
E'v

Departa,rnento de Informática

Constraint Programming on a Heterogeneous Multicore

Architecture

Rui Mário da Silva Machado
<ruimario@gmail.com>

Supervisor: Salvador Abreu (Uuiversidade de Évora, DI)

Évora

2008

Departarnento de Informática

Constraint Prograrnming on a Heterogeneous Multicore

fuchitecture

Rui Mrírio da Silva Machado
<ruimario@gmail.com>

Supervisor: Salvador Abreu (Universidade de Évora, DI)

try í)l
Évora

2008

Abstract

Constraint programming libra,ries are useftrl when building applications developed

mostly in mainstrearn programming languages: they do not require the developers

to acquire skills for a new language, providing instead declarative progra,mming tools

for use within conventional systerns. Some approaches to constraint programming

favour completeness, such as propagation-based systems. Others axe more interested

in getting to a good solution fast, rega,rdless of whether all solutions may be found;

this approach is used in local search systerns. Designing hybrid approaches (propa"

gation * local search) seerls promising since the advantages may be combined into

a single approach.

Parallel architectures are becoming more corrmonplace, partly due to the largescale

availability of indiüdual systerns but also because of the trend towa.rds generalizing

the use of multicore microprocessors.

In this thesis an architecture for mixed constraint solvers is proposed, relying both

on propagation and local search, which is designed to function effectively in a het-

erogeneouÉr multicore architecture.

Ke;rwords: Constraint Prograrnming, Cell

1

Resumo

Programação com restrições numa arquitectura multi-
processador heterogénea

As bibüotecas pâra programaçã,o com restrições são úteis ao desenvolverem-se aplicações

em linguagens de progra,macão normalmente mais utilizadas pois não necessita,m

que os progra,madores aprendarr uma nova linguagem, fornecendo ferra,mentas de

programação declarativa para utilizacão com os sistemas convencionais. Algumas

soluções para prograrnação com restriçõe favorecem completude, tais como sistemas

baseadm em propagaçã,o. Outras etã,o mais interesadas em obter uma boa solucã,o

rapidamente, rejeitando a necessidade de encontrar todas as soluçôm; esta sendo

a alternatirm utilizada nos sistemas de pesquisa local. Conceber soluçõs hÍbridas

(propagação * pesquisa local) parece prometedor pois as vantagens de a,mbas alter-

natirms podem ser combinadas numa única solução.

As arquitecturas paralelas são cada vez mais comuns, em parte devido à disponi-

bilidade em graude escala de sistemas individuais mas ta,mMm devido à tendência

em generelizar o uso de processadota multi,ure ou seja, processadores com várias

unidade de procmsa,mento.

Nesta tese é proposta uma arquitectura para reolvedore de retriçõe mistos, de-

pendendo de métodos de propagação e pesquisa local, a qual foi concebida para

ftrncionar eficazmente num& arquitectura heterogénea multiprocessador.

2

Acknowledgments

This important phase of my life could not have been so successful as it was without

the support of people I know and met a,nd to whom I am profoundly thankful.

First of all, I would like to thank my loving parents and my brother just for being

present.

A loving thanks to my girlfriend Swani for being herself, for the patience, adüce

a,nd her love. I would like to dedicate her this work.

A very special thanks to my tutor Dr. Werner Kriechbaum a.nd my advisor Dr.

Salvador Abreu for their time, availabüty support, leadership and friendship at

every moment.

Thanks to all of the Linux on Cell Test and Development Tearns as well my whole

department with whom was a pleasure to work with.

3

Contents

I Introduction

2 Background

2.L Architectures

2.2 Parallel Progre.mming

2.3 Dmigning Parallel Programs

2.4 Parallelism and Program-ing Languages

2.5 Constraint Progra.rnrning

2.6 Summary

3 AJACS

3.1 Concepts . .

3.2 An E:<a,mple

3.3 Parallel execution architecture

3.4 Summary

4 CelI Broadband Engine

4.L Overview

4.2 Povrer Processor Element - PPE

g

13

t4

16

23

25

27

3E

4l

4L

43

M

48

50

50

52

4

4.3 Synergistic Procmsor Element - SPE

4.4 Prograrnming the Cell/B.E.

4.5 Surnmary

5 Design of the frarnework

5.1 Overview

53

bD

58

60

60

62

62

63

66

75

80

8L

85

88

90

90

91

93

98

105

106

5.2

5.3

5.4

CASPER

System Architecture

AJACS Level

5.5 Cell Level

5.6 Application Level . .

5.7 Extending the search

5.8 Adaptive Search

5.9 Comparison with other work

5.10 Summary

6 Experimental evaluation

6.1 Hardwa,re and Sofüware environment

6.2 Test programs

6.3 Tests results .

6.4 Results interpretation

7 Conclusion

7.L F\rture work

5

List of Figures

2.L.1, Shared memory architecture

2.L.2 Distributed memory architecture

2.7.3 Hybrid memory a,rchitecture

3.2.1 Time tabling exa,mple

3.3.1 Ajacs parallel architecture .

3.3.2 Worker's state transition diagra,m

L4

15

16

45

46

4E

52

53

54

57

63

M

73

95

.74

Cell Broadband Eqgtne

Power Processor Element

Synergistic Procesor Element

4.4.1 Cesof file creation

4.L.1,

4.2.L

4.3.1

5.3.1

5.4.L

5.5.1

System architecture

Storm split

List inde»< synchronization

5.5.2 Solutions indor synchronization . .

6.3.1 Queens4 plot

6.3.2 Queens6 plot

6

95

6.3.3

6.3.4

6.3.5

6.3.6

QueensS plot

Money plot

Modified Golomb Ruler plot

Golomb Ruler plot .

96

97

99

99

7

List of Tâhtres

3.3.1 W-worker; Gcontroller; X-some worker; U-list of workers .

6.1.1 Hardware environment

6.L.2 Sofbware environment

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

Queens Overhead

Queens results

SEND+MORE:MONEY Overhead

SEND+MORE:MONEY Results

Golomb Ruler Overhead

Golomb Ruler Rmults

4E

91

91

93

94

96

97

97

98

E

Chapter 1

Introduction

The umplerity for mi,ni,mum component costs has,increased, at a rate

of roughly a factor of two per year ... Certai,nly ouer the shor-t term

thi,s rate can be etyected to conti,nue, if not to ,increase. Oaer the longer

term, the rate of incrense i,s a bi,t more uncertai,n, although there is no

reason to belieae it uill not rema'in nearly unstant for at,least 10 Aears.

That means by 1975, the number of rcmponents per i,ntegrateil ci,rcui,t for
mi,ni,mum cost, wi,ll be 65,000. I beli,eue that such a large ci,rcui,t can be

bui,lt on a si,ngle wafer. - Moore, Gordon E. (1965)

The microprocessor industry has been shifbing its focus towards multiprocessor chips.

Ever since it was stated, Moore's law has adequately described the progress of newly

developed processors.

Before the turn of the millennium, the perform&nce improvements of a processor

were mostly driven by frequency scaling of an uniprocessor. Still, multiprocessor

chips were already seen as a valid approach to increase performa,nce. The focus

on multiprocessor designs became clear with the diminishing returns of frequency

scaling and sometimes physical limitations emerging.

The emergence of chip multiprocessors is a consequence of a number of limitations in

today's microprocessor design: deep pipelining performance is exhausted, reduced

9

benefits of technology scaling for higher frequency operation, po\reÍ dissipation ap

proaching limit and memory latency.

To addrms thme limitations and continue to increase the performance of processors,

ma.ny chip manufactures are reearching and developing multi-kernel proc6so$t.

An innorrative and interesting oca,mple of such an architecture is the Cell Broadband

Engne.

IBM, Sony and Toshiba Corporation have jointly developed an advanced micropro-

cessor, for noct-generation computing applications and digital confllmer electronics.

The Cell Broadband Engine is optimized for computeintensive workloads and rich

media applications, including computer entertainment, movie and other forms of

digitat coutent.

One important feature and a major difference from other new architectures is the

fact that the Cell Broadband Engine is a heterogeneousr multi-kernel architecture.

Essentially, this means the architecture is composed of several prooessor cores and

these core have different instruction sets. One visible and direct consequence is that

the simple recompilation of any software progra,m is not euorrgh to take advantage

of the procesor's capabilities.

At a first and quick glance, one might tend to believe that the Cell Broadband

Engine is just a normal Power PC with several co'proce§*sorÍt, but Cell Broadband

Engine is mueÀ more than that. Thee "co-proc€ssors" a,re powerfirl and independent

proc€Éisons each requiring a separate compiler, and have very specific features like

DMA transfers and interprocessor mmsaging and control.

Such new CPU architectures offer a significant performance potential but pose the

challenge that new progra,mming paradigms and tools have to be developed and

evaluated to unlock the power of such an architecture. Today software architec-

tures for the oçloitation of heterogeneous multi-core architectrue a,re still a field

of intensive reearch and oçerimentatiou.

The key term is parallelization. Software must be able to take advantage of dozens

10

or even hundreds of hardware threads. But parallelizing prograrns is not arr easy

task. Issues such as race conditions, data dependencies, cornmunication and inter-

action between threads, with poor debugging support are extremely error-prone.

Prograrnmers tend to think sequentially and not in parallel and often this way of

thinking is reinforced by major progarnming languages and their paradigrns.

More declarative languagm like functional and logic prograrnming languages have

fewer and more tra,nsparent dependencies and aliasing. Therefore such languages

are much easier to extract pa,rallelism from. The main problem with such languages

is their lack of generalized adoption. They are mostly used in academia or very

specialized groups.

Constraint Prograrnming is a useful declarative methodolory which has been applied

in several ways:

1. As an extension to existing programming languages, such as Prolog, taking

advantage of the complementa.rity provided by the two approaches (backtrack-

ing vs. propagation). This is the case for most Constraint Logic Prograrnming

(CLP) implementations.

2. As a library in which corstraints become data structures of the host language,

which are operated on by the library procedures. This is the case, for insta,nce,

for ILOG Solver [32] and GECODE [7].

3. As a special-purpose language, appropriate for solving problems formulated

as constraints over variables. This is the case with, a,rnong others, Oz 134],

OPL [31] or Comet [25].

The declarative nature of constraint satisfaction problems (CSP) strongly suggests

that one tries to parallelize the computational methods used to perform the tasks

related to solving CSPs, na.rnely propagation. Indeed, this has been explicitly in-

corporated into most la.nguages mentioned in point 3, which provide mechanisrns to

promote distributed execution of various aspects of the process.

11

In this th6is, we chme to follon'approach uumber 2: to proüde a library for con-

straint progra,mming for an existing language. CASPER is inspired by the scheme

used in AJACS [12] and extends it to include both propagation and local search

techniques. CASPER relie on â puxely functional approach to representing seareh-

spâce state store, and is deigned to ensure that parallelization is viable by avoidiug

sharing as muú as possible, to achiwe the highest degre of independenee between

sea,rch-space state store.

Outline

This thesis is organized as follows: a,fter this Introduction úapter, Chapter 2

provides a background on the various topics and notations used in the subsequent

chapters: different Parallel Computers a,rchitectures in general are preented as well

as models and areÀitecture of parallel progra,mming. Finally, Constraint Progra,m-

rning is introduced and all associated notations whiú concern to this thesis. In

chapter 3, the AJACS model is presented along with its main ssasepts and parallel

a,rchitecture. The following chapter, chapter 4, preents the Cell/B.E. processor in

general and details its internal architecture. In Chapter 5, we present and describe

in detail the fra,mework which we developed in the course of the preeut work and

in úapter 6, some tests and their results are preented and discussed. Fiuatly

in chapter 7 some conclusions are drawn and future directions for the work are

suggested.

t2

Chapter 2

Background

Parallel computing is a mainstay of modern computation and information analy-

sis and management, ranging from scientific computing to information and data

services. The ineütable and rapidly growing adoption of multi-core parallel archi-

tectures within a procmsor chip by ull of the computer industry pushes explicit

parallelism to the forefront of computing for all applications and scales, and makes

the challenge of parallel prograrnming and system understanding all the more cru-

cial. The challenge of programming parallel systerns has been highlighted as one

of the greatest challenges for the computer industry by leaders of even the la.rgest

desktop compa,nies.

Heterogeneous chip multiprocessors present unique opportunities for improving sys-

tem throughput, reducing processor power. On-chip heterogeneity allows the pro

cessor to better match execution resourcm to each application's needs a,nd to address

a much wider spectrum of system loads - from low to high thread parallelism - with

high efficiency.

13

2.L Architectures

Parallel Computer Memory Architectures

One way to cla,ssify multiprocessor computers is based on their memory architectures

or how processor(s) interact(s) with memory.

Shared Memory

In shared memory computers (figure 2.t.L), the same memory is accessible to mul-

tiple processors in a global address spâce.

All processors can work independently but since memory is shared its access must

be synchronized by the programmer. When one task accesses one memory resource,

this resource cannot be changed by some other task. Every change in a memory

location is therefore visible to all other processors.

Shared memory machines can be diüded into two main classes based upon memory

access times: Uniform Memory Access(UMA) and Non-Uniform Memory Access

(NUMA). In NUMA the memory access times depends on the memory location

relative to a processor where in UMA the access times are equal.

Figure 2.1.1: Shared memory architecture

L4

Distributed Memory

Distributed memory systems (figure 2.L.2) require a communication network to

connect the processors and their memory.

Processors have their own local memory. Memory addresses in one processor do

not map to another processor, so there is no concept of global address space âcross

all processors. Because each processor has its own local memory, it operates in-

dependently in the sense that changes made to its local memory have no effect on

the memory of other processors. When a processor needs to access data in another

ptocessor's memory, it is usually the task of the programmer to explicitly define

how and when data is communicated. Synchronization between tasks is again the

programmer's responsibility.

nstsork

Figure 2.1.2: Distributed memory architecture

Hybrid Distributed-Shared Memory

It is possible to combine the previous architectures in a hybrid model, as figure 2.1.3

illustrates. In fact, that's what modern large computers do.

The processors in a Symmetric MultiProcessing (SMP) can access the system's

memory globally like in shared memory computers and use networking to move

data across the several distributed SMP machines as with the distributed memory

systems.

15

ÍrgtsoÍk

Figure 2.1..3: Hybrid memory architecture

2.2 Parallel Programming

Ttaditional Von Neumann computing platforms contain a single processor, which

computes a single thread of control at each instant. High-performance computing

platforms contain many processors, with potentially many threads of control. Par-

allel programming has become the default in many fields where immense amounts

of data needs to be processed as quickly as possible: oil exploration, automobile

manufacturing, pharmaceutical clevelopment and in animation and special effects

studios. Such different tasks and the algorithms associated with them present dif-

ferent styles of parallel programming. Some tasks are data-centric and algorithms

for working on them fit into the SIMD (Single Instruction, Multiple Data) morlel.

Others consist of distinct chunks of distributed programming, and these algorithms

rely on good communication models among subtasks.

Challenges

The key to parallel programming is to locate exploitable concurrency in a task. The

basic steps for parallelizing any program are:

o Locate concurrency,

o Structure the algorithm(s) to exploit concurrency.

o T\rne for performance.

16

The major challenges are:

o Data dependencies.

o Overhead in synchronizing concurrent memory accesses or transferring data

between different processor elements and memory might exceed any perfor-

mance improvement.

o Partitioning work is often not obvious and can result in unequal units of work

o What works in one environment might not work in another, due to differences

in bandwidth, topology, hardware synchronization primitives and so on.

Parallel Programming Models

A parallel programming model is an abstraction to express parallel algorithms in

parallel architectures. One goal of a programming model is to improve the produc-

tivity of the programmer. It includes areas of applications, programming languages,

compilers, libraries, communications systems, and parallel IlO. It is up to the de-

velopers to choose the model which best suits their needs.

Parallel models are implemented in several ways: as libraries invoked from tradi-

tional sequential languages, as language extensions, or completely new execution

models.

Shared Memory Model

In the shared-memory programming model tasks share a common address space

which they read and write asynchronously. An advantage of this model from the

programmer's point of view is that the notion of data coownership is lacking, thus

there is no need to specify explicitly the communication of data between tasks.

Still, this model needs mechanisms to synchronize access to the shared memory (e.g.

locks, semaphores).

t7

Advantages

e Conceptually easy to understand and hence design progra'ms fs1

o Easy to identify opportunities for parallelim

Disadrrantageo

o Lack of portability as this model is often implemented in an architecture spe-

cific progra,rnming language

o May not be sútable for loosely coupled distributd processors due to the high

communication cost

One implementation of this model is Distributed Shared Memory (DSM). In DSM,

the common addres space can point to memory of other machine. DSM can be

implemented in hardware or in software. In software, a DSM system can be imple-

mented in the operating system or as a progralnming library.

§ffuerrgh DSM give uÉ,ers a view such that all prooessors are sharing a unique piece

of memory in reality eaú processor can only acces the memory it ourns. Therefore

the DSM mgst be able to bring in the contents of the memory from other processors

wheu required. This gives rise to multiple copie of the sa,me shared memory in

different physical memories. The DSM has to maintsin the consistency of thee

difierent copies, so that any processor accessing the shared memory should return

the correct r6ult. A memory consistency model is respousible for the job.

Intuitivety, the read of a shared variable by any prooessor should return the most

recent write, no matter if this write is performed by any procesor. The simplet

solution is to propagate the update of the shared variable to all the other procmsors

as soon as the update is made. This is known as sequential consistency (SC).

However, this can generate an excessive a.rnount of network tra,frc since the content

of the update may uot be needed by every other proce*sor. Thenefore ceúain rela>ced

18

memory consistency models were developed. Most of them provide synchronization

facilitim such as locks and barriers, so that the shared memory Írccess can be guarded

to eliminate race conditions. The most popular memory consistency models are:

sequential consistency (SC), eager release (ERC), lazy release (LRC), entry (EC)

and scope (ScC).

Threads Model

The threads model spins around the concept of a thread. A progrr.- can be split up

in several threads that run simultaneously. In a uniprocmsor system this "simulta,

neously'' meil§ "almost simultaneously'' because the processor can switch between

threads so fast that it gives the illusion of executing more than one thing at the

same time. In modern multiprocessor and multicore a,rchitecture, threads a,re 16r

ally executed at the sa.me time, in different units.

The threads model is usually associated to a sha,red memory architecture and could

be included in the shared memory prograrnming model. But since the concept of

thread is so widely and independently used that it deserves a place of its own.

Adnantages

o The overhead associated with creating a thread is much less than ç1sa,fing an

entire process

o Switching between threads requires much less work by the operating system

o Many progralnmers a,re familiar with writing multi-threaded prograrns because

threads are abasic construct in marry modern prograrnming languagm like Java

19

Disadrmntages

r \trriting a multi-threaded progro.* can be much thougher than for other pre

ga.mming models

e Synchronization mechanism^s are required to control âccess to shared variablm

Two implementations of this model a,re POSD(threads [5] *d openMP(tzl t10l).

Mmsage Passing Model

Message passing is probably the most widely used parallel progre.mrning model te
day. Mmsage-passing progrq.ms create multiple tasks, with each task encapsulating

local data. Each task is identified by a unique nerme, and tasks interact by sending

and receiving meslages to and from na,med tasks.

The mesage-pa.ssing model does not preclude the dyna,rnic creation of tasks, the

execution of multiple tasks per procersor, or the execution of different progra,rns by

different tasks. Hourever, in practice most mesagepasing systems create a fixed

number of identical tasks at progrâ.m startup and do not allow tasks to be created or

destroyed during program executiou. Thee ffiem,s are said to implement 6 §ingls

Progra,m Multiple Data (SPMD) progra,mming model because each task executc

the same prograur but operatm on different data.

Adwntages

r This model is applicable to both tightly coupled computers and geographically

distributed systems

o Message passiDg übraries proüde a set of functionality and lerrcl of eontrol

that is not found in any of the other models

r All other parallel programming models can be implemented bD'the mesa,ge

pa*sing model

20

Disadnantages

o All of the responsibility for an effective parallelism scheme is placed on the

programmer. The progralnmer must explicitly implement a data distribution

scheme and all interprocess communication and synchronization, while avoid-

ing deadlock and race conditions

o Some parallel progrernmers prefer to have this level of control hovrever it can

be difficult for noúce programmers to implement effective parallel prograrns

Two widely used implementations are MPI [16] and PVM tgl.

MPI is a messiage passing library specification. MPI is the only message passing

library which can be considered a standard. It is supported on virtually all HPC

platforrns. Practically, it has replaced all previous message passing libraries. The

goal of MPI is to provide a widely used sta,ndard for writing message passing pro-

gralns. In MPI, all parallelism is explicit: the prograrnmer is responsible for correctly

identifying parallelism and implementing parallel algorithrns using MPI constructs.

The number of tasks dedicated to run a parallel program is static. New tasks can not

be dynamically spawned during run time although the MPI-2 specification addresses

this issue.

Data Parallel Model

Another commonly used parallel prograrnming model, the data parallel model, calls

for exploitation of the concurrency that derives from the application of the sa,me

operation to multiple elements of a data structure, for exarnple, *add 2 to all el-

ements of this axray, or increase the salary of all employees with 5 years service.

A data-parallel progra,rn consists of a sequence of such operations. As each operar

tion on each data element can be thought of as an independent task, the natural

granularity of a data-parallel computation is small, and the concept of locality does

not arise naturally. Hence, data,parallel compilers often reqúre the progra,rnmer

2L

to provide information about how data are to be distributed over processors, in

other words, how data are to be partitioned into tasks. The compiler can then

translate the data-parallel progrâ.m into an SPMD forrnulation, thereby generating

cornmunication code automatically.

.Àdvantages

r Gives the user the ability to process large volume of data very fast

o Only one piece of code needs to be produced to implement all of the parallelism

Disadwntages

o Due to the large volumes of data involved in a typical data parallel computa-

tion, this model may not be suitable for geographically distributed processors

o Requirm high bandwidth communications to transfer and share data

Hybrid Model

In this model, any two or more parallel programming models are combined. Cur-

rently a common exa,mple of a hybrid model is the combinatiou of the message

passing model (MPD with either the threads model (POSD(threads) or the shared

memory model (OpeuMP).

Another conmon exa,mple of a hybúd model is combiuing data parallel with mm-

sage passing. Data parallel implementations on distúbuted memory architectures

actually use message passing to transmit data between tasks, transpa,rently to the

programmer.

The adrantage and disadvantages come from the combination of the models being

used.

22

2.3 Designing Parallel Programs

One possible goal for parallel prograrnming is performance improvement. In this

perspective, the design of parallel prograrns demands an extra effort from the pro
gralnmer. Several factors must be considered in order to decrease the execution wall

clock time.

It is necessary to understand the problem that one wants to parallelize. One should

identify the progra,rn's hotspots, bottlenecks and inhibitors. Hotspots are where

most work is done and can be identified by using proflling tools. Bottlenecks are

areas which slow down the progra.m's execution as for example I/O such as disk

access. They should be minimized by restructuring the code or even tuing another

algorithm. Inhibitors are poúions of code that restrain parallelism since they a,re

not independent. A good exarnple of an inhibitor is a data dependency.

Partitioning is one of the first steps to be made. It represents the way how we

divide the work being done that can be distributed to multiple tasks. There are 2

ways to do this. Functional partitioning focuses on the computation (or control of

the program) *rd each pa,rallel task performs a part of the overall task. Domain

partitioning focuses on the data associated to the problem and the parallel tasks

works on a different portion of the data.

As there are several tasks running in parallel, they might need to cornmunicate with

each other by sha,ring or exchanging data. This need for communication depends on

the task being performed since some tasks run very independently and some don't.

Very independent tasks don't need to share data - emba,rrasingly parallel - while

dependent tasks are not that simple and therefore cornmunication factors must be

included. When dmiguing a parallel application, one must pay attention to factors

such as cost of communication, bandwidth/latency in synchronous/asynchronoust

cornmunication and the scope of the communication.

Another factor is synchronüation. Synchronization is needed when two or more tasks

need access to a shared rmource and this is very important because it influences the

23

correctness of the computed result. There are different ways to synchronize accesseg

such as using locks or by communication betwen tasks.

Dependencies o<ist between progrâ,m statements when the order of statemelrt er(e-

cution afiects the reults of the program. A data dependency results from multiple

use of the sarne location(s) in storage. Data dependencie a,re one of the púmary

inhibitors to parallelism.

To obtain a mar<imum performance, all parallel tasks should be busy all the time

thus a correct distribution of the work is required. A scheduler is a possibility if one

desire a dyna,mic assigument of jobs.

Granularity is, in parallel computing, the ratio of computation over communica-

tions. With fine-graiu parallelism, the a,mount of computational work done between

communications is relatively small. In coarse-grain parallelism, the ratio is high,

with large arnotrnts of computational work between communications/spchroniza'

tion errents. Both types of granularity have their advantage and drawbacks. The

choice for the level of granularity depends on the algorithm, the data set and the

hardware environment.

A proper ermluation of limits and costs should be performed. Amdúl's Law state

that potential progra,m speedup is defined by the fraction of code (P) that can be

parallelized:

sPeed,uP: + (2'3'1)r-P
When introducing the number of procmsors (N):

speed,up: o-l Q3.2)
F+s

where p - parallel fraction, N : number of procesors and S : serial fraction.

This law give an idea of how much gain one gets with the parallelization although

other issues should be taken into account to evaluate the costs and complo<ity of

parallelization. This include resource requirements, portability and scalability.

24

2.4 Parallelism and Programming Languages

There are 2 two major approaches to parallel prograrnming: implicit pa,rallelism and

explicit parallelism. fu implicit parallelism, the compiler or some other prograrn is

responsible for the parallelization of the computational task. In explicit parallelism,

the prograrnmer is responsible for the task partitioning through language constructs

or extensions (we already referred MPI as an explicit parallelism specification).

It has long been recognized that declarative progra.rnming languages, including logic

a.nd functional progra.mming languagm, are potentially better súted to parallel pro

grarnming. The key factor is a clear separation of '\rhat" the progra,rn computes

from the details of "hou/' the computation should take place.

Imperative programming languages rely on state and time. The state changes over

time as variables are assigned valum and time must be considered when looking at

an imperative program. On the other hand, declarative languages are independent

of time. While imperative progm.ms consist of a set of statements executed in

order, declarative progrâ.ms don't care about the order or even how marry time an

expresion is evaluated.

The most colnmon way of achieüng a speedup in parallel hardwa,re is to write

progrâ.ms that use explicit threads of control in imperative programming languages

in spite of the fact that writing and reasoning about threaded progrâ.ms is notoriously

difficult. A lot of work has been put in imperative languages (like Java, C++ and

Cff) to take advantage of concurrency.

It is worthwhile to note about uncurrent al;ld parallel programming that, although

both warrt to exploit concurrency that is, execution of computations that overlap

over time, it can safely be argued that they are not synonymous. In either case,

both tend to use the sa,rne models (see above) and imply communication between

tasks.

Concurrency is a language concept that expresses logically independent

25

computations. Parallelism is an implementation concept that oçresse

actiütim that happen simultaneously. In a computer, parallelism is used

only to increase performance. t35l

Concur:ency and parallelism a,re orthogonal concepts.

There are three main models of concurrency in progra,mmiug languagm (from [S5]):

declarative eoncrurency, message passing concrureney and shared state concurrency.

Declarative concurrency is the easiest paradip of concurrent progra,rnming. It

keeps prograrns simple and without race conditions or deadlocks.

It relies on declarative operations. A declarative operation is indepeudent (does not

depend on any execution state outside of itself), statelms (has no internal ercecution

state that is remembered between cells), and deterministic (always give the sa,me

results when given the sarne argumeuts). o The drawback of this pamdigm is that it

doesn't allow programs with nondeterrninism. Only more academic languagm like

Oz [33] *d Alice [24]use this

Message passing is a model in which threads share no state and communicate

with each other via asynchronous messaging. It extends declarative concrurency

introducing communication channels to remove the limitation with non-determinisn.

This is the model employed by the Erlang language.

The Shared state consists of a set of threads accesing a set of shared passive ob

jects. The threads coordinate among each other when accesing the shared objects.

They do this by mea,rxr of coars+greined atomic actions, e.9., locks, monitors, or

transactions.

The concurrency is more ocpressive and gives more control to the progra,mmer but

reasoning with this model is more complex. Shared state concurrency is the model

employed by the Java language.

26

2.5 Constraint Programming

Introduction

"Constra'int Programmi,ng represents one of the closest approaches c,om-

puter sc'ience has yet mad,e to the Holy Grai,l of programming: the user

states the problem, the computer solues iá. " - Eugene C. Fleuder, Con-

straints Journal, 1997

The idea of constraint-based progra,rnming is to solve problems by stating constraints

(properties, conditions) which must be satisfied by the solution(s) of the problem.

Consider the following problem a.s an exarnple: a bicycle number lock. You forgot

the first digit but you remember a few constraints about it: it is an odd number, it

is not a prime number and greater than 1. With this information, you are able to

derive that the digit is the number 9.

Constraints can be considered pieces of partial information. They describe properties

of unknourn objects a,nd relations arnong them. Objects can mean people, numbers,

functions from time to reals, prograrns, situations. Relationship can be any assertion

that can be true for some sequences of objects and false for others.

Historical Remarks

Constraint programming has been used in Artificial Intelligence Research since the

1960's. The first system known to use constraints was Sketchpad, a program written

by Iva.n Sutherland, the "father"of computer graphics, that allowed the user to draw

and manipulate constrained geometric figures on the computer's display.

In the 70s, Logic Progra.mming was born. Most of the development and achievements

in the field of constraint progra,rnming was done by Logic Programming researchers

because constraints have a very natural relationship with logical reasoning and one

27

of the reasons why the extension of logic languages such as Prolog to include con-

straints has been so formally clean, convenieut and natural. In fact, the main step

towards modern constraint progra,mming was achieved when it was noted that logic

prosrqmming (with u-uification over terms) was just a particular kind of constraint

programming. It has led to the definition of a general fra,mework called constraint

logic progre.mming (CLP I21]).

It is easy to get confusd and see Constraint Progra,mming as something striatly re

lated to Logic Progra,mming when in fact constraint theory is completely orthogonal

to the progre.mming pa,radi$n.

In the late 80's, one poweúrl obserrnation has been that constraints can also be used

to model communication and synchronization a,mong concurrent agents, in such a

way that these tasks a,re now described in a more general and clean way, and can

be achieved with greater efficiency and flexibility. Suú observatiou is the basis of

the concurrent constraint progrq.mming fra,mework (CC tll).

Already since the begiruúng of the 90's, constraint-based progra,rnming has been

comme.rcially successfirl. One lesson learned from applications is that constraints

are often heterogeneous and application specific. In the beginning of constraint

progra,rnming, constraint solving was "hard-wfued" in a built-in constraint solver

written in a low-level language. To allour more flexibility and customization of

constraint solvers, Constraint Handling Rules (CHR) was proposed. CHR [14] is

esentially a concurrent committed-choice language consistiug of multi-headed nrles

that transform constraints into simpler oum until they are solved.

The a,rchitecture of constraint progra,mming is âlso suited for embedding constraints

in more couventional languages. This characterize corwtrai,nt imperutiae prcgam-

naing.

In constraint imperative progra,rnming, the user can use constraints which relate

progra,m's na,riables and objects. Beides using the language's conventional features

and define constraints whieh are implemented in the integrated constraint solver,

28

the user can define his own constraints, augmenting the solver's capabilities.

Imperative languages can also be extended with language elements from logic pro-

grarnming, such as non-deterministic computations with logical variables and back-

tracking.

Constraints systems

A constraint system is a formal specification of the synta>< and semantics of the

constraints. It defines the constraints symbols and which formulae are used for

reasoning in the context of programrning languages.

Finite Domain constraints have a finite set as its domain. This domain can be

integers but also enumerable types like colors or resources which should be planned

for a process.

Many real-life combinatorial problems ca,n be modeled with this constraint system.

Finite domain constraints are very well suited to puzzlm, scheduling and planning.

For example: an university's timetabling system.

Boolean constraints are a special case of finite domain constraints where the do

main contains only two valum, true and false. One area of application of Boolean

constraints is modeling digital circuits. They can be applied to the generation,

specialization, simulation and analysis (verification and testing) of the circuits.

There are often casm when, instead of imposing a constraint C, we want to speak

(and possibly constrain) its truth value. For exarnple, logical connectives such as

disjunction, implication, and negation constrain the validity of other constraints. A

reified, constraint is a constraint C which reflects its validity in a boolea"n variable

B:

ceB:LABe{0,1}

A R^ational TIee is a tree which has a finite set of subtrees. Ttee constraints can be

used for modeling data structures, such as lists, records a,nd trees, and for expresing

29

algorithms on these data structures. One of the applications for this constraint

system is progra,rn analysis where one repreents and rearnns about propertie of a

program.

Constraints can also have Linear Polynomial Equations domains. Here, Linear

arithmetic constraints a,re linear equations and inequalities. This type of coustraints

is important for graphical appücations like computer aided deigu (CAD) systems

or graphical user interface, but also for optimization problems as in linear program-

ming.

The Non-linear Equations constraint system is an erdension of the one for linear

polynomials. Problems for solving this type of constraints arise with the inclusion

of, for example, multiplicatiou or trigonometric functions. Despite the fact of not

having a triüal solver, non-linea,r constraints appea,r in the modeling, simulation

and analysis of chemical, physical procmses and systems. An application area is

financial anal3rsis or robot motion planning.

Constraint Solving Algorithrns

An impoúant component is the constraint solver. A constraint solver imple,

ments an algorithm for solving allowed constraints in accordance with the constraint

theory. The solver collects the constraints that arrive incre,mentally from one or

more mnning progre.ms. It puts them into the constraint store, a data structure for

representing constraints and rmriables. It tests their satisfiability, simplifies and if

possible solves them. The final constraint that results from a computation is called

the answer or solution.

There are two main approache for constraint solving algorithms: variable elimi-

uation and local corsistency (local propagation) techniqum. Variable elimination

achieves satisfiability completeness while local-consistency techniqum have to be

interleaved with search to achieve completeness.

Variableelimination algorithms work by elimina'ting multiple occlurences of nari-

30

ables. Typically the allowed constraints are equations which are computed to obtain

a normal form (or solution). An exarnple of a variable elimination algorithm is the

Gaussian method for solving linear polynomial equations.

Local consistency (local propagation) basically adds new constraints in order to

cause simplification: new subproble-s of the initial problem are simplified and new

implied constraints a,re computed (propagated).

Local consistency problerns must be combined with search to achieve completenms.

Usually, search is interleaved with constraint solving: a search step is made, adds a

new constraint that is simplified together with the existing constraints. This process

is repeated until a solution is found.

Search can be done by tryrng possible values for a variable X. These search proce-

dures are called labeling. Ofben, a labeling procedure will use heuristics to choose

the next variable and value for labeling. The chosen sequence of va,riables is called

variable ordering.

Constraint Satisfaction Problem (CSP)

Constraint Satisfaction arose from research in the Artificial Intelligence (AI) field.

A considerable a,rnount of work has been focused on this pa"radigm contributing to

significant results in constraint-based reasoning.

A Constraint Satisfaction Problem (CSP) consists of:

o a set of variables X : {ru...,frn},

o for each variable fri, à, se,t Di of possible rmlues (its domain),

o and a set of constraints restricting the values that the va,riables can simulta-

neously take.

A solution to a CSP is an assignment of a value from its domain to every va,riable,

in such a way that every constraint is satisfied. This includes finding:

31

. just one solution, with no preference as to which one.

r all solutions.

e an optimal, or at least a good solution, given some objective function defined

in terms of some or all of the wriablm.

A CSP is a combinatorial problem which can be solved by search. This differs from

Constraint Solving. Constraint solving uses \rariables with inffnite domains and

reües on algebraic and numeric methods.

Seareh Algorithrns

A CSP can be solved by tryrng each possible rnlue assignment and see if it satisfie all

the constraints. Then there's backtracking, a, more efficient approach. Backtrad<ing

incrementally attempts to extend a partial solution toward a complete solution, by

repeatedly choming a value for another variable and keeping the previous state of

wriables so that it can be restored, should failure occur.

The problem with such techniqum is the late detection of inconsisteney. Hence

rmrious consistency techniques were introduced to prune the search space, by

trying to detect inconsistency as soon as possible. Consistency teúniques range from

simple node-consistency a,nd the very popular arc-consistency to full, but o<pensive

path consistency [30].

One ean combine systematic search algorithms with consistency techniqum. The

result a,re more efficient constraint satisfaction algorithrns. Backtracking can be im-

proved by looking at two phases of the algorithm: moving forward (forward úecking

and look-úead scheme) and backtracking (look-back schemm) [3].

Also very important is the order in which variables are considered. The efficiency

of search algorithms like backtracking that attempts to extend a partial solution

depends on this order. Likewise, the order of the nalues chosen for a wriable a,ffects

32

the algorithm performance. Various heuristics for ordering of values and variables

exist.

Another approach to guide search is using heuristics and stochastic algorithrns also

known as Local Search.

The term heuristic is used for algorithms which find solutions arnong all possible

ones ,but they do not guarantee that the best will be found,therefore they may be

considered as approximately and not accurate algorithrns.These algorithrns,usually

find a solution close to the best one and they do so fast and easily. Sometimes these

algorithms can be accurate, that is they actually find the best solution.

To avoid getting stuck at "local rnaxima/minimal' they are equipped with various

heuristics for randomizing the search. Their stochastic nature cannot guarantee

completeness like the systematic search methods.

Some examples of this kind of algorithrns are the classics Hi[-Climbing and Greedy

algorithms [36] as well as Tabu-Search [17], Min-Conflict [37] or GSAT.

Constraints and Programming Languages

Constraint Logic Programming

Constraint Logic Programming (CLP [22]) i" a combination of logic prograrnming

and constraint prograrnming. The addition of constraints makes prograrns more

declarative, flexible and in general, more efficient.

In the end of the 70's, efforts have been made to make logic programming more

declarative, faster and more general. It was at this point, that it was recognized

that constraints could be used in logic programming to accomplish the objectives of

declarativeness, speed a,nd generality. By embedding a constraint solver to handle

constraints new possibilities open up. For exarnple, constraints can be generated

(and checked) incrementally, thus catching inconsistency early in the solving process

or in other words, making the progra,m execution faster.

33

In CLR a store of constraints is maintained and kept consistents at every com-

putation step. Each clause of the CLP progra,m matching one of the goals in the

store gets its constraints and goals accumulated in the store. However, the new

constraints can only be added if they are compatible with those already present in

the store. This means that the satisfiability of the whole new set of constraints has

to be maintained.

CLP languages combine the advantages of LP languages (declarative, for arbitrary

predicates, non-deterministic) with those of constraint solvers (declarative, efficient

for special predicates, dsfslministic). Speciatly useful is the combination of search

with solving constraints which can be used to tackle combinatorial problems (usually

with e:çonential compleDdty).

Concument Constraint Programming

Concurrent Constraint Progra.mming arise from the observation that constra,ints

can be used to model concurrency and commtrnication between coucurrent processen

(agents). It is a generelization of CLP with added concurrency [11].

This new paxadip leads to many coruequence§. One of the most important is

that the entailment operation is noq, present (wasn't in CLP) so any constraint

can be checked for satisfiability or for entailrnent. A constraint is entailed when its

information is already present in the coustraint, entailing the former.

The computation state is a collection of constraints, and each of the concurrent

agents may either add a new constraint to the state (like in CLP) or check whether

a constraint is entailed by the crurent state. Such a test may succeed or fail, but the

ass fhing is that it can also suspend, and this happens when the new constraint i§

not entailed by the store but is consistent with it. If a,fter another agent adds enough

information to the store to make it entail or be inconsistent with the considered

constraint, then the suspended action will be resumed and either zucceed or fail.

The fra,mework is therefore monotonic, that is, constraints can never be deleted.

u

This add/check/suspend is based on a ask-and-tell mechanism. Tell mea,ns imposing

a constraint as it happened in CLP or in other words, adding a constraint to the

store. Ask means "asking" if a constraint already holds (this is done by ,r, entailment

test). One important difference between CLP and CC is don't-care non-determinism.

Don't-care non-determinism (also referred as cornmitted choice) means that if there

are different clauses to choose from, just one arbitrary clause will be taken and the

alternatives will be disca.rded. This means search is being eliminated leading to a
gain in efficiency but like always, a loss in expressiveness and completeness.

Constraint Handling Rules

Constraint Handling Rules (CHR) is one of the many proposals made to allow more

flexibility and customization of constraint solvers. Tnstead of a built-in constraint

solver which is hard to modify, CHR defines simplification and propagation over

user-defined constraint* [6].

The CHR language has become a major specification and implementation language

for constraint-based algorithms and applications. Algorithms are often specifled

using inference rules, rewrite rules, sequents, proof rules, or logical axioms that can

be directly written in CHR. Based on first order predicate logic, the clean semantics

of CHR facilitates non-trivial program analysis and transformation. About a dozen

implementations of CHR exist in Prolog, Haskell, a,nd Java.

CHR are essentially a committed-choice language consisting of guarded rules with

multiple head atoms. CHR define simplification of, and propagation over, multi-

sets of relations interpreted a"s conjunctions of constraint atoms. Simplification

rewrites constraints to simpler constraints while prmerving logical equivalence (e.g.

X) Y,Y > X + false). Propagation adds new constraints which a,re logically

redundant but maycausefurthersimplification (e.g. X)Y,Y > Z + X > Z).

Repeatedly applying the rules incrementally solves constraints (".S. á) B,B)
C,,C > á leads to false). With multiple heads and propagation rules, CHR proüde

35

two featurm which are essential for non-trivial constraint handling.

Imperative Constraint Programming

The Constraint Imperative Programmi.g (CIP) fa,mily of languages integrate cou-

straints and imperative, object-oriented . In addition to combining the

usefll featurm of both paradigms, the abiüty to define constraints over user-defined

domains is also possible.

Embed.ling constraints in conventional progra,mming languagm is usually done by

extending a language's sSrnta:r, throrrgh a library or by creating new languages. Some

language have been developed to provide constraints reasoning. For exa,mple, Oz

[34] i" a high-order concurrent constraint progra,mming system. It combines ideas

from logic, functional and conctu:rent progra,mming. Ftom logic progratnming it

inherits logic variable and logic data structures to try to proüde problem solving

capabütie of logic progra,mming. Oz com6 with constraints for variables over finite

sets (finite domain variablm) .

ILOG CP [32] is a C** library that embodie Constraint Logic Progra,mming

(CLP) coucepts such as logicat variablc, incremental constraint sati§faction and

backtracking. It combines Object Oriented Progra,mming (OOP) with CLP. The

motiration for usiug OOP is that the definition of new classe is a powerfirl meâ.n

for extending software. Modularity is something that has beeu recognized as a

limitation in Prolog.

Application Areas

Some example application areas of constraint programming [4], [40]:

o Computer graphics (to ocprms geometric coherence in the case of scene anal-

ysis, computer-aided design,...)

36

o Natural language processing (construction of efficient parsers,speech recogni-

tion with sema,ntics,...)

o Database syster§ (to ensure and/or restore consistency of the data)

o Operations research problem,s (like optimization problems: scheduling, se-

quencing, resource allocation, timetabling, job-shop, traveling salesman,...)

o Molecular biology (search for patterns, DNA sequencing)

o Business applications (option trading)

o Electrical engineering (to compute layouts, to locate faults, verification of

circuit design...)

o Internet(constrained web querie)

o Numerical computation (computation with guaranteed precision for chemistry

engineering, design,...)

Real applications developed

o Lufthansa : Short-term staff planning

o Hong-Kong container Harbor : Resource Planning

o Renault: Short-term production planning

o Nokia : Software configuration for mobile phones

o Airbus : Cabin layout

o Siemens : Circuit verification

o Caisse d'Epargne : Poúfolio management

37

2.6 Sumrnary

Itr this chapter we preented the background related to this thesis' work. Parallel

computing, as a mainstay in today's computing euvironments, creates a great chal-

lenge to the computing industry. The adoption of multicore parallel arehitectures

is one of the drivins force and bringing parallel programming to applications at

every scale.

One way to classify multiprocessor computers is based on their memory architecturm

or hos, processor(s) interact(s) with memory: shared-memory, distributed memory

and hybrid memory.

The rmriety of architectures require different abstractions to extract parallelism. For

that exist several progrâ.mming models suitable for o<pressing programs in different

pa,rallel architectures, increasing the progra.mmer's productiüty like for exa,rmple the

message passing model or the threads model.

Together with a good prograrnming model, developing parallel prograrns includes

considering several factors for getting performance improvements. The list is rather

extensive:

o identify hot spots, bottlenecks and inhibitors

o partitioning

r cost of communication, latency/bandwidth in syuchronous/asynchronous com-

munication

o synchronization

o dependencies

o work distribution

o granularity

3tl

Obviously parallelism is also reflected in programming languages. Besides parallel

hardwa,re and good abstractions and design, the implementation must be done.

Usually this happens by implicit or explicit parallelism.

The most common way is to write prograrul with explicit threads in languages like

Java and C++. Still, declarative languages are recognized as better suited to pa,rallel

prograrnming.

There a,re three main models of concurrency - a language concept - in prograrnming

language (from 135]): declarative concurrency (Oz), message passing concurrency

(Erlang) and shared state concurrency (Java).

One declarative approach to progra.mming is Constraint Programming, one of the

main topics of this thesis. The idea of constraint-based prograrnming is to solve

problems by stating constraints which must be satisfied by the solution(s) of the

problem. Constraint programming has been used since the 60's and gone through

several improvements (CLP, CC, CHR).

Constraints can be used in different programming paradigms like logic programming

or imperative programming. Also, constraints are very flexible allowing diflerent

domains for reasoning:

o finite domain

o boolean

o rational trees

o linear polynomial equation

o non-linear equations

In constraint pro$amming one wa,nts to solve constraint problerns with the help of

the solver. The solver implements an algorithm to solve constraints through nariable

elimination or propagation. One importarrt component from a solver (when using

39

propagation) is search. And this is a whole new category with a erdensive \miety

of techniques and algorithms, from backtracking to heuristic methods.

Constraint progra,mming sras combined with progre.mmirxg languages in different

forms (section 2.5): constraint logic progra,mming (CLP), concurrent constraint

progre.mming (CC), constraint handling nrle (CHR) and imperative constraint pre

gramming.

And atthough not being a well-known paradiem, constraint progra,rnming has appli-

cations in several areas (computer graphics, operatiotrs resea,rch or molecular biol-

ogy) and is already used by several companim like Lufthansa, Renault and more.

40

Chapter 3

AJACS

AJACS is a toolkit developed for Concurrent Constraint progra,rnming implemented

in Java. AJACS relies on a distributed shared memory (DSM) system, operating

under a special JVM implementation, Hyperion, which compiles to C. The target

code then uses the PM2 multi-threading library over which a DSM implementation

has been constructed and is used to share memory ranges (in the form of Java

objects), under an appropriate consistency model.

AJACS' architecture is centered around a few key concepts and a parallel execution

model.

This chapter presents AJACS grving relevance to what is important for this thesis'

work: its model and parallel architecture for obtaining faster resolution of a CSP

by exploiting the search space in parallel.

3.I- Concepts

A brief enumeration of the main concepts of AJACS follows:

4l

Value

A Value represents a subset of a wriable's domain. A value is said to be ground if

it contains exactly o1re si,ngular ualue that is, exactly one element from a rrariable's

domain.

Variable

Vari,ables are, abstractly, thought of as the set of Vol,ues with the sa,me index to the

Storc ia a set of Storcs.

Store

L Store is an indexed collection of. Values. Each index of the ,Súore reprments a

variable of the problem we a,re trying to solve. At each propagation step, a tew Stote

is created from the current one. The most recent §úore differs from its ancetors by

one Vari,abte with a restricted domain. This difference must be saved in the Store

in order to obtain the successor store.

Constraint

A. Constrai,nt is a relation between variables of a problem. In the AJACS model,

Corwtraints are rmponsible for propagation, after changing one variable's nalue.

A Constrainü a,ffects a given mrmber of rmriablm. This is called the constraint's

enui,mnmmt.

After propagating the changes doue to a raniable, the Corwtmint holds a boolean

rmlue whieÀ conforms to the Storc's consistency: true when the store is consistent,

false otherwise.

42

Problem

As already referred, a CSP is defined by a set of variables and associated domain

(i.u. a Store) together with a set of constraints over those variables. A Problem

models exactly this definition.

Search

The concept of. Search embodies the procedure which finds solutions for a given

Problem. A Search is a series of search steps which finish when a solution is found

or the sea,rch space is exhausted.

Strategy

A search step of the Search is the concrete action required by the Strategy. A Strategy

is applied to a Store - a state of computation - in order to retrieve its successor. The

retrieval of a successor entails:

o which non-ground variable is the next to be selected

o for the select variable, how to reduce its domain that is, which singular value

it will take.

3.2 An Example

Thi,s e.xample i,s talçen ftom [15]

Consider the generic problem of assigning a starting time for some actiüties. The

activitim have a well known duration, measured in hours. Suppose also that some

of the activities, affect resources that cannot be shared, i.e., they are unary and

exclusive resources. Consider, for instance, that we warrt to time tabling teacher's

43

classes. The teacher has 3 classes, two ofthem taking 2 hours, and the other taking

three hours. Suppose also, that these classes can only take place at Mondays, whose

hours we represent by the values from 1to 9 (1 for Monday's 9:00AM, 2 for Monday's

10:00AM, etc, 9 for Monday's 5:00PM). Assume also that hour 5 (1:00PM) is the

lunch break.

The definition of a problem holds a store, and a set of constraints. The initial

store, s-init for this problem is specified by the three values that represent all the

possible initial starting times of the classes. The problem is defined by p : Ilew

Problem(sjnit). Consider NoOaertap(i,j,di,dj), the constraint that assures that the

activities (corresponding to the values, i and j, with durations respectively di and

dj) do not overlap in time. The specific constraints for the problem are added to

the problem, doing:

int [] d={2,2,3}

for (i=0; i<2; ++i)

for (5=1+t; j<3' ++j)

p.add (new NoOverlap (i, j,d[i],dtj]))

Now that the variables are defined and the constraints ale set, it is possible to

locate a solution over the search space defined for the variables. Figure 3.2.1 shows

the sequence of stores generated in this process. There is an arc from s -* s' if

the ancestor store of s' is s (s'fso = s). The stores are generated in the sequence

defined by the rounded arc.

3.3 Parallel execution architecture

A search tree of a problem is constructed by taking a store and applying a search

strategy to it. The resulting stores remain in the tree if they are consistent. Applying

the same procedure to each store generated results in the complete search tree of a

44

1 i1 ,2,3,6 ,7 ,8)

2

"1

,2,3,6 ,7 ,8)

3 {1 ,2,6,71

4 {t}

1 {í}
2 {3,6,7,8}
3 t2l,
4 {6,7}

,|

{1}
2 {6,7}
3 {3}
4 {3}

1 {1} 1 {1}
2 {3} 2 {3}
U {7} 3 {6}
4 4

Figure 3.2.1: Time tabling example

problem. This design (partially shown in figure 3.3.1) is suitable for parallelization.

It is possible to take a subtree and work on it, separately. This could be done by

different agents in parallel (in the Íigure, represented by the big arrows).

Controllers and Workers

The agents responsible for solving a problem in a parallel environment can be of

two different types: Controller and Worker. A problem will have one Controller and

several Workers. A Controller is responsible for the management of workers and a

45

It

3 (1,2,3,4)

1 1) I (2) 1

2 2 {1,2,3,4}
3 rL,2,3.4I 3 {1,2,3,4} 3 {1.2,3,4}
E@

E@

Fisure 3.8.1: Ajae parallel architecture

Worker is reponsible for traversing the sea,rch tree. A traversal is accomplished by

repeating a traversal step:

e:<pand a store and verify if any of these resulting stores is a solution (ground).

If it is a solution, then notify the controller that a solution was found. The

controller will act according to the problem: if only one solution was needed,

then the controller stops all workers and the problem is solved; else oçand

another store for solving.

The traversals can be executed in two ways which depend on the store which will

be subject of a traversal step. The chosen store can be a child of the store orpanded

in the preüous traversal step or it can be any store of the tree that hasn't been

expanded yet.

It is very imFortant to retain the fact that each store is self-contained and can be

worked on totally independently. Each Store is a different braneà of the search tree

and each Worker can work on the branú in parallel with other Workers working on

other tree branches.

As only one store is procesed in each step (by a worker), the child storm must be

stored somewhere. Again, there are two solutions for this: a local (in the worker)

46

or global (in the controller) data structure.

Global and Local management

Global management (of remaining stores) is implemented with a data structure(e.g.

as a list) in the controller. The procms:

o The controller launches a number of workers that will be responsible for the

traversal of the search tree.

o Starting from the initial store (in the controller's list), the workers compete

for the work.

o One of the workers gets the store (the others wait until something is in the

work list)

o The worker that "gained the store" executes a traversal step. The resulting

stores will be in the list except the one that will the done by "the first worker".

The others workers can start to work on the stores in the controller's list.

o The whole process ends when: one of the workers finds a solution (only one

solution wanted) or there axe no more stores in the list to compute (eúausted

sea,rch space and all computation is done).

With private matragement the process is slightly different. There is no global list of

stores. Each worker maintains its own list of stores and processes all the stores in

this list urúess there's an idle worker. When a workers list is empty, it gets a store

to process from the busiest worker and proceeds the traversal from there.

A Worker has 3 states: Working, Waiting, Finishing. The transition between states

depends on the management policy. Figure 3.3.2 demonstrates this as well as Table

3.3.

47

WeltWork

Flnlsh

3

6
4

Figure 3.8.2: Worker's state transition diagram

Ilable 8.8.1: X-some U-list of s,ork€rs

3.4 Summary

AJACS proüdes an intermting starting point for this thesis' work. AJACS' im-

plementation relied on a distributed shared memory system and special a JVM

implementation and was developed in Java. But the implementatisa d6ifails are

to be neglected since all is to be developed from scratch. What is important here

is AJACS' concepts and its parallel architecture and hour they can be adopted to

match a multicore architecture like the Cell/B.E.

Clearly relevant is the independence of a Store from the rest the Store in the search

tree which allows an independent and out-of-order treatment by one pxrcess. The

Store is a piece of work, a block of data to be procesed and might match the

Spergistic Procs.sor Element (SPE) and its aptitude for data proce*sing. Together

with the concept of Global management in which every Worker accffircs a global

structure to gather work but then works on its o$'n spa,ce seeurs to be a good fit for

Global Management Private Management

1 - W's list is empty

2-1X(+W) eU:work(X)
3 - W gets a store from some worker

4-Wfoundasolution
5 -VX(+W) eU,wai,t(X)
C commanded to finish

1- Controller's list is empty

2 - 1X(+W) eU : work(X)
3 - W gets a store from C
4-Wfoundasolution
5 -VX(*W) eU,wai.t(X)
6 - C commanded tre finish

48

Cell's processor heterogeneity as discussed in the following chapter

49

Chapter 4

Cell Broadband Engine

This chapter presents the Cell Broadband llnglt,e. Both procesor types, PPE and

SPE are overviewed as well as related concepts and progra,rnming for this architec-

ture.

4.1 Overview

The Cell Broadband E ,glre (CBE) is the first implementation of the Cell Broadband

Engrne Arúitecture. This implementation is a single-chip multiprocessor [18] with

nine cores operating on a shared, coherent memory. The nine processors are distin-

guished in two types: Power Processor Element (PPE) and Synergistic Procesor

Element (SPE). There is one PPE and 8 SPEs.

The Power Procm.sor Element (PPE) is a 64bit Power PC Architecture processor.

It complim with 64-bit Power PC Architecture and runs 32-bit and 64bit OS and

applications.

The Synergistic Processor Element (SPE [28]) is tailored to run compute-intensive

SIMD applications. They are totally independent elements, each able to run their

own application progrâ.m or thread. The acces to rnemory is coherent, inclurling

memory-mappd I/O space.

50

The SPEs provide the application, the performance speedup while the PPE runs

the operating systerns and usually the main thread of control. Both PPE and SPEs

support a rich instruction set that includes SIMD functionality. In the SPEs using

SIMD brings great performance advantage or, the other way around, scalar code

looses a few cycles since the SPEs always loads and stores a quadword at a time.

The most significant difference between the SPE and PPE lies on how they access

the memory. The PPE accessm main storage with load and store instructions that

move data between main storage and its registers, the contents of which may be

cached. The SPEs, in contrast, access main storage with Direct Memory Access

(DMA) cornmands that move data and instructions between main storage a,nd a

private local memory called Local Store (LS). A SPE fetches its instructiors from

its LS and has no cache. This &tiered organization allows as;rnchronous DMA

transfers from main memory parallelizing computation and fetching of data (see

figure 4.1.1).

F\rrthermore, the memory latency problem is directly tackled. The few cycle needed

to set up a DMA transfer are a much better tradçoff compared to the hundreds

of cycles of a delayed sequential prograrn with a load instruction on a cache miss.

In addition, a SPE can have up to 16 simultaneous DMA transfers, clearly out-

performing traditional proces,sors in memory access.

The Element Interconnect Bus (EIB) is the communication path for commands

and data between all processor elements on the CBE processor and the on-chip

controllers for memory and I/O. The EIB supports full memory- coherent a,nd sym-

metric multiprocessor (SMP) operations. Thus, a CBE procmsor is designed to be

ganged coherently with other CBE processors to produce a cluster.

The EIB consists of four lGbytewide data rings which transfer 128 bytes (one PPE

cache line) at a time. Processor elements can drive and receive data simultaneously.

The connection order is important to prograrnmers seeking to minimize the latency

of transfers on the EIB: latency is a function of the number of connection hops, such

51

that transfers between adjacent elements have the shortest latencies and transfers

between elements separated by six hops have the longest latencies. The EIB's inter-

nal ma>cimum bandwidth is 96 bytes per processor-clock cycle. Multiple transfers

can be in-process concurrently on earh ring, including more than 100 outstanding

DMA memory requests between main storage and the SPEs.

Figure 4.1.1 provides a úew of the complete processor.

§ourca &t. Gscftrind st si.. Hol Câss- í 7. At Últrsú âm5

Figure 4.1.1: Cell Broadband Engine

4.2 Power Processor Element - PPE

The PPE consists of a 64bit, multi-threaded Power Architecture processor with

two concurrent hardware threads. The PPE supports the Power Architecture vec-

52

tor multimedia extensions (Altivec) using SIMD execution units. The processor

has a urernory subsystem with separate first-level 32-Kilobytes instruction and data

caches, and a 512-Kilobytes unified second-level cache.

FoworF§ Pnom*ror Elsrsnt (PPEI

PowerPC Processor Unit {PPU)

L1 lnstruction
Cacha

l-1 Data
Çache

PowerPC Frocessor
Storage Subsystem {PPS§}

LE §acha

Figure 4.2.1: Power Processor Element

4.3 Synergistic Processor Element - SPE

The eight SPEs provide the computation workhorse in a CBE system. A SPE

is a new processor designed to accelerate a wide range of workload by providing

an efficient data-parallel architecture and the synergistic Memory Flow Controller

(MFC), guaranteeing coherent data transfers from and to main memory. The SPU

cannot access main memory directly; it obtains instructions and data from its 25G

Kilobyte Local Store (LS) a.nd it must issue DMA commands to the MFC to bring

data into the LS or write results back to main memory. In parallel to MFC data

transfers, the SPU processes data stored in its private local store.

53

The local store architecture has simple logic, as cache.hit and coherence logic do

not affect the critical rnelnory access operatiorrs during load and store operatiorrs,

allowing faster and more compact implementations. AII data accesses with load

and store operations refer directly to physical locations within an SPE's local store

without further translation.

lÜt.ÍIldlc Élooürr Ellrml (ltgJ

Synergistrc Frmets€Í Unil ÍSPUI

Lmd Store iLSt

lírmory Florr Õonlrollar {MFCI

DMÂ Corüerer

Figure 4.3.1: Synergistic Processor Element

Memory Flow Controller

Each SPE includes a Memory Flow Controller (MFC), which performs data transfers

between SPU-local storage and main memory. The access to system memory is

supported by a high-performance direct memory access (DMA) for data transfers

that can range from a single byte to lGbyte blocks.

A MFC transfer request specifies the local store location as the physical address in

the local store and it specifies the system memory address as a Power Architecture

virtual address, which the MFC's memory management logic translates to a physical

address based on system-wide page tables.

Using the same virtual addresses to specify system memory locations independent

54

of processor element enables data sharing between threads executing on the PPE

and SPE. For example, a PPE-generated pointer can be passed to the SPE which

in turn can use it to specify a source or target of a DMA transfer.

4.4 Programming the Cell/B.E.

Structure of a Cell/B.E. application

A CBE application executes in a heterogeneous architecture consisting of PPE and

SPE cores. In order to match such heterogeneity, a CBE application consists of two

classes of instructions corresponding to each of the architectures [38].

Currently, one CBE application correspondes to a process that can have associated

PPE and SPE threads that are dispatched to the correct processor. An application

starts with a single PPE thread and control is entirely on the PPE. After the start,

this PPE main thread is able to create more threads to execute both on PPE and

SPEs, supported by a management library.

The SPE runtime management library (libspe2) is the standardized low-level appli-

cation programming interface that enables applications access to the SPEs.

Applications do not have control over the physical SPEs. All what applications do

is to manage software constructs called SPE contexts. These SPE contexts are

logical representation of an SPE. The library libspe2 includes additional functions

such as transfering application data to and from the SPE's Local Store and initiating

the execution of a recently transfered executable.

To be able to use multiple SPEs simultaneously, an application must create at

least as many threads as concurrent SPE contexts with support from something

like POSIX threads (pthreads). Once an application has initiated the SPE threads,

execution can proceed independently and in parallel on PPE and SPE cores.

The Cell Broadband Engine Architecture (CBEA) allows a variety of program-

55

ming models such as an accelerator model based on remote procedure call, function

pipelines and autonomous SPE execution. The simplest is the accelerator model

where compute-intensive functions are offioaded to the SPEs. Developers can also

compose function pipelines where earh SPE executes a set of functions on a data

stream and then copies its output to the next pipeline stage implemented on another

SPE. Autonomous SPE execution consists of an SPE thread which uses its MFC to

independently transfer its input data to the local store and copy result data to the

main memory.

Data multi-buffering

To hide memory latency to external memory, data transfers are best performed by

each SPE using data multi-buffering like double buffering. With double buffering

the SPU operates on one data set in one buffer while the MFC transfers the next

data set into the seconrl buffer. This way compute-transfer parallelism is exploited

that is, independent SPU execution and MFC data transfer. This is one of the

parallelism [19] forms supported by the Cell/B.E.

Application loading and the CESOF format

When starting an application, the OS loads the object file and the execution of the

main PPE thread begins. The application then goes by initiating the SPE threads.

To accomplish this, the PPE must frrst transfer the SPE image to an SPE's Local

Store. The PPE initiates a transfer of the SPE image by requesting to the SPE's

MFC, a transfer from main memory. After the transfer, the PPE issues a request

to start the SPU.

To accommodate PPE and SPE programs in one single source file and allow sharing

of cornmorr variables, the CESOF file format was created.

With CESOF, prograrnmers can aclúeve some of the effects of linking PPE and

56

SPE executables. The PPE linker can create a single PPBELF executable file that

contains code and data for both PPE and SPE processor elements. An OS can

load PPE and SPE programs that run concurrently and work cooperatively from an

integrated PPE executable image.

Surely all the details related to the structure of the CESOF format are out of this

thesis' scope. Nevertheless an understanding of how such a file is created is rather

important for understanding some of the frameworks' design considerations.

Figure 4.4.1 illustrates the process.

t§§§F lrrrlqsble lilr r.ge :::

PFÊ *dulo lií* ry.l.
!l* " r;rln.'--

i:{ l.**,
ft& ,,,ix

Figure 4.4.1: Ce.sof file creation

A tool called ppu-embd,spu wraps an SPE executable file into a CESOF linkable file.

The CESOF file contains the image of the original SPE executable plus additional

PPE symbol information.

The CESOF linkable, which is itself a PPE linkable, can now be linked with other

PPE linkables to form a PPE executable. The PPE executable image contains

not only the PPE code modules but also the embedded SPE executable image -

a CBE executable. The PPE loader can load the CBE executable including the

embedded SPE executable image(s) just like any other PPE executable into the

effective address space. From there, an SPE loader can load the SPE executable

image into the target local store.

ing*

tiàl.J P?t
s«Éúlr Loirdsd PPI

rrEcrtef,lr
I ir.e. Ç

rlnr
ÊI

:.#{
ürr,Jr,§FIhgr

uüdôL
-ra3e?F[E'

rr*nr*L
ffL

ÇÍot
tnL*1,

ll

57

4.5 Summary

The Cell Broadband Engine is an interesting architecture with interesting features,

quite different from conventional processors.

The Cell/B.E. is composed of 1 PPE and 8 SPEs connected by a,n internal high-

bandwidth bus (EIB). The PPE runs the operating system and has a controlling

role. The SPEs are independent processors, tailored at running computeintensive

tasks.

The heterogeneous nature of the architecture promises orders of performance in-

crease but requires an extra effort from the programmer who has to, for example,

coordinate the memory accesses of the SPEs via DMA commands.

Programming for the Cell/8.E. needs to consider some a.spects usually not present

in a norrnal prograuuning enviromrrent. Specifically and in what concerns directly

to this thesis, one should consider:

o how to take advantage of the multiple SPEs. This includes dividing the pro'

gram across all cores in an effective manner.

o DMA transfers should be SPBinitiated and be overlapped with computation

(when possible) to avoid stalls.

o SPE's Local Store has only 256 KB for data and code.

o how to use vector code (SIMD) and large register file whenever possible.

o reduce branching since the SPU assumes sequential instruction flow

o different instructions sets (PPE and SPE) which implies different sources

o the different address spaces. This is particularly important with references or

pointers: a pointer passed from PPE to the SPE can't just be dereferenced

but has to involve a DMA transfer.

58

. memory alignment. LS and main memory addresses must be aligned for DMA

transfers (this is particularly cumbersome).

o data sharing and dependencies have to be carefully designed since all processors

share the same main memory.

Together with these aspects, programmers must work with a double-toolchain for

both PPE and SPE (two instruction sets) as well as the new CESOF file format

(described in section 4.4).

The Cell/B.E. architecture definitely pushes some complexity to the hands of the

programmer but precisely because of its innovative nature, this architecture presents

several concepts that will be seen in future microprocessors. Hence there is an

opportunity for exploring and experimenting new tools, programming models and

frameworks.

59

Chapter 5

Design of the framework

The framework developed is presented in this chapter. The framework's architecture

is divided in 3 levels: AJACS Level, Cell Level and Application Level. Each level of

the system's architecture is explained, focusing on the most important aspects and

the decisions made. We then proceed by introducing the hybrid model where the

AJACS model was extended to work with local search. The local search method

implemented is Adaptive search and this method is also introduced as well as its

integration in the system.

5.1 Overview

The work described herein tries to match the current architectural tendency to

make parallelism explicitly available to the characteristics of AJACS in order to

get a declarative approach to software development in a parallel environment while

extracting good performance from such architectures in constraint problem solving.

CASPER (Cell Adaptiue Search and Propagation Engine Resolaer)presents an adap

tation of the AJACS model to the C programming language. It is an adequacy study

of constraint solving in a heterogeneous multicore architecture as the Cell/B.E. .

The general goals underlying the development of the CASPER system are:

60

o develop a Constraint Solving System in the C language targeted at the Cel-

tlB.E.

r experiment with this Constraint Solving System

o provide a more declarative programming experience and hide the hardware's

complexity and details

o take advantage of the CeIl/B.E. particular processing power to solve complex

problems

In its organization CASPER aims at producing independent states as result of one

ancestor state expansion. The states are independent in the sense that each store

(plus the Problem containing the constraints themselves) carries all the informa-

tion necessary to be considered a possible solution for a given problem. With this

independence, even the connection to its parent state can be removed.

The state independence is the basis for a parallel execution since in theory, it should

be possible to parallelize constraint problem solving by distributing the yet uneval-

uated states among several processing units without too much foreseen interaction.

This way, all processing nodes should be able to 'walk' through the problem space

with minimal knowledge or a$rareness of each other. The minimal information each

processing node requires, for its state iteration and propagation, is to know:

o where to look at for new states to search;

o where to store the expanded new stores, i.e. the states that resulted from a

successful propagation;

o where and how to signal any solutions that may be found to the problem

master controller.

61

6.2 CASPER

The simila,rity between the Cell/B.E. architecture and the AJACS model has some

striking aspects to it. The same terms are used to name the different entities:

controller and worker. In the Cell/B.E., the PPE can be seen a^s the controller

processor while the SPEs are the workers. In AJACS, there is also a controller

agent for the problem and several workers who try to fincl a solution. Therefore it

is a natural choice to make the PPE responsible for the master role and the provide

the SPEs with the worker role in the AJACS model.

5.3 System Architecture

The developed prototype can be partitioned and understood as a &layer architec-

ture. These three layers or levels are a form to comprehend the complete framework.

At the bottom level, there's the AJACS Level. The AJACS Level implements

the AJACS model and its associated concepts. Thus, the Store, Constraint and the

rest of the structures are included in this level.

The middle level is named Cell Level. The Cell Level hides the Cell's prograrn-

ming complexity and interacts with the AJACS Level to solve a problem. It imple

ments the concept of controller and worker from AJACS' parallel architecture (see

chapter 3) to run on the Cell/B.E.. All the architecture's details and mechanisms

should be considered part of this level.

Moreover, the Cell Level provides an interface to the upper level to allow a parallel

execution of the problem solving.

The last and upper level, the Application Level, is the prototype's "user level".

It represents how the user application needs to be designed in order to interact with

the layers below.

Very roughly this level is the source files wlúch state the problem to be solved antl

62

how they should accomplish this.

Figure 5.3.1 illustrates the architecture:

Figure 5.3.1: System architecture

The figure illustrates the overall organization of the prototype. Each level of the

architecture is better described in the following sections.

5.4 AJACS Level

The AJACS Level implements the concepts present on the AJACS model (see

chapter 3 that is, Problem, Store, Search, Strategy, Value and, Constraints. Imple

menting all these concepts includes the dependencies between them and the proce-

dures associated to each one like propagation, addition of new values to a Store or

defining a new Problem.

63

The Search Procedure

The Search can be considered the most impoúant aspect of the AJACS Level. The

Search is where the real works happens in order to solve the problem and it is this

work that's going to keep the SPEs busy. The concepts/entitie described before are

msentially supported by data structure with associated procdures to operate upon

them. Basically, the Search will take all the data úored by AJACS' data structures

and find the solution(s) by modifying and replacing this stored data.

In order to implement the Search process, a couple of requirements had to be met:

o First, the need to enforce a small memory footprint in the SPE's Local Store

and

o Second, to keep proc€§ses as mutually independent as possible.

To meet the deign goals a rather simple but effective idea was devised. The idea

is to take a store and from this store come up with two complementary sibling

store. Flom these two sibling stores, the search continues on only one saving its

complementary to work on later. This "store mitosis" continue until the search gets

to a store which is a solution - it has all variable ground. Figure 5.4.1 proüdm an

exa,rnple of such "store mitosis".

1 {1,2,3}
2 {1,2,3,4}

I

3 {1,2,3,4}

I {1.3}
2 {r,2,3,4} 2 Í1,2,3,41

3 {1,2,3,4} 3 (1,2,3,4)

Flgure 6.4.1: Stores split

This process guarantee completeness since it will use all pm.sible rmJue for each

rmriable. It also addresses the two aims mentioned above. It keeps a small LS foot-

64

print by working with only one Store at a time, having a maximum of two Stores

in memory by the time of division (where one is transfered to main memory) and

then continuing with only one. Finally, the stores are independent from each other:

in contrast to a backtracking approach, there are no references to ancestor store. In

fact, there are no references to any other Store although there's the implicit rela"

tionship with the complementary store but this is just abstract. The complementary

Store will be treated as unique and possibly handled by some other worker.

Delving deeper into the search's procedure implementation, one sees that it consists

of three steps:

1. check if the Store is a solution store that is, if all variablm a,re ground

and in affirmative case just terminate and save the solution

2. produce complementarSr sibling stores. By taking the variable being

worked on from the current Store, a new value from the variable's domain is

selected. With this value, two stores are created: one with the value associ-

ated to the variable (the variable is now ground) and another store where the

variable has a domain whieh is complementary to the previous singleelement

domain. For example, we staú with storel and the variable X. The variable

X as a domain {1,2,3,...,9}. The va,lue 1 is selected from this domain and

two stores will be created: store? and. store-complementary. In the store2,

the variable X has as domain the set 1 - it is ground. On the other hand,

store-umplementary has the variable X with a domain {2,3,...,9} - the com-

plementary one. Note that storel is no longer usefirl after this step and its

space may be reused for either of the two newly created stores.

3. do propagation. To make sure the store we want to keep working on is

consistent, we have to perform propagation. Of course the store referred to -

the working store - is the one that has now one (more) ground variable. After

executing the propagation in the working store three things can occur.

65

(a) the propagation has failed (at least one variable has an empty domain).

(b) the store turned out to be a solution.

(c) the propagation succeeded but it's no solution.

For both case one and two, the store doesn't allow more progre§§l with it

therefore we will proceed the search with the complementaly one. Of coruse,

in case we have a solution, it must saved. For the third case, where the

propagation succeeded, we continue the search working on the sa,me store and

just save the complementary one to be worked on later.

5.5 Cell Level

The Cell Level represents trfus implementation of the Cünttoller and Worlçer rcler,.

The Controtter will run otr the PPE and the Worlçer will run on the SPE. Hence,

there are ore Controller and, eight Worker.e per CelVB.E. proc€Élsor.

fre Conholler sets up the environment and invoke the Workers which are rmporsi-

ble for finding solutions to the gpven Problern. Finding solutions include interacting

with the AJACS Level by invoking the search procedure (described in section 5.4

).

The architecture dependent details like DMA transfers or creatiou of threads or SPE

contexts are implemented at this level in order to hide them from the developer, who

should coneentrate on the problem to solve and not on arúitecture or parallelization

details.

In the next sections, both the Controller and Worker processes a,re detailed.

Controller

As atready referred, the approach is to hane the PPE assume the role of, Controller

role. The Controller role can be strmmarizd by the following items:

66

1. Do an initial expa,nsion of the search tree.

2. Create the SPE contexts.

3. Setup the information to be passed to the SPEs

4. Create pthreads that manage the contexts.

5. Wait for all to finish.

1. Do an initial expansion of the search tree.

The first step done by the Controller is to expand the search tree. By taking

bhe initial Store, several sibling stores are created. Thme sibling stores will be

taken by the workers in order to reach a solution.

The Controller ts responsible for creating two important data structures. One

is the work list and the other the solutions list. Both lists hold ^9Íores.

The work list holds Stores which need to be worked on. This is the place

where workers will look for and place new work to be done. The expansion of

the initial Store will place the sibling stores in this list.

The solutions list holds the solution stores found by the workers (if *V).

The first expansion or split of the initial ,Súore follows a very simple approach.

The idea is to do something similar to what happens with backtracking. By

taking the Store's first variable, each of its domain values indicate one sibling

Store. Certainly, these new Stores must be consistent. Consistency is verified

via propagation.

r For each value in the first variable's donaia
z if value is valid then
3 create a Dew Store sith the firEt variable ground
4 check for consiEtency by propagatioa
s if storE is consistent
6 put it in work list
z else
I continue

67

There will be ss ma.Íry sibling Stores as there are correct possible rmlue for

the first rmriable. For exa,mple, the initial Store has X as its first va,riable:

x e {1,2,3}. Following the atgorithm the vralue L is taken. It is a valid value

therefore a new sibliug Store is created and checked for consistency. The Store

is consistent with the Problem's con^straints §o we add it to the work list to

be fruther worked. Nour, rmlue 2 is taken and this new sibling Store is also

consistent. The work list has now two Stores. Returning to the algorithm's

beginning, the ralue 3 is selected. This time, the sibling Store turns out to be

inconsistent (for example, there's a constraint whiú states that the variable

x < 3. Thus, the store is discarded. The expensisn is now finished. The

workers will have two Storm to start from.

There is a departure from the AJACS model in what concerns the first expan-

sion. In the AJACS model the workers ocompete' to get the initial Store and

one of the workers does this first expansion whereas in the present case the

workers get their configurations prepaxed by the controller.

2. Create the SPE contexts

Since libspe2 is being used, creating SPE contexts is a required step and def-

initely the typical scenario when writing Ceil/B.E. applications (see section

4.4).

The number of conte»rts created depends on a parameter. Essentially, this

para,meter definm how many workers are required to work to get to a solution.

The number of coutexts is only limited by the machine's arnilable memory but

in our câ.se we want this para,meter to be the mrmber of SPEs available (16 in

the case of dual Cell/8.E.) so that a worker takes a proccsor only for itself

uutil the problem is solved.

Creating the SPE contexts counts as setup onerhead since this is a step needed

to put the workers working on the problem.

3. Setup ühe information to be passed to the SPEs

68

The PPE (controller) and the SPEs (workers) must share some data. This

data is stored in the main memory to be easily and quickly accessed by atl

processors. When setting up all the environment, the PPE must proüde the

location of the corrmon data to the SPEs for these to be able to fetch it üa

a DMA transfer. The supply is done through a control block holding all the

information.

The following description presents the control block:

Btruct block
{

//probLen location
unsigned long loag problem;

//solutions number location
unsigned long long nsols;

//tist with solutions
unsigued long long solution_stores;

//l-ist with stores to be traversed
unsigaed long long work-queuel

//nunber of stores in work list
unsigned long long numb-rork;

//padding for aligrment
unsigued char pad;

);

The control block consists of memory addresses from all the data structures

set up by the PPE. This is all the information an SPE needs to work on a

solution.

4. Create pthreads that manage the contexts

As already referred in section 4.4, in order to have concurrent SPE contexts,

POSIX threads (pthreads) are used. Basically, each pthread runs a single

SPE context or in other words, a Worker. Thus there axe as maf,ry pthreads

a,s workers and contexts.

1

2

3

4

5

6

7

8

9

10

L1

L2

l3

t4

l5

l6

17

18

t9

20

69

Running a context require performing a synchronous call to the operating

system. The calling applicatiou (in this case the pthread) blocks until the SPE

stop executing and the operating system returns from the system call that

invoked the SPE execution. If one wants to use multiple SPEs concurrently

then several threads must be created to run several contexts.

As with section 2, the creation of pthreads counts as setup overhead.

5. Wait for all to finish

In the AJACS model, the Controller takes an action when a solution is found.

For uow, the Controller waits for all workers lq finish, does some cleanup and

exits. To wait simply means to wait for the created pthreads to terminate.

There is no acknowledgement that a found solution has been found or any

form of requmt for more work on the part of the workers. The workers work

as independently as possible and the Controller interacts with them as little

as possible.

'Worker

The Worker role from the AJACS model is assumed by the SPEs. Eâch SPE win

execute the same functions although working on different data (different Store).

The lVorker is responsible for working on Store in order to find solutions. Despite

tfus important task, the work done by a Worker can be summarized in three easy

steps. Following the sa,me structure used for describing the Controller in smtion

5.5, here are the steps performed by each worker:

1. Get the control block.

2. Get the problem.

3. Look for solutions.

70

Get the control block

The worker needs the data locations in order to carry out its process. The control

block was already presented in section 3 and all the information it contains. But

before accessing the control blocks data, it has to get the control block itself. Hence,

the very first step done by the worker needs to be getting the control block with all

the information, the one which was setup by the controller/PPE.

Whenever a context is to be run by the PPE, the libspe2's API allows the PPE code

to pass a,n argument to the main function executed by the SPE. This is an easy way

to pass initialization arguments to the SPE and a typical method to pass an address

of some data to be fetched via DMA from main memory by the SPE.

When the Worker starts executing its code, the location of the control block is

already available. The worker just needs to request a new DMA transfer to its

MFC, so that the control block with all the information about data locations is

made available at the SPEs Local Store.

The function call:

nfc-get((void r,)&ls-b, argp, sizeof(struct block), 31, 0, 0);1

does exactly this. It means: execute a get cornmand to location ,s-à in the LS from

main memory's locatiot argp with a size of si,zeof(struct block).

Get the Problem

Once the Worker knows the location of the data in main memory, the first thing it

fetches is the Problem data structure.

The Problem is present in the Local Store throughout the entire lifetime of the

worker and, as it holds the constraints, is responsible for propagation, ensuring

Store consistency.

Look for solutions

71

1

a

3

4

So far the Worker only gathered data from main memory as dmcribed in the previous

steps. After gathering all the data it needs, the Worker can start performing the

search, looking for solutions.

The Worker looks for solutions by utilizing the Search procedure from the AJACS

Level. The Search procedure, described in section 5.4, is the entry point from the

Cell Level to the AJACS Level.

Now that all data is available, the worker performs more computation by entering

a loop:

while (there's work to be done)
dna transfer another store to work on;
invoke the search on the transfered store;
decrenent the anount of work to be done;

in which it performs the actual steps in solving the constraint problem.

Each line of the loop is now described:

1 - while (there's work to be done)

One of the informations in the control block is the number of stores to be worked on.

As long as the number of stores in the work queue is greater than zero, the worker

loops. Now, this value is shared by every worker so the access must be synchronized.

The current implementation uses the Cell/B.E. architecture's atomic operations to

accomplish this.

The framework implements atomic operations by using the MFC's get- and-reserve-

lock-line DMA commands. This special command can be used to implement atomic

update primitives on a shared location in system memory. This is a simple method

to implement access in shared locations and allows a dynamic number of participants

which fits the idea of haüng a dynamic number of workers working on a problem.

Mor@ver, the Workers (SPEs) are expected to spend most of the time searching

for solutions and hence the number of collisions when trying to access the shared

counter is expected to be low.

72

2 - DMA transfer Store to work on

Before starting, the Worker needs to get a Store to search in. This a normal call to

the MFC's get command which requests a transfer from main memory to the SPE's

Local Store.

The address from the Stores list is also contained in the control block that was

fetched by the Worker. To get the right store from the list only some simple arith-

metic is done: work-li,st * (haw-many-stctres-to-do - 1). This as two direct conse-

quences :

o the workers access this list concurrently without clashing because they all have

different values in the how-many-store-to-do ;

o the list of stores to be done starts being processed from the end.

Although the list is shared by all, accessing it can be done without synchronization.

The synchronization is only needed to get the list's index from where to fetch the

Store in the work list.

Figure 5.5.1 illustrates this. In this example, the SPE gets the number of stores

to be done - 2 - from the shared location (the red color means that the access is

synchronized) and the Store itself from the work list (the green color means that

there's no synchronization needed).

Figure 5.5.1: List index synchronization

marn memory

array with stores
done

number of
store to be

spe

EtrIE

73

Hence, several threads can be accessing the work list and fetching Stores to work on

concurrently.

3 - invoke the search from the AJACS level on the transfered store

After transferring the Store, the Worker can start working on it. The Worker calls

the search procedure, passing it the recently transfered Store.

In this step, besides the search itself, the transfer of solutions is done. The location

where to store solutions was supplied through the control block and the access to

main memory follows the same scheme as with the DMA transfer of the store to

work on. The location of the variable holding the number of solutions is shared by

all the workers and therefore its access must also be synchronized. The number of

solutions serves as index to the position in the array of solutions where the worker

should save the solution store.

Again figure 5.õ.2 illustrates the i«lea. The sirnilarity between this figure and the

previous one intents to demonstrate how similar both actions are. The difference is

only on naming and flow direction (note the names and arrows directions).

Figure 6.5.2: Solutions index synchronization

4 - decrement the amount of work to be done

Again atomically, access the main memory and decrement the value of the variable

which holds the amount of work to be done which controls the Worker's main work

loop.

1 2 n

main memory

array with stores done

number of
store to be

spe

74

5.6 Application Level

The Application Level is the top layer of the architecture. This level does not im-

plement parts of the AJACS model or Cell dependent functions. It simply represents

the user program which defines the CSP to be solved.

The two bottom levels (AJACS and Cell) implement the library itself and provide

the interface needed for a user to state her problem. Normally, one would not

need to mention the user-level when describing a library but there are a couple of

peculiarities associated with the CASPER implementation which are definitely worth

of examining and exemplifying:

o the eccentric Constraint Programming

o the unconventional Cell architecture

Constraint Programming was already extensively presented in chapter 4. Still,

its eccentric, different nature is worth a reminder. When describing a CSP, the

programmer's mind set must be undeniably different from the mind set used to

program algorithms with current and more mainstream languages like C or Java.

Although the C language is being used, the typical program using the CASPER

library is distinct from the usual C program with loops, conditional statements or

variables initialization and consists mainly of calls to the library.

One way of illustrating the application-level layer is with an example program. We

proceed with such an example.

The best way to describe all this is by showing an example. The following source

code is an example of a program. The code is clearly declarative and the source

code comments are also included for a complete understanding.

75

1

2

3

4

5

6

7

E

9

10

t1

t2

13

t4

15

16

t7

int main o
{

int N-C=3;

int c;
int deb=0;

Store* sluit;
Problem* P; // the Problem

fdd-value rv1 , *v2, r.v3;

Coagtraiot *cl, *c2, rc31

Strategy* St; // the strategy to irnplement

Search* Sr; // the seurch method,

IutArray* cVx;

ba-init () ;

2

3

4

5

6

This first block of code is the variables' declarations. One might notice the types

like Constraint, Search which corresponds to AJACS entities.

/* 1) Create aalues */

v1 = new-value (2 ,E) ;

v2 = new-value (3,7) ;

v3 = new-value (4,6) ;

Now we created the values vl, v2 and v3. Each one is created with a different

domain: for exarnple vl has a domain of {2,...,8}.

1) Create Store anil odd aolues */
slnit = uew-etore(3);

eIDit ->thevalues [0] - *(v1) ;

sluit->thevalues [1] - *(v2);
slnit ->theValuer [2] - *(v3) ;

Haüng the values we need to create a store and add our values to it.

ç = porix-memaliga(&c1 ,16, slzeof (Conatraint)) ;

c = posix-memalign(&c2,16,sizeof(Constraint)) ;

c = posix-memalign(&c3,l.6,sizeof(Constraint)) ;

2

3

4

o

6

2

3

76

4

b

7

8

I

10

11

l2

13

t4

15

16

L7

18

19

20

2t

22

23

24

25

26

constraintDefs [0]. name =' ()ÊY".

constraintDefs [0]. nargs = 21

constraintDefs [0]. update = &eq-update;
cl-)constr : constraintDefs [0];
c1-)env[O] = O;

cl-)env[1] = 1;

// X<: \',

constraintDefs [1]. name = "X<:Y" ;

constraintDefs [1]. nargs = 2;

congtraintDefs [1]. update = &le-update ;

c2*)constr = constraintDefs [1] ;

c2-)env [0] = 0;

c2-)env[1] = 1;

// x<= z

In the part we defined our constraints. First we allocated aligned space for them

using po,sixflemalign (this is needed because of the DMA transfers between PPE

and SPEs). Then we set up all the details of a constraint like its number of arguments

or its name.

constraintDefs [2]. name = | t]{<4' ' I

constraintDefs [2]. nargs = 2;

constraintDefs [2]. update = &le-update;
cS->constr : constraintDefs [2];
c3->env [0] : 0;

c3->env[f] : 2;

:?) I'roblent

Ad,rl alL con,straints Lo íhe problent

t

2

3

4

5

6

8

I

10

11

t2

t3

P : new-problem (* slnit , N-C) ;

// A&l con,stra'itrt l to problern

cVx : (IntArray*) new-IntArray (3) ;

cVx->arr [0] = (int) c1 ; // Corr,straint 1

cVx-)arr tt] : (int)c2; // Constraitt,t 2
cVx->arr[2] : (int)c3 // Corrstraint 3

add-constraint (P,0,c1,cVx) ;

tl

t4

15

16

t7

18

19

20

2l

23

24

// Add constr'&i.nt 2 to problem

cVx->size:2;
cVx->arr [0] = (int)cl ;

cVx-)arr[1] = (int)c2;
add-constraint (P, 1,c2,cVx) ;

// Add constroint 3 to prottle,nt

cVx->size =1;
cVx->arr tol : (int)c3;
add-constraint (P,2,c3,cVx) ;

All the information created so far is needed to create a Problem. We created a

Problem, providind it an initial Store (slnit) and the number of constraints (N-C).

Then we added each constraint to the Problem.

l) Strntt:oy Lo intTtlentent

St = new-strategy(sInit) ;

5) Seat'clt / I'ind the solution (s)

Sr : new-search(1) ; // irtdex to stort-1

search (P, St , Sr) ;

return 0

)

Finally, we created the default Strategy and a Search. With all the data needed

(Problem, Stratery and Search) we invoked the search procedure.

The second pecularity mentioned at the beginning of this section is the unconven-

tional Cen/B.E. architecture. The architecture too was already described in detail

in chapter 4. What is more significant here is the fact that the Cell is heterogeneous

and as refered before, currently a double.toolchain is used for compiling PPE and

SPE programs as it was in fact for the development of this thesis' work.

Fbr some code to run on each processor, it must be compiled with the correct

1

2

3

4

5

6

7

8

9

10

l1

t2

l3

t4

78

compiler. The ultimate consequence is that CASPER is composed of SPE and PPE

modules since it makes use of both processors.

The Application Level must interact with both components, PPE and SPE mod-

ules because the user programs consists of code to be run in both processors. For

example, the Constraints are functions which must be present to both processors

thus compiled two times.

Ideally, the user's source code would be single source, hiding totally the complexity

and parallel issues. The current implementation does not allow single source. The

user program is always composed of two source files, the main file and the definitions

file.

The main file states the Problem as seen in the example above and of course, calls

the solution finder. Since this file includes the urain functiorr (hence the name) it is

compiled for the PPE and linked with the PPE modules of the library.

The definitions file contains some information that must be present in the SPE

(worker) in order for it to work properly. Basically, this information includes the

constraints of the problem and some functions related to Adaptive search (this

will be clearer in the next section - Extending the search). This definitions file

contains one ini,t function which is called by the Worker. The init function sets up

the information needed by the Worker.

Surely, one might argue this is not much different from the existing approach to Cell

prograrrrrning, with two source files, one for the PPE tlrread and one to run on the

SPEs. This is true but all the concerns with parallel design are inexistent. No need

to partition data or to synchronize threads. And most of the content present in the

deÍinitions file is doubled frorn the main file and can be copied and easily modified.

With both fiies (main and definitions) together with the library modules, a binary

file is created in the CESOF file format (see figure 4.4.1).

79

6.7 Extending the search

As referred in 5.4, the search step is the most important. The current Strategly

takes one Store to process and partitions it in two complementary one§. After

choming a nariable, the propagation is executed and, recapitulatiug, ffu6s fhings

can happen: a solution, the propagation has succeeded or the propagation has failed.

In case a solution was found or with failed propagation, the Searú continue with

the complementary Store; if the propagation succeeded, then it continue to work

on the sa,me Store and puts the complementary one in the work list.

T-his "always foruard, anil d,oum, i,n the he*" approach savm a lot of space (a scarce

reÉource in the SPE's Local Store) since we don't keep a,ny history of performed work

or connections to ancestor or any other Store(s) and work only with the curreut state.

So far, the search is exhaustive which guarantees completeness. But sometime

this is not so important and local search methods proüde a very fast way to get a

solution.

There are at least two classes of general methods for resolution of constraiut prob

lems: complete methods explore the whole search space in order to find all solutions

or detect inconsistency and incomplete methods use heuristics to find not all but

some solutions. Unfortunately these methods don't detect inconsistency.

Desiguing hybrid approachm seeurs promising since the advantagm may be combined

into a single approar,h.

Systematic algorithms for solving CSP typicaüly explore a search tree which i§ based

on the posible ralues for each of the variables of the solved problem.

The biggest problem of such backtracking-based search algorithms is that they are

frequently hinderd by innappropriate early choice in the search.

Locat search algoúthms perform an incomplete elçloration of the search space by

repairing infea.sible complete assignments.

Three categorie of hybrid approache can be fouud in the literature [23] :

80

1. performing a local search before or after a systematic search

2. performing a systematic search improved with a local search at some point of

the sea.rch;

3. performing an overall local search and using systematic search either to select

a candidate neighbour or to pnrne the search space

Adaptive search is a.n heuristic method in which the key idea of the approach is to

take into account the structure of the problem grven by the description, and to use

in paúicular variable-based information to design general meta,heuristics.

In our proposal, the propagation-based search is extended with a local search com-

ponent. At a certain state in the complete search it switches to adaptive search

and its heuristic method, by taking the so far grounded variables as constants and

a random value from the domain of the non-ground variables as starting points for

the sea,rch procedure.

5.8 Adaptive Search

Adaptive search [8] is a heuristic (non-complete) method for solving Constraint

Satisfaction Problerns (CSP). The key idea of the approach is to tal<e into account

the structure of the problem given by the CSP description, and to use in particula,r

variable-based information to design general meta-heuristics.

The input to this method is a problem in the CSP format. Again, this means a set

of variables with associated finite domain of possible values and a set of constraints

over thee rm,riables.

The method is not limited to any specific type of constraint but it needs â,n error

function that indicates how much a constraint is üolated. Exarnple: a.n arithmetic

constraint X -Y < C will have as error function mar(O,|X -Yl - C). The basic

idea of this method can be dmcribed by 3 steps:

81

i

1. compute the error function for each constraint

2. combine for each variable the errors of all constraints in whiú it appears

3. the nariable with the ma"ximum error will be e;hosen and thus its value will be

modified. In this step it uses the well-known Min-Conflict [37] heuristics and

select the value in the rariable domain that has the best tempting ralue, that

is, the rmJue for which the total error in the next configuration is minimal.

The method atso uses an adaptive memory (as in Tabu search [lfl) where each

variable leading to a local minimrrm is marked a,nd cannot be chosen for a few

iterations.

The Adaptive search method is a generic fra,mework pararneterized by 3 components:

o A fa,rmily of error functions for constraints (one for each type of constraint)

o An operation to combine, for each variable, the errors of all constraints in

whiú it appears

o A cost frrnction for evaluating configurations

Algorithm

this d,escri,pti,on is closely retated, to the ori,gi,nal paper [8]

Input

Problem given in CSP form

o a set of variables V : VL,VZ,...,%with associated domeins of wlues

o a set of constraints C : C!,C2,...,Crwith associated error functions

r a combinatiou function to proiect constraint error§ on nariables

o a cmt firnction to minimize

82

1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

t7

18

19

Output a sequence of moves (modification of the value of one of the variables) that

will lead to a solution of the CSP (configuration where all constraints are satisfied).

Algorithm

Start fron a random assignment of variables in V

Repeat

Conpute errors of all constraints in C a.ud conbine errors orr
each variable by considering for a given variable only the
constrai[ts on which it appears.

select the variable X (not narked as Tabu) with highegt error
and evaluate costa of possible moves fron X

if no better move then
nark X tabu for a given nunber of iterations

eIsE
select the best nove (nin-conflict) a.nd

chânge the value of I accordiugly

Until a solution is fouad or a naxinal number of iterations is reached

Some pararneters can be introduced in order to control the search, narnely for han-

dling restarts. It is possible to pararneterize the number of iterations during whiú
a variable should not be modified once it is marked. More, in order to avoid being

trapped in local minima, a random reset of a certain number of marked variablm is

done. Also, like most local search methods, the algorithm has a maximal number

of iterations. This mearui that the main algorithm loops will be executed n times -

where n is the maximal number - before it stops.

83

i

Integrating the Adaptive Search

In the whole architecture

The Adaptive Search was implemented as an exüra module. Recurring to the dç

scribed System Architecture, the Adaptive Search module is situated at the sa,me

level as the AJACS Level. It is used by the Cell Level, concretely by the Worke,t, to

perform the search.

The Adaptive Search module itself is also a library that can be linked with when

creating the binary file. Generatly, this module implements the algorithm described

above in section 5.8 but it is tied to the Store object and considers the work done

previously by the propagation-based search.

The need for the connection with the Store object is to take into consideration the

work performed before. The Store is the state of how things are, which nariables are

grognd and which domains do they have. These two aspects, ground variables and

rariables' domains are what the "slightly modified Adaptive Sea,rch" needs from the

Store.

To take adrmntage of the work done before, our implementation of Adaptine Searú

starts by marking the already grouud variable (made ground from the complete

search) as untouchable va,riables. Only the non-ground variable will have their

nalue berng worked on according to Adaptive Search's algorithm. This is the first

place where the Store is needed.

The second place where the Store is needed is when selecting the min-conflict value

for a rmriable. Only values which are in the variable's domain are checked.

The Adaptive search algorithm depends on user-proüded firnctions which model

the problem. The cost-on-variable functions determines the error for one rrariable

and associated constraints. The cost-of-solution function combines all rmriables

errors and should be equal to zero when a solution is found.

84

Since these firnctions are provided by the user they can be said to belong to the

Application Level. The following reasoning can be made: the functions help to do

sea,rch which in turn is done by the Worker, the entity which runs on the SPE. The

SPE code is defined by the definitions file therefore these functions must be included

in it. The need for these functions still flts the twefiles model.

In the'Worker

The search process is now hybrid. At a certain point, the search switches from

the complete propagation-based search method to Adaptive search. The decision of

when to switch methods is managed by the Worker, running in an SPE.

So far the Worker's work loop was only finding solutions via the propagation-based

exhaustive method. It would get a Store and perform the Search as described before.

Now the exhaustive method is only carried out until a certain condition is met, this

can be for exarnple "do complete search until n variables are ground" or "do complete

search for n iterations".

When the condition is met, the Worker calls the search from the Adaptive Search

module, passing it the current Store as the state of current solution finding.

Naturally, if the heuristic search returns a solution then a DMA transfer of the

solution is done, saving the solution in main memory as was done in the complete

search method.

5.9 Comparison with other work

Constraint progra.mming has been around for quite some time so it is natural that

a lot of work has been put into this area. We already refered to some existing work.

Here we focus on recent work for doing a comparison: Gecode, IlogCP, Minion,

Comet and Choco.

85

Gecode is a library for developing constraint based qrstem's and applications. It is

implemented in C++ but has interfaces for several other progre.rnming languages

like Java (GecodeJ) and Ruby (GecodeR). Gecode has a very small [sm.1 (in terms

of lines of code) and is repoúed to be very fast. It allows some modelling (atthough

not being a primary target) and has pla,n^s for parallel execution but with no work

on this so far. The search on Gecode is based on recomputation and is has different

standard search enginm (e.g. depth-first search, limited discrepancy search, etc.).

ILOG CP is a C+* library that embodies Constraint Logtc Programmins (CLP)

concepts such as logicat rmriablm, incremental constraint satisfaction and backtrack-

ing. It is a cornrnercial product with extensive documentation and debugging tools,

implementing much more different constraints and search methods. Is ofiers profe'

sional supports but it is closed source and with few techniques published.

Choco is an open-source Java library for constraiut progra,mming and explanation-

based constraint solving (e-CP). It is built on a event-based propagation mechanism

with bâcktrackable structurm. fls implementation is opensource.

Minion [20] i" a general-purpose constraint solver, with an input language based

on the common constraint modelling device of matrix models. It a.ims at being a

black-box providing few options to the user, arguing that the increasing complexity

of today's toolkits for constraints has heavy costs in terrns of performance and

usability. This constraint solver is also implemented in C++ and focuses on a

highly-optimised implementation, exploiting the propeúies of modern procssors.

Comet [29] ir an object-oriented language supporting a constraint-based arúitec-

ture for neighborhood search. The mai,n rnessage is that, olthough theg suppoú tun'

damentally d,ifferent types of algori,thms, constraint proyamming anil Comet share a

cornrnon archi,te.ctwe whi,ch promotes moilulari,ty, com,positionali,tg, reuse, and, sepa-

rati,on of concerns.

CASPER is a work in progres and will certainly be subject of several modifications

and improvements. Still several characteristics allows some compa,rison with existing

E6

systems.

An evident characteristic of CASPER is its implementation targetting the Ce[/B.E..

This is rather new since there are no implementations (at least known of) doing the

salne. Minion airns at exploiting some properties of modern processors (e.g. cache)

but no architecture in particular and this in fact proves to be of value as Minion is

reported to perform better than Ilog CP and Gecode for some problerns.

The implementation of CASPER is done in the C language, a language not typically

used by current implementations like Ilog, Minion and Gecode. The C language is

the best suppoúed language in Cell/B.E. and therefore this was a natural choice.

Another eúdent characteristic from CASPER is its parallel architecture inherited

from AJACS. Gecode has pla.ns for parallel search but none of the other toolkits

have parallelization has a main target tike CASPER.

The search is very customizable is most toolkits (Gecode, Ilog CP and Choco) as

well as in Comet, allowing the definition of new search procedures, retrieving of one,

some or all solutions or limiting the search space. Unfortunately, CASPER doesn't

allow this level of customization and is very static mainly due to its prototypal

nature. All the toolkits work with systematic sea,rch and doesn't seem to be any

references to local search or even hybrid schemes. The exception is Comet (one of

the reasons why it is in this list of related work) which has abstractions for the

specificities of hybridizations between systematic and hybrid search.

One characteristic present in some of the presented frameworks such as Gecode

or Minion is the support for modelling. Gecode, for exarnple, supports regular

expressions for extensional constraints and expressing linea,r and Boolean constraints

in the standard way as exprmsions build from numbers and operators.

87

5.10 Summar;r

CASPER is an adaptation of the AJACS model to the C progra.mming language

and developed to run on and take adnantage of the Cell/B.E. while hidding the

complexity of this architecture.

There axe some similarities between the Cell/B.E. and the AJACS model. Both

have a controller, reponsible for management of work and workers that are the real

'\n'orlf,orce".

The architecture of CASPER is composed of 3 levels (fiSul" 5.3.1): the AJACS, the

Cell and the Application levels.

The bottom level is the AJACS Level. It implemeuts the AJACS model and

its associated concepts such es Store or Constmi,nt. Paxtícularly impoúant in this

level is llne Search procedure, which works on independent states to achieve parallel

execution and by keeping s, minimrrm of Stores in memory to gUarantee a small

memory footprint to avoid oveúow of the SPE's small Local Store.

The middle level is the Cell Level. This level hide the Cell/B.E. proga,mming

complexity and interacts with the AJACS Level - calling the search function - to solve

a Problem. To this level belong the Controller and Worker concepts implemented

for the PPE and SPE, respectively.

The third and upper level, na,med Application Level, represents the user applica-

tion stating solely the problem to be solved and calling the procedure rmponsible

for the whole problem solving.

Sometimes one does not require completenms or only needs to find quickly one

acceptable solution, proüded by a local search method. CASPER extends the search

by implementing an hybrid approach, combining propagation and local search. The

local search algorithm choosen was Adaptive search, an heuristic method in which

the key idea of the approach is to take into account the structure of the problem

and use problem-oriented and nariable-based information to deign general meta-

88

heuristics. The choice has fallen 61 trhis algorithm due to its simplicity and good

performance.

The integration of the Adaptive search method consists of creating a "jump point"

where the switch from propagation-based search to local search is done. When it
starts, the adaptive search algorithm considers the work done previously by the

complete search. For example, if one variable is already ground, its value won't be

changed since it is already consistent.

A quick look and comparison to some existing work (Gecode, Ilog CP, Choco, Minion

and Comet) proüdes a good ma,nner to position and assess CASPER's features.

CASPER possmses some unique characteristics when compared with other systems

such as the implementation language, the parallel architecture a,nd the hybrid search.

Also, it shows that some work ca,n be done in the design in order to allow more

customization, dynamism and modelling support.

89

Chapter 6

Experimental evaluation

In order to get some feedback on the behaüour of our fra,mework, we conducted an

initial performance a^qsesment.

The evaluation centers in classical problems used as tmts to a.ssess CSP solving. The

used test progrâ.rns are toy-problems but should be enough to give a preliminary idea

of how dom the framework behavm. These test progrems are detailed in the next

sections.

Performance measurement here means the wall-clock time needed to run a test

program. The wall-clock time is obtained with the Unix utility úznze.

6.1 Hardware aÍrd Software environment

The ha,rdwa,re and software environment used is summarized in the two tables

90

CPU Dual Cell system (QS20)

PPE 6+bit dual-threaded

PPE Caches L1 - 32K8, L2 - 5L2KB
SPE LS 256 KB
SPE Cache No cache

Filmystem type ext3

Memory (RAM) t024 (572 MB for each Cell/B.E.)

enüron:rrent

6.2 Test programs

N-Queens

The N-Queens problem is a classical CSP exarnple. Although simple, the N-Queens

is compute intensive and a typical problem used for benchmarks.

The problem consists of placing N queens on a chessboard so that it's not possible

for a queen to attack one other one on the boa,rd. This means no pair of queens

can't share a row, a column nor a diagonal and that these are our constraints.

Modelling the problem is then:

o N variables , implicitly queen i is on line i

r each variable with a domain {1,2,...,N}

Operating System Linu 2.6.20

Distribútion Fedora Core 6

PPE compiler ppu-gcc

Version 4.t.L
SPE compiler spu-gcc

Version 4.L.7

PPE compiler flags -O2 -ftree'vectorize

SPE compiler flags -O2 -ftree-vectoúze

91

o the constraints: all rnriable with a difierent rnlue (not in sa.rne column) and

no two queens in the sa,me üagonal.

SEND+MORE:MONEY

The SEND+MORE:MONEIZ is another classical exa,mple, ruually used to demon-

strate and test CSP solvers. This problem consists on assigning a distinct digit to

each letter {S,E,N,D,M,O,R,Y} a value so that the equation holds. Also, the letters

S and M must be different from 0 (no leading zeros).

The model for this toy problem is therefore straightforward:

o 8 variables (one for each letter)

o each rariable with a domain {0,1,2,...,9}

o the constraints: the equation must hold and S and M must have a rmJue

different from 0.

Golomb Rulers

A Golornb ruler of. size M is a ruler with M marks placed in such a way that the

distance between any two marks are different. It is a hard problem (NP-complete) for

which an algorithm to find the optimal solution for M > 24 is not yet known. This

problem has practical applications in sensor placements for x-ray crystallography

and radio astronomy.

The model used for this problem is:

. one rmriable for eac,h mark used (7)

o each rmriable with a domain {0,1,2,...,25} which is the optimal ruler size for

the number of marks

92

. constrâints rsed: the first variable must be zero, the distances between any

two ma,rks are distinct and the va"riables value is incremental that is, Xr <
X21 ... 1 X^

6.3 Tests results

In this section, we present the experimental results. For each test prograrn, sev-

eral performance measurements are shown and, wherever necessa,ry, commented on.

General conclusions will be drawn in section 6.4.

For all tests the following scenarios used were: With adaptive search (With adaptive)

and Without adaptive search (Without adaptive). Both situations were considered

using compiler optimization (With Optimization) and no compiler optimization at

all (No Optimization). All combinations were done for t,2, 4,8 and 16 Workers.

Queens

The overhead measured for all three Queens tests are shown in table 6.3.1. The

results are stable (increased overhead when numbers of workers increases) a,nd very

low.

Table 6.3.1: Overhead

The table 6.3.2 shows the results obtained for all three Queens tests.

In all Queens' tests, the results from Queens4 are the most different. Graphic 6.3.1

illustrates the results for Queens 4. The performance decreases as the number of

Number of workers 1 2 4 8 16

Overhead Queens 4 0.00154 0.002595 0.00483 0.008143 0.0229L7

Overhead Queens 6 0.001734 0.002819 0.004998 0.011433 0.022045

Overhead Queens 8 0.00167 0.00273 0.00493 0.17437 0.0223L

93

161 2 4 8Number of workers

With adaptive

Without adaptive

With adaptive

Without adaptive

0.008

0.009

0.017

0.008

0.09

0.010

0.015

0.009

0.012

0.013

0.015

0.012

0.018

0.017

0.018

0.017

0.030

0.030

0.029

0.028

Queens 4 No Optimization

With Optimization

0.255

0.059

0.090

0.031

0.130

0.035

0.049

0.022

0.081

0.025

0.034

0.017

0.051

0.023

0.027

0.019

0.0440

0.031

0.029

0.030

Queens 6 No Optimization

With Optimization

With adaptive

Without adaptive

With adaptive

Without adaptive

1.149

1.575

0.369

0.653

0.610

0.797

0.196

0.336

0.380

0.404

0.114

0.173

0.220

0.232

0.072

0.102

0.130

0.137

0.053

0.067

Queens 8 No Optimization

With Optimization

With adaptive

Without adaptive

With adaptive

Without adaptive

Table 6.3.2: results

Workers is augmented except for the scenario with adaptive search and no opti

mization where the performance is better increasing the number of Workers up to

4. Surprisingly, the scenarios with adaptive search were slower than with complete

search.

With Queens 6 everything starts looking more interesting. Looking at 6.3.2, in

all scenarios the performance is better as rnore workers are added. Still, as with

Queens4, the adaptive search behaves poorer than the complete search. Also the

difference between optimized and non-optimized code is particularly noticeable when

using adaptive search.

The Queens 8 test (figure 6.3.3) also behaves better as the numbers of Workers is

increased. This is particularly clearer up to four Workers. The difference between

optimized and non-optimized code is the greatest so far.

In contrast with the two previous Queens, QueensS is faster using adaptive again

specially with 1, 2 and 4 Workers and then takes almost the same time with and

without adaptive search.

94

0.04

0.045

0.035

0.03

0.025

0.01s

0.01

0.005

0.25

0.15

0.1

0.05

o

o
.E
F 0.02

0
0 4 6 8

l{o. ofSPÉs
10

Figure 6.3.1: QueenM plot

12 14 16

'16

0.3

o.2

6o
o
.E
F

0
0 4 6 12 14I

No. of SPES

10

Figure 6.3.2: Queens6 plot

a'
.....a.....'.

"""""""''

a.....o""'

-a---G-..4..
""4,,,
-i]-

Adâpt
No Adapt

with
No

+--o--.'a'.
,,,,4"
-.4,-

Adapt Optim
No Adapt Optim

95

1.6

1.4

1.2

9; 0.8
E
F

0.6

0.4

o.2

0
60 8

l{o. cíSPE8

10 12 14 16

Figure 6.3.3: Queens8 plot

SendMoreMoney

The Overhead continues very similar across all tests, including with the SEND +

MORE : MONEY test. Table 6.3.3 presents the overhead values.

6.3.3:

The timing results for this test show nice and encouraging results considering the size

of this problem when compared with the other tests. The results obtained provide

meet the initial expectations. The solution (this test only has one) is obtained

much faster when more workers are involved and much faster when using the hybrid

method (from 2.163 to 0.059 secs).

Figure 6.3.4 illustrates the results obtained. In all scenarios there is an improvement

every time more workers are added and the hybrid search always behaves better thên

the complete search.

a

l.

With adaptive
l,lo adapüvo

OveÍhoad
Adept Optim

tlo Adapt Ooüm

+--G-
'.4",",,.,,"
-,o,-

2 4 8 16Number of workers 1

0.0226250.001977 0.003006 0.005298 0.010726Overhead

96

Tâble 6.3.4: Results

0.5

10 12 14 16

No. of SPES

Figure 6.3.4: Money plot

Golomb Rulers

The table 6.3 shows the measured overhead for the Golomb Ruler test. They are

slightly different from the previous tests specially with less workers but the biggest

overhead (with 16 workers) is not much greater than before in spite of having much

greater complexity.

Table 6.3 presents the measurements obtained for the Golomb Ruler test. The

2.5

1.5

ô
o
.E
ts

0
0

Number of workers 1 2 4 8 16

No Optimization With adaptive

Without adaptive

0.517

2.L63

0.265

1.087

0.145

0.551

0.105

0.283

0.059

0.158

With Optimization With adaptive

Without adaptive

0.161

1.097

0.086

0.573

0.051

0.351

0.035

0.211

0.033

0.096

+--a--..4'.
.-,4,,,
- l},-e

t

'a

t. '"'c,.,,.,.

a.

No edaptivo
Overhêad

Adapt Optim
No Adapt Optim

wth adaptivê

Number of workers 1 2 4 8 16

Overhead 0.00334 0.004303 0.006842 0.0129 0.02449r

97

parallelization increases the performance but only without adaptive search. With

the hybrid approach (with adaptive search), the results are disappointing as if there

was no parallelization at all.

Without adaptive search, the performance increase gained by adding more workers

is visible: from almost thirteen seconds with one worker (L2.977) to less than a

second with sixteen workers (0.885). Here again, the optimized code reduces the

time needed to the half of non-optimized code, doing 0.413 seconds with sixteen

workers.

Figure 6.3.5 illustrates the results obtained excluding the scenario with adaptive

and no optimization.

The results obtained with the hybrid approach are totally disappointing. In this

test, the hybrid approach takes practically always the same time to complete the

task, no matter how many workers are participating. With no code optimization,

the time needed by the hybrid approach is very large when compared with the rest

of the scenarios. Figure 6.3.6 illustrates the results obtained in all scenarios.

6.4 Results interpretation

In general the results are encouraging but not excellent. Of course it is an evolving

prototype and performance results obtained are important only to show a direction

and are not at all definitive.

After running the tests and extracting some performance information, three overall

conclusions can be safely drawn:

4 8 161 2Number of workers

32.892

t.454
40.767

0.885

With adaptive

Without adaptive

25.55

12.977

37.369

6.495

40.t32

2.891

No Optimization

6.033

6.353

4.349

3.183

7.127

L.577

4.877

0.810

6.294

0.413

With Optimization With adaptive

Without adaptive

98

ôo
;
.E
F

ô25
E
o
.EF20

4

0

14

'12

10

2

'15

10

0 10 12

No. of SPES

Figure 6.3.5: Modified Golomb Ruler plot

6 10 12

No. of SPES

Figure 6.3.6: Golomb Ruler plot

6 14

14

45

40

35

30

NoadaPtive {-
Ovorheed --a--

AdaptOptim..a..
NoAdaptOptim , a,

No
Adapt

With adâptive
No

99

o adaptive searú and the hybrid scheme need more f, rning since by including

heuristics, the performance depends on their quatity

r adding more workers increa.se performance

o there's still some space for optimization

All three Queens tests present different reults. In Queens4, up to four Workers,

there are two case where the performance increase: both with adaptive search

with and without compiler optimization. The performance increase is considerable

from L to 2 Workers with no code optimization. More Workers mean.q more time

needed due to Overhead increase. This mea,ns although the problem is a bit complex

its size is limiting. After fours Workers (or two in some scenarios) , the overhead

takes control and the program is slon'er. With optimization from the compiler, the

difference from one to four workers is not so evident but is not so since the

program is working between 1.5 and 2 hundredths of a second. A little surprisingly,

running with adaptirne search is sloum than complete searú.

Queens6 behave much better and ta,ke more adnantage of the parallelization.

In this test, most of the scenarios take advanta,ge up to eight Workers and adap

tive without optimization even benefits from all sixteen Workers. But here again,

adaptive searú performs worre than complete seaxch.

Ftom all Queens tets, Queens8 is the biggest and the one which preents results

closer to what was oçected. It firlly takm adrantage of parallelization, with the

progpa.m increasing its performance â.s more Workers are addd and the adaptive

search is also, though slightly, faster than the complete search.

Since all three Queens tets solve e»ractly the same problem, the variations must

depend on the size of the Problem which is where the tets differ. The better results

are due to bigger problem size where are workens work on some Store and don't just

start and finish without performing any real work.

The other difference has to do with adaptive search. Adaptive search performs better

100

with QueensS and worse with Queens4 and Queens6. Both sides have something

in common: the number of solutions. Queens8 is a problem with many solutions

whereas Queens4 and Queens6 have less solutions (two and four respectively). When

looking for many solutions, complete search takes more time to finish and adaptive

search has the advantage since it will only return one solution for each store it starts

with. With less solutions, complete search is faster acknowlerlging when there are

no more solutions left while adaptive search tries to find a solution where there's

none until its iteration limit is consumed.

The SEND+MORE+MONEY tmt corroboratm what was seen so far with the

preüous tests and adds some extra information. This test is bigger a,nd thus requires

more work. The time needed by one worker is now in the order of seconds.

As the number of workers is augmented, the time needed to get to a solution (the

only one is this case) diminishes, with a good speedup. This happens in all scenarios.

The SEND+MORE+MONEY test implements the equation constraint in a ineffi-

cient way. The propagation always succeeds until the last instant that is, when all are

ground but incorrect then propagation fails. This turns propagation-based search

much slower and in fact it is slower when compared with adaptive search scenar-

ios. Before, qrith the Queens tests, whenever a problem had less solutions, adaptive

search was slower than complete search because of unnecessary work in Stores with-

out solution. This time this doesn't happen, although SEND+MoRE+MONEY

only has one solution. This leads to the conclusion that adaptive search's current

implementation is not as fast as it could. The only rea.son why adaptive search is

faster is because complete search works with a very inefficient constraint. Moreover

and to verify this, a change in adaptive was made. By increasing the limit number of

iterations, the degradation on the hybrid approach was more obvious with adaptive

search trapped too often in local minima cases and repeatedly re.doing work.

Finally, the Golomb Ruler test. In what concerns results interpretation, the Golomb

ruler proüdes information in two scopes: it agrees with was concluded so far for

101

some parts and adds Bome more information to better understand the fra,meworks'

behaviour.

On one hând, the complete seaxch behaves well and as oçected, agreeing with what

was seen so far since there is a performance increase every time more workers are

âdded. This t6t progra,rn, by requiring mue,h more time to complete - around 13

seconds with one worker - proüdes a better view of the benefit by parallelizing the

problem solving, needing les than one second with 16 Workers. Of course, the time

needed could be much les since a Golomb ruler with 7 marks is stiU a relatively

small problem but once again, the results are encouraging.

On the other side, the progra.m shows deceiving performance when the hybrid ap

proach is used. Not only the time needed to reach only one solution is extremely

larger than the time needed by complete search, also the parallelization has no ef-

fect. The adaptive search performs practically the same way with any number of

Workers or better, it always performs like having only one Worker. And in fact that

is what is happening. The first Worker to get a Store is the only one which gets

a Store to work on. All other just start and finish because there is no work in the

work list. The first split on the search tree done by the Controller only puts one

Store in the work list, in contrast with ell the previous tests, where the work list

was initially more populated.

The reason for this poor performa.nce is the conjunction of 3 factors: the problem's

nature, the adaptive search's implementation and the curent work-flow of a Worker.

First the problem's nature: the problem starts with a search tree with only one

branch so there will be only one to be put in the work list. Also the propagation

fails very often because of the problem's tight constraints therefore having less Storm

transfered to the work list. As atready mentioned, the adaptive search needs work

and in the Golomb Ruler's test this is evident. It takes to much time to find a

solution and sometimes doeu't find one. Finally and more importantly, the Worker's

behaúour. As explained in úapter 5, the Worker loops uutil there's work to be

L02

done. Since the work list starts almost empty, all Workers except the first exit

without performing work. This is why parallelization has no effect and the progra.*

behaves always like it has only one Worker.

In summary, the overall results from the different tests are similar. The first ob
servation is to the test's size. Although they provide insight on the frarnework's

behaviour, they revealed themselves small for taking advantage of the paralleliza-

tion among sixteen workers. The positive side is that the frarnework perforrns bet-

ter than initially expected. With QueensS, SEND+MORE+MONEY a.nd specially

Golomb Ruler, the effects of the parallelization are more visible.

The hybrid model is still a work in progress. The current implementation of the

adaptive search still needs some work in order to obtain performance gains such as

those reported on in [8]. This can be seen in the Queens4, Queens6 and definitely

in the Golomb Ruler as when increasing the iterations' limit. It gives less solutions

and takm more time.

The Overhead is pretty constant among all different tests with a slight fluctuation

with optimized and non-optimized code.

One sign for possible future performance increase is given by the use of optimization

flags and comparing its results with non-optimized code. As mentioned before,

Cell specific code is needed to get more performalrce and some optimization done

by the compiler can give a preüew of a performance gain window. The difference

between optimized and non-optimized code is definitely visible. Needless to say

that compiler's optimization are difierent from the optimizations done in code by

the prograrnmer but what it means is that there is still space to better and faster

code.

A last point that is worth a cornment relates to the experience gained with devel-

oping and doing the evaluation described in this chapter. More specifically, the

difference in performance between using debugging output and not using it. When

using debugging output - which happens most of the time when one is developing a

103

prototype - the execution time increases in a great factor. This happens due to the

fact that each request for I/O from the SPE must be handled by the PPE thread.

Although we knew that I/O is handled this way, we did not know that it would lead

to such a great difierence. Thus, most of the development time was done with a

wrong and only late cleared assumption. Fortunately it lead to better performace

measurements after removing the debugging output but nevertheless we worked with

false assumptions and that was one lessou learned from this oçerimentation.

104

Chapter 7

Conclusion

In this thesis CASPER was presented, a Parallel Hybrid Constraint Progra,rnming

Library.

Today's hardwa,re tendency is to go multicore, progressively making end-user com-

puters similar to high-performânce and scientific machines.

More than solving hardware limitations, this shift in computing has a strong soft-

ware impact. Programmers have now several cores at their disposition which can

possibly increase their application's performance. The catch is that taking advan-

tage of this performance increase requires complex cha,nges to the software structure,

which needs to be explicitly aware of the performance-motivated underlying hard-

ware architectural changm.

The need of research for new methods a.nd models that are suitable for this hardware

change is high and industry as well as academia a,re heavily focusing on this.

This thmis' work looks exactly at this hardware tendency and one paúicular pre

grarnming paradigm, Constraint Prograrnming, which is a highJevel and declarative

progra.mming approach where prograrns are stated as a series of relations (con-

straints) between variables.

The work starts by two given points: the Cell/B.E. and the AJACS model. The

105

Cell/B.E. is a very innovative architeture that reveals much of the characteristics

of future architecture and includes itself in the current multieore trend. On the

other hand, the AJACS model for constraint progra,mming atready proved some

interesting reults in a distributed environment.

CASPER results from matching thse two points and by extending it with local

search capabütie. It is an oçerimentatiou of how well both work together. As

result a prototype ums developed.

Despite the prototype's early state of development, some tests were developed to

initially assess the viabüty of the whole fra,mework. The tests reults look promising

and point at some issue to be deatt with. The AJACS model is interetiug and

suits the Cell/B.E. architecture, specially in what concerrrs to the model's parallel

execution architecture where controller and workers fits nicely with PPE and SPEs.

The results are not yet excellent but also not ftustrating. They proüde a good

incentirre for further work. Some tets are small to take full advantage of pa,ralleliza'

tion but the bigger ones already provide some good rmults. They take adrmntage of

the parallel work done by the workers and faster results with the hybrid scheme in

some sceuarios.

7.1 F\rture work

The preent design and implementation of the prototype is efiectively a work in

progr6s. It is the result of experimentation and the starting point for the inrmti-

gation of constraint progra,mming capabüties and limits in a novel architecture.

Naturally the current codebase will be subject of modification in order to address

current limitations.

This first implementation is very "naive", making use of static structures and some

hard-coded values. This has obviously to change since it restricts the variety of

problems to solve.

106

Also related to this static nature, the currently used data structures might suffer

cha,ngc, reducing dependencies and memory footprint - specially for the SPEs. It
might depart from the initial AJACS model and evolve on itself. More analysis and

options have be produced.

The current implementation is simple. More work on optimizing the code must be

done, more importarrtly on the SPE side, using wherever possible SIMD code and

reducing bra,nching as the two most striking improvements. The objective, together

with performarlce, is to reduce the SPE code-size in the LS. Although this is very

architecture dependent it will be worthy when trying to solve more real and heavy

problerns.

The algoriftftrrrs fse, might benefit from some redesign nan ely the algorithm for

Adaptive search which still iterates too much and requires extensive indiüdual tun-

ing in some cases in order to extract good speedups.

It is also an objective to enhance the declarativiness of user-progrilns by proüding

a richer API, possibly including a languâge pre-processor to provide a measure of

syntact sugaring. The whole point is to describe problerns and its constraints as

well as to extend the solver in a very simple way, hiding hardware complexity and

control.

Besides implementation details and improvements, the design still has issues which

are worth fuúher experimentation and are interesting for new revision and ortension.

Although thought of since the beginning, single-source was not accomplished.

This is particularly relevant for programming propagators and other constraint pro

cedures, which must be usable in both kinds of context, controller a,nd workers. This

may well require the development of a tool responsible for a pre-processi.g phase,

which then feeds the different compilers.

A more radical design change passes by differentiating SPEs responsibütim. Cur-

rently, each worker (from the AJACS model), running on an SPE carries out the

same kind of work. It would be interesting to have workers with different roles, like

L07

selector and propagator, where each would do a simpler task instead of the whole

procedure as presently. They would communicate between each other, creating a

pipeline and exploit the Cell/B.E. inner bus (EIB), which has very high bandwidth,

much greater than memory acceÉxl. This redesign would address several problems:

o locks: there would be no need to synchronize the acces to the indexes via

atomic operations, a current bottleueck.

. a,coeÉxl to memory: reduce greatly the number of acceses to main memory

which a,re slower that communication betwen processor elements

. space used in the LS: reduce each SPEs code size would sarre important LS

space for data

o simpüfy the code: simpler code leads to less bugs and is easier to optimize

This design is cturently being reasoned to put into practice.

Another point, is the class of problem.s that can be modelled using the fra,mework i.e.

whether the problems which can fit into SPEs have a sufficiently compler< processing

associated with them to reult in a significant performance gain for the overall

constraint solving goal. This includes developing more and increasingly complex

tests and look at real problems which would benefit from the performance gain.

A more long-term line would be looking at networks of Cell/B.E. blade, creâting

another layer. There are already controllers and workem and this can be extended

to tea,m,s or departments, in a distributed memory model.

108

109

Bibliography

tU M. Rinard A. Saraswat and P. Panangaden. Semantic foundations of concurrent

constraint progrg.mming, 1990.

[2] Gabriele Jost Barbara Chapman and Ruud van der Pas. Usi,ng OpenMP:

Poúable Shwed Memory Parallel Progrummi,ng. MIT Pres, 2007.

[3] Roman Barták. Qnlins gurde to constraint programming.

http: //ktiml.mff.cuni.c z I bartak I .

[4] Roman Bartrík. Constraint progra.mming: In pursuit of the holy grail. Procerl,-

i,ngs of the Week of Doctoral Stud,ents, pages 555-564, Ju-ne 1999.

[5] Daüd R. Butenhof. Programmi,ng urith POSü Tfueads. Addison-Wesley, 1997

[6] Constraint handling rulm websife. http://www.cs.kuleuven.be/ dtai/project-

s/CHR/.

[7] Guido Tack Christian Schulte and Mikael Z. Lagerkvist

http://www. gecode.org/prmentations/INFORMS%20-%2üGecode.pdf.

[8] Ptilippe Codognet and Daniel Dias. Yet another local search method for con-

straint solving. Lecture Notes in Computer Sc,ience,2264:73-90, 200L.

tgl Al Geist et aL. PVM: Paro,llel Vi,rtual Machi,ne A Users' Guid,e and Tlú,ori,al

for Networ*eil Parallel Cornputi,ng. MIT Press, L994.

110

[10] Rohit Chandra et al. Parallel Programming in OpenMP. Morgan Kaufrnann,

2000.

[11] P. wn Beek F. Rossi a,nd T. Walsh. Handook of Constraint Programmi,ng,2006.

[12] Lígia Ferreira and Salvador Abreu. Design for AJACS, yet another jarm, con-

straint prograínming framework. Elseaier Electroni,c Notes i,n Theoreti,cal Com-

puter Sci,ence,200L.

[13] Lígia Ferreira and Salvador Abreu. Toq/axds a distributed implementation of

ajacs, 2004.

[14] Thom F]iihúrth. Theory and practice of constraint handling rules. Jounal

of Logi,c Programmi,ng, Speci,al Issue on Constrai,nt Logi,c Programmi,ng, ST(L-

3):95-138, October 1998.

[15] Thom Friihwfuth a"nd Slim Abdennadher. Essenti,als of Constrai,nt, Program-

ming. Springer, 2003.

[16] Edgar Gabriel, Graharn E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-

garra, Jeflrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,

Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Grúam,

a,nd Timothy S. Woodall. Open MPI: Goals, concept, and design of a next gen-

eration MPI implementation. In Proceed;ings, llth European PVM/MPI Users'

Group Meeti,ng, pag6 97-104, Budapest, Hungary, September 2004.

[17] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1997

[18] Michael Gschwind. Chip multiprocessing and the cell broadband engjne. Com-

puti,ng Fronti,ers 2006,March 2006. Keynote Speech and Invited Paper.

[19] Michael Gschurind. The cell broadband engine: Exploiting multiple levels of

parallelism in a chip multiprocessor. Internati,onal Jounal of Parallel Program-

mi,ng, 35:233-262, June 2007.

111

[20] Chr'ls Jefferson Ian P. Gent and Ian Miguel. Minion: A fast, scalable, constraint

solver. The European Conference on Artifi,ci'al Intelligence 2006,2006.

[21] Joxan Jafiar and Jean-Louis La-ssez. Constraint logc progre.mming. ln Four-

theenth Annual ACM Symposi,um on Principles of Prcgrummi'ng Longuages,

page 11.1, 1987.

[22] MieÀael J. Múer Joran Ja,ffar. Constraint logic progremming: A survey. Jaur'

nol of Logi,c PwÍarnrni,ng, L994.

[23] Narendra Jussien and Olivier Lhomme. Local sea,rú with constraint propaga-

tion aud conflict-based heuristics. In AAAI/IAAI, page 169-174, 2000.

[24] Leif Kornstaedt. Alice in the land of Oz - at interoperability-based implemen-

tation of a functional language on top of a relational language. lt Proce.ed'i,ngs

oÍ the Fi,rst Worlçshop on Multi,-language Inftastru,cture and Intercpembi,li,ty

(BABEL'|[), Ele*troni,c Notes i,n Computer Sc'i,ence, volume 59, Firenze, Italy,

September 2001. Elsevier Science Publishers.

[25] Andrew See Laurent Michel and Pascal Va,n Hentenryck. Distributed constraint-

based local search. Lectwe Notes i'n Computer Science,42M:3M-358, 2006.

[26] Rui Machado Luis Ahmas and Salvador Abreu. Design for a parallel and dis-

túbuted hybrid constraint progra,mming library. la prcceed,i,ngs of the Tth Inter-

nati,onal Collory,ium on Implementati,on of Constraint, and, LoEi,c Progro,rnmi,ng

Sgstems,2007.

[24 Ki* Marriot and P.J. Stuckey. Progrummi,ng wi,th eon"straint^e. MIT Press, 1.998.

[28] Yukio Watanabe Michael Gschwind H. Peter Hofstee Brian Flachs, Martin Hop

kins and Takeshi Yamazaki. Synergistic processing in cell's multicore architec-

twe. IEEE Micro,,26:L0-24, March 2006.

[29] L. Michel and P. Van Hentenryck. Comet in conterct. b Pari,s C. Kanello,ki's

Memoriol Workshap, pag6 95-107, 2003.

L12

[30] R. Mohr and T.C. Henderson. Arc and path consistency revised. Artifi.ci,at

Intellig ence, 28:225-233, 1986.

[31] Laurent Perron Pascal Van Hentenryck and Jean-F]a,ncois Puget. Search and

strategies in opl. TOCL, October 2000.

[32] J.-F. Puget. A c** implementation of clp. Ilog Soluer Collected, papers, Lgg4.

[33] Peter Van Roy, editor. Mukiparadi,gm Programmi,ng i,n Mozart/Oz, Second,

Internati,onal Conference, MOZ 200/1, Charleroi, Belgi,um, October 7-8, 2004,

Reui,sed, Selected, and Inui,ted, Papers, volume 3389 of Letture Notes,in Computer

S cience. Springer, 2005.

[34] Peter Van Roy and Seif Haridi. Mozart: A prograrnming system for agent

applications. International Workshop on Distributed and Internet Progra,mming

with Logic and Corstraint Languages, November 1999. Part of International

Conference on Logic Prograrnming (ICLP 99).

[35] Peter Van Roy and Seif Haridi. Concepts, Techni,ques, and Models of Computer

Programmi,ng. MIT Press, 2004.

f36] Stuart J. Russell and Peter Norvig. Artificial Intelli,gence: a mod,erut, approach.

Prentice HaJl, 2002.

[37] A. Philips S. Minton, M. Johnston and P. Laird. Minimizing confl.icts : a

heuristic repair method for constraint satisfaction and scheduling problerns.

Artificial Intelli,g ence. 58: 16 1-20 5, L992.

[38] IBM Systems and Technolory Group. Cell Broadband Engi,ne Programming

Handbook. IBM, April 2006.

[39] Saraswat et aJ. Van Hentenryck. Strategic directions in constraint programming.

ACM Computi,ng Surreyq 28(4), 1996.

113

[40] Mark Wallace. Survey: Pratical applications of constra,int progra,mming. Tech-

nical report, Imperial College, 1995.

LL4

