nosso objectivo: criar um sis-
tema que consiga processar informagcao, de um ponto de vista da programacao
em légica contextual, vindo de diferentes fontes em variados formatos.

Esta tese descreve um protétipo com dois componentes que representam
a principal contribui¢do do trabalho efectuado:

e Um sistema capaz de representar ontologias Web;
o Um componente que traduz interrogacdes GNU Prolog/CX para SPARQL;

O sistema actua como um hub computacional para conhecimento descrito por
ontologias OWL e permite fazer interrogagoes a essa base de conhecimento.
O componente adicional permite fazer interrogacoes a agentes SPARQL ex-
ternos, o que possibilita juntar o conhecimento vindo de fontes externas com
o representado na base de conhecimento interno.
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Chapter 1

Introduction

The work presented in this thesis is the result of a two years masters
research that unifies the Semantic Web and Logic Programming topics in
order to deliver the implementation of XPTO ! and a SPARQL (Simple
Protocol and RDF Query Language) back-end. XPTO is a contextual logic
programming system capable of acting as a computational hub of information
focused mainly in Web ontologies. The associated back-end is aimed to act
as a communication socket with outside Semantic Web agents for querying
OWL (Web Ontology Language) Web ontologies using the SPARQL query
language.

Part of the work described herein has been previously présented. An
initial description was shown in [LFAQ7]. Use cases and examples were pre-
sented in [FLAO7].

1.1 Background

The Semantic Web. This phrase represents a concept that can bring
great excitement to some and at the same time indifference, or even disbelief
to others. Curiously, an identical phenomenon affects Logic Programming,
namely programming languages such as GNU Prolog {DC00]. Many see logic
programming as an important and powerful tool that can be used successfully
in a wide variety of situations, but for others it is only suitable for academic
projects associated with artificial intelligence research.

The work presented in this thesis represents an effort to join together
these two love-hate concepts/technologies by implementing an information
system capable of processing and reasoning over Web ontologies by means of

XPTO is a recursive acronym that stands for XPTO Prolog Translation for Ontologies.



contextual logic programming.

I have a dream for the Web [in which computers] become capable
of analyzing all the data on the Web [...[]. A “Semantic Web”,
which should make this possible, has yet to emerge, but when it
does, the day-to-day mechanisms of trade, bureaucracy and our
daily lives will be handled by machines talking to machines. The
“intelligent agents” people have touted for ages will finally mate-
rialize. — Tim Berners-Lee, 1999.

As envisioned by Tim Berners-Lee, the Semantic Web will bring to life
software agents capable of dealing with many daily needs in an almost fic-
tional way: computer agents that find the information they need and negoti-
ate with other similar agents in our behalf so they can manage our data, our
appointments, our calendar in an automated way. Web searches will become
intelligent and more accurate, data will be interchanged by all kinds of Web
services and our life will become better. However, the more sceptic claim
that the Semantic Web will represent only a little more than what we have
now, maybe a little smarter at the cost of extremely complex software.

As both the amount of information and its complexity grows frenetically
in our technological networked society, there is a need for smarter and more
refined computer support for personal and networked information that has
to blend the boundaries between personal and group data.

To reach the level of functionality required in such a vision, a few tech-
nologies must emerge and mature, for instance:

o A data format of machine-readable documents with meta-data;

e Languages to allow the presentation of that kind of data;

Languages for querying these;

Sharing and interchanging of data by universal Web services;
e A trusted and secure layer for data sharing;

e Appropriate software agents;

The fact is that those technologies already exist and there is no need to
wait for new revolutionary technologies. For instance, we already have Web
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ontologies expressed as RDF/S (Resource Description Framework Schema)
and OWL files and we have SPARQL and other query languages. The hard
work now is to improve those languages and protocols for standardization
purposes in order to allow an evolution from extensions of what already
exists to the emergence of advanced software agents that integrates logic,
semantics and artificial intelligence.

1.2 Motivation

The Semantic Web concept is recent. Although it was first idealized by
Tim-Berners Lee around 1994 when he founded the W3C - World Wide Web
Consortium, it was in recent years that his vision has began to gain some
momentum. W3C is currently the main international standards organization
for the World Wide Web and is organized as a consortium where member
organizations maintain full-time staff for the purpose of working together in
the development of standards. They host a Semantic Web FAQ (Frequently
Asked Questions) where the following question and associated answer can be
found:

1.3 What is the killer application for the Semantic Web?

It is difficult to predict what a killer application is for a specific
technology, and the prediction is often erroneous. That said, the
integration of currently unbound and independent silos of data in
a coherent application is certainly a good candidate.

The killer application idea is one of the thoughts that serve as a guide
when doing research. It is an appealing quest and presents itself as a desirable
goal.

As stated in the FAQ, integration of any kinds of data from any kind of
source in a single silo where it can be merged and used by several applications
represent one of the most dearly wanted concepts in the Semantic Web.

This killer application scenario represent the main purpose and motiva-
tion for the work presented in this thesis, as it is its intention to create the
foundations and first steps of a Semantic Web information system with ca-
pabilities for successfully responding these demands.

1.3 Objectives

Our main goal is to use contextual logic programming as a framework for
Semantic Web agents, in which knowledge representation and reasoning for

3



documents described by ontologies can be carried out. As such, we adopted
the GNU Prolog/CX framework partly described in [AD03] which makes use
of persistence and program structuring through the use of contexts [ANO06].

Throughout this thesis, a prototype implementation of a Semantic Web
system is described, comprised of two main components:

1. A core that is capable of representing and reasoning over Web ontologies
from the perspective of contextual logic programming;

2. A back-end capable of mapping Prolog/CX queries to SPARQL queries,
thereby able to query external Semantic Web agents, returning the re-
sults as bindings for logic variables present in a GNU Prolog/CX pro-

gram,

The presented system is also meant to be a foundation for a larger frame-
work, setting sights on an information computational hub for transparent
reasoning over data coming from several different sources in any kind of for-
mat.

1.4 Related Work

Semantic Web, Logic Programming and Web ontologies are the three
main topics to which the presented work relates. The implemented system is
meant to act as a Semantic Web system information agent, capable of com-
municating with other Semantic Web agents as a way for data and knowledge
interchange.

Since its emergence, the Semantic Web idea has been clearly exposed
both in goals and vision. However, many decisions are yet to be made and
many problems and issues remain to be resolved. Among others, capabilities
for querying and data interchanging in the Semantic Web are two crucial
steps towards the success of the vision. These two steps represent the main
scope for the presented work. Although a few different approaches to this
topic already exist, we propose a contribution that focus on a different point
of view of the problem. Some tools for data access information that already
exist are, for instance:

e Thea [Van06] - An OWL tool capable of parsing an OWL ontology
and representing [Van07] it using Logic Programming;



e Racer [Sof07] - An OWL reasoner and inference engine for the Seman-
tic Web;

e Protege [Pro06] - A Semantic Web platform that provides tools to
construct Web ontologies. It has a plug-in interface [KMR04] that
allows integration with Web ontology reasoners such as Racer;

e Jena [Jen06] - An Open Source Java framework for the Semantic Web.
It provides API’s for two Semantic Web languages (OWL and RDF)
and a SPARQL query engine;

e Pellet [SP04] - A reasoner for the OWL DL sub-language;

XPTO and the associated SPARQL back-end are also Semantic Web data
access tools. However, they both use contextual logic programming as the
mediator framework for Semantic Web agents, in which knowledge repre-
sentation and reasoning for ontology documents can be conveniently carried
out. Modularity in Logic Programming is an old issue in the scientific logic
programming community and has been recognized as an important and rel-
evant challenge. GNU Prolog/CX is an implementation of the concepts of
contextual logic programming for Prolog. Its view of modularity brings on
board the concept of unit - a unitary module, and context - a group of units
that represents a goal execution.

Our vision goes beyond a simple computational hub for data directly asso-
ciated with Semantic Web languages as OWL and RDF and query languages
as SPARQL. Integration and reasoning over data from several sources and in
different formats is the ultimate goal to achieve, hopefully, in future work.

1.5 Thesis Organization

The remainder of this thesis is organized as follows: chapter 2 introduces
the Semantic Web concept and some of the most relevant technologies asso-
ciated with it. Chapter 3 discusses the technologies used in the implemented
system and gives a perspective of the impact that Logic Programming may
have in the Semantic Web. The XPTO system is presented and discussed
in chapter 4 Next, in chapter 5 the implementation of a XPTO back-end for
the SPARQL query language is presented and discussed. Finally, conclusions
are drawn and future possibilities are discussed in chapter 6.
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Chapter 2

Semantic Web

The purpose of this chapter is to introduce the Semantic Web. As a
concept [BLO1] firstly envisioned by Internet inventor Tim Berners-Lee, the
Semantic Web embraces many ideas, technologies, advantages and issues that
‘are expected to be covered and discussed throughout the following sections.
For a more detailed introduction about this topic please consult the refer-
enced bibliography, for instance [Tho04] or {Gri04].

2.1 Today’s World Wide Web

There is no question that the Internet and the World Wide Web has been
changing our society from many years now. Since its first appearance among
the military and academy communities to the present day, the Internet has
revolutionized, among many other things, the way we communicate with each
other, do business and access information. This technological revolution is
leading us toward a knowledge society where the computers, or more impor-
tantly, the data and knowledge pool they represent, stand as one of the most
important aspects of our lives. Today’s Internet is all about information and
communication, where us, humans beings, are the source and destination of
those technological instances. The majority of the Web pages and Internet
applications written are for human readability and comprehension, where
computers act as the technological vehicle to achieve that purpose. As of

-this writing, typical uses of the Web involve people’s seeking and making use
of information, searching and communicating with other people, purchas-
ing products via electronic commerce and using Web applications. However,
these activities are not well supported by software tools, and the only one
we can not do without is search, clearly the main tool for using today’s Web.
Nevertheless, there are some problems [Gri04] associated with its use:



e Lots of pages retrieved, low precision on their relevance with regard to
our search. Too much can easily become as bad as too little;

e High sensitivity to vocabulary. Most of the times we do not get the
results we want because relevant documents use different terminology
from the original query, although semantically queries should return
similar results;

e Results are single Web pages, and if we want information that is spread
over several documents, we must throw different queries, one at a time;

Despite great technological improvement achieved by most companies
with their search engines, the difficulty remains the same: the amount of
information and Web content outpaces technological progress, which makes
the Web a gigantic unorganized pile of information, where most of it is not
reliable.

One of the main obstacles against providing better support to Web users
is that, at present, the meaning of Web content is not machine readable.
Computers can adeptly parse Web content for layout and routine processing,
but in general they have no reliable way to process the semantics. We can see
our bank statements, our photographs and our appointments in a calendar,
all this on the Web, using some great Web applications. But can we browse
our photos in our personal calendar to see what we were doing when we took
them? Can we see our bank statement lines in our calendar?

One way to achieve this vision is to struggle for a more intelligent Web,
where its contents is more machine processable, thus enabling the use of
techniques to take advantage of these representations, which can be described
by meta-data that declares what the Web pages are, what they are capable
of doing, and how they might change over time.

This vision is called the Semantic Web, mainly propagated by the Word
Wide Web Consortium (W3C) [Con07], where the driving force is its director
Tim Berners-Lee, the very person who invented the Word Wide Web back in
the late eighties. It is important to realize that the Semantic Web will not be
a technology parallel to the World Wide Web; instead it will gradually evolve
out of the existing Web. From this initiative he expects the realization of its
original plan for the Web, a vision where the meaning of information played
a more important role than it does in today’s Web. In a seminal Scientific
American article in May 2001, Berners-Lee and his colleagues explain:

“The Semantic Web is not a separate Web but an extension of the
current one, in which information is given well-defined meaning,
better enabling computers and people to work in cooperation.”
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The above statement clearly tells a few of the most important facts about
the Semantic Web: its emergence, not as a new Internet but as an extension
of the current Web, the importance of meaning in information published
on the Web and the desire for capabilities to allow a standardized global
access to data, in any format from any data source. Moreover, what ideally
describes the Semantic Web vision is to add a meta-data layer on the current
Web so that it can be shared, trusted and consumed by software agents in
order to proceed with their automated actions.

2.2 Evolution Towards the Semantic Web

As the originator and mentor of this vision Tim Berners-Lee puts it [BLO1],
the Semantic Web is a natural evolution of the Internet and, hopefully,
will provide the foundations for the emergence of intelligent systems and
agent layers over the World Wide Web. As said, the standard Web page
provides data oriented for human comprehension, which means a computer
agent can not intelligently reason about that information, and therefore, can
not act as an intelligent tool for a personal computer user. The Semantic
Web strives the creation of information technology that will allow explicit
machine-processable meta-data documents that describe the meaning and
semantics of the data published in the Web.

All this means a revolutionary move in some.important areas as the
Knowledge Management topic, which is, nowadays, one major organizational
issue present on any competitive company and organization. Most informa-
tion is currently available in a weakly structured form, and with the arrival
of the Semantic Web, much more advanced knowledge management systems
can be achieved: knowledge can be organized in conceptual silos according to
its meaning, query answering over multiple documents will replace keyword-
based search and maintenance can be supported by automated tools, which
will be capable of checking for inconsistencies and extract new knowledge.

The Semantic Web is the Internet of structured and organized informa-
tion. This structure will make it easier to perform actions over the Web, like
execute complex tasks built upon the results of knowledge reasoning.

2.2.1 Search and the Semantic Web

As mentioned, current keyword search still has some weaknesses and lim-
itations. Can the implementation of the Semantic Web progress towards the



perfect Web search? As John Battelle states is his book The Search [Bat05],
perfect search will require more than ubiquity and personalization. The vast
information now available is often meaningless unless it is somehow tagged
and organized. In 2002, Paul Ford wrote an essay entitled August 2009: How
Google beat Amazon and eBay to the Semantic Web ! that tied together Tim
Berners-Lee vision and the then-emerging power of Google:

“Enter Google. By 2002, it was the search engine, and its ad
sales were picking up. At the same time, the concept of the “Se-
mantic Web,” was gaining a little traction [...]. So what’s the
Semantic Web? At its heart, it is just a way to describe things
in a way that a computer can “understand.” Of course, what’s
going on is not understanding, but logic, like you learn in high
school.”

Ford did not stop here and showed how, once the Semantic Web arrived,
Google would explode into a global marketplace that would tie together good
information about sale products and good search engines connecting them.
It is impossible to say that the Semantic Web will bring upon us the perfect
information search engine, but it will certainly bring very powerful founda-
tions for better ones. For instance, the search engines will be able to look
for pages that refer to a precise concept instead of collecting all the pages in
which certain and ambiguous keywords occur. Moreover, the search engine
will be able to explore the generalization or specialization of information.
When a query fails to retrieve relevant documents about the asked query,
the search engine may suggest a more general query, or in the case where
there are thousands of hits, a more specific one. The search engine can also
be more proactive is this matter and run this follow up queries by itself.

2.2.2 Semantic Web vs Web 2.0

Another currently hot Internet topic is the so called Web 2.0. Considering
all that was written in this chapter about the Semantic Web and its role as
an evolution of the current Web, the reader might understandably think the
tag Web 2.0 fits as a natural name for the Semantic Web, and then assume
that both are the same concept. They are not, although at the time of this
writing this still represents a common misinterpretation.

Web 2.0 is all about Web applications, great looking Web design and,
more importantly, Web community. This means Web 2.0 is a way of building

1The complete essay is available at http://www.ftrain.com/google_takes_all.html
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services over the World Wide Web universe, using existing technology, but
following some straight design principles. Author Paul Graham 2 described
in an essay called Web 2.0 3 three representative Web 2.0 guidelines:

1. Technology. Web 2.0 applications function much like any desktop
one, which basically means a Web application can now be more than
a simple collection of pages linked together. This is achieved using
good DOM 4 manipulation and AJAX, shorthand for Asynchronous
JavaScript and XML.

2.- Democracy. Web 2.0 is about community and information sharing.
Sites like Wikipedia, Digg, Del.icio.us and Reddit have revolutionized
what most people decided that count as news and where to we look for
information and knowledge.

3. Don’t mistreat users. If a Web page tends to be an application, it
must have a very good level of usability and a quality human-machine
interface, but more important it must know how to treat its users well.
During the Internet bubble a lot of popular sites were just too bad,
loaded with obtrusive elements that sent the message that this was
their site, not the user’s site.

All that said, it is important to underline that Web 2.0 is not technology,
it is not AJAX, and it is not a features list. It is a concept without hard
boundaries, a set of design principles and practices. The Web 2.0 concept
began in a conference brainstorming session between O’Reilly and MediaLive
International, with the purpose of studying what all the companies that have
survived the collapse of the big Internet bubble have in common. Later, Tim
O’Reilly wrote an essey entitled What is Web 2.0 ° in which he explains his
vision about design patterns and business models for the next Internet based
generation of software.

Web 2.0 is all about people: let the users create, collaborate, share and
interact despite whatever back ends are used and how they work. The Se-
mantic Web is, in a way, on the opposite end: standardize all your data in

2Paul Graham is an essayist, programmer, and programming language designer. He
founded the companies ViaWeb - later acquired by Yahoo and Y Combinator. He is also
the author of the famous Hackers & Painters book.

3http://www.paulgraham.com/Web20.html

4The Document Object Model (abbreviated DOM) is a tree-like representation of the
HTML in the page. Using Javascript, one can manipulate page elements on the fly

Shttp://www.oreillynet.com/pub/a/oreilly /tim/news/2005/09/30/what-is-Web-
20.html
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one technology, encode it in another and let the machines loose on it. So, we
can think of Web 2.0 as high-level experience directly aimed for the personal
computer user and the Semantic Web as a low-level data solution. But the
great thing is how these two paths can interact. Tim Berners-Lee presented
in a talk ® his opinion about this matter and concluded with the idea that
both trends are good separately and great together. Kendall Clark, manag-
ing editor of XML.com and the managing principal of Clark & Parsia LLC,
a Semantic Web company, presented one possible scenario:

“Imagine being able to ask Flickr T whether there is a picture
that matches some arbitrary set of constraints; if so, then asking
delicious whether it has any URLs with the same tag; finally,
turning the results of those two distributed queries into an RSS
1.0 feed. ”

This and other scenarios are very promising and not too far from happen-
ing. Web 2.0 is already a reality present in many Web sites, and much more
are being built at this time. With the emergence of the Semantic Web, it is
only a question of time before scenarios like the one described above start
popping around the Web. '

2.3 Semantic Web Technologies

Billy woke up and stood against the bathroom mirror. As he looked at his
cheek, he could understand the growing pain he was feeling. He opened his
laptop and begun to talk with Beatriz (a Semantic Web agent software): - I
want to make a dentist appointment for next week. Beatriz began her duty by
checking Billy’s last dentist appointment. However, this is the first time in
years that Billy needs this type of checkout, so no luck there. Beatriz retrieved
recommendations details provided by Billy’s primary care doctor agent and
fetched a dental care office list. The first hit was Adam & Adam Facilities,
and communication with his agent began. However, their schedule didn’t have
any available slot in the upcoming week. The second hit, Milo Dental Health,
was about fifteen miles away from work, was available, but its reputation was
low in the trusted rating services. The next hit was CTU Dental Care, and
Beatriz tried to match available appointment times with Billy’s calendar. In
a few minutes Beatriz returned two proposals, but unfortunately Billy was not
happy with either of them. Billy decided to set stricter time constraints and

6The talk is available at http://www.w3.0rg/2006/Talks/1108-swui-tbl/
Flickr is a Web application (http://www.flickr.com) for publishing and sharing photos.
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asked Beatriz to try again. The next alternative was a dental care office with
great reputation, only a few miles away from Billy’s work office, and an open
time slot that made Billy happy. However, Beatriz was installed only a few
days back, and so Billy asked Beatriz to explain some of her decisions. Beat-
riz provided appropriate information. Billy was satisfied, and asked Beatriz
to take all the necessary steps to finalize the task.

The personal agent future scenario presented above is not science fiction;
it does not require new revolutionary technology or an outrageous scientific
progress to be achieved. The challenge [Gri04] is more one of technology
adoption rather than a scientific one. Partial solutions to all of the important
problem parts exist, where integration, standardization, adoption by users
and development of tools is what is most needed at this point. But, of course,
further advances in technology will lead to a more advanced Semantic Web
and will enable to step over the present difficulties.

Data About Data

The Web pages we can see today in the Internet are predominantly writ-
ten in HTML. This will present the information in a way that is acceptable
for people to read and understand, but unorganized and meaningless for
computer based engines. To step over this issue, the Semantic Web focuses
on adding information to Web pages: meta-data, information about informa-
tion. If HTML is replaced by a more appropriate language, then the standard
Web pages could carry alongside their content information that brings mean-
ing to its information, data about data that captures the meaning of the data
present on the Web page.

2.3.1 Semantic Web Main Principles

Standardizing on the key technological components that enable the devel-
opment of the Semantic Web is one of the main goals of the Word Wide Web
Consortium for the Semantic Web. Around the end of 2001, Marja-Riitta
Koivunen and Eric Miller from W3 published a document # describing six
main Semantic Web principles. Those are detailed next and viewed as major
steps and guidelines for the Semantic Web development:

1. Everything can be identified by URIs.. An identifier is needed
to unequivocally name an instance or resource. Fortunately, the Web
already has this concept: the URI (Uniform Resource Identifier). This

8The document is available at http://www.w3.org/2001/12/semWeb-fin/w3csw
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gives the possibility of referring to an object with an identifier over-
coming problems related to different geographic locations. Thus, for
example, the city of Evora can be referred to by the URI of its official
Web page (Figure 2.1).

Figure 2.1: Semantic Web identifiers

2. Resources and links can have types. The current Web consists
of resources and links that represent the addresses of those resources.
Although a human can easily distinguish a Dental Web service from
Mike’s personal Web page, a machine will have some problems. There-
fore, each resource can have associated types to explicitly specify if it
is a document, a file, a person, etc.

3. Partial information is tolerated. Like the current Web, the Se-
mantic Web is unbounded. Semantic Web tools need to tolerate the
data decay that comes from problems like linked resources that cease
to exist or addresses that may be reused and still be able to function
in spite of that.

4. There is no need for absolute truth. Not everything found on the
Web is true and the Semantic Web does not change that in any way.
The applications can decide what they trust and what they do not by
using the context of the statement, like who said what and when and
what credentials they had for saying it.

13



5. Evolution is supported. Every Web defined concept has one or more
authors. However, each author can define the same concept in different
ways at different times. The Semantic Web aims to allow the com-
bination of all these definitions and not discard any past information
(See Figure 2.2). So, it uses descriptive conventions that can expand
as human understanding expands. In addition, the conventions allow
effective combination of the independent work of diverse communities
even when they use different vocabularies.

il
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Figure 2.2: Objects evolution

6. Minimalist design. A major important design goal is to make the
simple things simple and the complex things possible, aiming to stan-
dardize no more than is necessary.

2.3.2 Semantic Web: a Layered View

Tim Berners-Lee’s view and design of the Semantic Web proceeds in steps,
each one building a layer on top of the other. This vision is represented in
Figure 2.3, which presents the classic layered Semantic Web scheme. This
approach is meant to simplify and ease the consensus over discussions about
each component, since usually there are several research groups moving in
different directions. In building one layer on top of another, two important
design principles should be followed:

e Downward compatibility. Agents that fully understand a layer
should also be able to interpret information written in lower layers.
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e Upward partial understanding. Agents that fully understand a
layer should also be able to partially interpret higher layers.

Figure 2.3: Semantic Web layers

At the bottom we find the URI and Unicode layers. Those are meant to
make sure everyone uses international character sets and provide means for
identify objects in the Semantic Web. The XML layer makes sure we can
integrate the Semantic Web definitions with the other XML based standards.
XML (Extensible Markup Language) boosts the functionality of Web docu-
ments exchange by providing structure and means to identify information in
a flexible and adaptable way.

Above is the RDF and RDF-S [MMO04] layer. RDF (Resource Description
Framework) is a basic data model for describing simple statements about
objects and, although RDF does not rely on XML, it commonly has an
XML-based syntax, and therefore is commonly called RDF/XML °. RDF
Schema [MMO04], which is based on RDF, provides additional modeling prim-
itives like classes and properties that enable the hierarchical organization of
Web documents. RDF-S is a language for the description of resources and
their types and can be viewed as a limited and primitive language for de-
scribing ontologies. Next is the Ontology layer. It supports the evolution
of vocabularies as it can define relations between different concepts. Plus
the Digital Signature layer for detecting changes to documents, these are the
layers that are currently being standardized in W3C working groups.

On top of the Ontology layer sits the Logic, Proof and Trust layers. Those
are currently being researched and only simple application demonstrations

9As a data model, RDF assumes several forms. Here we present it as XML documents,
bu it can also be presented in other formats like a Turtle serialization[Dav07].
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are being built. The purpose of the Logic layer is to enable the writing of
rules while the Proof layer executes rules and evaluates together with the
Trust layer for applications whether to trust the given proof or not. Most
of the work today is happening around the Ontology layer, and as already
observed 1° by Tim Berners-Lee, the higher layers are likely to take place
only in a near future.

Since its first publication, the layered approach has been used as one of
the main references for explaining the Semantic Web architecture. However,
as time went on it has suffered several changes resulting of the constant
development of the Semantic Web technologies. At the time of this writing,
the latest version is illustrated in Figure 2.4.

_ Figure 2.4: Semantic Web layers, latest version

Note that Rules and the SPARQL query language are now mentioned,
which points out the fact that how the Semantic Web data is going to be
queried is a very important aspect. Also note the Applications layer at the
top. Semantic Web applications could be really important since they could

10The article is available at http://www.xml.com/pub/a/2000/12/xml2000/timbl.html

16



© o -3 -] ;) [ W N [

help create tension among software developers for convergence of Semantic
Web vocabularies. The Semantic Web stack is not written in stone and prob-
ably will suffer more changes in the future. For instance, authors Bijan Parsia
and Ian Horrocks discuss in more detail the Semantic Web architecture and
also introduce an alternative two towers approach [HPPSHO05].

As Figures 2.3 and 2.4 show, RDF is the main language for representing
and interchanging information. Note that information is not data. Data is
what XML represents in a document that, for example, is sent from point
A to point B. That data will probably have no use outside those two par-
ties, whereas RDF is designed to present information to be shared, published
and used by anybody. This information is transported as triples in the form
(Subject, Property, Object).

RDF, as a data model, can be expressed in several ways. Being the
underlying structure of any expression in RDF a collection of triples, those
can be better represented as a graph for human understanding. However, the
Semantic Web requires machine accessible and processable representations,
and therefore W3C developed a XML syntax described in {KC07]. Figure
2.5 shows an example.

<rdf:Description
rdf :about="http://www.xpto.org/hattori_hanzo">
<ex:starred_in>
<ex:movie rdf:about="http://www.xpto.org/kill_bill" />
</ex:starred_in>
</rdf :Description>
<rdf:Description
rdf :about="http://www.xpto.org/pulp_fiction">
<ex:similar_ genre _
rdf :resource="http://www.xpto.org/reservoir_dogs" />
</rdf :Description>
</rdf :RDF>

Figure 2.5: RDF syntax

Another used RDF syntax is the Turtle {[Dav07] representation. Not as
complex as the XML serialization and more complete that the graph triples
view (it allows the use of prefixes), it is a great RDF representation for ped-
agogical purposes. Figure 2.6 shows the same graph presented in Figure 2.5,
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this time in Turtle notation.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-nsi#> .
@prefix ex: <http://www.xpto.org/> .

ex:hattori_hanzo ex:starred_in ex:kill_bill .
ex:kill_bill rdf:type ex:movie .
ex:pulp_fiction ex:similar_genre ex:reservoir_dogs .

Figure 2.6: Turtle syntax

Note that RDF is not the only data model that can be useful in the
Semantic Web vision: for instance, Topic Maps is another important data
model for representation and interchange of knowledge. Topic Maps was
created to support high-level indexing of sets of information resources in
order to make information easily findable. RDF was intended to support
the vision of the Semantic Web by providing structured meta-data about
resources. The two have significant conceptual differences although they
share a central objective: define a format for the exchange of knowledge
on the Web. Since both seem to have well established communities, it is
fundamental that they can integrate with each other in order to prevent
a partition of the Web into collections of incompatible resources. Consult
[LDO01] for more details about this issue.

2.3.3 Web Ontologies

Merriam-Webster 1! dictionary defines ontology as: “I- a branch of meta-
physics concerned with the nature and relations of being; 2- a particular the-
ory about the nature of being or the kinds of things that have ezistence” .
Although this definition introduces ontology as a term originated from phi-
losophy, the word ontology has become one of many that have been given a
Computer Science technical meaning different from the original one.

In the Computer Science context, an ontology is a data model that rep-
resents a set of concepts within a particular domain and the relationships
between those concepts. For Web pages, this means it provides a shared
understanding of the Web page domain. This is an important concept since
problems could arise because of different terminology usage. A zip code in

Uhttp://www.m-w.com/dictionary/
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one application may be the area code in another. Thus, mapping a partic-
ular terminology to a shared ontology will enable semantic interoperability
between ontologies.

Generally, an ontology consists of a finite set of terms and the relationship
between those terms. These terms denote some important concepts such as:

e Classes of objects (instances);

e Relationships between classes (hierarchy);
e Relationships between objects;

e Properties;

e Value restrictions;

e Disjointness statements;

Figure 2.7 illustrates a simple ontology (introduced in [TF06]), repre-
sented as a graph, that describes a simple hierarchy of the books category
Writing, Novel, Essay, Historical Novel, Historical Essay, and the two books
The First Man in Rome and Bellum Civile.

For example, we can see that Historical Novel is both a Novel and an
Essay and that books may optionally have translators, as is the case with
Bellium Civile. Books, authors and translators are represented by nodes
without identifiers called blank nodes and the only assumptions are based
on the subClass0f and instance relations.

2.4 'Web Ontology Languages

In order for ontology documents to start being used, two kinds of tech-
nologies must rise: description and query languages for ontologies. Together
these will allow not only the description of domains in a uniform manner but
also a way to retrieve information from those domains.

2.4.1 Ontology Description Languages

There are languages for representing information in the Semantic Web,
for instance: RDF, RDF-S and OWL. RDF is the underlying language that is
capable of represent very simple information. RDF-S extends RDF, resulting
in a very simple ontology language. It has the same constructs that RDF
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Figure 2.7: Books ontology example

has, but it adds some important built in properties for defining relationships.

However, the Web Ontology Working Group of W3C identified a number
of characteristics and use-cases for the Semantic Web that would require
more expressiveness than RDF and RDF-S can offer:

e Local constraints. For example, RDF-S does not have direct means
for stating that parents of people are parents.

e Conjunction. It is not possible to make thinks like movies with at
least two producers.

e Definitions. Definitions like A Movie actor is a male or female per-
son with at least one movie participation also can not be represented
directly in RDF-S.

A richer ontology modeling language was already defined, DAML-OIL
[DARO7], which was then taken as the starting point for the W3C Web
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Ontology Working Group in defining OWL {MvHO05]. It has all the char-
acteristics needed to fit into the Semantic Web: it uses URIs for names,
information is also represented as RDF triples and it is semantically com-
patible with RDF and RDF-S. However, OWL lays down a tradeoff between
expressive power and computational difficulty because inference in OWL can
actually be undecidable. The need for restricting OWL became clear and so
OWL was divided into three species: OWL Lite, OWL DL and OWL Full.

OWL Full contains all the OWL language constructs, it is meant for
users who want maximum expressiveness, but offers no computational guar-
antees, i.e., not all conclusions are guaranteed to be computable and finished
in finite time. OWL DL is a sub-language of OWL which introduces some
constraints on the OWL language usage: these provide a maximal subset of
OWL against which there are guarantees that any query is decidable. OWL
Lite provides the basics for subclass hierarchy construction: subclasses and
property restrictions. The idea behind the Lite expressiveness limitations is
that they provide a minimally useful subset of language features that are
straightforward for tool developers to support.

OWL: Classes, Properties and Instances

An OWL document has classes and instances of those classes, where a
class describes a set of objects with a set of properties and relations with
other objects. OWL documents are RDF documents and may start with a
collection of assertions that forms its header. Those assertions may contain .
information like comments, version control and inclusion of other ontologies.

Classes are defined using an owl:Class element and, by default, all of
them are instances of the predefined class owl:Thing. For example, we can
define a class Actor as illustrated in Figure 2.8.

<owl:Class rdf:ID="Actor">
<rdfs:subClassOf rdf:resource="#Person" />
</owl:Class>

Figure 2.8: OWL class
In OWL there are two kinds of properties:

1. datatype properties. Relations between a class instance and a literal
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or datatype value. Note that OWL does not have any predefined data
types. Instead, it allows the usage of XML Schema datatypes.

2. object properties. Relations between two classes.

Figure 2.9 shows an example of an object property and a datatype prop-
erty:

<owl:ObjectProperty rdf:ID="isDirectedBy">
<rdfs:domain rdf:resource="#movie" />
<rdfs:range rdf:resource="#filmDirector" />
</owl:0bjectProperty>

<owl:DatatypeProperty rdf:ID="Movie genre">
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

X~ O Ot W N e

Figure 2.9: OWL object and datatype properties

Instances of classes (individuals) in OWL can be declared as in RDF or
using a clear syntax provided by OWL. Figure 2.10 shows an example of both
declarations of the Tazi Driver movie.

<rdf:Description rdf:ID="taxi driver">

<rdf:type rdf:resource="#Movie"/>

<director rdf:resource="#Martin Scorcese" />

<genre rdf:datatype="&xsd;string">drama,crime</genre>
</rdf :Description>

N S o R W N e

<Movie rdf:ID="taxi driver">

<director rdf:resource="#Martin Scorcese" />
10 <genre rdf:datatype="&xsd;string">drama,crime </genre>
u| </Movie>

-]

©

Figure 2.10: OWL instances example

The examples above represent only a brief overview of the OWL language.
For further details about the language, please consult the W3C OWL speci-
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fications that are spread among six documents.

At the time of this writing, OWL 1.1 is on its way (see [PSHO07]). This is
an OWL extension that is meant to bring a small but useful set of features
that have been requested by users, for which effective reasoning algorithms
are now available, and that OWL tool developers are willing to support.

2.4.2 Ontology Querying

An open Semantic Web research issue has been the lack of a standard
query language. RDF query languages have been in discussion at W3C since
the QL’98 12 workshop in December 1998. Development of XML querying
started around 1999 (XQuery) and since then its developers have also been
leading research about RDF querying languages. W3C wrote the RDF Data
Access Use Cases and Requirements [Cla07] where it was recorded some use
cases for RDF:

e Finding values for partially known graph structures;

e Getting information about an identifiable object with unknown prop-
erties;

e A human friendly syntax for queries for application developers;

e Running automated regular queries against RDF graphs;

e Querying aggregated RDF graphs;

e Running queries constrained with datatype expressions;

e Querying a remote RDF server and getting streaming results back;

¢ Allowing alternate solutions to match in queries;

Query answering on the Semantic Web is complex, even more complex
than on the traditional Web because meaning must be properly understood
and processed. There are some different proposals and approaches for this
kind of query languages, as stated by the research presented by Tim Fuche
and Bry [TF06}, ranging from pure selection languages with limited expres-
sivity to general purpose languages supporting different data representation
formats and complex queries. However, as of this writing, only RDF query
languages are already in use, whereas other data modeling formalisms such as

2http://www.w3.org/TandS/QL/QLI8/
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OWL are still an open research issue, and only a very small and incomplete
number of proposals 13 for querying Semantic Web data modeled after for-
malisms other than RDF exists. Fuche and Bry presented a survey [BBFS05]
about RDF query languages, where they divided them into three groups:

1. Relational or pattern-based;
2. Reactive rule;

3. Navigational access;

Languages following the first topic paradigm use selection constructs sim-
ilar to selection-projection-join, much like SQL does for relational databases;
here we can find languages like RQL and Xcerpt. The second group uses, as
the name implies, reactive rules, but otherwise act very much like the first
group. For example, Algae is a language that uses reactive rules. Languages
that belong to the final group use navigational access and path expressions
over patterns.

SPARQL

At the present day, one specific RDF query language is starting to gain
some momentum: SPARQL [PS06]. Its name is a recursive acronym that
stands for SPARQL Protocol and RDF Query Language. It is undergoing
standardization by the RDF Data Access Working Group (DAWG)  of the
‘World Wide Web Consortium. Towards the status of W3C recommenda-
tion, it was released as a Candidate Recommendation in April 2006, but
returned to Working Draft status in October 2006, due to two open issues 1°.
Even Tim Berners-Lee stated 16 last year that the emergence of SPARQL will
make a big difference around the Semantic Web, since the ability to correctly
querying ontology documents is one major Semantic Web goal.

The SPARQL query language consists of the syntax and semantics for
asking and answering queries against RDF graphs in a way much similar to
SQL. SPARQL contains capabilities for querying by triple patterns, conjunc-
tions, disjunctions, and optional patterns. Results of SPARQL queries can
be ordered, limited and offset in number, and presented in severa.l different
forms.

130ne known proposal is OWL-QL, a project lead by Stanford University - http://www-
ksl.stanford.edu/projects/owl-ql/

Yhttp:/ /www.w3.0rg/2001/sw/DataAccess/

18http://www.w3.org/ TR/2006/ WD-rdf-sparql-query-20061004/

16This statement can be found in a 2006 article called Berners-Lee looks for Web’s big
leap in http://news.zdnet.co.uk/internet,/0,1000000097,39270671,00.htm?r=1
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Chapter 3

Logic Programming on the
Semantic Web

This chapter aims to introduce the reader to Logic from a Computer
Science point of view, to discuss why Logic Programming can be an important
ally for the Semantic Web and to introduce the GNU Prolog/CX framework
used in our work.

In Computer Science, Logic and Logic Programming represent wide-
ranging topics that have been the target of research and several use cases
from many years now. The objective of this chapter is only to give a brief

introduction to these topics, for a more detailed introduction please consult
the referenced bibliography, for instance [Joh97] {Baa02] [Baa99] or {Ant90].

3.1 Logic in Computer Science

Enrico Franconi [Fra02] states that Logic in Computer Science can be
described as the discipline that studies the principles of reasoning, used in
a way to achieve correct conclusions. An agent is an entity that perceives
and acts according to an internal declarative body of knowledge. A logic
allows the representation in axioms of a particular domain and the drawing
of conclusions from the information contained on that domain. Important
characteristics are:

e Expressiveness: capable of representing a problem;
e Correctness: no false conclusions are drawn;

o Completeness: all correct conclusions are drawn;
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e Decidability: there exists a terminating algorithm to compute entail-
ment (logical implication);

o Complexity: what resources are needed for computing the solution;

There exists several types of logic [Fra02| and each one can be charac-
terized by what they commit as primitives. Generally speaking, logic pro-
vides [Gri04] three main characteristics:

1. Formal notation (language);
2. Formal semantics;
3. How implicit knowledge is made explicit;

Each logic has a syntax, a semantics and an inference procedure. Syntax
describes how to write correct sentences, the semantics tells what a sentence
means and the inference procedure derives results logically implied by the
premises. It indicates that automated reasoners can infer and deduce con-
clusions from the given knowledge. This knowledge, or a Knowledge Base
(KB), is a logic theory, i.e, a set of sentences in a formal language.

Antoniou and Van Harmelen [Gri04] present logic as the foundation of
knowledge representation and point a few reasons for the importance of logic
in Computer Science:

e It provides a high level language in which knowledge can be expressed;
o It has a well-understood formal semantics;

o There exist proof systems that can derive statements from a set of
previously stated premises;

e Proof systems should be sound - all derived statements follow seman-
tically from the premises;

e Proof systems should be complete - all logic consequences of the premises
can be derived from the proof system;

o It should be possible to trace back the proof that leads to a logic con-
sequence;
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For instance, Logic Programming is based on First-order Predicate Logic,
where a both sound and complete proof system does exist. By a result ! of
logician Kurt Gédel, more expressive classic logics - called high-order logics
do not admit sound and complete proof systems.

3.1.1 First-order Predicate Logic

The base of Predicate Logic is Propositional Logic. Logics are character-
ized by what they commit to as primitives and what is to be believed about
facts. Propositional Logic [Fra02] defines facts with three levels of beliefs by
an agent: true, false and unknown. An entailment is a logic implication of a
knowledge base: knowledge base KB entails the sentence s if and only if s is
true in all worlds where KB is true. The basic building block of Propositional
Logic are atomic statements and logical connectives and, or and not.

The fact that atomic formulas in Propositional Logic are just statements
which may be true of false means there are no internal structure in statements
and thus there can be no interpretation of relationship between objects. Let
us consider the following statements in Figure 3.1:

beatrix is female.
bill is male.
beatrix and bill are married.

Figure 3.1: Logic statements

In Propositional Logic (Figure 3.2), the above statements are atomic
propositions, whereas in Predicate Logic (Figure 3.3) atomic statements uses
predicates with constants as arguments.

beatrix-is-female.
bill-is-male.
beatrix-and-bill-are-married.

Figure 3.2: Statements in Propositional Logic

1For more information consult the The Work of Kurt Gédel by Stephen Cole Kleene,
J. Symb. Log. Journal, 1976.
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female(beatrix).
male(bill).

married(beatrix, bill).

Figure 3.3: Statements in Predicate Logic

Predicate Logic is the term used for symbolic formal systems like First-
order Logic or Second-order Logic. Another difference towards other sym-
bolic formal systems is the usage of variables that can be quantified (e.g.
existential and universal quantifiers). Predicate Logic (or strictly, First-order
Predicate Logic) is an important knowledge representation language. It al-
lows the representation of fairly complex facts about a stated world and the
derivation of further facts with guarantees of soundness and completeness:
assuming that the initial facts were true then so are the conclusions. A First-
order Predicate Logic theory consists of a set of axioms and the statements
deducible from them, which is the base for Logic Programming.

Logical reasoning is the process of drawing conclusions from premises us-
ing rules of inference. Predicate Logic allows the possibility of reasoning
about properties and relationships of individual objects using several infer-
ence rules [Fra02]:

e Equivalences;

e Implications;

Propositional logic inference rules;

Universal instantiation;

Universal generalization;

Existential instantiation;

Existential generalization;

Negation;
Sentences in Predicate Logic are built up from atomic sentences, which

consist of a predicate name followed by a number of arguments. Each argu-
ment is a term, where a term can be a constant symbol, a variable symbol or
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a function expression. So, Predicate Logic sentences are constructed by com-
bining atomic sentences with logic connectives and quantifiers. The semantics
of Predicate Logic are defined in terms of the truth values of sentences. We
can determine the truth value of a sentence if we know the truth values of its
basic components. An interpretation function determines the truth values of
the basic components, given some domain objects that we are concerned with.

One useful proof procedure for Predicate Logic is resolution. Resolution
is a proof procedure for proving goals by refutation: if a contradiction can
be derived from not P then P must be true. Resolution is a sound proof
procedure, which means that for something proved with resolution, we can
be sure it is a valid conclusion. However, there exist other problems when
looking at a proof procedure:

e Completeness: it may not be able to always prove something is true
even if it is true; :

e Decidability: the procedure may never finish when trying to prove
something that is false (or true);

e Computational efficiency;

Note that the efficiency of a proof will often depend as much on how you
formulate your problem as on the general proof procedure used.

3.1.2 Description Logics

Description Logics [NB03] emerge as subsets of First-order Logic that
describe a family of knowledge representation formalisms. It represents the
knowledge of a domain by defining the concepts of that domain and then us-
ing these concepts to specify individuals and properties of objects occurring
in that domain.

A Description Logic knowledge base can be given semantics by translat-
ing it into First-order Logic with equality: atomic concepts are translated
into unary predicates, complex concepts into formulas with one free variable
and roles into binary predicates. It is based on concepts (or classes) that
represent sets of objects, roles (or properties) that represent relationships
between objects and individuals representing specific objects. For instance,
a concept such as Person is atomic. Making use of a set of concept construc-
tors, one can construct complex concepts that describe the conditions of a
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concept like membership. For example, the concept hasFather in Figure 3.4
describes objects that are related through the hasFather role with an object
from the Person concept.

hasfather.Person

Figure 3.4: hasFather concept

A Description Logic knowledge base typically consists of a TBox T and an
ABox A [BNO3]. The first contains axioms about the general structure of all
allowed worlds in the knowledge base and is therefore essentially similar to a
database schema. On the other hand, an ABox contains axioms that describe
the structure of a particular knowledge base world. For example, an axiom
that states that each instance of the concept Person must be related by the
role hasFather with an instance of the concept Person is a Tbox axiom. An
ABox axiom can state, for example, that Mike Portnoy is a Drummer.

Nowadays, Description Logic is already an important part of the Semantic
Web because of its use in the design of ontologies. Moreover, the OWL sub-
languages OWL DL and OWL Lite are based on Description Logic.

3.2 Logic Programming

The most common way to describe logic is through mathematics, thus
Logic Programming can be seen as the use of mathematical logic for Com-
puter Science. The use of logic as the basis of programming languages such
as Prolog [Iva01] [Ste94] is quite recent, although logic as been used as a tool
for many years now in Computer Science. As opposed to the more main-
stream programming paradigms, Logic Programming suggests that explicit
instructions for operations should not be given, but instead the knowledge
about the problem and the assumptions that are sufficient to solve it be
stated explicitly, as logic axioms.

Logic Programming is a set of knowledge representation formalisms cen-
tered around the notion of rules and is appropriate for problem-solving tasks
in which two layers can be defined: a declarative representation language and
a theorem prover or model generator that is used as the problem solver. The
theorem prover is applied to the declarative sentences that have the form of
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implications, like illustrated in Figure 3.5 and treats those implications as
goal-reduction procedures.

Di, D2 and...and Dn implies H

To show/solve/prove H, show/solve/prove D1, D2 and...and Dn.

Figure 3.5: Logic programming implications

Numerous variants of these basic formalisms have been considered such
as rules with disjunctions in the rule heads or extensions with classical nega-
tion. 2

As stated in [Ste94], a program can be executed by means of a problem
definition formalized as a logic statement to be proved called a goal. A goal in
Logic Programming is proved using Predicate Logic resolution proof by con-
tradiction [Gri04], i.e, by negating the goal and proving that a contradiction
is obtained using the logic program.

The execution itself is the act to try solving the problem, i.e, to prove the
goal given the assumptions in the logic program. The goal statement proof
is done constructively. If successful, the unbound individuals provided in the
goal are bounded to values, which constitute the output of the computation.
When the goal has no variables, the search space for solving the goal is an
and-or tree ® determined by the reasoning system where the root of the tree
is the goal. Given any node in the tree and any clause whose head matches
the node, there exists a set of child nodes which correspond to the sub-
goals. These nodes are grouped together by an and. The alternative sets
that represents alternative ways of solving the node are grouped together by
an or. The fact that there are alternative ways of executing a logic program
has been characterised by the equations [Ste94] in Figure 3.6, whereas the
set of axioms represents a program and a computation represents different
theorem proving strategies.

Logic Programming focuses on efficient query answering over a bounded
data set. Nowadays it is seen as a general problem-solving formalism, capable
of succinctly expressing hard computational problems.

2For instance, a combination of these two features is commonly known as enswer set
programming.

3An and-or tree can be viewed as a parallel execution. It has or-nodes (called choice
points) that are created when there are multiple ways to solve a goal and and-nodes that
are created when a goal invokes several conjunctive sub-goals.
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program= set of axioms
computation= constructive proof of a goal statement from a program

Figure 3.6: Logic Programming equations

3.2.1 Contextual Logic Programming

Modularity in Logic Programming is an old polemic concern among the
logic programming community and has been recognized as an important and
relevant challenge.

The GNU Prolog/CX [AD03] is an implementation of the concepts of Con-
textual Logic Programming, based on Prolog. One of the main advantages
in Contextual Logic Programming is the achievement of modularity, which
brings on board the concept of unit - a unitary module, and contezt - a group
of units that represents a program in which to specify a goal execution.

Contextual Logic Programming (CxLP) is a simple yet powerful exten-
sion to the Prolog logic programming language which provides a mechanism
for modularity. In CxLP a finite set of Horn clauses with a given name
is designated by unit. Abreu and Diaz [ADO3| provide a revised specifica-
tion for CxLP, which emphasizes the OOP aspects by means of a stateful
model, allowed by the introduction of unit arguments. Informally, a unit is
a parametric module, constituting the program’s static definition block.

Unit descriptor terms can be instantiated and collected into a list to form
a context, which can be thought of as a dynamic property of computations.
A context specifies the actual program (or theory) against which the current
goal is to be resolved. In short, it specifies the set of predicates which: are
applicable. These predicates have definitions which depend on the specific
units which make up the context. A more extensive description of CxLP may
be found in [AD03, AN06].

Some parallels can be made between Contextual Logic Programming
(CxLP) and Object Oriented Programming (OOP):

Context and object instance: A (possibly partly) bound context is a list
of units which can be described as an object instance. There is no
true analog for the class concept, units being conceptually similar to
components, although the context term skeleton may come close;

Predicate and method: A predicate present in a unit is equivalent to a
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method definition in an QO setting;

Goal and message: a goal executed in a particular context can be inter-
preted as sending a message {the goal) to an object (the context);

Unit argument and instance variable: unit arguments are variables whose
scope is the entire unit, much like instance variables in OO;

GNU Prolog/CX introduces a set of language operators called the context
operators which modulate the context part of a computation.

In a nutshell, when executing a goal G in a context C, a CxLP Engine
will traverse C looking for the first unit u that contains a definition for G’s
predicate. G is then executed as if it were regular Prolog, in a new context
that is the suffix of the C which starts with unit u. Some of the most used
operations and operators in GNU Prolog/CX are:*

Context extension: U :> G, this operation extends the current context
with unit U and then reduces goal G;

Context switch: C :< G, attempts to evaluate goal G in context C, ig-
noring the current context;

Supercontext: :~ G, evaluates goal G in the context resulting of removing
the top unit from the current context;

Current context query: :< C, unifies C with the current context;
Calling context query: :> C, unifies C with the calling context;
Lazy call: :# G, evaluates the goal G in the calling context;

3.3 Logic for the Semantic Web

Logic, in its reasoning and conclusion drawing form, is likely to play an
important role in the Semantic Web. Thomas Passin states [Tho04] that
Logic in the Semantic Web is expected to work in the following ways:

e Applying and evaluating rules;
e Inferring facts that aren’t explicitly stated;

e Providing capabilities for Semantic Web agents to explain why a con-
clusion has been reached;

4For a more detailed and formal description, the reader is referred to [ADO03].
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e Detecting contradictory statements;
e Representing knowledge;
e Merge information from different sources in a coherent way;

e Create software to execute queries to obtain information of Semantic
Web data repositories;

One way that the Semantic Web relates to the above topics is through
programs built with a series of IF-THEN-ELSE rules, often chained together.
A rule processor agent can work backward from one condition to describe
what steps were taken to get there. This means it is possible to ask if a
certain outcome is possible and how to get to it and therefore simulate a rea-
soner that has knowledge of a particular domain. For instance, Topic Maps
has been used to define sets of rules.

Logic can be used to represent knowledge whereas Web ontology docu-
ments supplies the concepts and terms. Logic provides ways to make state-
ments that define, use and reason about those concepts. These collections of
statements may come from different data sources such as relational databases,
Web pages or other knowledge bases and they may be expressed in many ways
such as RDF, OWL or Topic Maps.

In the Semantic Web, Logic will play a different role than many of the
other discussed components. Information is to be changed and processed
by a program that may in turn obtain more data from other sources spread
around the Internet. Ontologies will be shared and merged. However, Logic
is presented as a tool to be used and applied to information and not as in-
formation to be changed.

3.3.1 Inferring facts from Semantic Web data

Let us see a common example of a simple inference that involves knowl-
edge typically found in ontologies: imagine a faculty domain where all profes-
sors are faculty members, all faculty members are staff members and lucarelli
is a professor. This information is expressed in Figure 3.8, in Predicate Logic.

We can then infer the results shown in Figure 3.8.

The above example illustrates the fact that logic provides a natural way
to uncover ontological knowledge that is implicitly given. However, the ex-
ample is based on simple if conditions. More complicated and powerful ex-
pressiveness can lead to undecidability barriers, and the more expressive a

34



professor (X) -> faculty_member (X)
faculty_member(X) -> staff(X)
professor(lucarelli)

Figure 3.7: Predicate Logic inference example (part 1)

faculty(lucarelli)
staff (lucarelli)
professor(X) -> staff(X)

Figure 3.8: Predicate Logic inference example (part 2)

logic is, the more computationally expensive deducing conclusions becomes.
Nevertheless, the knowledge relevant for the Semantic Web seems to be of a
relatively restricted [Gri04] form and is expected to be supported by a wide
range of reasoning tools.

One major advantage of logic usage in the Semantic Web is its capability
of providing ezplanations for conclusions, i.e, trace all the inference steps.
This kind of explanations are very important as they can act as proofs pre-
sented in a human readable form, acting as a way for users to increase their
confidence in Semantic Web agents. Moreover, explanations will get an im-
portant role in agent interactions where one side will have to validate the
proof provided by the other. Thomas Passin presents {Tho04] an interesting
exemple: a Web shop sends a message to a private agent, via its own agent
saying he owes 100 euros. When the latter agent asks for proof, he might get
this sequence response from the shop agent:

e Web log that indicates a purchase of product P for 90 euros;
° Delivery cost of 10 euros;
e Proof of delivery: [...];

e Rule from the shop terms:
purchase(X, P) & price(P, PRICE) & costDelivery(P,Y)
& delivered(P, X) — owes(X, PRICE+Y);

This example illustrates two important facts: logic must be usable in
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conjunction with different sources of data and be machine—processable as
well.

. 3.3.2 OWL Ontologies and Description Logics

A knowledge representation can be viewed as a relating theory to a par-
ticular world via formal models. An ontology is a particular knowledge base
that describes facts assumed to be true by a community of users. This means
the power of an ontology, in Computer Science, comes from the fact that it
can make domain assumptions explicit and therefore, provide data integra-
tion.

Ontology languages allow users to write explicit, formal conceptualiza-
tions of domain models. They should have [Gri04]:

o A well-defined syntax;

e Efficient reasoning support;

e An agreed-upon formal semantics;
o Sufficient expressive power;

e Convenience of expression;

RDF and OWL languages can be viewed as specializations of Predicate
Logic that provide a syntax that fits its purpose well, i.e, Web languages
based on tags. They define reasonable subsets of logic that correspond
roughly to a Description Logic, a subset of predicate Logic for which an
efficient proof system exits. The OWL language is based on Description Log-
ics [BVHH*05] or, more precisely, on a family of knowledge representation
formalisms based on First-order Logic and exhibiting a well understood com-
putational properties. OWL is a family of three ontology languages where
the first two are based on different subsets of Description Logics: OWL Lite,
OWL DL and the other one, OWL Full, which is meant for cases where maxi-
mum expressiveness is wanted with no decidability computational guarantees
[SWMO04].

OWL compatibility With Logic Programming

The incompatibility of the Open world assumption in OWL with the
closed world semantics of Logic Programming has generated some discus-
sion and debate in the Semantic Web community and is one of the main
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issues when implementing Semantic Web software based on Logic Program-
ing [MHRS06]. However, this does not mean that Logic Programming cannot
be used to reason over OWL Web ontologies, far from it. What it does mean
is that there are some practical use cases which are difficult or impossi-
ble to realize with OWL but addressable by Logic Programming. Horrocks
presents [MHRS06] an overview of how OWL could be integrated with rules
without sacrificing semantic compatibility.

3.3.3 Impact of Logic on this Work

The developed system was implemented using Contextual Logic Program-
ming, namely GNU Prolog/CX. The technology used was not based on a typ-
ical research and choice among different solutions, but instead the use of
Contextual Logic Programming was our motivation whereas the Semantic
Web our choice as a target research field to work with.

As already discussed, Logic Programming based agents and software are
expected to have an important role on the Semantic Web. They cannot be
directly glued together and the existing issues on using Logic Programming
languages within OWL documents can not be ignored. In the work presented
in this thesis, we tried to move forward in order to bring up the advantages
of using Contextual Logic Programming to represent and reason over OWL
ontologies.
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Chapter 4

XPTO - XPTO Prolog
Translation for Ontologies

The goal of the XPTO ! system is to represent Web ontologies from the
perspective of Contextual Logic Programming and to enable querying that
representation. Web ontologiés can be represented with OWL which is sub
divided into three sub-languages: OWL Lite, OWL DL and OWL Full.

OWL DL emerged as the goal for the mapping and representation capa-
bility by XPTO since the specification of OWL Full does not to guarantee
computational completeness nor decidability still guaranteed by the OWL
DL language, i.e., that all conclusions are guaranteed to be computable and
that all computations will finish in finite time.

In XPTO, ontologies are treated on a per file basis. The information
represented in the ontology file is translated into GNU Prolog/CX predicates
and units. This process is performed in two phases: the ontology parsing
and the unit generation.

During the first phase, the ontology file is parsed as a plain XML struc-
ture, resulting in a Prolog term representing the complete ontology file. This
process is described in section 4.1. In the unit generation phase, the Prolog
term is transformed into a dictionary, a structure annotated with the neces-
sary information for the generation of the units. Subsequently the unit files
are created and loaded into the running instance of the program. Section 4.2
details this process. Next, section 4.3 introduces the manner in which to
retrieve the information from the representation. After the information in
an ontology is transformed into a set of GNU Prolog/CX units and inter-
face predicates, the possibilities and capabilities of that representation are

1This work was developed in cooperation with Nuno Lopes.
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equivalent to that of a Prolog program, with the benefit of a modular pro-
gram structure, i.e, the ontology may be queried as if it were a regular logic
program. In section 4.4 some real-life examples of XPTO are introduced
and in section 4.5 we compare XPTO with similar systems and present the
parser and query benchmark results. Finally, in section 4.6 we draw some
conclusions and discuss future work.

4.1 Ontology Parsing

The first step towards building the ontology representation is parsing.
The parser must be able to read an ontology from a document and represent
it in an adequate data structure.

In this phase, the ontology is handled as a plain XML file and read in
using an available XML parser. Several XML parser libraries were considered
(mostly Prolog and C parsers and, for benchmark purposes, parsers in other
languages such as Java, Python and Caml). The results. of these benchmarks
are presented in section 4.5.1.

The selected parser was the Expat XML parser [Coo06]. Two main rea-
sons influenced the choice of this parser: the results of the benchmark tests
and the easy integration of C and Prolog.

- The Expat parses the XML by matching patterns in the text. This way
the parser incrementally creates a data structure representing the XML. Once
the end of the file is reached, a term is generated based on the created
structure and passed on to Prolog. This term is an accurate representation
of the XML file, apart from the possible comments in the XML/RDF/OWL
file, there is no further loss of information in this transformation.

4.1.1 Prolog Representation for XML Documents

The internal Prolog representation used for a XML structure is a list of
XmlElement, where an Xm1Element is a term of the following form:

node(ElementName, ElementAttributesList, ElementChildList).

Each part of the structure is detailed below:
ElementName: Represents the name of the XML element and is stored

as an atom or, for URIs, a compound term whose functor is *#’ and
contains the URI and local part as arguments. In the case of the XML
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element name does not contain the URI part, the URI will be the empty
atom: ’’. This simplifies the handling of these elements within Prolog
since it is possible to access each part of the element directly.

ElementAttributesList: ElementAttributesList is a list of the XML

node’s attributes in the form AttributeName = AttributeValue. At-
tributeName will also be of the form as ElementName.

SubElementsList: SubElementsList is a list off all nodes that are exactly

one level below in the same branch of the XML document structure.
These may be other nodes {other elements of the same structure) or
element values which will be represented by its value.

For example (all the examples presented in this chapter uses the Wine
OWL DL ontology [W3C06] which is a sample ontology used in the
OWL specification documents), this representation will produce the .
structure represented on Figure 4.2 for the XML code in Figure 4.1.

<!DOCTYPE rdf:RDF [

<rdf:RDF xmlns:xsd = "http://www.w3.org/2001/XMLSchema#">

</rdf :RDF>

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
1>

<owl:Class rdf:ID="Vintage">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasVintageYear"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
1
</owl:cardinality>
</owl:Restriction>
</rdfs:subClass0f>
</owl:Class>

Figure 4.1: Vintage Class definition - wine.rdf

4.2 Ontology Mapping

XPTO is prepared to translate ontologies defined in OWL Lite or OWL -

DL into Prolog. This mapping must allow for easy access to the information
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[node(rdf:’RDF’, [xmlns:xsd=’http://www.w3.org/2001/XMLSchema’],
[node(owl:’Class’, [rdf:’ID’=’Vintage’],
[node (rdfs:subClass0f, [],
[node(owl: ’Restriction’, [],
[node(owl:onProperty,
[rdf :resource= #(’’,hasVintageYear)],
m,
node(owl:cardinality,
{rdf :datatype=#(’http://www.w3.org/2001/XMLSchema’,
nonNegativeInteger)],
[’1°]
)]
)]
)]
)]

)]

Figure 4.2: Prolog XML Representation of class Vintage

represented in the ontology, using standard Prolog goals.

After the ontology is represented by a Prolog term, a dictionary data
structure will be generated with the necessary information to later create the
GNU Prolog/CX units. These generated units are then compiled and loaded
into the running program. Next we describe the process of translating the
Prolog term into the incomplete structure and explain the representation of
the ontology using GNU Prolog/CX.

4.2.1 Ontology representation

A GNU Prolog/CX unit is a named and parametrized set of Prolog pred-
icates. In XPTO, ontologies are represented using units and these will be
used to represent not only the whole ontology but also each OWL class and
property. This scheme is represented in Figure 4.3.

The information about the ontology is represented in a specific unit named
ontologies. This unit lists the namespaces, headers, classes and properties
of each loaded ontology.

Each class and property is defined in a unit named after the class or
property. Further information about each one can be found in its unit. This
naming schema for properties and classes does not present a problem in OWL
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Individuals Class €1 Propeny P1
Class Cn : Propenty Pm
“ ¥

Figure 4.3: Ontology representation schema: units

DL since, as stated in [SWMO04], there could never exist a class with the same
name as a property:

“OWL DL requires a pairwise separation between classes, data-
types, datatype properties, object properties, annotation proper-
ties, ontology properties, individuals, date values and the built-in
vocabulary, i.e., there could never exist, for instance, a class with
the same name as a property.”

The ontology individuals are represented in the unit individuals. It
contains the name of the individuals, individual relations and class member-
ships. In the following sections we describe the structure of these units and
discuss some alternative representations which we previously experimented
with.

Ontology Unit

This unit represents the ontology information: XML namespaces, ontol-
ogy headers, classes and properties. This is done by defining predicates for
each case: ns/3, header/3, class/2 and prop/2. Each predicate contains,
in the case of headers and namespaces, an entry with the ontology name, the
respective “abbreviation” and value and, for classes and properties, simply
the ontology name and the class or property name. The ontology name is
included in these predicates to allow the possibility of representing several
ontologies.
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Property Units

Each property unit contains the information relative to a specific property.
The type of the property (datatype or object) and, if specified any other
information such as domain and range, property inheritance and property
relations. '

These properties also define the method to access the value, given the
individual name that shall be retrieved previously from the GNU Prolog/CX
context. For example, the definition of a property and its representation are
show, respectively, in Figure 4.4 and Figure 4.5. An example of its usage is
shown if Figure 4.9 on page 50.

<owl:ObjectProperty rdf:ID="locatedIn">
<rdf :type rdf:resource="&owl;TransitiveProperty" />
<rdfs:domain rdf:resource="http://www.w3.org/owl#Thing" />
<rdfs:range rdf:resource="#Region" />
</owl:0bjectProperty>

Figure 4.4: LocatedIn property definition - wine.rdf

:— unit(locatedIn).

object(rdf : type(’TramsitiveProperty’)).
domain(’Thing’).

range(’Region’).

type(object).

Figure 4.5: LocatedIn property unit

Class Units

These units will represent each class of the ontology and all information
relevant to it: this includes restrictions on the individual properties and class
inheritance.

It also includes a predicate class_name/1 that provides the name of the
current class. This predicate is used in by the query engine to determine the
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class that the query refers to. This process is described in more detail in
section 4.3.

Unnamed classes These are classes defined implicitly by a set of individ-
uals. They are represented internally by a unit (in the same manner as a
named class) but, since they are not assigned a name, one is generated for
them. This generated name consists of the prefix ___class_ followed by a
" sequential number.
An example of the use of unnamed classes, using an enumeration, is shown
in section 4.2.3.

Individuals Unit

This unit contains all the individuals, their properties and information
about individual relations. The individual properties are stored as triples,
much in the manner of RDF, defined in the predicate property/3. The first
argument of this predicate indicates the name of the individual, the second
corresponds to the property and the third argument contains the value of the
property for that individual.

Class membership is defined in the predicate individual_class/2. This
predicate lists all the individuals, along with their class. Individuals from
unnamed classes are not included in this listing: they are only present in the
unit that represents the class. This is done to avoid unwanted repetitions
when querying the individuals that would be generated if the individuals of
the unnamed classes were listed as the other individuals. These individuals
are only available in the predicate individual/1 present in each unnamed
class unit.

Individual relations In this unit there are also predicates for defining
individual relations, such as differentFrom/2 and sameAs/2, each with
individual names as their arguments. These indicate, respectively, that
the referred individuals are different or the same [MvHO05]. The construc-
tor owl:AllDifferent is represented as several differentFrom statements,
each individual present in the constructor will generate one differentFrom
statement relating it to every other individual in the list. This is detailed in
section 4.2.3.

4.2.2 Alternative representations

One approach to map an ontology that we experimented was to represent
each property and class in the ontology as a unit and represent the individuals
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as an instantiation of the unit that represents its class.

The units that represent each class have their arity determined by the
number of properties defined in the OWL document and one extra argument
to represent the individual name. This extra argument is referred internally
with the name “id” and thus any query asking for the argument “id” will
match the name of an OWL individual.

Another representation would include in each class unit a list of the names
of its individuals, defined in the predicate individual/1, where each indi-
vidual would be represented in a unit named after the individuals name.

Alternate representations problems

The presented representations were tested as possible representations for
ontologies in XPTO but were later abandoned as we evolved to the one
described in section 4.2.1. Although these were two alternatives we explored,
many more exist. The first representation was abandoned due to:

e The possibility of having an arbitrarily large number of arguments in
the class units arguments (equal to the number of properties defined in
the ontology);

e The fixed arity of the representation for the individuals was not appro-
priate as some individuals may not have a value for all the properties
and others may have values for properties that are not present in the
representation;

The second approach represents each individual in a separate unit and
this could pose a problem as the number of individuals increases, both in
terms of representation and querying.

The used representation allows for a more effective individuals search with
SPARQL because it only focuses its queries on individuals and not classes.
The current representation also allows for a more transparent switch of back-
end: by changing only the unit individuals one can access the ontology indi-
viduals, individuals represented in a database or an external SPARQL agent.

4.2.3 Name analysis

Back to XPTO work-flow, the next process in the loading of ontologies
consists in parsing the created term and building a dictionary structure with
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all the information needed to generate the units and predicates that will
represent the ontology.

The body of the ontology has information about all classes, properties,
individuals and relations between these elements. Ontology headers are also
stored to be included in the ontology definition unit.

The Symbol Table is implemented as an incomplete structure in Pro-
log. It is split into four sections: ontology, classes, individuals and
properties. The properties and classes sections are each a dictionary where
the key is the name of the element at hand. The ontology entry stores infor-
mation about the ontology, i.e, the information expressed in the owl:Ontology
node; finally the individuals entry stores all the information about individ-
uals. The information about individuals is also grouped by the predicates de-
fined in the individuals unit (individual_class, property, differentFrom
and sameAs) as previously described (section 4.2.1).

The term that represents the ontology is now parsed according to the
specifications of the OWL language as detailed in [MvH05]. We now present
some of the representation or coding choices that were made.

Enumeration

An enumeration can be defined as an anonymous class that is defined
by a set of individuals and is used, for instance, with the AllValuesFrom
constructor as represented in Figure 4.6. Classes like this are represented
internally like any other OWL class and, in order to do this, they are assigned
an internal name (consists of the prefix ___class_ followed by a sequential
number). The individuals of these classes are listed directly in the unit
that represents the class and are not present in the individuals unit (as
explained in section 4.2.1).

AllDifferent

~ The owl:AllDifferent constructor indicates that all the individuals in
its list are different from each other and, as stated in section 4.2.1, it is
represented as several differentFrom statements. This is done to simplify
the representation and computation by having only one representation for
the same type of information.

For each individual present in the owl:AllDifferent list, we generate
owl:differentFrom facts relating it to every other individual that comes
after it in that list. Since the constructor owl:differentFrom is symmetric,
this will relate all the individuals between them without generating redun-
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<owl:allValuesFrom>

<owl:Class>
3 <owl:oneOf rdf:parseType="Collection">
4 <owl:Thing rdf:about="#CheninBlancGrape" />
5 <owl:Thing rdf:about="#PinotBlancGrape" />
6
7|

[

N

<owl:Thing rdf:about="#SauvignonBlancGrape" />
</owl:one0f>
s|] </owl:Class>
o| </owl:allValuesFrom>

Figure 4.6: AllValuesFrom example

dant information. For instance, the element in Figure 4.7 will generate the
facts represented in Figure 4.8 in the unit individuals.

1| <owl:AllDifferent>

2l <owl:distinctMembers rdf:parseType="Collection">
3 <vin:WineColor rdf:about="#Red" />

4 <vin:WineColor rdf:about="#White" />

8 <vin:WineColor rdf:about="#Rose" />

e </owl:distinctMembers>
7| </owl:AllDifferent>

Figure 4.7: AllDifferent example

Document Checker Conformance

W3C defines [CR04] what actions an OWL document checker should do.
As a syntax checker, it should receive a document as input and identify it as
being Lite, DL, Full or Other :

Although XPTO does not currently perform complete conformance tests,
this is a subject marked as future work. Nevertheless, it already performs
some consistency tests which we now describe:

e A property cannot be a subproperty of a property that is not of the

same type e.g., a DatatypeProperty cannot be subproperty of an
ObjectProperty and vice versa;
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differentFrom(’Red’, ’White’).
differentFrom(’Red’, ’Rose’).
differentFrom(’White’, ’Rose’).

Figure 4.8: AllDifferent representation

e Only constructs allowed by the selected owl variant are used, for ex-
ample, it is not possible to use owl:hasValue in OWL Lite or apply a
owl:InverseFunctionalProperty to a datatype property in OWL
DL.

Namespaces and Annotations

Annotations are textual notes that can be defined and used within OWL
documents. There are five annotation properties predefined by OWL:

e owl:versionInfo
e rdfs:label |

e rdfs:comment

o rdfs:seeAlso

o rdfs:isDefinedBy

OWL DL allows annotations on classes, properties, individuals and on-
tology headers, but only under certain conditions described in [BvH*05).
Annotations are currently being discarded by XPTO and are marked as fu-
ture work. One possible manner to represent them would have been to define
a predicate annotation/1 in the unit of the element that the annotation cor-
responds to (property, class, etc).

Within the ontology headers are the namespaces. Those describe a precise
indication of what specific vocabularies are being used in the ontology docu-
ment. Namespaces provide a means of unambiguously interpreting identifiers
and making the rest of the ontology presentation much more readable.

The namespaces of the ontology are being stored by XPTO in the ontology
unit. However the namespaces are currently not being returned along with
the solutions to a query, i.e., the solutions are not URIs and are identified
only by the name or value of the element.
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4.2.4 Unit generation and loading

The unit generation process can be disassembled into three distinct steps:

Unit generation: The first step is to generate all the unit files. For each
symbol in the dictionary, a unit with the same name as the symbol is
generated.

Compilation: In order to be loaded into the running program, each unit
must be compiled using the GNU Prolog/CX compiler. This means
the system, after parsing an ontology and generating the units, must
compile every Prolog file that contains a generated unit.

Loading: After all the units have been compiled they are ready to be loaded
into the program. This is done using the dynamic loading of GNU Pro-
log/CX. Loading each compiled unit makes the ontology representation
fully integrated with the running program.

4.3 Querying an ontology

At the end of representation process the ontology is available to be queried
using the regular GNU Prolog/CX environment. The way to query the ontol-
ogy is to build a context using the units that represent the properties and
calling the goal item/0 to activate the query resolution. The query must
be prefixed with the ’/>’ operator and optionally a class unit. Other units,
described later in section 4.3.1, can be added to the context to add further
query capabilities or be used as a filter for the results.

For convenience purposes there is also available the goal item/1. This
goal will instantiate its argument, by backtracking, with the names of the
individuals that match the query. This is explained further in section 4.3.1.

By placing a class unit before the operator */>? it is possible to access
only the individuals of that class, or all the individuals of the ontology if
the operator is used alone. If the query succeeds the item/1 predicate will

-return, by backtrack, the name of the individuals that are valid for the query.
Querying property values can be achieved by adding to the context the unit
that represents the property (Figure 4.9) or by the inclusion of the unit
property/2 to access a value without knowing the name of the property. An
example is shown in Figure 4.10.

The responsibility of setting up a complete query context lies with the

? />’ operator: it places the individuals/O and access/0 units in the con-
text. For example, for the query present in Figure 4.9, the complete context is

49



i| 1 7~ ’IceWine’ /> locatedIn(L) :> hasFlavor(F) :> item(I).
2
3| F = ’Moderate’
44 I = ’SelakslIceWine’
5| L = ’NewZealandRegion’ 7
Figure 4.9: Ontology query (direct access)
1| | 7= ’IceWine’ /> property(F,’Moderate’) :>
2 property(locatedIn,L) :> item(I).
3| F = hasFlavor
4 I = ’SelaksIceWine’
s{ L = ’NewZealandRegion’ ?

Figure 4.10: unit property definition

shown in Figure 4.11. The individuals/0 unit is the unit that contains the
individuals and property values. The unit access/0, partially represented in
Figure 4.12, is responsible for accessing the individuals of the ontology or a
specific ontology class by instantiating the argument of the item/1 goal. This
is the individual name that will be used by the other units in the context.

il | 7- individuals :> access :>
2 YIceWine’ :> locatedIn(L) :> hasFlavor(F) :>
3 item(I).

Figure 4.11: Query context example

There is also the possibility of defining custom predicates-that use this
operator in order to be used by a Prolog programmer {this is presented in
section 4.3.2).

4.3.1 Units for refining ontology queries

We new present some units which may be used in the queries to retrieve
other values or perform additional operations:
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:~ unit(access).

item(a) :-
:# class_name(CL),
individuals(CL, A).

individuals(CL, I):-
individual_class(I, CL).

individuals(CL, I):-

10 [CL] :< superClass0f(C),

1 individuals(C, I).

© =~ ;b W N e

% check if there is a class
% in the context and get the elements

% elements of the class

% elements of the subclasses

Figure 4.12: Unit access

individual/1 Including this unit in the context unifies the argument of the
unit with the individual name. Using this unit provides a more explicit
query, by asking the individual name and calling the goal item/0. It
is also possible to query the individual name by using the item/1 goal.
Use of this unit is shown in Figure 4.13.

il | ?- /> individual(I) :> item.
2 I = ’WhitehallLanePrimavera’ 7

Figure 4.13: Individual example

class/1 If this unit is included in the context it will unify its argument with
the class of the matching individual (Figure 4.14). This also allows to
restrict the results of the query to a specific class, i.e, not including the
individuals of the subclasses, as is the default behaviour when including
the class unit before the ’ />’ operator.

| ?- /> class(C) :> item(I).

C = ’'DessertWine’
I = ’WhitehallLanePrimavera’ 7

B N =

Figure 4.14: Class example
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property/2 This unit allows to access the properties of the individual with-
out prior knowledge of its name or to query for the property name based
on the property value. The first argument is the property name and
the second the property value (Figure 4.15).

| ?7- ’IceWine’ /> individual(I) :> property(P,V) :> item.

’SelaksIceWine’
locatedIn
’NewZealandRegion’ 7

o
I

[ I S - .
-
L}

<i
n

Figure 4.15: Property example

all/2 Including this unit in the execution context is analogous to using a
findall in Prolog. The first argument is-the element and the second
will be the list of the elements in the specified form. This allows to
retrieve the set of solutions for the variables present in the query, as
exemplified in Figure 4.16.

| ?- ’Chardonnay’ /> individual(I):> all(I, L) :> item.

L = [’BancroftChardonnay’,
’FormanChardonnay’,
’MountEdenVineyardEdnaValleyChardonnay’,
’MountadamChardonnay’,
’PeterMccoyChardonnay’]

= & G b W N e

Figure 4.16: All example

optional/1 This unit receives as its argument another unit such as property/2
or a property unit and will succeed with the results if the unit spec-
ified in its argument succeeds. Otherwise it will succeed leaving any
variables in its argument unbound. This is similar to the SPARQL
optional statement [PS06}.

4.3.2 Native Prolog query representation

To make simple queries easier on Prolog programmers, we created custom
predicates that encapsulate the contextual queries. The arguments to these
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predicates must be defined explicitly after loading the ontology and follow
the conventions:

e The predicate functor is the name of the class;

e The first argument is the name of the individual;

The arguments that are present in the predicate after the individual name are
specified when defining the predicates. This specification requires indicating
the class for which to generate the predicate (that will be the functor of
the predicate) and a list of properties that corresponds to the sequence of
arguments after the individual as shown for example in Figure 4.17. This
allows the user to choose which properties will be present in the generated
predicate. The generated Prolog representation is listed in Figure 4.18.

1| pred(’IceWine’, [hasMaker,hasColor])

Figure 4.17: Predicate definition example

’IceWine’ (A, B, C) :-
*IceWine’ /> optional(hasMaker(B)) :>
optional (hasColor{(C)) :>
item(A).

B WwoN =

Figure 4.18: Generated predicate

This approach is limited because of the fixed arity of the predicates. Some
individuals may not have a value for all the properties (an unbound variable
for that property will be returned in this case) and other individuals may have
properties that are not present in the predicate. It does, however, conform to
standard Prolog programming practice, by allowing the usage of positional

- arguments. It is also possible to define, for each class, several predicates with
different arities each containing different properties to be queried.

4.4 Example Use Cases

We now present some use case examples for XPTO. First we compare
the expressiveness of XPTO queries with SPARQL 2. Then is presented a

2The SPARQL language is introduced in more detail in 5.1.
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scenario in which we combine access to an ontology using the XPTO system
and access to data from a database using ISCO [ANO6].

4.4.1 SPARQL Query examples

We now show some SPARQL query examples and the corresponding query
performed using the syntax of XPTO. These examples queries are taken from
the SPARQL examples of [BBFS05].

Example 1

This first query (Figure 4.19) is meant to show the selection and ex-
traction capabilities of SPARQL and the intended meaning is stated to be:
“Select all Essays together with their authors (i.e. author items and cor-
responding names)”. The corresponding query in XPTO is shown in Fig-
ure 4.20.

In XPTO, the SELECT statement is not used internally, it is implicitly de-
fined by the Prolog variables present in the query. As stated in section 4.2.3,
the namespaces are currently being ignored.

PREFIX books: http://example.org/books#
PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
SELECT 7essay, 7author, 7authorName, ?translator
FROM http://example.org/books
WHERE (7essay books:author 7author),
(7author books:authorName ?authorName)

OPTIONAL (?7essay books:translator ?translator)

Figure 4.19: SPARQL Query example 1

-

N

2]

| ?- /> author (AUTHOR) :> item(ESSAY),
/> authorName (AUTHORNAME) :> item(AUTHOR),
/> optional (translator (TRANSLATOR)) :> item(ESSAY).

Figure 4.20: Query example 1 - internally
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Example 2

This query (Figure 4.21) is: “Invert the relation author {from a book to
an author) into a relation authored {(from an author to a book).”

It intends to show the SPARQL ability to return RDF triples using the
CONSTRUCT statement. The developed system does not directly address this,
it allows only variable binding queries. In order to return the desired struc-
ture it would have to be done explicitly, using aditional Prolog goals. The
query that returns the data necessary is shown in Figure 4.22. The use of
the individual/1 unit has the same effect as using the item/1 goal.

PREFIX books: http://example.org/books#

1

2| CONSTRUCT (?y books:authored 7x)

s| FROM http://example.org/books
| WHERE (7x books:author 7y)

Figure 4.21: SPARQL Query example 2

il | ?- /> author(Y) :> individual(X) :> item,
2 I = authored(X,Y).

Figure 4.22: Query example 2 - internally

Example 3

This query is stated as: “Return the co-author relation between two
persons that stand in author relationships with the same book” (Figure 4.23).
The correspondent XPTO query is shown in Figure 4.24.

4.4.2 Data Integration: Databases and Ontologies

In this section we will demonstrate, with an example around the Periodic
Table, how to write a GNU Prolog/CX program and, using XPTO, to query
over two different data sources, namely databases and ontologies.
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PREFIX books: http://example.org/books#
CONSTRUCT (?x books:co-author ?y)
FROM http://example.org/books
WHERE (7book books:author 7x)
(?book books:author ?7y)
AND (?x neq ?y)
Figure 4.23: SPARQL Query example 3

| ?- /> author(X) :> item(BOOK),

/> author(Y) :> item(BOOK),

X \= Y,

I = coauthor(X,Y).

Figure 4.24: Query example 3 - internally

The Periodic Table

For example purposes, we will use two data sources of information about
the periodic table 3. One will be an ontology * that describes the main com-
ponents of the periodic table like Groups, Blocks and Elements name and
the other a database with detailed information about each element. Com-
bining both, we can have access to information such as what are the detailed
characteristics of the elements that belong to a particular Group or Period.

Accessing the data

When analysing the definition of a Group in the referred Periodic Table
ontology, we can see that each group has, among others, a number, a name
and elements. For example, part of group 10 is shown in (Figure 4.25).

Information about the periodic table elements is present in a database
defined with ISCO [AN06]. Part of the table element definition is illustrated
in Figure 4.26.

Having both the referred ontology loaded into our system and the database
accessible via ISCO, we can write Prolog programs to reason over both data

3A periodic table to use as a reference can be found at http://www.webelements.com/
4We used an OWL representation of the Periodic Table written by Michael Cook:
http://www.daml.org/2003/01/periodictable/
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1| <Group rdf:ID="group_10">

2 [...]

3 <number rdf:datatype="\&xsd;integer">10</number>
4 <element rdf:resource="#Ni"/>

5 <element rdf:resource="#Pd4"/>

8 <element rdf:resource="#Pt"/>

7 <element rdf:resource="#Uun"/>

Figure 4.25: Group 10

1} mutable class element.

2 code: int. key.

3 name: text. unique
4 symbol: text. unique
5 group int.

6 color text.

7 classification int.

8 [...]

Figure 4.26: Element Table
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sets. Using the Group defined above by the ontology and the elements table
defined in the database, we could ask, for example, what is the classification
and color of all the elements belonging to the group group_10 as shown in
Figure 4.27.

| ?- % access ontology
’Group’ /> element(ELEMT) :>
number (_NUM) :> item(group_10),

% access DB using ISCO
element@(group=_NUM, name=ELEMT,
classification=CLASSF, color=COLOR).

CLASSF = ’Metallic’
COLOR = ’lustrous, metallic, silvery tinge’
ELEMT = ’nickel’

Figure 4.27: Query example using ontologies and databases

Variables ELEMT and NUM will tie together both data sources and, using
the Prolog backtrack mechanism, CLASSF, ELEMT and COLOR will return all
the solutions available.

4.5 Experimental Assessment

This section presents the experimental assessment. We begin by com-
paring the XPTO parser with other XML parsers. Then we present the
benchmarks of the representation of ontologies and compare it to other sim-
ilar systems.

4.5.1 XML Parsers

Next are presented the benchmark results of the parsers we tested. The
ontology documents used are a subset of the files used in the benchmark
process. It is an illustrative subset covering several different file sizes, ranging

from 400KB to 99MB.

Test Conditions The parsers were tested in a dedicated workstation: a
Intel Pentium 4 with hyper-thread running at 3.2Ghz with 1GB of RAM.

58



Parse times were measured using the time(1) Linux command collecting
the elapsed time, system time and user time of 100 runs of the parser.
The final average is obtained by removing the 5 worst and best times and
calculating the average of the remaining times. As reported by time(1)
the system time represents the number of seconds used by the system in
operations for the process, the user time is the number of seconds used
directly by the process and elapsed time corresponds to the real time (total
amount of time) used by the process. In order to time only the parse process
(not taking into account process allocation times, etc) the average time it
takes for each parser to read an empty file is deducted from the parse time
of each file.

Libxml2, Libexpatl and Prolog overhead

The Expat XML parser and Libxml2 are two of the available XML parsers
written in the C language. For instance, the Expat parser {Coo06] is used
by the Mozilla browser and Libxml2 by the Gnome Project [Vei06]. Both
parsers were tested in equal environments and in two different situations: as
standalone parsers and integrated with Prolog in order to time the overhead
of this integration. Table 4.1 and Figure 4.28 show the results obtained.
The times labeled as pl-expat and pl-libxml2 are those of each parser
integrated with Prolog. They do not return anything to Prolog, the difference
is that they are called from a Prolog process. These benchmarks are only for
time the Prolog overhead.

Table 4.1: Libxml2 and Expat Comparison (seconds)

File (MB) | Expat | pl-expat | libxml2 | pl-libxmi2
file02 (3,5) 0.04 0.06 0.07 0.08
file03 (1.2) 0.03 0.04 0.07 0.07
file10 (5.5) 0.14 0.16 0.25 0.30
file13 (1.6) 0.04 0.05 0.06 0.07
file17 (24.8) 0.69 0.79 2.02 2.04
- | file19 (2.6) 0.05 0.06 010} 0.10
file21 (2.3) 0.05 0.06 0.09 0.10
file22 (14.4) 0.37 0.45 0.80 0.80
file25 (21) 0.55 0.63 0.97 0.97
file27 (32.9) | 0.62 0.75 1.61 1.84
file33 (98) 2.68 3.10 4.82 | 4.83
file34 (4.5) 0.12 0.15 0.25 0.25
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Figure 4.28: Expat Library vs Libxml2

As Table 4.1 illustrates, in both tested cases the Expat library presents
better times that Libxml2. As we can see from Table 4.1 and Figure 4.28,
the impact on integrating Prolog with Libxml2 is virtually irrelevant. For
Expat, on file 33 (98 MB) there is a 15% overhead. On the smalier files,
although the overhead percentage remains the same, the impact is also not
relevant due to small times measured (under one second).

Comparison with other parsers

The XPTO parser (pl-expat-v2) uses the Expat library. It builds the
structures and terms that represent the XML file and returns the term to
~ Prolog. The implemented parser module was benchmarked against other
existing XML parsers. Among the many available XML parsers, we choose
the following:

PiLLoW (in GNU-Prolog): Pillow [GHO1] is a Web programming library
developed at UPM - Technical University of Madrid that provides a
way of full World Wide Web connectivity for Logic Programming and
Constraint Logic Programing systems. It contains a module that imple-
ments predicates which generate and parse HTML/XML documents.
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SWI-Prolog: This is a parser implemented in SWI-Prolog {Wie03], which
parses a XML file into a Prolog term. It uses the SWI-Prolog SGM-
L /XML parser, which means it allows for processing partial documents
and process the DTD (Document Type Definition) separately.

W4: W4 [Dam07] is a non-validating parser written in XSB Prolog by Carlos
Damaésio that produces a Prolog representation of the XML document.
It has support for XML Namespaces, XML Base and complying to the
recommendations of XML Info Sets.

Jena: Jena [Jen06] is a Semantic Web framework for Java. Among other
tools, it has a RDF/XML parser called APR which can be used inte-
grated with Jena or as a standalone parser. Within the framework, we
used two packages: one provides a set of abstractions and convenience
classes for accessing and manipulating ontologies represented in RDF,
and another for creating and manipulating RDF graphs.

Ciao Prolog: Ciao [GH99] is a Prolog system that allows both restricting
and extending the language. It supports programming with functions,
constraints, objects and features a good base for distributed execution
and parallel execution. It has a module that implements the predi-
cates of the PiLLoW package related to HTML/ XML generation and

parsing.

OCaml: Objective Caml [RémO00] is a variant of the ML language. It
extends the core Caml language with an object-oriented layer and a
module system. To parse XML documents, we used the PXP {Sto07]
OCaml library: Polymorphic XML Parser.

Performing benchmarks with these parsers enables the comparison of the
XPTO parser not only with similar Prolog driven parsers but also with
parsers written in different programming languages and following different
paradigms. Table 4.2 shows all the parse times measured for each of the files
and parsers tested, where pl-expat-v2 is the parser used in XPTO.

Overall, the SWI parser revels the best results, both in terms of parse
times and number of files parsed. The XPTO parser, as expected, presently
cannot handle the large files, however it presents good results for smaller
files (up to 6 MB). The W4 times are high due to the parser validation it
performs (in terms of encodings) and represents the whole information in the
file. The Ocaml, Pillow and Ciao parsers are not able to parse some files due
to not recognizing statements encountered.
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Table 4.2: Benchmark results {seconds)

| File (MB) | ciao | pl-expat-v2 | jena | ocaml | swi| w4 | pillow
file02 (3,5) | 3.70 019 2.08] 140| 0.33| 9.96 2.94
file03 (1.2) | 0.91 089 1.51 -] 019} 3.55 1.15 |
[file10 (5.5) . 173 | 3.48| 6.716| 0.82|16.74 -
| file13 (1.6) | 1.24 084 237 166 0.20| 3.25 1.62
filel7 (24.8) - . - -1 429 [84.25 .
| file19 (2.6) | 1.99 265 1.561 2821 036 7.81 2.29
file21 (2.3) [ 1.67 220 [ 1.58 1.66 | 030 6.63 2.05
| file22 (14.4) - - 123.03 -| 2.26 | 45.34 -
file25 (21) - -110.89| 25.20 | 3.39 | 63.86 -
file27 (32.9) - - -1 39.03| 4.7564.97 -
file33 (98) - - - | 127.37 | 17.00 - -
| file34 (4.5) - 73.22 | 3.86 -1 0.79]13.43 4.46
Speedups

In addition to the above results we calculated speedups. The purpose is to
compare the parser results using the times of one of the parsers as base. This
_ enables a better understanding of the results as they are directly compared

with a reference.

Table 4.3 shows the obtained results. For the base results we choose the
times obtained by Jena since at the time of this writing it has one of the
most used parsers among our choices. So, all the times present in Table 4.3
are calculated by dividing the Jena time by the parser time.

Table 4.3: Speedups results (seconds). Jena used as reference

File (MB) | ciao | pl-expat-v2 | ocaml | swi| w4 | pillow
file02 (3,5) | 0.56 10.85 149 6.22|0.21 0.71
file03 (1.2) | 1.66 1.69 0f 791|043 1.31
file10 (5.5) 0 0.20 051 | 4.22]0.21 0
file13 (1.6) 1.92 2.83 1.43 | 11.64 | 0.73 1.47
file19 (2.6) | 0.76 0.57 0.53 | 4.170.19 0.66
file21 (2.3) | 0.95 0.72 095 | 5.32]0.24 0.77
file22 (14.4) 0 0 0| 10.210.51 0
file25 (21) 0 0 043 | 3.21]0.17 0
file3d (4.5) 0 0.05 0| 491]029] 0.87

Figure 4.29 graphically illustrates the results obtained by our speedup cal-
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Table 4.4: Speedups results (percentage). Jena used as reference
File (MB) | ciao | pl-expat-v2 | ocaml swi | w4 | pilow

fle02 (3,5) | -44% 985% | 49% | 522% | -79% | -29%
file03 (1.2) | 66% 69% -1 691% | -57% | 31%
file10 (5.5) . “80% | -49% | 322% | -79% -
fle13 (1.6) | 92% 183% | 43% | 1064% | 27% | 47%
filel9 (2.6) | -24% 43% | -47% | 317% | -81% | -34%
file21 (2.3) | -5% “28% | 5% | 432% | -76% | -23%
fle22 (14.4) - - ~1920% | -49% | -
fle25 (21) - -1 57% | 221% | -83% -
file34 (4.5) - -95% "1 301% | -11% | -13%

culations. Analyzing the values we can conclude that the parser we choose
as reference is not the one that presents the best results. The best values are
from the SWI Prolog parser.

For a better understanding of the results we can look at Table 4.4 where
these are represented as percentages. Looking at our parser results we can
conclude that it has better parsing times (in relation to Jena) for 3 files,
worse times for 4 files and that it can not parse two files that Jena can (the
two bigger ones). The largest difference is in £ile02, where XPTO presents
a measured time 985% better than Jena.

4.5.2 Ontology representation benchmarks

Next the benchmarks of the complete representation of the ontology are
presented. For XPTO this includes the parse, name analysis, generation,
compilation and loading of the units.

In addition to XPTO, in the tests were included other systems that pro-
vide similar capabilities: Thea and Pellet. These systems are briefly de-
scribed next:

Thea [Van06] is an OWL parser implemented in Prolog. It uses The SWI-
Prolog Semantic Web library to parse the OWL ontologies into RDF
triples and then builds the representation based on these results. The

ontology is represented as Prolog terms and its structure is further
described in [Van07].

Pellet [SP04] is a open source reasoner for the OWL DL ontology language
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Figure 4.29: Speedup graph

developed at the Mindswap Lab ® of the University of Maryland. Pellet
contains a query engine which supports answering queries formulated
using SPARQL and supports reasoning with multiple ontologies.

Pellet also implements a species verification when parsing the ontology,
but the times were measured with this feature disabled. Thea represents the
ontology as predicates stored in its Prolog knowledge base. The representa-
tion of the ontology adopted in XPTO is described in section 4.2.1.

Table 4.5 contains the times calculated for all the systems. These times
were measured using the same method as described in section 4.5.1.

The values present in Table 4.5 allow us to compare the systems in terms
of time of ontology representation. We can state that Pellet is the fastest
of the benchmarked systems and that XPTO is, on average, 97.5% times
slower than the Pellet system, as shown in the speedups Table 4.6. The
XPTO system is further timed next in section 4.5.3 where explinations for
the slowdown are given.

Shttp://mindswap.org/
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Table 4.5: Time (in seconds) of representing the ontologies
File (MB) | Thea | XPTO | Pellet
file35 (2.3) 21.22 | 206.33 4.39
file36 (1.2) 6.96 98.78 |  2.61
fle37 (2.2) | 105.15| 204.91| 557
file38 (1.2) 4.66 96.4 2.50

Table 4.6: Performance gain of representing the ontologies
File (MB) | Thea | XPTO | Pellet
file35 (2.3) |-79.33% | -97.87% | 0.00%
file36 (1.2) | -62.45% | -97.35% | 0.00%
file37 {2.2) | -94.71% | -97.28% | 0.00%
file38 (1.2) | -46.29% | -97.41% | 0.00%

4.5.3 XPTO time analysis

In this section we analyze the time it takes for XPTO to parse and
build the representation of each file. These times are measured using the
statistics/2 predicate of GNU Prolog, using the real_time statistics key.®

The times are presented in Table 4.7 and the parts of the system that
were measured are:

parse: This represents the time it takes for the ontology file to be parsed
using Expat (as explained in section 4.1, page 39);

build: Time to build the dictionary;

print: Corresponds to the time used in generating the ontology representa-
tion files;

compile: Time it takes to compile all the generated files;

load: Is the time of dynamically loading the ontology into the running in-
stance of the program;

As presented in the average times of each step on Table 4.7, we can realize
that most of the time used to integrate the ontology into the system is spent
in external processes: compiling and loading the ontology takes over 90% of
the process time.

SFurther information about this predicate can be found in the GNU Prolog manual
available at http://www.gprolog.org/mannal/gprolog. html#htoc232
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Table 4.7: Average time of each part of the representation time

File (MB) | parse | build | print | compile load
file35 (2.3) 0.01 0.03 0.02 0.79 0.15
file36 (1.2) 0| o004 002 0.86 0.07
file37 (2.2) 0.01 0.04 0.01 0.80 0.14
file38 (1.2) 0.01 0.03 0 0.89 0.07
Average |0.75% | 3.50% | 1.25% | 83.50% | 10.75%

This indicates that the compilation process should be done separately
and build an executable with the representation of the ontology that can, at
a later time, be loaded and queried.
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4.6 Conclusion

This chapter presented a prototype system for representing ontologies.
The achieved implementation covers our initial objectives: we obtained a
functional system that can reason over ontologies from a contextual program-
ming point of view. The presented and discussed results are not optimal and
showed us where we can improve the system’s performance.

Currently there may be only one ontology loaded at a particular time.
This represents one of the major shortcomings of the current state of the
work. The objective is to be able to load an arbitrary number of ontologies
and perform mixed queries over these. In order to achieve this some changes
will have to be made to the representation. These include changing the name
of the units (and unit files) to avoid name clashes, and altering the query
method described in section 4.3 to take into account the several ontologies.
The unit individuals will also have to be changed to guarantee the separa-
tion of individuals of the loaded ontologies, possibly becoming several units,
one for each loaded ontology.

The fully support of a well defined OWL sub-language is also work that
has to be accomplished in future work. The parser is simple and not very
robust. It should be improved in order to be more efficient and to handle
larger ontologies.
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Chapter 5

SPARQL Back-end for
Contextual Logic Agents

XPTO is an ontology mapping engine that aims for the creation of a logic
layer over ontologies. Access to this system provides a way for reasoning over
ontologies by means of Logic Programming. However, the work done with
XPTO is meant to be viewed as the foundation of a hub system in which
different entry and exit plug-ins for data access can be used. For example,
the ontology representation and access provided by XPTO can be used by a
SPARQL Front-end that receives a SPARQL query about an ontology loaded
in the system and returns the solution.

This chapter presents a back-end for XPTO that aims to transparently
merge the reasoning of the system’s internal knowledge base with external
ontologies available from third parties, by means of the SPARQL query lan-
guage. To achieve this, we developed a system that provides functions for
communicating with Web SPARQL agents for ontology querying purposes.
It provides the system with the ability to pass a SPARQL query to an arbi-
trary SPARQL Web agent and get the solution, encapsulating the results as
bindings for logic variables.

This SPARQL back-end grants XPTQO capabilities for writing GNU Pro-
log/CX programs to reason simultaneously over local and external ontologies.
But equally important, this back end implementation provides roots for, as
future work, implementing access and reasoning capabilities for as many dif-
ferent data sources as possible, as shown in Figure 5.1.

The remainder of this chapter is organized as follows: first, sections 5.1

and 5.2 introduces SPARQL and its query protocol. Then, section 5.3 intro-
duces and describes the implementation of the XPTO SPARQL back-end.
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Figure 5.1: System architecture

Finally, in section 5.4 we present some results and draw conclusions.

5.1 Querying with SPARQL

SPARQL is a Semantic Web query language developed by the W3C work-
ing group. At the time of this writing, one of the most important open re-
search issues in the Semantic Web is the lack of a query language standard
specification that can access data described by ontologies. There exists a
variety of Semantic Web query languages projects [TF086], ranging from pure
selection languages with limited expressivity to general purpose languages
supporting different data representation formats and complex queries. How-
ever, none of them is currently referenced as standard. Among all the possi-
bilities, our choice was to use SPARQL {PS06]. SPARQL is a query language
that is suitable for both local and remote use and access. For remote use,
the SPARQL Protocol for RDF [Cla06] has been designed and is introduced
in more detail in section 5.2.

SPARQL was designed to meet the requirements and design goals de-
scribed in the RDF Data Access Use Cases [Cla07] document. It provides
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capabilities for:

e Extracting information in the form of URIs, blank nodes, plain and
typed literals;

¢ Extracting RDF sub-graphs;

e Constructing new RDF graphs based on information present in the
queried graphs;

As the first item of the previous list states, information can take the form
of URIs - Uniform Resource Identifier (or IRIs! - International Resource
Identifiers, which are a generalization of URIs and URLs). Blank nodes are
variables that have no name but can be referenced within a graph pattern.
In order to better understand RDF concepts, let’s look at Table 5.1, which
draws a comparison between XML and RDF querying:

Table 5.1: Querying XML compared to querying RDF

Concept XML RDF

Model Document or Tree Set of Triples =
RDF graph

Atomic Units | Elements, Attributes, Text Triples, URISs,

Blank Nodes, Text
Identifiers Element/Attribute Names, IDs | URIs

Described by { DTDs, W3C XML Schema, RDF Schema

The main difference resides in the data model. XML is a structured doc-
ument, usually in a tree form. RDF is a graph data model, a set of triples
in the form (Subject, Predicate, Object).

As a query language, SPARQL is data oriented, which means there is no
query inference in the query language itself, it only queries the information
held in the models. It provides Semantic Web users with a query language
in much the same fashion as SQL provides relational database users with a
query language: It does not do more than take the description of what is
wanted, in the form of a query, returning that information in the form of a
set of bindings or an RDF graph.

lInternationalized = Resource  Identifiers, described by RFC3987 at
http://www.ietf.org/rfc/rfc3987.txt
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5.1.1 How to write SPARQL queries

An RDF graph is a set of triples in the form (Subject, Predicate, Ob-
ject). The SPARQL queries are based on matching graph patterns, where
the simplest graph pattern is similar to an RDF pattern, but with the possi-
bility of a variable instead of an RDF term in the subject, predicate or object
positions. The combination of triple patterns results in a basic graph pattern.

Let us study a first query example. Given the RDF graph in Figure 5.2,
we want to write a SPARQL query to find who is the director of a movie
from the information in the given RDF graph.

1| <http://example.org/movie/moviel>
2| <http://xpto.org/persons/director> "David Fincher".

Figure 5.2: RDF graph example

The query (Figure 5.3) has two parts, a SELECT and a WHERE clause. The
first is responsible for identifying the variables that will appear in the query
results and the second encapsulates the triple patterns. The result will match
the variable director with ”David Fincher”.

1| SELECT ?director

2t WHERE

s {

4| <http://example.org/movie/moviel>

s| <http://xpto.org/persons/director> ?director .
o }

Figure 5.3: SPARQL query example

SPARQL Syntax

The terms between <> are URIs. SPARQL provides two different kinds
of abbreviations for URlIs:

1. PREFIX. This keyword associates a prefix label with an URI. A prefixed
name is a prefix label and a local part separated by a.colon ”:”. A pre-
fixed name is mapped to an URI by concatenating the URI associated
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with the prefix and the local part. The prefix label or the local part
may be empty.

2. BASE. This keyword defines the base URI used to resolve relative URIs.

The general syntax for literals is a string with either an optional lan-
guage tag (introduced by @) or an optional data type URI or prefixed
name. A string can be written enclosed in quotes; either double "" or single
2 For convenience, integers and decimals can be written directly with-
out quotes but using explicit URI data types: xsd:integer, xsd:decimal
and xsd:double. Boolean values can also be written without quotes, using
xsd:boolean.

Query variables have global scope. The use of a given variable name any-
where in a query always identifies the same variable. Although variables are
prefixed by either "?" or "$", both characters are not part of the variable
name. For example, $name and 7name identify the same variable in a query.

As shown in Table 5.1, an RDF node can be an URI, a literal or a blank
node. A blank node is a node that is not a URI reference or a literal. In
the RDF Abstract Syntax specification {KC07], a blank node is just a unique
node that can be used in one or more RDF statements, but has no intrinsic
name. In SPARQL, blank nodes in graph patterns act as non-distinguished
variables, not as references to specific blank nodes in the data being queried.

Graph patterns

SPARQL is all about graph pattern matching, where complex graph pat-
terns can be formed by combining smaller patterns in various ways:

e Basic, where a set of triple patterns must match;

Group, where a set of graph patterns must all match;

Optional, where additional patterns may extend the solution;

Alternative, where two or more possible patterns are tried;

e Patterns on Named Graphs, where patterns are matched against
named graphs;

Figure 5.4 illustrates a query with a group graph pattern (delimited with
{}) of one basic graph pattern. Using the keyword FILTER, a constraint can
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1f PREFIX foaf: <http://xpto.org/foaf/>

2| SELECT 7name 7mbox

3| WHERE {

4 ?x foaf:name 7name .

5 ?x foaf:mbox ?mbox .

6 FILTER regex(?name, "Mr. French")
7 }

Figure 5.4: SPARQL Group graph pattern

be applied to the query in order to restrict the solutions over the whole group
in which the filter appears

In basic graph patterns, the entire query pattern must match in order to
give a solution. However, it is useful, in certain scenarios, to not reject the
solution because some part of the query pattern does not match. OPTIONAL
matching provides this facility which means that if the optional part does
not match, it creates no bindings but does not eliminate the solution. Figure
5.5 illustrates an example of a SPARQL query that uses a constraint in an
optional graph pattern.

PREFIX dc: <http://xpto.org/dc/objects/>
PREFIX ns: <http://xpto.org/ns#>
SELECT 7?title 7length
WHERE { 7x dc:title ?title .
OPTIONAL { ?x ns:length ?length .
FILTER (?length < 120) }

e TR - S - I N

Figure 5.5: SPARQL optional group graph pattern

Supposing that in the RDF graph we have two movies, one with length
equal to 90 minutes and other with 130, the solutions would be the ones
shown in Table 5.2.

Matching alternative graph patterns can be done using the UNION key-
word between graph patterns. If more than one of the alternatives matches,
all the possible pattern solutions are returned.
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Table 5.2: Solutions to Figure 5.5 query
title length
“The Departed”
“Reservoir Dogs” | 99

In the previous examples, all the queries have been shown executed against
a single graph, the default graph of an RDF data-set which acts as the active
graph. An RDF data-set comprises one default graph which does not have a
name and zero or more named graphs, where each named graph is identified
by an URI. The graph that is used for matching a basic graph pattern is the
active graph. The GRAPH keyword is used to make the active graph one of all
of the named graphs in the data-set for part of the query.

A SPARQL query may specify the data-set using the FROM and FROM
NAMED clauses. They both indicate that the data-set should include graphs
that are obtained from representations of the resources identified by the given
URIs. The data-set resulting from these clauses is:

e A default graph consisting of the RDF merge of the graphs referred to
in the FROM clauses;

e A set of (URI, graph) pairs, one from each FROM NAMED clause;

If there is no FROM clause, i.e, a default graph, but there is one or more
FROM NAMED clauses, then the data-set includes an empty graph for the
default graph. The query in Figure 5.6 matches the graph pattern against
each of the named graphs in the data-set and forms solutions which have the
src variable bound to URIs of the graph being matched. The graph pattern
is matched with the active graph being each one of the two named graphs in
the data-set.

The query result gives the name of the graphs where the information was

found and the value for jules’s nickname, as showed in Table 5.3.

Table 5.3: Solutions to the query in Figure 5.6
src name
http://example.org/foaf/jules | ” Jules Winnfield”
http://example.org/foaf/brett | “Pit”

Query patterns generate an unordered collection of solutions. These solu-
tions are then treated as a sequence where initially there is no specific order.
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PREFIX person: <http://xpto.org/persons/>

SELECT 7src 7name
FROM NAMED <http://xpto.org/persons/jules>
FROM NAMED <http://xpto.org/persons/brett>
WHERE
{
GRAPH ?src
{ 7?x person:mbox <mailto:jules@work.example> .
?x person:nick ?7name

}
}

Figure 5.6: Named graphs

However, SPARQL has sequence modifiers constructors that can then be ap-
plied to create a different sequence. The following list comprises the solution
sequence modifiers available:

e Order: order the solutions;

Projection: choose certain variables;

Distinct: ensure solutions in the sequence are unique;

Reduced: permit elimination of some non-unique solutions;

Offset: control where the solutions start from in the overall sequence
of solutions;

e Limit: restrict the number of solutions;

" Query Forms

SPARQL has four query forms. Each one of them uses the solutions from
pattern matching to form result sets. The query forms are:

SELECT: returns all, or a subset of, the variables bound in a query pattern
match. SELECT * is used to select all the variables in the query. The
SELECT form is currently the only implemented form by the back end
of XPTO, whereas the other three are marked as future work.
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CONSTRUCT: returns an RDF graph constructed by substituting vari-
ables in a set of triple templates.

DESCRIBE: returns an RDF graph that describes the resources found.
ASK: returns a boolean indicating whether a.query pattern matches or not.

Among those query return forms, two of them return variable bindings
and the other two return RDF graphs. For the first group (SELECT and ASK),
results can be thought of as a table with one row per query solution, where
some cells may be empty because a variable is not bound in that particular
solution (see example in Figure 5.2). These result sets can be serialized into
either XML or an RDF graph; for the XML serialization, an XML format is
described in the W3C Candidate Recommendation SPARQL Query Results
XML Format document [BB06]. This document describes an XML format
for the variable binding and boolean result formats provided by SPARQL .
Let us exemplify this by first looking at the RDF triples present in Figure
5.7 (expressed in Turtle syntax [Dav07]):

@prefix person: <http://xpto.org/persons/> .
-.:a person:name  "Beatrix Kiddo" .

_:a person:knows _:b .

_:a person:knows _:C .

_:b person:name "Budd" .

-:C person:name  "O-Ren Ishii" .

_:c person:nick  "Cotton Mouth" .

N D W N e

Figure 5.7: Turtle RDF graph example

Given this RDF graph, Figure 5.8 shows a query that selects the names of
persons that are known by persons present in the triples and their nicknames
if any.

This will result in the set composed by the names Budd and O-Ren Ishit,
and the nickname of Cotton Mouth. The XML format is presented in Figure
5.9. The head tag encapsulates the variables that are to be return and the
results tag encapsulates all the bindings for those variables.

This section presented an introduction and an overview of the SPARQL
query language. Most of the aspects focused are the ones that have impor-
tance and are relevant in the work done with the back end presented next
in this chapter. For further details consult the three SPARQL specifications
[PS06, Cla06, BB06).
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PREFIX persons: <http://xpto.org/persons/>
SELECT 7name 7nick
WHERE
{ 7?x persons:knows ?y.
7y persons:name 7name .
OPTIONAL { ?y persons:nick 7nick }
}

Figure 5.8: Nickname SPARQL query example

5.2 Querying an external SPARQL agent

As a data access language for the Semantic Web, SPARQL is suitable for
both local and remote use. For remote use, the W3C group is working on
a SPARQL protocol for Web agents communication {Cla06]. This document
describes means of conveying SPARQL queries to SPARQL query services
and how the query results are returned to the requesting entity, where bind-
ings like HTTP and SOAP 2 have been introduced to achieve connectivity.

5.2.1 SPARQL Protocol

SPARQL protocol uses the Web Services Description Language (WSDL)
[RCO7] in order to describe a way to elaborate SPARQL queries to a SPARQL
query processing service and returning the query results. This protocol, de-
veloped by the W3C RDF Data Access Working Group (DAWG) as part
of the Semantic Web activity, is described in two ways: as an independent
abstract interface and as HTTP and SOAP bindings to this interface.

SparqlQuery is the only protocols interface and it contains one opera-
tion, query, which is used to specify a SPARQL query string. The query
operation is described as an In-Out message exchange pattern, which means
it consists of exactly two messages, where the first is the In - query request
and the second is the OQut - query result.

The content of an In message is composed of two further parts: one
SPARQL query string and zero or one RDF data-set descriptions. The query

2Simple Object Access Protocol is a protocol for exchanging XML based messages in a
decentralized, distributed environment. Consult the appropriate W3C specification [FNO7]
for detailed information.

7



B W N =

© a =~ (2] 0

<?xml version='"1.0"7>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
<variable name="name"/>
<variable name="nick"/>
</head>
<results>
<result>
<binding name="name">
<literal>Budd</literal>
</binding>
</result>
<result>
<binding name="name">
<literal>0-Ren Ishii</literal>
</binding>
<binding name="nick">
<literal>Cotton Mouth</literal>
</binding>
</result>
</results>

</sparql>

Figure 5.9: XML response format for query in Figure 5.8

string is defined as a sequence of characters in the language defined by the
SPARQL grammar, starting with the query production. The RDF data-
set description is formed by zero or one default RDF graphs composed by
the merge of zero or more default or named graphs (FROM and FROM NAMED
keywords in SPARQL, respectively). The Out message is an instance of an
XML Schema. type called query-result composed of either:

1. A SPARQL results document in response to a SELECT or a ASK query
form;

2. An RDF graph in response to a DESCRIBE or CONSTRUCT query form;

If an operation fault rises, the query operation contained in the SparqlQuery
interface may return, in place of the Out message, either the predefined
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MalformedQuery or QueryRequestRefused message, both also defined in
XML Schema.

HTTP Bindings

The SparqlQuery interface described above is an abstract operation,
which means it requires specific protocol bindings in order to become an
invocable and usable operation. Next we describe the HTTP binding to the
SPARQL protocol as it is the one used by the implemented XPTO back-end.

There exists two HTTP bindings: queryHttpGet and queryHttpPost. The
query operation binding uses the HTTP GET with the following serialization
types constraints:

e Input: application/x-www-form-urlenconded and application/xml
e Output: application/sparql-results+xml and application/rdf+xml

Let us see a simple example. Figure 5.10 shows a query that is sent to
some SPARQL query service located, say, at http://zpto.org/service/sparql/.
The operation is illustrated in the HTTP trace presented in Figure 5.11.

PREFIX dc: <http://xpto.org/movies/>
SELECT ?movie 7director
WHERE { 7"movie dc:directed 7director }

Figure 5.10: SPARQL simple Query example

GET /sparql/?query=PREFIX+dc:+&1t;

http://xpto.org/movies/&gt ; %13SELECT+?movie+?director’13WHERE+
{+?movie+dc:directed+?director+}

Host: xpto.org/service/

User-agent: sparql-client/0.1

Figure 5.11: SPARQL external query operation

In the GET request there is an URL encoded SPARQL query and the
location of an HTTP server. Note that the query is encoded: spaces are
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replaced by the plus symbol “+” and new lines are replaced by ”%13”,
which is a hexadecimal value of the new line character number. The result
is presented in Figure 5.12.

HTTP/1.1 200 OK

Date: Fri, 010 Apr 2007 15:45:32 GMT

Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3
Connection: close

Content-Type: application/sparql-results+xml

<?xml version="1.0"7>
<sparqlxmlns="http://www.w3.org/2005/sparql-results#">

<head>
<variable name="movie"/>
<variable name="director"/>
</head>
<results distinct="false" ordered="false">

</results>
</sparql>

Figure 5.12: SPARQL external query result

GET /sparql/?query=<EncodedQuery>&
default-graph-uri=http://www.other.xpto2.org/movies2 HTTP/1.1
Host: www.other.xpto2.org

User-agent: my-sparql-client/0.1

Figure 5.13: SPARQL external HTTP trace example

Note that in this example the RDF data-set is not specified in the query
nor in the protocol. The RDF data-set can be specified in the query or
directly in the protocol or in both query string and in the protocol. In the
case where it is specified in both sides, the specification indicates that the
protocol must be the RDF data-set consumed by the query operation. Figure
5.13 shows an HTTP trace where the RDF data-set to be used is passed in
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the protocol, identified by the value of the default-graph-uri parameter.
Anther possible.scenario is if the Web service only takes queries against a
specific predefined data-set. In this case, there is no need for an explicit the
data-set via query or protocol.

5.3 Back-End Processor

We now describe a SPARQL back-end for XPTO that is capable of com-
municating with SPARQL Web agents. This enables writing GNU Pro-
log/CX programs to reason simultaneously over local and external ontologies.

5.3.1 Architecture

The back-end engine provides XPTO with a means for querying external
Semantic Web services in SPARQL. Although it can be viewed as a single
independent component, the purpose is to integrate it in a manner that
it will allow the XPTO-using programmer to query external and internal
ontologies using the same query syntax and declarative context mechanics
as the internal system. This will allow to transparently query internal and
external ontologies and merge their results in the same program. Figure 5.14
illustrates the architecture of XPTO with the integration of the SPARQL
back-end component.

To achieve this level of functionality, we developed a GNU Prolog/CX to
SPARQL engine that satisfies the following requirements:

e Translate a partially bound GNU Prolog/CX goal into SPARQL;

e Send the SPARQL query to the specified Semantic Web SPARQL ser-
vice;

e Fetch the XML result file, parse it and return the solutions as Prolog
variable bindings using the GNU Prolog/CX backtrack mechanism to
iterate over sets of answers;

Although the queries are meant to have the same syntax as the ones exe-
cuted by XPTO, there is additional information that is needed to be provided
to the external agent if the SPARQL protocol [Cla06] is to be used. This in-
cludes, among others, the url of the service, the data format of the response
and, possibly, an ontology URI. The latter means that external agents such
as the XML Armyknife Semantic Web service [Dod06] that is used through-
out this section to illustrate the back-end functionality may have capabilities
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Figure 5.14: System architecture

for querying ontologies from any given Internet location. The response for-
mat can vary from different types like simple HTML for Internet browsing
purposes, or the SPARQL Query Results XML Format {BB06] for agents
like ours.

5.3.2 Prolog/CX to SPARQL mapping

SPARQL is a recent language and is still undergoing an evolution pro-
cess. It has many different constructs, forms and capabilities. The XPTO
back-end that we present here is currently functional, which means it can
successfully translate a GNU Prolog/CX query into SPARQL, communicate
with outside agents, get the response and return the solutions as bindings
to Prolog variables. At the time of this writing there are limitations on the
queries which can be generated:

e Queries must form basics graph patterns (simple triple patterns);
¢ Only produce the SELECT query form;

e Data sets defined by the clauses FROM and FROM NAMED must be defined
as facts;
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e Abbreviations must be defined as facts;

A SPARQL query in the back-end environment is a GNU Prolog/CX
context execution similar to the ones defined by the XPTO main mapping
engine. The query is always composed of three parts:

1. One URI of the external Semantic Web service;
2. One or more property restrictions;

3. An execution predicate which refers individuals;

Figure 5.15 illustrates a definition of a back-end query and its three com-
ponents.

1{ QUERY := sparql(URI) /> P1 ... Pn :> ITEM

2

3 URI := URL

a P = property(VALUE) or where(PROP, VALUE)
5 ITEM := item(INDIVIDUAL)

Figure 5.15: Back-End Query Definition

As the above figure shows, on the left side of the />’ operator are the
connection parameters and on the right the query properties and individuals.

The main syntactic difference between the two types of queries {local and
external) resides on the left side of the XPTO operator */>’. There are two
query situations for local queries and one for external:

1. A class name for local reasoning over objects from that class;

2. Operator by itself for direct SPARQL-like local reasoning, i.e, query
variables on properties and/or individuals;

3. A compound term with functor sparql/1 which identifies the target
external SPARQL agent;

Note, however, that pmaﬁetem other than the URI of the external Web
Service may be needed for the external query execution. As discussed in sec-
tion 5.2.1 and defined in the SPARQL Protocol for RDF {Cla06], two more
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parameters can be specified: a response file format and the location of the
ontology which the system wants to query. The latter is used with Web Ser-
vices attached not only to one ontology but capable of querying, in SPARQL,
any other ontology in the Web, given its location. Each Web Service adopts
one response format parameter, although the sender can specify in the query
what format the response should take. These parameters must be present in
the program knowledge base as Prolog facts or made available in the execu-
tion context.

The context execution that composes the query is necessarily different
from the queries that reason over local ontologies, as there is no connection
between what is included, as properties, in the context execution and what-
ever data is loaded into the main engine of XPTO, i.e, the properties in a
back-end query are not associated with existing predicates that are present
in the query context. This means that although the query has the form of
a GNU Prolog/CX context execution with the predicate item/1 as goal, its
execution is handled differently. The goal is not executed by any unit that
appears in the context on the right side of the query, mostly because what
is written as properties of the query will not exist as explicit units in our
system and thus, in order for a query context to be formed, the programmer
must have prior knowledge of the structure of the ontology being queried.
If no properties names or individuals are known, it is possible to query for
what properties a certain individual has, as detailed next in this section.

On the left side of the main operator */>’ the external agent is specified
and on the right side, the goals and query restrictions. The right side of the
operator encodes the query that must be mapped to SPARQL. One way to
do this is to translate that information into RDF triples, much in the same
way a database is translated into triples, i.e, for each of the n stated prop-
erties about an individual, the back-end must translate it to (n-1) triples.
The triples are extracted by the union of each property term of the right
side and the item term, which represents the subject of the triple. Figure
5.16 shows an example.

The query in Figure 5.16 asks for individuals that have the properties
propertyl and property2 and what their values are. All unbound Prolog
variables represent variables in the triples. If more than one solution is avail-
able for the query, all the results are retrieved using the Prolog backtracking
mechanism. To state a value in the query and therefore apply a restriction
to the solution, a Prolog atomic value can be used to bond a Prolog variable.
In the previous example, the substitution of the variables V1 and IND for-
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The query:
sparql(’uri.org’) /> propertyl(Vl) :>
property2(V2) :> item(IND).

Translates into the RDF triples:
(?IND, propertyl, ?V1)
(?IND, property2, ?V2)

Figure 5.16: Back-End triples generation, Example 1

valueX and indl respectively translates to the triples in Figure 5.17.

if (indl, propertyi, valueX)
2| (indl, property2, 7V2)

Figure 5.17: Generated triples

The query scheme explained so far only is useful if the names of the prop-
erties of the ontology are known. To ask for a property name, i.e, to generate
an RDF triple where the property position is a variable, the back-end unit
where/2 should be use. Figure 5.18 illustrates an example which queries for
all the properties and their values for the individual named individualA.

The Query:
sparql(’uri.org’) /> where(PROP, VAL) :> item(’individualA’).

Translates into the RDF triples:
(’individualA’, 7PROP, ?7VAL)

O b W N e

Figure 5.18: Back-End triples generation, where clause Example
Note that this clause can also be used like a single ask property, by

grounding the first argument to a Prolog atom named with some property
that describes the individual.
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The triples generation process divides the GNU Prolog/CX query infor-
mation into two parts: the variables, i.e, what is asked and the triple sets.
This will result in a direct and transparent translation to SPARQL, where
the variables in the query will be the SELECT SPARQL clause arguments and
the triples will form the sets in the WHERE SPARQL clause. For example, the
query presented in Figure 5.18 will be translated into the SPARQL query
presented in Figure 5.19

SELECT ?prop, ?val

WHERE

{

’individualdA’ ?prop 7val.

}

[ I S D .

Figure 5.19: GNU Prolog/CX to SPARQL Example 1

The GNU Prolog/CX to SPARQL translation scheme presented in this
section covers simple SPARQL clauses and forms. Other SPARQL query
forms like CONSTRUCT or DESCRIBE or query patterns like ORDER or OPTIONAL
are not implemented or necessary at this point. The generation of SPARQL.
which satisfies the Prolog operational semantics is the goal of the present
work.

5.3.3 Web Agents Communication

After the SPARQL query is constructed, a communication process must
be carried out between the back-end and the Semantic Web SPARQL service
that is to be used. The back-end implements a simple connection model
divided into the following steps:

-1, Egpabﬁsh connection;
2. Send query;
3. Receive the response;

4. Close connection;

Before the query it is sent, some transformation work must be done, i.e,
the query must be encoded accordingly to the SPARQL Protocol for RDF
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[Cla06] (see section 5.2.1). This includes appending optional information to
the query like the prefir, the default URI or the response file format.

After encoding the query, the back-end starts the communication process
with the external agent. This represents the Establish connection step in the
above sequence and includes the validation of the Web service:

e Open the communications;

e Verify whether the external host is up and ready for communication;

After the connection is established, the query is then sent. If everything
went well, the external agent response is received and the connection is closed.
This represents the remaining steps in the back-end query execution list.
Figure 5.3.1 presents the communication process. '

Algorithm 5.3.1: EXTERNAL COMMUNICATION PROCESS(query)

if (connectionsuccess ful)
(socket — query
repeat

result «— read(socket)
until
socketClosed,
|return (result)

then [

else 4 €TTOT < “No_hosname_response.”
return (error)

After receiving the response and closing the connection, the process re-
turns to the Prolog side. The XML format that represents the solutions to
the query follows the specification described in the SPARQL Query Results
XML Format [BBO6], described in section 5.2.1. The XML which contains
all the existing solutions for the query is then parsed. Figure 5.9 in sub-
section 5.2.1 shows an example of a XML response returned by an external
agent. Finally, the back-end will provide each logic solution to the query
present in the XML, one at a time if more than one are available.

5.3.4 Examples and Query solutions

To better illustrate how the back-end operates, let us focus on a real ex-
ample. The SPARQL service used is hosted at zmlarmyknife.org {Dod06] and
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is called XAK 3. The XAK SPARQL query service implements the SPARQL
Protocol for RDF [Cla06] and it provides a SPARQL query engine for RDF
data available on the Internet. The XAK query engine also extends the stan-
dard protocol to provide support for multiple output formats.

The following are the most relevant features that characterize XAK:

Base URL: http://sxmlarmyknife.org/api/rdf/sparql/query;

Requested Methods Supported: GET and POST. A GET of the Base URL
without any parameters will return an HTML form suitable for experi-
menting with the query service. POST is almost equivalent to GET and
should be used in exceptional cases. The SPARQL Protocol notes that
" [GET] should be used except in cases where the URL-encoded query
exceeds practicable limits;”

Request Parameters: The request parameters supported by this service,
with the exception of format, are specified in the SPARQL Protocol for
RDF [Cla06]. Table 5.4 summarises their use;

Table 5.4: XAK request parameters

Parameter Notes
query URL encoded SPARQL query
query-uri URL from which query

can be fetched. Extension to the SPARQL protocol

default-graph-uri

Absolute URL of RDF data source(s)
to populate the background graph

named-graph-uri

Absolute URL of RDF data source(s)
to be used as named graphs

format Format for results. Extension to the SPARQL
protocol. Values depend on type of query.
xslt-uri Absolute URL of XSLT stylesheet to apply

to SELECT query results (ONLY). Extension to

| the SPARQL protocol.

Response Codes: The following HT'TP response codes will be returned by

this service:

e 200 - successful query;

3The XML Army Knife is a project by Leigh Dodds. For more information visit his
Web page at http://www.ldodds.com/
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e 400 - malformed query;
e 500 - error processing query or fetching data,;

Response Format: By default responses to SELECT queries from this ser-
vice will conform to the SPARQL Query Results XML Format [BB06).

As specified in that document, the MIME type will be application/spargl-
results+zml;

Additional Response Formats (SELECT): The format parameter can be
used to select one of the alternate output formats present in Table 5.5;

Table 5.5: Additional XAK response formats

Format Value | MIME type

html text/html

json application/sparqgl-results+json
javascript application/javascript

The first format is an html document containing query summary and
tabular results. The second format is a json 4 serialization of results
and the javascript format generates an html table with a SPARQL
class CSS style associated with it.

XAK supports most of the important specifications stated in the SPARQL
Protocol for RDF [Cla06], which makes it a reasonable test case for using with
the back-end. The description does not mention any tie to a specific ontology
and states the support of the parameters default-graph-uri and named-graph-
uri, which means an external ontology must be used for querying purposes.

The Wine OWL DL ontology [W3C06] is a sample ontology used in the
OWL specification documents and will serve as the use case ontology in this
section. The Wine ontology defines classes, properties and individuals about
different kinds of wines and, with SPARQL, it is possible to query for RDF

" " triples about the information that exists in the ontology. Among others, the

IceWine class defines two properties: hasBody and hasColor (Figures 5.20
and 5.21 respectively).

These two properties state that an Ice Wine individual should have, among
others, values for the hasBody and hasColor properties. The first must be
one of two kinds: Medium or Full and the latter should be White. The

4For more information about the JSON serialization please visit http://www.json.org/
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<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasBody" />
<owl:allValuesFrom>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#Medium" />
<owl:Thing rdf:about="#Full" />
</owl:one0£f>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClass0f>

Figure 5.20: hasBody IceWine property

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#LateHarvest" />
<owl:Class rdf:about="#DessertWine" />
<owl:Restriction> :
<owl:onProperty rdf:resource="#hasColor" />
<owl:hasValue rdf:resource="#White" />
</owl:Restriction>
</owl:intersection0f>

Figure 5.21: hasColor IceWine property

first property is defined as a subClass restriction for the Ice Wine individuals
where each one of them must have a value for the property hasBody. In the
other hand, the hasColor property is defined first as an individual intersec-
tion of two classes (LateHarvest and DessertWine) and second as a value
property restriction that they must have, which is the White color.

Figure 5.22 shows an example of a back-end query that asks XAK to
search the Wine ontology for all the individuals that have both of these
properties.

The GNU Prolog/CX query in Figure 5.22 has no ground Prolog atoms
besides the url that identifies XAK. It includes two specified properties, thus
originating two RDF triples, one for each property. Figure 5.23 shows the
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1| 7- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />

2|

hasBody(A) :> hasColor(B) :> item(IND).

U S U )

Figure 5.22: Back-end GNU Prolog/CX query to XAK

correspondent SPARQL generated code.

SELECT 7id 7hasColor ?7hasBody
WHERE {

7id :hasColor 7hasColor.

7id :hasBody 7hasBody.

}

Figure 5.23: Generated SPARQL for the query in Figure 5.22

After the SPARQL generation, the code is sent to XAK. In order to
successfully communicate with it, the back-end must first encode the query
as specified in the SPARQL Protocol for RDF [Cla086] and establish the values

of some parameters (Figure 5.24 shows the generated string that is sent over
to XAK):

o The base url is directly obtained from the query;

e The request method is GET, so the query is encoded and sent as an
HTTP GET request;

o The request parameters used are query and default-graph-uri. The first
identifies the query and the second the location of the target ontology.
At this point, both must be defined in the back-end Prolog knowledge
base as facts;

e Prefix value. Should also be defined as a fact;

e The response format is omitted so that the default SPARQL Query
Results XML Format is used;

If a successful query response code is returned, a file with the solutions
is received. This file is in the SPARQL Query Results XML Format {BB06]
(See section 5.1.1) and includes one solution. This XML file is then parsed

91



GET http://xmlarmyknife.org/api/rdf/sparql/query?default~graph-uri
=http://www.w3.0rg/2001/sw/WebOnt/guide-src/wine. owlkquery=
PREFIX+:+<http://www.w3.0rg/2001/sw/WebOnt/guide-src/wine%23>
+select+?id+7hasColor+7hasBody+where+{?id+:hasColor+?hasColor+.+
?7id+:hasBody+7hasBody}

S b W N =

Figure 5.24: Back-end encoded query example

and the solution values are returned as bindings for Prolog variables as illus-
trated by the last lines in Figure 5.25.

?7- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />
hasBody(A) :> hasColor(B) :> item(IND).

A =’http://www.w3.o0rg/2001/sw/Weblnt/guide-src/wine#Medium’

B =’http://www.w3.0rg/2001/sw/WebOnt/guide-src/wine#White’

IND =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine#SelaksWine’?;
(4 ms) no

o I T - I S I

Figure 5.25: GNU Prolog/CX query to XAK and the returned solution

The solution presents only one individual, SelaksIceWine, and the val-
ues Medium and White for properties hasBody and hasColor respectively.
This means the whole ontology only has one individual that has those two
properties defined. Figure 5.26 shows the definition of SelaksIceWine found
in the ontology.

So there exists only one individual that has values for both hasColor and
hasBody properties. Let us try a more general query and ask for all the indi-
viduals that have the hasFlavor property and what its value is. As there are
several individuals with this property defined (44), the Prolog backtracking
mechanism is used to fetch all the solutions, one at a time. Figure 5.27 shows
the query and the first three solutions.

Naturally, the property hasFlavor is defined in most of the individuals of
the Wine ontology. As can be seen in Figure 5.27, the first returned solutions
are the wines Corbans PrivateBin Sauvignon Blanc, Chateau De Meursault
Meursault and PeterMccoy Chardonnay@. The first has a Strong flavour and
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<IceWine rdf:ID="SelaksIceWine"> .
<locatedIn rdf:resource="#NewZealandRegion" />
<hasMaker rdf:resource="#Selaks" />
<hasFlavor rdf:resource="#Moderate" />
<hasBody rdf:resource="#Medium" />
<hasColor rdf:resource="#White" />

</IceWine>

Figure 5.26: OWL Definition of the SelaksIce Wine wine

® @ =N A G b W N =

?7- sparql (’http://xmlarmyknife.org/api/rdf/sparql/’) />
hasFlavor(F) :> item(I).

F =’http://www.w3.0rg/2001/su/Weblnt/guide-src/
wine#CorbansPrivateBinSauvignonBlanc’
I =’http://www.w3.o0rg/2001/sw/WebOnt/guide-src/wine#Strong’ 7 ;

F =’http://www.w3.org/2001/sw/WebOnt/guide-src/
wine#ChateauDeMeursaultMeursault’
I =’http://www.w3.o0rg/2001/sw/Weblnt/guide-src/wine#Moderate’ 7 ;

F =’http://www.w3.0rg/2001/sw/WebOnt/guide-src/
wine#PeterMccoyChardonnayq’
I = http://www.w3.org/2001/sw/WebOnt/guide-src/wine#Moderate’ 7

Figure 5.27: XAK example 2, with more than one solution returned

the other two are Moderate.

5.4 Results ahd Conclusions

The XPTO back-end presented in this chapter is still work in progress.
With the current capabilities, one can use the expressiveness of Logic Pro-
gramming to perform basic queries to an ontology via a third party SPARQL
Web Service. These capabilities can then be combined with other GNU
Prolog/CX data access forms for reasoning over different data repositories.
For example, an application can use indifferently local data provided by the
XPTO engine, external data through the SPARQL back-end and data resid-
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ing in a relational data base accessed using ISCO §[AN06].

Although no proper benchmarks were measured, the experimental work
revealed no particular performance issues on the back-end side, which means
that practically only the XAK connection will introduce some latencies. For
instance, the complete processing time for the Wine examples are no longer
that 20 milliseconds. The first (1 solution) takes 4 ms, and the second (44 so-
lutions) takes 12 ms to return all of them. Note, however, that the generation
of SPARQL is currently done in a per-query basis. One important feature to
be implemented in future work is to allow the generation of SPARQL code
for a composite (e.g. conjunction) of GNU Prolog/CX queries.

The communication process can also be improved. For instance, the
implementation of a query cache, eventually backed up by an relational
database, in order to avoid to establish, in the same program, redundant
connections that asks for previously sent queries.
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Chapter 6

Conclusion

When the research for this work began, the Semantic Web was emerg-
ing as a hot topic in many conferences and workshops around the globe.
Nowadays, only two years later, we already have a few Semantic Web yearly
conferences and almost every other conference about Internet technologies
contains a Semantic Web workshop. The same happened with documenta-
tion, where the number of books, articles and Web sites about the Semantic
Web are much larger today then they were two years ago. This means that
the Semantic Web concept is growing at a great speed and, hopefully, will
help to improve the Internet as it is today.

Being on board the “Semantic Web train” gave us great opportunities:
we followed the development of technologies like OWL and SPARQL from
a very early stage and we had the opportunity to communicate and share
thoughts with people actively working on the W3C document specifications
about Semantic Web technologies.

The motivation for this work envisioned the development of an informa-
tion system for the Semantic Web with capabilities to, with some work, evolve
into an information hub capable of merging any kind of data from any kind
of source in a way it could be used to retrieve and reason over knowledge.

One .of our goals was the building of a contextual logic programming
framework for the Semantic Web, in which reasoning for documents described
by ontologies could be carried out. Within a reasonable set of limitations, this
was achieved with the implementation of XPTO. It can patse and represent
OWL ontologies from a perspective of contextual logic programming, where
access to this system provides a way for reasoning over a previously loaded
ontology by means of logic programming,

The loaded ontology is represented by several GNU Prolog/CX units that
map all the information, entities and relations present in the ontology to a
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GNU Prolog/CX point of view. Querying can then be performed through the
use of contexts that include the units in the representation using the operator
] / > ? .

The fact that it currently does not support a well-defined OWL sub-
language in its fullness is one of its main limitations. Another major short-
coming of the current state of the work is that it cannot presently work with
more than one ontology at a time. The objective is to be able to load an
arbitrary number of ontologies and perform mixed queries over these. The
parser works, but it is not very robust yet nor can it handle large ontologies.

The other major goal was the development of a back-end for the SPARQL
language. This has been accomplished and a sub-system capable of mapping
GNU Prolog/CX to SPARQL queries was implemented. With the current ca-
pabilities, one can use the expressiveness and abstraction power of logic pro-
gramming to perform basic quenes to an ontology via a third party SPARQL
Web Service.

One of the major difficulties was the choice of the Semantic Web tech-
nologies to be used and supported by the system. As of this writing there
are no standard OWL query languages yet, the closest thing being SPARQL,
which is itself being worked on with the intent of designing such a standard.
More importantly, it is an RDF query language, which creates some limita-
tions when used to query ontologies described in OWL. Despite all the efforts
being made, it is a matter that is still work in progress with many unsettled
issues [Bij06)].

The base of the Semantic Web architecture is reasonably established as
a starting point, i.e, how the Semantic Web information will be represented
with W3C standard recommendations such as OWL and RDF. However, the
fact that the top layers of the Semantic Web architecture are still suffering
changes and the fact that SPARQL just dropped a step back from W3C
candidate recommendation to working draft clearly reflects the amount of
work that has yet to be done yet for estabhshlng standards in querying the
Semantic Web.

6.1 Future Work

Along the road we had to make tough decisions and move along in order
to achieve the goals we set out for. This process necessarily originated some
limitations in our work that we marked as subjects to be improved upon, as
future work:

e Supporting a well-defined OWL sub-language is necessary in order to
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provide reliable, trusted semantic Web agents which will be usable in
wider application scenarios. We are working towards providing -cor-
rect OWL DL compatibility at the reasoning level over the internal
representation;

A crucial goal is to provide the core with capabilities for working with
several ontologies at a time. Although it is not relevant for the purpose
of this work, it is an essential feature for any Semantic Web application
software and we intend to use GNU Prolog/CX’s versatile modularity
mechanisms to effectively deal with this issue. In order to achieve this
some changes will have to be made to the representation. These include
changing the name of the units (and unit files) to avoid name clashes,
and altering the query method to take into account the several ontolo-
gies. The unit individuals will also have to be changed to guarantee
- the separation of individuals of the loaded ontologies, possibly becom-
ing several units, one for each loaded ontology; '

The XPTO parser is basic and not very flexible. It should be more
efficient and more robust in order to handle larger ontologies;

The back-end generation of SPARQL is currently done in a per-query
basis. One important feature to be implemented in future work is to
extend the mapping engine to allow the generation of SPARQL code
for a composite (e.g. conjunction) of GNU Prolog/CX queries;

- The back-end communication process can also be improved. For in-
stance, by implementing a query cache system backed up by an internal
database. This would allow a more restricted control of the connections
in order to not establish, in the same program, redundant connections
that ask for previously sent queries;

6.2 Final Considerations

---—-XPTO provides-an- abstraction-representation layer for Web ontologies
that can be accessed by logic programs. With the additional back-end ca-
pabilities, one can take advantage of the abstraction capabilities of Logic
Programming to query ontologies via a third party SPARQL Web Service.

A XPTO represented ontology can then be used with other GNU Pro-

log/CX data access forms for reasoning over different data repositories. For
example, an application can indifferently use local data provided by the
XPTO engine, external data through the SPARQL back-end and data re-
siding in a relational data base accessed using ISCO [ANO06]. This scenario
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brings us some steps closer to our initial intentions about creating an infor-
mation repository that can access and reason, from a GNU Prolog/CX point
of view, over data from different sources.

98



Bibliography

[ADO3]

[ANO6]

[Ant90]
[Baa99)]

[Baa02]

[Bat05)]
[BBO6]

[BBFS05)

Salvador Abreu and Daniel Diaz. Objective: in Minimum Con-
text. In Catuscia Palamidessi, editor, Logic Programming, 19th
International Conference, ICLP 2003, Mumbai, India, Decem-
ber 9-13, 2003, Proceedings, volume 2916 of Lecture Notes in
Computer Science, pages 128-147. Springer-Verlag, 2003. ISBN
3-540-20642-6.

Salvador Abreu and Vitor Nogueira. Using a Logic Programming
Language with Persistence and Contexts. In Masanobu Umeda
and Armin Wolf, editors, Declarative Programming for Knowl-
edge Management, volume 4369 of LNCS, Fukuoka, Japan, 2006.
Springer.

Antony Galton. Logic for Information Technology. Wiley, 1990.

F. Baader. Logic-based knowledge representation. In M. J.
Wooldridge and M. Veloso, editors, Artificial Intelligence Today,
Recent Trends and Developments, pages 13-41. Springer Verlag,
1999.

Baader and Nutt. Description Logic Handbook. Cambridge Uni-
versity Press, 2002.

John Battelle. The Search. Nicholas Brealey Publishing, 2005.

Dave Beckett and Jeen Broekstra. SPARQL Query Results XML
Format. Candidate recommendation, World Wide Web Consor-
tium, 25 December 2006. http://www.w3.org/TR/rdf-sparql-
XMLres/.

James Bailey, Francois Bry, Tim Furche, and Sebastian Schaf-
fert. Web and semantic web query languages: A survey. In
Norbert Eisinger and Jan Maluszynski, editors, Reasoning Web,

99



[Bij06]

[BLO1]

[BNO3]

volume 3564 of Lecture Notes in Computer Science, pages 35—
133. Springer, 2005.

Bijan Parsia. Querying the Web with' SPARQL. In Enrico Fran-
coni Pedro Barahona, Francois Bry, editor, Reasoning Web, vol-
ume 4126 of LNCS. Springer, 2006.

Tim Berners-Lee. The semantic web.
http:/ /www.sciam.com/print_version.cfm?articlelD=00048144-
10D2-1C70-84A9809ECS88EF21, 17 May 2001.

Franz Baader and Werner Nutt. Basic description logics.
In Franz Baader, Diego Calvanese, Deborah L. McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider, editors, Descrip-
tion Logic Handbook, pages 43-95. Cambridge University Press,
2003.

[BvHH*05] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Hor-

[Cla06]

[Cla07]

[Con07]
{Coo06]

[CRO4]

[Dam07]

rocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and
Lynn Andrea Stein. Owl web ontology language reference. Rec-
ommendation, World Wide Web Consortium, 19 October 2005.
http://www.w3.org/ TR /2004/REC-owl-ref-20040210/.

Kendall Grant Clark. SPARQL Protocol For RDF. Candidate
recommendation, World Wide Web Consortium, 6 October 2006.
http://www.w3.org/ TR /rdf-spargl-protocol/.

Kendall Grant Clark. Rdf Data Access Use Cases and Require-
ments. Working draft, World Wide Web Consortium, 2007.
http://www.w3.org/ TR /rdf-dawg-uc/.

World Wide Web Consortium. Semantic web, 13 February 2007.
http://www.w3.org/2001/sw/.

Clark Cooper. =~ The Expat XML Parser Homepage.
http:/ /expat.sourceforge.net/, 27 November 2006.

Carroll and De Roo. OWL web ontology language test cases.
Recommendation, World Wide Web Consortium, 2004. Avail-
able at http://www.w3.org/TR/2004/REC-owl-test-20040210/.

Carlos Viegas Damisio. W4 xml
parser. http://centria.di.fct.unl.pt/ cd/projec-
tos/w4 /xmlparser/index.htm, 20 February 2007.

100



[DARO7]
[Dav07]

[DCO0]

[Dod06]

[FLAO7]

[FNO7]

[Fra02]

[GHY9]

[GHO1]

R (€ ¢ (1|

[HM04]

DARPA. http://www.daml.org/. DAML+-OIL, 3 February 2007.

Dave Beckett. Turtle - Terse RDF Triple Language, 5 March
2007.

Daniel Diaz and Philippe Codognet. The gnu prologsystem and
its implementation. In SAC (2), pages 728-732, 2000.

Leigh Dodds. XML Army Knife.
http:/ /xmlarmyknife.org/api/rdf/sparqgl/query, 5 December
2006.

Claudio Fernandes, Nuno Lopes, and Salvador Abreu. On query-
ing ontologies with contextual logic programming. In Christine
Golbreich, Aditya Kalyanpur, and Bijan Parsia, editors, OWL:
Experiences and Directions 2007, volume 258 of CEUR Work-
shop Proceedings ISSN 1613-0073, June 2007.

Marc Hadley Frystyk Nielsen. Soap: Messaging frame-
work. Recommendation, World Wide Web Consortium, 2007.
http://www.w3.org/ TR /soapl2-partl/.

Enrico Franconi. Description logics tutorial course. Tutorial
course, Faculty of Computer Science, Free University of Bozen-
Bolzano, Italy, 2002. http://www.inf.unibz.it/ franconi/dl/-
course/.

Daniel Cabeza Gras and Manuel V. Hermenegildo. The ciao
module system: A new module system for prolog. Electr. Notes
Theor. Comput. Sci., 30(3), 1999.

Daniel Cabeza Gras and Manuel V. Hermenegildo. Distributed
www programming using (ciao-)prolog and the pillow library.
TPLP, 1(3):251-282, 2001.

Grigoris Antoniou and Frank Van Harmelen. A~ Semantic Web
Primer. The MIT Press, 11 June 2004.

Volker Haarslev and Ralf Moller, editors. Proceedings of the
2004 International Workshop on Description Logics (DL2004),

Whistler, British Columbia, Canada, June 6-8, 2004, volume
104 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

101




[HPPSHO5] Ian Horrocks, Bijan Parsia, Peter F. Patel-Schneider, and

{Iva01]
[Jen06]

[Joh97]
[KCo7]

[KMRO4]

[LDo1]

[LFA07]

[MHRS06]

James A. Hendler. Semantic web architecture: Stack or two
towers? In Francois Fages and Sylvain Soliman, editors, PP-
SWR, volume 3703 of Lecture Notes in Computer Science, pages
37-41. Springer, 2005.

Ivan Bratko. Prolog Programming for Artificial Intelligence.
Addison-Wesley Publishers, 2001.

Jena. A Semantic Web Framework for Java.
http://jena.sourceforge.net/, 30 November 2006.

John Kelly. The Essence of Logic. Prentice Hall, 1997.

Graham Klyne and Jeremy J. Carroll. Resource de-
scription framework (rdf): Concepts and abstract syn-
tax. Recommendation, World- Wide Web Consortium, 2007.
http://www.w3.org/TR/rdf-concepts/.

Holger Knublauch, Mark A. Musen, and Alan L. Rector. Edit-
ing description logic ontologies with the protégé owl plugin. In
Haarslev and Moller {HMO04].

M. S. Lacher and S. Decker. Rdf, topic maps, and the semantic
web. Markup Languages: Theory end Practice, 3(3):313-331,
December 2001.

Nuno Lopes, Claudio Fernandes, and Salvador Abreu. Contex-
tual logic programming for ontology representation and query-
ing. In Axel Polleres, David Pearce, Stijn Heymans, and Edna
Ruckhaus, editors, 2nd International Workshop on Applications
of Logic Programming to the Web, Semantic Web and Semantic
Web Services, September 2007.

Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler.
Can owl and logic programming live together happily ever after?
In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist,
Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo,
editors, International Semantic Web Conference, volume 4273
of Lecture Notes in Computer Science, pages 501-514. Springer,
2006.

102



[MMo4]

[MvHO5]

[NB03)]

[Pro06)

[PS06)

[PSHO7]

[RCO7]

[Rém00)]

[Sof07]
[SP04]

[Ste94]

Frank Manola and Eric Millerr RDF Primer. Recom- - -

mendation, World Wide Web Consortium, February 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

Deborah L. McGuinness and Frank van Harmelen. OWL
Web Ontology Language Overview. Recommenda-
tion, World Wide Web Consortium, 19 October 2005.
http://www.w3.org/ TR /owl-features/.

Daniele Nardi and Ronald J. Brachman. An Introduction to
Description Logics. The Description Logic Handbook: Theory,
imple. Cambridge University Press, Cambridge UK, 2 edition,
2003.

Protégé. Free, open source ontology editor and knowledge-based
framework. http://protege.stanford.edu/, 30 November 2006.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Lan-
guage for RDF. Candidate recommendation, World Wide Web
Consortium, 25 July 2006. http://www.w3.org/TR/2006/CR-
rdf-sparql-query-20060406/. '

Peter F. Patel-Schneider and Ian Horrocks. Owl 1.1 web on-
tology language overview. Technical report, 20 February 2007.
http://www.webont.org/owl/1.1/.

Jean-Jacques Moreau Roberto Chinnici. Web services descrip-
tion language: Core language. Working draft, World Wide Web
Consortium, 2007. http://www.w3.org/TR/wsdl20/.

Didier Rémy. Using, understanding, and unraveling the ocaml
language. from practice to theory and vice versa. - In Gilles
Barthe, Peter Dybjer, Luis Pinto, and Jodo Saraiva, editors,
APPSEM, volume 2395 of Lecture Notes in Computer Science,
pages 413-536. Springer, 2000.

Software  Systems  Institute. Racer  Manager.
http://racerproject.sourceforge.net/, 19 February 2007.

Evren Sirin and Bijan Parsia. Pellet: An owl dl reasoner. In
Haarslev and Moller {HMO04].

Sterling and Shapiro. The Art of Prolog. MIT Press, 1994.

103



[Sto07]

[SWMo4]

[TF06]

[Tho04]

[Van06]
[Va.n07]‘
[Vei06]

[W3C06]

[Wie03]

Gerd Stolpmann. The xml parser for o’caml. http://www.ocaml-
programming.de/programming/pxp.html, 27 March 2007.

Michael K. Smith, Chris Welty, and Deborah L. McGuin-
nesss. OWL Web Ontology Language Guide.  Recom-
mendation, World Wide Web Consortium, February 2004.
http:/ /www.w3.org/TR/2004/REC-owl-guide-20040210/.

Francois Bry Tim Furche, Benedikt Linse. RDF Querying: Lan-
guage Constructs and Evaluation Methods Compared. In En-
rico Franconi Pedro Barahona, Frangois Bry, editor, Reasoning
Web, volume 4126 of LNCS. Springer, 2006.

Thomas Passin. Ezplorer’s Guide to the Semantic Web. Manning
Publications, 2004.

Vangelis Vassiliadis. Thea OWL Parser for Prolog.
http://www.semanticweb.gr/TheaOWLParser/, 12 October
2006. '

Vangelis  Vassiliadis. Thea A Web  Ontol-
ogy Language - OWL Parser for [SWI] Prolog.
http://www.semanticweb.gr/ TheaOWLLib/, 19  January
2007. '

Daniel Veillard. Libxml - the XML C parser and toolkit of
Gnome. http://xmlsoft.org/, 27 November 2006.

W3C. Wine Ontology. http://www.w3.org/TR/owl-
guide/wine.rdf, 22 July 2006.

Jan Wielemaker. An overview of the swi-prolog programming
environment. In Frédéric Mesnard and Alexander Serebrenik, ed-
itors, WLPE, volume CW371 of Report, pages 1-16. Katholieke
Universiteit Leuven, Department of Computer Science; Celesti- -
jnenlaan 200A, B-3001 Heverlee (Belgium}), 2003.

104



