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Analysis and Numerical Simulations of Oldroyd-B

Fluids Flows

Abstract

This work is concerned with the mathematical and numerical study of the equations

that model incompressible non-Newtonian viscoelastic Oldroyd-B fluids in dimen-

sion 2. The constitutive equations for the Oldroyd-B fluids consist of highly non-

linear system of partial differential equations (PDE) of combined elliptic-hyperbolic

type. The numerical results are obtained by a technique of decoupling the system

into a Navier-Stokes system and a tensorial transport equation.

The study of each problem is divided into three parts:

− the mathematical analysis of the properties of the problem such as existence

and uniqueness;

− the numerical analysis with results of existence and uniqueness of approximate

solutions as well as a-priori error estimates are established;

− presentation of numerical simulations of two-dimensional benchmark problems.

The purpose of this work is to approximate the solution of the Oldroyd-B problem by

the finite elements method, using Hood-Taylor elements for the Navier-Stokes system

and discontinuous P1 elements for the transport equation and to present the results

of numerical simulations in two-dimensional case.

Key words: Oldroyd-B fluid model, Navier-Stokes system, transport equations,

finite elements method.
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Análise e Simulação Numérica de Escoamentos de

Flúıdos Oldroyd-B

Resumo

Este trabalho tem como objectivo o estudo matemático e numérico das equações

que modelam fluidos estacionários não-Newtonianos, viscoelásticos, incompressiveis

do tipo Oldroyd-B em dimensão 2. As equações constitutivas para os fluidos do tipo

Oldroyd-B consistem num sistema fortemente não linear de equações diferenciais par-

ciais (PDE) do tipo misto eĺıptico- hiperbólico. Os resultados numéricos são obtidos

por uma técnica de desacoplagem do sistema nos problemos Navier-Stokes e equação

do transporte.

O estudo de cada problema é dividido em três passos:

− a análise matemática das propriedades das soluções tais como a existência e

unicidade;

− a análise numérica com resultados de existência e unicidade das soluções aprox-

imadas e de estimativas de erro a-priori;

− apresentação de simulações numéricas de problemas benchmark bidimensionais.

O objectivo deste trabalho consiste na aproximação da solução do problema do tipo

Oldroyd-B pelo método dos elementos finitos, usando elementos de Hood-Taylor para

o sistema de Navier-Stokes e elementos P1 discontinuos para a equação do transporte

e apresentar resultados de simulação numérica no caso bidimensional.

Palavras-chave: Modelo de Oldroyd-B, sistema de Navier-Stokes, equação de trans-

porte, métodos de elementos finitos.
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Chapter 1

Introduction

The aim of this work is to study the analysis (mathematical and numerical) and

numerical simulations, using finite element methods (FEM), of the non-linear system

of partial differential equations (PDE) of a combined elliptic-hyperbolic type, that

models the non-Newtonian incompressible viscoelastic Oldroyd-B fluids flows in the

steady case.

A fluid is a substance which is incapable to prevent the deformation under the action

of a shear stress, i.e., a fluid deforms continuously as long as the shear stress is

applied. Fluids are divided into two classes: liquids (incompressible fluids) and gases

(compressible fluids). The fluid behavior is classified according to the relationship

between the shear stress and the shear strain rate or velocity gradient. For a fluid the

shear stress is proportional (not necessarily linearly proportional) to the shear strain

rate or velocity gradient. If the shear stress is linearly proportional to the shear strain

rate or velocity gradient, then this relationship is called Newton’s law of viscosity

and the proportionality constant is known as dynamic viscosity or viscosity. A fluid

which obeys the Newton’s law of viscosity is called the Newtonian fluid which can be

modeled by the Navier-Stokes equations. Water, air, gasoline, etc. are the examples

of Newtonian fluids. On the other hand, the fluid which can not be predicted by the

Newtonian model, i.e., which doesn’t obey the Newton’s law of viscosity is termed

as non-Newtonian fluid where the relation between the Cauchy stress and strain rate

tensor is non-linear. Fluids with complex microstructure such as biological fluids

1



2 1. INTRODUCTION

(e.g., blood), polymeric liquids, inks, paints, shampoo, toothpaste, foodstuff (honey,

milk, mayonnaise, ketchup etc.), foams, gel, solutions of high-molecular-weight are

some examples of non-Newtonian fluids. The viscoelastic fluids sometimes called

polymeric fluids is a particular type of non-Newtonian fluids. The viscoelastic fluids

have both the viscous (characteristics of fluids) and the elastic1 (characteristics of

solids) properties.

A viscoelastic fluid contains large molecules composed of many small simple chem-

ical units. These molecules are able to changes their configurations. Such changes

may be either local rearrangements of the structure or there may be large overall

changes of configurations. There is consequently an entire spectrum of time con-

stants (relaxation time) associated with the rates at which such thermally induced

configurational changes take place. It is these time constants that give viscoelastic

fluids at least a partial memory (they do not have a permanent memory but will be

a longest relaxation time).

The constitutive equations provides us to characterize the mechanical behavior of

fluid which relates the Cauchy stress tensor with the kinematics of different quan-

tities. The constitutive equations for non-Newtonian viscoelastic fluids consists of

highly non-linear system of partial differential equations (PDE) of combined elliptic-

hyperbolic or parabolic-hyperbolic type. The Oldroyd-B fluids model is the constitu-

tive model of rate type which is capable to describe the viscoelastic behavior of flows

in the polymeric processing. The Oldroyd-B constitutive equations for steady flow

are decoupled into two auxiliary problems, namely, the Navier-Stokes like problems

for the velocity and pressure (elliptic part of the system) and the steady tensorial

transport equation for the extra stress tensor (hyperbolic part of the system). Both

the auxiliary problems are studied separately. The iterative Newton-Raphson method

is used to obtain the numerical solution of the Navier-Stokes problem which is dis-

cretized using P2 − P1 (Hood-Taylor) finite elements. The iterative method based

1By elasticity, one usually means the ability of a material to return to some unique original shape.

By viscosity, one usually means the fluid flow resistance which a fluid offers when it is subjected to

a tangential force.
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on the application of a fixed point method is implemented to solve the steady ten-

sorial transport equation which is discretized using the discontinuous Galerkin finite

element method.

An outline of the thesis is as follows. Chapter 2 is concerned with the constitutive

equations of incompressible non-Newtonian Oldroyd-B fluids flows. First we introduce

some fundamental concepts and quantities of fluid mechanics. Then we deduce the

differential form of the constitutive equations of incompressible non-Newtonian fluids

of Oldroyd-B type which describes the viscoelastic behavior of the fluid.

In chapter 3, after introducing some well known results for spaces of functions and

finite element methods, we present the mathematical and numerical analysis for

the steady Navier-Stokes equations. Numerical results are presented to validate the

Newton-Raphson method and the corresponding code developed in FreeFem++.

Chapter 4 is devoted to the analysis of the steady tensorial transport problem. Math-

ematical analysis for transport problem is discussed and the discontinuous Galerkin

finite element method is applied to solve this transport equations. Numerical results

are given.

Chapter 5 is concerned with the steady viscoelastic Oldroyd-B fluid model in a two-

dimensional domain. We present the approach and discrete problem of Oldroyd-B

model. Based on chapter 2 and chapter 3, the numerical simulations of Oldroyd-B

fluids flows problem are discussed. The numerical results for the four-to-one abrupt

contraction in a plane domain are analyzed. The behaviors of the solutions are

discussed and are compared for different cases.

Finally, in chapter 6, we draw some conclusions of this work.

All the simulations are straightforwardly implemented with the script developed in

finite element solver FreeFem++.

In appendix, we discuss some basic results which are used in this work.
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Chapter 2

Constitutive Equations

In this chapter we deduce the differential form of the basic equations, which are in fact

the governing equations of incompressible non-Newtonian fluids of Oldroyd type. We

begin with introducing some fundamental concepts of fluid mechanics of continuous

medium. Details can be found, for example in [46, 35, 11, 31, 45].

2.1 Kinematics of Fluids

To derive the partial differential governing equations of fluid motions, we need to

introduce some kinematics concepts and quantities. We employ the continuum hy-

pothesis, that is, we assume that a fluid may be treated as a continuous medium or

continuum, rather than as a group of discrete molecules. In continuum hypothesis,

the underlying molecular structure of a fluid is conveniently ignored and replaced by

a limited set of fluid properties, defined at each point in the fluid at every instant.

Mathematically, this hypothesis allows the use of differential calculus in the modelling

and solution of fluid mechanics properties. Here each fluid particle is considered to

be a continuous function of position and time.

5



6 2. CONSTITUTIVE EQUATIONS

2.1.1 The principal reference (frames) of describing the mo-

tion of continuous medium

To study the kinematics of fluids, the motion of the continuous medium, two reference

or frames can be used. These are Lagrangian, and Eulerian descriptions and refer

to individual time-rate of change and local time-rate of change respectively. In the

Eulerian frame of continuum fluid mechanics, we describe physical space by means of

a coordinate system. Every property of a fluid has a corresponding functional depen-

dence on position and time when represented in the Eulerian description. In Eulerian

description, we associate a complete set of fluid properties with every point in the

spatial grid defined by a selected coordinate system. In the Lagrangian description,

a fluid particle is considered as the fundamental entity. This frame deals with the

history of each fluid particle, i.e., any fluid particle is selected and is moved on its

onward direction observing the changes in velocity, pressure, density, etc., at each

point and at each instant. If a ball is thrown through the air, our eyes naturally track

the ball. This tracking way is considered as Lagrangian description.

Consider the Euclidean coordinate system Rd (d = 2, 3). We assume that the motion

will take place during a time interval I = [t0, t1] ⊂ R+. Suppose at the reference

initial time t0 ≥ 0, the domain occupied by the fluid is Ω0 called initial or reference

configuration and at time t ∈ I the portion of space occupied by the same fluid is Ωt

called current or spatial configuration. The motion of each fluid particle which is on

position ξ ∈ Ω0 at initial time t0 and on position x ∈ Ωt at time t ∈ I is described by

the family of mappings Lt. Precisely,

Lt : Ω0 −→ Ωt

ξ −→ x = x(t, ξ) = Lt(ξ)

where Lt is called Lagrangian mapping at time t.

We suppose that Lt is continuous and invertible on Ω0, with continuous inverse.

The position x ∈ Ωt of a material particle is a function of time and the position

ξ ∈ Ω0 of the same material particle. We can relate the pairs (t, ξ) and (t,x) which

are respectively called the material or Lagrangian variables and spatial or Eulerian



2.1. KINEMATICS OF FLUIDS 7

variables. When we use Eulerian variables as independent variables we focus on

a set of specific locations in the flow field. When we use Lagrangian variables as

independent variables we focus on the position ξ of a specific fluid particle at the

initial time t0. In fact, we are tracking the trajectory Tξ describe by the particle

during the time interval [t0, t] which was on position ξ at instant t0. The trajectory

is given by

Tξ = {(t,x (t, ξ)) : t ∈ I} .

Though it is more convenient to work with the Eulerian variables, the basic principles

of mechanics are more easily formulated with reference to the moving particles, i.e,

in the Lagrangian frame. We will mark with the hat symbol ̂, a quantity expressed

as function of Lagrangian variables, that is, if f : I ×Ωt −→ R we have the quantity

f̂(t, ξ) = f(t,x), with x ∈ Lt(ξ).

To indicate the gradient with respect to the Eulerian variable x we use the symbol

∇. Gradient with respect to Lagrangian variable ξ is indicated by the symbol ∇ξ,

defined by

∇ξf̂ =
3∑
i=1

∂f̂

∂ξi
ei.

For the other differential operators such as divergence, Laplacian, etc., we use same

convention.

2.1.2 The fluid velocity

The fluid velocity is the fundamental variable in fluid dynamics. It is the major

kinematic quantity. In the Lagrangian frame it is expressed by means of a vector field

û ≡ û(t, ξ) which is defined as

û =
∂x

∂t
i.e û(t, ξ) =

∂x

∂t
(t, ξ)

û is called the Lagrangian velocity field and it denotes the time derivative along the

trajectory Tξ of the fluid particle which was located at position ξ at the reference
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time.

For (t,x) ∈ I × Ωt, the velocity in the Eulerian frame is defined as

u = û ◦ L−1
t i. e. u(t,x) = û(t,L−1

t (x)).

In general the velocity field is a three-dimensional or two-dimensional time dependent

vector field.

2.1.3 The substantial or material derivative

The derivative of a vector field with respect to a fixed position in space is called a

Eulerian derivative. On the other hand the derivative of a vector field following a

moving particle of fluid along its path is called substantial, material, co-moving or

Lagrangian derivative. This derivative relates the time derivatives computed with

respect to the Lagrangian and Eulerian frames. The material or Lagrangian time

derivative of a function f , which is denoted by Df
Dt

, is defined as the time derivative

in the Lagrangian frame. It is expressed as function in the Eulerian variables.

If f be a mapping such that

f : I × Ωt −→ R and f̂ = f ◦ Lt

then
Df

Dt
: I × Ωt −→ R,

Df

Dt
(t,x) =

∂f̂

∂t
(t, ξ), ξ = L−1

t (x)

So, for any fixed ξ ∈ Ω0 we can write

Df

Dt
(t,x) =

d

dt
f(t,x(t, ξ))

We can observe that the material derivative represents the rate of variation of f along

the trajectory Tξ. Applying the chain-rule of derivation of composed functions we can

write

Df

Dt
(t,x) =

d

dt
f(t,x(t, ξ)) =

[
∂

∂t
(f ◦ Lt)

]
◦ L−1

t =

=
∂f

∂t
(t,x) +

d∑
i=1

∂f

∂xi
(t,x) · ∂xi

∂t
=
∂f

∂t
(t,x) +

d∑
i=1

ui(t,x)
∂f

∂xi
(t,x)
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So, material derivative operator is defined by

D

Dt
=

∂

∂t
+ u · ∇

The term
∂

∂t
is a partial time derivative, and the term u · ∇, called the convective

derivative, involves partial space derivatives.

2.1.4 The acceleration of fluid

The fluid acceleration is a kinematic quantity. In the Lagrangian frame the accelera-

tion â(t, ξ) is a vector field â : I × Ω0 −→ R defined by

â(t, ξ) =
∂û

∂t
(t, ξ) =

∂2x

∂t2
(t, ξ)

If we use the definition of material derivative, we can write the acceleration in Eulerian

frame as

a =
Du

Dt
=
∂u

∂t
+ (u · ∇)u

We observe that the total acceleration at a point in a fluid can be written as the sum

of two different types of acceleration called the local and convective accelerations.

The components of the acceleration in Cartesian coordinates can be written as

ai =
∂ui
∂t

+
d∑
j=1

uj
∂ui
∂xj

, i = 1, . . . , d.

2.1.5 The deformation gradient tensor

The deformation gradient tensor is the kinematic quantity necessary for the derivation

of the mathematical model in fluid dynamics. The deformation gradient tensor F̂t,

which is defined, at each t ∈ I, as

F̂t : Ω0 −→ Rd×d, F̂t(ξ) = ∇ξLt(ξ) =
∂x

∂ξ
(t, ξ)

where ∇ξLt is the derivative of Lt with respect to Lagrangian variable ξ.
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We can write componentwise[
F̂t

]
ij

=
∂xi
∂ξj

, i, j = 1, . . . , d.

The Jacobian of the mapping Lt is the determinant Ĵt = det F̂t > 0. In the Eulerian

frame its counterpart is indicated by Jt.

Using the determinant of deformation gradient tensor we can transform integrals from

the current to the reference configuration. The next theorem [35, 11] tells us about

the transformation.

Theorem 2.1.1

Suppose Vt ⊂ Ωt be a subdomain of Ωt and let us consider the function f̂ : I×Vt −→ R.

Then, f is integrable on Vt if and only if (f ◦Lt)Jt is integrable on V0 = L−1
t (Vt), and∫

Vt

f(t,x)dx =

∫
V0

f̂(t, ξ)Jt(ξ)dξ.

where f̂(t, ξ) = f(t,Lt(ξ)). Briefly∫
Vt

f =

∫
V0

f̂Jt.

�

The next lemma tells us that the time derivative of the Jacobian is linked to the

divergence of the velocity field. This relation is called Euler expansion formula. Its

proof can be found in [35, 11].

Lemma 2.1.1

Let Jt denote the Jacobian in the Eulerian frame. Then

∂

∂t
Jt(x) =

∂

∂t
J(t,x) = Jt(x)∇ · u(t,x) = J(t,x)∇ · u(t,Lt(ξ)). (2.1)

�

Theorem 2.1.2 (Reynolds Transport Theorem)

Let V0 ⊂ Ω0 and Vt ⊂ Ωt be its image under the mapping Lt. Let f : I ×Ωt −→ R be

continuously differentiable with respect to both variables. Then,

d

dt

∫
Vt

f =

∫
Vt

(
Df

Dt
+ f ∇ · u

)
=

∫
Vt

[
∂f

∂t
+∇ · (f u)

]
(2.2)

�
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The proof of this theorem can be found in [11].

Theorem 2.1.3 (Divergence Theorem)

Let Ω is open bounden domain in Rd, (d = 2, 3) with a piecewise smooth boundary

∂Ω. If u is continuously differentiable vector field on a neighborhood of Ω, then∫
Ω

(∇ · u)dΩ =

∮
∂Ω

(u · n)ds, (2.3)

where n = (n1, . . . , nd) is the unit outward normal vector field to the boundary ∂Ω.

In index notation, we can write∫
Ω

∂ui
∂xi

=

∫
∂Ω

uini, i = 1, . . . , d. (2.4)

�

Applying the divergence theorem (theorem 2.1.3), we can rewrite (2.2) as

d

dt

∫
Vt

f =

∫
Vt

∂f

∂t
+

∫
∂Vt

fu.n.

2.1.6 The rate of deformation and the rate of vorticity ten-

sors

We define the rate of deformation tensor or strain rate tensor by

D(u) =
1

2

[
∇u + (∇u)t

]
(2.5)

and the rate of vorticity tensor by

W(u) =
1

2

[
∇u− (∇u)t

]
. (2.6)

Here D(u) is the symmetric part of the velocity gradient and W(u) is the antisym-

metric part. The rate of deformation gives us information about the rate of change

of volume element along the time without rotation effects.

Componentwise,

[D(u)]ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1, . . . , d (d = 2, 3).

and

[W(u)]ij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, i, j = 1, . . . , d (d = 2, 3).
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2.2 Conservation Laws for a Continuum Medium

Conservation laws state the physical principles governing the fluid motion in a conti-

nuum medium. According to the conservation laws, a particular measurable property

of an isolated physical system does not change as the system evolves. Lavoisier states

that “in nature nothing is created, nothing is lost, everything is transformed”. The

mathematical formulations of these conservation laws are given below.

2.2.1 Conservation of mass or continuity equation

Conservation of mass is a fundamental principle of classical mechanics governing the

behavior of a continuum medium. It states that in a fixed region, the total time rate

of change of mass is identically zero, i.e, mass is neither created nor destroyed during

the motion. Physically, this interprets that the rate of change of the density of a fluid

in motion is equal to the sum of the fluid convected into and out of the fixed region.

Suppose Vt indicates a material volume at time t, i.e. Vt is the image under the

Lagrangian mapping of V0 ∈ Ω0, i.e. Vt = Lt(V0). If m0 is the mass of material in V0

and mt is the mass of that material in Vt, then according to the conservation of mass

we can say m0 = mt. Mathematically,

m0 = m(V0) = m(Lt(V0)) = m(Vt) = mt

For each time t, we suppose that the fluid has well-defined mass density ρ (mass per

unit volume of material [ρ] = kg/m3) which is strictly positive, measurable function

ρ : I × Ωt −→ R such that on each Vt ⊂ Ωt

m (Vt) =

∫
Vt

ρ

If Vt is a fixed region in Ωt, then with the mathematical statement of conservation of

mass we can write

0 =
d

dt
m (Vt) =

d

dt

∫
Vt

ρ.

Applying the Reynold Transport theorem (theorem 2.1.2), we obtain the integral form
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of the law of conservation of mass∫
Vt

(
Dρ

Dt
+ ρ∇.u

)
= 0⇔

∫
Vt

(
∂ρ

∂t
+∇. (ρu)

)
= 0. (2.7)

We suppose that the terms under the integral are continuous. Since the volume Vt is

arbitrary, (2.7) is equivalent to the differential equation of this law, called continuity

equation (expressing conservation of mass)

∂ρ

∂t
+∇. (ρu) = 0. (2.8)

If the density is constant or its material derivative
Dρ

Dt
= 0, from (2.8) the equation

of continuity is simplified to

∇.u = 0 (2.9)

The above relation in the case of incompressible fluid, is in fact a kinematic constraint.

Using Euler expansion formula (2.1) we can write the above equation as

∂

∂t
Jt = 0

which is incompressibility constraint. A flow satisfying the incompressibility con-

straint is called incompressible flow. By the continuity equation we get the following

implication:

constant density fluid⇒ incompressible flow

but the converse is not always true. Mathematically, we mean that the velocity field

of an incompressible flow is divergence free.

2.2.2 Conservation of momentum

The conservation law of momentum for a continuum medium is the extension of the

famous Newton’s second law of motion, “force = mass × acceleration”. For a moving

flow field this law describes that the total time rate of change of linear momentum

or acceleration of a fluid element is equal to the sum of externally applied forces on

a fixed region.

For any continuum, forces acting on a piece of material inside Ωt are three types.
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• External or Body forces.

Body forces are long-range forces whose magnitudes are proportional to the

mass. They are external forces act on a fluid, but are not applied by a fluid.

Body forces are represented by a vector field f : I × Ωt −→ Rd called specific

body force. Its dimension unit is Ne/kg = m/s2 as like an acceleration. The

body force acting on fluid of volume Vt is given by∫
Vt

ρf .

Gravity force and electromagnetic forces are the familiar examples of body

forces.

• Surface forces or Forces of Stress.

Surface forces are short-range forces that act on a fluid element through physical

contact between the element and its surroundings. Surface forces represent

that part of forces which are imposed on the media through its surface. The

magnitude of a surface force is proportional to the contact area between the

fluid and its surroundings. Surface forces act on a fluid, and also are applied by

a fluid to its surroundings. We suppose that the surface force can be represented

through a vector field te : I × Γt −→ Rd, called applied stresses, defined on a

measurable subset of the domain boundary Γt ⊂ ∂Ωt. The resultant force acting

through the surface is given by ∫
Γt

te.

• Internal “continuity” forces.

The forces that the continuum media particles exert on each other are the inter-

nal continuity forces. They are responsible for maintaining material continuity

during the movement.

We recall Principle of Cauchy, to model the internal continuity force [11].

Theorem 2.2.1 (The Cauchy Principle)

There exists a vector field, t : I × Ωt × S1 −→ Rd, called the Cauchy stress with
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S1=
{
n ∈ Rd : ‖n‖ = 1

}
(d = 2, 3) such that its integral on the surface of any material

domain Vt ⊂ Ωt, given by ∫
∂Vt

t (t,x,n) ds,

is equivalent to the resultant of the material continuity forces acting on Vt. Here n is

the outward normal of ∂Vt and ds is the area element. �

This principle states that the only dependence of the internal forces on the geometry

of ∂Vt is through n.

We also have

t = te on ∂Vt ∩ Γt.

Now, we can write the law of conservation of linear momentum. The momentum of

the mass at time t of the volume Vt known as linear momentum is defined by∫
Vt

ρu

For any t ∈ I and Vt ⊂ Ωt completely contained in Ωt ,

d

dt

∫
Vt

ρ(t,x)u(t,x)dx =

∫
Vt

ρ(t,x)f(t,x)dx +

∫
∂Vt

t(t,x,n)ds, (2.10)

The equation (2.10) tells us the property that the variation of the linear momentum

of Vt is balanced by the resultant of the internal and the body forces.

With the following Cauchy Stress Tensor theorem we can relate the internal continuity

forces to a tensor field assuming some regularity of the Cauchy stresses. The proof

can be found in [35, 45].

Theorem 2.2.2 (Cauchy Stress Tensor Theorem)

Suppose that for all t ∈ I, the body forces f , the density ρ and the fluid acceleration
Du

Dt
are all bounded functions on Ωt, and let the Cauchy stress vector field t is continuously

differentiable with respect to the variable x for each n ∈ S1, where S1 is the set{
n ∈ Rd : ‖n‖ = 1

}
(d = 2, 3) and continuous with respect to n. Then, there exists a

continuously differentiable symmetric tensor field, called Cauchy stress tensor

T : I × Ωt −→ Rd×d
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such that

t(t,x,n) = T(t,x) · n, ∀t ∈ I,∀x ∈ Ωt, ∀n ∈ S1.

�

With the hypothesis of the Cauchy stress tensor theorem, we have

T · n = t = te on ∂Vt ∩ Γt. (2.11)

and the resultant of the internal forces on Vt is expressed by T · n. So, we can write∫
∂Vt

T · n =

∫
∂Vt

te. (2.12)

The stress tensor T represents the forces which the material develops in response to

being deformed. Using the above results we can rewrite the law of linear momentum

as follows:

For any t ∈ I, the following relation1 holds on any sub-domain Vt ⊂ Ωt

d

dt

∫
Vt

ρu =

∫
Vt

ρf +

∫
∂Vt

T · n. (2.14)

Since ρ is constant and as a result ∇·u = 0, by using the Transport theorem (theorem

2.1.2) we get
d

dt

∫
Vt

ρu =

∫
Vt

[
D(ρu)

Dt
+ ρu∇ · u

]
=

∫
Vt

ρ
D(u)

Dt
. (2.15)

So the relation (2.14) can be written as∫
Vt

ρ
Du

Dt
=

∫
Vt

ρf +

∫
∂Vt

T · n. (2.16)

Applying the divergence theorem (theorem 2.1.3) and assuming that ∇ · T is inte-

grable, the above relation (2.16) becomes∫
Vt

ρ
Du

Dt
=

∫
Vt

ρf +

∫
Vt

∇ ·T, (2.17)

1If Vt has a part of boundary in common with Γt, then we should use

d

dt

∫
Vt

ρu =

∫
Vt

ρf +

∫
∂Vt\Γt

T · n +

∫
∂Vt∩Γt

te. (2.13)

.
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which implies ∫
Vt

(
ρ
Du

Dt
−∇ ·T− ρf

)
= 0. (2.18)

Since the volume Vt is arbitrary, with the hypothesis that the terms under the in-

tegrals are continuous in space, we derive the differential form of principle of linear

momentum

ρ
Du

Dt
−∇ ·T = ρf in Ωt. (2.19)

Writing the fluid acceleration
Du

Dt
=
∂u

∂t
+ (u · ∇)u, the relation (2.19) finally can be

written as

ρ
∂u

∂t
+ ρ(u · ∇)u−∇ ·T = ρf . (2.20)

Componentwise

ρ
∂ui
∂t

+ ρ
d∑
j=1

uj
∂ui
∂xj
−

d∑
j=1

∂Tij
∂xj

= ρfi i = 1, . . . , d.

The non linear term (u · ∇)u is called the convective term.

2.3 Formulation of the Constitutive Relations

All materials mostly satisfy the fundamental conservation principles stated above.

The mathematical specification of ’material response’ laws is said to be the set of

constitutive relations. This law relates the Cauchy stress tensor with the kinematics

of different quantities, in particular, the velocity field. Constitutive relations provides

us to characterize the mechanical behavior of fluid. In this work we are concerned with

non-Newtonian fluids type, in particular with the flows of incompressible viscoelastic

Oldroyd-B fluids. We first give the general form of constitutive equations and then

we give the overview of differential constitutive equations for viscoelastic fluids of

Oldroyd-B having properties of elastic solids and viscous fluids characterized by a

viscous behavior when subject to slow request and elastic behavior subjected to fast

request.
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2.3.1 Principles of formulating the constitutive equations

We take into account several principles and assumptions to formulate a constitutive

equation.

• Principle of determinism: We can determine the stress only by history and

present state of material.

• Principle of material objectivity: The structure of constitutive equation is in-

dependent of the motion of an observer.

We assume that the stress at a material point is determined by the deformation

gradient at this point, i.e., we assume the material is simple fluid.

Under the above principles, for simple, isotropic, incompressible fluid, the Cauchy

stress tensor T can be expressed as

T = −pI + τ s

where p is the hydrostatic pressure2, τ s is the extra stress tensor and I is the identity

matrix or Kronecker tensor.

2.3.2 Non-Newtonian fluids

If for a fluid, the dissipative effects of frictional forces can be described by a linear

relation between the extra stress tensor and rate of strain tensor, i.e,

τ s = 2µD(u) (Stokes law) (2.21)

then this fluid is called Newtonian fluid. In (2.21), µ is the dynamic viscosity co-

efficient expressing the fluid’s resistance which it offers to shear strain during the

displacement ([µ] = Pa s).

2Hydrostatic pressure also known as gravitational pressure is the pressure exerted by a fluid at

equilibrium at a point in the stationary fluid, due to the weight (force of gravity) of the fluid above

it. Hydrostatic pressure (varies with height), is the negative of the stress normal to a surface in the

fluid.
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On the other hand, the fluids for which the relation between the Cauchy stress tensor

and the strain rate tensor is non-linear (doesn’t obey the Stokes law) are called non-

Newtonian fluids. The fluids with complex microstructures such as polymeric liquids,

foams, inks, magma or biological fluids are some examples of non-Newtonian fluids.

They are characterized by the fact that they exhibit at least one behavior such as

shear-thinning or shear-thickening, stress-relaxation, non-linear creep, normal stress

differences or yielding. Some properties of non-Newtonian fluids:

• The non-Newtonian fluid has the ability to thinning and thickening by the

action of shear or tangential stress forces, i.e. it has the ability to become more

or less viscous as the shear rate increases. In a Newtonian fluids, the viscosity

remains constant in time.

• The non-Newtonian fluids deform by the presence of constant tensions, with

strain rate is not constant in time. But the Newtonian fluid does not deform

under the presence of constant tensions.

• In contrast to Newtonian fluids, some non-Newtonian fluids do not relax stress

immediately.

• In some non-Newtonian fluids, the normal tensions varies in simple flows (flows

with one-dimensional velocity and velocity gradients), generally normal tension

increases with shear rate.

• In the presence of threshold tensions (stress of transfer), some non-Newtonian

fluids do not flow immediately, they resist until a certain value of tension.

2.3.3 Models of viscoelastic fluids of Oldroyd type

The constitutive equation in differential form or integral form is suitable to use

in a numerical simulation. Oldroyd observed that the convected time derivative
Dπ

Dt
=
∂π

∂t
+(u · ∇)π of a tensor π is not the objective. The objective form of the

time derivative of a tensor can be expressed as

Daπ
Dt

=
dπ

dt
+ πW(u) + (πW(u))t − a

[
πD(u) + (πD(u))t

]
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i.e.,

Daπ
Dt

=
∂π

∂t
+ (u · ∇)π + πW(u)−W(u)π − a [πD(u) + D(u)π] (2.22)

where −1 ≤ a ≤ 1 is a parameter.

The case with a = −1, a = 1 and a = 0 are respectively called lower, upper and co-

rotational convected time derivative. Oldroyd suggested a general form of constitutive

equation as [23]

λ1
Daτ s
Dt

+ τ s + γ(τ s,∇u) = 2µ

[
λ2
DaD(u)

Dt
+ D(u)

]
, 0 ≤ λ2 < λ1 (2.23)

where the tensor τ s is the extra stress, µ is the dynamic viscosity coefficient of fluid

which is assumed to be constant and positive, λ1 ≥ 0 and λ2 ≥ 0 are the constants

depend on the continuous medium, respectively, called the relaxation and retardation

time of fluid. λ1 characterizes the time it takes the fluid to decrease the tension after

have been applied a constant deformation and λ2 characterizes the time it takes the

fluid to decrease their state of deformation after having an applied tension. γ(τ s,∇u)

is a tensor defined by the traces of τ s and /or D(u). There are several types of general

model. Here we write some models with γ(τ s,∇u) = 0.

• Maxwell type fluid models (λ2 = 0).

• Jeffreys type fluid models (λ2 6= 0).

• Oldroyd-A fluid (λ1 > λ2 > 0 and a = −1).

• Oldroyd-B fluid (λ1 > λ2 > 0 and a = 1).

We can generalize these models. For example, the extra-stress τ s can be written as a

sum of partial stresses τ s=
∑

τ is. For each partial stresses τ is there is a constitutive

equation with different relaxation time λi1.

2.3.4 Models of the fluids of Oldroyd-B type

The Cauchy stress tensor is given by

T = −pI + τ s
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In viscoelastic fluids, the stresses depend not only on the current motion of the fluid,

but on the history of the motion. We can say that λ1 and λ2 are the measures of the

time for which the fluid remembers the flow history.

Decomposing the extra-stress tensor τ s into the sum of its Newtonian part σn and

its viscoelastic part σe, we can write

τ s = σn + σe

where σn=2µ
λ2

λ1

D(u), with µn=µ
λ2

λ1

the coefficient of Newtonian viscosity.

Therefore, the Cauchy stress tensor can be written as

T = −pI + σn + σe = −pI + 2µ
λ2

λ1

D(u) + σe (2.24)

From (2.23), for Oldroyd-B fluid, i.e., for γ(τ s,∇u) = 0, λ1 > λ2 > 0 and a = 1, the

general form of the constitutive equation can be written as

λ1
Daτ s
Dt

+ τ s = 2µ

[
λ2
DaD(u)

Dt
+ D(u)

]
⇔

λ1
Da(σe + σn)

Dt
+ σe + σn = 2µ

[
λ2
DaD(u)

Dt
+ D(u)

]
⇔

λ1
Daσe

Dt
+ λ12µ

λ2

λ1

DaD(u)

Dt
+ σe + 2µ

λ2

λ1

D(u) = 2µ

[
λ2
DaD(u)

Dt
+ D(u)

]
⇔

λ1
Daσe

Dt
+ σe = 2µ

(
1− λ2

λ1

)
D(u)

= 2(µ− µn)D(u)

= 2µeD(u)

where µe=µ− µn is the coefficient of elastic viscosity and µ=µe + µn.

So, we have

λ1
Daσe

Dt
+ σe = 2µeD(u) (2.25)

Finally we can write by (2.22)

λ1

[
∂σe

∂t
+(u · ∇)σe

]
+σe=2µeD(u)−λ1[σeW(u)−W(u)σe−σeD(u)−D(u)σe]

(2.26)
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Taking into account (2.24), the conservation law of momentum (2.20) can be written

as follows

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ ·T + ρf

= ∇ · [−pI + 2µnD(u) + σe] + ρf

= ∇ · (−pI) +∇ ·
[
µn
[
∇u + (∇u)t

]]
+∇ · σe + ρf

= −p∇ · I−∇p · I + µn∇ ·
[
∇u + (∇u)t

]
+∇ · σe + ρf

= −∇p · I + µn∇ · (2D(u)) +∇ · σe + ρf

= −∇p+ 2µn∇ ·D(u) +∇ · σe + ρf (2.27)

If ∇ · u = 0, then (see appendix (A− 17))

2∇ ·D (u) = ∆u.

So, we can also write the conservation of momentum as

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ µn∆u +∇ · σe + ρf

For the simplicity, we write σ instead of σe. We have the system of non-linear

equations formed by the law of conservation of mass (2.9), the momentum equations

(2.27) and the Oldroyd-B constitutive equation (2.26) as

ρ
∂u

∂t
+ ρ(u · ∇)u− µn∆u +∇p = ∇ · σ + ρf , in Ω

∇ · u = 0, in Ω

λ1

[
∂σ

∂t
+(u ·∇)σ

]
+σ=2µeD(u)− λ1[σW(u)−W(u)σ−σD(u)−D(u)σ] , in Ω.

(2.28)

Assuming

h(σ,∇u) = 2µeD(u)− λ1 [σW(u)−W(u)σ − σD(u)−D(u)σ]

= 2µeD(u) + λ1

[
(∇u)σ + σ(∇u)t

]
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the Oldroyd-B constitutive equations (2.28) can be written as



ρ
∂u

∂t
+ ρ(u · ∇)u− µn∆u +∇p = ∇ · σ + ρf , in Ω

∇ · u = 0, in Ω

λ1

[
∂σ

∂t
+ (u · ∇)σ

]
+ σ = h(σ,∇u), in Ω.

(2.29)

The above set of equations describes the behavior of an incompressible viscoelastic

fluid of Oldroyd-B type, in a certain open subset Ω of Rd (d = 2, 3) where the fluid is

homogeneous. We observe that the conservation of momentum leads the symmetry

properties of the tensor σ, i.e., σt = σ.

The problem (2.29) is a mixed problem. The first two equations form a parabolic

system for (u, p) which is in the form of Navier-stokes equation. The last equation

has a hyperbolic characteristic which is in the form of Transport equation.

If the flow state (velocity, pressure, density, etc.,) of a flow does not change with time,

then it is called a steady or stationary flow. Therefore, in case of steady flow, u is

independent of time and then
∂u

∂t
= 0. So, the Oldroyd-B constitutive equations in

case of steady flow is a non-linear system of partial differential equations (PDE) of a

combined elliptic-hyperbolic type


ρ(u · ∇)u− µn∆u +∇p = ∇ · σ + ρf , in Ω

∇ · u = 0, in Ω

λ1 (u · ∇)σ + σ = h(σ,∇u), in Ω.

(2.30)

2.3.5 Newtonian fluids. Navier-Stokes equations

The limit case λ1 = 0 leads us (from (2.25))

σe = 2µeD(u).
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Then the Cauchy stress tensor is given by

T = −pI + σn + σe (2.31)

= −pI + 2µnD(u) + 2µeD(u)

= −pI + 2(µn + µe)D(u)

= −pI + 2µD(u)

= −pI + µ
[
∇u + (∇u)t

]
The Cauchy stress tensor can be written as a linear function of strain rate tensor

or the velocity derivative. The fluids for which the above property holds are called

the incompressible Newtonian fluids. The Newtonian fluids are a subclass of Stoke-

sian fluids, which are isotropic (with the properties independent of direction) viscous

fluids where the stress tensor T is the sum of the tension caused by the hydrostatic

pressure in the fluid, the tension that causes deformation fluid and the tension due

to volumetric expansion. Newtonian fluids are modeled by Navier-Stokes equations

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ ·T + ρf

∇ · u = 0

T = −pI + µ
[
∇u + (∇u)t

]
⇐⇒


ρ
∂u

∂t
+ρ(u · ∇)u+∇p=∇ · µ

[
∇u+(∇u)t

]
+ρf

∇ · u = 0

⇐⇒


ρ
∂u

∂t
+ ρ(u · ∇)u− µ∆u +∇p = ρf

∇ · u = 0

(2.32)

The above system defines the Navier-Stokes equations for incompressible fluids.

For steady flow, the Navier-Stokes equations (2.32) can be written as
ρ(u · ∇)u +∇p− µ∆u = ρf

∇ · u = 0.

(2.33)

Considering ρ as a constant, we define the kinematic viscosity by ν =
µ

ρ
(m2/s) and



2.4. NON-DIMENSIONAL GOVERNING EQUATIONS 25

the scaled pressure p =
p

ρ
(m2/s2) still denoted by p and we obtain from (2.33)

(u · ∇)u +∇p− ν∆u = f

∇ · u = 0.

(2.34)

2.4 Non-dimensional Governing Equations

To obtain a system of dimesionless variables, we discuss some scaling properties of

three equations of the system (2.28) to introduce Reynolds number Re and Weis-

senberg number We that measures the effect of viscosity and elasticity on the flow.

Let L be the characteristic length, U represents a characteristic velocity of the flow

and µ = µn + µe be the viscosity coefficient. We transform the system (2.28) into

dimensionless form by changing variables and by introducing the following dimen-

sionless quantities:

x =
x′

L
, t =

t′

T
=
Ut′

L
, u =

u′

U
, p =

p′L

µU
, σ =

σ′L

µU
, f =

f ′L2

µU
,

Re = ρ
UL

µ
=
UL

ν
, We = λ1

U

L
(2.35)

where the symbol ′ is attached to dimensional parameters. The dimensionless form

of the system (2.28) can be written as

Re

[
∂u

∂t
+ (u · ∇)u

]
+∇p = (1− λ)∆u +∇ · σ + f , in Ω

∇ · u = 0, in Ω

We
Daσ
Dt

+ σ = 2λD(u), in Ω.

(2.36)

where

λ = 1− λ2

λ1

=
µe

µe + µn
(2.37)

is a retardation parameter.

Reynolds number and Weissenberg number are the dimensionless numbers. Small

values of We means that the fluid is little elastic and small values of Re means that

the fluid is very viscous. The total stress is given by

σ + 2(1− λ)D(u)
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In case of stationary motion,
∂u

∂t
= 0. Then the problem can be written as

find (u,σ, p), defined in Ω such that


Re [(u · ∇)u] +∇p = (1− λ)∆u +∇ · σ + f , in Ω

∇ · u = 0, in Ω

We [(u · ∇)σ] + σ = 2λD(u) +We
[
(∇u)σ + σ(∇u)t

]
, in Ω.

(2.38)

2.5 Boundary Conditions

Finally, the system (2.30)
ρ(u · ∇)u− µn∆u +∇p = ∇ · σ + ρf , in Ω

∇ · u = 0, in Ω

λ1 (u · ∇)σ + σ = h(∇u,σ), in Ω.

should be complete with a set of boundary conditions, which depend on the consid-

ered geometry.

Taking Ω ⊂ Rd(d = 2, 3) a bounded, simply connected domain, the boundary condi-

tions ensuring feasibility of numerical solution are:

• Dirichlet boundary condition for the velocity

u = g on ∂Ω

verifying the compatibility condition∫
∂Ω

g · n = 0,

because by divergence theorem (theorem 2.1.3), we have

0 =

∫
Ω

∇ · u =

∫
∂Ω

u · n =

∫
∂Ω

g · n

This boundary condition should be applied when the fluid is confined into a

fixed region of space Ω bounded by ∂Ω, where the fluid can not cross the rigid

boundaries.
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• Neumann boundary condition for normal derivative of velocity field

∂u

∂n
= ∇u · n = h

or for the Cauchy tensor. For Navier-Stokes problem, this boundary condition

can be defined by

T · n = (−pI + ν∇ · u) · n = h.

This boundary condition give us the flux across the boundary.

The type of boundary conditions to apply should depend on the physical con-

ditions. Other type boundary condition is on the boundaries where the inflow

is. For the Newtonian case it is enough to define the velocity or the compo-

nent of surface force over the boundary. The viscoelastic non-Newtonian fluids

have memory, this means that the flow of fluid in the domain depends on the

deformations which the fluid has been subjected before hold. In this case it is

natural to impose boundary conditions on inlet and outlet.

2.6 Stream Function

The stream function is an important analytical tool for the solution of flow problems.

Considering two-dimensional plane flow and the components u1 and u2 of the velocity

vector field u, function of time t and the position (x, y) in the domain Ω, the continuity

equations reads
∂u1

∂x
+
∂u2

∂y
= 0.

The form of this equation suggests the introduction of a function ψ ≡ ψ(x, y) called

the stream function with the property that

u1 =
∂ψ

∂y
u2 = −∂ψ

∂x

or ∇ · ψ = u1 − u2.

The case of the variable ψ in place of u1 and u2 automatically ensures that the

continuity equation is satisfied by the Laplace equation in ψ,

∆ψ = 0,
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where ∆ is the Laplace operator.

The streamline of the flow can be defined by setting the stream function equal to a

constant. The streamline is a curve formed by the velocity vectors of each fluid particle

at a certain time, i.e., it is the curve where the tangent at each point indicates the

direction of flow at that point.

Plotting a family of streamlines, we can understand how fast the fluid is moving at

different points, creating a flow visualization. When adjacent streamlines are closer

to each other the average fluid velocity is larger. In opposition, when the adjacent

streamlines diverge from one another, the average velocity is smaller.

For more details we can read [11].



Chapter 3

Analysis of Navier-Stokes

Equations

Navier-Stokes problem can be considered as an auxiliary problem to the Oldroyd-

B model, if we consider the viscoelastic extra-stress as body forces (known). In

this chapter, we look for the numerical solution of the Navier-Stokes equations for

incompressible fluids (constant density). We introduce the mathematical analysis

of these equations. Details can be found in [47, 18]. We introduce the variational

(weak) formulation of the Navier-Stokes equations and study some classical results of

existence and uniqueness of the solutions of these equations with some appropriate

boundary conditions. We present some well-known results concerning approximation

of Navier-Stokes equations in the context of finite element method and numerical

analysis of the approximate problem. For the mathematical theory of finite elements

method we refer to [34, 6, 24, 18] and for its numerical implementation we refer to

[29, 9]. The final section is dedicated to numerical results obtained on relevant tests.

3.1 The Usual Spaces of Functions

In this section, we introduce some notations, definitions and outline some spaces of

functions which are the basis for the modern theory of partial differential equations

and which will be useful for our study. Complete presentation on this outline can be

29
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found in [14, 1, 34, 52]. We assume throughout this work that Ω is a nonempty, open,

bounded domain in Euclidean space Rd (d = 2, 3) with boundary ∂Ω. In general

we will always assume that Ω is simply connected. We will also assume that ∂Ω is

regular enough1. Suppose C be an arbitrary subset of Rn. We denote the closure and

interior of C by C and C̊ respectively. To indicate vectors we use bold letters and the

same letters in normal typface will be used to indicate their components and scalar

quantities. We denote the points in Ω or in Rd by x = (x1, . . . , xd), a volume element

by dx(= dx1, . . . , dxd) and an element of surface area by ds. If u is a function defined

in Ω, we define the support of u, denoted by supp(u), to be the set

supp(u) = {x ∈ Ω : u(x) 6= 0}.

We can say supp(u) is the complement of the biggest open set, i.e., the smallest closed

set on which u vanishes.

3.1.1 Spaces of continuous functions

We denote the vector space of all continuous functions on Ω ⊂ Rd (d = 2, 3) by C0(Ω)

or C(Ω). We define the partial derivatives of a sufficiently smooth function u of order

α by

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαd

d

where α = (α1, α2, . . . , αd) ∈ Nd
0 is a multi−index with |α| =

d∑
i=1

αi.

Let for any non negative integer m, Cm(Ω) denotes the vector space of all functions,

where all their partial derivatives Dα of orders 0 ≤ |α| ≤ m are continuous on Ω.

Cm(Ω), m > 0 denotes the vector space of all functions in Cm(O) restricted to Ω

(φ|Ω), where O is an open subset of Rd containing Ω. This space is a Banach space

with the norm

‖u‖Cm(Ω) = max
0≤|α|≤m

sup
x∈Ω
|(Dαu) (x)| .

1The domain Ω is, locally, below the graph of some functions φ and the boundary ∂Ω is represented

by the graph of φ and the regularity of ∂Ω is determined by φ.
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We denote the vector space of all infinitely differentiable functions by C∞(Ω). Actu-

ally C∞(Ω) =
∞⋂
m=0

Cm(Ω). We denote by Cm
0 (Ω) the space of all functions in Cm(Ω)

with compact support.

Let (V, ‖.‖V ) and (W, ‖.‖W ) be two normed spaces. The set of all linear continuous

operators from V into W is denoted by L(V ;W ). For L ∈ L(V ;W ) we define the

norm

‖L‖L(V ;W ) = sup
v∈V
v 6=0

‖Lv‖W
‖v‖V

.

So, L(V ;W ) is a normed space. If W = R, the space L(V ;R) is called the dual space

of V and is denoted by V ′.

3.1.2 The Lebesgue spaces Lp(Ω)

Let Ω be an open, bounded subset of Rd, d = 2, 3 with smooth boundary ∂Ω, and

consider in Ω the Lebesgue measure. Let 1 ≤ p <∞. We define the Lebesgue spaces

Lp(Ω), for 1 ≤ p <∞, as the set of measurable functions u such that

∫
Ω

|u(x)|p dx<∞,

i.e.,

Lp(Ω) =

{
u : Ω→ R| u is measurable and |u|p ∈ L1(Ω), i.e.,

∫
Ω

|u(x)|p dx <∞
}
.

The functional ‖.‖LP (Ω) defined by

‖u‖LP (Ω) =

(∫
Ω

|u(x)|p dx
)1/p

is a norm in Lp(Ω) provided 1 ≤ p <∞. Lp(Ω) is a Banach space with the above

norm. The space L2(Ω) is, in fact, a Hilbert space with the scalar product

(u, v)L2(Ω) =

∫
Ω

u(x)v(x)dx

For p =∞, L∞(Ω) is a vector spaces of all measurable functions u which are essentially

bounded on Ω. In fact, it is a Banach space of essentially bounded real functions with

norm

‖u‖L∞ = ess sup
x∈Ω
|u(x)| = inf {K ∈ R : |u(x)| ≤ K, a.e. x ∈ Ω}
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Let 1 ≤ p < ∞. The conjugate exponent q is defined by 1
p

+ 1
q

= 1. Suppose that

u ∈ Lp(Ω), and v ∈ Lq(Ω) with 1 ≤ p <∞ and q be its conjugate. Then uv ∈ L1(Ω),

and we define the Hölder’s inequality by∫
Ω

|uv| ≤ ‖u‖Lp(Ω) ‖v‖Lq(Ω)

If p = q = 2, Hölder’s inequality reduces to Cauchy-Schwarz inequality

|(u, v)| ≤ ‖u‖L2(Ω) ‖v‖L2(Ω) , ∀u, v ∈ Ω (3.1)

Another important space is the space of functions in LP (Ω) with measure null, i.e.,

Lp0(Ω) =

{
u ∈ Lp(Ω) :

∫
Ω

u = 0

}
.

The space Lp0(Ω) is equivalent to the space LP (Ω)/R of functions in Lp(Ω) defined

within a constant.

Lploc(Ω), 1 ≤ p ≤ ∞ means the space of measurable functions defined in Ω such that

f ∈ Lp(K) for any compact subset K of Ω. The functions in this space are locally

p−integrable in Ω in the Lebesgue sense.

If f ∈ Lploc(Ω), then f ∈ L1
loc(Ω), i.e., Lploc(Ω) ⊂ L1

loc(Ω)for all 1 ≤ p ≤ ∞.

3.1.3 The space of distributions

We denote by D(Ω) the space of functions in C∞ with compact support in Ω, and

D′(Ω) is the space of all linear functionals on D(Ω) continuous with respect to its

topology [7], i.e., D′(Ω) is the dual space of D(Ω). This space D′(Ω) is called the

space of distributions and its elements are called distributions.

D(Ω) is the space of all linear functionals on D(O) restricted to Ω (φ|Ω), where O is

an open subset of Rd containing Ω.

Corresponding to every u ∈ L1
loc(Ω) there is a distribution Fu ∈ D′(Ω) defined by

〈Fu, φ〉 = Fu(φ) =

∫
Ω

u(x)φ(x)dx, φ ∈ D(Ω).
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Here Fu, thus defined, is a linear functional on D(Ω). The function u can be identified

with the distribution Fu. If u ∈ L2(Ω) we have, for all φ ∈ D(Ω)

〈u, φ〉 =

∫
Ω

u(x)φ(x)dx.

If F is a distribution and α is a multi-index, then the derivative DαF of order α of

distribution F ∈ D(Ω) is defined by

〈DαF, φ〉 = (−1)|α| 〈F,Dαφ〉 , ∀φ ∈ D(Ω).

We write 〈F, φ〉 instead of F (φ) for the value of F in φ for each φ ∈ D(Ω) and

F ∈ D′(Ω).

3.1.4 The Sobolev spaces

Let Ω ⊂ Rd (d = 2, 3) be an arbitrary domain. Sobolev spaces are vector subspaces

of various Lebesgue spaces Lp(Ω). Let m ≥ 0 be an integer and 1 ≤ p ≤ ∞. The

Sobolev spaces Wm,p(Ω) are defined to be the set of all functions u ∈ Lp(Ω) such that

Dαu ∈ Lp(Ω). Briefly

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω),∀α, 0 ≤ |α| ≤ m} .

where Dαu is the distributional partial derivative.

The space Wm,p(Ω) is equipped with the norm

‖u‖m,p =

 ∑
0≤|α|≤m

‖Dαu‖pLp(Ω)

1/p

if 1 ≤ p <∞

and the corresponding seminorm

|u|m,p =

∑
|α|=m

‖Dαu‖pLp(Ω)

1/p

if 1 ≤ p <∞

The space Wm,∞(Ω) is a Banach space equipped with the norm

‖u‖m,∞ = max
0≤|α|≤m

‖Dαu‖L∞(Ω) .
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and the corresponding seminorm is defined by

|u|m,∞ = max
|α|=m

‖Dαu‖L∞(Ω) .

In particular, when p = 2 we write Hm(Ω) instead of Wm,2(Ω). So we can write

Hm(Ω) = Wm,2(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω),∀α such that 0 ≤ |α| ≤ m

}
Clearly, W 0,p(Ω) = Lp(Ω) and so we can write H0(Ω) = L2(Ω).

Hm (Ω) is a Banach space with respect to the norm

‖u‖Hm(Ω) =

∑
|α|≤m

‖Dαu‖2
L2(Ω)

1/2

In particular, for m = 1

‖u‖H1(Ω) =
(
‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω)

)1/2

(3.2)

The seminorm of Hm(Ω) is defined by:

|u|Hm(Ω) =

∑
|α|=m

‖Dαu‖2
L2(Ω)

1/2

Particularly, for m = 1 the seminorm is

|u|H1(Ω) = ‖∇u‖L2(Ω) (3.3)

In fact, Hm (Ω) is Hilbert space with respect to the scalar product

(u, v)Hm(Ω) =
∑
|α|≤m

∫
Ω

DαuDαvdx

We denote by Hm
0 (Ω) the closure of C∞0 (Ω) with respect to the norm ‖·‖Hm(Ω). The

space H−m(Ω) is the dual space of Hm
0 (Ω). H−m(Ω) is equipped with the dual norm

‖u‖H−m(Ω) = sup
v∈Hm

0 (Ω)
v 6=0

|〈u, v〉|
‖v‖Hm(Ω)

.



3.1. THE USUAL SPACES OF FUNCTIONS 35

The space H−m(Ω) is characterized as the space of derivatives of order up to m of

elements of L2(Ω).

If Ω has a Lipschitz continuous boundary, Wm,p
0 (Ω) is indeed the closure of C∞

(
Ω
)

with respect to the norm ‖·‖Wm,p(Ω) and thus Hm (Ω) is the closure of C∞
(
Ω
)

with

respect to the norm ‖·‖Hm(Ω). In other words, C∞
(
Ω
)

is dense in Hm (Ω).

Theorem 3.1.1 (The Sobolev Embedding Theorem)

Assume that Ω be a domain in Rd (d = 2, 3) with a Lipschitz continuous boundary

∂Ω2 and let p ∈ R with 1 ≤ p <∞. Then the following continuous embeddings hold

• If 0 ≤ sp < d, then W s,p(Ω) ↪→ Lp∗(Ω), p∗ = dp
d−sp and there exists c > 0 such

that ‖v‖Lq(Ω) ≤ c ‖v‖s,p ∀v ∈ W s,p(Ω), q ∈ [p, p∗]

• If sp = d, then W s,p(Ω) ↪→ Lq(Ω), p ≤ q < ∞, and there exists c > 0 such

that ‖v‖Lq(Ω) ≤ c ‖v‖s,p ∀v ∈ W s,p(Ω), p ≤ q <∞

• If sp > d, then W s,p(Ω) ↪→ Cq(Ω), and there exists c > 0 such that

‖v‖Cq(Ω) ≤ c ‖v‖s,p ∀v ∈ W
s,q(Ω), q ∈

[
0, s− d

p

]

�

Theorem 3.1.2 (Poincaré’s Inequality)

Assume that Ω be a bounded, connected (in at least one direction), open subset of

Rd (d = 2, 3). Then for all k > 0, there exists a constant CP = C(d, k,Ω) such that

‖u‖Hk(Ω) ≤ CP |u|Hk(Ω) , ∀u ∈ H
k
0 (Ω) (3.4)

In another form, we can write

‖u‖L2(Ω) ≤ CP ‖∇u‖L2(Ω) ,∀u ∈ H
1
0 (Ω) (3.5)

�
2A domain Ω ∈ Rd (d = 2, 3) is called a Lipschitz domain if for every x ∈ ∂Ω, there exists a

neighborhood of ∂Ω which can be represented as the graph of a Lipschitz continuous functions.
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Particularly, ‖∇u‖L2(Ω) = |u|H1(Ω) is a norm on H1
0 (Ω) which is equivalent to the norm

‖u‖H1(Ω). When Ω is bounded subset, the integral

∫
Ω

∇u : ∇v is a scalar product

over H1
0 (Ω) which induces norm ‖∇u‖L2(Ω) equivalent to the norm ‖u‖H1(Ω).

Theorem 3.1.3 (Green’s formula)

Let Ω be a bounded domain in Rd (d = 2, 3) with Lipschitz continuous boundary ∂Ω

and n be a unit outward normal along ∂Ω. Let u, v ∈ H1(Ω), then the integral

∫
∂Ω

uvni.

exists and is finite for each component ni (i = 1, . . . , d) of n. Moreover, the formula∫
Ω

∂u

∂xi
v = −

∫
Ω

u
∂v

∂xi
+

∫
∂Ω

uvni (3.6)

holds. Let u ∈ H2(Ω) and v ∈ H1(Ω), we have

d∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
= −

d∑
i=1

∫
Ω

∂2u

∂x2
i

v +
d∑
i=1

∫
∂Ω

ni
∂u

∂xi
v ∀u ∈ H2(Ω),∀v ∈ H1(Ω).

i.e., ∫
Ω

∇u · ∇v = −
∫

Ω

∆u v +

∫
∂Ω

∂u

∂n
v ∀u ∈ H2(Ω),∀v ∈ H1(Ω). (3.7)

�

In what follows we will often use spaces of vector functions whose components are in

Cm(Ω), Cm(Ω), Lp(Ω), Hm(Ω), etc. We will denote the corresponding spaces by a

boldface letter i.e., by Cm(Ω), Cm(Ω), Lp(Ω), Hm(Ω), etc.

We denote the space of tensors fields T : Ω→ Rd×d by [Lp(Ω)]d×d (1 ≤ p <∞) whose

components Tij belongs to Lp(Ω), associated with the norm

‖T‖Lp(Ω) =

(
d∑
i=1

d∑
j=1

‖Tij‖Lp(Ω)

)1/p

.

In case of p = 2, if T,C ∈ [L2(Ω)]
d×d

, then we define the scalar product by

(T,C)L2(Ω) =

∫
Ω

T : Cdx =

∫
Ω

d∑
i=1

d∑
j=1

TijCijdx.
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The spaces of symmetric tensor functions whose components belong to L2(Ω), Hm(Ω)

(m ≥ 0) are denoted by L2
s(Ω), Hm

s (Ω), associated with the scalar product

(σ, τ ) =

∫
Ω

σ : τdx

where σ : τ is the contracted product of two tensors of order n defined by

σ : τ =
n∑

i,j=1

σijτij.

Observe that ∇ · σ is a vector whose components are the divergence of line vectors

of tensor σ, i.e.,

(∇ · σ)i =
n∑
j=1

∂jσij

(see appendix (A− 9)).

3.2 Finite Elements Method (FEM)

In this section, we introduce some basic concepts of finite element method (FEM).

Details can be found in [6, 34, 19, 37, 3].

FEM is a process for constructing approximate solutions to boundary-value prob-

lems. In its simplest form, the finite element method can be interpreted as a Galerkin

method, where the solution of continuous problem is approximated by the solution of

approach variational problem. Dividing the domain of solution into a finite number

of subdomains, the finite elements, the approach variational problem is defined over

a finite-dimensional subspace Vh of V (infinite-dimensional function space where the

exact solution exists) where h is a discretization parameter. The choice of Vh should

be made so that Vh has to be a good approach of V , it means that lim
h→0

dim Vh = +∞

and the higher the dimension of Vh better the approximation of the solution of dis-

crete problem to the solution of continuous problem. In fact, the spaces are formed

by continuous piecewise polynomials defined over the finite elements with compact

support.

For the following, to simplify, we suppose that Ω ⊂ R2 is an open and simply con-

nected. It’s possible, without major difficulties, to extend this results to a domain
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multiple connected in R2. The three-dimensional case can be found in [19].

The finite element method can be characterized by

(FEM1): Construction of a non-degenerate regular triangulations Th over the set Ω

of finite elements K, which means

(T1) Th = ∪
K∈Th

K = Ω and h = max
K∈Th

hK is the diameter of Th and hK is the diameter

of the circumscribed circle into K;

(T2) For each K ∈ Th, the set K is closed and its interior K̊ is non empty;

(T3) The interior of two distinct subset K1, K2 ∈ Th are disjoint (K̊1 ∩ K̊2 = ∅) and

they have only a common point (vertices) or a common edge or are disjoint;

Figure 3.1: Non-degenerate (admissible) triangulations (on the left) and degenerate (non-

admissible) triangulations (on the right).

(T4) The boundary ∂K is Lipschitz continuous for each K ∈ Th;

(T4) There exist positive constants C1 and C2 , independent of h, such that

C1h ≤ hK ≤ C2ρK ∀K ∈ Th

ρK being the diameter of the inscribed circle into K.

(The above condition states that the triangles K of Th are approximately the same

size.)

(FEM2): Defines a finite set of continuous piecewise polynomial {φi, i = 1, · · · , n}

that span a subspace Vh ⊂ V such that

∀v ∈ V v =
n∑
i=1

viφi
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where vi = v(xi, yi) are the degrees of freedom of function v in Vh and φi(xj, yj) = δij

(δij is the Kronecker symbol), with (xi, yi) the vertices of Th , i, j = 1, · · · , n. The

functions φi are called the basis functions of Th. The set of elements K ∈ Th for which

the node ai = (xi, yi) belongs is the supp(φi), i = 1, · · · , n.

Let Pk(K) be the spaces of polynomials in R2 of degree ≤ k. Let Pk be the polynomial

space from R2 into R of degree ≤ k (k ≥ 0) and Pk(K) the restriction to K ∈ Th of

Pk. For k ≥ 1, we define the space

Vh =
{
vh ∈ C(Ω) : vh|T ∈ Pk(K),∀K ∈ Th

}
⊂ V

the discrete space, called finite element space.

(FEM3): Using the variational concepts and the fact that the solution of the con-

tinuous problem can be written by

v =
n∑
i=1

viφi

the finite element method constructs a system of equations, whose solution is solution

interpolated of the continuous problem in each vertices.

We introduce triangle K̂ with the vertices â1 = (0, 0), â2 = (1, 0) and â3 = (0, 1) as

the reference element. Each arbitrary triangle K with vertices ai = (xi, yi), i = 1, 2, 3,

can be obtained as

K = FK(K̂),

where FK is a suitable invertible affine map (figure 3.2)

FK : R2 → R2

x̂ → BKx̂ + bK = x

where BK =

 x2 − x1 x3 − x1

y2 − y1 y3 − y1

 is a non-singular matrix and bK =

 x1

y1

 is a

column vector, such that FK(âi) = ai, i = 1, 2, 3.

FK admits inverse F−1
K (x) = B−1

K x−B−1
K bK .

We associate bijectively the function v̂ defined over K̂ to all function v defined over
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FK

K

K̂

x̂

ŷ y

x

1

10

a3

a1

a2

ρK
< >

Figure 3.2: Affine transformation from the reference triangle K̂ to the generic element K

in the mesh.

K, by

∀x̂ ∈ K̂, v̂(x̂) = v(x) = v (FK (x̂)) = v ◦ FK (x̂) .

Since FK is invertible, so we have

∀x ∈ K, v(x) = v̂(x̂) = v̂
(
F−1
K (x)

)
= v̂ ◦ F−1

K (x)

Let |J | > 0 be the Jacobian of F . We establish a bijective correspondence between a

scalar function φ defined over K and φ̂ defined over K̂ by φ̂ = φ ◦F . The correspon-

dence between a function field v = (v1, v2) defined over K and v̂ = (v̂1, v̂2) defined

over K̂ is [9]

vi ◦ F =
1

|J |

2∑
j=1

∂Fi
∂x̂i

v̂i.

This way, we avoid setting n basis functions and is enough to define many basis

functions as the number of the degrees of freedom considered in the reference element

K̂. So, we can work only over reference triangle K̂.

For the constant C = C(K), we can prove

|v̂|Hk(K̂) ≤ C ‖BK‖k |detBK |−1/2|v|Hk(K), ∀v ∈ Hk(K)

and

|v|Hk(K) ≤ C
∥∥B−1

K

∥∥k |detBK |1/2|v̂|Hk(K), ∀v̂ ∈ Hk(K̂)
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where ‖.‖ is the matrix norm associated to the Euclidean norm in R2. The proof can

be found in [34].

We also have the following estimates ([34, 37])

‖BK‖ ≤
hK
ρ̂
, ‖B−1

K ‖ ≤
ĥ

ρK
,

where ρ̂ and ĥ are the diameters of inscribed and circumscribed circle in K̂. Also,

|det(BK)| = Area(K)

Area(K̂)
= 2Area(K) 6= 0.

Given a compact subset K of Rd, which is connected and not empty interior, in fact,

here K is a triangle. We consider the finite set ΣK = {ai}ni=1 of distinct points of

K and a vectorial space PK of finite dimension of functions defined over K with real

values. We say that ΣK are P-unisolvent if and only if, for a given n arbitrary real

scalars αi (i = 1, . . . , n) there exists a function p of the space PK such that

p(ai) = αi (i = 1, . . . , n) ∀αi ∈ R.

If the set ΣK is P-unisolvent, then the triplex (K,PK ,ΣK) is called Lagrange finite

element.

We need to define the following compatibility conditions between two finite elements

in order to determine a basis of Vh :

(H1) There is PK1 |K′
= PK2 |K′

and ΣK1 ∩ K ′ = ΣK2 ∩ K ′, for all pair {K1, K2} of

adjacent triangles of Th, with a common side K ′=K1 ∩K2 .

(H2) The finite element (K,PK ,ΣK) is a class of C0 for all K ∈ Th. This means that

PK ⊂ C(K) and for any side K ′ of K, the set Σ′ = ΣK ∩K ′ is P ′−unisolvent

where P ′ =
{
p|K′ : p ∈ PK

}
For a finite element (K,PK ,ΣK), there exists one and only one function φi ∈ PK for

all i = 1, . . . , n such that φi (aj) = δij, for all j = 1, . . . , n and the only function in

PK which vanishes on ΣK is the null function. They are the basis functions of Vh.

For any function v ∈ Vh, we have

v =
n∑
i=1

v(ai)φi.
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We define the P -interpolation operator of Lagrange for each K such that for all

function v ∈ C(Ω), this operator relates the function ΠK
h (v) defined by

ΠK
h (v) =

n∑
i=1

v(ai)φi.

So, ΠK
h (v)(aj) =

n∑
i=1

v(ai)φi(aj) =
n∑
i=1

v(ai)δij = v(aj).

The interpolant ΠK
h (v) is the only function which takes the same values of the

given function v at all nodes ai. We introduce a local interpolation operator with

αi, 1≤i≤nK , nodes of K by

ΠK(v) =

nK∑
i=1

v(αi)φi|K , ∀v ∈ C(K)

We can verify that ΠK
h (v)|K = ΠK(v|K ) ∀K ∈ Th, v ∈ C(Ω).

The following theorem gives us an estimate for the interpolation error.

Theorem 3.2.1

Assume that {Th}h>0 is a family of regular triangulations of Ω whose elements verifies

(H1) and (H2). Let k ≥ 1 be an integer. For m ∈ {0, 1}, there is a constant C,

independent of h, such that

|v − ΠK(v)|Hm(Ω) ≤ Chk+1−m |v|Hk+1(Ω) ∀v ∈ Hk+1(Ω). (3.8)

Moreover,

inf
vh∈Vh

|v − vh|Hm(Ω) ≤ Chk+1−m |v|Hk+1(Ω) ∀v ∈ Hk+1(Ω). (3.9)

�

The proof can be found in [34, 37]
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3.3 Mathematical Analysis for Steady Navier-Stokes

Problem

The steady Navier-Stokes equations of a homogeneous incompressible Newtonian

fluid, which describe the flow motion, independent of time, read as
(u · ∇)u +∇p− ν∆u = f

∇ · u = 0.

(3.10)

where u is the velocity field of the fluid, f is a given external force field per unit mass, p

is the ratio between the pressure and the density which is known as kinematic pressure

([p] = m2/s2), ν > 0 is the ratio between its dynamic viscosity and density known as

constant kinematic viscosity ([ν] = m2/s). Here Ω is a bounded domain of Rd(d=2, 3)

with Lipschitz continuous boundary ∂Ω. To close mathematical formulation and

obtain a well-posed problem, the above equations need to be supplemented by some

boundary conditions. For simplicity, we consider the case in which the system of

differential equations (3.10) is equipped with the Dirichlet boundary conditions

u = g on ∂Ω (adherence conditions). (3.11)

Using the divergence theorem, we have

0 =

∫
Ω

∇ · u =

∫
∂Ω

u · n =

∫
∂Ω

g · n.

So, for the incompressible fluids, the Dirichlet boundary condition g satisfies the

compatibility condition ∫
∂Ω

g · n = 0 (3.12)

where n is the outward normal to ∂Ω.

The condition g = 0 is called the homogeneous Dirichlet boundary conditions (or

no slip boundary conditions), which describes a fluid confined into a domain Ω with

fixed boundary (the boundary is at rest).

For simplicity, we take g = 0. The extension to nonhomogeneous Dirichlet bound-

ary conditions on the sufficiently regular data being straight-forward. So, with the
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homogeneous Dirichlet boundary conditions defined over Ω, we can write the steady

Navier-Stokes problem as follows:

Given f ∈ L2(Ω), find (u, p) such that
(u · ∇)u +∇p− ν∆u = f , in Ω

∇ · u = 0, in Ω

u = 0, on ∂Ω

(3.13)

If the velocity of the flow is small enough, then the nonlinear convective term (u ·∇)u

is negligible. So, for slow viscous flows, from the Navier-Stokes problem (3.13), we

obtain the following Stokes’ problem:

Given f ∈ L2(Ω), find (u, p) such that
∇p− ν∆u = f , in Ω

∇ · u = 0, in Ω

u = 0, on ∂Ω

(3.14)

3.3.1 Variational formulation of Navier-Stokes problem

The variational formulation (weak formulation) of the Navier-Stokes equations con-

sists of integral equations over Ω which is obtained by taking integral over the domain

of the scalar product of the momentum equation and the continuity equation with

appropriate test functions, and applying the Green integration formula. Following

Ladyzhenskaya (1959), we assume that u ∈ C2(Ω) ∩C0
(
Ω
)

and p ∈ C1(Ω) ∩C0
(
Ω
)

are the classical (or strong) solution of (3.13) and f ∈ C(Ω). Consider two Hilbert

spaces V = H1
0 (Ω) and Q = L2

0 (Ω) and let v ∈ V and q ∈ Q be two arbitrary test

functions. Taking the scalar product between the momentum equation and v, we

obtain ∫
Ω

(u · ∇)u · v +

∫
Ω

∇p · v − ν
∫

Ω

∆u · v =

∫
Ω

f · v (3.15)

By using the Green’s formulas (theorem 3.1.3) to (3.15) and taking into account that

v vanishes on the boundary, the variational form of the momentum equation is∫
Ω

(u · ∇)u · v −
∫

Ω

p∇ · v + ν

∫
Ω

∇u : ∇v =

∫
Ω

f · v (3.16)
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Multiplying ∇ · u = 0 by q and integrating over Ω, we obtain∫
Ω

∇ · u q = −
∫

Ω

q∇ · u = 0 (3.17)

The variational formulation of the Navier-Stokes problem (3.13) reads:

Given f ∈ H−1(Ω), find (u, p) ∈ H1
0 (Ω)× L2

0 (Ω) such that
∫

Ω

(u · ∇)u · v −
∫

Ω

p∇ · v + ν

∫
Ω

∇u : ∇v =

∫
Ω

f · v, ∀v ∈ V∫
Ω

∇ · u q = 0, ∀q ∈ Q
(3.18)

Lemma 3.3.1

Problem (3.13) and Problem (3.18) are equivalent. �

Proof

It is immediate that a smooth solution (u, p) of (3.13) is the solution of (3.18) , i.e.,

(u, p) is also a weak solution of the Navier-Stokes problem.

Conversely, assuming (u, p) ∈ H1
0 (Ω)×L2

0 (Ω) belongs to C2
(
Ω
)
×C1

(
Ω
)

where Ω is

class C1, is a solution of (3.18), choosing a test function v ∈ D(Ω), and by applying

Green’s formula we obtain∫
Ω

(u · ∇)u · v −
∫

Ω

p∇ · v + ν

∫
Ω

∇u : ∇v =

∫
Ω

f · v⇔∫
Ω

(u · ∇)u · v −
∫

Ω

∇p · v −
∫
∂Ω

pv · n− ν
∫

Ω

∆uv + ν

∫
∂Ω

∂u

∂n
v =

∫
Ω

f · v

Since v ∈ D(Ω), the supp(v) is compact and we have∫
Ω

(u · ∇)u · v −
∫

Ω

∇p · v − ν
∫

Ω

∆uv =

∫
Ω

f · v, ∀v ∈ D(Ω).

By density,∫
Ω

[(u · ∇)u−∇p− ν∆u− f ] : v = 0, ∀v ∈ L2(Ω)⇔

(u · ∇)u−∇p− ν∆u− f = 0 a.e. in Ω

In fact, (u · ∇)u − ∇p − ν∆u − f = 0 in Ω, since (u, p) ∈ C2(Ω) ∩ C0
(
Ω
)
×

C1(Ω)∩C0
(
Ω
)
. Since u ∈ H1

0 (Ω), so u = 0 on ∂Ω. In this way we can conclude

that the solution of (3.18) is also a solution (weak) of Problem (3.13). �



46 3. ANALYSIS OF NAVIER-STOKES EQUATIONS

3.3.2 Abstract formulation

We introduce the variational formulation of the previous problem in a general abstract

formulation that is suitable for many elliptic problems. Let us introduce continuous

bilinear forms a(., .) : V ×V −→ R and b(., .) : V ×Q −→ R as

a(u,v) = ν (∇u,∇v) = ν

∫
Ω

∇u : ∇v (3.19)

b(v, p) = −
∫

Ω

p∇ · v (3.20)

Besides, we define c(.; ., .) : V ×V ×V −→ R as the trilinear form associated with

the nonlinear convective term by

c(w; u,v) = ((w · ∇) u,v) =

∫
Ω

[(w · ∇)u] · v =

∫
Ω

d∑
i,j=1

wj
∂ui
∂xj

vi (3.21)

Lemma 3.3.2

The forms a : V ×V −→ R, b : V ×Q −→ R, and c : V ×V ×V −→ R defined by

(3.19), (3.20) and (3.21) respectively, are continuous with respect to their arguments.

Moreover, a(·, ·) is coercive (V-elliptic), i.e.,

∃α > 0 : a(v,v) ≥ α ‖v‖2
H1(Ω) , ∀v ∈ V.

�

Proof

The continuity of bilinear forms a(·, ·) is an immediate consequence of the Cauchy-

Schwarz inequality (Hölder inequality with p = q = 2). In fact, ∀ u,v ∈ V and

∀ q ∈ Q

|a(u,v)| =
∣∣∣∣ν ∫

Ω

∇u : ∇v

∣∣∣∣ ≤︸︷︷︸
Holder

ν ‖∇u‖L2(Ω) ‖∇v‖L2(Ω)

≤︸︷︷︸
def.norm H1

ν ‖u‖H1(Ω) ‖v‖H1(Ω) (3.22)

and

|b(u, q)| =
∣∣∣∣∫

Ω

q∇ · u
∣∣∣∣ ≤︸︷︷︸
Holder

‖∇ · u‖L2(Ω) ‖q‖L2(Ω) ≤︸︷︷︸
def.norm H1

‖u‖H1(Ω) ‖q‖L2(Ω) .

(3.23)
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Let u,v,w ∈ V be arbitrary functions. Thanks to the Sobolev embedding theorem

(theorem 3.1.1), we have H1(Ω) ↪→ L6(Ω) for d = 2, 3 and consequently H1(Ω) ↪→

L4(Ω). Then wv ∈ L2(Ω).

Considering the expression c(w; u,v) =

∫
Ω

(w · ∇)u · v componentwise, we have∣∣∣∣∫
Ω

wi
∂uk
∂xi

vk

∣∣∣∣ ≤ ‖wivk‖L2(Ω)

∥∥∥∥∂uk∂xi

∥∥∥∥
L2(Ω)

=

[∫
Ω

(wivk)
2

] 1
2

[∫
Ω

(
∂uk
∂xi

)2
] 1

2

≤
(∫

Ω

w4
i

) 1
4
(∫

Ω

v4
k

) 1
4

[∫
Ω

(
∂uk
∂xi

)2
] 1

2

≤ ‖wi‖L4(Ω)‖vk‖L4(Ω)‖uk‖H1(Ω)

Using the continuous embedding H1(Ω) ↪→ L4(Ω), there is a positive constant C such

that∣∣∣∣∫
Ω

wi
∂uk
∂xi

vk

∣∣∣∣ ≤ C2‖wi‖H1(Ω)‖vk‖H1(Ω)‖uk‖H1
0 (Ω) ≤ C2‖wi‖H1(Ω)‖vk‖H1(Ω)‖uk‖H1(Ω)

Therefore, owing to the Poincaré inequality, we can conclude that, for positive con-

stant C1 we have

|c(w; u,v)| ≤ C1‖w‖H1(Ω)‖u‖H1(Ω)‖v‖H1(Ω) ∀u,v,w ∈ H1
0(Ω). (3.24)

So, c(.; ., .) is continuous on H1
0(Ω).

The coercivity of bilinear form a(·, ·) is an immediate consequence of the norms and

Poincaré inequality (3.1.2),

a(u,u) = ν

∫
Ω

∇u : ∇u = ν ‖∇u‖2
L2(Ω) = ν |∇u|H1(Ω) ≥

ν

CP
‖u‖H1(Ω)

with CP the constants of Poincaré inequality. �

Lemma 3.3.3

Let w ∈ H1(Ω) with ∇ · w = 0 in Ω and w · n = 0 on ∂Ω and let u,v ∈ H1
0(Ω).

Then, we have

c(w; v,v) = 0. (3.25)
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and

c(w; u,v) = −c(w; v,u). (3.26)

�

Proof

The properties (3.25) and (3.26) are equivalent. Because,

c(w; u,v) = −c(w; v,u) ⇔ c(w; u,v) + c(w; v,u) = 0

⇔ c(w; u + v,v + u) = 0⇔ c(w,u + v,u + v) = 0.

So, it is sufficient to show that c(w; v,v) = 0.

Suppose u,v ∈ D(Ω) and w ∈ H1(Ω). We have

c(w; v,v) =
d∑

i,j=1

∫
Ω

wj
∂vi
∂xj

vi =
d∑

i,j=1

∫
Ω

wj
1

2

∂(v2
i )

∂xj

= −1

2

d∑
i,j=1

(∫
Ω

∂wj
∂xj

v2
i +

∫
∂Ω

wjnjv
2
i

)
, by Green’s formula

Applying the hypothesis ∇ ·w = 0 and w · n = 0 on ∂Ω, we have

c(w; v,v) = 0 ∀v ∈ D(Ω).

By density of D(Ω) into H1(Ω), we have

c(w; v,v) = 0, ∀v ∈ H1(Ω).

�

So, we can reformulate the variational formulation of Navier-Stokes problem as fol-

lows:

Given f ∈ H−1(Ω), find u ∈ V, p ∈ Q such that
a(u,v) + c(u,u,v) + b(v, p) = (f ,v), ∀v ∈ V

b(u, q) = 0 ∀q ∈ Q
(3.27)

Note that, for any fixed w ∈ V = H1
0(Ω), the map v −→ c(w; w,v) is linear and

continuous on V, i.e., it is an element of V′ = H−1
0 (Ω). Let us define Vdiv, the sub-

space of V = H1
0(Ω) of divergence free functions as Vdiv = {v ∈ H1

0(Ω) : ∇ · v = 0}.
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v ∈ Vdiv implies the bilinear form b(v, p) = 0. We can write the alternative weak

formulation of the Navier-Stokes problem (3.27) as

Given f ∈ L2(Ω), find u ∈ Vdiv such that

a(u,v) + c(u; u,v) = (f ,v) ∀v ∈ Vdiv (3.28)

Remark

If (u, p) is a solution of (3.27), then u is a solution of (3.28). The converse is also

true according to the following results:

Lemma 3.3.4

If if u ∈ Vdiv is a solution of the problem (3.28), then there exists a unique p ∈ Q

such that (u, p) is a solution of the problem (3.27). �

The proof can be found in [35, 34].

3.3.3 Existence and uniqueness of the solution

In this section we present two theorems: one is uniqueness and the other is existence

of a solution of the two-dimensional steady Navier-Stokes problem. The solution of

the Navier-Stokes problem (3.27) is generally known as non-unique. Only when the

data is small enough and the viscosity is high enough, we achieved uniqueness. At

first define the space

Hdiv :=
{
v ∈ L2(Ω) | ∇ · v = 0 in Ω, v · n = 0 on ∂Ω

}
, (3.29)

where n is the unit outward normal vector on ∂Ω. The space Hdiv is equipped with

‖∇ · ‖L2(Ω).

Theorem 3.3.1

Let f ∈ Hdiv with

1

ν2
‖f‖L2(Ω) <

1

C1

√
CP
⇔ C1

√
CP

ν2
‖f‖L2(Ω) < 1

where C1 > 0 is the constant appearing in (3.24)and CP is the constant of Poincaré

inequality. Then there exists a unique solution u ∈ Vdiv to the problem (3.28). �
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The proof can be found in [34, 18].

Let us consider the general case of a nonhomogeneous Dirichlet boundary condition

u = g.

The variational form of Navier-Stokes problem consists in

Find (u, p) ∈ H1(Ω)× L2
0(Ω) such that

a(u,v) + c(u; u,v) + b(v, p) = (f ,v), in Ω ∀v ∈ V

b(u, q) = 0 ∀q ∈ Q

u = g on ∂Ω

(3.30)

Theorem 3.3.2

Let Ω be a bounded domain of Rd with a Lipschitz continuous boundary ∂Ω. Given

f ∈ H−1(Ω) and g ∈ H1/2(∂Ω) satisfying

∫
Ω

g ·nds = 0, there exists at least one pair

(u, p) ∈ H1(Ω)× L2
0(Ω) solution of (3.30) or equivalently solution of (3.10)− (3.13).

�

Proof can be found in [16, 34, 18].

3.4 Stability

The stability criterion is essential for physical problems. A mathematical problem

is usually considered physically realistic if a small change in given data produces

correspondingly a small change in the solution, i.e., the solution depends continuously

on data. The following lemma guarantees that the mathematical problem is physically

realistic.

Lemma 3.4.1

Let u ∈ H1(Ω) and p ∈ L2
0(Ω) be the solution of (3.30) and the hypothesis of theorem

3.3.2 holds. Then the following energy inequality holds:

‖u‖H1(Ω) ≤
ν

CP
‖f‖H−1(Ω) (3.31)

�
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Proof

Multiplying the first of (3.10) by u and integrating over the domain Ω, we obtain

−ν
∫

Ω

∆u · u +

∫
Ω

(u · ∇)u · u +

∫
Ω

∇p · u =

∫
Ω

f · u (3.32)

But ∫
Ω

(u · ∇)u · u =
d∑

i,j=1

∫
Ω

uj
∂ui
∂xj

ui =
d∑

i,j=1

∫
Ω

uj
1

2

∂(u2
i )

∂xj

= −1

2

d∑
i,j=1

(∫
Ω

∂uj
∂xj

u2
i +

∫
∂Ω

ujnju
2
i

)
= 0 (3.33)

and ∫
Ω

∇p · u = −
∫

Ω

p∇ · u +

∫
∂Ω

pn · u = 0 (3.34)

Moreover, by the Poincaré inequality

ν

CP
‖u‖2

H1(Ω) ≤ ν ‖∇u‖2
L2(Ω) = ν

∫
Ω

|∇u|2 = ν

∫
Ω

|∇u|2 −
∫
∂Ω

∇u · u · n

= −ν
∫

Ω

∆u · u (3.35)

and by the Hölder’s inequality∫
Ω

f · u ≤ ‖f‖L2(Ω) ‖u‖L2(Ω) ≤ ‖f‖H−1(Ω) ‖u‖H1(Ω)

So, by (3.33), (3.34) and (3.35)

CP
ν
‖u‖2

H1(Ω) ≤ −ν
∫

Ω

∆u · u +

∫
Ω

(u · ∇)u · u +

∫
Ω

∇p · u =

∫
Ω

f · u

≤ ‖f‖H−1(Ω) ‖u‖H1(Ω) ⇔ ‖u‖H1(Ω) ≤
ν

CP
‖f‖H−1(Ω)

�

3.5 Numerical Analysis for the Navier-Stokes prob-

lem

Let Th be a non-degenerate triangulations of Ω, with h > 0 the discretization param-

eter of the mesh. Let Vh and Qh be two finite-dimensional spaces for the velocity

field and the pressure, respectively, such that Vh ⊂ H1(Ω) and Qh ⊂ L2
0(Ω). We set
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V0
h = Vh ∩H1

0(Ω) and Mh = Qh ∩ L2
0(Ω).

In these spaces, the problem (3.27) is approximated by
Find (uh, ph) ∈ V0

h ×Mh such that

a(uh,vh) + c(uh,uh,vh) + b(vh, ph) = (f ,vh), ∀vh ∈ V0
h

b(uh, qh) = 0 ∀qh ∈Mh

(3.36)

The existence and uniqueness of the problem (3.36) is generated by the fact that

the discrete space V0
h and Mh verify a compatibility condition known as ’consistency

condition’, ’inf-sup condition’ or LBB-condition, which reads as follows:

There exists β > 0 (independent of h) such that

inf
qh∈Mh\{0}

sup
vh∈V0

h\{0}

|(qh,∇ · vh)|
‖vh‖V0

h
‖qh‖Mh

> β. (3.37)

The property (3.37) is necessary for the well-posedness of the discrete problem.

Lemma 3.5.1

Problem (3.36) has a unique solution (uh, ph) ∈ V0
h ×Mh.

Furthermore, (uh, ph) converges to solution (u, p) of the problem (3.27) , that is

lim
h→0
‖u− uh‖H1(Ω) + lim

h→0
‖p− ph‖L2(Ω) = 0 (3.38)

�

We need to choose the discrete spaces of the velocity and pressure very carefully.

In fact, ’spurious oscillations’ phenomena for the unknown pressure may appear if

we do not ensure some kind of compatibility between the spaces involved in the

approximation. The discrete LBB-condition allows to obtain the correct setting of

discrete spaces.

Let Th, h > 0 be a non-degenerate uniformly regular triangulation defined over a

polygonal domain Ω ⊂ R2 such that Ω = ∪
K∈Th

K. Consider the following pair of

spaces (V0
h,Mh):

V0
h =

{
vh ∈ C(Ω) ∩H1

0(Ω) | vh|K ∈ P2(K), ∀K ∈ Th
}
, (3.39)
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Mh =
{
qh ∈ C(Ω) ∩ L2

0(Ω) | qh|K ∈ P1(K), ∀K ∈ Th
}
⊂ Q. (3.40)

corresponding to the Hood-Taylor finite element method. In this specific case, the

corresponding LBB-condition is satisfied.

We have the following results, which is classical and can be found in [6].

Theorem 3.5.1

Suppose that Th is non-degenerate and has no triangle with two edges on ∂Ω. Let

Vh
0 and Mh be respectively as in (3.39) and (3.40). Then the LBB-condition (3.37) is

satisfied. �

The next theorem deals with the error estimate for the Navier-Stokes approximation

of (3.36) using the Hood-Taylor finite element method. Proof can be found in [18].

Theorem 3.5.2

Let the solution (u,p) of the Navier-Stokes system (3.13) satisfy

u ∈ Hk+1(Ω) ∩H1
0(Ω), p ∈ Hk(Ω) ∩ L2

0(Ω), k = 1, 2.

If the triangulation Th is regular and it has no triangle with two edges on ∂Ω, then

the solution (uh, ph) of the problem (3.36) with V0
h and Mh give by (3.39) and (3.40)

satisfies the following error estimates:

|u− uh|H1(Ω) + ‖p− ph‖L2(Ω) ≤ C1h
k
(
|u|Hk+1(Ω) + |p|Hk(Ω)

)
, k = 1, 2. (3.41)

�

We discuss about the numerical stability. The trilinear form c (u; u,v) =

∫
Ω

(u · ∇) u·

v does not contribute to energy system at differential level in the Navier-Stokes equa-

tions as we see from section 3.4. When v = u, we have

∫
Ω

(u ·∇)u ·u =
1

2

∫
Ω

u ·∇ |u|2 = −1

2

∫
Ω

∇·u |u|2 +
1

2

∫
∂Ω

u ·n |u|2 = −1

2

∫
Ω

∇·u |u|2

(3.42)
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Since ∇ · u = 0, so −1
2

∫
Ω
∇ · u |u|2 = 0. But in case of discretized problem (3.36),

the term −1
2

∫
Ω
∇ · u |u|2 can not be zero. To overcome this problem, we can add an

additional term

1

2
((∇ · uh)uh,vh) =

1

2

∫
Ω

(∇ · uh) uh · vh. (3.43)

to the equation (3.36)1 to make it consistent. Since for the incompressibility condition

∇·u = 0, the additional term (3.43) reduces to zero and the modification is consistent.

So, the modified approximate problem can be written as follows:



Find (uh, ph) ∈ V0
h ×Mh such that

a(uh,vh) + c(uh,uh,vh) +
1

2
((∇ · uh)uh,vh) + b(vh, ph) = (f ,vh), ∀vh ∈ V0

h

b(uh, qh) = 0 ∀qh ∈Mh

(3.44)

We can prove that the problem (3.44) is stable.

Lemma 3.5.2

If uh ∈ V0
h is a solution of (3.44),then the following energy inequality holds:

‖uh‖H1(Ω) ≤
ν

CP
‖f‖H−1(Ω) (3.45)

�
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Proof

Putting vh = uh in (3.44)1.

Now, we have

c(uh,uh,uh) +
1

2
((∇ · uh) uh,uh) = 0 by using (3.43)

⇒
∫

Ω

(uh · ∇)uh · uh +
1

2

∫
Ω

(∇ · uh)uh · uh = 0

So, with all the procedure applied to proof the lemma (3.4.1), we can obtain (3.45).

�

We can say that the inequality (3.45) gives the estimate of stability. In fact, the

discrete part of (3.31) is the inequality (3.45).

3.5.1 Algebraic form of the approach Navier-Stokes problem

Let the following finite element spaces V0
h and Mh are given by (3.39) and (3.40) such

that

• dim(V 0
h ) = N ,where N is the total number of vertices and the midpoints of the

edges of the triangular meshes which are interior of Ω (excluding the boundary

∂Ω, since the velocity over ∂Ω is known in case of Dirichlet problem).

• dim(Mh) = M , where M is the total number of vertices of mesh’s triangles.

Let V0
h = V 0

h × V 0
h . We recall that the pair of spaces (V0

h,Mh) corresponds to the

Hood-Taylor finite element method P2 − P1, and satisfies a compatibility condition

discrete LBB.

We want to solve the approximate problem (3.36) which can be written as

Find (uh, ph) ∈ V0
h ×Mh i.e.,

(
uh1 , u

h
2 , ph

)
∈ V 0

h × V 0
h ×Mh such that

ν

∫
Ω

∇uh : ∇vh +

∫
Ω

(uh · ∇)uh · vh +
1

2

∫
Ω

(∇ · uh) uh · vh

−
∫

Ω

ph∇ · vh =

∫
Ω

f · vh, ∀vh =
(
vh1 , v

h
2

)
∈ V0

h∫
Ω

∇ · uh qh = 0, ∀qh ∈Mh

(3.46)
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Since the dimension of V 0
h and Mh are N and M respectively, let V 0

h has a Lagrange

basis {ϕi}i=1,··· ,N and Mh has a Lagrange basis {ψi}i=1,··· ,M . Let us write the approx-

imate solutions uh = (u1,h, u2,h) and ph in the basis of V 0
h and Mh as

uh = (u1,h, u2,h) =

(
N∑
j=1

(u1)jϕj,
N∑
j=1

(u2)jϕj

)
, ph =

M∑
l=1

plϕl

Let (vh, qh) = (v1,h, v2,h, qh) = (ϕi, ϕi, ψk) be the test functions ϕ ∈ V 0
h and ψ ∈

Mh. Setting vh = (v1,h, v2,h) = ({ϕi}, 0) and (0, {ϕi}), for i = 1, · · · , N and qh =

{ψl}l=1,··· ,M , we obtain an equivalent coupled set of scalar equations



∫
Ω

[
ν∇u1,h ·∇ϕi+(uh ·∇)u1,hϕi+

1

2
(∇ · uh)u1,hϕi−ph

∂ϕi
∂x
−f1ϕi

]
=0, i = 1, · · · , N∫

Ω

[
ν∇u2,h ·∇ϕi+ (uh ·∇)u2,hϕi+

1

2
(∇ · uh)u2,hϕi−ph

∂ϕi
∂y
−f2ϕi

]
=0, i = 1, · · · , N∫

Ω

(∇ · uh)ψl = 0, l = 1, · · · ,M

(3.47)

The above system of equations can be written as a non-symmetric matricial equation:


νA 0 Bx

0 νA By

Bt
x Bt

y 0




u1

u2

p

+


c(u1)

c(u2)

0

 =


Fx

Fy

0

 (3.48)

where uti = [u1
i · · · uNi ], i = 1, 2, for N nodal velocities, pt = [p1 · · · pM ], for M

nodal pressure and

A = [Aij]N×N =

∫
Ω

∂ϕi
∂x

∂ϕj
∂x

+
∂ϕi
∂y

∂ϕj
∂y

, i, j = 1, · · · , N.

Bx = [Bxil]N×M =

[∫
Ω

∂ϕi
∂x

ψl

]
N×M

By =
[
Byil

]
N×M =

[∫
Ω

∂ϕi
∂y

ψl

]
N×M

, for i = 1, · · · , N, j = 1, · · · ,M

Fx =

[∫
Ω

f1ϕi

]
N×1

, and Fy =

[∫
Ω

f2ϕi

]
N×1

.
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The nonlinear N × 1 vector c(ui) is given as

ci(ul) =

∫
Ω

[(
N∑
j=1

u1,jϕj

)(
N∑
k=1

(ul)k
∂ϕk
∂x

)
+

(
N∑
j=1

u2,jϕj

)(
N∑
k=1

(ul)k
∂ϕk
∂y

)]

+
1

2

∫
Ω

ϕi

[
u1,j

∂ϕj
∂x

+ u2,j
∂ϕj
∂y

]( N∑
k=1

(ul)kϕk

)
, i = 1, · · · , N

To solve the nonlinear system (3.47) we use the Newton-Raphson algorithm.

Newton (or Newton-Raphson) method has quadratic convergence and it is one of the

most common iterative method for solving nonlinear system of the form

h1(x1, · · · , xd) = 0

. . . . . . . . .

hd(x1, · · · , xd) = 0 (3.49)

where hi can be assumed as mapping a vector x = (x1, · · · , xd)t of Rd (d = 2, 3) into

R.

Defining a function H = (h1, · · · , hd) mapping Rd into Rd and using vector notation

to represent the variables x1, · · · , xd, the system (3.49) can be written as

H(x) = 0.

We define a function G by

G(x) = x− J(x)−1H(x)

where J is the Jacobian given by J = (Jij) =
∂hi
∂xj

, i, j = 1, · · · , d (d = 2, 3).

Choosing initial value x0 and generating, for k ≥ 0,

xk+1 = G(xK) = xk − J(xk)
−1

H(xk)

⇔ J
(
xk+1 − xk

)
= −H(xk), for k = 0, 1, . . . (3.50)

which avoid explicit computation of J(xk)
−1

.

Taking wk = xk − xk+1, we solve the linear system defined by

Jwk = H(xk)
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in order to wk and update wk+1 = xk −wk.

For Navier-Stokes system, in fact, we want to solve the nonlinear vector field function

H(u, p) = 0, where

H(u, p) =


νA 0 Bx

0 νA By

Bt
x Bt

y 0




u1

u2

p

+


c(u1)

c(u2)

0

−


Fx

Fy

0

 (3.51)

Considering the initial data u0, p0 are known, we obtain un+1

pn+1

 =

 un

pn

− J−1(un, pn)H(un, pn), n ≥ 0 (3.52)

Considering J−1(un, pn)H(un, pn) =

 δun

δpn

3, we have

 un+1

pn+1

 =

 un

pn

−
 δun

δpn

 (3.53)

So, we can define the algorithm

1. Given (u0, p0) ∈ V ×Q.

2. Repeat

Solve J

 δun

δpn

 = H(un, pn)

un+1 = un − δun

pn+1 = pn − δpn

until ‖((δun, δpn) ‖ < TOL.

3J−1(un, pn)H(un, pn) =

 δun

δpn

⇔ J

 δun

δpn

 = H(un, pn)
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3.6 Numerical Results

In this section we are interested in the implementation of the iterative Newton-

Raphson method to obtain the numerical solution of the steady Navier-Stokes equa-

tions. The Navier-Stokes problem was discretized using the P2 − P1 (Hood-Taylor)

elements, to guarantee the stability. The numerical simulation was implemented on

the general finite element solver FreeFem++ and we use the default solver sparse-

solver [22] to solve the linear system (for more details about the solver we can see

[41]). In fact, all the meshes and simulations were done using FreeFem++.

3.6.1 FreeFem++

FreeFem++ [22] is a free partial differential equations solver using finite element

method with its own language. FreeFem++ documentation is accessible on

www.freefem.org/ff++/ftp/FreeFem++doc.pdf. This software was developed in C++

at the Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris by

Frédéric Hecht in collaboration with OlivierPironneau, Jacques Morice, Antoine Le

Hyaric and Kohji Ohtsuka. The FreeFem++ language allows for a quick specification

of any partial differential system of equations with the variational formulation of a

linear steady state problem and the user need to write the own script. It is possible

to solve coupled problems as we do to solve Oldroyd-B problem. FreeFem++ has an

advanced automatic mesh generator, based on the Delaunay-Voronoi algorithm where

the number of inner points is proportional to number of points on the boundaries,

capable of posteriori mesh adaptation. It is also possible to read the mesh from ex-

ternal file and save the mesh to be used for other codes. It has a several triangular

finite elements, including discontinuous elements. To solve linear or bilinear varia-

tional formulation, the user needs to parametrize the boundary domain and defines

the number of nodes on boundary, even as boundary conditions and the variational

form of PDE. He needs to define also the finite element type to use. For nonlinear

forms the user needs to implement the method to apply for solving the problem. The

FreeFem++ has some solver to linear systems.
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3.6.2 Validation of the Code

We developed our own script in FreeFem++ to implement the Newton method applied

to the non-dimensional Navier-Stokes problem
Re(u · ∇)u +∇p−∆u = f , in Ω

u = u0, on ∂Ω.

(3.54)

To validate our code we fix the velocity and pressure

u(x, y) =
(
(x2 − x)2(y2 − y)(2y − 1),−(x2 − x)(y2 − y)2(2x− 1)

)
p(x, y) = x+ y (3.55)

(a) u1(x,y)=(x2−x)2(y2−y)(2y−1) (b) u2(x,y)=−(x2−x)(y2−y)2(2x−1) (c) p(x,y)=x+y

Figure 3.3: Contour of the first component of velocity (on the left), second component of

velocity (on the center) and pressure (on the right).

and we evaluate the external forces f = (f1, f2) to verifies the Navier-Stokes equations

with Re = 1.

f1(x, y) = −2(2x− 1)2(y2 − y)(2y − 1)− 4(x2 − x)(y2 − y)(2y − 1)− 6(x2 − x)2(2y − 1)

+1 + 2(x2 − x)3(y2 − y)2(2y − 1)2(2x− 1)− (x2 − x)(y2 − y)2

(2x− 1)
[
(x2 − x)2(2y − 1)2 + 2(x2 − x)2(y2 − y)

]

f2(x, y) = 6(2x− 1)(y2 − y)2 + 2(x2 − x)(2y − 1)2(2x− 1) + 4(x2 − x)(y2 − y)(2x− 1)

+1 + (x2 − x)2(y2 − y)(2y − 1)
[
−(2x− 1)2(y2 − y)2 − 2(x2 − x)(y2 − y)2

]
+2(x2 − x)2(y2 − y)3(2x− 1)2(2y − 1)
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We consider that the fluid is contained on a squared domain Ω = [0, 1]2 and the

Dirichlet boundary conditions prescribed agree with the exact solution according to

(3.55).

Figure 3.4: Exact streamline.

As we can see by the plot of the stream function, the fluid is rotating inside the

domain with the same speed.

To guarantee the quadratic convergence of Newton’s method applied to Navier-Stokes

equations, we should choose an initial approximation nearby the exact solution. If

we choose the initial approximation as the finite-element solution of Stokes equa-

tions, then the Newton’s sequence converges quadratically to the unique solution to

Navier-Stokes equations for sufficiently small mesh size h and a moderate Reynolds

number Re [26]. The problem has been solved using four grids obtained by successive

refinements dividing each triangle into four new triangles starting with a coarse mesh

with 32-elements.

(a) 32 elements (b) 128 elements (c) 512 elements (d) 2048 elements

Figure 3.5: Meshes over the square [0, 1]2.
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The Table 3.1 characterizes the mesh through the diameter h, number of elements,

degree of freedoms.

Grid h No. of elements P2 nodes P1 nodes

Grid1 0.353553 32 81 25

Grid2 0.176777 128 289 81

Grid3 0.0883883 512 1089 289

Grid4 0.0441942 2048 4225 1089

Table 3.1: Characterizations of the grids

In each case, we evaluate the error of fluid velocity in H1-norm and the error of the

pressure in L2-norm which are respectively defined by

erru = ‖u− uh‖H1(Ω) =
2∑
i=1

‖ui − uh,i‖H1(Ω)

=
2∑
i=1

(
‖ui − uh,i‖L2(Ω) + ‖∇(ui − uh,i)‖L2(Ω)

)

and errp = ‖p− ph‖L2(Ω) =

[∫
Ω

(p− ph)2

]1/2

.

The results obtained for u and p over the different meshes are present in the following

table (Table 3.2). The good convergence of results for all kinematic can be confirmed

by the slope value. We used the least squares approximation to find the slope of the

log-log plot of the error of the velocity and pressure.

Error Grid1 Grid2 Grid3 Grid4 Slope of the

log-log plot

erru 0.00234436 0.000377856 5.3719× 10−5 7.18033× 10−6 2.78906

errp 0.00132182 0.000134722 1.19493× 10−5 1.02202× 10−6 3.45345

Table 3.2: Error of the velocity field and pressure

The following plots show us the error curves:
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Figure 3.6: Log-log plot of the error of the velocity and pressure.

Like our expectation, the rate of convergence (the slope) is positive (quadratic for

the velocity) for both the errors, and since the errors approaches zero as h tends

to zero, so, our approximation converges to the exact solution with respect to the

corresponding norms.

The approach solution is illustrated in the next figure:

(a) uh,1(x,y)≈u1(x,y) (b) uh,2(x,y)≈u2(x,y) (c) ph(x,y)≈p(x,y)

Figure 3.7: Numerical solution obtained with 512 elements. Contour of the first component

of velocity (on the left), second component of velocity (on the center) and pressure (on the

right).
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Figure 3.8: Numerical streamline.

To see the inertia effects (and consequentely the viscous effects, since there is a inverse

relaton between the viscosity and the Reynolds number) in the behavior of the fluid,

we consider the classical lid-driven cavity problem



Re(u · ∇)u +∇p−∆u = 0, in Ω

u1 = 1, u2 = 0, on ∂Ω3

u1 = 0, u2 = 0, on ∂Ω1, ∂Ω2, and ∂Ω4.

(3.56)

in the domain Ω = [0, 1]2 with the boundary ∂Ω =
4⋃

k=1

∂Ωk as we illustrate in the

next figure.

u1=1, u2=0

u=0 u=0

u=0

W

Figure 3.9: Classical lid-driven cavity Ω .
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which has been investigated by many authors [44, 17] in the last thirty years. The

problem considers the incompressible flow in a square domain (cavity) with an upper

wall moving with a constant velocity u = 1 from left to right. The other boundaries

have null no-slip tangential and normal velocity boundary condition. The balance of

viscous and pressure forces make the fluid turn into the square cavity. The properties

of these forces depend upon the Reynold numbers.

We solve the problem (3.56) for different Reynolds numbers discretizing the cavity

such that each side is split into 16 parts. The resulting mesh has 512 elements, 1089

P2 nodes and 289 P1 nodes. For a better evaluation of the behavior of fluid flow we

have computed the stream function ψ.

The next five figures4 show the vector field and the stream function for results with

different Reynolds. From the vector field we can see that the fluid rotates in the same

direction of movement of the upper wall (from the left to the right). We observe from

the stream function that the fluid rotates in the cavity with greater velocity close to

the upper wall then the other parts. We can see the primary clockwise vortex, whose

locations occurs towards the geometric centre of the square cavity. This vortex shifts

progressively to the right as Re increases. This behaviour is a consequence of the

viscosity effects. We can observe also the counter-clockwise rotating secondary eddies

at the both corners close to the bottom.

4All the color scale are defined for 20 values equally spaced between its minimum (below) and

the maximum (top) .
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(a) Vector field at Re=1 (b) Stream function at Re=1

Figure 3.10: Vector field and stream function of the cavity flow problem with Reynolds

number Re = 1.

(a) Vector field at Re=50 (b) Stream function at Re=50

Figure 3.11: Vector field and stream function of the cavity flow problem with Reynolds

number Re = 50.
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(a) Vector field at Re=100 (b) Stream function at Re=100

Figure 3.12: Vector field and stream functionof the cavity flow problem with Reynolds

number Re = 100.

(a) Vector field at Re=300 (b) Stream function at Re=300

Figure 3.13: Vector field and stream function of the cavity flow problem with Reynolds

number Re = 300.

(a) Vector field at Re=590 (b) Stream function at Re=590

Figure 3.14: Vector field and stream function of the cavity flow problem with Reynolds

number Re = 590.
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Chapter 4

Analysis of Steady Transport

Problem

As an auxiliary problem for the steady Oldroyd-B model studied in the next chapter,

we consider the steady tensorial transport equation.

In this chapter, we recall the essential results concerning the existence and uniqueness

of solution as well as some considerations about the discretization of the problem in

the application of discontinuous finite element method.

4.1 Mathematical Analysis for Steady Transport

Problem

Let Ω ⊂ Rd (d = 2, 3) be a bounded, open and connected Lipchitz domain. In this

domain, we consider the steady tensorial transport equation, defined by

σ + λu · ∇σ = g (4.1)

where λ ∈ L∞(Ω), u ∈ L∞(Ω) and g ∈ L∞(Ω) are given.

In order to close this hyperbolic system and obtain a well-posed problem, the above

equation need to be supplemented by boundary conditions on inflow sections of the

boundary, according to the hyperbolic PDE theory.

69
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Componentwise, the equation (4.1) can be written as

σij + λu · ∇σij = gij, i, j = 1, 2⇔
1

λ
σij + u · ∇σij =

1

λ
gij, λ 6= 0. (4.2)

Without loss of generality we can take λ 6= 0, because if λ = 0, we have σ = g and g

is given.

Assuming µ = 1
λ
, the componentwise equation is scalar and can be identified as the

hyperbolic equation known as advection-reaction equation

µw + u · ∇w = h

4.1.1 Advection-reaction equation

For simplicity, we consider the steady advection-reaction equation with inflow homo-

geneous boundary condition1
µw + u · ∇w = h in Ω

u = 0 on ∂Ω−
(4.3)

where µ ∈ L∞(Ω) is the reaction coefficient, u ∈ L∞(Ω) is the advective velocity field,

h ∈ L2(Ω) is the source term, w is the unknown scalar function and ∂Ω− denotes the

inflow part of the boundary of Ω, namely

∂Ω− = {x ∈ ∂Ω : u(x).n(x) < 0} (4.4)

with n = (n1, · · · , nd)t be a unit outward normal to ∂Ω.

In the similar way, we define the outflow part of ∂Ω as

∂Ω+ = {x ∈ ∂Ω : u(x).n(x) > 0} (4.5)

and the interior of the set {x ∈ ∂Ω : u(x).n(x) = 0} as

∂Ω0 = ∂Ω\
(
∂Ω− ∪ ∂Ω+

)
.

1The extension to nonhomogeneous Dirichlet boundary condition on the sufficiently regular data

being straight-forward
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We assume that the inflow and outflow boundaries are well separated, i.e.,

dist
(
∂Ω−, ∂Ω+

)
> 0.

We assume the following additional hypothesis on µ:

there exists µ0 > 0 such that

µ(x)− 1

2
∇ · u(x) ≥ µ0 > 0 a.e. in Ω. (4.6)

To obtain the weak formulation of (4.3) we introduce the graph space

W = {w ∈ L2(Ω) : u · ∇w ∈ L2(Ω)} ⊂ L2(Ω) (4.7)

Lemma 4.1.1

W is Hilbert space with respect to the graph norm

‖w‖W = ‖w‖L2(Ω) + ‖u · ∇w‖L2(Ω).

�

Proof

Let vn be an arbitrary Cauchy sequence in W . So, by (4.7), vn and u · ∇vn are the

Cauchy sequence in L2(Ω). Let the corresponding limits of vn and u · ∇vn are v and

w in L2(Ω). Let φ ∈ D(Ω). Integrating by parts we have∫
Ω

wφ ←−
n→∞

∫
Ω

u · ∇vnφ = −
∫

Ω

vn∇ · (uφ) −→
n→∞

−
∫

Ω

v∇ · (uφ) =

∫
Ω

u · ∇vφ

By the unicity of limit we conclude∫
Ω

u · ∇vφ =

∫
Ω

wφ⇔
∫

Ω

(u · ∇v − w)φ = 0 ∀ φ ∈ D(Ω).

By the density of D(Ω) in L2(Ω), we conclude that

u · ∇v − w = 0 a.e. in Ω⇔ u · ∇v = w a.e. in Ω

then u · ∇v ∈ L2(Ω) and

‖vn‖W = ‖vn‖L2(Ω) + ‖u · ∇vn‖L2(Ω) −→ ‖v‖L2(Ω) + ‖u · ∇v‖L2(Ω) = ‖v‖W
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So, W is a Hilbert space with the graph norm. �

Remark

W is dense in L2(Ω) and H1(Ω) is a subspace of W .

Lesaint [27] guarantees the solution of (4.3) in the following results that he proves:

Theorem 4.1.1

Assume that µ ∈ L∞(Ω) and h ∈ L2(Ω). Then problem (4.3) has a unique strong

solution u ∈ W . �

To specify mathematically the meaning of the boundary condition, we need to define

the trace on ∂Ω of function in W . For that, we introduce the real-valued functions

which are square integrable with respect to the measure |u · n|ds , where ds is the

Lebesgue measure on ∂Ω, i.e.,

L2 (∂Ω; |u · n|) = {v is measurable on ∂Ω :

∫
∂Ω

|u · n|v2ds <∞}.

The following lemma defines traces of functions belonging to W and the integration

by parts formula [15].

Lemma 4.1.2 (Traces and integration by parts)

Suppose that C1(Ω) is dense in W and dist (∂Ω−, ∂Ω+) > 0, then the trace operator

γ : C1(Ω) −→ L2 (∂Ω; |u · n|)

w −→ γ(w) = w|∂Ω

extends uniquely to W , meaning that there is Cγ such that for all v ∈ W

‖γ(v)‖L2(∂Ω;|u·n|) ≤ Cγ‖v‖W

Moreover, the following integration by parts formula holds:∫
Ω

[(u · ∇w)v + (u · ∇v)w + (∇ · u)wv] =

∫
Ω

(u · n)wv

�
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Let us introduce the following bilinear form

a(w, v) =

∫
Ω

µwv +

∫
Ω

(u · ∇w)v +

∫
∂Ω

1

2
(|u · n| − u · n)wv ∀w, v ∈ W (4.8)

Lemma 4.1.3

The bilinear form defined in (4.8) is continuous and L2-coercive in W ×W . �

Proof

Let w, v ∈ W be arbitrary functions. So,

|a(w, v)| =

∣∣∣∣∫
Ω

µwv +

∫
Ω

(u · ∇w)v +
1

2

∫
∂Ω

(|u · n| − u · n)wv

∣∣∣∣
≤

∣∣∣∣∫
Ω

(µw + u · ∇w) v

∣∣∣∣+
1

2

∣∣∣∣∫
∂Ω

(|u · n| − u · n)wv

∣∣∣∣
≤

∣∣∣∣∫
Ω

(µw + u · ∇w) v

∣∣∣∣+
1

2

∣∣∣∣∫
∂Ω

|u · n|wv
∣∣∣∣+

1

2

∣∣∣∣∫
∂Ω

u · nwv
∣∣∣∣

≤
∫

Ω

|(µ+ u · ∇)wv|+
∫
∂Ω

|u · n| |wv|

≤︸︷︷︸
trace theorem

Cauchy−Schwartz

‖(µ+ u · ∇)w‖L2(Ω) ‖v‖L2(Ω) + cγ‖w‖W‖v‖W

≤
√

2 max{1, ‖µ‖2
L∞(Ω)}‖w‖W‖v‖L2(Ω) + cγ‖w‖W‖v‖W

Indeed by parallelogram law, we have

‖µw + u · ∇w‖2
L2(Ω) = 2 ‖µw‖2

L2(Ω) + 2 ‖u · ∇w‖2
L2(Ω) − ‖µw − u · ∇w‖2

L2(Ω)

≤ 2 ‖µw‖2
L2(Ω) + 2 ‖u · ∇w‖2

L2(Ω)

≤ 2‖µ‖2
L∞(Ω)‖w‖2

L2(Ω) + 2 ‖u · ∇w‖2
L2(Ω)

≤ 2 max{1, ‖µ‖2
L∞(Ω)}

(
‖w‖2

L2(Ω) + ‖u · ∇w‖2
L2(Ω)

)
= 2 max{1, ‖µ‖2

L∞(Ω)}‖w‖2
W

So, ‖µw + u · ∇w‖L2(Ω) ≤
√

2 max{1, ‖µ‖2
L∞(Ω)}‖w‖W

Hence a(., .) is continuous. To prove L2-coercivity, we take w ∈ W an arbitrary
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function and by using integration by parts and (4.6), we have

a(w,w) =

∫
Ω

µw2 +

∫
Ω

u · ∇w2 +

∫
∂Ω

1

2
(|u · n| − u · n)w2

=

∫
Ω

µw2 +
1

2

∫
Ω

u · ∇(w2) +

∫
∂Ω

1

2
(|u · n| − u · n)w2

=

∫
Ω

µw2 − 1

2

∫
Ω

(∇ · u)w2 +
1

2

∫
∂Ω

(u · n)w2 +

∫
∂Ω

1

2
(|u · n| − u · n)w2

=

∫
Ω

(
µ− 1

2
∇ · u

)
w2 +

1

2

∫
∂Ω

|u · n|w2

≥︸︷︷︸
using(4.6)

µ0‖w‖2 +
1

2

∫
∂Ω

|u · n|w2

So, a(., .) is L2-coercive. �.

Consider the variational problem defined by
Find w ∈ W such that

a(w, v) = (h, v) ∀v ∈ W
(4.9)

Theorem 4.1.2

Problem (4.9) is well-posed. �

Proof

It is an immediate consequence of the following Lax-Milgram theorem (theorem 4.1.3).

�

Theorem 4.1.3 (Lax-Milgram Theorem)

Let V be a real Hilbert space endowed with the norm ‖.‖, a : V ×V −→ R be a bilinear

form, and let f : V −→ R be a continuous linear form i.e., f ∈ V ′ where V ′ denotes

the dual space of V . Moreover, assume that a(., .) is continuous and V -elliptic or

coercive.

Then the abstract variational problem

a(u, v) = f(v) ∀v ∈ V

has a unique solution u ∈ V , and

‖u‖V ≤
1

α
‖f‖V ′

where α is the coerciveness constant of a(., .). �
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The proof can be found in [7].

Proposition 4.1.1

Problem (4.9) is the variational formulation of (4.3).

Moreover, if w ∈ W is the solution of (4.9), then

µw + u · ∇w = h a.e in Ω

µ = 0 a.e in Ω

i.e., w is a weak solution of (4.3). �

Remark

We observe that the boundary condition is weakly enforced in (4.9).

4.2 Discontinuous Galerkin Method

The first discontinuous Galerkin method for hyperbolic partial differential equations

have been introduced in 1973 by Reed and Hill to simulate nutron transport prob-

lem. The analysis of abstract form for this discrete problem was done one year later

by Lesaint and Raviart [27]. More recently, the discontinuous Galerkin method for

hyperbolic equations had a significant development based on numerical fluxes [12].

Discontinuous Galerkin method can be viewed as finite element method, but with

relaxed continuity at interelement boundaries. The essential idea of the method is

derived from the fact that the shape functions can be chosen so that the field variable

and/or its derivatives are discontinuous across the element boundaries. The effect of

the boundary conditions are gradually propagate through element-by-element con-

nection. This way it is possible to introduce a centering in a scheme that contains

the integral over the edges, using the right and left values of the edge side, along the

direction of flow.

4.2.1 Discrete transport problem

The details of this method can be found in [15, 28, 27]. To simplify, like we did for the

Navier-Stokes problem, we consider Ω a polyhedra, because this way we can covered
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Ω exactly by a mesh of polyhedral elements as we explained.

Let {Th}h>0 be a family of non-degenerate, regular triangulation of Ω (see page 38).

An edge F of Ω is a mesh face if either one of the following two conditions is satisfied:

(i) there are distinct mesh elements of K1 and K2 such that F = ∂K1∩∂K2; in such

case, F is called an interface

(ii) there is K ∈ Th such that F = ∂K ∩ ∂Ω; in such case, F is called a boundary

face.

Let F ih be the set of interfaces and F bh be the set of boundary faces. We set

Fh = F ih ∪ F bh

Let v be scalar function defined on Ω and assume that v is smooth enough to admit

on all F ∈ F ih a possible two-valued trace (the interior and exterior traces of v on F).

This means that, for all K ∈ Fh, the restriction v |K of v to the open set K can be

defined up to the boundary ∂K. Then, for all F ∈ F ih and a.e. x ∈ F , the average

and the jump of v is defined, respectively, as

{v}F (x) =
v|K1

(x) + v|K2
(x)

2

[v]F (x) = v|K1
(x)− v|K2

(x)

where Ki, i = 1, 2 are distinct mesh elements such that F = ∂K1 ∩ ∂K2. If v is a

vector function, the average and jump operators act componentwise on the function

v. To simplify, the subscript F and the variable x are omitted.

We consider the broken polynomial space

P1(τ h) =
{
v ∈ L2(Ω) : ∀K ∈ Th, v |K∈ P1(K)

}
where P1(K) is spanned by the restriction to K of polynomials in P1 (set of polyno-

mials defined in Rd with degree ≤ 1).

We define the broken Sobolev spaces as

Hm(Th) =
{
v ∈ L2(Ω) : ∀K ∈ Th, v |K∈ Hm(K)

}
, m ≥ 0 is an integer
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and the broken gradient ∇h by

∇h : H1(Th) −→ L2(Ω)

v −→ (∇hv) |K= ∇(v |K)

(4.10)

Lemma 4.2.1

Broken gradient on usual Sobolev spaces.

Let m ≥ 0. There holds Hm(Ω) ⊂ Hm(Th). Moreover, for all v ∈ H1(Ω), ∇hv = ∇v

in L2(Ω). �

Lemma 4.2.2

A function v ∈ H1(Th) belongs to H1(Ω) if and only if

[v] = 0, ∀F ∈ F ih.

�

In the framework of the transport problem, we denote by S1 the subspace of L2(Ω)

whose functions are piecewise linear polynomial functions over Th with degree less or

equal to 1.

If the exact solution w is regular, we hope that the approach solution will be regular

also [43]. In this sense, we added to the classical formulation a priori small term∫
∂K

(
α |u · nK | −

1

2
u · nK

)
[wh] vh

expressing the discontinuities of the solution approach to interfaces of elements.

So, we want to find wh ∈ S1 : wh = gh on ∂Ω− such that∑
K∈Th

∫
K

(µwh + u · ∇wh) vh +

∫
∂K

(
α |u · nK | −

1

2
u · nK

)
[wh] vh

−
∫
∂Ω−
|u · nK |whχ∂Ω−vh =

∫
K

hvh, ∀vh ∈ S1 : vh = 0 on ∂Ω− (4.11)

where gh is an approach of g on ∂Ω−, nK is the unit outward normal to K and χ∂Ω−

denotes the characteristic function of ∂Ω−.
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The parameter α can vary from face to face but the value α = 1
2

is used usually

according to the literature. With this value, one obtains the DG method analyzed

by Lesaint and Raviart [27]. In this case the term
(
α |u · nK | − 1

2
u · nK

)
[wh] is non

zero only on that part of the boundary ∂K where u · nK < 0.

4.3 Numerical Results

In this section, we are interested in the implementation of the iterative method based

on the application of a fixed point method in FreeFem+ to solve the transport equa-

tion.

4.3.1 Validation of the code

We develop our own script in FreeFem++ to obtain the numerical solution of the non-

dimensional steady tensorial transport equation using P1 discontinuous finite element

(P1dc). For this type of elements, due to interpolation problem, FreeFem++ doesn’t

consider the degree of freedom as the vertices but three vertices move inside on the

element with the linear map T (X) = G + 0.99(X −G) where G is the barycenter.

In this way, the number of degree of freedom is 3 times of the number of elements.

Consider the following auxiliary problem of Oldroyd-B problem (2.38)3 defined in

Ω = [0, 1]2:

find σ ∈ L2(Ω)) such that

σ +We [(u · ∇)σ] = 2λD(u) +We
[
(∇u)σ + σ(∇u)t

]
in Ω. (4.12)

where the vector field u is given by (see [5])

u(x, y) =
(
(x2 − x)2(y2 − y)(2y − 1),−(x2 − x)(y2 − y)2(2x− 1)

)
(4.13)

Using the discrete formulation, the dimensionless transport problem can be written

in terms of its components as a system of three scalar transport equations (advection-

reaction equations) (σ is symmetric tensor (σ12 = σ21)), i.e.,
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find (σ11, σ12, σ22) such that

|

∫
Ω

[
σh,11 +We

(
u1
∂σh,11

∂x1

+ u2
∂σh,11

∂x2

)]
τh,11+We

∫
∂K

(
α |u · nK |−

1

2
u · nK

)
[σh,11]τh,11

= 2λ

∫
Ω

∂u1

∂x1

τh,11 + 2We

∫
Ω

[
∂u1

∂x1

σh,11 +
∂u1

∂x2

σh,12

]
τh,11∫

Ω

[
σh,12 +We

(
u1
∂σh,12

∂x1

+ u2
∂σh,12

∂x2

)]
τh,12+We

∫
∂K

(
α |u · nK |−

1

2
u · nK

)
[σh,12]τh,12

= λ

∫
Ω

(
∂u1

∂x2

+
∂u2

∂x1

)
τh,12+We

∫
Ω

[
∂u2

∂x1

σh,11 +

(
∂u1

∂x1

+
∂u2

∂x2

)
σh,12 +

∂u1

∂x2

σh,22

]
τh,12∫

Ω

[
σh,22 +We

(
u1
∂σh,22

∂x1

+ u2
∂σh,22

∂x2

)]
τh,22+We

∫
∂K

(
α |u · nK | −

1

2
u · nK

)
[σh,22]τh,22

= 2λ

∫
Ω

∂u2

∂x2

τh,22 + 2We

∫
Ω

[
∂u2

∂x1

σh,12 +
∂u2

∂x2

σh,22

]
τh,12

(4.14)

For the computational implementation, we consider a mesh 100 × 100 with 20000

elements and 60000 P1dc nodes and we take λ = 0.1, 0.5 and 0.9. For each λ we do

the study for different values of We admissible for convergence of iterative method.

This iterative method can be described as follows

given (σ0
11, σ

0
12, σ

0
22) such that

|

∫
Ω

[
σn+1
h,11 +We

(
u1

∂σn+1
h,11

∂x1

+ u2

∂σn+1
h,11

∂x2

)]
τh,11+We

∫
∂K

(
α |u · nK |−

1

2
u · nK

)[
σn+1
h,11

]
τh,11

= 2λ

∫
Ω

∂u1

∂x1

τh,11 + 2We

∫
Ω

[
∂u1

∂x1

σnh,11 +
∂u1

∂x2

σnh,12

]
τh,11

∫
Ω

[
σn+1
h,12 +We

(
u1

∂σn+1
h,12

∂x1

+ u2

∂σn+1
h,12

∂x2

)]
τh,12+We

∫
∂K

(
α |u · nK |−

1

2
u · nK

)[
σn+1
h,12

]
τh,12

= λ

∫
Ω

(
∂u1

∂x2

+
∂u2

∂x1

)
τh,12+We

∫
Ω

[
∂u2

∂x1

σnh,11+

(
∂u1

∂x1

+
∂u2

∂x2

)
σnh,12+

∂u1

∂x2

σnh,22

]
τh,12

∫
Ω

[
σn+1
h,22 +We

(
u1

∂σn+1
h,22

∂x1

+ u2

∂σn+1
h,22

∂x2

)]
τh,22+We

∫
∂K

(
α |u · nK |−

1

2
u · nK

)[
σn+1
h,22

]
τh,22

= 2λ

∫
Ω

∂u2

∂x2

τh,22 + 2We

∫
Ω

[
∂u2

∂x1

σnh,12 +
∂u2

∂x2

σnh,22

]
τh,22

(4.15)

The linear system was solved using the default solver sparsesolver.
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We analyze the effects of Weissenber number. It is known that the high We lead

a numerical instabilities which can be seen in the behavior of numerical solution

or lead the divergence of algorithm. We compared the different solutions obtained

for We between 1 and 10 with fixed λ. For each λ, we observed the occurrence of

numerical instabilities associated with the increased We as we can see with the next

figures2. When λ increase, we observed that the qualitative behavior is the same but

quantitatively the amplitude of each component increases. The following figures show

the behavior of three components of tensor for different We and different λ.

2All the color scales are defined for 20 values equally spaced between its minimum (below) and

the maximum (top) .
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(a) σ11 (b) σ12 (c) σ22

Figure 4.1: Contours of the stress tensor components at We = 1 and λ = 0.1.

(a) σ11 (b) σ12 (c) σ22

Figure 4.2: Contours of the stress tensor components at We = 5 and λ = 0.1.

(a) σ11 (b) σ12 (c) σ22

Figure 4.3: Contours of the stress tensor components at We = 10 and λ = 0.1.
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(a) σ11 (b) σ12 (c) σ22

Figure 4.4: Contours of the stress tensor components at We = 1 and λ = 0.5.

(a) σ11 (b) σ12 (c) σ22

Figure 4.5: Contours of the stress tensor components at We = 5 and λ = 0.5.

(a) σ11 (b) σ12 (c) σ22

Figure 4.6: Contours of the stress tensor components at We = 10 and λ = 0.5.
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(a) σ11 (b) σ12 (c) σ22

Figure 4.7: Contours of the stress tensor components at We = 1 and λ = 0.9.

(a) σ11 (b) σ12 (c) σ22

Figure 4.8: Contours of the stress tensor components at We = 5 and λ = 0.9.

(a) σ11 (b) σ12 (c) σ22

Figure 4.9: Contours of the stress tensor components at We = 10 and λ = 0.9.
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Chapter 5

Oldroyd-B Fluids Flows

In this chapter, we want to study the steady problem which model the behavior of

Oldroyd-B fluids type, in a bi-dimensional domain Ω ⊂ R2. It is done the approach of

Oldryod-B model and will be presented numerical results. We apply the fixed point

method type proposed by Najib and Sandri [30].

As we refer in chapter 1, given 0 < λ < 1, we want to approach the solution (u, p,σ)

of the problem

find (u,σ, p), defined in Ω such that
Re [(u · ∇)u] +∇p = (1− λ)∆u +∇ · σ + ρf in Ω,

∇ · u = 0 in Ω,

We [(u · ∇)σ] + σ = 2λD(u) +We
[
(∇u)σ + σ(∇u)t

]
in Ω.

where Re and We are, respectively, the Reynolds number and Weissenberg number.

5.1 The Oldroyd-B Constitutive Equation

The Oldroyd-B constitutive equation in case of steady flow read in the form of (2.30)

as 
ρ(u · ∇)u− µn∆u +∇p = ∇ · σ + ρf in Ω,

∇ · u = 0 in Ω,

λ1 (u · ∇)σ + σ = h(σ,∇u) in Ω.

(5.1)

85
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where h(σ,∇u) = 2µeD(u) + λ1 [(∇u)σ + σ(∇u)t].

The above equation is composed of a Navier-Stokes like system for (u, p) and a trans-

port equation for extra stress tensor σ. The system of equations (5.1) have to be used

with some boundary conditions. For a connected flow domain Ω ⊂ R2, the required

boundary conditions are the following:

(i) Dirichlet boundary conditions for the velocity on the boundary ∂Ω

u = g on ∂Ω with compatibilty condition

∫
∂Ω

g · n = 0.

where n is the unit outward normal vector to Ω at the boundary ∂Ω. For ho-

mogeneous case, g = 0.

(ii) For the stress, a condition on the upstream boundary section

∂Ω− = {x ∈ ∂Ω : u(x).n(x) < 0}

σ = σ∂Ω on ∂Ω−.

With the homogeneous Dirichlet boundary conditions, the Oldroyd-B fluid model

problem is well-posed. In case of non-homogeneous boundary conditions, the equa-

tions of motion for Oldroyd-B fluids have an infinite number of solutions [25, 21]. For

this reason the inflow boundary condition (ii) and outflow boundary condition should

be imposed in order to insure the well-posedness [36].

With the homogeneous Dirichlet boundary conditions defined over Ω, the problem of

determining the extra stress tensor σ, the velocity u and the pressure p satisfying the

Oldroyd-B constitutive equations can be reformulated as follows:

Find the quantities σ,u and p, defined in Ω such that
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

ρ(u · ∇)u− µn∆u +∇p = ∇ · σ + ρf , in Ω

∇ · u = 0, in Ω

λ1 (u · ∇)σ + σ = h(σ,∇u), in Ω

u = 0, on ∂Ω

(5.2)

subjected to the boundary condition (ii).

For non-dimensional case, the problem (5.2) can be read as the form of (2.38) as

follows:

Find the non-dimensional quantities, still denoted by σ, u and p, defined in Ω

such that
Re [(u · ∇)u] +∇p = (1− λ)∆u +∇ · σ + f , in Ω

∇ · u = 0, in Ω

We [(u · ∇)σ] + σ = 2λD(u) +We
[
(∇u)σ + σ(∇u)t

]
, in Ω.

(5.3)

subjected to the boundary conditions in (i) and (ii).

5.2 Variational Formulation

We consider an incompressible viscoelastic fluid confined into a domain Ω with fixed

boundary. Mathematically, we write the steady Oldroyd-B equations with the Dirich-

let boundary conditions (to simplify) i.e., u = u0 such that u0 · n = 0 on ∂Ω. So,

given an external force field f ∈ H−1(Ω) and 0 < λ < 1 the viscoelastic fraction of

the viscosity, the steady Oldroyd-B problem is defined by

Re [(u · ∇)u]− (1− λ)∆u +∇p = ∇ · σ + f in Ω,

∇ · u = 0 in Ω,

σ +We [(u · ∇)σ] = 2λD(u) +We
[
(∇u)σ + σ(∇u)t

]
in Ω

u = u0, u0 · n = 0 on ∂Ω.

(5.4)
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Consider the space H1
0(Ω). Taking v ∈ H1

0(Ω) an arbitrary test function, and the

scalar product between the momentum equation and v, and integrating over Ω, we

obtain∫
Ω

Re [(u · ∇)u · v]−
∫

Ω

(1− λ)∆u · v +

∫
Ω

∇p · v =

∫
Ω

∇ · σ · v +

∫
Ω

f · v (5.5)

Applying the Green’s formula (theorem 3.1.3) to (5.5) and taking into account that

v vanishes on the boundary, we have∫
Ω

Re [(u · ∇)u · v] +

∫
Ω

(1− λ)∇u : ∇v −
∫

Ω

p∇ · v = −
∫

Ω

σ : ∇v +

∫
Ω

f · v

As we take a Dirichlet problem, the pressure is determined only up to constant, since

it appears in the equations only through its gradient. So, we consider the space L2
0(Ω)

and we take q ∈ L2
0(Ω). Multiplying the continuity equation by q and integrating over

Ω, we have ∫
Ω

q∇ · u = 0.

Due to conservation of momentum, the tensor need to be symmetric. So, taking

τ ∈ L2
s(Ω) arbitrary and the scalar product between the transport equation and τ ,

we obtain by the Green formula∫
Ω

σ : τ +We [(u · ∇)σ] : τ −We
[
(∇u)σ + σ(∇u)T

]
: τ − 2λD(u) : τ = 0

The variational form to Oldroyd-B problem reads

Given f ∈ H−1(Ω), find (u, p,σ) ∈ H1
0(Ω)× L2

0(Ω)× L2
s(Ω) such that

∫
Ω

Re [(u · ∇)u · v] +

∫
Ω

(1− λ)∇u : ∇v +

∫
Ω

σ : ∇v −
∫

Ω

p∇ · v =

∫
Ω

f · v∫
Ω

q∇ · u = 0∫
Ω

σ : τ +

∫
Ω

We [(u · ∇)σ] : τ −
∫

Ω

We
[
(∇u)σ + σ(∇u)t

]
: τ =

∫
Ω

2λD(u) : τ

(5.6)

for all (v, p, τ ) ∈ H1
0(Ω)× L2

0(Ω)× L2
s(Ω)
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5.3 Existence and Uniqueness Results of Solutions

Several authors [2, 50, 20, 40, 39] proved some results concerning the existence and

uniqueness of solutions of problem (5.2), under certain smallness and regularity con-

ditions on the data, and using a fixed point argument related to the decoupling of

the original problem.

Renardy [40, 39] has obtained existence of stationary solutions for any value of λ, the

other parameter being small, using a fixed-point method.

Theorem 5.3.1

Suppose that Ω is class Cq, q = max{k + 2, 2} with k ≥ 1 integer. Let n
2
< p < ∞,

f ∈Wk,p(Ω), u0 ∈Wk+2− 1
p
,p(∂Ω) such that u0 · n = 0 and γ a constant that verify

‖f‖Wk,p(Ω) + ‖u0‖
W

k+2− 1
p ,p

(∂Ω)
< γ

then there are γ0 > 0, λ0 ∈]0, 1[ such that for all 0 < γ<γ0 and 0 < λ < λ0, the

Oldroyd-B problem (5.4) has a unique solution

(u, p,σ) ∈Wk+2,p(Ω)×
(
W k+1,p(Ω) ∩ Lp0(Ω)

)
×Wk+1,p

s (Ω).

Moreover

‖u‖Wk+2,p(Ω) + ‖σ‖Wk+1,p(Ω) + ‖p‖Wk+1,p(Ω) ≤ c
(
‖f‖Wk,p(Ω) + ‖u0‖

W
k+2− 1

p ,p
(Ω)

)
where c is a constant depending of n, p and Ω. �

The proof can be found in [50].

5.4 Discrete Oldroyd-B Problem

In this section, we study the approximation of the problem (5.2) using finite element

method and recall the notations already used in the previous chapters. The system

(5.2) is a composed (coupled) problem for the three unknowns (u, p,σ). We will use

iterative scheme to solve this system. If σ is fixed, the first two equations of (5.2)

defines a Navier-Stokes systems in the variables u and p. As in chapter 2, we use



90 5. OLDROYD-B FLUIDS FLOWS

the Hood-Taylor finite element method for the approximation of the velocity and the

pressure field (u, p), where the corresponding spaces satisfy the discrete inf-sup condi-

tion. If u (and p) are fixed, then the third equation of (5.2) is a transport equation in

the variable σ. The approximation of σ will be done by using discontinuous Galerkin

finite element method, as in chapter 3.

To obtain the approximate problem, we apply the finite element method. To approach

the hyperbolic transport problem we consider the Discontinuous Galerkin Method and

to approach the elliptic Navier-Stokes problem we consider the Hood-Taylor finite el-

ement method.

Consider the case where 0 < λ < 1 (if λ = 0 we have a Newtonian model and if λ = 1

we have the Maxwell model).

Let Th, h > 0, where h is discretization parameter, be a non-degenerated regular

triangulation of Ω such that Ω = ∪
K∈Th

K.

Consider the spaces V0
h and Mh defined by (3.39) and (3.40) respectively, and the

space

Th =
{
σh ∈ T ∩C(Ω) | σh|K ∈ P1, ∀K ∈ Th

}
⊂ Sd×d1 , (5.7)

where

T =
{
σ ∈ L2(Ω)|u · ∇σ ∈ L2(Ω), σ12 = σ21

}
, (5.8)

So, the Oldroyd-B model is approached by the following problem:

Given f ∈ H−1(Ω),



Find (uh, ph,σh) ∈ V0
h ×Mh ×Th such that

a(uh,vh) + c(uh,uh,vh) + b(vh, ph) = (∇ · σh + f ,vh), ∀vh ∈ V0
h

b(uh, qh) = 0, ∀qh ∈Mh

(σh, τ h) + (uh · ∇σh, τ h) + (φ∗∂K(σh), τ h) = (h(∇u,σ), τ h) , ∀τ h ∈W

(5.9)
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with the interface and boundary adjoint-fluxes

φ∗,i(σh)|∂K =

(
α|u.nK | −

1

2
u.nK

)
[[σh]]∂K , (5.10)

φ∗,∂(σh) = −|u.n|σhχ∂Ω− (5.11)

where α > 0 is a parameter and χ∂Ω− denotes the characteristic function of ∂Ω−.

Here h(∇u,σ) = 2µeD(u) + λ1

[
(∇u)σ + σ(∇u)t

]
. The non-dimensional approah

problem can be written as follows:

Given f ∈ H−1(Ω), find (uh, ph,σh) ∈ V0
h ×Mh ×Th such that

∫
Ω

Re [(uh · ∇)uh · vh] +

∫
Ω

(1− λ)∇uh : ∇vh +

∫
Ω

σh : ∇vh −
∫

Ω

ph∇ · vh =

∫
Ω

f · vh∫
Ω

qh∇ · uh = 0∫
Ω

σh :τ h+

∫
Ω

We [(uh ·∇)σh] :τ h−
∫

Ω

We
[
(∇uh)σh+σh(∇uh)

t
]
:τ h+(φ∗∂K(σh),τ h)=

∫
Ω

2λD(uh) :τ h

(5.12)

∀vh ∈ V0
h, ∀qh ∈Mh, ∀τ h ∈ Th.

From theorem (5.3.1), spaces V0
h and Mh verified the uniform LBB-condition:

There exists β > 0 (independent of h) such that

inf
q∈Mh

sup
v∈V0

h

∫
Ω
q∇ · v

‖q‖ · ‖∇v‖
> β > 0. (5.13)

5.5 Algorithm to Solve the Discrete Oldroyd-B Prob-

lem

The discrete problem (5.12) leads to the solution of a highly nonlinear system of

coupled equations. To solve the system of equations, the whole set of variables u,

p and σ using a technique requires excessive computer resources. So, to solve this

elliptic-hyperbolic system we apply the decoupled technique. The extra-stress ten-

sor is computing separately from the kinematic equations. From a fixed value for the

velocity (and pressure) the extra-stress tensor is evaluated solving the tensorial trans-

port equation (the third equation of (5.12)) by application of a fixed point method.

Then the velocity field and pressure are updated with the current extra-stress tensor



92 5. OLDROYD-B FLUIDS FLOWS

whose components are treated as known body forces, solving the resulting Navier-

Stokes equation by the Newton-Raphson method. This procedure is iterated.

• Given (unh, p
n
h,σ

n
h) the approach solution of iteration n, find

(
un+1
h , pn+1

h

)
, the

solution of∫
Ω

Re
[
(un+1

h · ∇)un+1
h · vh

]
+

∫
Ω

(1− λ)∇un+1
h : ∇vh −

∫
Ω

pn+1
h ∇ · vh

=

∫
Ω

σn
h : ∇vh +

∫
Ω

f · vh

• Given un+1
h and σn

h = σn0
h , find the solution σ∗ = σ

nk+1

h of∫
Ω

σ
nk+1

h : τ h +We

∫
Ω

[
(un+1

h · ∇)σ
nk+1

h

]
: τ h +

(
φ∗∂K(σ

nk+1

h ), τ h
)

=

∫
Ω

We
[
σnk
h ∇uk+1

h +∇uk+1
h σnk

h

]
: τ h +

∫
Ω

2λD(uk+1
h ) : τ h, k ≥ 0

5.6 Numerical Results

This section is concerned with the application of the finite element method to obtain

the numerical results for non-Newtonian viscoelastic Oldroyds-B fluid flows.

By the implementation of the finite element method in our own script in FreeFem++,

we obtain the numerical solutions of the Oldroyd-B problem.

5.6.1 Validation of the code

To validate our code we consider the Oldroyd-B flow between two rigid walls where

the flow is driven by a pressure difference along x-direction. This flow is laminar and

referred as Poiseuille flows.

The velocity is uniaxial and has a parabolic profile and we suppose that
∂p

∂x
= 1. The

analytic solution for the kinematic is given by [46, 31]

u1(x, y) = y (1− y) (means µ = 0.125Pa s)

u2(x, y) = 0

p(x, y) = x+ C (C is a constant)
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Substituting the velocity in the transport equations, we obtain by simple calculations,

the components of the tensor as the functions of u1 which can be written as

σ11 = 2λWe

(
∂u1

∂y

)2

σ12 = λ

(
∂u1

∂y

)
σ22 = 0 (5.14)

We consider the fluid is confined into a domain Ω = [0, 10] × [0, 1]. The no-slip

conditions on the two rigid walls are given by u1 = 0, u2 = 0. We assume that u2 = 0

everywhere at the inlet and u1(x, y) = y (1 − y) as the exact solution. At outlet we

impose u2 = 0. The condition for stress tensor on the upstream boundary section

∂Ω− agree with the exact solution (5.14).

The problem has been solved using four grids obtained by successive refinements

dividing each triangle into four new triangles starting with a coarse mesh with 344

elements.

Figure 5.1: Different meshes used. Fom the left to right and top to botton: mesh with 344

elements, 1374 elements, 5410 elements, 22654 elements, respectively.

We consider the problem with Re = 1, We = 1 and λ = 0.1.

The Table 5.1 characterizes the mesh through the diameter h, number of elements,

degree of freedoms.
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Grid h No. of elements P2 nodes P1 nodes P1dc nodes

Grid1 0.372678 344 777 217 1032

Grid2 0.18815 1374 2925 776 4122

Grid3 0.10233 5410 11173 2882 16230

Grid4 0.0511443 22654 46013 11680 67962

Table 5.1: Characterizations of the grids

In each case, we evaluate the error of fluid velocity in H1-norm and the error of the

components of the tensor in L2-norm which are respectively defined by

erru = ‖u− uh‖H1(Ω)

and

errσij = ‖σij − σh,ij‖L2(Ω), i, j = 1, 2.

The results obtained for u and σij, i, j = 1, 2 over the different meshes are present in

the following table (Table 5.2).

Error Grid1 Grid2 Grid3 Grid4 Slope of the

log-log plot

erru 0.0016779 0.00065528 0.00034032 0.00017678 1.1279

errσ11 0.025702 0.00615 0.0015003 0.0003415 2.18775

errσ12 7.8211× 10−5 3.4432× 10−5 1.7488× 10−5 8.5971× 10−6 1.1117

errσ22 4.7276× 10−5 2.7917× 10−5 1.0495× 10−5 5.3389× 10−6 1.142

Table 5.2: Error of the velocity field and tensor components

The good convergence of results for all kinematic can be confirmed by the slope value,

which gives us the rate of convergence to the exact solution. We used the least squares

approximation to find the slope of the log-log plot of the error of the velocity and the

tensor components. The following plots show us the error curves:
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Figure 5.2: Log-log plot of the error of the velocity.
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Figure 5.3: Log-log plot of the error of the component σ11 of the tensor.
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Figure 5.4: Log-log plot of the error of the component σ12 of the tensor.
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Figure 5.5: Log-log plot of the error of the component σ22 of the tensor.

The values for the rate of convergence (the slope) which we obtained guarantees the

errors for all the variables approaches to zero as h tends to zero, which we expected

theoretically. We are in conditions to affirm that the numerical solution converges to

the exact solution. So, the algorithm is convergent and our code runs well.

The approach solution obtained with 22654 elements is illustrated graphically in the

next following figures:
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Figure 5.6: Contours of the first component of the velocity.

Figure 5.7: Contours of the second component of the velocity.

Figure 5.8: Contours of the pressure.
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Figure 5.9: Contours of the first component of the tensor.

Figure 5.10: Contours of the second component of the tensor.

Figure 5.11: Contours of the third component of the tensor.
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5.6.2 Results for a four-to-one abrupt contraction

In this subsection, we consider that the fluid flows in an abrupt contraction (or 4 : 1

planar contraction) subjected to suitable boundary conditions. This type of flow is

interesting theoretically and practically and has been studied by many authors [43],

since 1988. These problems have a lot of applications in polymer processing, especially

in extrusion and injection moulding.

We consider that the fluid is confined into a domain Ω with its boundary ∂Ω =
8⋃

k=1

∂Ωk

which is shown in figure 5.12.

W

S1
S2

Upstream
Downstream

Wall

1 2 3 4 5 6

0.2

0.4

0.6

0.8

Figure 5.12: Computational domain Ω for a 4 : 1 abrupt contraction.

This domain Ω consists of six boundaries as rigid wall denoted by ∂Ωw =
⋃

∂Ωk,

with k=1, 2, 3, 5, 6, 7, an inlet or inflow boundary at upstream section ∂Ω8 = S1,

and an outlet or outflow boundary at downstream section ∂Ω4 = S2. The fluid

enters into the domain through the upstream section S1. We consider an inflow

parabolic profile at the upstream section for the velocity field and homogeneous no-slip

conditions on the wall. To obtain the Poiseuille velocity profiles before the contraction

and at downstream, the computational domain Ω is assumed to be long enough at

upstream and downstream sections. In our referential domain, we consider the length

of upstream section is 5r1 = 2, with r1 the radius of upstream, while the length of

downstream section is taken as 10r1 = 4. The respective widths of upstream and

downstream sections are 2r1 = 0.8 and 2r2 = 0.2. Taking into account the boundary

conditions of Saramito [43], we impose the boundary conditions, for the problem,

which is adapted to our computational domain Ω.

We impose the following boundary conditions:

• Inflow boundary conditions for the velocity and the stresses at the upstream

section i.e., on ∂Ω8 = S1:
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u1 =
r2

8r2
1

y(2r1 − y) = 0.078125y (0.8− y)

u2 = 0

σ11 = 2λWe

(
∂u1

∂y

)2

σ12 = λ

(
∂u1

∂y

)
σ22 = 0

• Outflow boundary conditions at downstream section i.e., on ∂Ω4 = S2:

u1 = 0

u2 = 0

• The boundary conditions for the velocity at the wall i.e., on ∂Ωw:

u2 = 0

So, the Oldroyd-B model problem to compute the flow in an abrupt contraction can

be written as



Re [(u · ∇)u]− (1− λ)∆u +∇p = ∇ · σ + f , in Ω

∇ · u = 0, in Ω

σ +We [(u · ∇)σ] = 2λD(u) +We
[
(∇u)σ + σ(∇u)t

]
, in Ω

u1 = 0.078125y(0.8− y), on ∂Ω8 = S1

u2 = 0, on ∂Ω4 = S2

u1 = 0, u2 = 0, on ∂Ωw

σ11 = 2λWe

(
∂u1

∂y

)2

, on S1

σ12 = λ

(
∂u1

∂y

)
, on S1

σ22 = 0, on S1

(5.15)

For the numerical results, we use the exact solution of fully developed Poiseuille flow

in straight pipe as the initial condition for the tensor while the solution of the Stokes

problem is the initial condition for the velocity.
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To obtain the numerical simulations of the flow, we take λ = 0.1 and we discretize

the domain Ω on a mesh with 2066 elements where at 4405 P2 nodes for the velocity,

1170 P1 nodes for the pressure and 6198 P1dc nodes for the tensor are defined (figure

5.13).

Figure 5.13: Mesh with 2066 elements.

Like we expected at upstream and at downstram sections, where the viscous forces

are dominant, the flow is laminar. In the opening of narrower domain, we observed

a different behavior, where inertial forces are fallen. For this reason, we decide to

present a partial view of variables envolved in the problem in a neighborhood of

contraction.

Newtonian flows

The simulations were performed to Newtonian flows. We fixed We = 0 and we take

severals Reynolds numbers between 1 and 500 and compare the results. We observe

that the quantitative behavior for the kinematic is almost same (Fig. 5.14 - 5.16),

(Fig. 5.17 - 5.19), (Fig. 5.20 - 5.22) with a small increase of maximum values and

small decrease of minimum values. The pressure is constant along the y-direction and

varies linearly with x. In fact, the behavior of pressure is very similar that we observe

for the Poiseuille flows. The qualitative behavior can be observed and compared

easily through the stream function (Fig. 5.23 - 5.25). We observe that there is a

recirculation vortex in the corner. These vortex are shrinking when the Reynolds

increase. This is the effect of inertia which makes the fluid speed up to enter the

narrow part of the domain (tube), pulling the fluid out of the corner to inside the

tube and thus decreasing the vortex . To prove our description, of all tests performed

we select 3 cases with Re = 1, 100 and 500 and we present the numerical results.
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Figure 5.14: The first component of the velocity (partial view) with Re = 1.

Figure 5.15: The first component of the velocity (partial view) with Re = 100.

Figure 5.16: The first component of the velocity (partial view) with Re = 500.
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Figure 5.17: The second component of the velocity (partial view) with Re = 1.

Figure 5.18: The second component of the velocity (partial view) with Re = 100.

Figure 5.19: The second component of the velocity (partial view) with Re = 500.
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Figure 5.20: The pressure (partial view) with Re = 1.

Figure 5.21: The pressure (partial view) with Re = 100.

Figure 5.22: The pressure of the velocity (partial view) with Re = 500.
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Figure 5.23: The stream function (partial view) with Re = 1.

Figure 5.24: The stream function (partial view) with Re = 100.

Figure 5.25: The stream function (partial view) with Re = 500.
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Viscoelastic flows

The simulations were performed to viscoelastic flows. For all performed tests, we

observed that the convergence of the algorithm is influenced by the values of Reynolds

and Weissenberg, the latter being the main cause for the divergence of the algorithm.

In fact, the two re-entrant corners are one of the reason for which the problem fails

to converge if we consider the high value of Weissenberg number. This result may

be directly related to the dissipative instability of the model in the elongation flow

dominated in the contraction flow near the entrance region.

We tested various values of Reynolds to seek the limit of the Weissenberg value, for

which the algorithm converges. We observe that when we increase the Re, threshold

for We decreases. Table 5.3 shows the maximum values of Weissenberg numbers We

for respective values of Reynold numbers Re, for which the results are convergent.

Re 1 50 100 250 500

Wemax 5.13 5.08 5.03 4.86 4.60

Table 5.3: Maximum values of We (Wemax) for respective values of Re.

For all performed tests, we analyzed the behavior of the velocity, pressure and tensor.

We observed that the qualitative behaviors of the kinematic are the same for New-

tonian flows although we can observe the differences of the types of recirculantions

and their zones for the viscoelastic flows in relation to the Newtonian fluids flows

through the stream function (compare the figures (5.23 - 5.25) with figures (5.26 -

5.33). The center of circulating zone moves from the re-entrant corner to the salient

edge. We observed the elastic effects. The speeding up to along streamlines in the

center causes an elastic tension along these streamlines which exerts a pull on the

fluid directly upstream and pushes the fluid on the sides back into the corner and this

causes a recirculation zone wich the intensity and the length increase as a combined

effects between Re and We parameters.
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Figure 5.26: The stream function (partial view) with Re = 1 and We = 1.

Figure 5.27: The stream function (partial view) with Re = 1 and We = 4.6.

Figure 5.28: The stream function (partial view) with Re = 1 and We = 5.13.
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Figure 5.29: The stream function (partial view) with Re = 100 and We = 1.

Figure 5.30: The stream function (partial view) with Re = 100 and We = 4.6.

Figure 5.31: The stream function (partial view) with Re = 100 and We = 5.03.
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Figure 5.32: The stream function (partial view) with Re = 500 and We = 1.

Figure 5.33: The stream function (partial view) with Re = 500 and We = 4.6.

We observe that the big differences of the behaviors of the components of tensors

occur for σ11 and σ22. For theses components, the influence of We is notable. For a

fix value of Re, when the We increase we see the effects as to extend from the corners

into the tube and in the case of σ22 also to behind the entry of this. The next figures

show us the behavior of the components of tensor.
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Figure 5.34: The component of σ11 (partial view) with Re = 1 and We = 1.

Figure 5.35: The component of σ11 (partial view) with Re = 1 and We = 4.6.

Figure 5.36: The component of σ11 (partial view) with Re = 1 and We = 5.13.
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Figure 5.37: The component of σ12 (partial view) with Re = 1 and We = 1.

Figure 5.38: The component of σ12 (partial view) with Re = 1 and We = 4.6.

Figure 5.39: The component of σ12 (partial view) with Re = 1 and We = 5.13.
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Figure 5.40: The component of σ22 (partial view) with Re = 1 and We = 1.

Figure 5.41: The component of σ22 (partial view) with Re = 1 and We = 4.6.

Figure 5.42: The component of σ22 (partial view) with Re = 1 and We = 5.13.
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Figure 5.43: The component of σ11 (partial view) with Re = 100 and We = 1.

Figure 5.44: The component of σ11 (partial view) with Re = 100 and We = 4.6.

Figure 5.45: The component of σ11 (partial view) with Re = 100 and We = 5.03.
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Figure 5.46: The component of σ12 (partial view) with Re = 100 and We = 1.

Figure 5.47: The component of σ12 (partial view) with Re = 100 and We = 4.6.

Figure 5.48: The component of σ12 (partial view) with Re = 100 and We = 5.03.
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Figure 5.49: The component of σ22 (partial view) with Re = 100 and We = 1.

Figure 5.50: The component of σ22 (partial view) with Re = 100 and We = 4.6.

Figure 5.51: The component of σ22 (partial view) with Re = 100 and We = 5.03.
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Figure 5.52: The component of σ11 (partial view) with Re = 500 and We = 1.

Figure 5.53: The component of σ11 (partial view) with Re = 500 and We = 4.6.
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Figure 5.54: The component of σ12 (partial view) with Re = 500 and We = 1.

Figure 5.55: The component of σ12 (partial view) with Re = 500 and We = 4.6.
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Figure 5.56: The component of σ22 (partial view) with Re = 500 and We = 1.

Figure 5.57: The component of σ22 (partial view) with Re = 500 and We = 4.6.



Chapter 6

Conclusions

The main goal of this work was the mathematical and numerical study of the non-

linear system of partial differential equations that model the motion of incompressible

non-Newtonian fluids of Oldroyd-B type, in dimension 2, in case of steady flow.

We have presented results of existence and uniqueness of the solutions for both prob-

lems: the continuous and the discrete problems.

The numerical simulations to the Oldroyd-B problem were obtained computationally

by the implementation of the finite elements method (continuous for kinematic and

discontinuous for the extra stress tensor) in a script of FreeFem++

This mixed problem of elliptic-hyperbolic type was decoupled into two auxiliary prob-

lems, namely, the Navier-Stokes system and the tensorial transport problem. The al-

gorithm to solve the Oldroyd-B problem consists of alternating resolution of transport

problem and Navier-Stokes problem.

The Hood-Taylor (P2 − P1) finite elements have been used to discretized the Navier-

Stokes system and the iterative Newton-Raphson method has been applied to obtain

the numerical solution of the corresponding algebraic system. The discontinuous

Galerkin P1 finite elements were used to solve the transport equation and an iter-

ative fixed-point method type has been applied to obtain the numerical solution of

this problem. The validation of numerical methods was made by considering two-

dimensional benchmark problems. For the Navier-Stokes, we took a problem with

known exact solution and a lid-driven cavity problem.
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The approach and discrete problem of Oldroyd-B model were discussed. Based on the

numerical techniques described for both the auxiliary problems, the approximation

of the solution of the Oldroyd-B problem was obtained and the results of numerical

simulations have been presented in two-dimensional case. Numerical results have

been obtained in a four-to-one planar contraction (abrupt contraction) for different

values of Weissenberg numbers We and Reynolds numbers Re .

We observed viscoelastic behavior of the fluids by comparing the results from the plot

of the velocity, pressure and tensor for different values of Re and We. The analysis

of the viscosity and the viscoelastic effects was discussed. We have also commented

the numerical results for the vortices from the plots of the stream function. For a

fixed value of Reynolds number we found a limit for maximum Weissenberg number

for which the applied method diverge.



Appendix:

Review on some function spaces

The pair (V, d) consisting of a set V and a metric d is called a metric space. The

metric d is a single-valued, nonnegative, real function defined for all u, v ∈ V which

has the following three properties:

• d(u, v) ≥ 0;

• d(u, v) = 0 if and only if u = v;

• d(u, v) = d(v, u) (symmetry);

• d(u,w) ≤ d(u, v) + d(v, w)∀u, v, w ∈ V (triangle inequality).

Let V denotes a real vector space. A real function ‖.‖ : V → R is called a norm if

• ‖u‖ = 0 if and only if u = 0 for each u ∈ V ;

• ‖αu‖ = |α|‖u‖ for each u ∈ V and α ∈ R;

• ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for every u, v ∈ V .

In fact, norm ‖.‖ assigns a real number ‖u‖ to a vector u ∈ V . We have ‖u‖ ≥ 0 for

each u ∈ V .

A vector space equipped with a norm is called a normed space.

Every normed space (V, ‖.‖V ) is a metric space where the metric in V can be defined

as d(u, v) = ‖x− y‖V .
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A sequence {um}∞m=1 ⊂ V is said to be Cauchy sequence if for every ε > 0 there exists

a M such that ‖um − un‖ < ε for all m,n > M , i.e., the sequence satisfies

lim
n,m→∞

||um − un||V = 0

Any subset W of a normed space V is called closed if and only if every convergent

sequence of elements of W has its limit in W .

The intersection of all closed sets containing W ⊂ V is called closure of W , and we

denote by cl W .

The subset W of the normed space V is called dense in V if cl W = V .

A normed space V is called complete if each Cauchy sequence in V converges to an

element of V .

A complete normed space is said to be a Banach space.

The mapping (·, ·) : V × V → R is called an inner product or scalar product in V if

for all u, v, w ∈ V and α, β ∈ R, the following conditions are satisfied:

• (u, v) = (v, u);

• (αu+ βv, w) = α(u,w) + β(v, w);

• (u, u) ≥ 0, and (u, u) = 0⇔ u = 0.

A vector space equipped with an inner product is called an inner product space or a

pre-Hilbert space.

Every inner product space V is a normed space under the norm defined by

‖u‖V =
√

(u, u)V .

derived from the inner product. But every normed space may not be an inner product

space.

For any two elements u and v of an inner product space V we have the following

Cauchy-Schwarz inequality :

|(u, v)| ≤ ‖u‖V ‖v‖V , ∀u, v ∈ V (A-1)
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and the following parallelogram law:

‖u+ v‖2
V + ‖u− v‖2

V = 2 ‖u‖2
V + 2 ‖v‖2

V ∀u, v ∈ V. (A-2)

An inner product space V is said to be complete if and only if it is a complete metric

space under the metric derived from the norm ‖.‖V =
√

(·, ·)V .

A complete inner product space is called a Hilbert space. In fact, a Hilbert space is a

Banach space endowed with an inner product which generates the norm.

A mapping l(·) : V → R is called a linear mapping if

l(αv + βw) = αl(v) + βl(w), ∀ v, w ∈ V, ∀α, β ∈ R. (A-3)

Let V be a normed spaces. A mapping l(.) : V → R is called continuous at u0 ∈ V

if, for any sequence (un) of elements of V convergent to u0, the sequence (l(un))

converges to l(u0), i.e.,

‖un − u0‖ → 0 implies ‖l(un)− l(u0)‖ → 0. (A-4)

We simply say that l(.) is continuous, it is continuous at every u ∈ V .

The linear form l(·) is called bounded if there exists a number α > 0 such that

|l(u)| ≤ α||u||V , ∀u ∈ V (A-5)

We recall that a linear functional l(·) is continuous if and only if it is bounded.

If the mapping a(·, ·) : V × V → R satisfies the following two conditions ∀α, β ∈ R,

∀u, v, w ∈ V :

• a(αv + βw, u) = αa(v, u) + βa(w, u),

• a(u, αv + βw) = αa(u, v) + βa(u,w),

then a(·, ·) is called bilinear.
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Differential Operators, vector and tensor identities

and some notations

Kronecker delta

In the representation of mathematical and engineering quantities we frequently use

the Kronecker delta which is defined as follows:

δij = δji =

 1 if i = j,

0 if i 6= j
(A-6)

The ∇ Operator: Gradient, Divergence, Laplacian and some

identities

A vector of the form (α1, · · · , αn) is called a multi-index of order |α| = α1 + · · ·+αn,

where each component αi is nonnegative integer.

Given a multi-index α, we define

Dαu(x) :=
∂|α|u(x)

∂xα1
1 · · · ∂xαn

n

= ∂xα1
1 · · · ∂xαn

n u.

It is usual to think of ∇ as a vector operator defined by

[
∂

∂xl

]
l=1,...,3

=


∂
∂x1

∂
∂x2

∂
∂x3

 .
If u : Ω→ R be a scalar function which is differentiable in Ω, then the gradient vector

of u is defined by

∇u =

[
∂u

∂xi

]
i=1,...,3

=


∂u
∂x1

∂u
∂x2

∂u
∂x3

 . (A-7)

The component of gradient in a direction is the rate of change of u with respect to

distance along that direction.
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If u : Ω→ R3 is a differentiable vector field then the gradient of u is defined by

∇u =

[
∂ui
∂xj

]
i,j=1,...,3

=



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


.

The gradient of a vector field u is in fact a tensor field.

Let u : Ω→ R3 be a vector field which is differentiable in Ω. The divergence of u is

the scalar product of ∇ and u which is defined by

∇ · u =
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

=
3∑
i=1

∂ui
∂xi

.

The divergence is a vector operator which produces a scalar value at any point in a

vector field.

If σ : Ω → R3×3 is a differentiable tensor field, then the divergence of σ is a vector

field defined by

∇ · σ =



∂σ11

∂x1

+
∂σ12

∂x2

+
∂σ13

∂x3

∂σ21

∂x1

+
∂σ22

∂x2

+
∂σ23

∂x3

∂σ31

∂x1

+
∂σ32

∂x2

+
∂σ33

∂x3


=

[
3∑
j=1

∂σij
∂xj

]
i=1,2,3

(A-8)

i.e.,

(∇ · σ)i =
n∑
j=1

∂jσij, i = 1, 2, 3 (A-9)

The Laplacian operator is a second order differential operator defined by

∇2 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

=
3∑
i=1

∂2ui
∂x2

i

.
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This is equal to the divergence of the gradient. If u : Ω→ R is a twice -differentiable

real-valued function then the Laplacian of u is defined by

∆u = ∇ · (∇u) =
3∑
j=1

∂2u

∂x2
j

. (A-10)

The Laplacian can also operate on a vector field. The Laplacian of a vector field u is

defined by

∆u =
[

∆u1 ∆u2 ∆u3

]t
=



3∑
j=1

∂2u1

∂x2
1

3∑
j=1

∂2u2

∂x2
2

3∑
j=1

∂2u3

∂x2
3


=

[
3∑
j=1

∂2ui
∂x2

j

]
i=1,2,3

(A-11)

The derivative of v in the direction of a unit vector u is (u · ∇)v. Here

u · ∇ = u1
∂

∂x1

+ u2
∂

∂x2

+ u3
∂

∂x3

For any scalar g and any vector field u,

∇ · (gu) = g∇ · u +∇g · u (A-12)

The dyadic product of two tensors is defined as

σ : T =
3∑
i=1

3∑
j=1

σijTij (A-13)

So,

∇u : ∇v =
3∑
i=1

3∑
j=1

uijvij (A-14)

Equalities

If u be a vector field function on Ω such that ∇ · u = 0, then

2∇·D (u) = 2∇·
[

1

2

(
∇u + (∇u)t

)]
= ∇·(∇u)+∇·(∇u)t = ∆u+∇·(∇u)t. (A-15)
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But we have

[
∇ · (∇u)t

]
i

=
3∑
j=1

∂

∂xj

∂uj
∂xi

=
3∑
j=1

∂

∂xi

∂uj
∂xj

=
∂

∂xi

3∑
j=1

∂uj
∂xj

=
[
∇ (∇ · u)t

]
i

(A-16)

So, ∇ · (∇u)t = ∇ (∇ · u).

Since ∇ · u = 0, from (A− 15), we have

2∇ ·D (u) = 2∇ ·
[

1

2

(
∇u + (∇u)t

)]
= ∆u +∇ (∇ · u) = ∆u. (A-17)
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[20] C. Guillopé and J. C. Saut, Existence and stability of steady flows of weakly

viscoelastic fluids, Proc. Royal Soc. Edinburgh, 119 A, pp. 137-158, (1991).

[21] A. S. Gupta and K. R. Rajagopal, An exact solution for the flow of a non-

Newtonian fluid past an infinite porous plate, Mechanica, 19, 158-160, (1984).

[22] J. Hecht, FreeFem++, Version 3.23, 2012, http://www.freefem.org/ff++.

[23] J. Hron, Numerical Simulation of Visco-Elastic Fluids, In: WDS’ 97, Freiburg,

(1997).

[24] C. Johnson, Numerical Solutions of Partial Differential Equations by the Finite

Element Method, Cambridge University Press (1987).

[25] P. N. Kaloni and K. R. Rajagopal, Some remarks on boundary conditions for flow

of fluids of the differential type, in Continuum Mechanics and its Applications,

Hemisphere Press, New York, NY (1989).

[26] S. D. Kim, Y. H. Lee and B. C. Shin, Newton’s Method for the Navier-Stokes

Equations with Finite-Element Initial Guess of Stokes Equation, Computers and

Mathematics with applications, 51, 805-816 (2006).

[27] P. Lesaint and P. A. Raviart, On a finite element method for solving the neutron

transport equation, C. Boor (editor), Mathematical Aspects of Finite Elements

in Partial Differential Equations, 89-123, New York, Academic press, (1974).

[28] B. Q. Li, Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer,

Springer-Verlag (2006).

[29] B. Lucquin and O. Pironneau, Introduction au Calcul Scientifique, Masson

(1996).

[30] K. Najib and D. Sandri, On a decoupled algorithm for solving a finite element

problem for the approximation of viscoelastic fluid flow, Numer. Math. 72, 223-

238, (1993).



132 BIBLIOGRAPHY

[31] Y. Nakayama and R. F. Boucher, Introduction to Fluid Mechanics, Butterworth-

Heinemann (2000).
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