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Resumo  

 Intrumentação e processamento de 

sinal aplicado à Electricidade Atmosférica 

O conhecimento atual diz-nos que a atmosfera da Terra em si aprensenta-se como um 

circuito elétrico global, que proporciona uma atmosfera continuamente eletrificada. O estudo 

deste circuito global, bem como os efeitos, globais e locais, sobre a componente vertical do 

campo eléctrico atmosférico, geralmente designada como gradiente de potencial, são de 

grande importância não só devido à resposta dinâmica do gradiente de potencial em relação 

a  estes efeitos, mas também porque é possível recuperar informações a partir das suas 

medidas para inferir propriedades importantes de fatores externos. Desta forma, o impacto 

dos efeitos externos sobre o gradiente de potencial foram estudados para Lisboa desde 1955 

a 1991. As medições foram feitas usando um electrómetro Benndorf na estação 

meteorológica de Portela (nos subúrbios de Lisboa e perto do Aeroporto de Lisboa). Como 

Lisboa é uma cidade histórica, muito povoada e perto do mar, que fornece um conjunto de 

efeitos externos, como a poluição, que podem e devem ser estudados com recurso a mediadas 

de gradiente de potencial. O estudo elaborado contempla o efeito da poluição antropogénica 

como um efeito local no gradiente de potencial e a confirmação de um ciclo semanal 

persistente, devido à poluição urbana. Este estudo foi complementado com uma análise da 

dependência da direção do vento. Um segundo estudo foi feito sobre o efeito da humidade 

relativa sobre o gradiente de potencial. Uma formulação foi desenvolvida para relacionar 

propriedades microfísicas dos aerossóis, principalmente o parâmetro de higroscospicidade, 

com a medida macrofísica que é o gradiente de potencial. Resultados razoáveis foram obtidos 

entre o modelo e os dados experimentais, indicando a presença de uma fracção de aerossóis 

higroscópicos. Um terceiro estudo foi baseado num evento particular, o incêndio do Chiado, 

que teve lugar no dia 25 de agosto de 1986 e é considerado o acidente mais trágico que 

ocorreu em Lisboa desde o terramoto de 1755. O efeito da pluma de fumo sobre o gradiente 

de potencial, assim como o transporte da pluma desde área do Chiado até à Portela foram 

estudados. Foi observado pela primeira vez que o fumo do incêndio foi responsável por um 
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aumento de gradiente de potencial significativo com uma baixa probabilidade de ocorrer por 

acaso. Este estudo pode incentivar o uso de medições gradiente de potencial em detectores 

de rede de incêndios. Finalmente, foram realizadas simulações sobre o Circuito Global 

Elétrico (circuito primário) e seu acoplamento para medições locais (circuito secundário). O 

objectivo foi o de separar os efeitos globais dos efeitos locais gerados pela poluição sobre a 

resistência colunar na superfície da Terra onde as medições são realizadas. 
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Abstract  

Present knowledge tells us that Earth’s atmosphere itself represents a global electrical circuit, 

which provides a continuous electrified atmosphere. The study of this global circuit as well 

as the effects, globally and locally wise, on the vertical component of the atmospheric 

electrical field, usually referred as Potential Gradient, are of great importance not only 

because of the dynamical response of the Potential Gradient to those effects, but also because 

it is possible to retrieve information from its measurements to infer the proprieties of 

important external factors. In this way, the impact of external effects on the Potential 

Gradient was studied for Lisbon from 1955 to 1991. The measurements were done using a 

Benndorf Electrograph at the Portela meteorological station (in the suburbs of Lisbon and 

near the Lisbon Airport).  Since Lisbon is an historical city, very populated and near sea, it 

provides a set of external effects, like pollution, which can and should be studied through 

measurements of Potential Gradient. The core study done contemplates the effect of 

anthropogenic pollution as a local effect on the Potential Gradient and the confirmation of a 

persistent weekly cycle, due to urban pollution. This study was complemented with a wind 

direction dependence analysis. A second study was made regarding the effect of relative 

humidity on the Potential Gradient. A formulation was developed to relate microphysical 

proprieties of the aerosols, mainly the hygroscopicity parameter, with the macrophysical 

measure of Potential Gradient. Reasonable fits were obtained between the model and the 

experimental data indicating the presence of a small fraction of hygroscopic aerosols. A third 

study was based on a particularly event, the Chiado’s fire that took place on 25th of August 

1989 and is considered the most significant hazard which occurred in Lisbon since the 1755 

earthquake. The effect of the smoke plume on the Potential Gradient, but also how the plume 

travelled from the Chiado area to Portela was studied. It was observed (for the first time) that 

the fire smoke was responsible for a significant Potential Gradient increase with a low 

probability to occur by chance. This study might encourage the use of Potential Gradient 

measurements in fire network detectors.  Finally, simulations regarding the Global Electrical 

Circuit (primary circuit) and its coupling to local measurements (secondary circuit) were 

performed. The objective was to separate the global effects from the local effects generated 

by pollution on the columnar resistance at Earth surface where measurements are made. 
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“I have no special talents. I am only passionately curious” 

Einstein, The Ultimate Quotable Einstein (Einstein Archives 39-013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

  

 

 

 

 

 

 

 

I dedicate this dissertation especially to my mother Maria, my sister Vera, my nephew 

Francisco, my niece Carminho, my grandmothers Angelica and Clotilde, my grandfather 

Narciso and my girlfriend Catarina. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

  

Acknowledgments  

Firstly, I would like to thank to my supervisor, Mouhaydine Tlemçani, for his effort in the 

development of this dissertation and for his humor and ideas given through the all process. 

Secondly I would like to mention the help of my co-supervisor,  Hugo Gonçalves Silva, since 

he was the main pillar of this dissertation, not only because of his academic experience, 

namely from a scientific point of view, but also for his guidance, leading me always in the 

right path. 

 

 I am also grateful to Professor Giles Harrison and Keri Nicoll for their massive 

knowledge and help through the scientific articles, which compose this dissertation. Besides 

the fact that they are two of the major figures on atmospheric electrical field in the world for 

quite some time they were also very helpful. Having the chance to work with these figures 

was quite an honor for me and I feel privileged. 

 

 I want to express my thanks to Professor Heitor Reis for his support on article revision 

and for his thoughts, which contributed greatly for the evolution of this dissertation and my 

academic experience. 

 

 Marta Melgão and Samuel Bárias for their disposition of helping me understating 

how to assemble an electrical field measurement system, which we tested in Beja air force 

base and Évora. 

 

 I am grateful to James Matthews and Matthew Wright from University of Bristol and 

Sergio Pereira for his experience in the aerosols field and for their help in aerosol hygroscopic 

growth matter.  

 



 

vii 

  

 Paula Brás Mendes for her help in Lisbon’s climatology, Claudia Serrano for data 

digitalization and Dr. Mário Figueira, from the former Institute of Meteorology,  for installing 

the Potential Gradient sensor and make such measurements. 

 

Bruno Besser from Graz University for his effort in providing information about Benndorf 

Electrometer. 

 

 My family and my girlfriend offered a support pillar through which I could maintain 

myself confident and keep up my moral through the adversities found along this dissertation. 

They kept my motivation always high and helped me to understand how obstacles can be 

overcome and how to learn from them. 

 

 Finally, I would like to acknowledge the support of the Portuguese Foundation for 

Science and Technology (Fundação para Ciência e Tecnologia, FCT) through the 1 year 

research grant from a FCT/COMPETE project EAC: FCOMP-01-0124-FEDER-029197 

PTDC/GEO-FIQ/4178/2012; which Hugo G. Silva is responsible for and that allowed me to 

fulfill the objectives outlined for the present work. 

 

 

 

 

 

 

 

 

 



 

viii 

  

Contents 

1 Introduction .................................................................................................................... 1 

1.1 Historical Overview .................................................................................................. 1 

1.2 Motivation .............................................................................................................. 10 

1.3 Formulation of the global electric circuit ............................................................... 11 

1.4 Atmospheric Ions and interaction with aerosols..................................................... 15 

1.5 Dissertation structure .............................................................................................. 20 

2 Instrumentation and Signal Processing Techniques ..................................................... 22 

2.1 Introduction ............................................................................................................ 22 

2.2 Lord Kelvin’s Water Dropper apparatus ................................................................ 22 

2.3 Benndorf Electrograph ........................................................................................... 24 

2.2 Electric field mill JC 131/F .................................................................................... 26 

2.4 Discrete Fourier Transformation ............................................................................ 30 

2.5 Lomb-Scargle Periodogram .................................................................................... 32 

2.6 Adjusted boxplot .................................................................................................... 33 

2.7 Dormand-Price Method .......................................................................................... 34 

3 PG measurements affected by pollution in Lisbon ....................................................... 36 

3.1 Overview ................................................................................................................ 36 

3.2 Introduction ............................................................................................................ 36 

3.3 Data ......................................................................................................................... 39 

3.4 Methodology ........................................................................................................... 40 

3.5 Results and Discussion ........................................................................................... 41 

4 Aerosol hygroscopic growth and the dependence of atmospheric electric field 

measurements with relative humidity ................................................................................... 50 

4.1 Overview ................................................................................................................ 50 



 

ix 

  

4.2 Introduction ............................................................................................................ 50 

4.3 Formulation ............................................................................................................ 53 

4.4 Data ......................................................................................................................... 56 

4.5 Results and discussion ............................................................................................ 61 

4.6 Potential Gradient modulation by wind effect ........................................................ 64 

5 Transport of the smoke plume from Chiado’s fire in Lisbon (Portugal) sensed by 

atmospheric electric field measurements .............................................................................. 69 

5.1 Overview ................................................................................................................ 69 

5.2 Introduction ............................................................................................................ 70 

5.3 Results and Discussion ........................................................................................... 72 

5.4 Meteorological considerations ................................................................................ 77 

5.5 Air mass trajectory modelling ................................................................................ 80 

6 Numerical simulations of the global electric circuit ..................................................... 84 

6.1 Introduction ............................................................................................................ 84 

6.2 Overview ................................................................................................................ 84 

6.3 GEC simulations ..................................................................................................... 85 

6.3 Circuit equations ..................................................................................................... 86 

6.4 Results and discussion ............................................................................................ 87 

7 Conclusions and future work ........................................................................................ 89 

8 List of Communications ............................................................................................... 91 

8.1 Papers in international scientific periodicals with referees .................................... 91 

8.2 Papers in conference proceedings........................................................................... 92 

8.3 Oral communications by invitation ........................................................................ 92 

8.4 Other oral communications .................................................................................... 92 

8.5 Poster communications ........................................................................................... 92 



 

x 

  

9 References .................................................................................................................... 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

  

List of Figures 

Figure 1.1 Benjamin’s Franklin portrait by Joseph Siffred Duplessis 

(http://www.nPG.si.edu). ....................................................................................................... 2 

Figure 1.2 Benjamin’s experiment proposal to check cloud electrification, (Experiments and 

Observations on Electricity, Made at Philadelphia in America). .......................................... 2 

Figure 1.3 Apparatus used by T.F.Dalibard for Benjamin’s experience. (Franklin, 

Expériences et Observations sur Électricité…, 2nd ed., vol.2, pag. 128, an extended 

translation from English by T.F.Dalibard). ........................................................................... 3 

Figure 1.4 Pierre-Charles Le Monnier portrait by Nicolas-Bernard Lépicié 

(http://fr.wikipedia.org). ........................................................................................................ 4 

Figure 1.5 Giovanni Battista Beccaria portrait by Franz Joseph Anton von Thun-Hohenstein 

(http://www.gettyimages.pt). ................................................................................................. 5 

Figure 1.6 Horace Bénédict de Saussure portrait by Jean Pierre Saint-Ours 

(http://www.summitpost.org). ............................................................................................... 5 

Figure 1.7 Lord Kelvin portrait by Elizabeth King (http://www.docbrown.info). ............... 6 

Figure 1.8 Photographically recorded PG at Kew Observatory in 1861 (Aplin and Harrison, 

2013). ..................................................................................................................................... 7 

Figure 1.9 a) J. J. Thompson portrait by George Fiddes Watt (http://www.bbc.co.uk); b) 

Wilhelm Conrad Roentgen (http://www.nobelprize.org). ..................................................... 7 

Figure 1.10 C.T.R Wilson portrait by James Gunn (http://www.sid.cam.ac.uk). ................ 8 

Figure 1.11 Carnegie vessel photograph courtesy of Carnegie Institution of Washington. . 8 

Figure 1.12 Carnegie and Maud hourly averaged PG in % of mean (Whipple and Scrase, 

1936). ..................................................................................................................................... 9 

Figure 1.13 Active Thunder area around the world (Whipple and Scrase, 1936). ............... 9 

Figure 1.14 Processes of interest in the global electric circuit. Charge separation in 

thunderstorms, which occur in disturbed weather regions, creates a substantial potential 

difference between the highly conducting regions of the ionosphere and the Earth’s surface. 

The positive potential of the ionosphere (positive with respect to the Earth’s surface) is 



 

xii 

  

distributed to fair-weather and semi-fair-weather regions, where a small current (whose 

density is JC) flows vertically. When this current flows through clouds it generates charge 

near the upper and lower cloud edges, which can influence cloud microphysical processes. 

(In this diagram, Mesospheric Convective Systems, which are large scale thunderstorms late 

in their evolution and which favor sprite generation above them, are indicated by MCS; 

sprites are one example of Transient Luminous Events (TLEs); Cloud Condensation Nuclei 

are shown as CCN). ............................................................................................................. 13 

Figure 1.15 Conductivity profile. ....................................................................................... 17 

Figure 1.16 Schematic representation of small ion clusters formations. ............................ 18 

Figure 2.1 Schematic of water dropper equaliser (Gendle, 1912). ..................................... 23 

Figure 2.2 Lord’s Kelvin Electrometer schematic (www.orau.org). .................................. 24 

Figure 2.3 Benndorf’s Electrometer from http://physik.uibk.ac.at. .................................... 25 

Figure 2.4 Benndorf’s Electrometer schematic (Klemens R., 2003). ................................. 25 

Figure 2.5 Field mill operating principle (http://www.missioninstruments.com). ............. 27 

Figure 2.6 JCI 131/F internal design. ................................................................................. 28 

Figure 2.7 Photograph ADC-212. ....................................................................................... 29 

Figure 3.1 Left figure, geomorphology of Lisbon region with three main features marked: 

Serra de Monsanto, Baixa (city center), and Portela Airport (location of the PG sensor). Right 

figure, the rectangle marks the geographical location of Lisbon in Portugal ...................... 37 

Figure 3.2 Mean monthly values of PG measured from Portela during the period from 1980 

until 1990: a) PG for AW and FW (error bars represent standard deviations); b) AW week 

and weekends PG; c) FW week and weekends PG; d) AW and FW-PG relative difference 

between workdays and weekends, ΔPG. ............................................................................. 41 

Figure 3.3 Boxplot of hourly PG values for AW (blue): a) whole week, b) workdays, and c) 

weekend; boxplot for FW (red): d) whole week, f) workdays, and g) weekends. A black line 

in all boxes marks median and the outliers are not presented. ............................................ 42 

Figure 3.4 Annual behavior of: a) PG for AW and FW; (b) ΔPG for AW and FW. Error bars 

represent standard deviations. ............................................................................................. 44 



 

xiii 

  

Figure 3.5 Annual averages from 1980 until 1990: a) PG for AW and FW; ΔPG for AW and 

FW. Error bars represent standard deviations. .................................................................... 45 

Figure 3.6 Lomb-Scargle periodograms calculated using the LSP implementation in 

MATLAB (Brett, 2001) for 1980-1990: a) AW; b) FW. The following parameters were used 

hifac=1 (that defines the frequency limit as hifac times the average Nyquist frequency), 

ofac=4 (oversampling factor). ............................................................................................. 46 

Figure 3.7 Color surface plot of Lomb-Scargle periodograms for each year: a) AW; b) FW.

 ............................................................................................................................................. 47 

Figure 3.8 Noise Upper panel: Evolution of the n-exponent from the Lomb-Scargle 

periodograms shown in Figure 3.6  and Figure 3.7 along the years for period below Tc = 2 

days (empty circle) and above 2 days (full circle): a) AW; b) FW. .................................... 48 

Figure 4.1 Location of the Portela meteorological station (yellow pin) and the industrial 

region of Setubal (red pin) are marked. The Atlantic Ocean and Iberian Peninsula are also 

indicated. A wind rose measured at Portela is also shown. ................................................. 56 

Figure 4.2 Distributions of the hourly PG values, in logarithmic scale, for the four wind 

sectors: NW, NE, SE, and SW. ........................................................................................... 58 

Figure 4.3 Daily behavior of hourly PG values in a boxplot representation. The four wind 

sectors are considered: NW, NE, SE, and SW. ................................................................... 59 

Figure 4.4 𝑅𝐻 dependence of daily averaged PG values of all sectors: NW, NE, SE, and 

SW. Bins with Δ𝑅𝐻 = 5 % in the 𝑅𝐻 range from 30 % to 100 % were used. The label 

attributed to a bin corresponds to its upper limit. Vertical lines mark the hygroscopic growth 

region, in which the analysis is focused. ............................................................................. 60 

Figure 4.5 Fits of the model to the wind sectors: a) NW; b) NE, The error bars represent the 

median absolute deviation (MAD), the solid-line the fitted curve and the dashed-lines the 

model function but with a variation in  of 40 % above and bellow the fitted valued. ...... 62 

Figure 4.6 Boxplots of the four wind sectors: a) NW, b) NE, c) SW and d) SE, divided in 

workdays (WD) and weekends (WK). ................................................................................ 66 

Figure 4.7 Daily behavior of the median PG values for 1980 to 1990 separated in workdays 

(WD) and weekends (WK) for each wind sector: a) NW, b) NE, c) SW and d) SE. .......... 67 



 

xiv 

  

Figure 4.8 Lomb-Scargle Spectra corresponding to the four wind sectors. The following 

parameters were used hifac=1 (that defines the frequency limit as hifac times the average 

Nyquist frequency), ofac=4 (oversampling factor). ............................................................ 68 

Figure 5.1 Image of the Chiado’s fire that took place at Lisbon city center; courtesy of the 

Municipal Archive of Lisbon. ............................................................................................. 70 

Figure 5.2 PG data measured at Portela during 1988 (the green line denotes the PG peak of 

Chiado’s fire on 26th August). ............................................................................................. 72 

Figure 5.3 a) distribution of PG values for all the year of 1988; b) distribution of PG values 

for the summer of 1988. The arrows point to the anomalous PG value in study. ............... 73 

Figure 5.4 Hourly mean behavior of the PG at Portela calculated from all year of 1988 (black 

curve), PG during 25th (red curve) and 26th of August 1988 (blue curve). ......................... 75 

Figure 5.5 Meteorological conditions from 25th and 26th of August 1988 for Portela 

meteorological station (Lisbon airport): a) Potential Gradient; b) Visibility; c) Wind Speed; 

d) Wind Direction; e) Relative Humidity (𝑅𝐻).  The vertical lines denote the start of the fire 

(first green line) and the PG peak hour (second green line). The horizontal red dash line in 

c) marks the fair-weather limit for wind speed, 6 m/s, according to Voeikov (1965). The 

black arrow in d) marks the moment when the smoke plume started travelling to Portela. 78 

Figure 5.6 Rose wind representation in Portela during 1988 (a 3D perspective is used). The 

white arrow marks wind rotation in time from 25th of August at 07:00 up to 26th of August 

at 18:00 (UTC). These moments are marked in the figure. The wind speed varies according 

to 4 colors increasing its magnitude from light blue, dark blue, green and yellow. The 

increasing radius represents an increase in the observations. The Chiado’s fire is marked 

with red pin and Portela station marked with a yellow one................................................. 79 

Figure 5.7 Forward trajectories calculated using Hysplit-4 for air masses at 750 m starting 

at 05:00 h 25th August (first white trajectory) with a new trajectory created each 5 hours 

(blue trajectories) until 16:00 h 26th August (last black trajectory). The Chiado’s fire is 

marked with red pin and Portela station marked with a yellow one. NOAA Air Resources 

Laboratory. .......................................................................................................................... 81 

Figure 5.8 Model projections of the plume spread from Chiado’s fire: a) 25th August, 17:00 

h; b) 26th August, 07:00 h; c) 26th August, 18:30 h; The smoke particle concentration varies 

file:///C:/Users/Admin/Desktop/tese_final_testes.docx%23_Toc421370749
file:///C:/Users/Admin/Desktop/tese_final_testes.docx%23_Toc421370749


 

xv 

  

according to 4 colors increasing its magnitude from light blue, to dark blue, green and 

yellow. The Chiado’s fire is marked with red pin and Portela station marked with a yellow 

one. NOAA Air Resources Laboratory. .............................................................................. 82 

Figure 6.1 Diagram of the circuit model. ........................................................................... 86 

Figure 6.2  a) PG values simulated with the first set of parameters; b) Ionosphere Potential 

derived from the thunderstorms voltage source and resistance for the first set of parameters; 

c) PG values simulated with the second set of parameters; d) Ionosphere Potential derived 

from the thunderstorms voltage source and resistance for the second set of parameters. ... 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/Admin/Desktop/tese_final_testes.docx%23_Toc421370749
file:///C:/Users/Admin/Desktop/tese_final_testes.docx%23_Toc421370749
file:///C:/Users/Admin/Desktop/tese_final_testes.docx%23_Toc421370749
file:///C:/Users/Admin/Desktop/tese_final_testes.docx%23_Toc421370750


 

xvi 

  

List of Tables 

Table 3.1 Mean, median, standard deviation, skewness, kurtosis, and number of hours for 

the period between 1980 and 1990. The atmospheric electric field measurements are divided 

in: AW whole week, AW workdays, AW weekends, FW whole week, FW workdays, and 

FW weekends. ..................................................................................................................... 43 

Table 4.1 Mean, median, Median Absolute Deviation (MAD), skewness, kurtosis, and 

number of hours for the period between 1980 and 1990. The atmospheric electric field 

measurements are divided in: NW, NE, SE, and SW. ......................................................... 58 

Table 4.2 Results from fitting the model to the PG in the northern wind sectors: aerosol 

number concentration (Za) and aerosol hygroscopic growth parameter (a). The goodness of 

the fit is also given (r2). It is assumed that particle dry radius is Ra,0 = 0.1 μm. ................. 63 

Table 5.1 Mean, median, standard deviation, skewness, lower whisker, lower adjacent value, 

upper whisker and upper adjacent value for all year of 1988 (Annual) and Summer of 1988 

(Summer). The last four statistical parameters were calculated trough adjusted boxplot 

method (Vanderviere and Huber, 2004). ............................................................................. 74 

 

 

 

 

 

 



 

xvii 

  

Nomenclature 

Symbol Description Units 

aw Water activity - 

CIE Ionosphere-Earth capacitor F 

CBL Boundary layer capacitor F 

Ez Atmospheric Eletric Field Vm-1 

e Elementary charge C 

f Frequency Hz 

GF Growing factor - 

ℎ̅ Mean - 

h Runge-Kutta step s 

is Electrode current A 

JC Conduction current density pAm-2 

JD Maxwell current density pAm-2 

kB Boltzmann constant JK-1 

M Smoke concentration mgm-3 

N Larger ion number concentration cm-3 

Nf Number of independent frequencies - 

n Total ion number concentration cm-3 

�̅� Total ion mean cm-3 

n+ Positive ion number concentration cm-3 



 

xviii 

  

n- Negative ion number concentration cm-3 

n-exponent S(T)∝Tn - 

PG Potential Gradient Vm-1 

Q1 Firt quartile - 

Q3 Third quartile - 

q Ion production rate cm-3s-1 

qs Electrode charge C 

R2 Goodness of the fit - 

Ra Particle radius µm 

𝑅𝐻 Relative humidity % 

RBL Boundary layer resistor PΩ 

RC Atmospheric columnar resistor PΩm2 

RFT Free Troposphere resistor PΩ 

RFW Fair-weather resistor PΩ 

RS Thunder storm region resistor PΩ 

S Power spectral density - 

T Period days 

Te Ambient temperature K 

t time s 

VI Ionospheric Potential kV 

K Larger ion number cm-3 

Za Aerosol number concentration cm-3 



 

xix 

  

z Heigth m 

µ+ Positive ion electric mobility  cm2V-1s-1 

µ- Negative ion electric mobility cm2V-1s-1 

σ2 Variance - 

σ+ Positive electric conductivity  Sm-1 

σ- Negative electric condutivity Sm-1 

σT Total electric conductivity Sm-1 

ϵ Electric permittivity of air C2N-1m-2 

υ Number of elementary charges - 

βa Effective ion-aerosol attachment coefficient cm3s-1 

α Ion-ion attachment coefficient cm3s-1 

 Higrocospicity parameter - 

τ Lomb Scargle parameter - 

          

 

 

 

 

 

 

 

 



 

xx 

  

Acronyms 

ADC Analog-to-Digital Converter 

AEC Atmospheric Electric Conductivity 

AW All Weather 

CCN Cloud Condensation Nuclei 

FW Fair-Weather 

GCRs Galatic Cosmis Rays 

GEC Global Electric Circuit 

GPC Gas to Particle Conversion 

IQR Interquartil Range 

IpDFT Interpolated Discrete Fourier Transform 

LSP Lomb Scargle Periodogram 

MAD Median Absolute Deviation 

MCS Mesospheric Convective System 

MW Manually observed Weather 

ODE Ordinary Differential Equation 

SPEs Solar Proton Events 

TLEs Transient Luminous Events 

UB Upper Boudary 

LB Lower Boundary 

WD Workday 

WK Weekend 



 

1 

   

1 Introduction 

In the current chapter, an overview of the history of atmospheric electricity will be presented 

from the beginning until nowadays. The key concepts will be discussed, allowing the full 

understanding of the contents referred in this dissertation. In addition, the objectives will be 

explained and the motivation behind this work. 

 

1.1 Historical Overview 

Since ancient times, humanity has tried to understand the natural phenomena, which occur in 

the planet Earth and in the Universe. Therefore, many issues were related to the Gods and 

mythology, because what could not be understood by human mind was instead attributed to 

work of mysterious identities with supernatural powers. One of these cases happens to be 

thunderstorms and lightnings, which were associated with the anger of Gods upon humans. 

Obviously, this was a way to explain what was unexplainable by science in past times. Over 

the years, those superstitions were slowly changed and nowadays, at least for most people, 

they are explained by science with help of scientists.  

 

One of the first documents, which shows the beginning of the understanding about 

atmospheric electricity, was written by Benjamin Franklin and published in 1751 as 

“Experiments and Observations on Electricity, Made at Philadelphia in America”. This 

document is an assemble of a series of letters that Benjamin Franklin sent to Peter Collinson, 

member of Royal Society, about his experiments on the static electricity using a glass tube 

commonly used to excite electricity. In his second letter, written in July 11, 1747, he states 

something very interesting: 

“The first is the wonderful effect of pointed bodies, both in drawing off and throwing off the 

electrical fire”. 

This refers to what we know today as electrical discharges. He tried different materials in his 

experiments and noticed that sharp configurations and metallic objects work better than dry 

wood and bluntly ones. Along his letters he started to use terms like “sparking”, “positively 
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electrified”, “negatively electrified”, which demonstrates an 

understanding of how the charging and discharging process 

was occurring and how the electric current circulates.  

 

 

 

Figure 1.1 Benjamin’s Franklin portrait by Joseph Siffred Duplessis (http://www.nPG.si.edu). 

Concerning the fact that clouds are electrified, Benjamin Franklin proposed the next 

experience: 

“On the top of some high tower or steeple, place a kind of a centry-box (as in FIG. 9.) big 

enough to contain a man and an electrical stand. From the middle of the stand let an iron 

rod rise, and pass bending out of the door, and then upright 20 or 30 feet, pointed very sharp 

at the end. If the electrical stand were kept clean and dry, a 

man standing on it when such clouds are passing low, might 

be electrified, and afford sparks, the rod drawing fire to him 

from the cloud. If any danger to the man be apprehended 

(though I think there would be none) let him stand on the 

floor of his box, and now and then bring near to the rod the 

loop of a wire, that has one end fastened to the leads, he 

holding it by a wax-handle; so the sparks, if the rod is 

electrified, will strike from the rod to the wire and not affect 

him.” 

Figure 1.2 Benjamin’s experiment proposal to check cloud electrification, (Experiments and Observations on 

Electricity, Made at Philadelphia in America). 

It is thought that he never put this idea into practice. Although, it was Thomas-François 

Dalibard, a French scientist who translated  “Experiments and Observations on Electricity, 

http://www.npg.si.edu/
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Made at Philadelphia in America” into French, to be the first one, at least documented, that 

was able to draw sparks from the rod, in Marly-la-Ville, (France) in 1752 (Fleming, 1939). 

 

The apparatus used by Dalibard is presented in Figure 1.3; marked with (a) it is the metallic 

rod, as (g) the silk ropes, as (h) the protection against rain for the silk ropes and as (e) the 

wine bottles to ensure insulation from the ground. With this setup, it was possible to draw 

sparks from the rod or charge a Leyden jar. 

 

Figure 1.3 Apparatus used by T.F.Dalibard for Benjamin’s experience. (Franklin, Expériences et Observations 

sur Électricité…, 2nd ed., vol.2, pag. 128, an extended translation from English by T.F.Dalibard). 
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After Dalibard successful experience, Benjamin Franklin in 

1752 worked on the nature of the thunderclouds’ charge 

using what we know today as “Franklin bells”. Although, 

this instrument was an invention of Andrew Gordon, around 

1740, a University teacher in Germany (Jefimenko, 1973). 

 

 

Figure 1.4 Pierre-Charles Le Monnier portrait by Nicolas-Bernard Lépicié (http://fr.wikipedia.org). 

Pierre-Charles Le Monnier, a French scientist, achieved the next breakthrough in this matter, 

reproducing Benjamin’s Franklin experience with few modifications, (Chambers, 1967). He 

used dust as an indicator of the experience objective and observed that the dust particles were 

attracted to the wire when it was electrified. However, the true discover he made was the fact 

that even in fair-weather, that phenomenon could happen; meaning that there also was a clear 

sky electrification. In 1753 John Canton, a member of Royal Society, did several experiments 

and built a new version of the electrometer at the time, which is documented by him in 

“Electrical Experiments, with an Attempt for account for their several Phenomena; together 

with some Observations on Thunder-Clouds ”, and with this invention he studied the 

electrification of thunderclouds.  Also on that same year, he wrote a letter to the President of 

Royal society about his observations where he states two very interesting thing: 

“The air without-doors I have sometimes known to be electrical in clear weather.” 

Which is the same effect detected by Pierre-Charles Le Monnier, but he made a deeper study 

during different seasons of the year and accounted several different meteorological 

phenomena, leading him to say: 

“[…] for in the succeeding months of January, February and March, my apparatus was 

electrified no less than twenty-five times, both positively and negatively, by snow, as well as 

by hail and rain.” 
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This statement shows that clouds were electrified both positively and negatively. At this 

point, the scientific community already knew that the clouds and the air itself are charged 

and that different meteorological phenomena can modify the charge state, in a positive or 

negative way. Later, several other scientist, worldwide, 

kept working on this thematic, like Francesco Ludovico 

Beccaria, who begun in 1775 to measure daily variations 

in the atmospheric electricity, (Harrison, 2005), where he 

noticed the effect of fog and the positive electrification in 

fair-weather. He kept this task for several years and in 

1789, John Read, driven by Beccaria’s work, made a two-

year series of atmosphere electrification measurements 

(Harrison, 2005).  

Figure 1.5 Giovanni Battista Beccaria portrait by Franz Joseph Anton von Thun-Hohenstein 

(http://www.gettyimages.pt). 

Working on the line of Beccaria was Horace Bénédict de 

Saussure (Switzerland), who found diurnal variations in 

atmospheric electricity, between 1785 and 1788, 

(Chauveau, 1925), reporting: 

“In winter, the season during which I have the best 

observations of serene1 electricity…the electricity 

undergoes an ebb and flow like the tides, which increases 

and decreases twice in the span of twenty-four hours. The 

times of greatest intensity are a few hours after sunrise 

and sunset, and the weakest before sunrise and sunset”  

Figure 1.6 Horace Bénédict de Saussure portrait by Jean Pierre Saint-Ours (http://www.summitpost.org). 

With only primitive instruments, considering the ones existing today, it already could be seen 

a very distinct cycle in atmospheric electricity, which was going to be well defined only in 

1920s through the Carnegie cruises. Nevertheless, it is very important to state that it was 

Charles Augustin Coulomb, who through experiments, noticed that a charge of an isolated 
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object decays to the air with time, (Leblanc, 2008). He did not have enough theoretical basis 

to explain this phenomenon, the electron was not yet been discovered, but he is credited as 

the one who discovered the electrical conductivity of the air, reporting: 

“L’électricité des deux balles diminue un peu pendant le temps que dure l’experience… si 

l’air est humide et que l’électricité se perd rapidement [. . .]” (Coulomb, Mémoires sur 

l'électricité et le magnétisme, 1785).    

After almost 80 years, in 1859 Lord Kelvin developed a new electric field sensor, usually 

called “water dropper potential equaliser” (Aplin and Harrison, 2013). On one hand, with 

this instrument he was able to measure what is known 

today as potential gradient (PG1) related with the vertical 

component of the atmospheric electrical field. On the 

other hand, the method of photography recording was also 

discovered around that time and Lord Kelvin was able to 

build a system to obtain continuous measures of PG, 

known as Kelvin Electrograph. This system was used in 

several places like the Kew Observatory of London from 

1861 to 1864 (Everett, 1868) and in the Eifel Tower 

(Harrison and Aplin, 2003).  

Figure 1.7 Lord Kelvin portrait by Elizabeth King 

(http://www.docbrown.info). 

In Figure 1.8 is presented probably one of the first automatic and continuous records ever 

made of PG, measured in the Kew Observatory and that marked a new advanced in the study 

of atmospheric electricity and automatic measurements: 

                                                 

1 The convention is that PG = dVI/dz, where VI is the potential difference between the Ionosphere and Earth’s 

surface and z the vertical coordinate. It is defined to be positive for fair-weather and is related with the vertical 

component of the atmospheric electric field by Ez = PG. 
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Figure 1.8 Photographically recorded PG at Kew Observatory in 1861 (Aplin and Harrison, 2013).  

After Lord Kelvin, there were 

crucial discoveries, which 

allowed the progress in 

atmospheric electricity science, 

like the one made by Wilhelm 

Conrad Roentgen who 

discovered the ionizing radiation 

in 1895 and the one by Joseph 

John Thompson in 1897 where 

he found what was called the 

electron. 

Figure 1.9 a) J. J. Thompson portrait by George Fiddes Watt (http://www.bbc.co.uk); b) Wilhelm Conrad 

Roentgen (http://www.nobelprize.org). 

With various new instruments and through the development of science in all of its areas, 

Gerdien (1905a) was able to verify that air was slightly electrical conductive, just like 

Coulomb noticed. Gerdier also found that there was a current flowing from the upper 

atmosphere to the Earth’s surface and Charles Thompson Rees Wilson (Wilson 1906, 1908) 

built an apparatus to measure what was called as “air-Earth” current. 

a b 

http://www.bbc.co.uk/
http://www.nobelprize.org/
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Figure 1.10 C.T.R Wilson portrait by James Gunn (http://www.sid.cam.ac.uk). 

During 1920s, the Carnegie vessel sailed all over the world in order to make magnetic and 

electric measurements, specifically to measure PG. The ocean is an excellent location to 

make those measurements since it is less polluted than the continents and they found what is 

known as the Carnegie Curve, which is a characteristically PG variation curve. It was noticed 

that it was almost independent from the location where it was measured. 

 

Figure 1.11 Carnegie vessel photograph courtesy of Carnegie Institution of Washington. 

At this point, there was a lot of speculation about the source of this air current and the 

charging mechanism of earth’s surface and ionosphere and it was C.T.R. Wilson (1921, 1929) 

who proposed that the sources were thunderstorms and rain clouds (bad-weather regions). 
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Since the beginning of the radio wave studies, it was known that the upper atmosphere was 

highly conductive so it was considered that the current was flowing from bad-weather to fair-

weather regions, forming a global electric circuit, (Leblanc, 2008). Further proofs of this 

Global Electric Circuit (GEC) were found using measurements of the daily thunderstorm 

area, where it was found a strong positive correlation with the Carnegie Curve (Whipple and 

Scrase, 1936), see Figure 1.12 and Figure 1.13. At this stage, the basis of the present 

knowledge was built. Such knowledge is still growing today, with the study of new models 

for the Global Electric Circuit as well as the study of external factors impact on local PG. 

 

Figure 1.12 Carnegie and Maud hourly averaged PG in % of mean (Whipple and Scrase, 1936). 

 

Figure 1.13 Active Thunder area around the world (Whipple and Scrase, 1936). 

Linss (1887) concluded that the negative charge of the Earth would leak away in a period of 

approximately 10 minutes when it was not maintained by any charge generating process in 
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the atmosphere. Israel and Kasemir (1949) calculated how fast a charge, which is injected 

into the atmosphere at a point P, distributes itself over a spherical shell with a given air 

conductivity around the globe. Israel (1957, 1970) made other calculations and concluded 

that the atmospheric electric equilibrium, at ground level, is reached in about 30 min.  It is 

also known that the electric charge generated by a thunderstorm takes about 10 to 15 min to 

spread along the ionosphere around the all globe. This fact is the reason why hourly mean 

values are most common for investigation of the Global Electric Circuit. 

 

1.2 Motivation 

The study of the atmosphere, more concretely the study of its electrical properties as well as 

their effects, are a point of deep interest since it can be used to analyze natural phenomena 

related to humankind. Not only weather conditions can be retrieved from PG analysis but 

also the consequences of PG variations can dictate the start of, for example fires or fog events. 

The importance of PG is so vast in many different areas of society and it can be very handy 

in several situations that the curiosity to study it is too tempting.  

 

In this context, Lisbon has vast records of PG measurements, from 1955 to 1991, which is a 

rare case. This situation provides the ideal opportunity to study a long time series and 

characterize Lisbon’s atmospheric electrical field. It is also of great importance since not 

much was done with this time series, which naturally improves its significance. Beside this, 

Lisbon also went through a long population and industrialization evolution, contributing to 

changes in the atmospheric electrical field among other things. Thus studding the PG records 

at Lisbon is a way of recovering its historical evolution, in particular in the 1980’s (after the 

democratic revolution). 

 

On a deeper level, the study of things which humankind cannot see, at least at naked eye, but 

can measure, was from a certain point of my life not only a cause of motivation but also a 

continuous source of learning. The case of PG, among all other things that we cannot see at 

naked eye, made me think of what knowledge is and realize an important self-true about what 
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is called Engineering and Physics. One conclusion that I arrived was that knowledge cannot 

come only from books or whatever you may read. 

 

Experience is and always will be a principal component for humans to understand nature, not 

only as a consequence to test theory results but also a cause to build theories. I also concluded 

another thing, which also came with my experience during my studies in the University of 

Évora, that there is only one object that, for humankind, provides the mechanism to 

understand the Universe where we live. That object is called mathematics and it rules almost 

everything we see and touch, excluding the things that even today we cannot even 

understand, and made me realize that there is no such thing as Engineering or Physics or 

anything else.  These are divisions made by humankind to make easier for it to store the 

Knowledge in our own small minds. It does not matter if you called it Mechanics, Chemistry, 

Electricity or whatever.  

 

In the end equations rules them all, even if slightly simplified. But the most important 

conclusion that I discovered is that all these subjects have one little thing in common with 

each other that most people cannot see or do not want to see, which is that they are all based 

in particles motion and interaction between them. If almost everything is motion and 

Mathematics, why not study the motion we cannot see but might be very important to society 

or actually have some usefulness or just because is just a thing that you want to learn more 

about? These are the questions, which led me to write this dissertation as an attempt to answer 

it. 

 

1.3 Formulation of the global electric circuit 

Thunderstorms, shower clouds and precipitation, cause separation of electric charge between 

the ground and ionosphere (also known as the equalizing layer), an electrically conductive 

layer about 60 km above the surface. This charge separation causes the ionosphere to have a 

potential (VI ) between 200 and 300 kV with respect to the Earth’s surface. Ionization from 

cosmic rays (mainly in the upper atmosphere) and terrestrial sources (chiefly radon decay 



 

12 

   

near Earth’s surface), produces cluster ions (small ions) which make the atmosphere weakly 

electrical conductive. These ions flow vertically because of the vertical potential difference, 

VI, causing the air-Earth conduction current density, JC, of order ~2 pAm-2. The total 

electrical resistance for a unit area of the atmospheric column from the surface to the 

ionosphere is called the columnar resistance, RC and has value about ~ 300 PΩm2. A 

schematic of the global circuit is given in Figure 1.14. Ohm’s law relates Ionosphere-Earth 

potential difference (VI), columnar resistance and air-Earth conduction current through the 

equation: 

The Ionosphere is positively charged with respect to the Earth’s surface under fair-weather 

conditions. This produces a downward pointing (negative) electric field (Ez), thus by 

convention potential gradient (PG) is defined as the negative of Ez. 

Near the Earth’s surface, the PG arises because JC is flowing through the weakly electrical 

conductive air. It is therefore JC that permits the effect of the Global Electric Circuit (GEC) 

circuit to be measured at the surface, either directly through the measurement of JC itself or 

by PG. 

 

However, PG is also a function of the local atmospheric air conductivity (σT). Away from 

sources of charge separation, the atmospheric electrical conductivity (σT), potential gradient 

and conduction current density are related by Ohm’s Law: 

In the fair-weather part of the circuit, small ions dominate the charge transport since they 

have a large electrical mobility. Therefore, an increase in small ion concentration will 

increase the atmospheric electrical conductivity by providing more charge carriers. Aerosols 

in the atmosphere removes small ions by ion-aerosol coupling. An increase in aerosol number 

concentration therefore reduces the ion number concentration and decreases the atmospheric 

electrical conductivity. A change in aerosol number concentration subsequently modifies PG 

through Eq. (1.3). 

  𝑉𝐼 = 𝐽𝐶𝑅𝐶 . Eq. (1.1)    

  𝑃𝐺 = −𝐸𝑧 . Eq. (1.2)   

  𝑃𝐺 =
𝐽𝐶

𝜎𝑇
. Eq. (1.3)   



 

13 

   

The global schematic of GEC and its important processes can be seen next on Figure 1.14: 

 

Figure 1.14 Processes of interest in the global electric circuit. Charge separation in thunderstorms, which 

occur in disturbed weather regions, creates a substantial potential difference between the highly conducting 

regions of the ionosphere and the Earth’s surface. The positive potential of the ionosphere (positive with respect 

to the Earth’s surface) is distributed to fair-weather and semi-fair-weather regions, where a small current 

(whose density is JC) flows vertically. When this current flows through clouds it generates charge near the 

upper and lower cloud edges, which can influence cloud microphysical processes. (In this diagram, 

Mesospheric Convective Systems, which are large scale thunderstorms late in their evolution and which favor 

sprite generation above them, are indicated by MCS; sprites are one example of Transient Luminous Events 

(TLEs); Cloud Condensation Nuclei are shown as CCN). 

Thunder clouds, which generate potential differences exceeding 100 MV between the 

positive charges at their top sand the negative charges near their bottoms (Wormell, 1930), 

are one important source of upward currents through the atmosphere. They are both a DC 

‘‘battery’’ and an AC generator in the circuit. Each one of the approximately 1000 

thunderstorms active at any time generates an upward DC (Wilson) current of 1 A to the 

ionosphere, which is an excellent conductor, at an equipotential of 250 kV with respect to 

the Earth (e.g. Rycroft et al., 2000; Singh et al., 2011). The conduction current flows down 

in areas far from thunderstorms, termed regions of fair-weather (i.e. non-cloudy) and semi-
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fair-weather (non-precipitating layer clouds). These currents flow through the partially 

conducting atmosphere where ionization is produced by galactic cosmic rays (GCRs); the 

vertical conduction current density is termed JC. Near the land surface, but not the oceans, 

escaping radon determines the ion concentration and hence the electrical conductivity of the 

atmosphere in the planetary boundary layer, at heights up to 2 km (Pulinets, 2007; Kobylinski 

and Michnowski, 2007).  

 

At sub-auroral latitudes, there is some extra ionization at 70 km altitude produced by 

relativistic (1 MeV) electron precipitation from the magnetosphere. Within the polar cap, 

polewards of the auroral oval, occasional energetic solar proton events (SPEs) of 100 MeV 

produce extra ionization at 60 km altitude. The circuit closes through the highly conducting 

land and sea, and via point discharge currents from pointed objects on the Earth’s surface up 

to the bottom of the thunderclouds. The increase by seven orders of magnitude of the 

electrical conductivity of the neutral atmosphere, from the Earth’s surface up to the lower 

ionosphere at 80 km altitude, has been modelled by Rycroft et al.(2007) and Rycroft and 

Odzimek (2010). It is emphasized here that the conductivity profile is the most important 

parameter in establishing the global circuit (Holzworth, 1987; Rycroft et al., 2008). 

 

There is another important DC current generator in the global circuit; this is due to electrified 

rain/shower clouds (Figure 1.14) which generally bring negative charge to the Earth’s 

surface. The shower cloud contribution is believed to be a significant fraction (up to about a 

half) of that of thunderstorms. 

 

Of the quantities, which can be measured at the surface, the air-Earth conduction current 

density (JC) presents one of the most fundamental parameters of the Global Electric Circuit 

(Chalmers, 1967). In fair-weather regions, a positive current density occurs when positive 

charge moves downward and negative charges move upwards. The conduction current 

density is one of several components contributing to the total current density, JS, received by 

a horizontal flat plate, conducting electrode, at the Earth’s surface, electrically isolated from 

the ground, like a PG measurement sensor. JS comprises contributions from turbulence JT, 
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conduction JC, displacement JD and precipitation JP. Based on Maxwell’s equations, the 

displacement current density is given by: 

where ϵ is the electric permittivity of air.  

 

All precipitation particles carry positive or negative electric charges from the atmosphere to 

the ground. Precipitation current is very important from a global point of view, since it is one 

of the mechanisms for the maintenance of the negative electric charge on the Earth’s surface. 

Some measurements were made and amounts of ±0.2 up to 5×10-12 Am-2, (Reiter, 1976), 

were found. Bear in mind that this current depends strongly on the type, rate and physical 

state of the precipitation and weather conditions. 

 

Finally fast electrons ionizing gas molecules induce point discharge current, which causes a 

strong local ion concentration increase. It can happen on the leaves of trees when a highly 

charged cloud is above them or it can happen by means of corona discharges. 

 

1.4 Atmospheric Ions and interaction with aerosols  

Aerosols can be defined as an assembly of liquid and/or solid particles suspended in the 

atmosphere and when they are substantially big, we can notice them as they scatter and 

absorb sunlight. The size distribution of these particles ranges from r > 3 nm, that corresponds 

to large ions (usually referred as charged aerosol particles) up to 100 μm, which is 

characteristic of large organic matter. Usually the aerosols can be divided into 2 groups 

accounting to their size: fine particles, d < 2.5 μm, and coarse particles, d > 2.5μm. Aerosols 

may be originated by several ways, being the most important ones affecting the Earth’s 

environment, volcanic aerosols, desert dust and anthropogenic aerosols, essentially from 

industry heating systems and traffic. These ones are referred as primary aerosols, because 

they are directly injected into the atmosphere. There are also secondary aerosols, which result 

from chemical interactions between several constituents of the atmosphere, which can be 

derived mainly by two methods: Gas-to-Particle Conversion, (GPC), which consists in gas 

  𝐽𝐷 = 𝜖
𝑑𝐸𝑧

𝑑𝑡
, Eq. (1.4)   
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molecules becoming clustered together, creating a macroscopic particle; Ion-Induced 

nucleation, which is a process based on aerosol formation and growth by vapor condensing 

onto an ion (CCN).  

 

Atmospheric small ions both positive (n+) and negative (n-) are small clusters, which carry 

electric charges through the air. Small ions have electric mobilities between 1 and 3 cm/s for 

1 V/cm; large ions, between 3×10-3 and 3×10-4 cm/s for 1 V/cm; intermediate ions have 

electric mobilities between the values of the other two. 

 

Small ions are the most important type of ions for atmospheric electricity; this is 

because they have high electric mobility, allowing them to take a more active part in charge 

transfer through the atmosphere. The electric mobility of ions is of great importance since it 

determines how much an ion contributes to the electric conductivity of the air. The positive 

and negative contribution of all particles to the atmospheric electric conductivity can be 

expressed in a general form by:  

where z represents the height, μ represents the small ion electric mobility for both 

polarizations, n is the number density of positive and negative ions, K is the electric mobility 

of all larger ions (which goes from intermediate ions to charged aerosol particles), N 

corresponds to the number of large ions, p and m to the different diameters of particles and 

υ, υ=1 for small ions, is the number of elementary charges e per ion size (larger particles can 

bear more than 1 elementary charges, instead, small ions have always υ = 1).  

Nevertheless, the equation for the total atmospheric electric conductivity is commonly 

simplified considering only small ions (as they have the greatest effect on it) and charged 

aerosol particles are assumed to have a negligible contribution (Wright et at., 2014a). Using 

this simplification and considering the total atmospheric electric conductivity, which means 

  𝜎+(𝑧) = 𝑒𝜇+(𝑧)𝑛+(𝑧) + ∑ 𝐾+
𝑝(𝑧)𝑁(𝑧)+

𝑝 𝜐+
𝑝𝑒,

𝑝

 

  𝜎−(𝑧) = 𝑒𝜇−(𝑧)𝑛−(𝑧) + ∑ 𝐾−
𝑚(𝑧)𝑁−

𝑚(𝑧)𝜐−
𝑚𝑒

𝑚

, 

Eq. (1.5)   
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the sum due to positive and negative ions and that both type of ions have the similar mobilities 

and number density we arrive at: 

Woessner et al. (1958) made several measurements of ion conductivity of both polarization 

with respect to height, z, up to 26 km and found the following relations: 

A plot of Eq. (1.7) is shown here: 

 

Figure 1.15 Conductivity profile. 

Primary ions, singly charged positive ions and free electrons, are mainly produced by 

ionization of molecules in the air and quickly form small ions clusters, through the clustering 

of water molecules, because it is energetically favorable for primary ions to react rapidly with 

water molecules. The sources attributed to play a role in atmospheric ionization are cosmic 

radiation and radon decay through gamma, alpha and beta radiation. 

 𝜎𝑇(𝑧) = 𝜎+(𝑧) + 𝜎−(𝑧) ≅ 2𝜇(𝑧)𝑛(𝑧). Eq. (1.6)   

  𝜎+(𝑧) = 3.33 × 10−14 exp(0.254𝑧 − 0.00309𝑧2), 

  𝜎−(𝑧) = 5.34 × 10−14 exp(0.222𝑧 − 0.00255𝑧2). 
Eq. (1.7)   
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The process of small ion cluster formations is explained as follows: upon a molecule or atom 

being hit by those ionization agents, it loses an electron per impact, leaving them positively 

charged and thereby forming a positive primary ion with one elementary charge. The free 

electron will be captured within ~10-8 seconds by a neutral molecule or atom forming a 

negative primary ion. The primary ions keep colliding with other molecules and atoms in the 

air for about 1010  times/s. The ones that are not removed by mutual recombination tend to 

form small ion clusters when water vapor is present (Reiter, 1976). The all process is 

represented schematically in Figure 1.16: 

 

Figure 1.16 Schematic representation of small ion clusters formations. 

Without exception, small ion clusters only carry one elementary charge and their life-time 

depends on aerosol particle concentration. Since both small ions and aerosol move in the air 

they can both collide with each other. The very important concept of “ion equilibrium” is 

composed by three basic components: 1) small ion production rate, q; 2) the recombination 

of the polar small ions, which then dissipate, expressed by the recombination coefficient α; 

3) the attachment between small ions and air aerosols, expressed by the coefficient βa.  
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Equilibrium equations are shown next: 

where n=n++n-, �̅�= (n++n-)/2, N=N(Ra) corresponds to the concentration of all particles with 

radius Ra. N0(Ra) corresponds to the concentration of uncharged particles with radius Ra. 

Nυ=Nυ(Ra) corresponds to the concentration of positive and negative charged particles where 

the index, υ, determines the amount of elementary charges. β0= β0(Ra) is the combination 

coefficient between small ions and uncharged particles, βυe=βυe(Ra) is the combination 

coefficient between small ions and charged particles with equal sign, e, with υ elementary 

charges and βυu=βυu(Ra) is the combination coefficient between small ions and charged 

particles of unequal sign, u, with υ elementary charges.  

 

 Considering that all aerosol particles have an “effective radius”, i.e they form a 

representative monodisperse population, that no charged aerosol particles are present, the 

number of positive and negative ions is equal, expressed by n, 𝛽𝑎is the effective ion-aerosol 

attachment coefficient, Za is the aerosol number concentration, Za is the aerosol number 

concentration, Eq. (1.8) can be simplified to a single formula for ion balance: 

From this equation, it is possible to calculate the evolution of the number of ions in an 

environment containing aerosols varying with time. The formalism developed by (Hoppel, 

1985) uses effective parameters to simplify the equation for ion balance in the presence of a 

more realistic case that should consider the aerosol size distribution. This formalism gives 

theoretical support to the assumption made in Eq. (1.9) of a monodisperse aerosol 

  
𝑑𝑛

𝑑𝑡
= 𝑞 − 𝛼�̅�2 − 𝛽0�̅�𝑁0 − 𝛽1𝑒�̅�𝑁1 − 𝛽1𝑢�̅�𝑁1 − 𝛽2𝑒�̅�𝑁2 − 𝛽2𝑢�̅�𝑁2 

  
𝑑𝑁0

𝑑𝑡
= 2𝛽1𝑢�̅�𝑁1 − 2𝛽0�̅�𝑁0 

  
𝑑𝑁1

𝑑𝑡
= 𝛽0�̅�𝑁0 + 𝛽2𝑢�̅�𝑁2 − 𝛽1𝑢�̅�𝑁1 − 𝛽1𝑒�̅�𝑁1 

  
𝑑𝑁2

𝑑𝑡
= 𝛽1𝑒�̅�𝑁1 + 𝛽3𝑢�̅�𝑁3 − 𝛽2𝑢�̅�𝑁1 − 𝛽2𝑒�̅�𝑁1 

  
𝑑𝑁3

𝑑𝑡
= 𝛽2𝑒�̅�𝑁2 + 𝛽4𝑢�̅�𝑁4 − 𝛽3𝑢�̅�𝑁3 − 𝛽3𝑒�̅�𝑁3, 

Eq. (1.8)   

  
𝑑𝑛

𝑑𝑡
= 𝑞 − 𝛼𝑛2 − 𝛽𝑎𝑍𝑎𝑛. Eq. (1.9)   
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distribution by using an “effective” ion-aerosol attachment coefficient βa as representative of 

a polydisperse aerosol population. Thus, the steady-state equation for ion formation and loss 

in the presence of aerosols can be written as: 

It is worth to mention here that Eq. (1.10) is a simplification because it neglects the positive 

to negative ion concentration unbalance which is crucial in highly perturbed regions where 

space charges form (Matthews et al., 2010). Nevertheless, the present formulation assumes a 

quasi-equilibrium state perturbed by the presence of aerosols. The solution of Eq. (1.10) is 

straightforward: 

Further developments regarding this matter are discussed in the following chapters. 

 

1.5 Dissertation structure 

 Chapter 2 provides an insight of mathematical techniques and instruments used 

through the dissertation and a briefing about other formulations useful for 

Engineering, such as the Discrete Fourier Transformation and primitive instruments 

like Lord Kelvin’ Electrometer. 

 

 Chapter 3 approaches a very important thematic, which is the effect of pollution on 

atmospheric electric field of Lisbon, where a daily and weekly cycle were identified 

on PG records. (This is a study, which is in vogue nowadays, since pollution is one 

of the major problems affecting society in several and problematic ways). 

 

 Chapter 4 includes a deeper thematic, which is the relation between relative humidity, 

which can be an indicator of fogs, for instance, and the atmospheric electric field. A 

new model, according to some simplifications, is presented and shows a very close 

relation between PG and relative humidity when aerosols grow hygroscopically. 

(This information can maybe in the future be used for fog detection).  

 

  𝑞 − 𝛼𝑛2 − 𝛽𝑎𝑍𝑎𝑛 = 0. Eq. (1.10)   

  𝑛 = 1
2𝛼⁄ [√(𝛽𝑎𝑍𝑎)2 + 4𝛼𝑞 − 𝛽𝑎𝑍𝑎]. Eq. (1.11)   
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 Chapter 5 corresponds to the study of one of the most severe tragedies that occurred 

in the recent history of Lisbon. This event was the Chiado’s fire and this study 

demonstrates the later effect of fire plume in the atmospheric electric field. This is 

the first study able to make a connection between the smoke plume dynamics and the 

PG response to it, which is very important not only because it is the first, but also it 

may enable, in the future, the study of smoke plume’s motion with PG records as an 

extra tool for fire fight or any other idea that may arise.  

 

 Chapter 6 presents a simple circuit model of the Global Electric Circuit coupled with 

a local circuit, measuring PG in fair-weather conditions. This is a first attempt to 

connect both things in order to separate the global effects from the local ones and to 

find values that are suitable to compare literature values for the Global Electric Circuit 

parameters with real data. This chapter is a preliminary work and is referenced for 

future work and development.  

 

 Chapter 7 presents the conclusions of the thesis and future work is outlined. 
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2 Instrumentation and Signal Processing 

Techniques 

 

2.1 Introduction 

This chapter englobes the explanation of mathematical techniques and instruments used 

along the dissertation and a briefing about them.  

 

2.2 Lord Kelvin’s Water Dropper apparatus 

A fundamental atmospheric electrical measurement is to acquire the electric potential at a 

known height, from which the vertical potential gradient (PG) can be obtained. This requires 

that minimal distortion of the potential occurs from the measurement apparatus, or that a 

correction can be applied for the distortion, since objects disturb the electrical field.  

 

Lord Kelvin developed two PG sensors but only one of his instruments will be briefed here. 

Kelvin water dropper equaliser instrument comprised an insulated tank of water from which 

a continuous stream of water is allowed to flow (for example, out of a window), finally 

breaking into water drops: The water tank and an electrometer to measure the tank’s potential 

would typically be installed on an upper floor of a building (Figure 2.1). At the stream to 

spray transition, droplets will polarize if their potential (which is that of the tank, via the 

connection provided by the water stream), differs from the local potential of the air. The effect 

of this polarization at the moment of drop release is to cause charge transfer between the 

water stream and the air, which continues until the potential of the water stream equals the 

potential of the air at the stream-spray transition point. Because the tank is connected through 

the water stream to the spray formation point, the formation point potential can be measured 

more conveniently at the tank. If the height of the stream-spray transition point is also 

determined, the vertical potential gradient can be found.  
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Figure 2.1 Schematic of water dropper equaliser (Gendle, 1912). 

Lord Kelvin got even further and developed an automatic measurement system with the help 

of photographic paper and reflexion of light. A beam of light was reflected on a mirror, which 

was connected to the vane, which rotated based on the potential it acquired from air and the 

electrodes enclosing the vane. That beam of light was then reflected to photographic paper, 

where there was already a time and PG scale.  
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The zero was set as seen in Figure 2.2 and the basic scheme can be visualized on it.  

 

Figure 2.2 Lord’s Kelvin Electrometer schematic (www.orau.org). 

 

2.3 Benndorf Electrograph 

          A Benndorf electrograph was coupled to a radioactive probe to secure equality of 

potential between the sensor and the air and also improving the time response of the 

electrograph, since the radioactive decay impose an increase in ionization, allowing the 

sensor to measure small value fluctuations and at the same time a faster response . It was 

installed at 1 m above ground in a cement base recorded the PG at Portela meteorological 

station (Lisbon Airport, Portugal).  Its sensitivity was checked using an electronic 

electrometer with standard voltage source between ± 200 V and the same calibration 

procedure was used in all periods of operation, from 1950’s to 1990’s. The analog records of 

the electrograph were digitalized afterwards (Serrano, 2010). Further details on the dataset 

can be found in (Serrano et al., 2006 and Serrano, 2011). Measurements with similar devices 

were made worldwide, e.g. (Shigeno et al., 2001).  

 

This instrument was portable which is an advantage compared with the one from Lord Kelvin 

and data writing process was achieved through a telegraph technique.  

http://www.orau.org/
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Figure 2.3 Benndorf’s Electrometer (http://physik.uibk.ac.at). 

Sensor schematics can be seen next: 

 

Figure 2.4 Benndorf’s Electrometer schematic (Klemens R., 2003). 

The 20 cm long pointer Z of aluminum wire is rigidly connected with the needle of the 

quadrant electrometer. It swings across a 12 cm wide paper strip, which is moved about 4 cm 
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per hour through a clockwork. The pointer will be pressed down from time to time and marks 

its position. For this purpose it lies a knitting needle s below the paper strip, above the paper 

strip lies a strip of “blue paper”. If the stirrup H pressed the pointer down, a blue dot forms 

on the paper. Such so-called point recorder has the advantage of an almost non-existing 

hysteresis, therefore such recorders have been manufactured and distributed until the end of 

the 20th
 Century. 

 

The clockwork drives the roll W1 for the paper transport. The print roll W2 prohibits the 

slippage of paper; W3 is only a deflector roll. Batteries supplied the electromagnet. The core 

of the electrometer has been isolated from the pointer Z by a piece of amber b. The supply 

line to the needle was through the contact N and the platinum sheet p in sulphuric acid, which 

served for damping the system. 

 

If the quadrant pair Q1, Q2 have been put to the potential V1, V2 and the moveable needle to 

the potential VN, there was a deflection of the pointer Z, where its intensity was determined 

by the torsional moment of the needle mounting was equally and opposing the moment 

evoked by the electrostatic forces. The measurements of the diagrams (paper roll) were 

carried out by glass scales. 

 

2.2 Electric field mill JC 131/F 

Because weather conditions are constantly changing, there exists a need to measure the 

strength of the electric field constantly, which translates into the need to alternately read the 

charged state of the sensor plate, discharge it, and read again, repeatedly. This is 

accomplished by repeatedly exposing the sensor plate to the external electric field to charge 

it, Figure 2.5(a), then shielding the plate to allow it to discharge, Figure 2.5(b). When the 

plate area is shielded, the charge on the plate must flow out, causing a current is to flow to 

ground.  
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This current is proportional to the atmospheric field as: 

where, As is the effective exposed area of the sensing electrode at the time t and ϵ is the 

permittivity of air. If the induced signal is rectified by a phase-sensitive detector (relative to 

the shutter motion), the DC output signal will indicate both the polarity and magnitude of the 

electric field. 

 

Figure 2.5 Field mill operating principle (http://www.missioninstruments.com). 

One of the problems of this kind of sensor from Figure 2.5 is that the rotor connected to the 

chopper, needs to be connected to the ground to discharge, so the measurements are not 

disturbed by any potential created by on the unearthed rotor on the sensing plate. Late models 

used a system with brushed to ground the rotor, which is expensive at long terms and 

obviously the sensor needs to be stopped so the brushed can be replaced, leaving some data 

unrecorded. The JC1 131 uses a new system, called back to back, where the rotor does not 

need to be earthed. The ‘back to back’ fieldmeter approach, (Chubb, 1990) is based on two 

  𝑞𝑠(𝑡) = 𝜖𝐸𝑧𝐴𝑠(𝑡), 

  𝑖𝑠(𝑡) = 𝜖𝐸𝑧

𝑑𝐴𝑠

𝑑𝑡
 , 

Eq. (2.1)   

a b 

http://www.missioninstruments.com/
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sensing plates. The secondary sensing plate is in a fully shielded enclosure. The signal arises 

just from any voltage on the rotor assembly. By backing off the signal of the primary 

fieldmeter by an appropriate fraction of the signal observed by the secondary fieldmeter 

signal it is possible to fully compensate for any net charge held on the rotor assembly.  

 

Figure 2.6 JCI 131/F internal design. 

The JCI 131 Electrostatic Fieldmeter and JCI 131F, faster response version, is a compact and 

robust instrument for the precise measurement of electric fields in adverse environmental 

conditions. It is particularly suitable for long term continuous monitoring of atmospheric 

electric fields - such as those associated with thunderstorms, volcanic activity or power-lines. 

 

Electric field measurement sensitivities of 2, 20, 200 and 2000 kV/m are provided with high 

precision (<1.5%), low noise. When used as a potential probe, well away from nearby 

structures, the sensitivity is about 10 kV/m for 1kV of local space potential, although critical 

applications should be underwritten by in-situ calibration. The basic chopping frequency is 

set close to 275 Hz. This frequency is chosen to be well away from harmonics of possible 50 

or 60 Hz mains power supply signals. For the fast response version, the chopping frequency 

is 465 Hz. 
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If the sensitivity of a fieldmeter to the local voltage (or an applied calibration voltage) is S 

kV m-1 per kV, and at a height z in a local atmospheric electric field Ez  shows an electric field 

Eo, then: 

One problem with the use of electric field mills is that strong concentrations of ions can cause 

extra currents to be created in the field mill due to ions impacting on the vanes of the field 

mill. Field meters are often affected in an ion-filled environment by ion currents causing false 

results. The JCI 131 and JCI 131F are designed to be immune to the presence of ionized air 

by using phase sensitive detection. Ionization currents are out of phase with electric field 

signals in a rotating blade system and can therefore be removed. 

 

Analogue output signals are provided from the JCI 131 and their observations may be 

recorded for analysis and re-display using computer based signal processing systems. A 

convenient approach is to use the Picoscope ADC-212, which has a resolution of 12 bits. It 

has a sample rate of 3 MS/s, which means three Mega samples per second, 3 MHz. It has a 

maximum range of ±20 V, which with 12 bits gives ~ 10 mV per step. In practice, this means 

that it can measure signals with frequencies to 1.5 MHz, although the signal will be very 

distorted. It should be used for lower frequencies data, like PG. In these kind of ADC it is 

warned that the sampling rate should be at least not two but five times the maximum 

frequency that needs to be measured. 

 

Figure 2.7 Photograph ADC-212 (http://www.picoauto.com/). 

 

  𝐸𝑎 =
𝐸0

𝑆𝑧
. Eq. (2.2)   
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2.4 Discrete Fourier Transformation 

The Discrete Fourier Transformation (DFT) is a very interesting tool with usage in signal 

processing for instance to retrieve frequency information about a time domain input. Fourier 

formulation is based on a projection of a discrete signal, with equally spaced samples, onto 

a basis made up of sinusoidal functions of varying frequencies. Its formulation is presented 

as: 

where x(tn) corresponds to the input signal amplitude at the time tn, Ns the number of samples 

of the input signal, ωk is the frequency sample and X(ωk) is the spectrum of 𝑥 at kth frequency 

sample, ωk.  Some terms of Eq. (2.3) can be further expanded as: 

where 𝑇 is the sampling interval. Implementing Eq. (2.4) and Eq. (2.5) in Eq. (2.3) and using 

Euler’s identity it is found that: 

Looking at Eq. (2.6) it can be seen that this method projects the input signal x(nt) within 

cosine and sine waves, resulting in a real and imaginary part, respectively. Indeed, each time 

the process runs, it projects each sample of the input signal within the corresponding sample 

of the basis functions at 𝑘 cycles per Ns samples, meaning that 𝑘 tells in which sinusoid the 

signal us being projected. Note also that the result of the first iteration, dot product between 

each sample of input signal and basis functions, is called DC component, since it is the 

average of the input signal.  

 

Also note that if a time-varying signal is periodically sampled at a rate of at least twice the 

frequency of the highest-frequency sinusoidal component contained within the signal, then 

  𝑋(𝜔𝑘) =
1

𝑁𝑠
∑ 𝑥(𝑡𝑛)𝑒−𝑗𝜔𝑘𝑡𝑛 ,   𝑘 = 0,1,2, … , 𝑁𝑠 − 1

𝑁−1

𝑛=0

, Eq. (2.3)   

  𝑡𝑛 = 𝑛𝑇, 𝑛th sampling instant, 𝑛 ≥ 0, Eq. (2.4)   

  𝜔𝑘 =
𝑘2𝜋

𝑁𝑇
, 𝑘th frequency sample, Eq. (2.5)   

  𝑋(𝜔𝑘) =
1

𝑁
[∑ 𝑥(𝑛𝑡) cos (

2𝜋𝑘𝑛

𝑁
) −

𝑁−1

𝑛=0

𝑗 ∑ 𝑥(𝑛𝑡) sin (
2𝜋𝑘𝑛

𝑁
)

𝑁−1

𝑛=0

]. Eq. (2.6)   
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the original time-varying signal can be exactly recovered from the periodic samples. 

Nowadays this concept is sometimes misinterpreted and mistakes like the next one usually 

happen: “I want to study the power lines which work at for instance 60 Hz, so I need a sample 

frequency of 120 Hz.” As you might initially think, this is quite right according to the concept 

stated before. The thing is that this idea is completely wrong, because of the fact that power 

lines contain several harmonics of the fundamental frequency. For instance, one usually 

present is the fifth harmonic, which has 300 Hz, meaning that a sample rate of 120 Hz would 

not be even close to reconstruct the original sign in terms of frequency. This was just to state 

that the theorem itself can be very misleading and obviously, people need to be aware of the 

problem they are dealing with. 

 

The result, X(ωk), is usually reworked as the absolute value of the complex number and 

converted to decibels, dB, as shown: 

The frequencies bins are given by: 

One problem of the method described in this section is what is called spectral leakage, caused 

when the input signal has different frequencies multiples of fs/Ns, and the number of periods 

is not integer, generating discontinues at the end points.  One technique to minimize this is 

to a priori multiple the time domain signal by a windowing function. Windowing functions 

approach zero at the beginning and end of the time domain signal, leading to a continuous 

wave form without sharp transitions. The operation of multiplying in the time domain the 

signals is equivalent of a convolution in frequency domain. This means that each peaks and 

side lobs on the input signal in the frequency domain will be shaped like the peak and sides 

lobs of the windowing function. However, how does this helps reducing the spectral leakage? 

Well, if the chosen windowing function can obliterate side lobs, meaning that it reduces their 

amplitude, it will lead to a decreasing, amplitude wise, of the artificial side lobs (spectral 

leakage) of the original input signal. However, the true frequencies that are hidden since the 

beginning will not appear but the spectrum will be much clear in terms of artificial 

  power spectrum = 20 𝑙𝑜𝑔10|𝑋(𝜔𝑘)|. Eq. (2.7)   

  𝑓 =
𝑘

𝑁𝑠
𝑓𝑠. Eq. (2.8)   
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frequencies created by DFT approach. Other approach is known as Interpolated Discrete 

Fourier Transform (IpDFT), which based on the leakage spectrum, makes new calculations 

for frequencies and amplitudes, in order to be closer to the true solution.  

 

2.5 Lomb-Scargle Periodogram 

Another tool that is very useful in signal processing is the Lomb-Scargle Periodogram (LSP) 

since it permits the analysis of unevenly space data, which is a common phenomenon in real 

life measurements. Sometimes the sensors have problems and cannot measure for long 

periods of time, which results in missing data. This leads to the idea of padding the missing 

data with zeros or use some kind of interpolation and then use (DFT). The problem here is 

that if the data is very irregular, amplitude wise, due to anomalies or some other effects, the 

missing data that was filled with some method will end in very poor results.  

 

This technique was developed for interrupted data sets in astrophysics (Lomb, 1976; Scargle, 

1982), and has been extensively used in atmospheric science (Schulz and Stattegger, 1997; 

Hocke and Kampfer, 2009). The Lomb-Scargle Periodogram (LSP) is similar to the Discrete 

Fourier Transform, but it estimates the frequency spectrum based on a least squares fit of the 

sinusoids. In fact, the LSP spectrum converges to Fourier transform spectrum in the limit of 

evenly spaced observations. The LSP provides the significant frequencies and their 

respective amplitudes (in a statistical sense) enabling a proper evaluation of the dominant 

periods that influence the data. In this context, fair-weather PG is an unevenly distributed 

time series and for that reason, its spectral analysis must be made using the LSP technique, 

e.g. (Xu et al., 2013). The program used in the present study is an LSP implementation (Press 

et al., 1992), which was developed in MATLAB® (Brett, 2001).  

 

The LSP is a method that does not fill any gaps, it analyses the data x(t) only where exists, 

from i= 1,2,3… Ns-1, not leading to error due to padding.  
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The LSP Spectral Power (PN) as a function of angular frequency ω=2πf is formulated as: 

where σ2 is the data variance, ℎ�̅� corresponds to the mean of the data and τ, value that makes 

the basis orthogonal at time 𝑖, is formulated as: 

The number of different frequencies (Press et al., 2002) Nf returned by the program is given 

by: 

Where hifac is the higher frequency tested and ofac an oversampling factor and are used in 

the algorithm. Note that differently from DFT this algorithm uses statistical confidence tests 

to check a when peaks are from signal or artificial, for instance from leakage. 

 

2.6 Adjusted boxplot 

The boxplot is a very popular graphical tool to visualize the distribution of continuous 

univariate data. First, it shows information about the location and the spread of the data by 

means of the median and the interquartile range. The length of the whiskers on both sides of 

the box and the position of the median within the box are helpful to detect possible skewness 

in the data. Finally, observations that fall outside the whiskers are pinpointed as outliers, 

hence the boxplot also includes information from the tails. However, when the data are 

skewed, which is normally the case when analyzing PG records, usually too many points are 

classified as outliers. The adjusted boxplot (Vanderviere and Huber) is a generalization of 

Tukey’s method (Tukey, 1977), which allows a robust outlier detection for skewed 

distributions.  

 

 

  𝑃𝑁(ω) =
1

2𝜎2
[
(∑ (ℎ𝑖 − ℎ�̅�) 𝑐𝑜𝑠(ω(𝑡𝑖 − 𝜏))𝑖 )

2

∑ 𝑐𝑜𝑠2(ω(𝑡𝑖 − 𝜏))𝑖

+
(∑ (ℎ𝑖 − ℎ�̅�) 𝑠𝑖𝑛(ω(𝑡𝑖 − 𝜏))𝑖 )

2

∑ 𝑠𝑖𝑛2(ω(𝑡𝑖 − 𝜏))𝑖

], Eq. (2.9)   

  tan(2ω𝜏) =
∑ sin(2𝜔𝑡𝑖)𝑖

∑ sin(2𝜔𝑡𝑖)𝑖
. Eq. (2.10)   

  𝑁𝑓 =
ofac × hifac

2
𝑁𝑠. Eq. (2.11)   
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Thus, the original boundaries, Upper boundary (Ub) and Lower boundary (Lb),  for an outlier 

to be actually an outlier are not longer given by: 

  𝐿𝑏 = 𝑄1 − 1.5𝐼𝑄𝑅; 𝑈𝑏 = 𝑄3 + 1.5𝐼𝑄𝑅, (2.1) 

where Q1 represents the first quartile, Q3 is the third quartile and IQR, (Q3-Q1), corresponds 

to the interquartile range. Instead, according to Vanderviere and Huber formulation the new 

boundaries are: 

  𝐿𝑏 = 𝑄1 − 1.5 exp(−3.5𝑀𝐶) 𝐼𝑄𝑅; 𝑈𝑏 = 𝑄3 + 1.5 exp(4𝑀𝐶) 𝐼𝑄𝑅, (2.2) 

where MC, MedCouple, is a measure of the distribution skewness. 

 

2.7 Dormand-Price Method 

The Dormand–Prince method is a member of the Runge–Kutta family of ODE solvers. It 

uses six function evaluations, ks ,as shown next, to calculate fourth and fifth order accurate 

solutions to initial value problems (IVP) such as: 

  �̇� = 𝑓(𝑡, 𝑦) with initial condition: 𝑦(𝑡0) = 𝑦0.  (2.3) 

Here are the equations for ks: 

  𝑘1 = ℎ𝑓(𝑡𝑘, 𝑦𝑘), 

  𝑘2 = ℎ𝑓 (𝑡𝑘 +
1

5
ℎ, 𝑦𝑘 +

1

5
𝑘1) , 

  𝑘3 = ℎ𝑓 (𝑡𝑘 +
3

10
ℎ, 𝑦𝑘 +

3

40
𝑘1 +

9

40
𝑘2) , 

  𝑘4 = ℎ𝑓 (𝑡𝑘 +
4

5
ℎ, 𝑦𝑘 +

44

45
𝑘1 −

56

15
𝑘2 +

32

9
𝑘3) , 

  𝑘5 = ℎ𝑓 (𝑡𝑘 +
8

9
ℎ, 𝑦𝑘 +

19372

6561
𝑘1 −

25360

2187
𝑘2 +

64448

6561
𝑘3 −

212

729
𝑘4), 

  𝑘6 = ℎ𝑓 (𝑡𝑘 + ℎ, 𝑦𝑘 +
9017

3168
𝑘1 −

355

33
𝑘2 −

46732

5257
𝑘3 +

49

176
𝑘4 −

5103

18656
𝑘5) , 

  𝑘7 = ℎ𝑓 (𝑡𝑘 + ℎ, 𝑦𝑘 +
35

384
𝑘1 +

500

1113
𝑘3 +

125

192
𝑘4 −

2187

6784
𝑘5 +

11

84
𝑘6). 

(2.4) 

 



 

35 

   

Then the next step value, yk+1, is calculated as: 

  𝑦𝑘+1 = 𝑦𝑘 +
5179

57600
𝑘1 +

7571

16695
𝑘3 +

393

640
𝑘4 −

92007

339200
𝑘5 +

187

2100
𝑘6 +

1

40
𝑘7.  (2.5) 

This is a calculation by Runge-Kutta method of order 4, since the error over multiple steps 

(total accumulated error), is O(h4). Next, we will calculate the next step value, zk+1, by Runge-

Kutta method of order 5, since the error is O(h5) ,as: 

  𝑧𝑘+1 = 𝑦𝑘 +
35

384
𝑘1 +

500

1113
𝑘3 +

125

192
𝑘4 −

2187

6784
𝑘5 +

11

84
𝑘6.  (2.6) 

Calculate the difference between these two values: 

  |𝑧𝑘+1 − 𝑦𝑘+1 | = |
71

57600
𝑘1 −

71

16695
𝑘3 +

71

640
𝑘4 −

17253

339200
𝑘5 +

22

525
𝑘6 −

1

40
𝑘7|.  (2.7) 

The result in Eq. (2.7) is considered the error in yk+1. Finally we calculate the optimal time 

interval hopt as: 

  ℎ𝑜𝑝𝑡 = ℎ (
𝜀ℎ

2|𝑧𝑘+1 − 𝑦𝑘+1 |
)

1
5

,  (2.8) 

where ε is the error allowance in one step calculation. In MATLAB®
 relative tolerance, reltol2 

and absolute tolerance, abstol are used in a different ways to calculate h and to ensure the 

next step. The iterative process is based on the final simulation time point. One small note to 

take is that since the algorithm is step adaptive it may not end on the predetermined final 

point. Therefore, at the last stage of the algorithm, it rearranges h so that the final step ends 

on the final point in terms of abscissa.  

 

 

 

                                                 

2 MATLAB ® has a different step, which is the calculation of an error with relative and absolute tolerance 

given by user as: 

error =
ℎ(𝑧𝑘+1 − 𝑦𝑘+1)

max(max(𝑎𝑏𝑠(𝑦𝑘+1), 𝑎𝑏𝑠(𝑦𝑘)), 𝑎𝑏𝑠𝑡𝑜𝑙)
< 𝑟𝑒𝑙𝑡𝑜𝑙;  ℎ𝑜𝑝𝑡 = 0.8 (

𝑟𝑒𝑙𝑡𝑜𝑙

𝑒𝑟𝑟𝑜𝑟
)

1
5

 



 

36 

   

3 PG measurements affected by pollution in Lisbon 

 

3.1 Overview 

The weekly dependence of PG with respect to pollutant aerosols in the urban 

environment of Lisbon (Portugal) was inferred from the records of atmospheric electric field 

at Portela meteorological station (38°47’N, 9°08’W). Measurements were made with a 

Benndorf electrograph. The data set ranges from 1955 to 1990, but due to the contaminating 

effect of the radioactive fallout during 1960’s and 1970’s (Pierce, 1972), only the period 

between 1980 and 1990 was considered. Using a relative difference method a weekly 

dependence of the atmospheric electric field was found in these records, which shows an 

increasing trend between 1980 and 1990. This is consistent with a population growth in the 

Lisbon metropolitan area and consequently urban activity, mainly traffic. Complementarily, 

using the Lomb-Scargle periodogram technique, the presence of a daily and weekly cycle 

was also found. Moreover, to follow the evolution of theses cycles, in the period considered, 

a simple representation in a color surface plot of the annual periodograms is presented. 

Furthermore, a noise analysis of the periodograms was made, which validates the obtained 

results. Two datasets were considered: all days in the period, and fair-weather days only. 

 

3.2 Introduction 

As discussed in the Introduction, in clean air, the global effect of thunderstorm 

activity can be apparent in PG, more precisely in the daily cycle known as the Carnegie curve 

(Harrison, 2013). Local effects arising from aerosol pollution contribute to additional 

variation in PG that may be very significant, when in a polluted environment. Thus, in an 

urban environment it is expected that the PG at the ground, where the measurements are 

carried out, to be predominantly influenced by the combination of the effects of local 

pollution with those of the Global Electric Circuit (GEC). Pollution affects the PG through 

the following mechanism: pollutant aerosols remove small ions from the air that are very 

important to the atmospheric electric conductivity because they have the highest electric 
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mobility. This removal causes the conductivity to decrease and therefore Ohm’s law, Eq. 

(1.3), implies that the PG must increase (assuming that a constant electric current is present 

between the ionosphere and the Earth’s surface, JC). In fact, for a constant aerosol size 

distribution it is shown that the PG is positively and linearly related with the aerosol particle 

mass concentration (Harrison and Aplin, 2002). Such relation was further confirmed with 

measurements at Kew Observatory (Harrison, 2006), where there is a long record of 

simultaneous measurements of PG and pollution levels. Bearing this in mind, it was 

discussed the possibility of using PG data to retrieve pollution levels (Manes, 1977). 

Actually, such possibility is of great importance in sites that have historical PG data sets, like 

Lisbon, but where no pollution records are available, like the case of western Scotland (Aplin, 

2012), where smoke emissions from industrial activity was inferred from Lord Kelvin’s 

atmospheric electricity measurements. A similar situation occurs with the city of Lisbon, 

Portugal (Figure 3.1): 

 

Figure 3.1 Left figure, geomorphology of Lisbon region with three main features marked: Serra de Monsanto, 

Baixa (city center), and Portela Airport (location of the PG sensor). Right figure, the rectangle marks the 

geographical location of Lisbon in Portugal 

Lisbon is a polluted city and has a characteristic Mediterranean climate with fresh/rainy 

winters and a drought period during the summers (Andrade, 1996). It is geographically 

located near the coast and presents topographical features, marked by a slightly rugged relief, 
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associated with Serra de Monsanto with altitude of order 200 m on the west side, marked in 

Figure 3.1. 

Moreover, to consider the effect of pollution in urban measurements of PG, as it is the 

objective of this chapter, it is important to clarify the main cycles that affect pollutant 

aerosols. These cycles are imposed by the city dynamics and are expected be present in the 

PG records too, since they are related to each other. Three main possible cycles are listed:  

 Daily cycle: Two maxima are expected to appear, which correspond to the combined 

influences of urban pollution daily cycle and planetary influences (Harrison and 

Aplin, 2002; Harrison, 2009). One maximum shall develop in the early morning with 

the steep increase in city daily activities, followed by a decrease with the development 

of the planetary boundary layer3  while another maximum shall occur in the evening, 

when the planetary influences intensify and then boundary layer convection weakens. 

Because local PG is affected by the global variation of the electric field, it is necessary 

to remove this variation in order to properly observe the effect of the urban daily 

cycle. 

 

 Weekly cycle: During weekends urban activities decrease, causing less pollution than 

in workdays (Mondays to Fridays). This notation will be used throughout. Thus on 

weekends the PG is expected to be lower as compared with workdays, especially on 

Sundays (because pollutant aerosols generated during the workdays are significantly 

reduced by dry and wet depositions). In this way, this cycle can be linked exclusively 

to urban activities and for that reason it can be most useful to retrieve pollution 

historical records in the location where the PG measurements are made (Manes, 

1977). 

 

                                                 

3 Defined to be the lowest portion of the atmosphere, between 100 and 1000 m, directly influenced by the 

Earth’s surface through its forcings within a timescale less than 1 hour. As the result of transport processes such 

as turbulence, due temperature changes in the surface, the PBL has a characteristic diurnal variation over land 

(Stull, 1950) 
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 Annual cycle: the spring/summer months are expected to have lower concentration of 

pollution near the ground, because of the reduction in traffic levels (especially during 

the holiday time, like in Lisbon), but also the increase of altitude of the planetary 

boundary layer. In fact, this cycle is dominated by seasonal variations (Reddell et al., 

2004) related with the development and weakening of the convective layers in 

spring/summer and fall/winter, respectively. Such variations mask the effect of urban 

activity changes and one way of overcoming this is to look for seasonal variation in 

the weekly cycle. 

 

In fact, the influence of weekly pollution dependence in urban environmental processes is 

now receiving a significant research effort (Williams and Mareev, 2014). The verification of 

the weekend effect in lightning (Bell et al., 2009), rainfall (Bell et al., 2008), both hail and 

tornadoes (Rosenfeld and Bell, 2011), and diurnal temperature (Forster and Solomon, 2003) 

reveals the importance of studying this cycle and the necessity of further research.  

 

With that in mind, this chapter shows the signature caused by the weekly cycle in pollution 

on the PG recorded at Portela. Other effects have been previously studied with this set of 

data: cosmic radiation, artificial radioactivity, and aerosol concentration (Serrano et al., 

2006a); relative humidity and wind intensity (Serrano et al., 2006b); seismic activity (Silva 

et al., 2012); but this is the first study addressing pollution. 

 

3.3 Data 

Mean hourly PG values were registered at the Portela meteorological station. In the present 

study two situations are studied: all weather PG (AW), which includes the entire PG dataset; 

and fair-weather PG (FW), selected as those hours with cloudiness less than 0.3, wind speed 

less than 20 km/h and absence either of both fog or precipitation. More details of the dataset 

can be found in the study of Serrano et al., 2006a. 
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It is important to mention that FW dataset has two drawbacks: it has significantly less data 

than the AW dataset (number of days given in Table 3.1), and it is difficult to find FW values 

of PG for a complete week and for this reason we had compared values for workdays and 

weekends that do not necessarily correspond to the same week. This implies that the results 

for FW data are not so statistically reliable compared with AW in respect to the study of the 

weekly cycle.  

 

3.4 Methodology 

 Relative difference method: An initial comparison was made between the normalized 

distributions of the PG for workdays and weekends for both AW and FW datasets. 

Furthermore, to quantify the effect of the weekly cycle the relative difference between 

the mean PG for workdays (Mondays to Fridays), PGworkdays, and for weekends 

(Saturdays and Sundays), PGweekends, is calculated using the formulation: 

This formula is similar to the one used by Sheftel et al., 1994 which considers the 

ratio of the PG for workdays and for Sundays. Such a formulation was used 

previously to study the weekly effect on the electric conductivity of air (Tammet, 

2009). Three average procedures for PGworkdays and PGweekends were made: average per 

month (monthly means); average values that correspond to the same month for all 

years, e.g. the values of all Januaries in 1980-1990 (annual behavior); average per 

year (annual means). 

 

 The periodogram, using LSP, for the entire data sets has been calculated. Moreover, 

to follow the evolution of the dominant periods (less than a year) the LSP is calculated 

for each year (with a two hour resolution that is twice the sampling time, according 

to Nyquist theorem), and the periodograms plotted in a color surface plot. To do this, 

estimations of the spectral amplitudes with respect to the same periods for all the 

years were considered. Thus, a vector was created with logarithmically spaced values 

from the initial period (always above the inverse of the Nyquist frequency) until the 

  𝛥𝑃𝐺 (%)  = (
𝑃𝐺𝑤𝑜𝑟𝑘𝑑𝑎𝑦𝑠

𝑃𝐺𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑠
− 1)  × 100. Eq. (3.1)   
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final period (always below one year) and interpolated the values of the smoothed 

periodograms (moving averages of 5 values) using cubic spline interpolation. In this 

way, dominant periods appeared as horizontal lines across the plot.           

 

3.5 Results and Discussion 

The monthly mean values for the PG in AW and FW conditions for the period of study is 

presented in Figure 3.2(a).  

 

Figure 3.2 Monthly mean values of PG measured from Portela during the period from 1980 until 1990: a) PG 

for AW and FW (error bars represent standard deviations); b) AW week and weekends PG; c) FW week and 

weekends PG; d) AW and FW-PG relative difference between workdays and weekends, ΔPG. 

 

Moreover, Figure 3.2(b) and (c) demonstrate that PG values at the weekends tend to be lower 

than the values for workdays, both for AW and FW. Actually, the monthly values of ΔPG, 

(d), are generally positive. This observation is confirmed by the distributions of PG values 

for workdays and weekends. The boxplots, Figure 3.3(a) and (b), show that the weekends 

have inter quartile ranges smaller than the ones for workdays, for both AW and FW.  
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Figure 3.3 Boxplot of hourly PG values for AW (blue): a) whole week, b) workdays, and c) weekend; boxplot 

for FW (red): d) whole week, f) workdays, and g) weekends. A black line in all boxes marks median and the 

outliers are not presented. 

Descriptive statistical parameters are presented in Table 3.1. These show the following:  

 AW, mean values of PG for workdays, (90.87 V/m), is higher than for weekends, 

(69.39 V/m), the relative difference is 31.00 %. PG for workdays has a broader 

distribution, is more positively skewed and less prone to outliers than weekends. 

 FW, PG shows a similar tendency, mean values for workdays, 101.72 V/m, higher 

than for weekends, 73.49 V/m, the relative difference is 38.41 %. Workdays PG has 

a boarder distribution, is more positively skewed and more prone to outliers than 

weekends.  
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Table 3.1 Mean, median, standard deviation, skewness, kurtosis, and number of hours for the period between 

1980 and 1990. The atmospheric electric field measurements are divided in: AW whole week, AW workdays, 

AW weekends, FW whole week, FW workdays, and FW weekends. 

 
AW whole 

week 

AW 

workdays 

AW 

weekends 

FW whole 

week 

FW 

workdays 

FW 

weekends 

Mean (V/m) 84.73 90.87 69.39 94.27 101.72 73.49 

Median (V/m) 72.32 80.00 60.00 80.00 90.00 70.00 

Standard deviation (V/m) 54.81 58.64 39.88 54.96 59.35 32.11 

Skewness 1.031 1.039 -0.1790 1.725 1.549 1.023 

Kurtosis 13.364 11.180 29.25 7.710 6.671 4.972 

Number of days 4018 2870 1148 356 262 94 

 

The high relative differences statistically prove the existence of a week dependence of the 

PG, both for AW and FW. Actually, Israelsson and Tammet (2001) at Marsta Observatory, 

located in a rural region (10 km north of Uppsala, Sweden), measured air conductivities and 

calculated the relative differences using Sheftel’s formulation (Sheftel et al., 1994). The 

relative differences they found are much lower than the relative differences found here for 

PG. Such disparity reveals the importance that urban pollution has on PG measurements. 

 

The annual behavior of the PG for AW and FW conditions (shown in Figure 3.4(a)) 

demonstrate that summer months have the lowest mean values and standard deviations 

(August for AW and June for FW) and January has the highest for both AW and FW. 

Additionally, Figure 3.4(b) reveals that ΔPG has an annual behavior different from PG (AW 

and FW). Interestingly, ΔPG shows a minimum in December which is the month of the year 

with less urban activity (especially traffic) because of Christmas holidays. During the rest of 

the year, ΔPG behavior for AW appears to be more consistent with urban activity. Actually, 

it decreases from January until August (summer holidays) and increases again until October 

(a month with significant urban activity) decreasing again until December. On the contrary, 

ΔPG for FW has an increasing tendency from January until August and after that decreases. 

The reason for this is probably lack of FW data, as discussed above.  
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Figure 3.4 Annual behavior of: a) PG for AW and FW; (b) ΔPG for AW and FW. Error bars represent standard 

deviations. 

Finally, the trend for annual averages of ΔPG (AW and FW) is shown in Figure 3.5(b) and 

year behavior in (a). Again, the behavior of AW and FW values of PG differs; AW shows an 

increasing trend and no trend is evident for FW. The tendency of ΔPG for AW is in 

accordance with the population growth in the Metropolitan Area of Lisbon in the considered 

period. According to the Portuguese National Statistics Institute (INE, 2011), the population 

in the Metropolitan Area of Lisbon has grown until the 1980’s and stabilized in the 1990’s. 

Actually, the most significant population growth occurred in the 1970’s and the reason for 

that was the Portuguese democratic revolution of 25th of April 1974. Thus after it and until 

1976 an important growth in the Portuguese population occurred due to the return of many 

immigrants from the former Portuguese colonies of Africa, as those nations claimed their 

independence (Moreira and Rodrigues, 2008). Because of such increase in population, there 

was an increase in urban pollution; which was mainly due to traffic intensification and 

industrial activity. In fact, the social processes involved in this relation of population growth 



 

45 

   

and pollution level was intensively studied, e.g. (Constant et. al, 2014) and links the 

demographic growth of the 1980’s in Lisbon region with the development of the weekly 

cycle in the PG values. This relation adds a socioeconomic dimension to the studies of PG 

in urban regions as discuss in other works (Aplin, 2012). 

 

Figure 3.5 Annual averages from 1980 until 1990: a) PG for AW and FW; ΔPG for AW and FW. Error bars 

represent standard deviations. 

Figure 3.6 (a) and (b) show Lomb-Scargle Periodograms calculated from PG data for AW 

and FW, respectively. As expected, the periodogram for AW contains more harmonic 

components than the FW one, especially for lower periods. The occurrence of two main 

cycles, daily, and weekly cycles, is evident in both data sets. Additionally, PG for AW shows 

two other cycles: an annual cycle caused by the seasonal meteorological variations, and half-

day cycle (12 h period) likely to be related to traffic pollutant aerosols. Tchepel and Borrego 

(2010) have shown the presence of a significant influence of short-term fluctuations (12 h 

and 24 h periods) to the variance of both CO and PM10 measured in urban environments. 
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Those authors confirmed the contribution of traffic as the pollutant source using cross-

spectrum analysis; which showed a correlation percentage from 45 to 70% between the 

pollutant concentrations and traffic dynamics (Tchepel and Borrego, 2010). Besides the main 

peaks mentioned, LSP in the AW case presents a myriad of other smaller peaks between the 

main ones; which are their sub-harmonics (Xu et a., 2013).  

 

Figure 3.6 Lomb-Scargle periodograms calculated using the LSP implementation in MATLAB (Brett, 2001) 

for 1980-1990: a) AW; b) FW. The following parameters were used hifac=1 (that defines the frequency limit 

as hifac times the average Nyquist frequency), ofac=4 (oversampling factor). 

To further clarify the evolution of the weekly cycle during the period of study, Figure 3.7(a) 

and (b) show color surface plots of the LSP using the procedure described previously. It is 

important to mention that due to the variation in the number of FW days, the band of periods 

observable in each year varies considerably; in the worst case, the periods accessible were 

above 1.63 days. For that reason the color surface plot for FW, Figure 3.7(b), is restricted to 

periods above 3.162 days. In the AW case, periods start at ~ 0.316 days (an order of 

magnitude lower). The amplitude is represented in a color map as a function of the period (y 
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axis) for the 11 years of analyzed data (x axis). For AW, Figure 3.7(a), the daily and weekly 

cycles are clearly seen by two horizontal red lines (labelled with the respective cycle) and 

confirm the persistence of the weekly cycle during the 1980s and beginning of the 1990s. In 

contrast, the color surface plot for FW, Figure 3.7(b), does not show the weekly cycle so 

clearly.  Nevertheless, it enables us to see that the spectrum for 1986 responds most 

appreciably to low periods as compared to the other years (red blurs below the weekly cycle). 

This behavior can be tentatively related with the impact of Chernobyl nuclear accident (26 

April 1986) on the global electric circuit (Takeda et. al, 2011); study of this effect is out of 

the scope of the present work.  

 

Figure 3.7 Color surface plot of Lomb-Scargle periodograms for each year: a) AW; b) FW. 

The consistency of the color surface plots is confirmed by noise analysis of the LSP 

(Tuzlukov, 2002). This calculates, for each LSP, the n-exponent defined as a power law 

dependence of the power spectral density, S(T), with the period, T, of the type, S(T)  Tn .The 
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spectra are split into two parts: periods shorter than two days (twice the dominant 1 day 

period), and periods longer than two days. The exponents for periods shorter than Tc = 2 days 

are shown to be higher than exponents that correspondent to longer periods. 

 

 For AW, Figure 3.8(a), the n-exponents for T < Tc are close to the 1/f noise (pink noise); 

this type of noise is present in many systems in nature and is of special interest (Dutta and 

Horn, 1981). Complementary, the n-exponent for T > Tc diminishes over the studied years 

down to 0.5. 

 

Figure 3.8 Noise Upper panel: Evolution of the n-exponent from the Lomb-Scargle periodograms shown in 

Figure 3.6  and Figure 3.7 along the years for period below Tc = 2 days (empty circle) and above 2 days (full 

circle): a) AW; b) FW. 

It is argued that such decreasing tendency (the opposite trend of ΔPG for AW) must be related 

with the increase in Lisbon pollution levels. Seen in this way, pollution causes a spread of 

spectral power for periods longer than Tc and tends to flatten the spectra. In fact, it is known 

that long-range transport of the pollution contributes to pollutant aerosols spectra at high 
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periods (Tchepel and Borrego, 2010). Additionally, because of the mentioned variation in 

the number of FW days per year it is difficult to properly study the evolution of the n-

exponent for periods shorter than Tc = 2 days in this case. For these periods n tends to be 

negative, around 1 (blue noise), and has an anomalously low value for 1986. The negative 

values of n reveals that the PG responds better to processes with lower-periods and 

contradicts the behavior found for AW; this could be related with local perturbations that 

have typically small periods, e.g. the half-day cycle (Xu et. al, 2013). Nevertheless, the 

analysis of n for periods above Tc is found to have values near from, but not zero (white 

noise, n = 0). This is consistent with the behavior found in the AW case for periods above 

Tc. Again, this fact can be interpreted by a spread of power in the complete spectral band.  
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4 Aerosol hygroscopic growth and the dependence 

of atmospheric electric field measurements with 

relative humidity 

 

4.1 Overview 

A simple formulation is developed to model the influence of the aerosol hygroscopic growth 

in the dependence of the atmospheric electric field measurements with relative humidity. The 

formulation uses the Petters and Kreidenweis’s model for the hygroscopic growth factor of 

aerosols with relative humidity and assumes that the ion-aerosol attachment coefficient is 

linearly proportional to the particle radius according to Gunn’s formulation. A formula, 

which describes the atmospheric electric field increase with relative humidity in the regime 

expected for the aerosols to grow hygroscopically, between 60 % to 90 %, was found. It also 

relates the microphysical parameter of aerosol hygroscopicity, , with the macrophysical 

measure of the atmospheric electric field. Due to the high pollution levels in Lisbon (as 

discussed in the preceding chapter) the atmospheric electric field measurements were divided 

in four wind sectors, NW, NE, SE, and SW. The sector least affected by pollutant aerosols, 

NW, was used in the fitting and the following parameters were found: r2 ~ 0.97, the aerosol 

concentration number is ~ 3280 cm-3 and the hygroscopic growth parameter  ~ 0.094. These 

are very reasonable values consistent with an urban environment, which typically has high 

aerosol number concentration with small hygroscopicity. The limitations of the model are 

presented throughout the sections. 

 

4.2 Introduction 

Radiative forcing caused by aerosols (e.g. Li, 1998; Kaufman et al., 1998; Charlson et al., 

1999; Markowicz et al., 2002; Lyamani et al., 2006; Foster et al., 2007; Obregón et al., 2014) 

is of relevance to the Earth’s radiation balance and consequently to the Earth’s climate. 

Special emphasis has been given to the direct radiative effect, in which aerosols scatter and 
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absorb radiation, and the indirect effect, in which aerosols as cloud condensation nuclei 

(CCN) are able to modify cloud droplet number concentration, size, and distribution 

(Pruppacher and Klett, 2010). Moreover, in CCN processes the increase in aerosol size with 

relative humidity (𝑅𝐻) through particle hygroscopic growth is of fundamental importance. 

For instance, as aerosol particles become larger in size than their dry equivalents, they scatter 

more light because of the increase in the particle cross-section, e.g. (Pilat and Charlson, 1966; 

Seinfeld and Pandis, 1998; Koloutsou Vakakis 2001; Carrico et al., 2000; Fierz-Shmidhauser 

et al 2010a; Titos et al., 2014a,b). Considering the hygroscopic growth patterns, aerosol 

particles can be divided into three categories. Some aerosol species like soot or mineral dust 

are insoluble; therefore do not grow significantly in size with increasing 𝑅𝐻 (Weingartner et 

al., 1997; Sjogren et al., 2007). On the contrary, some aerosol species like H2SO4 and some 

organics are hygroscopic, thus being able to take up water and grow or shrink smoothly as 

the 𝑅𝐻 increases or decreases. Finally, some aerosol species, e.g. sea salt, are also 

hygroscopic, but show hysteretic behavior and are called deliquescent aerosols. In fact, 

aerosol hygroscopic growth has been a research topic of considerable interest. Work has been 

done in field campaigns, e.g. (Duplissy et al., 2011), laboratorial experiments, e.g. (Rickards 

et al., 2013), and modeling, e.g. (Petters and Kreidenweis, 2007). In this context, it is usual 

to refer to the aerosol growth factor, 𝐺𝐹 = 𝑅(𝑅𝐻) 𝑅0⁄ , where 𝑅(𝑅𝐻) stands for the particle 

wet radius for a given 𝑅𝐻 and 𝑅0 is the particle dry radius. Various models have been used 

to describe GF; Petters and Kreidenweis’s model (Petters and Kreidenweis, 2007) is 

commonly used in literature. This model is a key aspect of the formulation that will be 

presented below and is given by: 

In Eq. (4.1) aw is the water activity (related with 𝑅𝐻) and  is the hygroscopicity parameter. 

According to (Petters and Kreidenweis, 2007) the hygroscopicity of atmospheric particles is 

in the range from 0.1 to 0.9. Moreover, the authors show that if  of each of the components 

is known it is possible to calculate the hygroscopicity of the mixture by weighting the 

component  with the correspondent volume fractions. This implies that the  of the mixture 

can also be obtained from measurements in the absence of information on its chemical 

composition. Such “effective hygroscopicity parameter” can then be used in modelling CCN 

  𝐺𝐹(𝑟ℎ) = (1 + 𝜅
𝑎𝑤

1−𝑎𝑤
)

1
3⁄

. Eq. (4.1)   
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activity. In this context, the possibility of assessing   from historical records of the Potential 

Gradient (PG) seems highly likely. In fact, PG records go back to the mid-nineteen century 

in different places of Europe, e.g. London (Harrison, 2006), Paris (Harrison and Aplin, 2003), 

and Glasgow (Aplin, 2012). Valuable historical information about aerosol properties (not 

only concentration) can be accessed this way. On one hand, the sensitive of atmospheric 

electric parameters to pollutant aerosols has long been proven, e.g. (Retails, 1977; Manes, 

1977), and widely used to retrieve pollution dynamics in urban environments (Silva et al., 

2014). On the other hand, it was previously shown that marine aerosol size increase with 

relative humidity is responsible for the decrease in Atmospheric Electric Conductivity 

(AEC), e.g. (Kamra et al., 1997; Deshpande and Kamra, 2004). To relate aerosol hygroscopic 

growth and PG measurements, a simple model is proposed here. In the literature, simple 

models relating aerosols and PG exist, e.g. Harrison and Aplin (2002) and Harrison (2012), 

and give very useful information about the atmospheric processes under study. As discussed 

in the Introduction, PG is a result of the action of the Global Electric Circuit (Wilson, 1920; 

Odzimek et al., 2010; Williams and Mareev, 2014) and the local joint effect of ions, aerosols 

and water droplets (Harrison, 2012). Ions act as charge carriers in the atmosphere and are the 

major contributors to electric conduction (Matthews et al., 2010; Wright et al., 2014b). In the 

lower troposphere the most representative negative ions are O2
-, CO3

-, NO3
-, HSO4

- while the 

positive ones are: H3O
+, H+, NO+, NO2

+, NH4
+ (Harrison and Carslaw, 2003). These are 

known to form small ion clusters, like O2
-(H2O)n, via hydration by water molecules (Harrison 

and Carslaw, 2003). This process reduces ion mobility and consequently decreases the AEC, 

which causes the PG to increase with 𝑅𝐻. This is a possible mechanism explaining the 𝑅𝐻 

dependence of the PG, at least in low 𝑅𝐻, 𝑅𝐻 ~ 20 %. The change in the local ionization rate 

with 𝑅𝐻 is another mechanism to explain the dependence of the electrical parameters with 

𝑅𝐻 (Israël, 1970; Israël, 1973); these two works go deep into the complexity of the processes 

being discussed here. Nevertheless, in urban environments the presence of aerosols alters 

significantly the electrical proprieties of the atmosphere (Manes, 1977). This is because 

aerosols scavenge conducting atmospheric ions and reduce AEC that, through Ohm’s law 

(for a constant conduction current), causing an increase in PG (Retails, 1977). It should be 

mentioned here that this is a simplistic view in the sense that the charge is still present, but is 

carried by larger and less mobile charged aerosols, which contributes much less to 
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conductivity (Wright et al., 2014a). Besides, it is known that the ion-aerosol attachment 

coefficient (βa) depends on the radius (Ra) of the particles (Gunn, 1954) as: 

where kB is the Boltzmann constant, Te is the ambient temperature (considered here as 293 

K),  μ ion electric mobility and e electron charge. Thus it is expected that the increase in the 

aerosol size with 𝑅𝐻 would imply the scavenging of more ions and consequently the decrease 

in AEC and increase in PG; such process is expected to dominate the relative humidity 

dependence of the PG mainly in the 𝑅𝐻 range where aerosols grow hygroscopically (Kamra 

et al., 1997). Different types of aerosols would give different contributions according to their 

hygroscopicity; only the aerosols that grow hygroscopically would contribute. In particular, 

soot, a common pollutant aerosol in urban environments does not grow hygroscopically and 

for that reason, it would not contribute to the PG dependence with 𝑅𝐻. This is an important 

aspect and will be discussed in the next sections.  Moreover, 𝑅𝐻 between ~60 % and ~90 % 

can be considered as a reasonable range where aerosols grow hygroscopically (Kamra et al., 

1997; Petters and Kreidenweis, 2007; Rickards et al., 2013). For high 𝑅𝐻, especially close 

to saturation, CCN processes will dominate and droplet formation will start (Nicoll and 

Harrison, 2010). In this context, Harrison (2012) explored the induced effect of aerosols on 

the atmospheric electric field in cases of reduced visibility with the presence of water 

droplets. However less attention was given to the formulation of models describing the role 

that aerosol hygroscopic growth has in the atmospheric electricity (Deshpande and Kamra, 

2004), in particular in the Potential Gradient. A simple model was developed here to describe 

the contribution of hygroscopic aerosol growth in the Relative Humidity dependence of the 

Potential Gradient.  

 

4.3 Formulation 

Keeping in mind these arguments a basic formulation of the influence that aerosol 

hygroscopic growth has in PG is presented. The 𝑅𝐻 range of validity of the model is between 

~60 % and ~90 % (as discussed above) and the limitations of the model will be pondered 

during the formulation. The first step in the formulation is to consider the equation for ion 

  𝛽𝑎 =
4𝜋𝑘𝐵𝑇𝑒𝜇

𝑒
𝑅𝑎 ,  Eq. (4.2)   
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balance in an environment containing aerosols with the formalism developed by (Hoppel, 

1985). Starting with a variable change in Eq. (1.11), the next equation is obtained:  

where 𝑛∞ = √𝑞 𝛼⁄  is the steady state ion concentration when no aerosols or droplets are 

present (Harrison and Carslaw, 2003), and x is given by: 

It is assumed that the AEC is given by 𝜎𝑡 = 2𝜇𝑒𝑛; here the contribution of charged aerosols 

to the total atmospheric electric conductivity is neglected. This is an approximation required 

to maintain the simplicity of this model, but it is reasonable to do so, as it is known that 

charged aerosols contribute less to conduction due to their lower mobility, as compared with 

atmospheric ions (Wright et al., 2014a). Actually, this contribution is often neglected in 

similar models, e.g. (Harrison and Aplin, 2002; Harrison, 2006; Harrison, 2012). Thus, using 

Ohm’s law it is possible to relate 𝜎𝑡 and PG: 

where JC is the air-Earth conduction density current. Using standard values of JC  ~ 2 pA m-

2, μ ~ 1.2 cm-2 V-1 s-1, α ~ 1.6  10-6 cm3 s-1 and q ~ 10 cm-3 s-1 (Harrison and Carslaw, 2003) 

and assuming a typical PG ~ 100 V/m, it is found that x ~ 2.3. In fact, in cases with high 

aerosol number concentration it is expected that x ≫ 1 and Eq. (4.3) can be written as: 

The approximation in Eq. (4.6) was accomplished by a Taylor series expansion of the square 

root, neglecting O(x-4). Hence Eq. (4.5) simply becomes: 

In Eq. (4.7) the ion-aerosol attachment coefficient βa was substituted by the formula derived 

by Gunn (1954) and presented in Eq. (4.2). Notice that the particle radius should not be seen 

as a real particle size of a monodisperse aerosol size distribution, rather as an “effective 

  𝑛 = 𝑛∞ (√𝑥2 + 1 − 𝑥),   Eq. (4.3)   

  𝑥 =
𝛽𝑎𝑍𝑎

2√𝛼𝑞
 . Eq. (4.4)   

  𝑃𝐺 =
𝐽𝐶

𝜎𝑇
=

𝐽𝐶

2𝜇𝑚𝑒
[𝑛∞ (√𝑥2 + 1 − 𝑥)]

−1

, Eq. (4.5)   

  𝑛 = 𝑛∞𝑥 (√1 + 𝑥−2 − 1) ≈
𝑛∞

2𝑥
=

𝑞

𝛽𝑎𝑍𝑎
. Eq. (4.6)   

  𝑃𝐺 ≈
𝐽𝐶

2𝜇𝑚𝑒𝑞
𝛽𝑎𝑍𝑎 =

2𝜋𝐽𝐶𝑘𝐵𝑇𝑒

𝑒2𝑞
𝑅𝑎𝑍𝑎. Eq. (4.7)   
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attachment radius” representative of a polydisperse aerosol size distribution subjected to 

electrostatic forces (Hoppel, 1985). In the formulation that was developed here, the 

attachment coefficient is modeled to retrieve “effective aerosol proprieties” from PG values, 

in particular aerosol concentration. Equation Eq. (4.7) reveals that the PG is proportional to 

the product of aerosol radius and concentration, RaZa, and does not depend on the ion 

mobility. This is a significant result from the model as the reduction in ion mobility with 𝑅𝐻 

can be a possible cause for AEC decrease (PG increase) with 𝑅𝐻 in clean environments. 

Obviously, it is important to remark that this is only valid for the high aerosol concentration 

regime, e.g. an urban environment (Silva et al., 2014) or a fire (Conceição et al., 2015). 

Actually, Eq. (4.7) is similar to the one found by Harrison and Aplin (2002). The last step in 

the formulation is to describe the Ra growth with 𝑅𝐻. To do that Eq. (4.1) is used and a 

simplification is made assuming that water activity is given by 𝑎𝑤 = 𝑟ℎ = 𝑅𝐻/100. This is 

a good approximation in the regime of validity of the present model where 𝑅𝐻 is restricted 

from 60 % to 90 % (Rickards et al, 2013). Similarly to the discussion presented for the 

“effective aerosol radius”, in real atmosphere 𝐺𝐹 will vary accordingly to the dry size and 

composition of the aerosols, thus here the hygroscopicity parameter, , should be interpreted 

as an “effective hygroscopicity parameter” representative, in a statistical sense, of the actual 

polydisperse aerosol size distribution. Finally, the equation relating PG and 𝑅𝐻 through 

aerosol growth is found: 

In Eq. (4.8) Za, Ra,0 and a are the number concentration of aerosols, the dry radius, and the 

hygroscopicity parameter, respectively. This equation relates, in a simple formulation, three 

significant microphysical aerosol parameters: number concentration, dry radius and 

hygroscopicity parameter with two macrophysical measurements: Potential Gradient and 

Relative Humidity. Obviously, the microphysical parameters must be considered as 

“effective parameters” in the statistical sense described above and not “precise parameters”. 

Here the significant point is that in macrophysical radiative modelling the “effective 

parameters” are more relevant than the precise measurements of those microphysical 

parameters (Petters and Kreidenweis, 2007).  

  𝑃𝐺 ≈
2𝜋𝐽𝐶𝑘𝐵𝑇𝑒

𝑒2𝑞
𝑍𝑎𝑅𝑎,0 (1 + 𝜅𝑎

𝑟ℎ

1 − 𝑟ℎ
)

1
3⁄

. Eq. (4.8)   



 

56 

   

4.4 Data 

In the present analysis, only non-negative values of PG were selected because negative PG 

values are not a consequence of 𝑅𝐻 as they are linked to rain and shower clouds. On the 

contrary, positive values of PG ~ 400 V/m, are found under high 𝑅𝐻 condition, for example, 

in the case of fogs (Deshpande and Kamra, 2004). Thus when studying the dependence of 

the PG with 𝑅𝐻, it is important to include these cases, that are usually rejected under the fair-

weather conditions, Voeikov (1965). This is the reason why a strict fair-weather selection is 

not fully appropriate to the present study. It should be mentioned that positive charged clouds 

also exist and affect the PG, though less statistically significant in Lisbon with low cloud 

cover percentages (ranging from 28 % in summer and 61 % in winter). A wind rose and 

location of measurement site and surroundings is shown in Figure 4.1. 

 

Figure 4.1 Location of the Portela meteorological station (yellow pin) and the industrial region of Setubal (red 

pin) are marked. The Atlantic Ocean and Iberian Peninsula are also indicated. A wind rose measured at Portela 

is also shown. 

Precipitation and snow further perturb the PG and for that reason “manually observed present 

weather”, (MW) was used. PG values having MW in the range of 50 - 99, which corresponds 

to “precipitation at the station at the time of observation”, were excluded. Relative humidity 

Iberia 

Peninsula 

Atlantic 

Ocean 



 

57 

   

was calculated from air temperature and dew point measured in Portela meteorological 

station.  

 

During the 1980s most of the industries and main pollution sources in the region were located 

to the south of Tagus River, in Setubal region. Therefore using the station as a geographic 

reference, the mentioned main pollution sources can be found in the southern sector while in 

the northern sector, such sources are scarcer (and population is lower). The Tagus river basin 

and the Iberian Peninsula are located to the East whereas the Western sector is covered by 

the Atlantic Ocean. Pollution has the effect of increasing the PG (Silva et al. 2014, and the 

references therein), thus it is expected that south winds correspond to higher PG values than 

northern ones. Furthermore, westerly winds are able to transport marine aerosols, which are 

known to have higher electrical mobility than those transported from continental regions 

(Wilding and Harrison, 2005). For that reason lower PG values are expected to be associated 

to winds from the west as compared with those from east. These features were observed in 

Silva et al. (2015) and according to that procedure PG is divided into four wind sectors: 

1) NW, 270º ≤ θ ≤ 360º;  

2) NE, 0º ≤ θ ≤ 90º;  

3) SE, 90º ≤ θ ≤ 180º;  

4) SW, 180º  θ  270º. 

Matthews (2012a,b) previously applied this methodology to study the impact of high voltage 

power lines on the local PG. It is worth to mention that the prevailing winds in Lisbon are 

from NW (Figure 4.1) and result from the Iberian thermal depression (Costa et al., 2010). 

From the considerations presented this far it is expected that the NW sector corresponds to 

lower PG values than those associated to the NE and SE sectors; regarding the SW sector, 

where winds bring both marine and polluted air, the PG values are expected to be higher than 

in the NW, but smaller than in the SE. These results are depicted in the histograms of Figure 

4.2 and further statistical parameters are presented in Table 4.1.  
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Figure 4.2 Distributions of the hourly PG values, in logarithmic scale, for the four wind sectors: NW, NE, SE, 

and SW. 

Table 4.1 Mean, median, Median Absolute Deviation (MAD), skewness, kurtosis, and number of hours for the 

period between 1980 and 1990. The atmospheric electric field measurements are divided in: NW, NE, SE, and 

SW. 

 NW NE SE SW 

Mean (V/m) 75.4 101.1 119.5 104.1 

Median (V/m) 67.0 90.0 100.0 90.0 

MAD (V/m) 30.7 43.7 54.7 47.4 

Skewness 2.03 1.34 1.13 1.20 

Kurtosis 9.81 5.48 4.61 5.10 

Number of days 385 283 95 204 
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The median PG values are consistent with the previous arguments: NW, 62.3 V/m; NE, 80.0 

V/m; SE, 91.1 V/m; and SW, 90.0 V/m. Additionally, the daily variation of PG 

corresponding to the four wind sectors is presented in a boxplot4 representation, Figure 4.3, 

and show similar behavior.  

 

Figure 4.3 Daily behavior of hourly PG values in a boxplot representation. The four wind sectors are 

considered: NW, NE, SE, and SW. 

It is verified that in the beginning and end of the day low values of PG are observed, around 

~ 50 V/m. Daily PG curves measured inland often differ from the Carnegie curve mainly due 

the action of local phenomena, for example, convective currents (Tacza, 2014). Convective 

currents due to the presence of the Atlantic Ocean could, in fact, be a reason explaining such 

                                                 
4On each box, the central dot is the median, the limits of the box are the 25th (first quartile, q1) and 75th (third 

quartile, q3) percentiles and the whiskers (solid lines) extend to the most extreme data points not considered 

outliers. Maximum whisker length (w) is set to 1.5 and outliers are defined to be larger than q3 + w(q3 – q1) or 

smaller than q1 – w(q3 – q1).  
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low values measured at Portela; nevertheless, investigation of such mechanism is out of the 

scope. Even though, the daily behavior for the NW is slightly different from the other three 

sectors as it shows less variability and the peak observed in the other wind sectors at 18:00 h 

is reduced in this one. In fact, for PG measurements carried out in urban environments, the 

peak at 18:00 h is a combination of the maximum of the Global Electric Circuit activity, 

Carnegie curve (Harrison, 2013) and of the air pollution generated at the end of the workdays 

(Harrison, 2009). Also winds from the NW sector are most likely to occur during this time 

of the day (known as Nortada, Alcoforado et al. 2006). Hence, the reduction of the 18:00 h 

peak for NW sector can be an indication of a more efficient removal of air pollution. Finally, 

daily averages, Figure 4.4, are calculated for both PG and 𝑅𝐻, reducing the variability of 

these parameters. 

 

Figure 4.4 𝑅𝐻 dependence of daily averaged PG values of all sectors: NW, NE, SE, and SW. Bins with Δ𝑅𝐻 = 

5 % in the 𝑅𝐻 range from 30 % to 100 % were used. The label attributed to a bin corresponds to its upper limit. 

Vertical lines mark the hygroscopic growth region, in which the analysis is focused. 
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4.5 Results and discussion 

PG as a function of 𝑅𝐻 is shown in a boxplot representation in Figure 4.4 for the four wind 

sectors. PG values were separated into 𝑅𝐻 bins with a given width, ∆𝑅𝐻 = 5 %, from 𝑅𝐻 = 

35 % up to 100 %. The condition for each i-bin is: 

The choice of the ∆𝑅𝐻 was made as a trade-off between statistical representatively of each 

bin and sufficient number of bins to have enough values to guarantee the validity of the 

analysis. It is seen in Figure 4.4 that for low 𝑅𝐻 the PG values tend to fair-weather values 

around ~ 80 V/m and a diversity of behaviors is observed for higher 𝑅𝐻. Mainly in the 

heavily polluted southern sectors, SW and SE, it is observed that the PG tends to decrease 

with 𝑅𝐻; which is an unexpected result, but could result from the presence of high levels of 

pollutant aerosols that influence the PG with a different mechanism than the one explored 

here. Such mechanism may be air pollution particles precipitation by charged water aerosol 

(Balachandran et al., 2001). The northern sectors show an increase in the PG with 𝑅𝐻 in the 

region of aerosol hygroscopic growth. The PG for NE sector shows a slightly lower increase 

with 𝑅𝐻 as compared with the NW sector. This is an important result because these sectors 

are known to be the least polluted (Silva et al., 2015) and more hygroscopic marine aerosols, 

coming from the Atlantic Ocean influence, the NW sector. Marine aerosols are known to 

have high hygroscopicity (Carrico et al., 2000; Titos et al., 2014b) and will dominate the non-

hygroscopic behavior of the pollutant aerosols. To progress with the analysis the median 

values of the PG corresponding to the northern sectors, for each 𝑅𝐻 bin, are represented 

against the median 𝑅𝐻 of the respective bin. The data was fitted to the model in Eq. (4.8) in 

the 𝑅𝐻 region defined for aerosol hygroscopic growth between ~ 60 % and ~ 90 %, Figure 

4.5(a) and (b).  

 𝑅𝐻𝑖𝑛𝑖 + (𝑖 − 1)∆𝑅𝐻 < 𝑅𝐻(𝑖) ≤ 𝑅𝐻𝑖𝑛𝑖 + 𝑖∆𝑅𝐻. Eq. (4.9)   
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Figure 4.5 Fits of the model to the wind sectors: a) NW; b) NE, The error bars represent the median absolute 

deviation (MAD), the solid-line the fitted curve and the dashed-lines the model function but with a variation in 

 of 40 % above and below the fitted valued. 
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In the fitting it was assumed that the dry size of the aerosols is Ra,0 ~ 0.1 μm, and the following 

parameters are used: JC ~ 2 pA m-2, Te ~ 293 K, and q ~ 10 cm-3 s-1 (Harrison and Carslaw, 

2003). The fits are presented in Figure 4.5(a) and (b). The error bars represent the median 

absolute deviation (MAD), the solid line is the fitted curve and the dashed lines are the model 

curve using  40 % above (upper limit) and bellow (lower limit) of the fitted valued, 

respectively. The model describes well the 𝑅𝐻 evolution of the PG for the northern wind 

sectors in the region of aerosol hygroscopic growth. The results are presented in Table 4.2.  

 

Table 4.2 Results from fitting the model to the PG in the northern wind sectors: aerosol number concentration 

(Za) and aerosol hygroscopic growth parameter (a). The goodness of the fit is also given (r2
). It is assumed 

that particle dry radius is Ra,0 = 0.1 μm. 

 NW NE 

Za (cm3)  3280 4179 

a  0.094 0.072 

r2 0.970 0.997 

 

These are very reasonable values consistent with an urban environment; which has high 

aerosol concentration number with small hygroscopicity. They are probably a result of the 

mixture between the non-hygroscopic pollutant aerosols resulting from the activity of the city 

of Lisbon and the hygroscopic marine aerosols. This is more evident for the NW sector. The 

fitting procedure is robust against the Ra,0 used and would only affect the value estimated for 

Za because these two quantities appear as a product in Eq. (4.8). It is important to mention 

that Ra,0 is expected to be small as it is the dry radius instead of the typical values measured 

in real atmospheric conditions where the aerosol particles are already hydrated to some extent 

(Deshpande and Kamra, 2004).  
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4.6 Potential Gradient modulation by wind effect 

Considering that, a division was made by wind sectors and our argument was that southern 

winds are more polluted then northern winds in this section we to use the PG weekly cycle 

to confirm such assumption. To that end, analysis of the weekly cycle (caused by 

anthropogenic pollution related with urban activity) were undertaken for each wind sector. 

A boxplot method and Lomb-Scargle spectra are used as in the previous chapter. In fact, it is 

shown that NW sector was the least affected by this cycle and the daily variation of NE sector 

for weekends reveals a similar behavior to the Carnegie curve. As discussed above, PG 

measurements in urban environments are affected by anthropogenic action. The main agents 

of these influences are pollutant aerosols from traffic, heating and industrial activity. 

According to the geographical position of pollutant sources around a measurement point, 

different winds bring different ion and aerosol contents; for that reason, a significant 

modulation of PG is expected with wind direction. 

   

In this section, only non-negative values of PG were selected as negative values often 

correspond to precipitation and cannot be considered. Otherwise, high positive PG values 

can occur as a consequence of pollution, as in case of fires. This occurred during the historical 

Chiado’s fire in Lisbon downtown (Conceição et al., 2015) as will be discussed in the next 

chapter. Lisbon is situated on the north margin of the Tagus River and Portela station is 

located to its northeast. Traffic and urban heating are the predominantly cause of pollution in 

the city. In the 1980’s the south margin of the river contained most of the industry (Setubal 

region), which were then significant pollution sources. At the east of Lisbon is the Tagus 

river basin and Iberian Peninsula; while to the west is the Atlantic Ocean. Thus, it is expected 

that winds from different directions should modulate the PG as they contain different air 

contents. At Portela, south winds bring pollution from the city mixed with the pollution from 

industry, west winds transport some pollution from the city mixed with marine aerosols, north 

winds carry less pollution and the east winds carry mainly continental aerosols.  

 

PG was separated into workdays, Mondays to Fridays, PGworkdays (WD) and weekends, 

Saturdays and Sundays, PGweekends (WK).  It is expected that PG for workdays would have 
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higher values as compared with the PG for the weekends, because workdays have more 

pollution. Thus, to evaluate the difference between workdays and weekends, the relative 

difference  equation for the 𝛥𝑃𝐺  is used again. Please, refer to the previous chapter Eq. 

(3.1).  The comparison of the daily behaviour for workdays and weekends is also very 

informative and such method is used here. The LSP technique was used to identify the 

presence and importance of the weekly cycle in each wind sector. 

 

Figure 4.6 shows the boxplots of the PG values for each wind direction separated by 

workdays (WD) and weekends (WK), for clarity outliers are not represented. It is evident 

that:  

 NW sector shows small differences between workdays and weekends having a small 

relative difference of the medians for workdays, 70 V/m, and for weekends, 60 V/m, 

ΔPG ~17%, consistent with low levels of anthropogenic pollution.  

 

  NE sector presents more variability in the workdays as compared to the weekends, 

the median for workdays is 87 V/m and for weekends is 60 V/m, this corresponds to 

ΔPG ~45%, which is a high value and is mainly due to the low median value for the 

weekends.  

 

 SE sector shows the higher variability of PG for workdays of all sectors, again the 

median for the weekends, 80 V/m, is lower than that of the workdays, 104 V/m, 

having ΔPG ~30%, this behavior shows evidence of the presence of a significant 

influence of anthropogenic pollution. 

 

  SW sector has a median PG value for the workdays of 98 V/m, and for the weekends, 

80 V/m, this implies ΔPG ~23%. These results show that all the sectors are affected 

by the weekly cycle; nevertheless, the NW tends to be the least affected. This can be 

interpreted as a consequence of lower pollution levels and the presence of marine air 

brought by the western winds from the Atlantic Ocean. In fact, marine air is known 

to increase atmospheric conductivity (Wilding R.J., Harrison R.G, 2005) and 

consequently reduces PG. 
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Figure 4.6 Boxplots of the four wind sectors: a) NW, b) NE, c) SW and d) SE, divided in workdays (WD) and 

weekends (WK). 

Figure 4.7 presents the daily behaviour of the median PG values from the studied period 

divided into workdays and weekends. On one hand, the northern sectors, NW and NE, show 

little difference between the daily behaviour of the workdays and the weekends. Actually, 

the NW sector shows the lowest values of the sectors. On the other hand, the southern sectors 

show the most significant difference from the workdays to weekends, in particular, the SE 

and SW sectors show a prominent disparity in the period 08:00 h – 20:00 h, the moment of 

greatest activity. This aspect may be interpreted as the signature of pollution coming from 

industries in the south margin of Tagus River, which were most active in that period. Lastly, 

the daily variation of NE sector for weekends reveals a similar behavior to the Carnegie curve 

(Harrison, 2013). 
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Figure 4.7 Daily behavior of the median PG values for 1980 to 1990 separated in workdays (WD) and weekends 

(WK) for each wind sector: a) NW, b) NE, c) SW and d) SE. 

Figure 4.8 displays the Lomb-Scargle Spectra for each of the four wind sectors, a clear 

modulation with wind direction is observed. The most revealing feature is the n-exponent 

values found for each wind sector. This exponent is defined from the asymptotic spectral 

amplitude, S, with the frequency, f, usually written as 𝑆 ~ 𝑓−𝑛. The NW and NE have higher 

slopes with n-exponents around, 6.1 and 5.0, correspondingly. The SW and SE have lower 

n-exponent values, 3.9 and 3.3, respectively. These lower values are compatible with 

measurements taken under more polluted air as pollution tends to induce spectral dispersion 

that flattens the spectra as discussed in the preceding chapter (Silva et. al., 2015 and Tchepel 

O., Borrego, C.). Moreover, the presence of the weekly cycle peak, but apparently less 

pronounced in the NW sector. This observation is compatible with the low ΔPG found for 

this sector and could be another indication of the effect of marine air as it tends to increase 

the conductivity in contrast to the effect of pollution that tends to cause it to decrease. 
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Interestingly, the NE sector shows a marked weekly cycle even though the pollution levels 

should be lower as compared with the sectors from the south. This can be as indication that 

pollution from traffic should be the main cause of pollution in this sector as traffic is 

considerably affected by this cycle. Otherwise, pollution from the south is a result of 

industrial activity and, in principle, less affected by the weekly cycle as many industries 

continue to labour at the weekends. Finally, all sectors, except the SE, clearly show a daily 

cycle and a half-day cycle. 

 

Figure 4.8 Lomb-Scargle Spectra corresponding to the four wind sectors. The following parameters were used 

hifac=1 (that defines the frequency limit as hifac times the average Nyquist frequency), ofac=4 (oversampling 

factor). 
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5 Transport of the smoke plume from Chiado’s fire 

in Lisbon (Portugal) sensed by atmospheric 

electric field measurements 

 

5.1 Overview 

The Chiado’s fire that affected the city center of Lisbon (Portugal), Figure 5.1, occurred on 

25th August 1988 and had a significant human and environmental impact. This fire was 

considered the most significant hazard to have occurred in Lisbon city center after the major 

earthquake of 1755. A clear signature of this fire is found in the atmospheric electric field 

data recorded at Portela meteorological station about 8 km NE from the site where the fire 

started at Chiado. The atmospheric electric field reached 510 V/m when the wind direction 

was coming from SW to NE, favorable to the transport of the smoke plume from Chiado to 

Portela. Such observations agree with predictions using Hysplit air mass trajectory modelling 

and have been used to estimate the smoke concentration to be ~0.4 mg/m3. 

 

 It is demonstrated that atmospheric electric field measurements were therefore extremely 

sensitive to Chiado’s fire. This result is of particular current interest in using networks of 

atmospheric electric field sensors to complement existing optical and meteorological 

observations for fire monitoring. 
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Figure 5.1 Image of the Chiado’s fire that took place at Lisbon city center; courtesy of the Municipal Archive 

of Lisbon. 

 

5.2 Introduction 

Among its different uses, sensing pollution with PG measurements is one of the most 

significant ones (Harrison 2006). Historical PG records have been used to infer pollution 

dynamics since the first reliable PG measurements were done in the mid-nineteenth (Aplin 

2012, and references therein) to late twentieth century (Silva et al., 2014) when particulate 

matter measurements became abundant as part of routinely air quality control (Krzyzanowski 

and Cohen 2008). In this context, AEC was also proven to be very sensitive to air pollution 

(Retails et al. 1991; Sheftel et al. 1994). These studies show a decrease in AEC with the 

increase of air pollution; which does relate, through Eq. (1.3), to the increase of PG (Retalis 

and Retalis, 1997; Silva et al. 2014). Actually, the reduction of the number of small ions 

caused by air pollution (Retails 1977) is the main mechanism behind these observations as it 

reduces considerably AEC. Details on the theory will be given below. 

Due to its sensitive to air pollution a possible application of PG measurements is the detection 

of fires. These hazards represent an immense threat to public health and impose a strong 

environmental impact; which makes all possible tools available to their monitoring of 

fundamental importance. In the context of atmospheric electricity, initial interest in fires was 

related with lightning from fire-clouds (Vonnegut et al. 1995). It was found that the plumes 



 

71 

   

of hot gas, moisture, and smoke formed by the fires originate anomalous lightning (Lang and 

Rutledge 2006) and disturb significantly the local PG (Phalagov et al. 2009). This 

perturbation is caused by the action of two distinct factors (Gopalakrishnet al. 1996): 1) the 

atmospheric ions created by the burning flame increasing AEC and decreasing PG; 2) the 

smoke spread with the plume scavenge the atmospheric ions decreasing AEC and increasing 

PG. The second factor dominates over the first (Ippolitov et al. 2013).  

 

Presently, the use of PG measurements in sensing smoke plumes derived from fires is gaining 

vigor with the development of networks of PG sensors worldwide. In particular, in South 

America, a PG network is operating (Tacza et al. 2014); this region comprises the Amazon 

rainforest (largest tropical rainforest in the world) and the use of this network could be of 

significant value in complementing visual and meteorological measurements.  

 

In this perspective, the urban fire that occurred in Lisbon (Portugal) on 25th August 1988, 

known as Chiado’s fire, represents a rare opportunity to study the effect of smoke particles 

on PG, as such measurements were made in the suburbs of Lisbon at Portela meteorological 

station (Serrano et al. 2006 and Silva et al. 2014). Chiado’s fire was considered the most 

significant hazard to have occurred in Lisbon city center since the 1755 earthquake. It had a 

significant economical and human impact due to the destruction of many buildings, 2 people 

lost their lives, 73 were injured, and around 300 people lost their homes, while nearly 2000 

lost their jobs. The fire started about 05:00 h (local time) at the Grandella store in Carmo 

Street (Chiado). Highly flammable and explosive materials were stored in the buildings 

affected by the fire, which contributed to its rapid spread and great magnitude. Firefighters 

fought this urban hazard until 16:00 h on 25th August 1988 while smoke emissions last for 

several days (firefighters work in the zone went to 5th September). In the end, Chiado’s fire 

affected about 8000 m², which corresponds to approximately 3.4% of Lisbon’s downtown.  

 

Here it is discussed the impact that Chiado’s fire had on the PG at Lisbon. The analysis of 

these records is complemented with air mass trajectory modelling, using Hysplit model (as 

no aerosol measurements or satellite monitoring was available during that period) and the 
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examination of local meteorological conditions to evaluate the sensitivity of the PG to this 

urban fire. 

 

5.3 Results and Discussion 

The hourly values of PG measured during 1988 are presented in Figure 5.2; the vertical 

green line marks the period in which Chiado’s fire occurred, on 25th August.  

 

Figure 5.2 PG data measured at Portela during 1988 (the green line denotes the PG peak of Chiado’s fire on 

26th August). 

 

Examination of Figure 5.2 shows that on the 26th August the PG at Portela was significantly 

enhanced, reaching a maximum value of 510V/m at 19:00 h. Figure 5.3(a) and (b) show the 

annual and summer PG histograms (in logarithmic scale) for 1988, respectively. This is 

because seasonal variations affect considerably the PG distribution.  
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Figure 5.3 a) distribution of PG values for all the year of 1988; b) distribution of PG values for the summer of 

1988. The arrows point to the anomalous PG value in study. 

In Figure 5.3(a) and (b) it is seen that the PG distributions are not normal and are positively 

skewed (to the right), due to the predominantly positive PG values during fair-weather. 

Descriptive statistics for both distributions are presented in Table 5.1.  
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Table 5.1 Mean, median, standard deviation, skewness, lower whisker, lower adjacent value, upper whisker 

and upper adjacent value for all year of 1988 (Annual) and Summer of 1988 (Summer). The last four statistical 

parameters were calculated trough adjusted boxplot method (Vanderviere and Huber, 2004). 

 Annual Summer 

Mean (V/m) 88.9 75.4 

Median (V/m) 80.0 70.0 

Standard deviation (V/m) 58.2 46.1 

Skewness 1.76 1.92 

Lower whisker (V/m) 0.0 10.0 

Lower adjacent value (V/m) 50.0 49.0 

Upper whisker (V/m) 110.0 90.0 

Upper adjacent value (V/m) 160.0 150.0 

 

The reliability of the 26th August PG value as an outlier it is checked by the skewness of PG 

and by the statistics in Table 5.1. Additionally, taking into account that in the summer the 

mean PG is 75.4 V/m and standard deviation is 46.1 V/m, this means that the PG anomaly 

was above the summer mean value more than 9 times its standard deviation. It was so large 

that such a value was only exceeded on two days in that year (recorded during foul-weather 

winter days). A stronger indicator is the estimation of the probability that such anomalous 

PG have to occur. To do so the distributions in Figure 5.3 are fitted to t Location-Scale 

distributions (using maximum likelihood estimation) to calculate the probability of a value 

of 510 V/m to occur. The results show that the probabilities are low: ~0.13 % in all the year 

and ~0.08% in the summer. 

 

Further analysis of the PG data can be achieved by considering its average diurnal variation; 

which is due to a combination of local and global effects.  The black curve in Figure 5.4 

shows the average diurnal variation in PG at Portela for 1988 having two maxima at 

approximately 08:00 h and 16:00 h.  
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Figure 5.4 Hourly mean behavior of the PG at Portela calculated from all year of 1988 (black curve), PG 

during 25th (red curve) and 26th of August 1988 (blue curve). 

This is consistent with daily particulate matter variations in urban environments (Harrison 

2009). Plotted alongside is the PG data measured during the period of Chiado’s fire: in red 

for 25th and in blue for 26th August.  The large difference between the average diurnal PG 

variation and the one measured on 26th August (which is much larger than the typical values) 

suggests the presence of an external factor driving the unusual PG changes. Therefore, such 

effect is attributed to the increase in smoke particle concentration generated by Chiado’s fire. 

In fact, assuming that the smoke from Chiado’s fire caused the large PG values over Portela, 

it is possible to estimate the concentration of smoke particles directly from the PG 

measurements through the theory developed by (Harrison 2006). This is briefly derived from 

the ion balance equation Eq. (1.10) . In the case of heavy pollution, 𝑛𝛽𝑎𝑍𝑎 ≫ 𝛼𝑛2, Eq. (1.10) 

simply becomes: 

 

  𝑛 = 𝑞/𝛽𝑎𝑍𝑎   Eq. (5.1)   
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Substituting Eq. (5.1) in the equation for AEC, Eq. (1.6), and the result included in the 

formula for the PG, Eq. (1.3), it is found the relation: 

It is possible to substitute 𝑍 in Eq. (5.2) by smoke mass concentration, 𝑀, through the 

relation, 𝑍 = 𝑀/𝑚, with 𝑚 the mean mass of a single particle. Thus it is obtained the 

relationship: 

This equation links the 𝑃𝐺 directly to 𝑀. Finally, the measured 𝑃𝐺 is written as the sum of 

two components: the one caused by the action of smoke particles, Eq. (5.3), and the one 

conforming to clean air, 𝑃𝐺0. This results in: 

Substituting the coefficient of 𝑀 in Eq. (5.4) by 𝐶 and isolating 𝑀, the smoke concentration 

can be retrieved as a function of 𝑃𝐺 and 𝑃𝐺0: 

The constant 𝐶 was estimated by (Harrison, 2006) for Kew (London) to be ~1082.6 

(V/m)/(mg/m3). Using Eq. (5.5) it is possible to make a reasonable estimation of 𝑀 at the 

PG maximum (510 V/m). The mean PG values for the Sundays of August 1988 is used as 

corresponding to clean air, 𝑃𝐺0 ~ 53 V/m. Sundays were chosen because they are the less 

polluted days of the week (Silva et al. 2014). The estimation indicates a maximum smoke 

concentration of M ~ 0.4 mg/m3 at Portela (8 km from the origin of the fire) which is 

consistent with high smoke concentration scenario as expected for this fire. It is important to 

bear in mind that this is an indicative value. Moreover, it is expected that the value of 𝐶 for 

Lisbon might not differ significantly from London’s, as both cases consider a high pollution 

scenario. Finally, using Eq. (5.5) a simple estimation for the threshold smoke concentration 

needed for a fire to be detected by PG measurements would be around ~0.2 mg/m3; this 

assumes that a PG ~ 300 V/m is anomalous and 𝑃𝐺0 ~ 53 V/m (the one used above). 

 

 𝑃𝐺 =
𝐽𝐶𝛽𝑎𝑍

2𝑞𝜇𝑒
.  Eq. (5.2)   

  𝑃𝐺 =
𝐽𝐶𝛽𝑎

2𝑞𝜇𝑒𝑚
𝑀.  Eq. (5.3)   

  𝑃𝐺 =
𝐽𝐶𝛽𝑎

2𝑞𝜇𝑒𝑚
𝑀 + 𝑃𝐺0. Eq. (5.4)   

  𝑀 = 𝐶−1(𝑃𝐺 − 𝑃𝐺0). Eq. (5.5)   
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5.4 Meteorological considerations 

PG is drastically affected by local weather conditions.  It is therefore important to determine 

whether the anomalous PG values measured on 26th August were in fact due to the increase 

in smoke concentration, caused by the fire, or resulted from local meteorological factors.  

Meteorological parameters at Portela meteorological station (the same location of PG 

records) were obtained from NNCD Climate Data Online website supported by NOAA. 

These include visibility, wind speed and direction, air temperature, and dew point (used to 

calculate relative humidity). Figure 5.5 shows the time series of the meteorological variables 

over Lisbon for the period 25th and 26th August 1988: (a) PG; (b) visibility; (c) wind speed; 

(d) wind direction; (e) relative humidity (𝑅𝐻).  
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Figure 5.5 Meteorological conditions from 25th and 26th of August 1988 for Portela meteorological station 

(Lisbon airport): a) Potential Gradient; b) Visibility; c) Wind Speed; d) Wind Direction; e) Relative Humidity 

(𝑅𝐻).  The vertical lines denote the start of the fire (first green line) and the PG peak hour (second green line). 

The horizontal red dash line in c) marks the fair-weather limit for wind speed, 6 m/s, according to Voeikov 

(1965). The black arrow in d) marks the moment when the smoke plume started travelling to Portela. 

These demonstrate that during the period of the fire there were fair-weather conditions, 

according to (Voeikov, 1965). Some high cloud (above 5km) was present on 26th and 27th, 

though. Such clouds, due to their high altitude (well above the boundary layer) cannot 

account for the large PG values measured at the time of the fire. The synoptic situation (not 

shown) during this period was characterized by a high-pressure system over Portugal with 

mostly clear skies and no precipitation corresponding to quiet atmospheric conditions. Such 

conditions in summer are characterized by intense solar radiation that causes significant air 

convection. It is expected that the smoke plume due to its high temperature would have been 

injected well above the ground, but air convention would cause vertical dispersion of smoke 

particles. These would reach the ground during the travel time from Chiado to Portela. In 

fact, the increased smoke particle concentration from the fire could last for several days.  

 

It can also be seen in Figure 5.5(b) and Figure 5.5(e) that visibility and 𝑅𝐻 have values that 

exclude the possibility of fog formation; this is important because fogs tend to increase the 

PG (Piper and Bennett 2012) and could be a possible cause for the anomalous PG discussed 
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here. Besides, to account for the smoke plume transport from the fire’s site to the PG 

measurement location, it is important to consider the wind direction on 25th and 26th August, 

Figure 5.5(d).  This shows that on the 25th the wind was mainly coming from the north, 360º; 

whereas on the 26th the wind direction started coming from east and then gradually from 

southwest, 240º. This process took ~6 hours to stabilize (the black arrow marks the stabilizing 

moment) and it is clearly seen in Figure 5.6 (withe arrow marks the wind rotation). 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Rose wind representation in Portela during 1988 (a 3D perspective is used). The white arrow marks 

wind rotation in time from 25th of August at 07:00 up to 26th of August at 18:00 (UTC). These moments are 

marked in the figure. The wind speed varies according to 4 colors increasing its magnitude from light blue, 

dark blue, green and yellow. The increasing radius represents an increase in the observations. The Chiado’s 

fire is marked with red pin and Portela station marked with a yellow one. 

After this it is observed that the PG starts to increase, up to its peak value ~3 hours later, 

Figure 5.5(a). The smoke plume took roughly ~1 hour to travel from the fire’s site to the 

measurement location. This is estimated dividing the distance from Chiado to Portela, 8 km, 

by an average wind velocity of ~2 m/s (Figure 5.5(c)). This means that there is a delay of ~2 

hours between the plume arrival and the PG maximum. This delay is attributed to the time 

that smoke particles took to scavenge enough atmospheric ions to cause the significant 

decrease in AEC and consequently the anomalous increase in the PG. A simple estimation 

25th August    07:00 h 

26th August 18:00 h 
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can be made taking into account that the lifetime of atmospheric ions in highly polluted air 

is ~20 s (Retails 1991). Assuming that ion concentration before the fire was ~500 ions/cm3 

(Harrison and Carslaw 2003) an increase of the PG from a typical ~100 V/m to the anomalous 

~500 V/m would imply, through Eq. (1.6), a reduction in atmospheric ions by ~400 ions/cm3 

(assuming that JC remained constant and the ion mobility did not change). Multiplying this 

value by the ion life time an estimation of the time needed for the process of ion scavenging 

to occur is calculate, ~8000 s, which corresponds to approximately 2 hours. Adding this 

estimation with the time for the smoke plume to travel gives ~3 hours, consistent with the 

observations. From the evolution of PG and visibility, Figure 5.5(a) and Figure 5.5(b), it 

can be seen that there was a reduction in the visibility, consistent with the transport of the 

plume to Portela station.  

 

5.5 Air mass trajectory modelling 

Air mass trajectories were calculated using the Hysplit-4 model for air masses that started at 

the fire site at 05:00 h on the 25th of August 1988 and ended at 20:00 h on the 26th. Despite 

the fact that the fire ended on 16:00 h of 25th of August smoke emission remained during 

several days after (firefighters worked in the zone until 5th September as mentioned above). 

In fact, meteorological conditions also favored a late detection of the smoke plume by the 

PG in Portela. From Figure 5.7 it is possible to see the time evolution of the smoke particle 

trajectories between the fire site (marked with red pin) and the location where the PG was 

measured (pointed with a yellow pin). 
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Figure 5.7 Forward trajectories calculated using Hysplit-4 for air masses at 750 m starting at 05:00 h 25th 

August (first white trajectory) with a new trajectory created each 5 hours (blue trajectories) until 16:00 h 26 th 

August (last black trajectory). The Chiado’s fire is marked with red pin and Portela station marked with a 

yellow one. NOAA Air Resources Laboratory. 

It is seen that the transport of the smoke plume evolves in a clockwise rotation from SW to 

the NE, and is estimated to pass over the PG measurement site at Portela between 17:00 h 

and 18:00 h (consistent with the minimum in visibility). Note also that this trajectory started 

at the source location at 16:00 h, which gives an approximately 1 hour to get to Portela, 

corroborating the estimation done before.  

 

The Hysplit trajectory shown in Figure 5.7 is also consistent with the change in wind 

direction shown in Figure 5.6, with the wind blowing from the fire site to the SW on 25th 

and to the NE (in the Portela direction) on 26th August. Additionally, using the Hysplit 

dispersion model, which for visualization effect can be more interesting, it was possible to 

simulate the smoke plume travelling path for 25th and 26th August.  
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Figure 5.8 Model projections of the plume spread from Chiado’s fire: a) 25th August, 17:00 h; b) 26th 

August, 07:00 h; c) 26th August, 18:30 h; The smoke particle concentration varies according to 4 colors 

increasing its magnitude from light blue, to dark blue, green and yellow. The Chiado’s fire is marked with 

red pin and Portela station marked with a yellow one. NOAA Air Resources Laboratory. 

 

25th August  

17:00 h 

26th August  

18:30 h 

26th August  

07:00 h 

(a) 

(b) 

(c) 
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In Figure 5.8(a) at 17:00 h on 25th, it is observed that the main concentration of the smoke 

plume is SW of Portela. By 07:00 h on 26th, Figure 5.8(b), the smoke plume had spread 

W/NW, and by 18:30 h was over Portela region, Figure 5.8(c). This effectively demonstrates 

that when the maximum in PG occurred, the main concentration of the smoke plume was 

above Portela. This approach was used to complement the trajectory model with improved 

visualization of the dispersion of the smoke particles by introducing information about the 

type of deposition (dry deposition), density (1g/cc) and particle diameter (0.1 µm), and 

approximately 30 hours of emission (counting not only the fire duration but also the period 

when smoke was still being released). The density was chosen to be consistent with (Harrison 

2006). Finally, the results support the argument that during the late afternoon of 26th August 

a smoke plume from Chiado’s fire passed over Portela causing the observed anomalously 

large PG values.  
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6  Numerical simulations of the global electric 

circuit 

 

6.1 Introduction 

There are several models that describe the Global Electric Circuit of the atmosphere. It is 

used the common model and parameters of the Global Electric Circuit to couple it with a 

local circuit less studied in literature. The first objective is to test different voltage sources 

describing thunderstorm activity and compare the output, PG, with the Carnegie Curve. Two 

sets of parameters are used, the first one from values found in literature and the second one 

from values tweaked to get the best agreement between the simulated PG and the Carnegie 

Curve. This study is a first step in simulations regarding the coupling of the global electric 

circuit (primary) to local electric circuit (secondary).  

 

The final objective would estimate the aerosol load on the local resistance in a case of aerosol 

events. 

 

6.2 Overview 

The existence of a Global Electric Circuit (GEC) was first recognised by the observation of 

the so called Carnegie curve based on a global daily variation of the surface Potential 

Gradient (PG) aboard of the Carnegie cruises (Harrison, 2013). For that reason, different 

models have been elaborated to understand the GEC proprieties (Rycroft M.J. et. al., 2015) 

and its relation with climate (Mareev E.A and Volodin E.M, 2014). 

 

Nevertheless, to our knowledge no attempt has been made to perform simulations coupling 

the GEC primary circuit to a secondary circuit describing local PG measurements. Such 

simulations are of considerable interest because, for example, in polluted regions the daily 

variation of the PG differs drastically from the Carnegie curve (Silva et. al., 2015). Since it 
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is expected that GEC would impose a similar global daily variation a deviation from the 

Carnegie curve could only be a result from local variation of the electrical components 

defining the secondary local circuit. If such simulation were successful, it would enable to 

separate the global effect from local effects on real PG data. It would allow, for example, the 

estimation of the electric resistance load caused by atmospheric pollution from PG 

measurements in polluted cities (Silva. et. al., 2015). 

 

In this chapter a method is described to couple a local circuit to a global one describing GEC. 

It is assumed that changes in the local circuit would not affect considerably the GEC. The 

model is presented and adjusted to reproduce the Carnegie curve.  

 

6.3 GEC simulations 

Two main parts compose the electric circuit considered here. The first part comprises the 

components defining the primary circuit corresponding to GEC: Vs the voltage generated by 

the thunderstorms, Rs the resistance associated with the thunderstorms region, RFW the 

resistance corresponding to fair-weather regions that closes the circuit in parallel with the 

Ionosphere-Earth capacitance CIE.  

 

Coupled to a secondary circuit that corresponds to local circuit where the PG measurements 

take place it is the primary, global circuit. It is composed by RFT the resistance of the free-

troposphere and RBL the resistance of the boundary layer.  

 

To account for space-charge accumulation in the boundary layer a capacitance, CBL, is 

inserted in parallel with the RBL. The diagram of the circuit is presented in Figure 6.1. It is 

important to mention that with the insertion of CBL it is meant to simulate the space-charge 

accumulation observed in the boundary layer (Markson R., 1999). 
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Figure 6.1 Diagram of the circuit model. 

 

  

 

 

 

 

  

 

6.3 Circuit equations 

Using Kirchhoff’s laws on the circuit of Figure 1, and the notation 𝐼𝑛 = 𝑄�̇� (here 𝑄�̇� 

represents the time derivative) it is obtained the following system of differential equations: 

Having VRB as the output, VRB=Q6\CIE, it is needed to extract Q6 from Eq. (6.1). The 

numerical method used was the algorithm ode45 from MATLAB®, which is based on an 

explicit Runge-Kutta (4,5) formulation with Dormand-Prince pair, with a relative tolerance 

of 10−6.  

 

A remark must be made here to explain the use of 𝐼𝑛 = 𝑄�̇� and this is because such 

transformation converts the system above into a system of first-order differential equations 

  −𝑉𝑠 + 𝑅𝑠𝑄0̇  + 𝑅𝐹𝑊𝑄3̇ = 0, 

  −𝑅𝐹𝑊𝑄3̇ +
𝑄4

𝐶𝐼𝐸
= 0, 

  −
𝑄4

𝐶𝐼𝐸
+ 𝑅𝐵𝐿𝑄5̇ + 𝑅𝐹𝑇(𝑄5̇ + 𝑄6̇) = 0, 

  𝑄6
𝐶𝐵𝐿

⁄ − 𝑅𝐵𝐿𝑄5̇ = 0, 

  𝑄0
̇ − 𝑄2̇ − 𝑄3̇ − 𝑄4̇ = 0, 

  𝑄2
̇ − 𝑄5̇ − 𝑄6̇ = 0.        

Eq. (6.1)   

𝑉𝑠 

𝑅𝑠 

𝑅𝐹𝑊 

𝑅𝐹𝑇 

𝑅𝐵𝐿 𝐶𝐵𝐿 𝐶𝐼𝐸 

𝐼0 𝐼2 

𝐼3 𝐼4 𝐼5 𝐼6 

Global 

Circuit 

Local 

Circuit 
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possible to integrate numerically. The result comes in 𝑄𝑛 and time derivation enables the 

estimation of IN. 

 

6.4 Results and discussion 

The voltage source from the thunderstorms, Vs, was modulated in two different ways: 1) 

based on the Carnegie curve, Cc; 2) based on the Ionosphere Potential, VI, modelled in 

Mareev, E.A and Volodin, E.M, 2014. For both cases the curves were divided by its mean 

and multiplied by V0, amplitude of the voltage source. The expressions are: 

Two sets of parameters were used for the different components of the circuit. Firstly, 

parameters according to the literature, (Rycroft et al., 2000): V0 = 100 MV, Rs = 100 kΩ, RFW 

= 200 Ω, RBL = 300 PΩ, RFT = 25 PΩ, CIE = 1 F and CBL = 0.01 pF.  

 

Secondly, parameters tweaked to get the closer agreement between the simulations and the 

observed Carnegie Curve: V0 = 110 MV, Rs = 80 kΩ, RFW = 200 Ω, RBL = 500 PΩ, RFT = 25 

PΩ, CIE = 0.7 F, CBL = 0.01 pF. The values of the simulated PG were found from 𝑉𝑅𝐵𝐿
 by 

dividing it by the height of the boundary layer, h ~ 2000 m.  

 

 

 

 

 

 

 

 

 

 

 

  𝑉𝑆
𝐶𝑐 = 𝑉0 ×

𝐶𝑐

𝐶𝑐
̅̅ ̅

, 

  𝑉𝑆
𝑉𝐼 = 𝑉0 ×

𝑉𝐼

𝑉�̅�

. 

Eq. (6.2)   
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The results obtaining are presented in Figure 2: 

 

Figure 6.2  a) PG values simulated with the first set of parameters; b) Ionosphere Potential derived from the 

thunderstorms voltage source and resistance for the first set of parameters; c) PG values simulated with the 

second set of parameters; d) Ionosphere Potential derived from the thunderstorms voltage source and 

resistance for the second set of parameters. 

This is an incomplete attempt to derive several values for the electrical components that are 

part of GEC. It is part of future try to make a more complex circuit, which can modulate the 

global and local mechanisms in a realest way. However, it is very important to note that with 

this circuit, the values found for VI are much greater than the values found nowadays. This 

means that VI is for some reason decaying over time and consequently the PG. This is also 

being in study (Mareev, E.A and Volodin, E.M, 2014) and the Carnegie Curve still used 

today may be, in a very short time, replaced for a new curve. This also means that the circuit 

exploited here can actually be close from its more realistic model, which can be discovered 

in the next years. 
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7 Conclusions and future work 

 Chapter 3 clearly demonstrates the existence of a weekly dependence on the PG 

recorded at Portela (Lisbon, Portugal) that is related with the weekly cycle of urban 

pollution, mainly due to traffic. This dependence was confirmed through a statistical 

analysis that shows a relative difference of PG values for working days and weekends 

of 31.00 % and 38.41 % for AW and FW, respectively. The annual average of the 

relative difference shows an increasing trend in the period studied. Additionally, the 

spectra show a significant peak for the weekly period that confirms the existence of 

the weekly cycle, as well as a 12 h periodicity present in the PG data, attributed to 

traffic pollution. Spectral noise shows that spectra tend to flatten along the studied 

period. These aspects are consistent with the evolution of the weekly cycle of 

pollution due to the rise in pollutant aerosol concentrations caused by the increase of 

traffic in Lisbon. As a final remark, it is important to mention that this 7-day 

periodicity is in the range of periods of the known seismic precursors (Silva et al., 

2012) and for that reason the effect of urban pollution should be carefully taken into 

account in those studies. 

 

 Chapter 4 formulation developed here relates in a simple way three microphysical 

properties of the aerosols: dry radius, concentration number and hygroscopicity; with 

the macrophysical measurement of Potential Gradient. As a simple formulation, it has 

several limitations such as neglecting the positive to negative ion concentration 

unbalance, the effect of electrified aerosols, the influence of aerosol size distribution, 

and the change in the ionization rate with the relative humidity. Nevertheless, it 

describes fairly well the dependence of the Potential Gradient with the Relative 

Humidity for the northern wind sectors (less affected by air pollution) of the 

measurements done at the Portela meteorological station (Lisbon, Portugal). The 

values for the aerosol hygroscopicity are low, but consistent with the fact that they 

are probably a consequence from a mixture between non-hygroscopic pollutant 

aerosols (resulting from the activity of the city of Lisbon) and the hygroscopic marine 

aerosols. This point validates the model here developed. 
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 A clear modulation of PG with wind sector is observed also in chapter 4. NW sector 

has the least affected by this cycle, which has been attributed to the effect of more 

conductive marine air. The daily variation of NE sector for weekends reveals a similar 

behavior to the Carnegie curve. Finally, the effect of pollution of industries located 

to the south of Lisbon on PG is found to be strong in the period 8.00 A.M. – 8. 00 

P.M.  

 

 Chapter 5 results suggest that the Chiado’s fire left a clear signature on the PG 

recorded at Portela. During the late afternoon of 26th August 1988, one day after the 

fire, the PG increased to 510 V/m, which is an anomalously high value in comparison 

to the annual and summer distributions of PG at that site. This value is identified as 

an evident outlier with a reduced probability to occur, ~0.08 % in the 1988 summer. 

The analysis of wind speed and direction combined with calculations of forward 

trajectories using the Hysplit model enabled the assessment of the temporal and 

spatial evolution of the smoke plume. This analysis shows that the large PG values 

coincide with the approximate arrival time of the smoke plume at Portela. Finally, the 

analysis of the meteorological and synoptic conditions confirms that the anomaly of 

the PG does not result from meteorological effects. It is therefore likely that not only 

were the large PG values measured at Portela a result of the smoke plume from the 

Chiado’s fire, but also, that measurements of PG can be used as a complementary 

method for fire detection, acting as a smoke proxy. 

 

 Chapter 6 method is described to couple a common model for the Global Electric 

Circuit (primary circuit) to a Local Circuit (secondary circuit) resembling real PG 

measurements. Though it is a preliminary approach, a significant discrepancy was 

found between the PG simulated with a modelled Ionosphere Potential and the 

Carnegie Curve. Future work would involve different aspects and a major one is to 

test the contribution of thunderstorm activity as voltage or current source.  
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