
Probabilistic Perception Revision in AGENTSPEAK(L)

Francisco Coelho and Vitor Nogueira

Departamento de Informática, Escola de Ciências e Tecnologia, Universidade de Évora
{fc,vbn}@di.uevora.pt

Abstract. Agent programming is mostly a symbolic discipline and, as such,
draws little benefits from probabilistic areas as machine learning and graphical
models. However, the greatest objective of agent research is the achievement of
autonomy in dynamical and complex environments — a goal that implies embrac-
ing uncertainty and therefore the entailed representations, algorithms and tech-
niques. This paper proposes an innovative and conflict free two layer approach
to agent programming that uses already established methods and tools from both
symbolic and probabilistic artificial intelligence. Moreover, this method is illus-
trated by means of a widely used agent programming example, GoldMiners.

1 Introduction and Motivation

Agent autonomy is a key objective in Artificial Intelligence (AI). Complex environ-
ments, like the physical world where robots must delve, impose a degree of uncertainty
that challenges symbolic processing. But while a probabilistic approach, currently ex-
pressed in Machine Learning (ML) and Probabilistic Graphical Models (PGMs) [14],
is required for certain aspects of autonomy, a great deal of agent programming is bet-
ter handled by declarative programming (e.g. PROLOG) and more specifically, Beliefs,
Desires and Intentions (BDI) architectures for autonomous agents, part of symbolic AI.

Symbolic and probabilistic areas of AI are not necessarily incompatible. Consider
for example distribution semantics [18] and markov logic [8]. From there two paths
exist towards the interplay of symbolic and probabilistic AI: extending PGMs with lo-
gical representations, in Statistical Relational Learning (SRL) [18], and extending logic
programming languages with probability, in Probabilistic Logic Programming (PLP)
[11,12]. For autonomous agents the symbolic vs. probabilistic division persists. Sym-
bolic architectures, such as BDI, describe agent behavior on the basis of metaphors (e.g.
goals, beliefs, plans) drawn from human behavior while the principle of Maximum Ex-
pected Utility (MEU) guides probabilistic AI but there is only seminal work blurring
that division.

Concerning agents programming JASON [6] is a popular AGENTSPEAK(L) (ASL)
[17] interpreter and framework, triggering a considerable amount of research (e.g. [5]).
The BDI architecture in general, including ASL and JASON in particular, outline a set of
symbolic data structures and processes with more or less detailed semantics. However
we can see these agents in trouble when their environment becomes stochastic. This
assertion is supported by the experiment plotted in Figure 3: the GoldMiners (GM)
is a virtual scenario used in the 2006 Multi-Agent Programming Contest [3] edition,
now part of JASON’s examples. The two playing teams reach scores that are clearly

Percepts BRF

Beliefs

Events

Plans Library

Generate Options

SE

SO

Intentions

SI

Action

Fig. 1. The JASON deliberation process outlined, with the BRF highlighted. Percepts are pro-
cessed to generate events and update the beliefs base. Available options are instantiated plans
triggered by one event (selected by SE) and compatible with the current beliefs. One option (de-
fined by SO) is then appended to the intentions, where SI chooses an action.

reduced even with a small amount of sensor misreadings. It turns out that Bayesian
Networks (BNs) are representations of dependency of random variables and, thus, nat-
ural candidates to represent probabilistic beliefs. But replacing symbolic beliefs by BNs
is not trivial in part because changing the symbolic nature of beliefs entails reconsider-
ations about the BDI architecture (e.g. the beliefs base must unify with plans contexts;
changing these to a distribution will break the semantic of such unifications).

Our proposal is, at large, to wrap a layer of probabilistic techniques around certain
symbolic processes without altering those processes or associated semantics. Here we
illustrate this approach by focusing on the perception. In a stochastic environment, with
a certain probability, values reported by sensors differ from the actual value. If sensor
reported values are directly used by the deliberation process then performance suffers
a penalty that results from the illusions about the truth of the environment. But sen-
sor misreadings can be partially corrected under certain conditions using probabilistic
methods. Our task is to find out if with such corrections performance degradation is
attenuated and the added complexity has little impact in the deliberation cycle.

The remainder of this paper is organized as follows: next are provided the main
concepts of these areas, followed, in section 2, by a general description of the percept-
correction function (PCF) in the BDI architecture and a specific instantiation for the
GM scenario extended with sensor misreadings. Section 3 presents a particular experi-
ment on that scenario and respective results. In the last section the authors draw some
conclusions on that experiment and outline future research.

1.1 State of the Art

Here we outline the groundwork of our proposal: the ASL language, its interpreter JA-
SON, together with PGMs, Dynamic Bayesian Networks (DBNs), and Hidden Markov
Models (HMMs).

AGENTSPEAK(L) and JASON. BDI is the predominant architecture used for defin-
ing intelligent agents. ASL [17] can be described as a logic programming based lan-
guage geared towards the BDI architecture. JASON [6,4] implements the operational
semantics of an extension of ASL and its deliberation cycle is depicted in Figure 1. In
this cycle, the environment generates percepts that are processed by a belief-revision

function (BRF). Each change in the beliefs base generates an event. Goals in the set of
events represent different desires that the agent selects by the function SE . The selected
event entails applicable plans (options) instantiated from the plans library. Selection of
a plan among applicable ones is performed by the function SO and included in the set
of (current) intentions. Finally function SI selects one action from the set of intentions
the one (action). Although the BRF evaluation is not part of the ASL specification it
is a necessary component of the architecture. The default one that comes with JASON
“simply updates the belief base and generates the external events in accordance with
current percepts. In particular, it does not guarantee belief consistency.” [4] (neverthe-
less, in [1], the authors present a polynomial-time belief revision algorithm that restores
belief base consistency when there are derived inconsistencies). JASON is used as the
ASL framework and scenario simulator in this work.

Hidden Markov Models and Dynamic Bayesian Networks. HMM is a well-
known framework to deal with latent variables in stochastic processes [2,16,14]. A
(discrete) system state at time step t is described by a random variable X (t) that verifies
the markov condition Pr(X (t+1) | X (0:t)) = Pr(X (t+1) | X (t)). This distribution is the tran-
sition model of the system. If X (t) is hidden but a sensor model Pr(Y (t) | X (t)) is known
then the filter problem is to compute the distribution of X (t) given an initial state, x(0) ,
and a sequence of observations, y(1:t) . The forward algorithm is a common procedure
to compute Pr(X (t)) that requires a belief about the previous environment state, x̂(t−1) ,
updates it with the transition model and corrects that update with the sensor model and
current sensor reading, y(t) . The major problem with a naı̈ve approach of HMMs is
that the size of the transition model is quadratic in the number of system states. DBNs
tries to minimize this problem by exploiting independences in the structure of the sys-
tem to, hopefully, produce smaller representations of the transition and sensor models.
The general HMM and DBN frameworks can be used directly to describe agent related
problems. Perceptions are represented by the observation model and actions by an ob-
served variable, say a(t) . The transition model becomes Pr(X (t) | X (t−1) ,A(t)) and the
sensor model Pr(Y (t) | X (t) ,A(t)). DBN are used in this work to correct agent percep-
tions. In this specific case the transition and sensor models have many independence
relations that are exploited to obtain “small” matrices. The next section describes the
construction of such models.

2 Probabilistic Perception Correction

Here we illustrate how probabilistic methods can be used to improve performance in
the GM noisy scenario without changing original the symbolic processing.

Currently the problem of extending ASL with probabilistic features is mostly di-
rected to belief representation and addressed by many authors [15,10,9,13,19] but isn’t
yet fully solved. An alternative and less intrusive application of probabilistic AI to ASL,
proposed here, targets the processes instead of the data structures. Bounding probabilis-
tic techniques to the computation of certain ASL functions (e.g. the BRF, SE ,SO ,SI
functions, as in figure 1) promises a number of advantages. Since the computations
of those functions are unspecified in ASL (and overwritable in JASON), probabilistic
techniques can be used there without invalidating previous work. So symbolic and prob-

Detail current belief revision. to include perception correction before symbolic BRF.

Percepts BRF

Beliefs Percepts PCF

Sensors Belief

sBRF

Beliefs

Fig. 2. Inclusion of percept-correction function (PCF) before the original, symbolic, BRF (de-
noted by sBRF) to correct noisy perceptions. The Sensors Belief is a distribution of sensor values
and independent of the (symbolic) beliefs used in the BDI deliberation.

abilistic AI have clearly separated roles and each is used to solve “familiar” problems
in the respective domain while both simultaneously contribute to the agent behavior.
Symbolic programming uses unchanged ASL programs to define high level agent be-
havior, with plans, beliefs, etc. while probabilistic algorithms process low level noisy
signals — with BNs, influence diagrams, etc.

Defining certain functions of ASL as tasks to be solved by probabilistic techniques
seems a promising technique to address open problems in agent autonomy, using al-
ready known theory and tools. Next we describe the setup of an example of this in-
terplay of symbolic and probabilistic techniques. This experiment uses original ASL
programs designed for a (mostly) deterministic scenario; adds sensor misreadings, the
respective rate being defined by a parameter; re-defines the computation of the BRF
with the help of a probabilistic process and records the performance of agents. The out-
come of the first two steps is depicted in Figure 3 where performance degradation is
associated with increased sensor misreadings.

Problem Statement: (Noisy) GoldMiners. The GM competition is described in
[7]. A miner is equipped with a 3×3 grid of sensors, Y0:8, that scans its neighborhood.
Each sensor reports the content of a cell, that can be one of empty, obstacle, gold or
miner. The miner can also select one action of up, down, left, right, pick, drop and
skip. Non-determinism is present as incomplete perception and action failure and in the
examples in JASON noise increases the probability of action failure in proportion to
current cargo. Values depicted in Figure 3 result from the JASON simulator with noisy
sensors. The “noise” parameter is the rate of cell misreadings. Sensors are independent
but equally parameterized: the value reported by each sensor depends only on the noise
parameter and cell content.

Proposal: Percept-Correction Function. Our proposal to recover agent perfor-
mance is to prepend a percept-correction function (PCF) to the BRF applying proba-
bilistic knowledge of the environment (see Figure 2). Correction of perceptions is an
inference problem in the framework of HMMs and DBNs .

The formal problem statement is: In the GM simulation extended with sensor noise
parameter θ, update the estimate of cells content x̂′0:8 given the previous estimate x̂0:8,
current action A′ = a′ and sensor readings Y ′0:8 = y′0:8. For notation simplicity we write
X = X (t−1)

0:8 ,X ′ = X (t) , etc. A resolution is as follows. Given the previous estimate x̂,

N(0) = {0,1,3} N(1) = {0,1,2,4} N(2) = {1,2,5}
N(3) = {0,3,4,6} N(4) = {1,3,4,5,7} N(5) = {2,4,5,8}
N(6) = {3,6,7} N(7) = {4,6,7,8} N(8) = {5,7,8}

Table 1. Neighbors in the grid sensor. The function N(i) defines the set of neighbors of sensor
i. From this topology follow independence statements of the form X ′i ⊥⊥ X\N(i) | XN(i) where
\N(i) is a short-hand to 1 : 8\N(i).

current action a′ and sensor reading y′, the update is

Pr(X ′ | x̂,a′,y′) ∝ Pr(y′ | X ′)Pr(X ′ | x̂,a′) (1)

and perception correction is the maximum a posteriori (MAP) of each sensor,

x̂′i = args maxPr(X ′i = s | x̂,a′,y′) (2)

where s ranges over all (four) sensor values. The args max computation doesn’t require
normalizing the right side of Equation 1, a welcome simplification but direct calculation
doesn’t scale to the grid sensor. Each location has four different values so the state
space has 49 and for each action the corresponding transition has 49×2 parameters.
Numbers of this magnitude render intractable a direct HMM approach. Fortunately, the
grid sensor entails many independence statements that reduce the number of transition
and observation parameters to a convenient size:
1. Sensor values are independent between them so instead of a “big” transition we

only need to deal with nine “small” transitions, one for each sensor;
2. Updated values of each sensor depend only on the action and the previous values

of neighbor sensors, defined in Table 1. This can be further refined when the action
is considered (e.g. for the “up” action the “bottom” neighbors are irrelevant);

3. The observed value of a sensor depends only on the corresponding cell content;
Using these independence statements the transition and observation models can be de-
scribed by relatively small matrices and the computations of Equations 1 and 2 become
acceptable for the inclusion of the PCF in the BDI deliberation process. The sensor
model is very simple:

Pr(Y ′i = x | X ′i = x) = 1−θ, ∀x (3)

for noise parameter θ. The transition model, more complex than the sensor model, is
explained in the next sub-section.

Resolution: Transition Model. The transition model is based on a few simplifying
assumptions about the environment:
1. The state of the environment only changes by effect of the miner’s actions. In par-

ticular detected miners do not move and gold doesn’t “appear” in empty cells;
2. The miner never moves to “obstacle” or “miner” cells;
3. The content of unscanned cells is uniformly distributed over all possible values;

The state of a sensor depends only on the action and previous values of the neigh-
bors. Different actions entail different schemes for the transition parameters, easier to
describe one action at a time.

Action “skip”. In this case the miner doesn’t change the environment state;
Action “pick”. The miner removes a gold from its location, if one exists;
Action “drop”. The miner adds a gold in its location, if that cell is empty;
Action “up”. The miner moves up and the sensors that enter unscanned cells are

{0,1,2}. For these cells the scanned value is uniformly distributed. Each one of the
other sensors scans the cell previously above it;

Remaining actions (“right”, “down” and “left”.) These are similar to “up”;
These descriptions can be easily translated into conditional probabilities that com-

pletely define the transition model for the sensor grid. That model can be used by the
forward algorithm outlined before and Equations 1 – 2 to correct perceptions.

3 Results

The proposed approach requires support on the effect it may have on agents perfor-
mance. Our option was to gather empirical evidence to guide further research.

Implementation Notes. JASON already provides a simulator for the original GM.
Its object-oriented nature helps the construction of a noisy variant by overriding some
classes and methods. Computation of the PCF uses two libraries developed by the au-
thors, one (at https://github.com/fmgc/jpgm) targeted to the sparse representation of ma-
trices and related operations and a second one (at https://github.com/fmgc/ngm) bridg-
ing the operations of the first library to the noisy GM scenario. These are minimal
libraries providing only the necessary support here.

Empirical Results. Evaluation of the effect of the PCF uses three teams: a “dummy”
team that barely uses any ASL features; a “smart” team that makes heavy use of
ASL but not the PCF and a “corrected” team that has the same ASL programs of the
“smart” team and uses the PCF. Performance of each team is the number of gathered
golds after a given number of time-steps and the sensor noise rate is set at five values:
0.000,0.025,0.050,0.075 and 0.100. A run is defined by a team and a noise value and
simulates the GM scenario for 700 time-steps. At the end the number of gathered golds
is recorded. Each run (team, noise) is launched ten times and those runs are summarized
by the mean and standard variation of the number of gathered golds. The final result are
fifteen pairs of (mean, standard variation), plotted in Figure 3.

4 Conclusion

These results provide empirical support to further research the interplay of symbolic
and probabilistic AI specifically concerning BDI agent architectures.

There seems to be no major theoretical obstacles to generalize this method to other
domains and applications. However probabilistic inference in general is intractable [2]
despite factorization methods and efficient algorithms for specific graph structures (e.g.
DBN, Junction Tree). Probabilistic learning was not considered here, although unsu-
pervised bayesian learning seems tailored to suit autonomous agents since the benefits
of self-reconfiguration might prove critical. Again, adoption of such features stumbles
into the computational complexity of the problem.

https://github.com/fmgc/jpgm
https://github.com/fmgc/ngm

0.000 0.025 0.050 0.075 0.100

0

10

20

30

Sensor noise

G
at

he
re

d
go

ld
s

Effect of Perception Correction

dummy
smart

corrected

Fig. 3. Sensor noise (horizontal axis) vs. agent performance measured by gathered golds (vertical
axis). Performance of the “dummy”, “smart” and “corrected” teams under various levels of sensor
noise are plotted. Each data point summarizes the number of gathered golds by team in a given
noise value and consists of the mean (black line) and standard variation (band of dotted lines) of
ten samples. The results of the “corrected” team are clearly above the others.

For relatively simple scenarios the definition of the transitions of the probabilistic
model of the environment used by the PCF can be done “by hand” but for problems
with large number of variables this raises an usability problem with no easy resolution.
This is also an issue with probabilistic methods, not specific to this work.

One particular problem with this symbolic/probabilistic separation is that there can
be inconsistencies between the probabilistic model and the symbolic beliefs. Also the
advantages of a single, coherent and theoretically sound language cannot be easily dis-
carded. Seemingly in opposition to this line of research, an unified symbolic and prob-
abilistic framework using Markov Logic (MkL), Statistical Relational Learning (SRL)
or Probabilistic Logic Programming (PLP) for example, could, in principle, simplify
the semantic study of agent behavior and formal verification of agent programs.

Future Work. The major application area seems to include robotics where intrinsi-
cally noisy perception is one of the major obstacles to symbolic controls. Hopefully
this line of research might facilitate such integration. Further development of this work
folds into four major lines: formal specification and semantics to support verification of
agent programs, guaranteed behavior, etc; further applications of probabilistic methods
to symbolic agent programming (e.g. use of influence diagrams to sort actions in the in-
tention selection); simulations in virtual environments is a key step in robotics. JASON
already provides a large set of scenarios ready to explore in the lines of the GM exam-
ple presented here; deployment in physical robots like the ardrone or twopi is a major
challenge given the (usual) computation and real-time constraints of such platforms.

Acknowledgements

The people around us, the flow of life, the internet. And, of course, the gracious money
provider, Fundação para a Ciência e Tecnologia.

References
1. Alechina, N., Bordini, R.H., Hübner, J.F., Jago, M., Logan, B.: Belief Revision for AgentS-

peak Agents. In: Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems. AAMAS ’06 (2006)

2. Barber, D.: Bayesian reasoning and machine learning. Cambridge University Press (2012)
3. Behrens, T., Dix, J., Köster, M., Hübner, J.: Special issue about multi-agent-contest II. Annals

of Mathematics and Artificial Intelligence 61 (2011)
4. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Jason. In: Com-

putational logic in multi-agent systems, pp. 143–164. Springer (2006)
5. Bordini, R.H., Hübner, J.F.: Semantics for the Jason variant of AgentSpeak (plan failure and

some internal actions). In: ECAI. pp. 635–640 (2010)
6. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentS-

peak using Jason. Wiley (2007)
7. Dastani, M., Dix, J., Novák, P.: The second contest on multi-agent systems based on compu-

tational logic. In: Computational Logic in Multi-Agent Systems. Springer (2007)
8. Domingos, P., Kok, S., Poon, H., Richardson, M., Singla, P.: Unifying logical and statistical

AI. In: AAAI. vol. 6, pp. 2–7 (2006)
9. Fagundes, M.S.: Integrating BDI model and Bayesian Networks. Master’s thesis, Universi-

dade Federal do Rio Grande do Sul (2007)
10. Fagundes, M.S., Vicari, R.M., Coelho, H.: Deliberation process in a BDI model with

bayesian networks. In: Agent Computing and Multi-Agent Systems. pp. 207–218. Springer
(2009)

11. Fierens, D., den Broeck, G.V., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens,
G., Raedt, L.D.: Inference and learning in probabilistic logic programs using weighted
boolean formulas. arXiv p. 1304.6810 (04 2013), http://arxiv.org/abs/1304.6810

12. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic logic programs
from interpretations. In: Machine Learning and Knowledge Discovery in Databases, pp. 581–
596. Springer (2011)

13. Kieling, G.L., Vicari, R.M.: Insertion of probabilistic knowledge into BDI agents construc-
tion modeled in bayesian networks. In: Complex, Intelligent and Software Intensive Systems
(CISIS), 2011 International Conference on. pp. 115–122. IEEE (2011)

14. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. The MIT
Press (2009)

15. Luz, B., Meneguzzi, F., Vicari, R.: Alternatives to threshold-based desire selection in
bayesian BDI agents. In: 1st International Workshop on Engineering Multi-Agent Systems
(2013)

16. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT press (2012)
17. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language. In:

Agents Breaking Away, pp. 42–55. Springer (1996)
18. Sato, T.: A statistical learning method for logic programs with distribution semantics. In:

Proceedings of the 12th International Conference on Logic Programming (ICLP’95) (1995)
19. Silva, D.G., Gluz, J.C.: AgentSpeak(PL): A new programming language for BDI agents with

integrated bayesian network model. In: International Conference on Information Science and
Applications (2011)

http://arxiv.org/abs/1304.6810

	Probabilistic Perception Revision in AgentSpeak(L)

