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Abstract

Constraint programming libraries are useful when building applications developed
mostly in mainstream programming languages: they do not require the developers
to acquire skills for a new language, providing instead declarative programming tools
for use within conventional systems. Some approaches to constraint programming
favour completeness, such as propagation-based systems. Others are more interested
in getting to a good solution fast, regardless of whether all solutions may be found;
this approach is used in local search systems. Designing hybrid approaches (propa-
gation + local search) seems promising since the advantages may be combined into

a single approach.

Parallel architectures are becoming more commonplace, partly due to the large-scale
availability of individual systems but also because of the trend towards generalizing

the use of multicore microprocessors.

In this thesis an architecture for mixed constraint solvers is proposed, relying both
on propagation and local search, which is designed to function effectively in a het-

erogeneous multicore architecture.

Keywords: Constraint Programming, Cell



Resumo

Programacgao com restri¢goes numa arquitectura multi-
processador heterogénea

As bibliotecas para programagéo com restrigdes sdo tteis ao desenvolverem-se aplicagoes
em linguagens de programacido normalmente mais utilizadas pois ndo necessitam
que os programadores aprendam uma nova linguagem, fornecendo ferramentas de
programacio declarativa para utilizacio com os sistemas convencionais. Algumas
solucoes para programagio com restriges favorecem completude, tais como sistemas
baseados em propagacéo. Qutras estao mais interessadas em obter uma boa solucao
rapidamente, rejeitando a necessidade de encontrar todas as solugoes; esta sendo
a alternativa utilizada nos sistemas de pesquisa local. Conceber solugées hibridas
(propagagéo + pesquisa local) parece prometedor pois as vantagens de ambas alter-

nativas podem ser combinadas numa nica solugao.

As arquitecturas paralelas sdo cada vez mais comuns, em parte devido & disponi-
bilidade em grande escala de sistemas individuais mas também devido & tendéncia
em generalizar o uso de processadores multicore ou seja, processadores com varias

unidades de processamento.

Nesta tese é proposta uma arquitectura para resolvedores de restrigoes mistos, de-
pendendo de métodos de propagacio e pesquisa local, a qual foi concebida para

funcionar eficazmente numa arquitectura heterogénea multiprocessador.
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Chapter 1

Introduction

The complezity for minimum component costs has increased at a rate
of roughly a factor of two per year ... Certainly over the short term
this rate can be expected to continue, if not to increase. Quer the longer
term, the rate of increase is a bit more uncertain, although there is no
reason to believe it will not remain nearly constant for at least 10 years.
That means by 1975, the number of components per integrated circuit for
minimum cost will be 65,000. I believe that such a large circuit can be

built on a single wafer. - Moore, Gordon E. (1965)

The microprocessor industry has been shifting its focus towards multiprocessor chips.
Ever since it was stated, Moore’s law has adequately described the progress of newly

developed processors.

Before the turn of the millennium, the performance improvements of a processor
were mostly driven by frequency scaling of an uniprocessor. Still, multiprocessor
chips were already seen as a valid approach to increase performance. The focus
on multiprocessor designs became clear with the diminishing returns of frequency

scaling and sometimes physical limitations emerging.

The emergence of chip multiprocessors is a consequence of a number of limitations in

today’s microprocessor design: deep pipelining performance is exhausted, reduced
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benefits of technology scaling for higher frequency operation, power dissipation ap-
proaching limit and memory latency.

To address these limitations and continue to increase the performance of processors,

many chip manufactures are researching and developing multi-kernel processors.

An innovative and interesting example of such an architecture is the Cell Broadband
Engine.

IBM, Sony and Toshiba Corporation have jointly developed an advanced micropro-
cessor, for next-generation computing applications and digital consumer electronics.
The Cell Broadband Engine is optimized for compute-intensive workloads and rich
media applications, including computer entertainment, movies and other forms of

digital content.

One important feature and a major difference from other new architectures is the
fact that the Cell Broadband Engine is a heterogeneous multi-kernel architecture.
Essentially, this means the architecture is composed of several processor cores and
these cores have different instruction sets. One visible and direct consequence is that
the simple re-compilation of any software program is not enough to take advantage

of the processor’s capabilities.

At a first and quick glance, one might tend to believe that the Cell Broadband
Engine is just a normal Power PC with several co-processors, but Cell Broadband
Engine is much more than that. These ” co-processors” are powerful and independent
processors each requiring a separate compiler, and have very specific features like

DMA transfers and interprocessor messaging and control.

Such new CPU architectures offer a significant performance potential but pose the
challenge that new programming paradigms and tools have to be developed and
evaluated to unlock the power of such an architecture. Today software architec-
tures for the exploitation of heterogeneous multi-core architectures are still a field

of intensive research and experimentation.

The key term is parallelization. Software must be able to take advantage of dozens
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or even hundreds of hardware threads. But parallelizing programs is not an easy
task. Issues such as race conditions, data dependencies, communication and inter-
action between threads, with poor debugging support are extremely error-prone.
Programmers tend to think sequentially and not in parallel and often this way of
thinking is reinforced by major programming languages and their paradigms.

More declarative languages like functional and logic programming languages have
fewer and more transparent dependencies and aliasing. Therefore such languages
are much easier to extract parallelism from. The main problem with such languages
is their lack of generalized adoption. They are mostly used in academia or very

specialized groups.

Constraint Programming is a useful declarative methodology which has been applied

in several ways:

1. As an extension to existing programming languages, such as Prolog, taking
advantage of the complementarity provided by the two approaches (backtrack-
ing vs. propagation). This is the case for most Constraint Logic Programming

(CLP) implementations.

2. As a library in which constraints become data structures of the host language,
which are operated on by the library procedures. This is the case, for instance,
for ILOG Solver [32] and GECODE [7].

3. As a special-purpose language, appropriate for solving problems formulated
as constraints over variables. This is the case with, among others, Oz [34],

OPL [31] or Comet [25].

The declarative nature of constraint satisfaction problems (CSP) strongly suggests
that one tries to parallelize the computational methods used to perform the tasks
related to solving CSPs, namely propagation. Indeed, this has been explicitly in-
corporated into most languages mentioned in point 3, which provide mechanisms to

promote distributed execution of various aspects of the process.
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In this thesis, we chose to follow approach number 2: to provide a library for con-
straint programming for an existing language. CASPER is inspired by the scheme
used in AJACS [12] and extends it to include both propagation and local search
techniques. CASPER relies on a purely functional approach to representing search-
space state stores, and is designed to ensure that parallelization is viable by avoiding
sharing as much as possible, to achieve the highest degree of independence between

search-space state stores.

Outline

This thesis is organized as follows: after this Introduction chapter, Chapter 2
provides a background on the various topics and notations used in the subsequent
chapters: different Parallel Computers architectures in general are presented as well
as models and architectures of parallel programming. Finally, Constraint Program-
ming is introduced and all associated notations which concern to this thesis. In
chapter 3, the AJACS model is presented along with its main concepts and parallel
architecture. The following chapter, chapter 4, presents the Cell/B.E. processor in
general and details its internal architecture. In Chapter 5, we present and describe
in detail the framework which we developed in the course of the present work and
in chapter 6, some tests and their results are presented and discussed. Finally,
in chapter 7 some conclusions are drawn and future directions for the work are

suggested.
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Chapter 2

Background

Parallel computing is a mainstay of modern computation and information analy-
sis and management, ranging from scientific computing to information and data
services. The inevitable and rapidly growing adoption of multi-core parallel archi-
tectures within a processor chip by all of the computer industry pushes explicit
parallelism to the forefront of computing for all applications and scales, and makes
the challenge of parallel programming and system understanding all the more cru-
cial. The challenge of programming parallel systems has been highlighted as one
of the greatest challenges for the computer industry by leaders of even the largest

desktop companies.

Heterogeneous chip multiprocessors present unique opportunities for improving sys-
tem throughput, reducing processor power. On-chip heterogeneity allows the pro-
cessor to better match execution resources to each application’s needs and to address
a much wider spectrum of system loads - from low to high thread parallelism - with
high efficiency.
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2.1 Architectures

Parallel Computer Memory Architectures

One way to classify multiprocessor computers is based on their memory architectures

or how processor(s) interact(s) with memory.
Shared Memory

In shared memory computers (figure 2.1.1), the same memory is accessible to mul-

tiple processors in a global address space.

All processors can work independently but since memory is shared its access must
be synchronized by the programmer. When one task accesses one memory resource,
this resource cannot be changed by some other task. Every change in a memory

location is therefore visible to all other processors.

Shared memory machines can be divided into two main classes based upon memory
access times: Uniform Memory Access(UMA) and Non-Uniform Memory Access
(NUMA). In NUMA the memory access times depends on the memory location

relative to a processor where in UMA the access times are equal.

Figure 2.1.1: Shared memory architecture

14



Distributed Memory

Distributed memory systems (figure 2.1.2) require a communication network to

connect the processors and their memory.

Processors have their own local memory. Memory addresses in one processor do
not map to another processor, so there is no concept of global address space across
all processors. Because each processor has its own local memory, it operates in-
dependently in the sense that changes made to its local memory have no effect on
the memory of other processors. When a processor needs to access data in another
processor’'s memory, it is usually the task of the programmer to explicitly define
how and when data is communicated. Synchronization between tasks is again the

programmer’s responsibility.

network .

Figure 2.1.2: Distributed memory architecture

Hybrid Distributed-Shared Memory

It is possible to combine the previous architectures in a hybrid model, as figure 2.1.3

illustrates. In fact, that’s what modern large computers do.

The processors in a Symmetric MultiProcessing (SMP) can access the system’s
memory globally like in shared memory computers and use networking to move
data across the several distributed SMP machines as with the distributed memory

systems.
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Figure 2.1.3: Hybrid memory architecture

2.2 Parallel Programming

Traditional Von Neumann computing platforms contain a single processor, which
computes a single thread of control at each instant. High-performance computing
platforms contain many processors, with potentially many threads of control. Par-
allel programming has become the default in many fields where immense amounts
of data needs to be processed as quickly as possible: oil exploration, automobile
manufacturing, pharmaceutical development and in animation and special effects
studios. Such different tasks and the algorithms associated with them present dif-
ferent styles of parallel programming. Some tasks are data-centric and algorithms
for working on them fit into the SIMD (Single Instruction, Multiple Data) model.
Others consist of distinct chunks of distributed programming, and these algorithms

rely on good communication models among subtasks.

Challenges

The key to parallel programming is to locate exploitable concurrency in a task. The

basic steps for parallelizing any program are:

e Locate concurrency.
e Structure the algorithm(s) to exploit concurrency.

e Tune for performance.

16



The major challenges are:

e Data dependencies.

e Overhead in synchronizing concurrent memory accesses or transferring data
between different processor elements and memory might exceed any perfor-

mance improvement.

Partitioning work is often not obvious and can result in unequal units of work.

What works in one environment might not work in another, due to differences

in bandwidth, topology, hardware synchronization primitives and so on.

Parallel Programming Models

A parallel programming model is an abstraction to express parallel algorithms in
parallel architectures. One goal of a programming model is to improve the produc-
tivity of the programmer. It includes areas of applications, programming languages,
compilers, libraries, communications systems, and parallel I/O. It is up to the de-

velopers to choose the model which best suits their needs.

Parallel models are implemented in several ways: as libraries invoked from tradi-
tional sequential languages, as language extensions, or completely new execution

models.

Shared Memory Model

In the shared-memory programming model tasks share a common address space
which they read and write asynchronously. An advantage of this model from the
programmer’s point of view is that the notion of data co-ownership is lacking, thus

there is no need to specify explicitly the communication of data between tasks.

Still, this model needs mechanisms to synchronize access to the shared memory (e.g.

locks, semaphores).
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Advantages

e Conceptually easy to understand and hence design programs for

e Easy to identify opportunities for parallelism
Disadvantages

o Lack of portability as this model is often implemented in an architecture spe-

cific programming language

e May not be suitable for loosely coupled distributed processors due to the high

communication cost

One implementation of this model is Distributed Shared Memory (DSM). In DSM,
the common address space can point to memory of other machine. DSM can be
implemented in hardware or in software. In software, a DSM system can be imple-

mented in the operating system or as a programming library.

Although DSM gives users a view such that all processors are sharing a unique piece
of memory, in reality each processor can only access the memory it owns. Therefore
the DSM must be able to bring in the contents of the memory from other processors
when required. This gives rise to multiple copies of the same shared memory in
different physical memories. The DSM has to maintain the consistency of these
different copies, so that any processor accessing the shared memory should return

the correct result. A memory consistency model is responsible for the job.

Intuitively, the read of a shared variable by any processor should return the most
recent write, no matter if this write is performed by any processor. The simplest
solution is to propagate the update of the shared variable to all the other processors
as soon as the update is made. This is known as sequential consistency (SC).
Howevgr, this can generate an excessive amount of network traffic since the content

of the update may not be needed by every other processor. Therefore certain relaxed
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memory consistency models were developed. Most of them provide synchronization
facilities such as locks and barriers, so that the shared memory access can be guarded
to eliminate race conditions. The most popular memory consistency models are:
sequential consistency (SC), eager release (ERC), lazy release (LRC), entry (EC)
and scope (ScC).

Threads Model

The threads model spins around the concept of a thread. A program can be split up
in several threads that run simultaneously. In a uniprocessor system this “simulta-
neously” means “almost simultaneously” because the processor can switch between
threads so fast that it gives the illusion of executing more than one thing at the
same time. In modern multiprocessor and multicore architectures, threads are re-

ally executed at the same time, in different units.

The threads model is usually associated to a shared memory architecture and could
be included in the shared memory programming model. But since the concept of

thread is so widely and independently used that it deserves a place of its own.

Advantages

o The overhead associated with creating a thread is much less than creating an

entire process
e Switching between threads requires much less work by the operating system

e Many programmers are familiar with writing multi-threaded programs because

threads are a basic construct in many modern programming languages like Java
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Disadvantages

e Writing a multi-threaded program can be much thougher than for other pro-

gramming models

e Synchronization mechanisms are required to control access to shared variables

Two implementations of this model are POSIX threads [5] and openMP( [2] [10] ).

Message Passing Model

Message passing is probably the most widely used parallel programming model to-
day. Message-passing programs create multiple tasks, with each task encapsulating
local data. Each task is identified by a unique name, and tasks interact by sending

and receiving messages to and from named tasks.

The message-passing model does not preclude the dynamic creation of tasks, the
execution of multiple tasks per processor, or the execution of different programs by
different tasks. However, in practice most message-passing systems create a fixed
number of identical tasks at program startup and do not allow tasks to be created or
destroyed during program execution. These systems are said to implement a Single
Program Multiple Data (SPMD) programming model because each task executes

the same program but operates on different data.

Advantages

e This model is applicable to both tightly coupled computers and geographically
distributed systems

e Message passing libraries provide a set of functionality and level of control

that is not found in any of the other models

e All other parallel programming models can be implemented by the message
passing model

20



Disadvantages

e All of the responsibility for an effective parallelism scheme is placed on the
programmer. The programmer must explicitly implement a data distribution
scheme and all interprocess communication and synchronization, while avoid-

ing deadlock and race conditions

e Some parallel programmers prefer to have this level of control however it can

be difficult for novice programmers to implement effective parallel programs

Two widely used implementations are MPI [16] and PVM [9].

MPI is a message passing library specification. MPI is the only message passing
library which can be considered a standard. It is supported on virtually all HPC
platforms. Practically, it has replaced all previous message passing libraries. The
goal of MPI is to provide a widely used standard for writing message passing pro-
grams. In MPI, all parallelism is explicit: the programmer is responsible for correctly
identifying parallelism and implementing parallel algorithms using MPI constructs.
The number of tasks dedicated to run a parallel program is static. New tasks can not
be dynamically spawned during run time although the MPI-2 specification addresses
this issue.

Data Parallel Model

Another commonly used parallel programming model, the data parallel model, calls
for exploitation of the concurrency that derives from the application of the same
operation to multiple elements of a data structure, for example, “add 2 to all el-
ements of this array, or increase the salary of all employees with 5 years service.
A data-parallel program consists of a sequence of such operations. As each opera-
tion on each data element can be thought of as an independent task, the natural
granularity of a data-parallel computation is small, and the concept of locality does

not arise naturally. Hence, data-parallel compilers often require the programmer
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to provide information about how data are to be distributed over processors, in
other words, how data are to be partitioned into tasks. The compiler can then
translate the data-parallel program into an SPMD formulation, thereby generating

communication code automatically.

Advantages

e Gives the user the ability to process large volumes of data very fast

e Only one piece of code needs to be produced to implement all of the parallelism
Disadvantages

e Due to the large volumes of data involved in a typical data parallel computa-

tion, this model may not be suitable for geographically distributed processors

¢ Requires high bandwidth communications to transfer and share data

Hybrid Model

In this model, any two or more parallel programming models are combined. Cur-
rently, a common example of a hybrid model is the combination of the message
passing model (MPI) with either the threads model (POSIX threads) or the shared
memory model (OpenMP).

Another common example of a hybrid model is combining data parallel with mes-
sage passing. Data parallel implementations on distributed memory architectures
actually use message passing to transmit data between tasks, transparently to the

programmer.

The advantages and disadvantages come from the combination of the models being

used.
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2.3 Designing Parallel Programs

One possible goal for parallel programming is performance improvement. In this
perspective, the design of parallel programs demands an extra effort from the pro-
grammer. Several factors must be considered in order to decrease the execution wall

clock time.

It is necessary to understand the problem that one wants to parallelize. One should
identify the program’s hotspots, bottlenecks and inhibitors. Hotspots are where
most work is done and can be identified by using profiling tools. Bottlenecks are
areas which slow down the program’s execution as for example I/O such as disk
access. They should be minimized by restructuring the code or even using another
algorithm. Inhibitors are portions of code that restrain parallelism since they are

not independent. A good example of an inhibitor is a data dependency.

Partitioning is one of the first steps to be made. It represents the way how we
divide the work being done that can be distributed to multiple tasks. There are 2
ways to do this. Functional partitioning focuses on the computation (or control of
the program) and each parallel task performs a part of the overall task. Domain
partitioning focuses on the data associated to the problem and the parallel tasks

works on a different portion of the data.

As there are several tasks running in parallel, they might need to communicate with
each other by sharing or exchanging data. This need for communication depends on
the task being performed since some tasks run very independently and some don’t.
Very independent tasks don’t need to share data - embarrasingly parallel - while
dependent tasks are not that simple and therefore communication factors must be
included. When designing a parallel application, one must pay attention to factors
such as cost of communication, bandwidth/latency in synchronous/asynchronous

communication and the scope of the communication.

Another factor is synchronization. Synchronization is needed when two or more tasks

need access to a shared resource and this is very important because it influences the
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correctness of the computed result. There are different ways to synchronize accesses

such as using locks or by communication between tasks.

Dependencies exist between program statements when the order of statement exe-
cution affects the results of the program. A data dependency results from multiple
use of the same location(s) in storage. Data dependencies are one of the primary
inhibitors to parallelism.

To obtain a maximum performance, all parallel tasks should be busy all the time
thus a correct distribution of the work is required. A scheduler is a possibility if one

desires a dynamic assignment of jobs.

Granularity is, in parallel computing, the ratio of computation over communica-
tions. With fine-grain parallelism, the amount of computational work done between
communications is relatively small. In coarse-grain parallelism, the ratio is high,
with large amounts of computational work between communications/synchroniza-
tion events. Both types of granularity have their advantages and drawbacks. The
choice for the level of granularity depends on the algorithm, the data set and the

hardware environment.

A proper evaluation of limits and costs should be performed. Amdahl’s Law states
that potential program speedup is defined by the fraction of code (P) that can be
parallelized:

speedup = I—-LP (2.3.1)

When introducing the number of processors (N):

speedup = (2.3.2)

F+S
where P = parallel fraction, N = number of processors and S = serial fraction.

This law gives an idea of how much gain one gets with the parallelization although
other issues should be taken into account to evaluate the costs and complexity of
parallelization. This includes resource requirements, portability and scalability.
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2.4 Parallelism and Programming Languages

There are 2 two major approaches to parallel programming: implicit parallelism and
explicit parallelism. In implicit parallelism, the compiler or some other program is
responsible for the parallelization of the computational task. In explicit parallelism,
the programmer is responsible for the task partitioning through language constructs

or extensions (we already referred MPI as an explicit parallelism specification).

It has long been recognized that declarative programming languages, including logic
and functional programming languages, are potentially better suited to parallel pro-
gramming. The key factor is a clear separation of “what” the program computes

from the details of “how” the computation should take place.

Imperative programming languages rely on state and time. The state changes over
time as variables are assigned values and time must be considered when looking at
an imperative program. On the other hand, declarative languages are independent
of time. While imperative programs consist of a set of statements executed in
order, declarative programs don’t care about the order or even how many times an

expression is evaluated.

The most common way of achieving a speedup in parallel hardware is to write
programs that use explicit threads of control in imperative programming languages
in spite of the fact that writing and reasoning about threaded programs is notoriously
difficult. A lot of work has been put in imperative languages (like Java, C++ and
C#) to take advantage of concurrency.

It is worthwhile to note about concurrent and parallel programming that, although
both want to exploit concurrency that is, execution of computations that overlap
over time, it can safely be argued that they are not synonymous. In either case,
both tend to use the same models (see above) and imply communication between

tasks.

Concurrency is a language concept that expresses logically independent
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computations. Parallelism is an implementation concept that expresses
activities that happen simultaneously. In a computer, parallelism is used

only to increase performance. [35]

Concurrency and parallelism are orthogonal concepts.

There are three main models of concurrency in programming languages (from [35]):

declarative concurrency, message passing concurrency and shared state concurrency.

Declarative concurrency is the easiest paradigm of concurrent programming. It

keeps programs simple and without race conditions or deadlocks.

It relies on declarative operations. A declarative operation is independent (does not
depend on any execution state outside of itself), stateless (has no internal execution
state that is remembered between calls), and deterministic (always gives the same
results when given the same arguments). ‘ The drawback of this paradigm is that it
doesn’t allow programs with nondeterminism. Only more academic languages like
Oz [33] and Alice [24]use this paradigm.

Message passing is a model in which threads share no state and communicate
with each other via asynchronous messaging. It extends declarative concurrency
introducing communication channels to remove the limitation with non-determinism.

This is the model employed by the Erlang language.

The Shared state consists of a set of threads accessing a set of shared passive ob-
jects. The threads coordinate among each other when accessing the shared objects.
They do this by means of coarse-grained atomic actions, e.g., locks, monitors, or

transactions.

The concurrency is more expressive and gives more control to the programmer but
reasoning with this model is more complex. Shared state concurrency is the model

employed by the Java language.
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2.5 Constraint Programming

Introduction

“Constraint Programming represents one of the closest approaches com-
puter science has yet made to the Holy Grail of programming: the user
states the problem, the computer solves it.” - Eugene C. Freuder, Con-

straints Journal, 1997

The idea of constraint-based programming is to solve problems by stating constraints
(properties, conditions) which must be satisfied by the solution(s) of the problem.
Consider the following problem as an example: a bicycle number lock. You forgot
the first digit but you remember a few constraints about it: it is an odd number, it
is not a prime number and greater than 1. With this information, you are able to

derive that the digit is the number 9.

Constraints can be considered pieces of partial information. They describe properties
of unknown objects and relations among them. Objects can mean people, numbers,
functions from time to reals, programs, situations. Relationship can be any assertion

that can be true for some sequences of objects and false for others.

Historical Remarks

Constraint programming has been used in Artificial Intelligence Research since the
1960’s. The first system known to use constraints was Sketchpad, a program written
by Ivan Sutherland, the “father” of computer graphics, that allowed the user to draw

and manipulate constrained geometric figures on the computer’s display.

In the 70s, Logic Programming was born. Most of the development and achievements
in the field of constraint programming was done by Logic Programming researchers

because constraints have a very natural relationship with logical reasoning and one
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of the reasons why the extension of logic languages such as Prolog to include con-
straints has been so formally clean, convenient and natural. In fact, the main step
towards modern constraint programming was achieved when it was noted that logic
programming (with unification over terms) was just a particular kind of constraint
programming. It has led to the definition of a general framework called constraint
logic programming (CLP [21]).

It is easy to get confused and see Constraint Programming as something strietly re-
lated to Logic Programming when in fact constraint theory is completely orthogonal
to the programming paradigm.

In the late 80’s, one powerful observation has been that constraints can also be used
to model communication and synchronization among concurrent agents, in such a
way that these tasks are now described in a more general and clean way, and can
be achieved with greater efficiency and flexibility. Such observation is the basis of

the concurrent constraint programming framework (CC [1} ).

Already since the beginning of the 90’s, constraint-based programming has been
commercially successful. One lesson learned from applications is that constraints
are often heterogeneous and application specific. In the beginning of constraint
programming, constraint solving was “hard-wired” in a built-in constraint solver
written in a low-level language. To allow more flexibility and customization of
constraint solvers, Constraint Handling Rules (CHR) was proposed. CHR [14] is
essentially a concurrent committed-choice language consisting of multi-headed rules

that transform constraints into simpler ones until they are solved.

The architecture of constraint programming is also suited for embedding constraints
in more conventional languages. This characterizes constraint imperative program-

ming.

In constraint imperative programming, the user can use constraints which relate
program’s variables and objects. Besides using the language’s conventional features

and define constraints which are implemented in the integrated constraint solver,
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the user can define his own constraints, augmenting the solver’s capabilities.

Imperative languages can also be extended with language elements from logic pro-
gramming, such as non-deterministic computations with logical variables and back-

tracking.

Constraints systems

A constraint system is a formal specification of the syntax and semantics of the
constraints. It defines the constraints symbols and which formulae are used for

reasoning in the context of programming languages.

Finite Domain constraints have a finite set as its domain. This domain can be
integers but also enumerable types like colors or resources which should be planned

for a process.

Many real-life combinatorial problems can be modeled with this constraint system.
Finite domain constraints are very well suited to puzzles, scheduling and planning.

For example: an university’s timetabling system.

Boolean constraints are a special case of finite domain constraints where the do-
main contains only two values, true and false. One area of application of Boolean
constraints is modeling digital circuits. They can be applied to the generation,

specialization, simulation and analysis (verification and testing) of the circuits.

There are often cases when, instead of imposing a constraint C, we want to speak
(and possibly constrain) its truth value. For example, logical connectives such as
disjunction, implication, and negation constrain the validity of other constraints. A

reified constraint is a constraint C which reflects its validity in a boolean variable

B:
C<= B=1ABe{0,1}

A Rational Tree is a tree which has a finite set of subtrees. Tree constraints can be

used for modeling data structures, such as lists, records and trees, and for expressing
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algorithms on these data structures. One of the applications for this constraint
system is program analysis where one represents and reasons about properties of a

program.

Constraints can also have Linear Polynomial Equations domains. Here, Linear
arithmetic constraints are linear equations and inequalities. This type of constraints
is important for graphical applications like computer aided design (CAD) systems
or graphical user interfaces, but also for optimization problems as in linear program-
ming,.

The Non-linear Equations constraint system is an extension of the one for linear
polynomials. Problems for solving this type of constraints arise with the inclusion
of, for example, multiplication or trigonometric functions. Despite the fact of not
having a trivial solver, non-linear constraints appear in the modeling, simulation
and analysis of chemical, physical processes and systems. An application area is

financial analysis or robot motion planning.

Constraint Solving Algorithms

An important component is the constraint solver. A constraint solver imple-
ments an algorithm for solving allowed constraints in accordance with the constraint
theory. The solver collects the constraints that arrive incrementally from one or
more running programs. It puts them into the constraint store, a data structure for
representing constraints and variables. It tests their satisfiability, simplifies and if
possible solves them. The final constraint that results from a computation is called

the answer or solution.

There are two main approaches for constraint solving algorithms: variable elimi-
nation and local consistency (local propagation) techniques. Variable elimination
achieves satisfiability completeness while local-consistency techniques have to be

interleaved with search to achieve completeness.

Variable-elimination algorithms work by eliminating multiple occurrences of vari-
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ables. Typically the allowed constraints are equations which are computed to obtain
a normal form (or solution). An example of a variable elimination algorithm is the
Gaussian method for solving linear polynomial equations.

Local consistency (local propagation) basically adds new constraints in order to
cause simplification: new sub-problems of the initial problem are simplified and new
implied constraints are computed (propagated).

Local consistency problems must be combined with search to achieve completeness.
Usually, search is interleaved with constraint solving: a search step is made, adds a

new constraint that is simplified together with the existing constraints. This process

is repeated until a solution is found.

Search can be done by trying possible values for a variable X. These search proce-
dures are called labeling. Often, a labeling procedure will use heuristics to choose
the next variable and value for labeling. The chosen sequence of variables is called

variable ordering.

Constraint Satisfaction Problem (CSP)

Constraint Satisfaction arose from research in the Artificial Intelligence (AlI) field.
A considerable amount of work has been focused on this paradigm contributing to

significant results in constraint-based reasoning.
A Constraint Satisfaction Problem (CSP) consists of:
e a set of variables X = {z, ..., z,},
e for each variable z;, a set Di of possible values (its domain),

e and a set of constraints restricting the values that the variables can simulta-

neously take.

A solution to a CSP is an assignment of a value from its domain to every variable,

in such a way that every constraint is satisfied. This includes finding;:
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e just one solution, with no preference as to which one.
e all solutions.

e an optimal, or at least a good solution, given some objective function defined

in terms of some or all of the variables.

A CSP is a combinatorial problem which can be solved by search. This differs from
Constraint Solving. Constraint solving uses variables with infinite domains and

relies on algebraic and numeric methods.

Search Algorithms

A CSP can be solved by trying each possible value assignment and see if it satisfies all
the constraints. Then there’s backtracking, a more efficient approach. Backtracking
incrementally attempts to extend a partial solution toward a complete solution, by
repeatedly choosing a value for another variable and keeping the previous state of

variables so that it can be restored, should failure occur.

The problem with such techniques is the late detection of inconsistency. Hence
various consistency techmiques were introduced to prune the search space, by
trying to detect inconsistency as soon as possible. Consistency techniques range from
simple node-consistency and the very popular arc-consistency to full, but expensive

path consistency [30].

One can combine systematic search algorithms with consistency techniques. The
result are more efficient constraint satisfaction algorithms. Backtracking can be im-
proved by looking at two phases of the algorithm: moving forward (forward checking
and look-ahead schemes) and backtracking (look-back schemes) [3].

Also very important is the order in which variables are considered. The efficiency
of search algorithms like backtracking that attempts to extend a partial solution
depends on this order. Likewise, the order of the values chosen for a variable affects
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the algorithm performance. Various heuristics for ordering of values and variables

exist.

Another approach to guide search is using heuristics and stochastic algorithms also

known as Local Search.

The term heuristic is used for algorithms which find solutions among all possible
ones ,but they do not guarantee that the best will be found,therefore they may be
considered as approximately and not accurate algorithms.These algorithms,usually
find a solution close to the best one and they do so fast and easily. Sometimes these

algorithms can be accurate, that is they actually find the best solution.

To avoid getting stuck at “local maxima/minima” they are equipped with various
heuristics for randomizing the search. Their stochastic nature cannot guarantee

completeness like the systematic search methods.

Some examples of this kind of algorithms are the classics Hill-Climbing and Greedy
algorithms [36] as well as Tabu-Search [17], Min-Conflict [37] or GSAT.

Constraints and Programming Languages
Constraint Logic Programming

Constraint Logic Programming (CLP [22]) is a combination of logic programming
and constraint programming. The addition of constraints makes programs more

declarative, flexible and in general, more efficient.

In the end of the 70’s, efforts have been made to make logic programming more
declarative, faster and more general. It was at this point, that it was recognized
that constraints could be used in logic programming to accomplish the objectives of
declarativeness, speed and generality. By embedding a constraint solver to handle
constraints new possibilities open up. For example, constraints can be generated
(and checked) incrementally, thus catching inconsistency early in the solving process

or in other words, making the program execution faster.
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In CLP, a store of constraints is maintained and kept consistents at every com-
putation step. Each clause of the CLP program matching one of the goals in the
store gets its constraints and goals accumulated in the store. However, the new
constraints can only be added if they are compatible with those already present in
the store. This means that the satisfiability of the whole new set of constraints has

to be maintained.

CLP languages combine the advantages of LP languages (declarative, for arbitrary
predicates, non-deterministic) with those of constraint solvers (declarative, efficient
for special predicates, deterministic). Specially useful is the combination of search
with solving constraints which can be used to tackle combinatorial problems (usually

with exponential complexity).

Concurrent Constraint Programming

Concurrent Constraint Programming arises from the observation that constraints
can be used to model concurrency and communication between concurrent processes

(agents). It is a generalization of CLP with added concurrency [11].

This new paradigm leads to many consequences. One of the most important is
that the entailment operation is now present (wasn’t in CLP) so any constraint
can be checked for satisfiability or for entailment. A constraint is entailed when its
information is already present in the constraint, entailing thé former.

The computation state is a collection of constraints, and each of the concurrent
agents may either add a new constraint to the state (like in CLP) or check whether
a constraint is entailed by the current state. Such a test may succeed or fail, but the
new thing is that it can also suspend, and this happens when the new constraint is
not entailed by the store but is consistent with it. If after another agent adds enough
information to the store to make it entail or be inconsistent with the considered
constraint, then the suspended action will be resumed and either succeed or fail.

The framework is therefore monotonic, that is, constraints can never be deleted.
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This add/check/suspend is based on a ask-and-tell mechanism. Tell means imposing
a constraint as it happened in CLP or in other words, adding a constraint to the
store. Ask means “asking” if a constraint already holds (this is done by an entailment
test). One important difference between CLP and CC is don’t-care non-determinism.
Don’t-care non-determinism (also referred as committed choice) means that if there
are different clauses to choose from, just one arbitrary clause will be taken and the
alternatives will be discarded. This means search is being eliminated leading to a

gain in efficiency but like always, a loss in expressiveness and completeness.

Constraint Handling Rules

Constraint Handling Rules (CHR) is one of the many proposals made to allow more
flexibility and customization of constraint solvers. Instead of a built-in constraint
solver which is hard to modify, CHR defines simplification and propagation over

user-defined constraints [6].

The CHR language has become a major specification and implementation language
for constraint-based algorithms and applications. Algorithms are often specified
using inference rules, rewrite rules, sequents, proof rules, or logical axioms that can
be directly written in CHR. Based on first order predicate logic, the clean semantics
of CHR facilitates non-trivial program analysis and transformation. About a dozen

implementations of CHR exist in Prolog, Haskell, and Java.

CHR are essentially a committed-choice language consisting of guarded rules with
multiple head atoms. CHR define simplification of, and propagation over, multi-
sets of relations interpreted as conjunctions of constraint atoms. Simplification
rewrites constraints to simpler constraints while preserving logical equivalence (e.g.
X >Y,Y > X = false). Propagation adds new constraints which are logically
redundant but may cause further simplification (e.g. X > Y)Y > Z = X > Z).
Repeatedly applying the rules incrementally solves constraints (e.g. A > B,B >
C,C > A leads to false). With multiple heads and propagation rules, CHR provide
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two features which are essential for non-trivial constraint handling.

Imperative Constraint Programming

The Constraint Imperative Programming (CIP) family of languages integrates con-
straints and imperative, object-oriented programming. In addition to combining the
useful features of both paradigms, the ability to define constraints over user-defined

domains is also possible.

Embedding constraints in conventional programming languages is usually done by
extending a language’s syntax, through a library or by creating new languages. Some
languages have been developed to provide constraints reasoning. For example, Oz
[34] is a high-order concurrent constraint programming system. It combines ideas
from logic, functional and concurrent programming. From logic programming it
inherits logic variables and logic data structures to try to provide problem solving
capabilities of logic programming. Oz comes with constraints for variables over finite

sets (finite domain variables) .

ILOG CP [32] is a C++ library that embodies Constraint Logic Programming
(CLP) concepts such as logical variables, incremental constraint satisfaction and
backtracking. It combines Object Oriented Programming (OOP) with CLP. The
motivation for using OOP is that the definition of new classes is a powerful mean
for extending software. Modularity is something that has been recognized as a
limitation in Prolog.

Application Areas

Some example application areas of constraint programming [4], [40]:

e Computer graphics (to express geometric coherence in the case of scene anal-

ysis, computer-aided design,...)
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Real

Natural language processing (construction of efficient parsers,speech recogni-

tion with semantics,...)
Database systems (to ensure and/or restore consistency of the data)

Operations research problems (like optimization problems: scheduling, se-

quencing, resource allocation, timetabling, job-shop, traveling salesman,...)
Molecular biology (search for patterns, DNA sequencing)
Business applications (option trading)

Electrical engineering (to compute layouts, to locate faults, verification of

circuit design...)
Internet(constrained web queries)
Numerical computation (computation with guaranteed precision for chemistry,

engineering, design,...)

applications developed:

Lufthansa : Short-term staff planning

Hong-Kong container Harbor : Resource Planning
Renault: Short-term production planning

Nokia : Software configuration for mobile phones
Airbus : Cabin layout

Siemens : Circuit verification

Caisse d'Epargne : Portfolio management
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2.6 Summary

In this chapter we presented the background related to this thesis’ work. Parallel
computing, as a mainstay in today’s computing environments, creates a great chal-
lenge to the computing industry. The adoption of multi-core parallel architectures
is one of the driving forces and bringing parallel programming to applications at
every scale.

One way to classify multiprocessor computers is based on their memory architectures
or how processor(s) interact(s) with memory: shared-memory, distributed memory

and hybrid memory.

The variety of architectures require different abstractions to extract parallelism. For
that exist several programming models suitable for expressing programs in different
parallel architectures, increasing the programmer’s productivity like for example the

message passing model or the threads model.

Together with a good programming model, developing parallel programs includes
considering several factors for getting performance improvements. The list is rather

extensive:

e identify hot spots, bottlenecks and inhibitors
e partitioning

e cost of communication, latency /bandwidth in synchronous/asynchronous com-

munication
e synchronization
e dependencies
e work distribution

e granularity



Obviously parallelism is also reflected in programming languages. Besides parallel
hardware and good abstractions and design, the implementation must be done.

Usually this happens by implicit or explicit parallelism.

The most common way is to write programs with explicit threads in langnages like
Java and C++. Still, declarative languages are recognized as better suited to parallel
programming,

There are three main models of concurrency - a language concept - in programming
languages (from [35]): declarative concurrency (Oz), message passing concurrency

(Erlang) and shared state concurrency (Java).

One declarative approach to programming is Constraint Programming, one of the
main topics of this thesis. The idea of constraint-based programming is to solve
problems by stating constraints which must be satisfied by the solution(s) of the
problem. Constraint programming has been used since the 60’s and gone through

several improvements (CLP, CC, CHR).

Constraints can be used in different programming paradigms like logic programming
or imperative programming. Also, constraints are very flexible allowing different

domains for reasoning:

e finite domain
e boolean

rational trees

e linear polynomial equation

non-linear equations

In constraint programming one wants to solve constraint problems with the help of
the solver. The solver implements an algorithm to solve constraints through variable

elimination or propagation. One important component from a solver (when using
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propagation) is search. And this is a whole new category with a extensive variety

of techniques and algorithms, from backtracking to heuristic methods.

Constraint programming was combined with programming languages in different
forms (section 2.5): constraint logic programming (CLP), concurrent constraint
programming (CC), constraint handling rules (CHR) and imperative constraint pro-
gramming.

And although not being a well-known paradigm, constraint programming has appli-
cations in several areas (computer graphics, operations research or molecular biol-

ogy) and is already used by several companies like Lufthansa, Renault and more.
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Chapter 3

AJACS

AJACS is a toolkit developed for Concurrent Constraint programming implemented
in Java. AJACS relies on a distributed shared memory (DSM) system, operating
under a special JVM implementation, Hyperion, which compiles to C. The target
code then uses the PM2 multi-threading library, over which a DSM implementation
has been constructed and is used to share memory ranges (in the form of Java

objects), under an appropriate consistency model.

AJACS’ architecture is centered around a few key concepts and a parallel execution

model.

This chapter presents AJACS giving relevance to what is important for this thesis’
work: its model and parallel architecture for obtaining faster resolution of a CSP

by exploiting the search space in parallel.

3.1 Concepts

A brief enumeration of the main concepts of AJACS follows:
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Value

A Value represents a subset of a variable’s domain. A value is said to be ground if
it contains exactly one singular value that is, exactly one element from a variable’s

domain.

Variable

Variables are, abstractly, thought of as the set of Values with the same index to the

Store in a set of Stores.

Store

A Store is an indexed collection of Values. Each index of the Store represents a
variable of the problem we are trying to solve. At each propagation step, a new Store
is created from the current one. The most recent Store differs from its ancestors by
one Variable with a restricted domain. This difference must be saved in the Store

in order to obtain the successor stores.

Constraint

A Constraint is a relation between variables of a problem. In the AJACS model,

Constraints are responsible for propagation, after changing one variable’s value.

A Constraint affects a given number of variables. This is called the constraint’s

environment.

After propagating the changes done to a variable, the Constraint holds a boolean
value which conforms to the Store’s consistency: true when the store is consistent,
false otherwise.
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Problem

As already referred, a CSP is defined by a set of variables and associated domain
(i.e. a Store) together with a set of constraints over those variables. A Problem

models exactly this definition.

Search

The concept of Search embodies the procedure which finds solutions for a given
Problem. A Search is a series of search steps which finish when a solution is found

or the search space is exhausted.

Strategy

A search step of the Search is the concrete action required by the Strategy. A Strategy
is applied to a Store - a state of computation - in order to retrieve its successor. The

retrieval of a successor entails:

e which non-ground variable is the next to be selected

e for the select variable, how to reduce its domain that is, which singular value

it will take.

3.2 An Example

This example is taken from [13]

Consider the generic problem of assigning a starting time for some activities. The
activities have a well known duration, measured in hours. Suppose also that some
of the activities, affect resources that cannot be shared, i.e., they are unary and

exclusive resources. Consider, for instance, that we want to time tabling teacher’s
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classes. The teacher has 3 classes, two of them taking 2 hours, and the other taking
three hours. Suppose also, that these classes can only take place at Mondays, whose
hours we represent by the values from 1 to 9 (1 for Monday’s 9:00AM, 2 for Monday’s
10:00AM, etc, 9 for Monday’s 5:00PM). Assume also that hour 5 (1:00PM) is the

lunch break.

The definition of a problem holds a store, and a set of constraints. The initial
store, s_init for this problem is specified by the three values that represent all the
possible initial starting times of the classes. The problem is defined by p = new
Problem(s_init). Consider NoOwverlap(i,j,di,dj), the constraint that assures that the
activities (corresponding to the values, i and j, with durations respectively di and
dj ) do not overlap in time. The specific constraints for the problem are added to

the problem, doing:

int[] d={2,2,3}
for (i=0; i<2; ++i)
for (j=i+1; j<3; ++j)
p.add (new NoOverlap (i,j,d[il,d[j}))

Now that the variables are defined and the constraints are set, it is possible to
locate a solution over the search space defined for the variables. Figure 3.2.1 shows
the sequence of stores generated in this process. There is an arc from s — s’ if
the ancestor store of s’ is s (s'/s, = s). The stores are generated in the sequence

defined by the rounded arc.

3.3 Parallel execution architecture

A search tree of a problem is constructed by taking a store and applying a search
strategy to it. The resulting stores remain in the tree if they are consistent. Applying

the same procedure to each store generated results in the complete search tree of a
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Figure 3.2.1: Time tabling example

problem. This design (partially shown in figure 3.3.1) is suitable for parallelization.
It is possible to take a subtree and work on it, separately. This could be done by

different agents in parallel (in the figure, represented by the big arrows).

Controllers and Workers

The agents responsible for solving a problem in a parallel environment can be of
two different types: Controller and Worker. A problem will have one Controller and

several Workers. A Controller is responsible for the management of workers and a
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Figure 3.3.1: Ajacs parallel architecture

Worker is responsible for traversing the search tree. A traversal is accomplished by

repeating a traversal step:

expand a store and verify if any of these resulting stores is a solution (ground).
If it is a solution, then notify the controller that a solution was found. The
controller will act according to the problem: if only one solution was needed,
then the controller stops all workers and the problem is solved; else expand

another store for solving.

The traversals can be executed in two ways which depend on the store which will
be subject of a traversal step. The chosen store can be a child of the store expanded

in the previous traversal step or it can be any store of the tree that hasn’t been

expanded yet.

It is very important to retain the fact that each store is self-contained and can be
worked on totally independently. Each Store is a different branch of the search tree
and each Worker can work on the branch in parallel with other Workers working on

other tree branches.

As only one store is processed in each step (by a worker), the child stores must be

stored somewhere. Again, there are two solutions for this: a local (in the worker)
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or global (in the controller) data structure.

Global and Local management

Global management (of remaining stores) is implemented with a data structure(e.g.

as a list) in the controller. The process:

e The controller launches a number of workers that will be responsible for the

traversal of the search tree.

e Starting from the initial store (in the controller’s list), the workers compete

for the work.

e One of the workers gets the store ( the others wait until something is in the

work list)

e The worker that “gained the store” executes a traversal step. The resulting
stores will be in the list except the one that will the done by “the first worker”.

The others workers can start to work on the stores in the controller’s list.

e The whole process ends when: one of the workers finds a solution (only one
solution wanted) or there are no more stores in the list to compute (exhausted

search space and all computation is done).

With private management the process is slightly different. There is no global list of
stores. Each worker maintains its own list of stores and processes all the stores in
this list unless there’s an idle worker. When a workers list is empty, it gets a store

to process from the busiest worker and proceeds the traversal from there.

A Worker has 3 states: Working, Waiting, Finishing. The transition between states
depends on the management policy. Figure 3.3.2 demonstrates this as well as Table
3.3.
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Figure 3.3.2: Worker’s state transition diagram

Table 3.3.1: W-worker; C-controller; X-some worker; U-list of workers
Global Management Private Management
1 - Controller’s list is empty | 1 - W’s list is empty
2-3AX(#W) €U :work(X) | 2- AX(# W) € U : work(X)
3 - W gets a store from C 3 - W gets a store from some worker
4 - W found a solution 4 - W found a solution
5-VX(# W) € Uwait(X) |5-VX(#W) e U, wait(X)
6 - C commanded to finish C commanded to finish

3.4 Summary

AJACS provides an interesting starting point for this thesis’ work. AJACS’ im-
plementation relied on a distributed shared memory system and special a JVM
implementation and was developed in Java. But the implementation details are
to be neglected since all is to be developed from scratch. What is important here
is AJACS’ concepts and its parallel architecture and how they can be adopted to
match a multicore architecture like the Cell/B.E.

Clearly relevant is the independence of a Store from the rest the Stores in the search
tree which allows an independent and out-of-order treatment by one process. The
Store is a piece of work, a block of data to be processed and might match the
Synergistic Processor Element (SPE) and its aptitude for data processing. Together
with the concept of Global management in which every Worker accesses a global

structure to gather work but then works on its own space seems to be a good fit for
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Cell’s processor heterogeneity as discussed in the following chapter.

49



Chapter 4

Cell Broadband Engine

This chapter presents the Cell Broadband Engine. Both processor types, PPE and
SPE are overviewed as well as related concepts and programming for this architec-

ture.

4.1 Overview

The Cell Broadband Engine (CBE) is the first implementation of the Cell Broadband
Engine Architecture. This implementation is a single-chip multiprocessor [18] with
nine cores operating on a shared, coherent memory. The nine processors are distin-
guished in two types: Power Processor Element (PPE) and Synergistic Processor
Element (SPE). There is one PPE and 8 SPEs.

The Power Processor Element (PPE) is a 64-bit Power PC Architecture processor.
It complies with 64-bit Power PC Architecture and runs 32-bit and 64-bit OS and
applications.

The Synergistic Processor Element (SPE [28]) is tailored to run compute-intensive
SIMD applications. They are totally independent elements, each able to run their
own application program or thread. The access to memory is coherent, including

memory-mapped I/O space.
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The SPEs provide the application, the performance speedup while the PPE runs
the operating systems and usually the main thread of control. Both PPE and SPEs
support a rich instruction set that includes SIMD functionality. In the SPEs using
SIMD brings great performance advantage or, the other way around, scalar code

looses a few cycles since the SPEs always loads and stores a quadword at a time.

The most significant difference between the SPE and PPE lies on how they access
the memory. The PPE accesses main storage with load and store instructions that
move data between main storage and its registers, the contents of which may be
cached. The SPEs, in contrast, access main storage with Direct Memory Access
(DMA) commands that move data and instructions between main storage and a
private local memory, called Local Store (LS). A SPE fetches its instructions from
its LS and has no cache. This 3-tiered organization allows asynchronous DMA
transfers from main memory, parallelizing computation and fetching of data (see

figure 4.1.1).

Furthermore, the memory latency problem is directly tackled. The few cycles needed
to set up a DMA transfer are a much better trade-off compared to the hundreds
of cycles of a delayed sequential program with a load instruction on a cache miss.
In addition, a SPE can have up to 16 simultaneous DMA transfers, clearly out-

performing traditional processors in memory access.

The Element Interconnect Bus (EIB) is the communication path for commands
and data between all processor elements on the CBE processor and the on-chip
controllers for memory and I/0O. The EIB supports full memory- coherent and sym-
metric multiprocessor (SMP) operations. Thus, a CBE processor is designed to be

ganged coherently with other CBE processors to produce a cluster.

The EIB consists of four 16-byte-wide data rings which transfer 128 bytes (one PPE
cache line) at a time. Processor elements can drive and receive data simultaneously.
The connection order is important to programmers seeking to minimize the latency

of transfers on the EIB: latency is a function of the number of connection hops, such
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that transfers between adjacent elements have the shortest latencies and transfers
between elements separated by six hops have the longest latencies. The EIB’s inter-
nal maximum bandwidth is 96 bytes per processor-clock cycle. Multiple transfers
can be in-process concurrently on each ring, including more than 100 outstanding

DMA memory requests between main storage and the SPEs.

Figure 4.1.1 provides a view of the complete processor.

Source: M. Gschwind et al. Hot Chips-17. August 2005

Figure 4.1.1: Cell Broadband Engine

4.2 Power Processor Element - PPE

The PPE consists of a 64-bit, multi-threaded Power Architecture processor with

two concurrent hardware threads. The PPE supports the Power Architecture vec-
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tor multimedia extensions (Altivec) using SIMD execution units. The processor
has a memory subsystem with separate first-level 32-Kilobytes instruction and data

caches, and a 512-Kilobytes unified second-level cache.

PowerPC Processor Element (PPE)

PowerPC Processor Unit (PPU)

L1 Instruction L1 Data
Cache Cache

PowerPC Processor
Storage Subsystem (PPSS)

L2 Cache

Lostnamsronsronacs mmomsrsond

Figure 4.2.1: Power Processor Element

4.3 Synergistic Processor Element - SPE

The eight SPEs provide the computation workhorse in a CBE system. A SPE
is a new processor designed to accelerate a wide range of workload by providing
an efficient data-parallel architecture and the synergistic Memory Flow Controller
(MFC), guaranteeing coherent data transfers from and to main memory. The SPU
cannot access main memory directly; it obtains instructions and data from its 256-
Kilobyte Local Store (LS) and it must issue DMA commands to the MFC to bring
data into the LS or write results back to main memory. In parallel to MFC data

transfers, the SPU processes data stored in its private local store.
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The local store architecture has simple logic, as cache-hit and coherence logic do
not affect the critical memory access operations during load and store operations,
allowing faster and more compact implementations. All data accesses with load
and store operations refer directly to physical locations within an SPE’s local store

without further translation.

Synergistic Processor Element (SPE)

Synemgistic Processor Unit (SPU)

Memary Flaow Contraller (MFC)

‘ DMA Controfler

Figure 4.3.1: Synergistic Processor Element

Memory Flow Controller

Each SPE includes a Memory Flow Controller (MFC), which performs data transfers
between SPU-local storage and main memory. The access to system memory is
supported by a high-performance direct memory access (DMA) for data transfers

that can range from a single byte to 16-byte blocks.

A MFC transfer request specifies the local store location as the physical address in
the local store and it specifies the system memory address as a Power Architecture
virtual address, which the MFC’s memory management logic translates to a physical

address based on system-wide page tables.

Using the same virtual addresses to specify system memory locations independent
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of processor element enables data sharing between threads executing on the PPE
and SPE. For example, a PPE-generated pointer can be passed to the SPE which

in turn can use it to specify a source or target of a DMA transfer.

4.4 Programming the Cell/B.E.

Structure of a Cell/B.E. application

A CBE application executes in a heterogeneous architecture consisting of PPE and
SPE cores. In order to match such heterogeneity, a CBE application consists of two

classes of instructions corresponding to each of the architectures [38].

Currently, one CBE application correspondes to a process that can have associated
PPE and SPE threads that are dispatched to the correct processor. An application
starts with a single PPE thread and control is entirely on the PPE. After the start,
this PPE main thread is able to create more threads to execute both on PPE and

SPEs, supported by a management library.

The SPE runtime management library (libspe2) is the standardized low-level appli-

cation programming interface that enables applications access to the SPEs.

Applications do not have control over the physical SPEs. All what applications do
is to manage software constructs called SPE contexts. These SPE contexts are
logical representation of an SPE. The library libspe2 includes additional functions
such as transfering application data to and from the SPE’s Local Store and initiating

the execution of a recently transfered executable.

To be able to use multiple SPEs simultaneously, an application must create at
least as many threads as concurrent SPE contexts with support from something
like POSIX threads (pthreads). Once an application has initiated the SPE threads,

execution can proceed independently and in parallel on PPE and SPE cores.

The Cell Broadband Engine Architecture (CBEA) allows a variety of program-

%)



ming models such as an accelerator model based on remote procedure call, function
pipelines and autonomous SPE execution. The simplest is the accelerator model
where compute-intensive functions are offloaded to the SPEs. Developers can also
compose function pipelines where each SPE executes a set of functions on a data
stream and then copies its output to the next pipeline stage implemented on another
SPE. Autonomous SPE execution consists of an SPE thread which uses its MFC to
independently transfer its input data to the local store and copy result data to the

main memory.

Data multi-buffering

To hide memory latency to external memory, data transfers are best performed by
each SPE using data multi-buffering like double buffering. With double buffering
the SPU operates on one data set in one buffer while the MFC transfers the next
data set into the second buffer. This way compute-transfer parallelism is exploited
that is, independent SPU execution and MFC data transfer. This is one of the

parallelism [19] forms supported by the Cell/B.E.

Application loading and the CESOF format

When starting an application, the OS loads the object file and the execution of the
main PPE thread begins. The application then goes by initiating the SPE threads.
To accomplish this, the PPE must first transfer the SPE image to an SPE’s Local
Store. The PPE initiates a transfer of the SPE image by requesting to the SPE’s
MFC, a transfer from main memory. After the transfer, the PPE issues a request

to start the SPU.

To accommodate PPE and SPE programs in one single source file and allow sharing

of common variables, the CESOF file format was created.

With CESOF, programmers can achieve some of the effects of linking PPE and
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SPE executables. The PPE linker can create a single PPE-ELF executable file that
contains code and data for both PPE and SPE processor elements. An OS can
load PPE and SPE programs that run concurrently and work cooperatively from an

integrated PPE executable image.

Surely all the details related to the structure of the CESOF format are out of this
thesis’ scope. Nevertheless an understanding of how such a file is created is rather

important for understanding some of the frameworks’ design considerations.

Figure 4.4.1 illustrates the process.

CESOF linkable life cycle
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Figure 4.4.1: Cesof file creation

A tool called ppu-embedspu wraps an SPE executable file into a CESOF linkable file.
The CESOF file contains the image of the original SPE executable plus additional

PPE symbol information.

The CESOF linkable, which is itself a PPE linkable, can now be linked with other
PPE linkables to form a PPE executable. The PPE executable image contains
not only the PPE code modules but also the embedded SPE executable image -
a CBE executable. The PPE loader can load the CBE executable including the
embedded SPE executable image(s) just like any other PPE executable into the
effective address space. From there, an SPE loader can load the SPE executable

image into the target local store.
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4.5 Summary

The Cell Broadband Engine is an interesting architecture with interesting features,

quite different from conventional processors.

The Cell/B.E. is composed of 1 PPE and 8 SPEs connected by an internal high-
bandwidth bus (EIB). The PPE runs the operating system and has a controlling

role. The SPEs are independent processors, tailored at running compute-intensive

tasks.

The heterogeneous nature of the architecture promises orders of performance in-
crease but requires an extra effort from the programmer who has to, for example,

coordinate the memory accesses of the SPEs via DMA commands.
Programming for the Cell/B.E. needs to consider some aspects usually not present
in a normal programming environment. Specifically and in what concerns directly

to this thesis, one should consider:

how to take advantage of the multiple SPEs. This includes dividing the pro-

gram across all cores in an effective manner.

e DMA transfers should be SPE-initiated and be overlapped with computation

(when possible) to avoid stalls.
e SPE’s Local Store has only 256 KB for data and code.
e how to use vector code (SIMD) and large register file whenever possible.
e reduce branching since the SPU assumes sequential instruction flow.
e different instructions sets (PPE and SPE) which implies different sources

e the different address spaces. This is particularly important with references or
pointers: a pointer passed from PPE to the SPE can’t just be de-referenced

but has to involve a DMA transfer.

58



e memory alignment. LS and main memory addresses must be aligned for DMA

transfers (this is particularly cumbersome).

o data sharing and dependencies have to be carefully designed since all processors

share the same main memory.

Together with these aspects, programmers must work with a double-toolchain for
both PPE and SPE (two instruction sets) as well as the new CESOF file format

(described in section 4.4).

The Cell/B.E. architecture definitely pushes some complexity to the hands of the
programmer but precisely because of its innovative nature, this architecture presents
several concepts that will be seen in future microprocessors. Hence there is an
opportunity for exploring and experimenting new tools, programming models and

frameworks.
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Chapter 5

Design of the framework

The framework developed is presented in this chapter. The framework’s architecture
is divided in 3 levels: AJACS Level, Cell Level and Application Level. Each level of
the system’s architecture is explained, focusing on the most important aspects and
the decisions made. We then proceed by introducing the hybrid model where the
AJACS model was extended to work with local search. The local search method
implemented is Adaptive search and this method is also introduced as well as its

integration in the system.

5.1 Overview

The work described herein tries to match the current architectural tendency to
make parallelism explicitly available to the characteristics of AJACS in order to
get a declarative approach to software development in a parallel environment while

extracting good performance from such architectures in constraint problem solving.

CASPER (Cell Adaptive Search and Propagation Engine Resolver) presents an adap-
tation of the AJACS model to the C programming language. It is an adequacy study

of constraint solving in a heterogeneous multicore architecture as the Cell/B.E. .

The general goals underlying the development of the CASPER system are:
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e develop a Constraint Solving System in the C language targeted at the Cel-
1/B.E.

e experiment with this Constraint Solving System

e provide a more declarative programming experience and hide the hardware’s

complexity and details

e take advantage of the Cell/B.E. particular processing power to solve complex

problems

In its organization CASPER aims at producing independent states as result of one
ancestor state expansion. The states are independent in the sense that each store
(plus the Problem containing the constraints themselves) carries all the informa-
tion necessary to be considered a possible solution for a given problem. With this

independence, even the connection to its parent state can be removed.

The state independence is the basis for a parallel execution since in theory, it should
be possible to parallelize constraint problem solving by distributing the yet uneval-
uated states among several processing units without too much foreseen interaction.
This way, all processing nodes should be able to 'walk’ through the problem space
with minimal knowledge or awareness of each other. The minimal information each

processing node requires, for its state iteration and propagation, is to know:

e where to look at for new states to search;

e where to store the expanded new stores, i.e. the states that resulted from a

successful propagation;

e where and how to signal any solutions that may be found to the problem

master controller.
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5.2 CASPER

The similarity between the Cell/B.E. architecture and the AJACS model has some
striking aspects to it. The same terms are used to name the different entities:
controller and worker. In the Cell/B.E., the PPE can be seen as the controller
processor while the SPEs are the workers. In AJACS, there is also a controller
agent for the problem and several workers who try to find a solution. Therefore it
is a natural choice to make the PPE responsible for the master role and the provide

the SPEs with the worker role in the AJACS model.

5.3 System Architecture

The developed prototype can be partitioned and understood as a 3-layer architec-

ture. These three layers or levels are a form to comprehend the complete framework.

At the bottom level, there’s the AJACS Level. The AJACS Level implements
the AJACS model and its associated concepts. Thus, the Store, Constraint and the

rest of the structures are included in this level.

The middle level is named Cell Level. The Cell Level hides the Cell’s program-
ming complexity and interacts with the AJACS Level to solve a problem. It imple-
ments the concept of controller and worker from AJACS’ parallel architecture (see
chapter 3) to run on the Cell/B.E.. All the architecture’s details and mechanisms

should be considered part of this level.

Moreover, the Cell Level provides an interface to the upper level to allow a parallel

execution of the problem solving.

The last and upper level, the Application Level, is the prototype’s “user level”.
It represents how the user application needs to be designed in order to interact with

the layers below.

Very roughly, this level is the source files which state the problem to be solved and
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how they should accomplish this.

Figure 5.3.1 illustrates the architecture:

Constraint Search
| Strategy. Store 1)

Figure 5.3.1: System architecture

The figure illustrates the overall organization of the prototype. Each level of the

architecture is better described in the following sections.

5.4 AJACS Level

The AJACS Level implements the concepts present on the AJACS model (see
chapter 3 that is, Problem, Store, Search, Strategy, Value and Constraints. Imple-
menting all these concepts includes the dependencies between them and the proce-
dures associated to each one like propagation, addition of new values to a Store or

defining a new Problem.

63



The Search Procedure

The Search can be considered the most important aspect of the AJACS Level. The
Search is where the real works happens in order to solve the problem and it is this
work that’s going to keep the SPEs busy. The concepts/entities described before are
essentially supported by data structures with associated procedures to operate upon
them. Basically, the Search will take all the data stored by AJACS’ data structures
and find the solution(s) by modifying and replacing this stored data.

In order to implement the Search process, a couple of requirements had to be met:

e First, the need to enforce a small memory footprint in the SPE’s Local Store

and
e Second, to keep processes as mutually independent as possible.

To meet the design goals a rather simple but effective idea was devised. The idea
is to take a store and from this store come up with two complementary sibling
stores. From these two sibling stores, the search continues on only one saving its
complementary to work on later. This “store mitosis” continues until the search gets
to a store which is a solution - it has all variables ground. Figure 5.4.1 provides an
example of such “store mitosis”.

{1,2,3}

{1,2,3,4}
{1,2,3,4}
\, w
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(1] (23 1] {1.3)
{1,2,3,4} 2 {1.2,3,4}
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1
2
3

Figure 5.4.1: Stores split

This process guarantees completeness since it will use all possible values for each

variable. It also addresses the two aims mentioned above. It keeps a small LS foot-
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print by working with only one Store at a time, having a maximum of two Stores
in memory by the time of division (where one is transfered to main memory) and
then continuing with only one. Finally, the stores are independent from each other:
in contrast to a backtracking approach, there are no references to ancestor store. In
fact, there are no references to any other Store although there’s the implicit rela-
tionship with the complementary store but this is just abstract. The complementary

Store will be treated as unique and possibly handled by some other worker.

Delving deeper into the search’s procedure implementation, one sees that it consists

of three steps:

1. check if the Store is a solution store that is, if all variables are ground

and in affirmative case just terminate and save the solution

2. produce complementary sibling stores. By taking the variable being
worked on from the current Store, a new value from the variable’s domain is
selected. With this value, two stores are created: one with the value associ-
ated to the variable (the variable is now ground) and another store where the
variable has a domain which is complementary to the previous single-element
domain. For example, we start with storel and the variable X. The variable
X as a domain {1,2,3,...,9}. The value 1 is selected from this domain and
two stores will be created: store2 and store_complementary. In the store2,
the variable X has as domain the set 1 - it is ground. On the other hand,
store_complementary has the variable X with a domain {2,3,...,9} - the com-
plementary one. Note that storel is no longer useful after this step and its

space may be reused for either of the two newly created stores.

3. do propagation. To make sure the store we want to keep working on is
consistent, we have to perform propagation. Of course the store referred to -
the working store - is the one that has now one (more) ground variable. After

executing the propagation in the working store three things can occur.
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(a) the propagation has failed (at least one variable has an empty domain).
(b) the store turned out to be a solution.

(c) the propagation succeeded but it’s no solution.

For both case one and two, the store doesn’t allow more progress with it
therefore we will proceed the search with the complementary one. Of course,
in case we have a solution, it must saved. For the third case, where the
propagation succeeded, we continue the search working on the same store and

just save the complementary one to be worked on later.

5.5 Cell Level

The Cell Level represents the implementation of the Controller and Worker roles.
The Controller will run on the PPE and the Worker will run on the SPE. Hence,

there are one Controller and eight Workers per Cell/B.E. processor.

The Controller sets up the environment and invokes the Workers which are responsi-
ble for finding solutions to the given Problem. Finding solutions includes interacting
with the AJACS Level by invoking the search procedure (described in section 5.4

).
The architecture dependent details like DMA transfers or creation of threads or SPE
contexts are implemented at this level in order to hide them from the developer, who

should concentrate on the problem to solve and not on architecture or parallelization
details.

In the next sections, both the Controller and Worker processes are detailed.

Controller

As already referred, the approach is to have the PPE assume the role of Controller

role. The Controller role can be summarized by the following items:
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. Do an initial expansion of the search tree.

. Create the SPE contexts.

. Setup the information to be passed to the SPEs.
. Create pthreads that manage the contexts.

. Wait for all to finish.

. Do an initial expansion of the search tree.

The first step done by the Controller is to expand the search tree. By taking
the initial Store, several sibling stores are created. These sibling stores will be

taken by the workers in order to reach a solution.

The Controller is responsible for creating two important data structures. One

is the work list and the other the solutions list. Both lists hold Stores.

The work list holds Stores which need to be worked on. This is the place
where workers will look for and place new work to be done. The expansion of

the initial Store will place the sibling stores in this list.
The solutions list holds the solution stores found by the workers (if any).

The first expansion or split of the initial Store follows a very simple approach.
The idea is to do something similar to what happens with backtracking. By
taking the Store’s first variable, each of its domain values indicate one sibling
Store. Certainly, these new Stores must be consistent. Consistency is verified

via propagation.

1 For each value in the first variable’s domain

2 if value is valid then

3 create a new Store with the first variable ground
4 check for comsistency by propagation

5 if store is consistent

] put it in work list

7 else
8 continue
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There will be as many sibling Stores as there are correct possible values for
the first variable. For example, the initial Store has X as its first variable:
X € {1,2,3}. Following the algorithm the value 1 is taken. It is a valid value
therefore a new sibling Store is created and checked for consistency. The Store
is consistent with the Problem’s constraints so we add it to the work list to
be further worked. Now, value 2 is taken and this new sibling Store is also
consistent. The work list has now two Stores. Returning to the algorithm’s
beginning, the value 3 is selected. This time, the sibling Store turns out to be
inconsistent (for example, there’s a constraint which states that the variable
X < 3. Thus, the Store is discarded. The expansion is now finished. The

workers will have two Stores to start from.

There is a departure from the AJACS model in what concerns the first expan-
sion. In the AJACS model the workers “compete” to get the initial Store and
one of the workers does this first expansion whereas in the present case the

workers get their configurations prepared by the controller.

2. Create the SPE contexts

Since libspe2 is being used, creating SPE contexts is a required step and def-
initely the typical scenario when writing Cell/B.E. applications (see section
4.4).

The number of contexts created depends on a parameter. Essentially, this
parameter defines how many workers are required to work to get to a solution.
The number of contexts is only limited by the machine’s available memory but
in our case we want this parameter to be the number of SPEs available (16 in
the case of dual Cell/B.E.) so that a worker takes a processor only for itself
until the problem is solved.

Creating the SPE contexts counts as setup overhead since this is a step needed
to put the workers working on the problem.

3. Setup the information to be passed to the SPEs
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The PPE (controller) and the SPEs (workers) must share some data. This
data is stored in the main memory to be easily and quickly accessed by all
processors. When setting up all the environment, the PPE must provide the
location of the common data to the SPEs for these to be able to fetch it via
a DMA transfer. The supply is done through a control block holding all the

information.
The following description presents the control block:

struct block

{
//problem location
unsigned long long problem;

1
2
3
4
5
8 //solutions number location

7 unsigned long long nsols;

8

9 //list with solutions

10 unsigned long long solution_stores;
11

12 //list with stores to be traversed
13 unsigned long long work_queue;

14

15 //number of stores in work list

16 unsigned long long numb_work;

17

18 //padding for alignment

19 unsigned char pad;

20 F;

The control block consists of memory addresses from all the data structures
set up by the PPE. This is all the information an SPE needs to work on a

solution.

. Create pthreads that manage the contexts

As already referred in section 4.4, in order to have concurrent SPE contexts,
POSIX threads (pthreads) are used. Basically, each pthread runs a single
SPE context or in other words, a Worker. Thus there are as many pthreads

as workers and contexts.
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Running a context requires performing a synchronous call to the operating
system. The calling application (in this case the pthread) blocks until the SPE
stops executing and the operating system returns from the system call that
invoked the SPE execution. If one wants to use multiple SPEs concurrently
then several threads must be created to run several contexts.

As with section 2, the creation of pthreads counts as setup overhead.

5. Wait for all to finish
In the AJACS model, the Controller takes an action when a solution is found.

For now, the Controller waits for all workers to finish, does some cleanup and
exits. To wait simply means to wait for the created pthreads to terminate.
There is no acknowledgement that a found solution has been found or any
form of request for more work on the part of the workers. The workers work
as independently as possible and the Controller interacts with them as little

as possible.

‘Worker

The Worker role from the AJACS model is assumed by the SPEs. Each SPE will
execute the same functions although working on different data (different Stores).

The Worker is responsible for working on Stores in order to find solutions. Despite
the important task, the work done by a Worker can be summarized in three easy
steps. Following the same structure used for describing the Controller in section

5.5, here are the steps performed by each worker:

1. Get the control block.
2. Get the problem.

3. Look for solutions.
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Get the control block

The worker needs the data locations in order to carry out its process. The control
block was already presented in section 3 and all the information it contains. But
before accessing the control blocks data, it has to get the control block itself. Hence,
the very first step done by the worker needs to be getting the control block with all
the information, the one which was setup by the controller/PPE.

Whenever a context is to be run by the PPE, the libspe2’s API allows the PPE code
to pass an argument to the main function executed by the SPE. This is an easy way
to pass initialization arguments to the SPE and a typical method to pass an address
of some data to be fetched via DMA from main memory by the SPE.

When the Worker starts executing its code, the location of the control block is
already available. The worker just needs to request a new DMA transfer to its
MFC, so that the control block with all the information about data locations is
made available at the SPEs Local Store.

The function call;

1 mfc_get((void *)&ls_b, argp, sizeof(struct block), 31, 0, 0);

does exactly this. It means: execute a get command to location Is_b in the LS from
main memory’s location argp with a size of sizeof(struct block).
Get the Problem

Once the Worker knows the location of the data in main memory, the first thing it

fetches is the Problem data structure.

The Problem is present in the Local Store throughout the entire lifetime of the
worker and, as it holds the constraints, is responsible for propagation, ensuring

Store consistency.

Look for solutions
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So far the Worker only gathered data from main memory as described in the previous
steps. After gathering all the data it needs, the Worker can start performing the

search, looking for solutions.

The Worker looks for solutions by utilizing the Search procedure from the AJACS
Level. The Search procedure, described in section 5.4, is the entry point from the

Cell Level to the AJACS Level.

Now that all data is available, the worker performs more computation by entering

a loop:

1 while (there’s work to be done)

2 dma transfer another store to work on;

3 invoke the search on the transfered store;
4 decrement the amount of work to be done;

in which it performs the actual steps in solving the constraint problem.
Each line of the loop is now described:
1 - while (there’s work to be done)

One of the informations in the control block is the number of stores to be worked on.
As long as the number of stores in the work queue is greater than zero, the worker
loops. Now, this value is shared by every worker so the access must be synchronized.
The current implementation uses the Cell/B.E. architecture’s atomic operations to

accomplish this.

The framework implements atomic operations by using the MFC’s get- and-reserve-
lock-line DMA commands. This special command can be used to implement atomic
update primitives on a shared location in system memory. This is a simple method
to implement access in shared locations and allows a dynamic number of participants

which fits the idea of having a dynamic number of workers working on a problem.

Moreover, the Workers (SPEs) are expected to spend most of the time searching
for solutions and hence the number of collisions when trying to access the shared

counter is expected to be low.
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2 - DMA transfer Store to work on

Before starting, the Worker needs to get a Store to search in. This a normal call to
the MFC’s get command which requests a transfer from main memory to the SPE’s

Local Store.

The address from the Stores list is also contained in the control block that was
fetched by the Worker. To get the right store from the list only some simple arith-
metic is done: work_list + (how_-many_stores_to_do — 1). This as two direct conse-

quences :

o the workers access this list concurrently without clashing because they all have

different values in the how_many_store_to_do ;

o the list of stores to be done starts being processed from the end.

Although the list is shared by all, accessing it can be done without synchronization.
The synchronization is only needed to get the list’s index from where to fetch the

Store in the work list.

Figure 5.5.1 illustrates this. In this example, the SPE gets the number of stores
to be done - 2 - from the shared location (the red color means that the access is
synchronized) and the Store itself from the work list (the green color means that

there’s no synchronization needed).

main memory number of
; o store to be
array with stores
done

L1 1.1
2

Figure 5.5.1: List index synchronization
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Hence, several threads can be accessing the work list and fetching Stores to work on

concurrently.
3 - invoke the search from the AJACS level on the transfered store

After transferring the Store, the Worker can start working on it. The Worker calls

the search procedure, passing it the recently transfered Store.

In this step, besides the search itself, the transfer of solutions is done. The location
where to store solutions was supplied through the control block and the access to
main memory follows the same scheme as with the DMA transfer of the store to
work on. The location of the variable holding the number of solutions is shared by
all the workers and therefore its access must also be synchronized. The number of
solutions serves as index to the position in the array of solutions where the worker

should save the solution store.
Again figure 5.5.2 illustrates the idea. The similarity between this figure and the
previous one intents to demonstrate how similar both actions are. The difference is

only on naming and flow direction (note the names and arrows directions).

main memory number of
store to be

array with stores done

102 I n

:

Figure 5.5.2: Solutions index synchronization

4 - decrement the amount of work to be done

Again atomically, access the main memory and decrement the value of the variable
which holds the amount of work to be done which controls the Worker’s main work

loop.
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5.6 Application Level

The Application Level is the top layer of the architecture. This level does not im-
plement parts of the AJACS model or Cell dependent functions. It simply represents
the user program which defines the CSP to be solved.

The two bottom levels (AJACS and Cell) implement the library itself and provide
the interface needed for a user to state her problem. Normally, one would not
need to mention the user-level when describing a library but there are a couple of
peculiarities associated with the CASPER implementation which are definitely worth

of examining and exemplifying:

o the eccentric Constraint Programming

e the unconventional Cell architecture

Constraint Programming was already extensively presented in chapter 4. Still,
its eccentric, different nature is worth a reminder. When describing a CSP, the
programmer’s mind set must be undeniably different from the mind set used to

program algorithms with current and more mainstream languages like C or Java.

Although the C language is being used, the typical program using the CASPER
library is distinct from the usual C program with loops, conditional statements or

variables initialization and consists mainly of calls to the library.

One way of illustrating the application-level layer is with an example program. We

proceed with such an example.

The best way to describe all this is by showing an example. The following source
code is an example of a program. The code is clearly declarative and the source

code comments are also included for a complete understanding.
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1 | int main ()

2 | {

3 int NC=3;

4 Intc:

5 int deb=0;

6

7 Store* slnit;

8 Problemx P; // the Problem
9 fdd_value =*vl, x*v2, xv3;

10

11 Constraint %cl; %c2, %¢3;

12

13 Strategy* St; // the strategy to implement
14 Searchx Sr; // the search method
15 IntArrayx cVx;

16

17 ba_init ();

This first block of code is the variables’ declarations. One might notice the types

like Constraint, Search which corresponds to AJACS entities.

1

2 | /* 1) Create values x/

3

4 vl = new_value(2,8);
5 v2 = new.value(3,7);
6 v3 = new_value(4,6);

Now we created the values vl. v2 and v3. Each one is created with a different

domain: for example v1 has a domain of {2,...,8}.

1| /* 1) Create Store and add values x/
2 sInit = new_store(3);

3

4 sInit —>theValues [0] = *(vl);

5 sInit —>theValues [1] = *(v2);

6 sInit —>theValues [2] = *(Vv3);

Having the values we need to create a store and add our values to it.

1 ¢ = posix_memalign(&cl,16,sizeof(Constraint));
2 ¢ = posix_memalign(&c2,16,sizeof (Constraint));
3 ¢ = posix.memalign(&c3,16,sizeof (Constraint));
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

/X =Y
constraintDefs [0].name = ‘‘X=Y’7;
constraintDefs [0]. nargs = 2;

constraintDefs [0]. update = &eq.update;

cl->constr = constraintDefs [0];
cl—env [0] = 0;
cl—>env[l] = 1;

// X<=Y
constraintDefs [1].name = “‘X<=Y'";
constraintDefs [1]. nargs = 2;

constraintDefs [1]. update = &le_update;

c2->constr = constraintDefs [1];
c2->env [0] = 0;
c2—>env (1] = 1;

/) X<=2
constraintDefs [2].name = ‘‘X<=Z""';
constraintDefs [2]. nargs = 2;

constraintDefs [2]. update = &le_update;

c3—>constr = constraintDefs [2];
c3—>env [0] = 0;
c3—env (1] = 2;

In the part we defined our constraints. First we allocated aligned space for them

using posix.memalign (this is needed because of the DMA transfers between PPE

and SPEs). Then we set up all the details of a constraint like its number of arguments

or its name.

10

11

12

13

/*

* 3) Problem

* Add all constraints to the problem
</

P = new_problem (xslnit , N.C);

// Add constraint 1 to problem
cVx = (IntArrayx)new_IntArray(3);
cVx—>arr [0} (int)cl; // Constraint 1
cVx—>arr[1] (int)c2; // Constraint 2
cVx->arr [2] = (int)e3; // Constraint 3
add_constraint (P,0,cl,cVx);
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14

15 // Add constraint 2 to problem

16 cVx—>size =2;

17 cVx—>arr [0] = (int)cl;

18 cVx—>arr [1] = (int)c2;

19 add_constraint (P,1,c2,cVx);
20

21 // Add constraint 3 to problem

22 cVx—>size=1;

23 cVx—>arr [0] = (int)c3;

24 add_constraint (P,2,¢3,cVx);

All the information created so far is needed to create a Problem. We created a
Problem, providind it an initial Store (sInit) and the number of constraints (N_C).

Then we added each constraint to the Problem.

1 /%

2 4) Strategy to implement

3 *

4 St = new_strategy (sInit);

5

6 /%

7 5) Search / Find the solution(s)
8 */

9 Sr = new._search(1); // indez to start=I
10 search (P,St,Sr);

11

12

13 return 0;

14 |}

Finally, we created the default Strategy and a Search. With all the data needed

(Problem, Strategy and Search) we invoked the search procedure.

The second pecularity mentioned at the beginning of this section is the unconven-
tional Cell/B.E. architecture. The architecture too was already described in detail
in chapter 4. What is more significant here is the fact that the Cell is heterogeneous
and as refered before, currently a double-toolchain is used for compiling PPE and

SPE programs as it was in fact for the development of this thesis’ work.

For some code to run on each processor, it must be compiled with the correct
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compiler. The ultimate consequence is that CASPER is composed of SPE and PPE

modules since it makes use of both processors.

The Application Level must interact with both components, PPE and SPE mod-
ules because the user programs consists of code to be run in both processors. For
example, the Constraints are functions which must be present to both processors

thus compiled two times.

Ideally, the user’s source code would be single source, hiding totally the complexity
and parallel issues. The current implementation does not allow single source. The

user program is always composed of two source files, the main file and the definitions

file.

The main file states the Problem as seen in the example above and of course, calls

the solution finder. Since this file includes the main function (hence the name) it is

compiled for the PPE and linked with the PPE modules of the library.

The definitions file contains some information that must be present in the SPE
(worker) in order for it to work properly. Basically, this information includes the
constraints of the problem and some functions related to Adaptive search (this
will be clearer in the next section - Extending the search). This definitions file
contains one init function which is called by the Worker. The init function sets up

the information needed by the Worker.

Surely, one might argue this is not much different from the existing approach to Cell
programming, with two source files, one for the PPE thread and one to run on the
SPEs. This is true but all the concerns with parallel design are inexistent. No need
to partition data or to synchronize threads. And most of the content present in the

definitions file is doubled from the main file and can be copied and easily modified.

With both files (main and definitions) together with the library modules, a binary
file is created in the CESOF file format (see figure 4.4.1).
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5.7 Extending the search

As referred in 5.4, the search step is the most important. The current Sirategy
takes one Store to process and partitions it in two complementary ones. After
choosing a variable, the propagation is executed and, recapitulating, three things
can happen: a solution, the propagation has succeeded or the propagation has failed.
In case a solution was found or with failed propagation, the Search continues with
the complementary Store; if the propagation succeeded, then it continues to work

on the same Store and puts the complementary one in the work list.
This “always forward and down in the tree” approach saves a lot of space (a scarce

resource in the SPE’s Local Store) since we don’t keep any history of performed work

or connections to ancestor or any other Store(s) and work only with the current state.

So far, the search is exhaustive which guarantees completeness. But sometimes
this is not so important and local search methods provide a very fast way to get a
solution.

There are at least two classes of general methods for resolution of constraint prob-
lems: complete methods explore the whole search space in order to find all solutions
or detect inconsistency and incomplete methods use heuristics to find not all but

some solutions. Unfortunately, these methods don’t detect inconsistency.

Designing hybrid approaches seems promising since the advantages may be combined
into a single approach.

Systematic algorithms for solving CSP typically explore a search tree which is based
on the possible values for each of the variables of the solved problem.

The biggest problem of such backtracking-based search algorithms is that they are
frequently hindered by innappropriate early choices in the search.

Local search algorithms perform an incomplete exploration of the search space by

repairing infeasible complete assignments.

Three categories of hybrid approaches can be found in the literature [23] :
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1. performing a local search before or after a systematic search

2. performing a systematic search improved with a local search at some point of

the search;

3. performing an overall local search and using systematic search either to select

a candidate neighbour or to prune the search space

Adaptive search is an heuristic method in which the key idea of the approach is to
take into account the structure of the problem given by the description, and to use

in particular variable-based information to design general meta-heuristics.

In our proposal, the propagation-based search is extended with a local search com-
ponent. At a certain state in the complete search it switches to adaptive search
and its heuristic method, by taking the so far grounded variables as constants and
a random value from the domain of the non-ground variables as starting points for

the search procedure.

5.8 Adaptive Search

Adaptive search [8] is a heuristic (non-complete) method for solving Constraint
Satisfaction Problems (CSP). The key idea of the approach is to take into account
the structure of the problem given by the CSP description, and to use in particular

variable-based information to design general meta-heuristics.

The input to this method is a problem in the CSP format. Again, this means a set
of variables with associated finite domain of possible values and a set of constraints

over these variables.

The method is not limited to any specific type of constraint but it needs an error
function that indicates how much a constraint is violated. Example: an arithmetic
constraint X —Y < C will have as error function maz(0,|X — Y| — C). The basic
idea of this method can be described by 3 steps:
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1. compute the error function for each constraint
2. combine for each variable the errors of all constraints in which it appears

3. the variable with the maximum error will be chosen and thus its value will be
modified. In this step it uses the well-known Min-Conflict [37] heuristics and
select the value in the variable domain that has the best tempting value, that
is, the value for which the total error in the next configuration is minimal.

The method also uses an adaptive memory (as in Tabu search {17]) where each
variable leading to a local minimum is marked and cannot be chosen for a few

iterations.
The Adaptive search method is a generic framework parameterized by 3 components:
e A family of error functions for constraints (one for each type of constraint)

e An operation to combine, for each variable, the errors of all constraints in

which it appears

e A cost function for evaluating configurations

Algorithm

this description is closely related to the original paper [8]

Input

Problem given in CSP form
e a set of variables V = V1,V?2, ..., V,with associated domains of values
e a set of constraints C = C1,C?2, ..., C,with associated error functions
e a combination function to project constraint errors on variables

e a cost function to minimize
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Output a sequence of moves (modification of the value of one of the variables) that

will lead to a solution of the CSP (configuration where all constraints are satisfied).

Algorithm

1 Start from a random assignment of variables in V

2

3 Repeat

4

5 Compute errors of all constraints in C and combine errors on
] each variable by considering for a given variable only the

7 constraints on which it appears.

8

9 select the variable X (not marked as Tabu) with highest error

and evaluate costs of possible moves from X

=
[=]

-
[

if no better move then
mark X tabu for a given number of iterations

=
W N

14

15 else
16 select the best move (min-conflict) and
17 change the value of X accordingly

18
19 Until a solution is found or a maximal number of iterations is reached

Some parameters can be introduced in order to control the search, namely for han-
dling restarts. It is possible to parameterize the number of iterations during which
a variable should not be modified once it is marked. More, in order to avoid being
trapped in local minima, a random reset of a certain number of marked variables is
done. Also, like most local search methods, the algorithm has a maximal number
of iterations. This means that the main algorithm loops will be executed n times -

where n is the maximal number - before it stops.
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Integrating the Adaptive Search

In the whole architecture

The Adaptive Search was implemented as an extra module. Recurring to the de-
scribed System Architecture, the Adaptive Search module is situated at the same
level as the AJACS Level. It is used by the Cell Level, concretely by the Worker, to

perform the search.

The Adaptive Search module itself is also a library that can be linked with when
creating the binary file. Generally, this module implements the algorithm described
above in section 5.8 but it is tied to the Store object and considers the work done

previously by the propagation-based search.

The need for the connection with the Store object is to take into consideration the
work performed before. The Store is the state of how things are, which variables are
ground and which domains do they have. These two aspects, ground variables and
variables’ domains are what the “slightly modified Adaptive Search” needs from the

Store.

To take advantage of the work done before, our implementation of Adaptive Search
starts by marking the already ground variables (made ground from the complete
search) as untouchable variables. Only the non-ground variables will have their
values being worked on according to Adaptive Search’s algorithm. This is the first

place where the Store is needed.

The second place where the Store is needed is when selecting the min-conflict value

for a variable. Only values which are in the variable’s domain are checked.

The Adaptive search algorithm depends on user-provided functions which model
the problem. The cost_on_variable functions determines the error for one variable
and associated constraints. The cost_of_solution function combines all variables

errors and should be equal to zero when a solution is found.
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Since these functions are provided by the user they can be said to belong to the
Application Level. The following reasoning can be made: the functions help to do
search which in turn is done by the Worker, the entity which runs on the SPE. The
SPE code is defined by the definitions file therefore these functions must be included
in it. The need for these functions still fits the two-files model.

In the Worker

The search process is now hybrid. At a certain point, the search switches from
the complete propagation-based search method to Adaptive search. The decision of

when to switch methods is managed by the Worker, running in an SPE.

So far the Worker’s work loop was only finding solutions via the propagation-based
exhaustive method. It would get a Store and perform the Search as described before.
Now the exhaustive method is only carried out until a certain condition is met, this
can be for example “do complete search until n variables are ground” or “do complete

search for n iterations”.

When the condition is met, the Worker calls the search from the Adaptive Search

module, passing it the current Store as the state of current solution finding.

Naturally, if the heuristic search returns a solution then a DMA transfer of the
solution is done, saving the solution in main memory as was done in the complete

search method.

5.9 Comparison with other work

Constraint programming has been around for quite some time so it is natural that
a lot of work has been put into this area. We already refered to some existing work.
Here we focus on recent work for doing a comparison: Gecode, IlogCP, Minion,

Comet and Choco.
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Gecode is a library for developing constraint-based systems and applications. It is
implemented in C++ but has interfaces for several other programming languages
like Java. (GecodeJ) and Ruby (GecodeR). Gecode has a very small kernel (in terms
of lines of code) and is reported to be very fast. It allows some modelling (although
not being a primary target) and has plans for parallel execution but with no work
on this so far. The search on Gecode is based on recomputation and is has different

standard search engines (e.g. depth-first search, limited discrepancy search, etc.).

ILOG CP is a C++ library that embodies Constraint Logic Programming (CLP)
concepts such as logical variables, incremental constraint satisfaction and backtrack-
ing. It is a commercial product with extensive documentation and debugging tools,
implementing much more different constraints and search methods. Is offers profes-

sional supports but it is closed source and with few techniques published.

Choco is an open-source Java library for constraint programming and explanation-
based constraint solving (e-CP). It is built on a event-based propagation mechanism

with backtrackable structures. The implementation is opensource.

Minion [20] is a general-purpose constraint solver, with an input language based
on the common constraint modelling device of matrix models. It aims at being a
black-box providing few options to the user, arguing that the increasing complexity
of today’s toolkits for constraints has heavy costs in terms of performance and
usability. This constraint solver is also implemented in C++ and focuses on a

highly-optimised implementation, exploiting the properties of modern processors.

Comet (29] is an object-oriented language supporting a constraint-based architec-
ture for neighborhood search. The main message is that, although they support fun-
damentally different types of algorithms, constraint programming end Comet share a
common architecture which promotes modularity, compositionality, reuse, and sepa-

ration of concerns.

CASPER is a work in progress and will certainly be subject of several modifications

and improvements. Still several characteristics allows some comparison with existing
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systems.

An evident characteristic of CASPER is its implementation targetting the Cell /B.E..
This is rather new since there are no implementations (at least known of) doing the
same. Minion aims at exploiting some properties of modern processors (e.g. cache)
but no architecture in particular and this in fact proves to be of value as Minion is

reported to perform better than Ilog CP and Gecode for some problems.

The implementation of CASPER is done in the C language, a language not typically
used by current implementations like Ilog, Minion and Gecode. The C language is

the best supported language in Cell/B.E. and therefore this was a natural choice.

Another evident characteristic from CASPER is its parallel architecture inherited
from AJACS. Gecode has plans for parallel search but none of the other toolkits

have parallelization has a main target like CASPER.

The search is very customizable is most toolkits (Gecode, Ilog CP and Choco) as
well as in Comet, allowing the definition of new search procedures, retrieving of one,
some or all solutions or limiting the search space. Unfortunately, CASPER doesn’t
allow this level of customization and is very static mainly due to its prototypal
nature. All the toolkits work with systematic search and doesn’t seem to be any
references to local search or even hybrid schemes. The exception is Comet (one of
the reasons why it is in this list of related work) which has abstractions for the

specificities of hybridizations between systematic and hybrid search.

One characteristic present in some of the presented frameworks such as Gecode
or Minion is the support for modelling. Gecode, for example, supports regular
expressions for extensional constraints and expressing linear and Boolean constraints

in the standard way as expressions build from numbers and operators.
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5.10 Summary

CASPER is an adaptation of the AJACS model to the C programming language
and developed to run on and take advantage of the Cell/B.E. while hidding the
complexity of this architecture.

There are some similarities between the Cell/B.E. and the AJACS model. Both
have a controller, responsible for management of work and workers that are the real

“workforce” .

The architecture of CASPER is composed of 3 levels (figure 5.3.1): the AJACS, the
Cell and the Application levels.

The bottom level is the AJACS Level. It implements the AJACS model and
its associated concepts such as Store or Constraint. Particularly important in this
level is the Search procedure, which works on independent states to achieve parallel
execution and by keeping a minimum of Stores in memory to guarantee a small

memory footprint to avoid overflow of the SPE’s small Local Store.

The middle level is the Cell Level. This level hides the Cell/B.E. programming
complexity and interacts with the AJACS Level - calling the search function - to solve
a Problem. To this level belong the Controller and Worker concepts implemented
for the PPE and SPE, respectively.

The third and upper level, named Application Level, represents the user applica-
tion stating solely the problem to be solved and calling the procedure responsible
for the whole problem solving.

Sometimes one does not require completeness or only needs to find quickly one
acceptable solution, provided by a local search method. CASPER extends the search
by implementing an hybrid approach, combining propagation and local search. The
local search algorithm choosen was Adaptive search, an heuristic method in which
the key idea of the approach is to take into account the structure of the problem

and use problem-oriented and variable-based information to design general meta-
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heuristics. The choice has fallen on this algorithm due to its simplicity and good

performance.

The integration of the Adaptive search method consists of creating a “jump point”
where the switch from propagation-based search to local search is done. When it
starts, the adaptive search algorithm considers the work done previously by the
complete search. For example, if one variable is already ground, its value won’t be

changed since it is already consistent.

A quick look and comparison to some existing work (Gecode, Ilog CP, Choco, Minion
and Comet) provides a good manner to position and assess CASPER’s features.
CASPER possesses some unique characteristics when compared with other systems
such as the implementation language, the parallel architecture and the hybrid search.
Also, it shows that some work can be done in the design in order to allow more

customization, dynamism and modelling support.
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Chapter 6

Experimental evaluation

In order to get some feedback on the behaviour of our framework, we conducted an

initial performance assessment.

The evaluation centers in classical problems used as tests to assess CSP solving. The
used test programs are toy-problems but should be enough to give a preliminary idea
of how does the framework behaves. These test programs are detailed in the next

sections.

Performance measurement here means the wall-clock time needed to run a test

program. The wall-clock time is obtained with the Unix utility ¢ime.

6.1 Hardware and Software environment

The hardware and software environment used is summarized in the two tables
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Table 6.1.1: Hardware environment

CPU Dual Cell system (QS20)

PPE 64-bit dual-threaded

PPE Caches L1 - 32KB, L2 - 512KB

SPE LS 256 KB

SPE Cache No cache

Filesystem type | ext3

Memory (RAM) | 1024 (512 MB for each Cell/B.E.)

Table 6.1.2: Software environment

Operating System | Linux 2.6.20

Distribuition Fedora Core 6
PPE compiler ppu-gcc
Version 4.1.1

SPE compiler spu-gec
Version 4.1.1

PPE compiler flags | -O2 -ftree-vectorize
SPE compiler flags | -O2 -ftree-vectorize

6.2 Test programs

N-Queens

The N-Queens problem is a classical CSP example. Although simple, the N-Queens

is compute intensive and a typical problem used for benchmarks.

The problem consists of placing N queens on a chessboard so that it’s not possible
for a queen to attack one other one on the board. This means no pair of queens

can’t share a row, a column nor a diagonal and that these are our constraints.

Modelling the problem is then:

e N variables , implicitly queen i is on line 3

e each variable with a domain {1,2,...,N}
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e the constraints: all variables with a different value (not in same column) and

no two queens in the same diagonal.

SEND+MORE=MONEY

The SEND+MORE=MONEY is another classical example, usually used to demon-
strate and test CSP solvers. This problem consists on assigning a distinct digit to
each letter {S,E,N,D,M,0O,R,Y} a value so that the equation holds. Also, the letters
S and M must be different from 0 (no leading zeros).

The model for this toy problem is therefore straightforward:

e 8 variables (one for each letter)
e each variable with a domain {0,1,2,...,9}

e the constraints: the equation must hold and S and M must have a value
different from 0.

Golomb Rulers

A Golomb ruler of size M is a ruler with M marks placed in such a way that the
distance between any two marks are different. It is a hard problem (NP-complete) for
which an algorithm to find the optimal solution for M > 24 is not yet known. This
problem has practical applications in sensor placements for x-ray crystallography

and radio astronomy.

The model used for this problem is:

e one variable for each mark used (7)

e each variable with a domain {0,1,2,...,25} which is the optimal ruler size for

the number of marks
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e constraints used: the first variable must be zero, the distances between any
two marks are distinct and the variables value is incremental that is, X; <

Xo< ... <X,

6.3 'Tests results

In this section, we present the experimental results. For each test program, sev-
eral performance measurements are shown and, wherever necessary, commented on.

General conclusions will be drawn in section 6.4.

For all tests the following scenarios used were: With adaptive search (With adaptive)
and Without adaptive search (Without adaptive). Both situations were considered
using compiler optimization (With Optimization) and no compiler optimization at

all (No Optimization). All combinations were done for 1, 2, 4, 8 and 16 Workers.

Queens

The overhead measured for all three Queens tests are shown in table 6.3.1. The
results are stable (increased overhead when numbers of workers increases) and very

low.

Table 6.3.1: Queens Overhead
Number of workers | 1 2 4 8 16

Overhead Queens 4 | 0.00154 | 0.002595 | 0.00483 | 0.008143 | 0.022917
Overhead Queens 6 | 0.001734 | 0.002819 | 0.004998 | 0.011433 | 0.022045
Overhead Queens 8 | 0.00167 | 0.00273 | 0.00493 | 0.11437 | 0.02231

The table 6.3.2 shows the results obtained for all three Queens tests.

In all Queens’ tests, the results from Queens4 are the most different. Graphic 6.3.1

illustrates the results for Queens 4. The performance decreases as the number of
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Table 6.3.2: Queens results

Number of workers 1 2 4 8 16
Queens 4 | No Optimization With adaptive 0.008 | 0.09 | 0.012 | 0.018 | 0.030
Without adaptive | 0.009 | 0.010 | 0.013 | 0.017 | 0.030
With Optimization | With adaptive 0.017 | 0.015 | 0.015 | 0.018 | 0.029
Without adaptive | 0.008 | 0.009 | 0.012 | 0.017 | 0.028
Queens 6 | No Optimization With adaptive 0.255 | 0.130 | 0.081 | 0.051 | 0.0440
Without adaptive | 0.059 | 0.035 | 0.025 | 0.023 | 0.031
With Optimization | With adaptive 0.090 | 0.049 | 0.034 | 0.027 | 0.029
Without adaptive | 0.031 | 0.022 | 0.017 | 0.019 | 0.030
Queens 8 | No Optimization With adaptive 1.149 | 0.610 | 0.380 | 0.220 | 0.130
Without adaptive | 1.575 | 0.797 | 0.404 | 0.232 | 0.137
With Optimization | With adaptive 0.369 | 0.196 | 0.114 | 0.072 | 0.053
Without adaptive | 0.653 | 0.336 | 0.173 | 0.102 | 0.067

Workers is augmented except for the scenario with adaptive search and no opti-
mization where the performance is better increasing the number of Workers up to
4. Surprisingly, the scenarios with adaptive search were slower than with complete

search.

With Queens 6 everything starts looking more interesting. Looking at 6.3.2, in
all scenarios the performance is better as more workers are added. Still, as with
Queens4, the adaptive search behaves poorer than the complete search. Also the
difference between optimized and non-optimized code is particularly noticeable when

using adaptive search.

The Queens 8 test (figure 6.3.3) also behaves better as the numbers of Workers is
increased. This is particularly clearer up to four Workers. The difference between

optimized and non-optimized code is the greatest so far.

In contrast with the two previous Queens, Queens8 is faster using adaptive again
specially with 1, 2 and 4 Workers and then takes almost the same time with and

without adaptive search.
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SendMoreMoney

The Overhead continues very similar across all tests, including with the SEND +

MORE = MONEY test. Table 6.3.3 presents the overhead values.

Table 6.3.3: SEND+MORE=MONEY Overhead
Number of workers | 1 2 4 8 16

Overhead 0.001977 | 0.003006 | 0.005298 | 0.010726 | 0.022625

The timing results for this test show nice and encouraging results considering the size
of this problem when compared with the other tests. The results obtained provide
meet the initial expectations. The solution (this test only has one) is obtained
much faster when more workers are involved and much faster when using the hybrid

method (from 2.163 to 0.059 secs).

Figure 6.3.4 illustrates the results obtained. In all scenarios there is an improvement
every time more workers are added and the hybrid search always behaves better than

the complete search.
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Table 6.3.4: SEND+MORE=MONEY Results
Number of workers 1 2 4 8 16

No Optimization With adaptive 0.517 | 0.265 | 0.145 | 0.105 | 0.059
Without adaptive | 2.163 | 1.087 | 0.551 | 0.283 | 0.158
With Optimization | With adaptive 0.161 | 0.086 | 0.051 | 0.035 | 0.033
Without adaptive | 1.097 | 0.573 | 0.351 | 0.211 | 0.096
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Figure 6.3.4: Money plot

Golomb Rulers

The table 6.3 shows the measured overhead for the Golomb Ruler test. They are
slightly different from the previous tests specially with less workers but the biggest
overhead (with 16 workers) is not much greater than before in spite of having much

greater complexity.

Table 6.3.5: Golomb Ruler Overhead
Number of workers | 1 2 4 8 16
Overhead 0.00334 | 0.004303 | 0.006842 | 0.0129 | 0.024491

Table 6.3 presents the measurements obtained for the Golomb Ruler test. The
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parallelization increases the performance but only without adaptive search. With

the hybrid approach (with adaptive search), the results are disappointing as if there

was no parallelization at all.

Table 6.3.6: Golomb Ruler Results
Number of workers 1 2 4 8 16
No Optimization With adaptive 25.55 | 37.369 | 40.132 | 32.892 | 40.767
Without adaptive | 12.977 | 6.495 | 2.891 | 1.454 | 0.885
With Optimization | With adaptive 6.033 | 4.349 | 7.127 | 4.877 | 6.294
Without adaptive | 6.353 | 3.183 | 1.577 | 0.810 | 0.413

Without adaptive search, the performance increase gained by adding more workers
is visible: from almost thirteen seconds with one worker (12.977) to less than a
second with sixteen workers (0.885). Here again, the optimized code reduces the
time needed to the half of non-optimized code, doing 0.413 seconds with sixteen

workers.

Figure 6.3.5 illustrates the results obtained excluding the scenario with adaptive

and no optimization.

The results obtained with the hybrid approach are totally disappointing. In this
test, the hybrid approach takes practically always the same time to complete the
task, no matter how many workers are participating. With no code optimization,
the time needed by the hybrid approach is very large when compared with the rest

of the scenarios. Figure 6.3.6 illustrates the results obtained in all scenarios.

6.4 Results interpretation

In general the results are encouraging but not excellent. Of course it is an evolving
prototype and performance results obtained are important only to show a direction

and are not at all definitive.

After running the tests and extracting some performance information, three overall

conclusions can be safely drawn:
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e adaptive search and the hybrid scheme need more tuning since by including
heuristics, the performance depends on their quality

e adding more workers increases performance

e there’s still some space for optimization

All three Queens tests present different results. In Queens4, up to four Workers,
there are two cases where the performance increases: both with adaptive search
with and without compiler optimization. The performance increase is considerable
from 1 to 2 Workers with no code optimization. More Workers means more time
needed due to Overhead increase. This means although the problem is a bit complex
its size is limiting. After fours Workers (or two in some scenarios) , the overhead
takes control and the program is slower. With optimization from the compiler, the
difference from one to four workers is not so evident but is not so surprising since the
program is working between 1.5 and 2 hundredths of a second. A little surprisingly,

running with adaptive search is slower than complete search.

Queens6 behaves much better and takes more advantage of the parallelization.
In this test, most of the scenarios take advantage up to eight Workers and adap-
tive without optimization even benefits from all sixteen Workers. But here again,

adaptive search performs worse than complete search.

From all Queens tests, Queens8 is the biggest and the one which presents results
closer to what was expected. It fully takes advantage of parallelization, with the
program increasing its performance as more Workers are added and the adaptive

search is also, though slightly, faster than the complete search.

Since all three Queens tests solve exactly the same problem, the variations must
depend on the size of the Problem which is where the tests differ. The better results
are due to bigger problem size where are workers work on some Store and don’t just

start and finish without performing any real work.

The other difference has to do with adaptive search. Adaptive search performs better
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with Queens8 and worse with Queens4 and Queens6. Both sides have something
in common: the number of solutions. Queens8 is a problem with many solutions
whereas Queens4 and Queens6 have less solutions (two and four respectively). When
looking for many solutions, complete search takes more time to finish and adaptive
search has the advantage since it will only return one solution for each store it starts
with. With less solutions, complete search is faster acknowledging when there are
no more solutions left while adaptive search tries to find a solution where there’s

none until its iteration limit is consumed.

The SEND+MORE+MONEY test corroborates what was seen so far with the
previous tests and adds some extra information. This test is bigger and thus requires

more work. The time needed by one worker is now in the order of seconds.

As the number of workers is augmented, the time needed to get to a solution (the

only one is this case) diminishes, with a good speedup. This happens in all scenarios.

The SEND+MORE+MONEY test implements the equation constraint in a ineffi-
cient way. The propagation always succeeds until the last instant that is, when all are
ground but incorrect then propagation fails. This turns propagation-based search
much slower and in fact it is slower when compared with adaptive search scenar-
ios. Before, with the Queens tests, whenever a problem had less solutions, adaptive
search was slower than complete search because of unnecessary work in Stores with-
out solution. This time this doesn’t happen, although SEND+MORE+MONEY
only has one solution. This leads to the conclusion that adaptive search’s current
implementation is not as fast as it could. The only reason why adaptive search is
faster is because complete search works with a very inefficient constraint. Moreover
and to verify this, a change in adaptive was made. By increasing the limit number of
iterations, the degradation on the hybrid approach was more obvious with adaptive

search trapped too often in local minima cases and repeatedly re-doing work.

Finally, the Golomb Ruler test. In what concerns results interpretation, the Golomb

ruler provides information in two scopes: it agrees with was concluded so far for
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some parts and adds some more information to better understand the frameworks’

behaviour.

On one hand, the complete search behaves well and as expected, agreeing with what
was seen so far since there is a performance increase every time more workers are
added. This test program, by requiring much more time to complete - around 13
seconds with one worker - provides a better view of the benefit by parallelizing the
problem solving, needing less than one second with 16 Workers. Of course, the time
needed could be much less since a Golomb ruler with 7 marks is still a relatively

small problem but once again, the results are encouraging.

On the other side, the program shows deceiving performance when the hybrid ap-
proach is used. Not only the time needed to reach only one solution is extremely
larger than the time needed by complete search, also the parallelization has no ef-
fect. The adaptive search performs practically the same way with any number of
Workers or better, it always performs like having only one Worker. And in fact that
is what is happening. The first Worker to get a Store is the only one which gets
a Store to work on. All other just start and finish because there is no work in the
work list. The first split on the search tree done by the Controller only puts one
Store in the work list, in contrast with all the previous tests, where the work list

was initially more populated.

The reason for this poor performance is the conjunction of 3 factors: the problem’s
nature, the adaptive search’s implementation and the current work-flow of a Worker.
First the problem’s nature: the problem starts with a search tree with only one
branch so there will be only one to be put in the work list. Also the propagation
fails very often because of the problem’s tight constraints therefore having less Stores
transfered to the W(;rk list. As already mentioned, the adaptive search needs work
and in the Golomb Ruler’s test this is evident. It takes to much time to find a
solution and sometimes doesn’t find one. Finally and more importantly, the Worker’s

behaviour. As explained in chapter 5, the Worker loops until there’s work to be
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done. Since the work list starts almost empty, all Workers except the first exit
without performing work. This is why parallelization has no effect and the program

behaves always like it has only one Worker.

In summary, the overall results from the different tests are similar. The first ob-
servation is to the test’s size. Although they provide insight on the framework’s
behaviour, they revealed themselves small for taking advantage of the paralleliza-
tion among sixteen workers. The positive side is that the framework performs bet-
ter than initially expected. With Queens8, SEND+MORE+MONEY and specially

Golomb Ruler, the effects of the parallelization are more visible.

The hybrid model is still a work in progress. The current implementation of the
adaptive search still needs some work in order to obtain performance gains such as
those reported on in [8]. This can be seen in the Queens4, Queens6 and definitely
in the Golomb Ruler as when increasing the iterations’ limit. It gives less solutions

and takes more time.

The Overhead is pretty constant among all different tests with a slight fluctuation

with optimized and non-optimized code.

One sign for possible future performance increase is given by the use of optimization
flags and comparing its results with non-optimized code. As mentioned before,
Cell specific code is needed to get more performance and some optimization done
by the compiler can give a preview of a performance gain window. The difference
between optimized and non-optimized code is definitely visible. Needless to say
that compiler’s optimization are different from the optimizations done in code by
the programmer but what it means is that there is still space to better and faster

code.

A last point that is worth a comment relates to the experience gained with devel-
oping and doing the evaluation described in this chapter. More specifically, the
difference in performance between using debugging output and not using it. When

using debugging output - which happens most of the time when one is developing a
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prototype - the execution time increases in a great factor. This happens due to the
fact that each request for I/O from the SPE must be handled by the PPE thread.
Although we knew that I/O is handled this way, we did not know that it would lead
to such a great difference. Thus, most of the development time was done with a
wrong and only late cleared assumption. Fortunately it lead to better performace
measurements after removing the debugging output but nevertheless we worked with

false assumptions and that was one lesson learned from this experimentation.
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Chapter 7

Conclusion

In this thesis CASPER was presented, a Parallel Hybrid Constraint Programming
Library.
Today’s hardware tendency is to go multicore, progressively making end-user com-

puters similar to high-performance and scientific machines.

More than solving hardware limitations, this shift in computing has a strong soft-
ware impact. Programmers have now several cores at their disposition which can
possibly increase their application’s performance. The catch is that taking advan-
tage of this performance increase requires complex changes to the software structure,
which needs to be explicitly aware of the performance-motivated underlying hard-

ware architectural changes.

The need of research for new methods and models that are suitable for this hardware
change is high and industry as well as academia are heavily focusing on this.

This thesis’ work looks exactly at this hardware tendency and one particular pro-
gramming paradigm, Constraint Programming, which is a high-level and declarative
programming approach where programs are stated as a series of relations (con-

straints) between variables.

The work starts by two given points: the Cell/B.E. and the AJACS model. The
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Cell/B.E. is a very innovative architecture that reveals much of the characteristics
of future architectures and includes itself in the current multicore trend. On the
other hand, the AJACS model for constraint programming already proved some

interesting results in a distributed environment.

CASPER results from matching these two points and by extending it with local
search capabilities. It is an experimentation of how well both work together. As

result a prototype was developed.

Despite the prototype’s early state of development, some tests were developed to
initially assess the viability of the whole framework. The tests results look promising
and point at some issues to be dealt with. The AJACS model is interesting and
suits the Cell/B.E. architecture, specially in what concerns to the model’s parallel

execution architecture where controller and workers fits nicely with PPE and SPEs.

The results are not yet excellent but also not frustrating. They provide a good
incentive for further work. Some tests are small to take full advantage of paralleliza-
tion but the bigger ones already provide some good results. They take advantage of
the parallel work done by the workers and faster results with the hybrid scheme in

sSome scenarios.

7.1 Future work

The present design and implementation of the prototype is effectively a work in
progress. It is the result of experimentation and the starting point for the investi-

gation of constraint programming capabilities and limits in a novel architecture.

Naturally, the current codebase will be subject of modification in order to address

current limitations.

This first implementation is very “naive”, making use of static structures and some
hard-coded values. This has obviously to change since it restricts the variety of

problems to solve.
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Also related to this static nature, the currently used data structures might suffer
changes, reducing dependencies and memory footprint - specially for the SPEs. It
might depart from the initial AJACS model and evolve on itself. More analysis and

options have be produced.

The current implementation is simple. More work on optimizing the code must be
done, more importantly on the SPE side, using wherever possible SIMD code and
reducing branching as the two most striking improvements. The objective, together
with performance, is to reduce the SPE code-size in the LS. Although this is very
architecture dependent it will be worthy when trying to solve more real and heavy

problems.

The algorithms too, might benefit from some redesign namely the algorithm for
Adaptive search which still iterates too much and requires extensive individual tun-

ing in some cases in order to extract good speedups.

It is also an objective to enhance the declarativiness of user-programs by providing
a richer API, possibly including a language pre-processor to provide a measure of
syntact sugaring. The whole point is to describe problems and its constraints as
well as to extend the solver in a very simple way, hiding hardware complexity and

control.

Besides implementation details and improvements, the design still has issues which

are worth further experimentation and are interesting for new revision and extension.

Although thought of since the beginning, single-source was not accomplished.
This is particularly relevant for programming propagators and other constraint pro-
cedures, which must be usable in both kinds of context, controller and workers. This
may well require the development of a tool responsible for a pre-processing phase,

which then feeds the different compilers.

A more radical design change passes by differentiating SPEs responsibilities. Cur-
rently, each worker (from the AJACS model), running on an SPE carries out the

same kind of work. It would be interesting to have workers with different roles, like
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selector and propagator, where each would do a simpler task instead of the whole
procedure as presently. They would communicate between each other, creating a
pipeline and exploit the Cell/B.E. inner bus (EIB), which has very high bandwidth,
much greater than memory access. This redesign would address several problems:

e locks: there would be no need to synchronize the access to the indexes via

atomic operations, a current bottleneck.

e access to memory: reduce greatly the number of accesses to main memory

which are slower that communication between processor elements

e space used in the LS: reduce each SPEs code size would save important LS

space for data

e simplify the code: simpler code leads to less bugs and is easier to optimize

This design is currently being reasoned to put into practice.

Another point, is the class of problems that can be modelled using the framework i.e.
whether the problems which can fit into SPEs have a sufficiently complex processing
associated with them to result in a significant performance gain for the overall
constraint solving goal. This includes developing more and increasingly complex

tests and look at real problems which would benefit from the performance gain.

A more long-term line would be looking at networks of Cell/B.E. blades, creating
another layer. There are already controllers and workers and this can be extended

to teams or departments, in a distributed memory model.
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