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RESUMO 
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Modelação de taxas de captura e mortalidade de tintureira capturada 

pela frota Portuguesa de palangre de superfície no Oceano Atlântico 
 
 
A tintureira (Prionace glauca) é um tubarão pelágico relativamente abundante e 
frequentemente capturado como espécie acessória em pescarias de palangre de 
superfície. Apesar dos parâmetros biológicos terem já sido relativamente bem 
estudados, os impactos das pescarias nestas populações são ainda bastante incertos. 
Assim, o presente estudo pretendeu criar e apresentar modelos para melhor avaliar os 
impactos da pescaria Portuguesa de palangre de superfície dirigida ao espadarte nas 
populações de tintureira. Especificamente, o trabalho apresenta modelos relativos à 
mortalidade durante a operação de pesca utilizando modelos binomiais, recorrendo a 
abordagens com modelos lineares generalizados e equações de estimação generalizadas; 
e modelos relativos às taxas de captura usando modelos lineares generalizados e 
modelos mistos generalizados. Os resultados apresentados podem agora ser usados para 
prever as taxas de captura e de mortalidade da tintureira em diferentes cenários de 
pesca, contribuindo assim para uma melhor compreensão dos impactos desta pescaria 
nesta espécie. 
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Modelling catch and mortality rates of blue shark captured by the 

Portuguese longline fleet in the Atlantic Ocean 
 
 
The blue shark (Prionace glauca) is a relatively abundant and wide ranging pelagic 
shark, commonly captured as bycatch in pelagic longline fisheries. While it is a species 
with relatively known biological parameters, the impacts of the fisheries in their 
populations is still largely unknown. Therefore, the present study aimed to create and 
present models for understanding the impacts of the Portuguese pelagic longline fishery 
targeting swordfish, in this shark species. Specifically, the work focused on modeling 
two different fisheries aspects, namely the at-haulback mortality using binomial models 
with generalized linear models and generalized estimation equations; and the catch rates 
using generalized linear models and generalized mixed models. The results presented 
can now be used to predict the catch and mortality rates under various fishing scenarios, 
and contribute to a better understanding of the impacts of the fishery in this shark 
species. 
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CHAPTER I.  GENERAL INTRODUCTION 

 

I.1. General introduction to the Chondrichthyan fishes 

Chondrichthyan fishes (sharks, rays, skates and chimeras) are an old animal group 

that first appeared during the Devonian period, with the earliest evidence in the fossil 

record dating from 409-363 million years (Ma) ago (Compagno, 2005). They survived 

several major mass extinction episodes, including, for example, the Cretaceous–

Paleogene mass extinction event 65.5 Ma that caused the extinction of the dinosaurs. 

The modern Chondrichthyans living today in the world Oceans derived from the forms 

that were present during the Mesozoic period, 245-65 Ma (Grogan and Lund, 2004). 

Chondrichthyans are characterized by an internal skeleton formed by flexible 

cartilage, without the formation of true bone in their skeletons, fins or scales. Other 

characteristic that further separate the Chondrichthyans from other fishes are the 

presence of claspers in males (sexual organs used to inseminate females) that are 

formed by the mineralization of the endoskeleton tissue along the pelvic fins (Grogan 

and Lund, 2004). It is accepted that the class Chondrichthyes is a monophyletic group 

(Compagno et al., 2005) that is divided into two sister taxa: the subclass Elasmobranchii 

that groups sharks, rays and skates and the subclass Holocephali that groups the 

chimaeras (Table I.1). Within this group, the Elasmobranchs are recognized from their 

multiple (5 to 7) paired gill openings on the sides of the head, while the Holocephalans 

have a soft gill cover with just a single opening on each side of the head that protects 

the 4 pairs of gill openings (Compagno et al., 2005). There are currently circa 1180 

Chondrichthyan species described worldwide (White and Last, 2012), including 

approximately 480 species of sharks, 650 batoids and 50 chimaeras. 

Chondrichthyan fishes occupy a wide range of habitat types, including freshwater 

rivers and lake systems, inshore estuaries and lagoons, coastal waters, the open sea, and 

the deep ocean. Although sharks are generally thought of being wide-ranging, only a 

few (including some commercially important species) make oceanic migrations. 

Overall, some 5% of Chondrichthyan species are oceanic (found offshore and migrating 

across ocean basins), 50% occur in shelf waters down to 200 m depth, 35% are found in 
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deeper waters from 200 to 2000 m, 5% occur in fresh water, and 5% have been recorded 

in several of these habitats (Camhi et al., 1998). 

Table I.1: Extant orders of the class Chondrichthyes, according to Compagno (2001) 
and Compagno et al. (2005). 

Subclass Superorder Order Common name 
Holocephali 

 
Chimaeriformes Chimaeras 

Elasmobranchii 

Squalomorphii 

Hexanchiformes Cow and frilled sharks 
Squaliformes Dogfish sharks 
Squatiniformes Angel sharks 
Pristiophoriformes Saw sharks 
Rajiformes Batoids 

Galeomorphii 

Heterodontiformes Bullhead sharks 
Orectolobiformes Carpet sharks 
Lamniformes Mackerel sharks 
Carcharhiniformes Ground sharks 

 

 

I.2. The exploitation of Chondrichthyans with emphasis on the pelagic sharks 

In recent years elasmobranch fishes have become relatively important fisheries 

resources, with a substantial increase in fishing effort worldwide (Vannuccini, 1999; 

Barker and Schluessel, 2005). However, elasmobranchs have not traditionally been 

highly priced products, with the exception of the fins of some species that are marketed 

at very high prices in oriental markets for shark fin soup (Bonfil, 1994; Clarke et al., 

2007). The exploitation of elasmobranch resources has been attributed in part to 

fisheries specifically targeting elasmobranchs (e.g. Campbell et al., 1992; Castillo-

Geniz et al., 1998; Francis, 1998; Hurley, 1998; McVean et al., 2006; Cartamil et al., 

2011) but perhaps more importantly to the bycatch of fisheries targeting other species 

(e.g. Stevens, 1992; Buencuerpo et al., 1998; McKinnell and Seki, 1998; Francis et al., 

2001; Beerkircher et al., 2003; Coelho et al., 2003; Megalofonou et al., 2005; Coelho 

and Erzini, 2008; Belcher and Jennings, 2011; Coelho et al., 2012a). Game fishing also 

has some impact on elasmobranch fishes, especially on the large pelagic species (e.g. 

Stevens, 1984; Pepperell, 1992; Campana et al., 2006, Lynch et al., 2010). 
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Even though elasmobranchs are currently impacted by commercial and 

recreational fisheries, there is still limited information about these species life cycles, 

biological parameters, movement patterns and habitat utilization, and in the general 

impact of fisheries in their populations. Elasmobranch fishes have typically K-strategy 

life cycles, characterized by slow growth rates and reduced progeny, with maturity 

occurring late in their life cycle (Smith et al., 1998; Stevens et al., 2000; Cortés, 2000; 

Cortés, 2007). This low fecundity and relatively high survival rate of newborns suggests 

that there is a strong relationship between the number of mature females in the 

population and the new recruits for the next cohort, meaning that the success of the 

future generation is mainly dependant on the present mature population abundance 

(Ellis et al., 2005). 

While the total worldwide marine fishes landings seem to have reached a plateau 

in the late 1980’s, elasmobranch catches increased progressively since the 1950’s until 

the early 2000’s, followed by a decreasing trend for the more recent years (Figure I.1). 

However, and even though the marine fish catches seem to have remained relatively 

stable since the late 1980’s, the fisheries have shifted in these last decades from 

catching mainly long lived high trophic level fishes, towards catching more short lived, 

low trophic level invertebrates and small planktivorous pelagic fishes (Pauly et al., 

1998; Pauly and Palomares, 2005). This effect, originally called “fishing down the 

marine food web” by Pauly et al. (1998) shows that the marine ecosystems top 

predators (such as the sharks) are the first ones to suffer from overfishing and 

population declines. Indeed, most elasmobranchs are predators at, or near the top of the 

marine food webs (Cortés, 1999), and are extremely important for the entire ecosystems 

balance, by regulating not only their direct main preys, but also second and third degree 

non-prey species through the trophic linkages (Schindler et al., 2002). The effects of the 

removal of such predators from the marine ecosystems are difficult to foresee, but may 

be ecologically and economically significant, and may persist over long time periods 

(Stevens et al., 2000). 
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Figure I.1: Global capture of marine fishes (top) and elasmobranchs (bottom) from 
1950 to 2010. Data from FAO FIGIS data collection (FAO, 2012) 

 

Up until the 1980’s, elasmobranch fisheries were generally unimportant small 

fisheries, with generally a low commercial value. Traditionally, these elasmobranch 

fisheries of the past were multi-specific fisheries that caught several species of 

elasmobranchs depending on the region and season of the year. There was little interest 

in these fisheries, mainly due to their relatively small scale and low commercial value. 

Bonfil (1994) reported that cartilaginous fishes were a minor group which contributed 

with an average of 0.8% of the total world fishery landings between 1947 and 1985, 

while bony fishes such as clupeoids, gadoids and scombroids, accounted for 24.6%, 

13.9% and 6.5%, respectively. In the last decades, however, the declining catches per 

unit effort (CPUE) and rising prices of traditional food fishes, along with the growing 

market for shark fins for the oriental markets, have made the previously underutilized 

elasmobranchs increasingly important resources (Castro et al., 1999). 

The history of elasmobranch fisheries worldwide indicates, however, that these 

resources are usually not sustainable. Most elasmobranch targeted fisheries have been 

characterized by “boom and burst” scenarios, where an initial rapid increase of the 

exploitation and catches is followed by a rapid decline in catch rates and eventually a 

complete collapse of the fishery (Stevens et al., 2000). Bonfil (1994) and Shotton 
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(1999) provided reviews of world elasmobranch fisheries and included examples of 

situations where commercial catches have been declining, such as in the northeast 

Atlantic and Japan, and examples of situations of high concern such as in India. Baum 

et al. (2003) stated that the northwest populations of large pelagic sharks including the 

scalloped hammerhead, Sphyrna lewini, and the threshers Alopias vulpinus and A. 

superciliosus, have declined by more than 75% over the last 15 years, and even though 

the values presented in Baum et al. (2003) seem to have been severely overestimated 

(Burgess et al., 2005), there is consensus that there are currently causes for concern. 

However, and even though overexploitation and population collapses is the most 

common scenario in elasmobranch fisheries, Walker (1998) demonstrated that 

elasmobranch stocks can be harvested sustainably and provide for stable fisheries when 

carefully managed. Some species such as the tope shark, Galeorhinus galeus, the 

sandbar shark, Carcharhinus plumbeus, the great white shark, Carcharodon carcharias 

and several species of dogfishes (order Squaliformes) have very low productivity and 

cannot withstand high levels of fishing, whereas other species such as the gummy shark, 

Mustelus antarcticus, the Atlantic sharpnose shark, Rhizoprionodon terraenovae, the 

bonnethead, Sphyrna tiburo and the blue shark, Prionace glauca have higher 

productivity and can support higher levels of fishing mortality (Walker, 1998). 

Within the industrial oceanic fisheries such as longlines, driftnets and purse 

seines, the pelagic longlines are responsible for most of the captures of oceanic sharks at 

a global level, which are usually captured during the fishing operations that target 

swordfish and tunas (Aires-da-Silva et al., 2008). Several pelagic shark species are 

frequently caught in those oceanic longline fisheries, but the two most important and 

abundant are the blue shark, Prionace glauca, and the shortfin mako, Isurus 

oxyrhynchus. In the case of the Portuguese fishery, those two species together can 

account for more than 50% of the total oceanic longline fishery catch, and can represent 

more than 95% of the total elasmobranch catch (Coelho et al., 2012a). 

 

I.3. The studied species, blue shark (Prionace glauca) 

The blue shark (Prionace glauca) (Figure I.2) is one of the most wide ranging of 

all sharks, found throughout tropical and temperate seas from latitudes of about 60°N to 
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50°S (Last and Stevens, 2009) (Figure I.3). It is a pelagic species mainly distributed 

from the sea surface to depths of about 350 m, even though deeper dives of up to 1000m 

have been recorded (Campana, et al., 2011). The blue shark is an oceanic species 

capable of large scale migrations (Queiroz et al., 2005; Silva et al., 2010; Campana et 

al., 2011), but it can also occasionally occur closer to inshore waters, especially in areas 

where the continental shelf is narrow (Last and Stevens, 2009). 

 

Figure I.2: The blue shark, Prionace glauca (Drawing by: João T. Tavares/Gobius). 

 

 

Figure I.3: Global distribution map for the blue shark, Prionace glauca. The color 
scale represents the relative probabilities of occurrence, with red and yellow 
representing higher and lower probabilities of occurrence, respectively. Map 
generated from Fishbase (Froese and Pauly, 2012) using AquaMaps, a presence-only 
species distribution model (Ready et al., 2010). 

 

The blue shark reaches a maximum size of about 380 cm total length (TL), and 

size at 50% maturity for the Atlantic has been estimated at 218 cm TL for males and 
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221 cm TL for females (Pratt, 1979). The blue shark is a placental viviparous shark, and 

shows a relatively high fecundity within the elasmobranchs, producing an average of 35 

pups per litter (Zhu et al., 2011), with the maximum litter size recorded being 135 pups, 

after a gestation period of 9-12 months (Compagno, 1984; Castro and Mejuto, 1995; 

Snelson et al., 2008). The pups are born at 35-50 cm TL, and the reproductive cycle has 

been reported as seasonal in most areas, with the young being born usually in the spring 

and summer (Pratt, 1979; Stevens, 1984; Nakano, 1994; Hazin et al., 1994). Age and 

growth studies have suggested that longevity is of about 20 years, with the males 

maturing at 4-6 and females at 5-7 years of age (Stevens, 1975; Cailliet et al., 1983; 

Nakano, 1994; Skomal and Natanson, 2003; Lessa et al., 2004; Blanco-Parra et al., 

2008; Megalofonou et al., 2009a). The diet of the blue shark consists mainly of small 

pelagic fishes and cephalopods, particularly squid (Vaske Jr. et al., 2009; Markaida and 

Sosa-Nishizaki, 2010; Preti et al., 2012). However, invertebrates such as pelagic 

crustaceans, small sharks, and seabirds have also been reported to be taken as food 

(Compagno, 1984). 

Blue sharks are a highly migratory oceanic species, with complex movement 

patterns and spatial structure probably related to the reproduction cycles and prey 

distribution (Montealegre-Quijano and Vooren, 2010; Tavares et al., 2012). Some 

tagging studies have shown extensive movements of blue sharks in the Atlantic, with 

numerous trans-Atlantic migrations probably accomplished by using the major oceanic 

current systems (Stevens, 1976; Stevens 1990; Queiroz et al., 2005; Silva et al., 2010; 

Campana et al., 2011). At least in the north Atlantic, data on the distribution, 

movements and reproductive behavior seems to suggest a complex reproductive cycle, 

involving major oceanic migrations associated with mating areas in the north-western 

Atlantic and pupping areas in the north-eastern Atlantic (Pratt, 1979; Stevens, 1990). 

The blue shark is possibly the most abundant of all pelagic shark species, and 

even though it can be captured by a variety of fishing gears, most captures take place as 

bycatch in pelagic longlines targeting tunas and swordfish (Aires-da-Silva et al., 2008; 

Stevens, 2009). In the Atlantic Ocean, the management of the oceanic tuna and tuna-like 

species (including pelagic sharks) is a mandate of ICCAT, the International 

Commission for the Conservation of Atlantic Tunas. ICCAT maintains the catch records 

from those fisheries (Figure I.4) and carries out stock assessments and other research 

initiatives for determining their vulnerability status. 
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Figure I.4: Nominal catches of all pelagic shark species by all oceanic fleets in the 
Atlantic Ocean (above), blue sharks captured by all fleets (center) and blue shark 
captured by the Portuguese fleet (below). Data from ICCAT Task1 (nominal catch 
information) database (ICCAT, 2012a). 

 

Within the ICCAT scientific work, an Ecological Risk Assessment (ERA) was 

carried out for priority species of pelagic sharks in the Atlantic in 2010 (Cortés et al., 

2010), with that analysis currently being updated with more recent information (Cortés 

et al., 2012). With both analyses it was demonstrated that most pelagic sharks have 

exceptionally limited biological productivity and, as such, can be overfished even at 

very low levels of fishing mortality, with the blue shark in particular shown to have an 

intermediate vulnerability. More recently, and for the Indian Ocean (managed by IOTC, 

the Indian Ocean Tuna Commission), an ERA analysis was also conducted for pelagic 

and some coastal shark species (Murua et al., 2012) and similar results were obtained 

for the blue shark, also characterized for having a relatively higher productivity but also 

a high susceptibility to longline fisheries, making it a species with an overall 
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intermediate level of vulnerability. The last blue shark stock assessment for the Atlantic 

Ocean was carried out by ICCAT in 2008 (ICCAT, 2009), and although a high level of 

uncertainty was reported in the models, the results showed that the current biomass was 

believed to be above the biomass that would support Maximum Sustainable Yield 

(MSY), and the harvest levels were believed to be below the Maximum Fishing 

Mortality (F) at MSY. 

 

I.4. Challenges in modeling Chondrichthyans bycatch 

The main goal of fisheries science and stock assessments are to inform decision 

makers on the potential consequences of different management actions, using the best 

available scientific information and data (Ludwig et al., 1993; Hilborn and Walters, 

1992; McAllister et al., 1999; Quinn and Deriso 1999; Hilborn, 2006). The increasing 

concerns on the vulnerability of elasmobranch species to fisheries has lead, in recent 

years, to an increased interest on assessing the conservation status and carrying out 

stock assessments for those populations (McAllister et al., 2008). In general and when 

compared to other fishes, the current available information for assessing the status of 

elasmobranch populations is usually very poor, and as such most elasmobranchs are 

today in what is called data-poor situations. This is a situation characterized by little 

available information in terms of their biology (e.g. age and growth, reproduction, 

ecology, migratory movements), but also in terms of reliable time-series of their 

historical abundance and fisheries catches. 

One commonly used analytical method that has been applied to some shark 

populations are demographic methods, which are useful particularly because they rely 

primarily on biological aspects (Cortés, 2002; Mollet and Cailliet, 2002), rather than on 

the historical catches or indexes of abundance. The inputs required are basic population 

dynamics parameters, such as the rate of survivorship at each age/stage, the duration of 

each life stage (in case of stage-based approaches), and the fecundity or number of 

newly born offspring produced per female at each age/stage. One important limitation 

on those methods is that they assume that there is no density-dependence, and that the 

estimated parameters are those of theoretical populations under stable conditions. 

Typical approaches for studying species demography include life table analysis (e.g. 
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Cailliet, 1992; Cortés, 1995) and matrix algebra analysis (e.g. Aires-da-Silva and 

Gallucci, 2007; Smith et al., 2008). The most important output of those methods for 

fisheries management is the estimation of r, the intrinsic rate of population increase 

under a stable condition and assuming density-independence, as this parameter provides 

an indication of the population resilience to exploitation. 

For more elaborate and data-intensive stock assessment methods, one common 

approach used for some shark species are surplus production methods (e.g. shortfin 

mako assessment carried out by ICCAT, 2012b), that uses information from total 

catches and relative indexes of abundance of the stocks over time. Ideally, these indexes 

of abundance should be based on fishery-independent datasets, collected for example 

during scientific surveys using statistically adequate protocols (e.g. random sampling 

over predetermined strata such as area, season, year, etc). However, these type of data 

are very difficult to obtain and costly in the pelagic realm, as the sampling collection 

would have to occur in the high seas and cover very wide geographical areas. Therefore, 

and particularly when dealing with pelagic bycatch species such as sharks, the data 

available is usually based on fishery-dependent datasets, collected by commercial 

fishing vessels while operating during their normal fishing operations. Because of this, 

for calculating time series with the relative indexes of abundance useful for stock 

assessment, it is first necessary to adjust the data for the impacts of factors other than 

the changing abundances of the species over time. There are several methods for 

achieving this, but a recent common approach is to use statistical models such as 

Generalized Linear Models (GLM) to build the time series of the species abundance 

over time that only reflects the changes in the abundance, and where other effects 

inherent to the fishery-dependence itself have been removed. A good revision on the use 

of GLM for standardizing fishery-dependant datasets for stock assessment purposes was 

presented by Maunder and Punt (2004). For addressing the lack of independence in the 

data, alternative approaches such as Generalized Linear Mixed Models (GLMM) that 

use random effects on some variables allowing the introduction of variability 

(McCulloch and Searle, 2001; Bolker et al., 2009), and Generalized Estimating 

Equations (GEE) that introduce a dependence structure in the data (Zeger and Liang, 

1986; Zeger et al., 1988), can be used. 

Another potential issue and challenge when modeling data from shark populations 

is that the datasets of bycatch species often have some (sometimes many) fishing sets 
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with zero catches. Those represent the fishing sets that existed (have an associated 

effort), but resulted in zero catches for the species of concern, and this poses a special 

mathematical problem in terms of modeling. For example, one possible and common 

way of modeling catch rate data is to use GLM with a log link and some continuous 

distribution (e.g. Gaussian, Gamma), but in datasets with zeros adjustments need to be 

made for accommodating those observations, given that the log of zero is undefined. 

Possible solutions for those observations have ranged from simple solutions like adding 

a small constant to the observed data, to more complex approaches like zero-inflated 

models. Adding a small constant to the data was a common approach in the past, but as 

mentioned by Campbell (2004) the value of the constant to be added can be somewhat 

arbitrary and that constitutes a problem as bias are introduced in the analysis. Still, 

when the proportion of zeros in the datasets are low (<5-10% of the data), this approach 

is still commonly used in fisheries science. Besides this strategy, Maunder and Punt 

(2004) summarized other three classes of methods that can handle zero observations, 

specified as: 1) statistical distributions that allow for zero observations (e.g. Poisson, 

Negative Binomial, Tweedie); 2) methods that inflate the expected numbers of zeros 

(zero-inflated models); and 3) the delta-lognormal approach (Lo et al., 1992) that 

combines two separate models, usually one binomial model for modeling the proportion 

of positives and one continuous distribution model for modeling the predicted values 

conditional to the positive observations. 

 

I.5. General objectives of the study with a note on the dissertation style 

Given the general lack of information on the fisheries of the blue shark captured 

as bycatch in pelagic longline fisheries, and the increasingly importance of this species 

as a marine fisheries resource, there was a need to carry out a study focusing this 

species and its impacts in pelagic longline fisheries. The specific objectives of the 

present study were to: 

1) Provide a general introduction to the Chondrichthyan fishes, their biology and 

susceptibility to fishing mortality, with a particular emphasis on the oceanic sharks and 

especially the blue shark (Chapter I); 
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2) Model the hooking mortality of the blue shark captured in the Portuguese 

longline fishery in the Atlantic Ocean (Chapter II); 

3) Model the catch rates of the blue shark captured in the Portuguese longline 

fishery in the South Atlantic Ocean (Chapter III); 

Each of the following chapters (specifically chapters II and III) of this thesis has 

been written in a paper-style format, suitable and appropriate to be published in a 

scientific journal. Each of those chapters constitutes a complete study and can be read 

independently of the others. At the beginning of each chapter information regarding that 

particular chapter publication status is given. Tables and figures appear in the text inside 

each chapter, but all acknowledgements have been compiled at the beginning of the 

thesis and all references have been compiled in a final section. A final Annex section is 

provided with a compilation of the R-language code that was produced and used in this 

thesis. 
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CHAPTER II.  MODELING AT-HAULBACK MORTALITY OF BLUE SHARKS CAPTURED 

IN A PELAGIC LONGLINE FISHERY IN THE ATLANTIC OCEAN.1 

 

II.1. Introduction 

In the Atlantic Ocean several pelagic shark species are commonly bycatch on 

pelagic longline fisheries (e.g. Buencuerpo et al., 1998; Petersen et al., 2009; 

Simpfendorfer et al., 2002) but still, information on their life history, population 

parameters and the effects of fisheries on these populations is limited. Generally, 

elasmobranchs have K-strategy life cycles, characterized by slow growth rates and long 

lives, and reduced reproductive potential with few offspring and late maturity. The 

natural mortality rates are usually low, and increased fishing mortality may have severe 

consequences on these populations, with population declines occurring even at 

relatively low levels of fishing mortality (Smith et al., 1998; Stevens et al., 2000). Of 

the several elasmobranch species caught in surface pelagic longline fisheries, the blue 

shark, Prionace glauca, is the most frequently caught species (e.g. Coelho et al., 

2012a). 

Previous studies have focused on elasmobranch mortality during fishing 

operations, but most were carried out for coastal species caught in trawl fisheries. Those 

include the studies by Mandelman and Farrington (2007) for the spurdog (Squalus 

acanthias) and Rodríguez-Cabello et al. (2005) for the small-spotted catshark 

(Scyliorhinus canicula). For pelagic elasmobranchs caught in pelagic fisheries in the 

NW Atlantic Ocean, Campana et al. (2009) analyzed blue sharks captured by the 

Canadian fleet and studied both the short term mortality (recorded at-haulback) and the 

longer term mortality (recorded with satellite telemetry). Also for the NW Atlantic, Diaz 

and Serafy (2005) worked with data from the U.S. pelagic fishery observer program and 

analyzed factors affecting the live release of blue sharks. 

Knowledge on the at-haulback mortality can be used to evaluate conservation and 

management measures that include the prohibition to retain particular vulnerable 

                                                           
1
 Based on a published manuscript: Coelho, R., Infante, P. & Santos, M.N. 2013. Application of 

Generalized Linear Models and Generalized Estimation Equations to model at-haulback mortality of blue 
sharks captured in a pelagic longline fishery in the Atlantic Ocean. Fisheries Research, 145: 66-75. 
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species, such as those recently implemented by some tuna Regional Fisheries 

Management Organizations (tRFMOs). In particular and for the Atlantic Ocean, the 

International Commission for the Conservation of Atlantic Tunas (ICCAT) has recently 

implemented mandatory discards for the bigeye thresher (ICCAT Rec. 09-07), the 

oceanic whitetip (ICCAT Rec. 10-07), hammerheads (ICCAT Rec. 10-08) and silky 

sharks (ICCAT Rec. 11-08). However, important parameters, such as the at-haulback 

fishing mortality (recorded at time of fishing gear retrieval), remain largely unknown 

and therefore the efficiency of such measures also remains unknown. Even considering 

that all specimens of these particular species are now being discarded, fishing mortality 

is still occurring due to at-haulback mortality, as part of the catch is already dead at time 

of fishing gear retrieval and is therefore being discarded dead. 

At-haulback mortality studies are also important as they can be incorporated into 

stock assessments, such as the study by Cortés et al. (2010), which used an ecological 

risk assessment analysis for eleven species of elasmobranchs captured in pelagic 

longlines in the Atlantic Ocean. With this analysis, both the susceptibility and the 

productivity of each species are analyzed in order to rank and compare their 

vulnerability to the fishery. One of the parameters that can be included in the 

susceptibility component is the probability of survival after capture, which can in part 

be inferred from the mortality at-haulback. 

This study had two main objectives: 

1) to compare the use of Generalized Linear Models (GLM) and Generalized 

Estimation Equations (GEE) for predicting the at-haulback mortality of blue sharks 

captured in the Portuguese pelagic longline fishery in the Atlantic Ocean targeting 

swordfish and, 

2) to identify variables that are significant and influence the blue shark at-

haulback mortality rates. 

  



CHAPTER II  – MODELING BLUE SHARK AT-HAULBACK MORTALITY  

15 
 

II.2. Material and Methods 

II.2.1. Data collection 

Data for this study was collected by fishery observers from the Portuguese 

Institute for Sea and Atmospheric Research (IPMA, I.P.) that were placed onboard 

Portuguese longliners targeting swordfish along the Atlantic Ocean. Data was collected 

between August 2008 and December 2011. During that period, information from a total 

of 762 longline sets corresponding to 1,005,486 hooks was collected. The study covered 

a wide geographical area (from both hemispheres) of the Atlantic Ocean (Figure II.1). 

 

Figure II.1: Location of the longline fishing sets analyzed in this study along the 
Atlantic Ocean. The scale bar is represented in nautical miles (NM). 

 

For every specimen that was caught, onboard fishery observers recorded the 

species, specimen size (FL, fork length measured to the nearest lower cm), sex, at-

haulback condition (alive or dead at time of fishing gear retrieval), fate (retained or 

discarded), and the condition if discarded (alive or dead at time of discarding). For each 
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longline set carried out some additional information was recorded, including date, 

geographic location (coordinates: latitude and longitude), number of hooks deployed in 

the set, and branch line material used (monofilament or wire). Additional variables 

relative to the fishing sets that were calculated a posteriori included the Sea Surface 

Temperature (SST), which was interpolated from satellite data using the known date 

and location of each fishing set. The algorithm used to interpolate SST data followed 

the methods described by Kilpatrick et al. (2001), and was applied using the Marine 

Geospatial Ecology Tools (MGET) developed by Roberts et al. (2010). 

 

II.2.2. Preliminary data analysis 

The length frequency distribution of male and female blue sharks captured was 

analyzed, and compared with a 2-sample Kolmogorov–Smirnov test and a Mann 

Whitney rank sum test. Those non-parametric tests were chosen after calculating the 

skewness and kurtosis coefficients for the data, and confirming that the data was non-

normal with a Lilliefors test. The proportions of dead and alive blue sharks were 

calculated for each level of each categorical covariate (trip, sex, year, quarter, vessel, 

branch line material), and the differences in the proportions were compared with 

contingency tables and Chi-square statistics (using Yates’ continuity correction in the 

cases of 2x2 tables). For this preliminary analysis, the continuous variables FL, latitude, 

longitude and SST were categorized by their quartiles. 

 

II.2.3. Statistical Modeling 

Generalized Linear Models (GLM) and Generalized Estimation Equations (GEE) 

were used to model blue shark at-haulback mortality, and compare the odds of a shark 

being dead at-haulback given the various variables considered. The response variable 

was the condition of the specimens at time of haulback (Yi: binominal variable, i.e., 

dead or alive), and for this study we considered that the event occurred if the shark died 

during the fishing operation. Therefore, the response variable was coded with 1 for 

sharks dead at-haulback and coded with 0 for sharks alive at-haulback. 
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Each captured shark (Yi) follows a Bernoulli distribution with pi (probability of 

success versus dying at-haulback = πi), and can be specified as: 

��~�(1, ��) 

With the expected value and the variance defined by: 


(��) = �� 

�
�(��) = �� × (1 − ��) 

The relationship (link function) between the mean value of Yi and the model 

covariates considered for this model was the logit, and the model was therefore defined 

by: 

�����(��) = ��� � ��
1 − ��

� = �� + ����,� + ����,� +⋯+ ����,� 

Where xi are the model variables and β are the coefficients that were estimated by 

maximum likelihood. 

The explanatory variables initially considered for the model were the specimen 

size (FL in cm), sex (male or female), fishing location (latitude and longitude in decimal 

degrees), year (2008 to 2011), quarter of the year (1 = January to March, 2 = April to 

June, 3 = July to September and 4 = October to December), vessel identity (two vessels 

involved in the study), branch line material (wire or monofilament) and SST (decimal 

degrees in ºC). Some potential additional variables were not considered due to being 

unbalanced or correlated with other variables, such as the month with quarter of the 

year, and fishing trip with vessel. 

The first modeling approach was carried out with GLM. The univariate 

significance of each explanatory variable was determined by the Wald statistic and with 

likelihood ratio tests, comparing each univariate model with the null model. The 

significant variables were then used to construct a simple effect multivariate GLM, with 

the non-significant variables (at the 5% level) eliminated consecutively from the model. 

The significance of each variable was determined by the Wald statistic and by an 

analysis of deviance table. At this stage, the variables had been eliminated in the first 

step were further tested, in order to determine an eventual significance within the 
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framework of a multivariate model, as recommended by Hosmer and Lemeshow (2000). 

Once a final multivariate simple effects model using only significant variables was 

obtained, each pair of possible first degree interactions between variables was tested. 

The interactions were considered for inclusion in the final model if significant at the 1% 

level both with the Wald statistic, and with likelihood ratio tests comparing the models 

with and without the interaction. 

The GLM assumptions in terms of both the continuous and categorical 

explanatory variables were assessed. Regarding the continuous variables, GLM have the 

assumption that those variables are linear with the linear predictor (in this case the logit) 

and such linearity was assessed with the method of discretizing the continuous variables 

by the quartiles as described by Hosmer and Lemeshow (2000), and by analyzing GAM 

plots. If transformations were required, then the best possible solution was estimated 

with multivariate fractional polynomials and the transformed variables were used in the 

models instead of the original values, following the method developed by Royston and 

Altman (1994) and recommended by Hosmer and Lemeshow (2000). Regarding the 

categorical variables, GLM assume that all levels of the categories have sufficient 

information in the binomial response to allow contrasts in the data and achieve model 

convergence. These assumptions follow the contingency tables and Chi-square tests 

assumptions, in which the contingency tables should not have cells with zero values, or 

more than 25% of the cells with predicted values lower than 5. These assumptions were 

validated by building contingency tables for all categorical variables that were 

considered. 

Another assumption in the GLM modeling approach is that the data in the sample 

should be independent, in this case that the Yi correspond to a succession of independent 

Bernoulli trials. Given that the data used in this study is fisheries-dependant data, it is 

plausible to consider that this assumption was not validated. Therefore an alternative 

modeling approach with Generalized Estimation Equations (GEE) was considered as 

this allows for a working correlation to be estimated within the data. Within this GEE 

model framework, the fishing set was considered as the grouping variable, meaning that 

the data could be considered to be clustered and not independent within each fishing set. 

This allowed for a model formulation in which the blue shark at-haulback mortality data 

recorded within each fishing set carried out by each particular vessel in each particular 

fishing trip did not require the assumption of independence. With this GEE model 
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formulation, the correlation structure of the data within each set was assumed to be of 

the type exchangeable, as this seems to be the most adequate correlation structure for 

clustered data (Halekoh et al., 2006). 

With the final model estimated, examples of model interpretation were presented. 

One parameters that is important to interpret in biological terms in the specimen size, 

and therefore the probabilities of a shark dying at-haulback with varying specimen sizes 

were calculated. Additionally, the odds-ratios for increasing specimen sizes by 10cm FL 

(also calculated along the range of shark sizes in the sample), were also calculated and 

presented. The probabilities were calculated as the inverse-logit function of the final 

equations considered, and the odds-ratios were calculated as the exponential values of 

the differences (in 10cm FL sizes) in the logits. For this specific example, the variables 

that were interacting with FL were considered to be on their baseline levels. 

 

II.2.4. Diagnostics and goodness-of-fit 

A residual analysis using Pearson and Deviance residuals was used to search for 

outliers, and the Cooks distances and DfBetas were used to identify eventual values 

with influence in the estimated parameters of the models. Model goodness-of-fit was 

assessed with the Hosmer and Lemeshow statistic that groups the observations into 10% 

quantiles (deciles) according to their predicted values, and uses a chi-square test for 

comparing the observed versus predicted values in each group (Hosmer and Lemeshow, 

2000). Additionally, the Nagelkerke coefficient of determination (R2) (Nagelkerke, 

1991) was also calculated. The discriminative capacity of the models was determined by 

the Area Under the Curve (AUC) value of the Receiver Operating Characteristic (ROC) 

curves, with the determinations of the model sensitivity (capacity to correctly detect the 

event = mortality at-haulback) and model specificity (capacity to correctly exclude 

sharks not dead at-haulback). 

Cross validation was carried out with a k-fold cross validation procedure (with 

k=10) to estimate the expected level of fit of the models to new data, and to assess 

eventual over-fitting problems. Because the models in this study are of the binomial 

type, the cross validation procedure was used to estimate the misclassification error rate, 

with the procedure randomly partitioning the original sample into k-subsamples, and 
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then retaining one subsample as the validation dataset and using the remaining k-1 

subsamples as training datasets to build the models. The cross-validation procedure was 

repeated k times, with each of the k subsamples used one time as the validation dataset, 

and the use of k=10 was chosen as this seems to be an adequate value for models using 

large datasets (Fushiki, 2011). Finally, a bootstrapped cross validation procedure was 

also used to calculate new AUC values, that were compared to the original AUC 

calculated using the entire dataset. 

All statistical analysis for this study was carried out with the R Project for 

Statistical Computing version 2.14.1 (R Development Core Team, 2012). Most 

functions are available in the core R Program, but some analysis required additional 

libraries, including library “gmodels” (Warnes, 2011a) for the contingency table 

analysis, library “gplots” (Warnes, 2011b) for some of the graphics produced, library 

“moments” (Komsta and Novomestky, 2012) for data summaries including the kurtosis 

and skewness coefficients, library “gam” (Hastie, 2011) for the GAM models and plots, 

library “mfp” (Ambler & Benner, 2010) for the multivariate fractional polynomials 

transformations, library “geepack” (Halekoh et al., 2006) for the GEE models, library 

“Epi” (Carstensen et al., 2011) for the ROC curve plots, and library “boot” (Canty and 

Ripley, 2011) for the cross validation procedure. 

 

II.3. Results 

II.3.1. Description of the catches 

A total of 26,383 blue shark specimens were captured and recorded during the 

sampling period. Of those, complete capture information including at-haulback 

condition, size, sex, date and coordinates of the capture was available for 24,958 

specimens (94.6% of the blue shark catch) and the analysis was therefore performed on 

those specimens. Of the specimens analyzed, 13,530 (54.2%) were females, while the 

remaining 11,428 (45.8%) were males. The females mean size in the sample was 199.5 

cm FL (SD = 31.7) with the distribution ranging from 40 to 305 cm FL, while the males 

had a mean size of 194.5 (SD= 36.9) and the size distribution ranged from 69 to 295 cm 

FL (Figure II.2). The size distribution of males and females was considered 

significantly different, given that the null hypothesis that both sexes come from the 
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same continuous distribution was rejected (2-sample Kolmogorov-Smirnov test: D = 

0.06, p-value < 0.001). Likewise, the ranks of the sizes of males and females was also 

significantly different (Mann-Whitney test: W = 7.9e+7, p-value = 0.002). The non-

normality in the size data was confirmed with a Lilliefors test (D = 0.030, p-value < 

0.001), with the data having a skewness coefficient of -0.41 (negatively asymmetrical) 

and a kurtosis coefficient of 4.99 (leptokurtic data). Note that the kurtosis coefficient 

used was calculated as the ratio between the 4th sample moment and the square of 2nd 

sample moment, and therefore the reference value for a mesokurtic sample would have 

been 3. 

 

Figure II.2: Size frequency distribution of female and male blue sharks captured and 
analyzed during this study. 
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II.3.2. Proportions of hooking mortality 

In general terms, 13.3% of the blue shark specimens that were captured during 

this study were dead at-haulback, while the remaining 86.7% were alive. In terms of the 

categorical variables, the proportions of alive:dead blue sharks were significantly 

different between all levels of the variables that were initially considered, specifically 

fishing trip (chi-square = 2092.5, df = 13, p-value < 0.001), sexes (chi-square = 94.4, df 

= 1, p-value < 0.001), year (chi-square = 1191.2, df = 3, p-value < 0.001), quarter (chi-

square = 193.8, df = 3, p-value < 0.001), vessel identity (chi-square = 181.3, df = 1, p-

value < 0.001) and branch line material (chi-square = 39.4, df = 1, p-value < 0.001) 

(Figure II.3). 

Regarding the continuous variables, and considering the data grouped by the 

quartiles, the proportions of alive:dead sharks were different between sizes (chi-square 

= 833.5, df = 3, p-value < 0.001), latitude (chi-square = 643.2, df = 3, p-value < 0.001) 

and longitude (chi-square = 323.3, df = 3, p-value < 0.001), but not significantly 

different considering SST (chi-square = 2.8, df = 3, p-value = 0.419) (Figure II.3). 

Besides not being significant in the contingency table analysis, the SST was also found 

to be significantly correlated with latitude (Pearson correlation = 0.605, p-value < 

0.001; Spearman correlation = 0.581, p-value < 0.001), and with longitude (Pearson 

correlation = -0.363, p-value = 0.001; Spearman correlation = -0.353, p-value < 0.001) 

which might create multicollinearity problems if both the SST and the geographical 

coordinates were used as explanatory variables in a multivariate model. Additionally, 

and because the geographical coordinates were available for all fishing sets, while SST 

was only available for part of the sets (specifically for 231 of the 762 sets carried out), 

the SST variable was discarded and not used in the final models. 
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Figure II.3: Proportions of alive and dead blue sharks at-haulback with the various 
categorical and continuous explanatory variables considered for the analysis. The 
continuous variables are categorized by their quartiles. 

 

 

II.3.3. Simple effects GLM and GEE models 

The functional form of the continuous explanatory variables (FL, latitude and 

longitude) was assessed with GAM plots. The at-haulback mortality tended to decrease 

with increasing specimen size, towards northern latitudes and eastern longitudes (Figure 

II.4). 
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Figure II.4. Generalized Additive Model (GAM) plots with the shape of the 
continuous explanatory variables (FL, latitude and longitude) for modeling blue 
shark at-haulback mortality. 

 

As verified with multivariate fractional polynomials models, only the longitude 

was significantly linear, while the specimen size and latitude were non-linear variables 

that needed to be transformed in order to be used within the assumptions of GLM. By 

applying the multivariate fractional polynomial transformations to those three 

continuous variables, the best candidate alternatives to the transformations of the 

functional form were: 

Size (FL):  !"
���#

$�.& + ���  !"
���# 

Latitude: ���  "'()*+.��� # +  "'()*+.��� #* 

Longitude:  ",-.)+*./�� # 

The transformation regarding the longitude is a simple scale transformation, while 

the transformations for specimen size and latitude refer to transformations in the 

functional form. These transformed variables were used in the models instead of the 

original values. 
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In the simple effects multivariate model, all the variables that were initially 

considered were significant at the 5% level except the vessel effect. Regarding the 

quarter of the year the overall effect was significant, but no differences were found 

between quarters 1 and 2 (Wald statistic: z = -0.323; p-value = 0.747) and quarters 1 

and 4 (Wald statistic: z = 0.578; p-value = 0.563). Therefore, this variable was 

simplified into a binomial variable (season), coded with: season 1 = quarter 3 and 

season 2 = quarters 1, 2 and 4. 

The results of the simple effects GLM parameters in terms of significance are 

given in the analysis of deviance presented in Table II.1, where it is possible to see the 

contribution of each parameter for explaining part of the deviance observed in the blue 

shark at-haulback mortality. The parameters that are contributing more for the model 

deviance explanation are the effects of the year and specimen size, followed by the 

geographical location of the capture (latitude and longitude). Finally, the effects of 

season, branch line material and sex are contributing less for the blue shark at-haulback 

mortality deviance explanation, but are still significant variables in the model (Table 

II.1). 

Table II.1. Deviance table for the simple effects GLM for the binomial response 
(alive or dead) status of blue sharks at-haulback. Resid.df are the residual degrees of 
freedom and Resid.dev is the residual deviance. Significance of the terms is given by 
the p-values of the chi-square test. The “.t” notations after the continuous variables 
(FL, Lat and Long) represent the utilization of the transformed variables in the 
models. 

Parameter Df Deviance Resid.df Resid.dev p-value 

Null 24957 19561 
FL.t 1 645.24 24956 18915 < 0.001 
Latitude.t 1 273.10 24955 18642 < 0.001 
Longitude.t 1 251.79 24954 18390 < 0.001 
Year 3 908.63 24951 17482 < 0.001 
Season 1 11.06 24950 17471 < 0.001 
Branch line 1 7.07 24949 17464 0.008 
Sex 1 12.71 24948 17451 < 0.001 

 

When applying a GEE model to those variables, and considering the fishing set as 

the grouping (cluster) variable, the estimated correlation value was low (alpha = 0.058, 

SE = 0.019), and the estimated parameters were very similar between the GLM and 
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GEE models, with only some minor differences (Table II.2). The overall parameter 

interpretation would be similar with both modeling approaches, given that the 

parameters were consistently positive or negative when comparing the models. The only 

major different in these multivariate simple effects models was that the effect of sex was 

significant in the GLM model but not significant (at the 5% level) within the GEE 

framework (Table II.2). 

Table II.2. Multivariate simple effect GLM and GEE model parameters (coefficients 
and standard errors) for the binomial response (alive or dead) status of blue sharks at 
haulback. Significance of the explanatory variables is given by the Wald statistic 
with the respective p-values. The “.t” notations after the continuous variables (FL, 
Lat and Long) represent the utilization of the transformed variables in the models. 

Variable 
Generalized Linear Model   Generalized Estimating Eq. 

Estimate SE Wald p-value   Estimate SE Wald p-value 
Intercept 3.95 0.35 11.4 < 0.001 4.29 0.49 75.9 < 0.001 
FL.t -4.19 0.23 -18.5 < 0.001 -4.29 0.34 156.4 < 0.001 
Lat.t -0.01 0.00 -14.5 < 0.001 -0.01 0.01 60.0 < 0.001 
Long.t -0.25 0.02 -10.4 < 0.001 -0.21 0.05 19.5 < 0.001 
Year2009 0.51 0.11 4.7 < 0.001 0.41 0.18 5.3 0.021 
Year2010 1.60 0.09 16.8 < 0.001 1.34 0.18 58.6 < 0.001 
Year2011 1.79 0.09 19.5 < 0.001 1.70 0.16 114.3 < 0.001 
Season2 -0.19 0.07 -3.0 0.003 -0.23 0.10 5.2 0.023 
BranchWire -0.19 0.09 -2.3 0.022 -0.28 0.12 5.6 0.018 
SexMale 0.15 0.04 3.6 < 0.001   0.06 0.05 1.7 0.197 

 

 

II.3.4. Models with interactions 

Several possible 1st degree interactions between the variables were significant at 

the 1% significance level and therefore a model with significant interactions was 

created. In this model, year and specimen size were still the most important explanatory 

variables, followed by the location, season, branch line material and sex (Table II.3). In 

terms of interactions, specimen size was significantly interacting with longitude and 

year; specimen sex was interacting with longitude and season; longitude was interacting 

with season; and branch line material was interacting with year (Table II.3). The 

interactions between longitude and season, and between year and branch line material 

seemed to be particular significant in this model, with relatively high values of deviance 

(Table II.3). 
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Table II.3. Deviance table for the GLM model with significant 1st degree interactions 
for the binomial response (alive or dead) status of blue sharks at-haulback. Resid.df 
are the residual degrees of freedom and Resid.dev is the residual deviance. 
Significance of the terms is given by the p-values. The “.t” notations after the 
continuous variables (FL, Lat and Long) represents the use of transformed variables 
in the models. 

Parameter Df Deviance Resid.df Resid.dev p-value 

Null 24957 19561   
FL.t 1 645.24 24956 18915 < 0.001 

Lat.t 1 273.1 24955 18642 < 0.001 

Long.t 1 251.79 24954 18390 < 0.001 

Year 3 908.63 24951 17482 < 0.001 

Season 1 11.06 24950 17471 0.001 
Branch line 1 7.07 24949 17464 0.008 
Sex 1 12.71 24948 17451 < 0.001 

FL.t:Long.t 1 13.62 24947 17437 < 0.001 

FL.t:Year 3 41.96 24944 17395 < 0.001 

Long.t:Season 1 71.25 24943 17324 < 0.001 

Long.t:Sex 1 15.06 24942 17309 < 0.001 

Year:Branchline 3 80.81 24939 17228 < 0.001 

Season:Sex 1 8.71 24938 17220 0.003 
 

 

Like with the simple effects model, a GEE model was also applied to this case 

(considering interactions), again considering the fishing set as the grouping (cluster) 

variable. Like in the simple effects model, the correlation within the fishing set was low 

(alpha = 0.051, SE = 0.022), and the parameters estimated with both the GLM and GEE 

models were similar, with consistently positive or negative parameters (Table II.4). In 

this case, the only major difference between using GLM or GEE was the loss of 

significance (at the 1% significance level) for the interaction between season and 

specimen sex (Table II.4). 
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Table II.4. Multivariate GLM and GEE parameters of the models with significant 1st 
degree interactions (coefficients and standard errors) for the binomial response (alive 
or dead) status of blue sharks at-haulback. Significance of the explanatory variables 
is given by the Wald statistic with the respective p-values. The “.t” after the 
continuous variables (FL, Lat and Long) represents the use of transformed variables 
in the models. 

Variable 
Generalized Linear Model Generalized Estimating Eq. 

Estimate SE Wald p-value Estimate SE Wald p-value 

Intercept 3.90 1.26 3.1 0.002 2.50 1.39 3.2 0.073 
FL.t -4.24 0.88 -4.8 < 0.001 -3.21 0.98 10.8 0.001 
Lat.t -0.01 0.00 -13.4 < 0.001 -0.01 0.00 52.8 < 0.001 
Long.t -0.96 0.29 -3.3 0.001 -0.50 0.42 1.4 0.231 
Year2009 7.85 1.67 4.7 < 0.001 6.49 1.90 11.6 0.001 
Year2010 2.32 1.34 1.7 0.083 2.61 1.58 2.7 0.100 
Year2011 5.70 1.35 4.2 < 0.001 5.52 1.44 14.6 < 0.001 
Season2 0.85 0.18 4.7 < 0.001 0.78 0.27 8.3 0.004 
BranchWire -1.26 0.21 -6.0 < 0.001 -1.25 0.27 22.3 < 0.001 
SexMale 0.17 0.17 1.0 0.301 0.30 0.16 3.6 0.056 
FL.t:Long.t 0.83 0.20 4.1 < 0.001 0.51 0.30 2.9 0.087 
FL.t:Year2009 -5.47 1.19 -4.6 < 0.001 -4.51 1.37 10.8 0.001 
FL.t:Year2010 -1.85 0.94 -2.0 0.050 -2.07 1.10 3.5 0.060 
FL.t:Year2011 -3.61 0.96 -3.8 < 0.001 -3.52 1.03 11.8 0.001 
Long.t:Season2 -0.49 0.05 -9.0 < 0.001 -0.44 0.09 21.9 < 0.001 
Long.t:SexMale -0.12 0.04 -3.0 0.003 -0.13 0.04 12.1 0.001 
Year2009: BranchWire 0.04 0.29 0.1 0.894 0.01 0.37 0.0 0.983 
Year2010: BranchWire 2.12 0.30 7.0 < 0.001 1.94 0.42 21.3 < 0.001 
Year2011: BranchWire 1.42 0.24 6.0 < 0.001 1.41 0.30 22.1 < 0.001 
Season2:SexMale 0.36 0.12 3.0 0.003 0.14 0.12 1.5 0.226 

 

By using significant interactions, model interpretation gets more complex as the 

effects of the interacting variables need to be considered at the same time. Regarding 

the interaction between size and year, the at-haulback mortality for all size classes 

tended to increase along the years, but the relative increase was different between sizes, 

with the smaller specimens having a more sharp increase in mortality for the more 

recent years (Figure II.5). In terms of the relation between size and longitude, the at-

haulback mortality remained at relatively low levels for the larger size classes 

throughout the entire longitude range, while a peak of at-haulback mortality was 

observed for the smaller size classes towards the eastern longitudes (Figure II.5). 
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Figure II.5. Interactions between specimen size (FL) with year (a) and longitude (b). 
The classes of the continuous variables specimen size and longitude are categorized 
by the deciles. 

 

The categorical variable sex was significantly interacting with both season and 

longitude (Figure II.6). On both cases the male mortality rates tended to be higher than 

that for females, but there were some small differences in the changing patterns. For the 

relation between sex and season there was an increased mortality during the combined 

winter (autumn to spring) season, but the increasing rate was higher for males than for 

females (Figure II.6). 

The other significant 1st degree interaction considered in the model was between 

branch line material and year. In general terms, the at-haulback mortality when using 

monofilament branch lines remained relatively high between 2008 and 2011 (except for 

2010, when a decrease was observed), while an increasing trend along the time period 

was observed for wire branch lines (Figure II.6). 
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Figure II.6. Interactions plots between specimen sex with season (a), sex with 
longitude (b), season with longitude (c) and branch line material with year (d). The 
classes of the continuous variable longitude are categorized by the deciles. 

 

 

II.3.5. Diagnostics and goodness-of-fit 

For the final multivariate model, validation with the Pearson and Deviance 

residuals confirmed that there were no values that presented major and significant 

outliers (Figure II.7). For the Cooks distances two points presented values relatively 

higher than the remaining and those could possibly be values with influence in the 

estimated parameters (Figure II.7). 
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Figure II.7: Residual analysis (Pearson and Deviance residuals) and leverage values 
(Cooks distances) for the final GLM model including the main effects and the 1st 
degree interactions. The residuals are plotted in terms of the predicted values and the 
Cooks distances along the data index. A half-normal plot of the Cooks distances is 
presented to help identify the extreme values. 

 

The DfBetas were also calculated, identifying possible observations that had more 

influence in the parameter estimation. Two observations seem to be possibly influential 

(Figure II.8), with those two observations corresponding to the values that had also been 

identified with the Cooks distances, specifically the data points 17,469 and 17,487 in 

the dataset used for the models. 

Because of those two observations, two new models were created, with each new 

model excluding each of those data points identified. The results of the new models 

with the respective new estimated parameters and SE are presented in Table II.5. It is 

possible to see that for most of the parameters the differences in the estimations are 
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relatively small and lower than 20%. In terms of improvement of the explained 

deviance, by removing these possible influential values the differences were almost 

negligible, with the improvement in the R2 of the two alternative models lower than 

0.2% when compared to the original model using all data points. Because the 

differences in the estimated parameters were in general small, and the improvements in 

terms of the deviance explained are almost negligible, the remaining model diagnostics, 

goodness-of-fit and model discriminative capacity were tested for the original models 

using all data points in the dataset and without excluding any possible outliers or 

influential values. 

 

Figure II.8. Df Betas for the final GLM model including the main effects and 
interactions. The DfBetas are plotted along the predicted values, and the two 
observations that are possibly influential in some of the estimated parameters are 
identified. 
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Table II.5. Estimated parameters (with the respective SE) of the original model using all data points, and two alternative models each 
excluding one possible influential outlier. The differences in each of the estimated parameters (in percentage) are also included. 

Parameter 
All dataset Excluding point 17,469 Excluding point 17,487 

Estimate SE Estimate SE Dif(%) Estimate SE Dif(%) 
(Intercept) 3.90 1.26 3.48 1.30 10.70 3.57 1.29 8.51 
FL.t -4.24 0.88 -3.94 0.91 7.10 -4.00 0.90 5.62 
Lat.t -0.01 0.00 -0.01 0.00 -0.09 -0.01 0.00 -0.09 
Long.t -0.96 0.29 -0.96 0.29 -0.60 -0.96 0.29 -0.32 
Year2009 7.85 1.67 8.28 1.70 -5.59 8.19 1.69 -4.38 
Year2010 2.32 1.34 2.76 1.38 -18.66 2.66 1.37 -14.63 
Year2011 5.70 1.35 6.14 1.39 -7.69 6.04 1.38 -6.03 
Season2 0.85 0.18 0.85 0.18 0.26 0.85 0.18 0.15 
GangionWire -1.26 0.21 -1.27 0.21 -0.71 -1.27 0.21 -0.71 
SexM 0.17 0.17 0.17 0.17 2.15 0.17 0.17 0.30 
FL.t:Long.t 0.83 0.20 0.83 0.20 -0.42 0.83 0.20 -0.23 
FL.t:Year2009 -5.47 1.19 -5.79 1.22 -5.73 -5.72 1.21 -4.49 
FL.t:Year2010 -1.85 0.94 -2.16 0.97 -16.74 -2.09 0.96 -13.14 
FL.t:Year2011 -3.61 0.96 -3.92 0.99 -8.65 -3.86 0.98 -6.80 
Long.t: Season 2 -0.49 0.05 -0.49 0.05 0.10 -0.49 0.05 0.01 
Long.t:SexM -0.12 0.04 -0.12 0.04 0.90 -0.12 0.04 0.08 
Year2009:GangionWire 0.04 0.29 0.05 0.29 -18.60 0.05 0.29 -18.96 
Year2010:GangionWire 2.12 0.30 2.13 0.30 -0.42 2.13 0.30 -0.43 
Year2011:GangionWire 1.42 0.24 1.43 0.24 -0.55 1.43 0.24 -0.64 
Season 2:SexM 0.36 0.12 0.36 0.12 0.08 0.36 0.12 -0.22 
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In terms of model goodness-of-fit, both the simple effects and the model with 

interactions passed the Hosmer and Lemeshow test, with the simple effects model 

having a chi-square = 11.8 (p-value = 0.162) and the model with interactions having a 

slightly better fit (chi-square = 9.6, p-value = 0.295). The same type of improvement 

was observed for the Nagelkerke R2 values, with the simple effects GLM having an R2 

of 0.149 and the model with interactions a higher R2 of 0.165. Finally the discriminative 

capacity of the models also improved by adding the interactions, with the simple effects 

model having an AUC (estimated from the ROC curve) of 0.741, and the model with 

interactions a higher AUC value of 0.750, with a sensitivity of 74% and a specificity of 

65% for a cut point of 0.144 (Figure II.9). Those AUC discriminative values are, 

according to Hosmer and Lemeshow (2000), considered acceptable. 

 
Figure II.9. Receiver Operating Characteristic (ROC) curves for the multivariate 
GLM using simple effects (a) and considering interactions (b), for the binomial 
response (alive or dead) status of blue sharks at-haulback. The Area Under the Curve 
(AUC) values are given, as well as the sensitivity (Sens), specificity (Spec) and 
predictive values (PV) at the optimal response cut-points (Ir.eta). 
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The 10-fold cross validation procedure resulted in an estimated prediction error of 

13.4% for the multivariate simple effects model, and a similar prediction error of 13.3% 

for the model with interactions. The bootstrapped cross-validation procedure resulted in 

an AUC = 0.748, which is very similar to the original AUC using the entire dataset 

(0.750) and also validates the models. Additionally, all bootstrapped models also passed 

the Hosmer and Lemeshow test (p-value > 0.05 on all cases) for model goodness-of-fit. 

 

II.3.6. Examples of model interpretation 

One parameter that in biological terms is particularly important to interpret and 

analyze is the influence of the specimen sizes on the probabilities of dying at-haulback, 

as well as the influence in the odds-ratios, and therefore the final model estimated was 

used for prediction and interpretation of the effects of changing specimen sizes on the 

mortality rates and odds-ratios. It was possible to see that the probabilities of a 

specimen dying at-haulback decreases with increasing specimen size, but those 

decreasing probabilities are steeper for the smaller specimens and tend to stabilize for 

the larger specimens (Figure II.10). 

By interpreting the odds-ratios (in this case calculated for an increase of 10cm FL 

in specimen size), it is possible to see that as a shark increases in size the odds of dying 

decrease, but these odds are non-linear and vary with the size. For example, for a blue 

shark close to the size of birth (e.g. 50 cm FL) an increase of 10 cm FL in size will 

result in the odds of dying decreasing by 22%, with 95% CI varying between 14% and 

30% (Figure II.10). On the other hand, for a larger adult blue shark with 250 cm FL, an 

increase of 10 cm FL in size with result in the odds of dying decreasing by only 11%, 

with 95% CI varying between 7% and 15% (Figure II.10). 
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Figure II.10. Probabilities of a blue shark dying at haulback with varying specimen 
size (left), and the odds-ratios of a blue shark dying at-haulback (for an increased 10 
cm FL of specimen size) along the size ranges of the captured specimens (right). 

 

II.4. Discussion 

This study focused on the parameters affecting blue shark at-haulback mortality in 

a large scale swordfish pelagic longline fishery in the Atlantic Ocean. In general, 13.3% 

of the blue shark capture was dead at-haulback, but it was possible to determine that 

several variables had significant effects on this mortality rates and a statistical model 

was produced. 

Several studies have previously addressed blue shark at-haulback mortality in 

pelagic longline fisheries, including the works of Diaz and Serafy (2005) and Campana 

et al. (2009) in the Atlantic, and Moyes et al. (2006) in the Pacific. For the Canadian 

fleet in the northwest Atlantic, Campana et al. (2009) estimated the blue shark at-

haulback mortality in the 12-13% range as measured by fishery observers, which is 

relatively similar to the 13.3% estimated in our study. However, using telemetry 

technology to account for the post-release mortality, Campana et al. (2009) also 

reported that the actual mortality values could be closer to 20% due to the added post-

release mortality. In the Pacific Ocean, Moyes et al. (2006) also addressed post-release 

mortality using satellite telemetry, and in the case of blue shark noted that the 
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survivorship of sharks landed in an apparently healthy condition was likely to be high. 

This means that our estimates of 13.3% mortality probably represent accurately the at-

haulback mortalities of blue shark in the Portuguese pelagic longline fishery, but at this 

stage the total mortalities (that also need to account for post release mortality) still 

remain unknown. 

The most significant factors affecting mortality in our study were the year effect, 

followed by specimen size. The yearly variations may be related with inter-annual 

variability inherent to the species or the fishery spatial/seasonal patterns, or eventual 

changes in the fishery that may be contributing to changes in these rates. It should be 

mentioned, however, that the data analyzed in this study was collected by the fishery 

observer program that tries to cover the geographical/seasonal variability of the fleet in 

terms of catch rates, but it is a fishery-dependent source of data that cannot cover those 

geographical/seasonal patterns in a truly balanced design. 

With regards to the specimen size, the probabilities and odds-ratios show that the 

larger specimens have lower probabilities of being dead at-haulback than the smaller 

specimens. However, these effects are non-linear, with the odds-ratios of surviving 

higher for the smaller specimens (as they grow in size) and then tending to stabilize as 

the sharks reach larger sizes. Some previous studies had already looked into effects of 

specimens sizes in the mortality rates (e.g. Diaz and Serafy, 2005; Campana et al., 

2009), and similar results were reached, with decreasing probabilities of at-haulback 

mortality as the specimens increase in size. These results have a direct effect on 

eventual management and conservation initiatives such as the establishment of 

minimum and/or maximum landing sizes, as the efficiency of such measures will have 

specific effects depending on the shark sizes. For example, the establishment of a 

minimum landing size would have a more limited conservation effect, as the smaller 

specimens are the ones that have higher probabilities of dying due to the fishing 

process, and would therefore tend to be discarded already dead. 

Even though the models created and presented seem to be valid and perform well 

for predicting blue shark at-haulback mortality rates (as verified by the residual 

analysis, goodness-of-fit, and cross-validation procedures), some limitations need to be 

addressed and considered. One characteristic of our study was that the hook style effect 

was not considered, mainly because the Portuguese longline fleet uses exclusively J-
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style hooks. Therefore, the values reported in our study refer specifically to fisheries 

using this type of hooks, while other pelagic longline fleets may use different hooks 

such as circle and/or tuna hooks. Some previous studies have reported that blue shark 

mortality rates were higher with J-style hooks when compared to circle hooks 

(Carruthers et al., 2009), while on the other hand Coelho et al. (2012b) reported that for 

the elasmobranch species more commonly discarded (e.g. bigeye thresher and crocodile 

shark) the hook style (J-style vs. circle hooks) seemed unrelated to at-haulback 

mortality. Likewise, Kerstetter and Graves (2006) also showed that even though several 

target and bycatch species seemed to have higher rates of survival at-haulback with 

circle hooks, the effects were not statistically significant for most species. On the 

contrary, Afonso et al. (2011) compared J-style with circle hooks in the south-western 

Atlantic Ocean and concluded that circle hooks were efficient in reducing the mortality 

rates of most species caught, both in pelagic and coastal longline fisheries, observing at 

the same time that the catch rates of some species, including the blue shark, were higher 

with circle hooks. In the North Pacific Ocean, however, Yokota et al. (2006) showed 

that the hooks (circle vs. tuna hooks) had little effect on the catch rates and mortalities 

of blue shark. This variability in results seems to support the fact that specific studies 

and assessments should be carried out specifically for each fishery and fleet in question. 

One possible shortcoming in our study was the fact that the fishing gear soaking 

time was not considered, with several previous studies (e.g. Campana et al., 2009; Diaz 

and Serafy, 2005; Morgan and Burgess, 2007) having demonstrated that the soaking 

time was also a significant variable for predicting at-haulback mortality on 

elasmobranchs. Besides the fishing gear soaking time, Morgan and Carlson (2010) also 

demonstrated that the capture time (measured with hook timers) was also influential in 

the mortality rates of some demersal shark species captured in bottom longline fisheries. 

Finally, and even though in our study the gangion material had a relatively small effect 

on the mortality rates, other authors have shown that some components of longline gear 

may interact to influence catch rates and relative mortality estimates (e.g. Afonso et al., 

2012, Ward et al., 2008). As suggested by these authors, it could be hypothesized that 

nylon leaders could catch relatively more dead blue sharks than wire leaders because 

healthy and robust specimens, which would be more likely to be alive at gear retrieval, 

may have more chances of biting through the nylon and escaping. 
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The logistic models used in our study seem adequate to evaluate the contribution 

of potential explanatory variables to blue shark at-haulback mortality, as the response 

variable is binomial (dead vs. alive sharks at fishing gear haulback). The models created 

used both biological factors such as specimen size and sex, as well as fishery 

operational factors such as geographical location and branch line material. In our study 

the vessel effect was tested but not considered significant, while a previous study by 

Campana et al. (2009) had verified that the vessel effect was significant. One important 

difference between the two studies is in the number of vessels monitored that was much 

larger in the Campana et al. (2009) study. Eventual differences between different 

vessels can hypothetically be due to: 1) vessels (in different trips and sets) targeting 

different species, and using therefore different gear specifications, such as 

monofilament vs. steel branch line materials; 2) vessels with different crews that may 

handle the sharks in different ways; 3) vessels using different fishing metiers that can 

result in different soaking times of the fishing gear, which will be influent in the 

mortality rates. Such possibilities are hypothesis that cannot be easily verified at this 

stage, but it is feasible to consider that a correlation in the mortality data within vessels, 

fishing trips or fishing sets may exist in those fishery-dependents datasets. 

For addressing such eventual lack of independence in the sample, the ideal 

scenario would be to collect fishery-independent data, but for the large pelagic species 

such data would be extremely costly, and therefore fisheries-dependent data (either 

logbooks or fishery observer datasets) is usually the only available data for such 

analysis. However, models such as GLM or GAM assume that the data is independent, 

and therefore making inference from such data with such models may result is biased 

estimates. For such cases, the use of GEE models might be a valid alternative approach, 

as this modeling technique calculates a working correlation matrix that approximates 

the true correlation on the observations (Wang and Carey, 2003). Therefore, in our 

study we opted for a methodology of comparing GLM with GEE models, using the 

fishing sets as the grouping variable in the GEE models, and assuming therefore a 

possible lack of independence of data within each fishing set. With the GEE models a 

working correlation matrix is estimated, that is then used to correct the model 

parameters. However, the estimated correlation parameter was low, meaning that this 

lack of data independence between fishing sets does not seem to be significantly 
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affecting the GLM estimates, which could thus be considered also valid for predicting 

blue shark mortality rates. 

This paper presents new and important information on the impacts of this pelagic 

longline fishery on blue shark populations in a wide Atlantic area. The results can now 

be used to predict the effects of the fishery on blue shark mortality, and specifically on 

how several factors are contributing to this mortality rates. One immediate application 

is, for example, to determine the efficiency of eventual future management and 

conservation initiatives such as the establishment of minimum and/or maximum landing 

sizes. The results can also be incorporated into future stock assessment models, 

including ecological risk assessment analysis carried out regularly by tRFMOs for 

bycatch species. 

 

 



CHAPTER III  – MODELING BLUE SHARK CATCH RATES 

41 
 

CHAPTER III.  MODELING BLUE SHARK CATCH RATES IN A PELAGIC LONGLINE 

FISHERY IN THE SOUTHERN ATLANTIC OCEAN.2 

 

III.1. Introduction 

The blue shark (Prionace glauca) is one of the most wide ranging of all pelagic 

sharks, found throughout tropical and temperate seas (Last and Stevens, 2009). It is 

capable of large scale migrations (Queiroz et al., 2005; Silva et al., 2010; Campana et 

al., 2011), and has complex movement patterns and spatial structure probably related to 

the reproduction cycles and prey distribution (Pratt, 1979; Stevens, 1990). The blue 

shark is possibly the most abundant of all pelagic sharks, with most captures taking 

place as bycatch in pelagic longlines targeting tunas and swordfish (Aires-da-Silva et 

al., 2008). 

Modeling and understanding the catch rates dynamics of any species is an 

extremely important aspect for fisheries management and conservation, as it allows for 

a better understanding in terms of the species distribution and impacts by the fisheries. 

Some of the previous blue shark studies available in the literature are mainly descriptive 

in nature (e.g. Montealegre-Quijano and Vooren, 2010), while others have used 

advanced modeling techniques to analyze this type of data. Previous examples of such 

modeling approaches include the studies of Bigelow et al. (1999) and Walsh and 

Kleiber (2001) that used Generalized Additive Models (GAM) to model blue shark 

catch rates in the Hawaiian based USA pelagic longline fishery in the North Pacific; 

Megalofonou et al. (2009b) that used Generalized Linear Models (GLM) to determine 

the operational, spatial and seasonal effects affecting blue shark catch rates in the 

Mediterranean Sea by the Italian and Greek pelagic longline fleets; Carvalho et al. 

(2011) that created a GAM model for predicting blue shark catch rates in the southwest 

Atlantic in areas of operation of the Brazilian fleet; and Vögler et al. (2012) that also 

used GAM models for modeling the blue shark catch rates in the eastern tropical Pacific 

by the Mexican fleet. All of those examples have focused relatively small areas (when 

the oceanic nature of the species is considered), i.e., Hawaiian region in the Bigelow et 

                                                           
2
 Based on a manuscript in Preparation: Coelho, R., Infante, P. & Santos, M.N. Modeling blue shark 

(Prionace glauca) catch rates in a pelagic longline fishery in the southern Atlantic Ocean using fixed and 
mixed effects generalized linear models. 
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al. (1999) and Walsh and Kleiber (2001) studies; eastern Mediterranean in the 

Megalofonou et al. (2009b) study; southwestern Atlantic off Brazil in the Carvalho et 

al. (2011) study; and eastern tropical Pacific off Mexico in the Vögler et al. (2012) 

study. At this stage, the authors are unaware of any previous study where such modeling 

analysis was performed for this species at a wide scale oceanic level. 

Most of the previous studies used statistical models with the main objective of 

standardizing the catch rates of blue shark for creating annual indexes of abundance. 

This process is, in theory, used to remove factors other than the annual changes in 

abundance of the population that can have an impact on the catch rates over time. The 

primary objective of such studies is not necessarily to create models for understanding 

the factors affecting the catch rates, but to obtain indexes of relative abundance that 

reflect the actual changes of the species’ abundances (Maunder and Punt, 2004), and 

where other factors that can affect the catches (e.g. seasonality, fishery-specific 

operations, regional effects) have been removed. Examples of such approaches are the 

works by Carvalho et al. (2010) for the Brazilian and Tavares et al. (2012) for the 

Venezuelan pelagic longline fisheries, in both cases with the authors using GLM 

approaches to standardize the annual catch rates. Likewise, most of the technical works 

carried out within the scope of the tuna Regional Management Fisheries Organizations 

(tRFMO) use such approaches for creating annual indexes of abundance for utilization 

within stock assessments (e.g. Coelho et al., 2011; Hiraoka and Yokawa, 2012). 

Given that many of the previous works focusing blue shark catch rates in pelagic 

fisheries have been mainly descriptive in nature, have been somewhat limited in spatial 

coverage and in comparisons of modeling techniques, and have been mainly created for 

standardizing annual catch rates, the authors considered that there was the need for a 

new study, covering a wider oceanic spatial scale and using/comparing several 

modeling techniques. Therefore, the present study was elaborated with the main 

objective of modeling blue shark catch rates in the Portuguese pelagic longline fishery 

targeting swordfish over a wide geographical area of the southern Atlantic Ocean. For 

achieving this main goal, and because of the characteristics of this fishery-dependant 

dataset (data collected by the commercial fisheries), a secondary objective was to 

explore and compare different modeling approaches, using different possible model 

types (GLM - Generalized Linear Models and GLMM - Generalized Linear Mixed 

Models) and distributions (Gamma, Poisson, Negative Binomial and Tweedie). 
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III.2. Material and Methods 

III.2.1. Data collection 

Data for this study was collected by fishery observers from the Portuguese Sea 

and Atmospheric Research Institute (IPMA, I.P.) placed onboard Portuguese longliners 

targeting swordfish in the Atlantic Ocean. Data was collected between October 2008 

and December 2011. During that period, information from a total of 533 longline sets 

corresponding to 728,254 deployed hooks was collected, with this study focusing on the 

southern Atlantic region (Figure III.1). For the purposes of this study the southern 

Atlantic region was defined by the latitudes southern of 5ºN, following the stock 

delimitations of major shark species used by ICCAT (ICCAT, 2006-2009). For each 

fishing set that was carried out, information was recorded for the date, fishing set 

location (latitude and longitude), number of hooks used in the set, gangion material 

(monofilament or wire), and the species-specific catches in number (n) of specimens. 

Additional variables relative to the fishing sets that were calculated a posteriori 

(using the fishing set location and date) included the lunar phase (category) and 

illumination (scaled luminosity from 0 to 1), sea surface temperature (SST, ºC) using 

data from the NOAA National Climatic Data Center (Reynolds et al., 2007; NOAA, 

2012), Chlorophyll-a (mg/m2) using data from the NASA Ocean Color Group (NASA, 

2012), salinity (mg/L), mixed layer depth (MLD, depth in meters at which the 

temperature drops 0.2ºC) and sea surface height (SSH) using HYCOM models (Bleck et 

al., 2002, HYCOM, 2012), current velocity (m/s) and kinetic energy (m2/s2) from the 

NOAA Ocean Surface Current Analysis (OSCAR, 2012). All the data from those 

variables were interpolated from the different sources using the Marine Geospatial 

Ecology Tools (MGET) developed by Roberts et al. (2010). 
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Figure III.1. Location of the 533 fishing sets carried out by the Portuguese longline 
fleet in the southern Atlantic Ocean (south of latitude 5ºN) that were analyzed for 
this study 

 

III.2.2. Preliminary data analysis 

The catch per unit of effort (CPUE - Yi the response variable in this study) was 

calculated for each fishing set as the number of blue sharks captured (n) per 1000 

deployed hooks (n/1000 hooks). This variable was analyzed in terms of shape with a 

histogram and a QQ plot, and tested for normality with a Kolmogorov–Smirnov test 

with Lilliefors correction. 

The candidate continuous explanatory variables were analyzed with correlation 

matrices plots and by calculating non-parametric Spearman correlation coefficients. 

Those plots and correlation tests were mainly used for a preliminary analysis between 

the response variable and the candidate explanatory variables, as well as for eventual 

correlations between the explanatory variables. For the relationships between the 

response variable and the candidate categorical explanatory variables, boxplots and non-

parametric tests were used to assess if differences occurred in the blue shark CPUE of 

the various categories of these variables. The non-parametric tests were used because 
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the assumptions of normality (tested with a Lilliefors test) and homogeneity of 

variances (tested with Levene tests) were not verified, even after transforming the 

response variable. 

 

III.2.3. Statistical modeling 

III.2.3.1. Modeling approaches 

The first modeling approach carried out in this study to explain the blue shark 

catch rates in the southern Atlantic Ocean was performed with GLM models 

(McCullagh and Nelder, 1989; Agresti, 2002) that can be noted as: 

0(��) = �� + ����,� + ����,� +⋯+ ����,� +	2� 

Where η represents the link function, xi the model variables, β the model 

coefficients that were estimated by maximum likelihood, and ε represents the errors. 

The variable selection criteria followed the stepwise approach recommended by 

Hosmer and Lemeshow (2000). The univariate significance of each explanatory variable 

was determined by the Wald statistic and by the likelihood ratio tests, comparing each 

univariate model with the null model. The significant variables were then used to 

construct a simple effect multivariate GLM, with the non-significant variables (at the 

5% level) eliminated consecutively from the model. At this stage, the variables that had 

been eliminated in the first step were further tested, in order to determine an eventual 

significance within the framework of a multivariate model. Once a final multivariate 

simple effects model was obtained, each pair of possible 1st degree interactions was 

tested, and those were considered for inclusion in the final model if significant at the 

1% level, using Wald statistics and likelihood ratio tests. 

In terms of the GLM assumptions regarding the explanatory variables, the 

assumption of linearity (in the continuous variables) with the linear predictor was 

assessed by creating and analyzing GAM plots. If evidences of non-linearity were 

present, then multivariate fractional polynomial transformations were carried out, and 

the transformed explanatory variables were used in the final models (Royston and 

Altman, 1994). 
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Another assumption in the GLM models that was considered was the fact that the 

samples should be independent (randomly collected), but in this case the data comes 

from a fishery-dependent source, i.e., from the commercial fishery. This means that 

some variables, for example the skill of the skipper and crew for handling the fishing 

gear that may have implications on the catch rates, were not controlled. To handle this 

lack of independence, an alternatively modeling approach with Generalized Linear 

Mixed Models (GLMM) was carried out (Jiang, 2007; Fitzmaurice et al., 2009). 

GLMM are extensions of GLM and combine the properties of two statistical 

frameworks widely needed in biological studies, namely linear mixed models, which 

incorporate random effects, and generalized linear models, which handle non-normal 

data (Bolker et at., 2008). Within GLMM, two types of variables can be considered, the 

fixed effects and the random effects. Random effects typically include blocks in 

experiments or observational studies that are replicated across sites or times, but can 

also encompass variation among individuals, species, regions or time periods (Bolker et 

al., 2008). The choice of what should be a fixed and random effect can sometimes be a 

conceptual choice, and in our study we chose to use as random variables the vessel 

effect, given that conceptually the variability in the blue shark catch rates between 

vessels may depend on the intrinsic characteristics of each fishing vessel, skipper and 

crew, while the other possible explanatory variables (i.e. season, year, branch line 

material, SST, Chlorophyll, MLD, SSH, current velocity and lunar luminosity) were 

considered as fixed effects. Because the GLMM in this study were used mainly as a 

comparative technique with the more commonly used GLM approaches, the same 

variables that were selected for the final GLM models were used, adding only the vessel 

effect as a random variable. However, and for comparison and validation purposes, a 

GLMM with the variables selected using a stepwise top-down strategy, as 

recommended by Zuur et al. (2009) for these types of models, was also created. 

The GLMM used in this study can be defined as 

0(��3) = �� + ����,�3 + ����,�3 +⋯+ ����,�3 +	
3 +	2�3 

Where η represents the link function, xi the model fixed effects variables, β the 

model coefficients that were originally estimated with penalized quasi-likelihood (PQL) 

(Venables and Ripley, 2002) and then with Laplace approximations in the final models 

(Bolker et al., 2008), a represents the random variable with a distribution defined by 
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~4(0, 6�), and ε represents the errors. In this specific case the index j of the equation 

represents the different vessels, given that only the vessel effect was used as a random 

variable, and the index i represents the samples. 

 

III.2.3.2. Dealing with zeros in the response variable 

Both the blue shark catches in numbers per set (n) and the CPUE (n/1000 hooks) 

are types of response variables characterized for having some zero values, specifically 

in the fishing sets with zero catches of blue sharks. Because of these characteristics, 

several alternative approaches in terms of error distributions were used and tested. Most 

of the distributions used in this work can be defined in several different ways, and we 

used the notations presented by Zuur et al. (2009). 

The first approach to deal with the zeros in the response variable was to add a 

small constant (δ) to all observed CPUE values, so that the response variable was 

transformed into CPUE + δ, and become a continuous positive variable that no longer 

contained zeros. The choice of the δ value to be added can be somewhat subjective, and 

after testing some possible alternatives (1 and 10% of the mean), we added the value of 

1, which seems to be a common approach in many fisheries biology studies (e.g. Ortiz 

and Arocha, 2004; Punt et al., 2000). With the response variable transformed in this 

way (Yi now CPUE+1), a Gamma distribution defined by ��~7
88
(9, :) was used to 

model the data, with the expected values and variance defined by: 


(�) = 9 

�
�(�) = 9�

:  

Where µ is the mean and ν-1 defines the dispersion, with small values of ν relative 

to µ2 implying that the spread of the data is large. 

The second alternative approach was to use distributions for categorical (count) 

data, such as the Poisson and the Negative Binomial (NB), and in those cases the 

response variable used was the blue shark catches in number (n). In both those cases the 

number of hooks in each specific set was used in the right-hand side of the model 
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equations as a variable offset, functioning as an exposure variable, which indicates the 

number of times the event (catches in number) could have occurred in terms of 

opportunities (number of hooks used). 

Assuming a Poisson distribution the catches of blue sharks in number 

follow		��~;(9), with expected value and variance defined by: 


(�) = 9 

�
�(�) = 9 

Assuming a NB distribution the catches of blue sharks in number 

follow	��~4�(9, <), with expected value and variance defined by: 


(�) = 9 

�
�(�) = 9 + 9�

<  

Where k defines the dispersion parameter; if k has large values (relative to µ2) 

then the term 9�
<=  approximates 0 and the variance of Y becomes µ, which 

approximates to a Poisson distribution. This NB can therefore be used instead of a 

Poisson distribution in cases where the data is overdispersed. 

Additionally, and as another possible approach to deal with eventual 

overdispersion in the data in this type of models, a quasi-Poisson model was also used 

for comparative purposes with the Poisson and Negative Binomial. The quasi-Poisson 

estimation allows to deal with this type of problems (over or under-dispersion) as 

instead of specifying a probability distribution for the data it establishes a relationship 

between the mean and the variance in the form of a variance function, that can include a 

dispersion or scale parameter as a multiplicative factor (Faraway, 2006; Zuur et al., 

2009). In this model the mean and variance are given by: 


(�) = 9 

�
�(�) = > × 9 
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Where φ is the dispersion or scale parameter. Although in this models the Poisson 

distribution is not specified, it still uses the same type of model structure in terms of link 

function. If the φ value = 1 then, in theory, the estimated parameters and standard errors 

are equal to the Poisson GLM, while values of φ > 1 and φ < 1 refer to overdispersed 

and underdispersed data, respectively (Zuur et al., 2009). 

Finally, another approach to model this data was carried out with Tweedie 

distributions, also called compound Poisson–Gamma distributions (Dunn, 2004), that 

are defined by: 


(�) = 9 

�
�(�) = > × 9? 

In which φ is the dispersion parameter and p is the index parameter. When the 

index (p) parameter has values between 1 and 2, the distribution is continuous for 

positive real numbers, but has an added discrete mass at 0, which seems appropriate to 

model CPUE data (continuous data with an added mass of zeros). The index parameter 

for this specific dataset was calculated outside the models, by maximizing the likelihood 

profile function of possible values of p between 1 and 2. 

In all the modeling approaches tested (both GLM and GLMM) the link function 

used in the models was the log. Within the Poisson and NB models, because of this log 

link, the model offsets were defined as log(number of hooks), constraining that 

parameter [log (number hooks)] to 1. 

 

III.2.3.3. Model comparison, validation and goodness-of-fit 

For each model that was run the residuals were plotted and analyzed, to determine 

visually if major problems were taking place, such as overdispersion problems, the 

presence of outliers or influencial observations. In general the deviance residuals were 

used (Zuur et al., 2009), except in the Tweedie models where the quantile residuals 

were used as recommended by Dunn and Smyth (1996). 
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For each model the values of the AIC - Akaike Information Criterion (Akaike, 

1974), and R2 - Nagelkerke coefficient of determination (Nagelkerke, 1991), were 

calculated and used for model comparison in terms of goodness-of-fit. With the final 

models calculated, the estimated coefficients were compared between approaches (GLM 

versus GLMM) and between different distributions (Gamma, Poisson, Negative 

Binomial and Tweedie). 

Because multiple explanatory variables were used in these models, which may 

potentially cause multicollinearity problems, Generalized Variance Inflation Factors 

(GVIF) were calculated for the models main effects (Fox and Monette, 1992). The 

definition of threshold values for these GVIF seems to be somewhat arbitrary, but as a 

general rule most authors recommend that values higher than 5 may be cause for 

concern, while values higher than 10 can indicate serious collinearity problems (Hair et 

al., 1995; O'Brien, 2007). 

Another validation measure used, particularly to determine eventual over-fitting 

problems in the models, was to measure the prediction error of the models by using a k-

fold cross validation procedure, in this case using k=10 as this was demonstrated to 

produce the best results in large datasets with n>100 (Borra and DiCiaccio, 2010). With 

this procedure, the data was randomly divided into 10 equally sized groups, with new 

models fitted sequentially using data from only 9 groups (training sets) and used to 

predict and calculate the errors using the group that was left outside (testing set). The 

measure of error considered was the Mean Squared Error (MSE), defined as: 

@A
 = 1
BCD�EF − ��G�

-

�H�
 

Where �I  is the vector of the fitted predictions and Y is the vector of the observed 

values. This MSE was calculated k times in each model being tested (using sequentially 

each of the training/testing sets), and a final cross-validation error (errCV) calculated as 

the mean of the k MSE values obtained. 

Finally, the candidate models were compared and interpreted in terms of blue 

shark catch rate predictions. Eight possible different scenarios were considered, 

reflecting theoretical changes in the fishery in terms of spatial, operational and seasonal 
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aspects. The spatial scenarios considered reflected four general regions in the study 

area, specifically the SW, NW, NE and SE, considering the 1st and 3rd quartiles of the 

latitude and longitude gradients; the operational scenarios reflected possible changes 

between wire and monofilament gangions; and the seasonal scenarios reflected the 

various seasons along the year. 

Data analysis for this paper was carried out with the R Project for Statistical 

Computing 2.14.1 (R Development Core Team, 2012) and AD Model Builder 10.0 

(Fournier et al., 2012). In the R program some additional libraries were used for specific 

analyses, including the Levene tests and calculation of GVIF (library “car”, Fox and 

Weisberg 2011), fitting Tweedie distributions and models including the maximum 

likelihood estimation of the index parameter (library “tweedie”, Dunn 2010), fractional 

polynomials models and transformation (library “mfp”, Ambler and Benner, 2010), 

GAM models and plots (library “gam”, Hastie, 2011), fitting GLMM models using 

ADMB (library “glmmADMB, Skaug et al., 2012), fitting GLMM models with the 

tweedie distribution (library “cplm”, Zhang, 2012), fitting GLMM models with 

penalized quasi-likelihoods (library “MASS”, Venables and Ripley, 2002), and cross 

validation procedures (library “boot”, Canty and Ripley, 2011). 

 

III.3. Results 

III.3.1. Preliminary data analysis 

Of the 533 fishing sets that were monitored and used in this study, positive blue 

shark catches occurred in almost all (specifically in 525), meaning that only 8 sets 

(1.52%) had zero catches of blue shark. In the positive sets the catches of blue shark in 

number varied from 1 to 184, with an overall average of 28.75 (SD=25.73) specimens 

per set. The catch rates (CPUE, n/1000 hooks) ranged from 0 to 176.9, with an average 

of 21.13 (SD=19.71) per set. The CPUE distribution was not normally distributed (K-S 

with Lilliefors correction: D = 0.142, p-value < 0.001), and was highly asymmetrical 

and skewed to the right (Figure III.2). 
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Figure III.2. Distribution of blue shark CPUEs (n/1000 hooks) for the Portuguese 
pelagic longline fishery in the southern Atlantic Ocean. A smooth kernel density line 
and a QQ plot with the distribution are also represented. 

 

In terms of preliminary analysis of the explanatory variables, the southern blue 

shark CPUE had a significant and positive correlation with longitude, wind velocity, 

mixed layer depth and chlorophyll, and a significant negative correlation with latitude, 

sea surface high, salinity and SST (Figure III.3). By the contrary, blue shark CPUE did 

not show a significant correlation with intensity of moon illumination and current 

velocity (Figure III.3). Some of the possible explanatory variables were also correlated 

between themselves, such as for example sea surface height that was negatively 

correlated with both latitude and longitude, or SST that was highly correlated with 

latitude (Figure III.3). 
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Figure III.3. Scatterplots matrices with the relationships between blue shark CPUE 
and the candidate continuous explanatory variables used 
diagonal panels show the scatterplots with smooth lowess regression lines. The upper 
diagonal panels show the values of the non
respective significance levels: ***
0.1. The diagonals show the distribution of the variables with histograms and density 
lines. 

 

While for most of the variables the information in the database was complete (i.e. 

there were no missing values), some of the variables

had this additional problem of having some missing values. Particularly problematic 

were the cases of the current velocity with 103 missing values (corresponding to 19.3% 

of the fishing sets), and the wind velocity with

39.0% of the fishing sets). Because of those issues with missing values and because 

those two more problematic variables were highly correlated with some of the other 

possible explanatory variables
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Scatterplots matrices with the relationships between blue shark CPUE 
and the candidate continuous explanatory variables used in the models. The lower 
diagonal panels show the scatterplots with smooth lowess regression lines. The upper 
diagonal panels show the values of the non-parametric Spearman correlations and the 
respective significance levels: *** - p-value < 0.01; ** - p-value < 0.05; *
0.1. The diagonals show the distribution of the variables with histograms and density 

While for most of the variables the information in the database was complete (i.e. 

there were no missing values), some of the variables that were extrapolated 

had this additional problem of having some missing values. Particularly problematic 

were the cases of the current velocity with 103 missing values (corresponding to 19.3% 

of the fishing sets), and the wind velocity with 208 missing values (corresponding to 

39.0% of the fishing sets). Because of those issues with missing values and because 

those two more problematic variables were highly correlated with some of the other 

possible explanatory variables, they were not considered for using in the final models. 

 
Scatterplots matrices with the relationships between blue shark CPUE 

in the models. The lower 
diagonal panels show the scatterplots with smooth lowess regression lines. The upper 

parametric Spearman correlations and the 
alue < 0.05; * - p-value < 

0.1. The diagonals show the distribution of the variables with histograms and density 

While for most of the variables the information in the database was complete (i.e. 

that were extrapolated a posteriori 

had this additional problem of having some missing values. Particularly problematic 

were the cases of the current velocity with 103 missing values (corresponding to 19.3% 

208 missing values (corresponding to 

39.0% of the fishing sets). Because of those issues with missing values and because 

those two more problematic variables were highly correlated with some of the other 

dered for using in the final models. 
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When tested in univariate models, the current velocity was not significant (Wald 

statistic = 1.149, p-value = 0.251; likelihood ratio test p-value = 0.224), while the wind 

velocity was significant (Wald statistic = 2.646, p-value = 0.009; likelihood ratio test p-

value = 0.008). It should be noted that for those univariate models and tests, new 

subsets of data were build with the removal of all missing values from those variables, 

so that the likelihood ratio tests for comparing nested models could be performed. 

Some variations in the blue shark CPUE were detected in the categorical variables 

that were analyzed (Figure III.4). Specifically, and using non-parametric statistical tests, 

significant differences were detected in the blue shark CPUE between years (Kruskal-

Wallis: Chi2=69.6, df=3, p-value < 0.001), seasons (Kruskal-Wallis: Chi2=105.5, df=3, 

p-value < 0.001) and gangion line material (Mann-Whitney: W=4664, p-value < 0.001). 

 

Figure III.4. Boxplots with the blue shark CPUE distribution for the categorical 
variables analyzed, specifically year of capture (2008, 2009, 2010, 2011), season 
(1=Jan-Mar, 2=Apr-Jun, 3=Jul-Sep, 4=Oct-Dec) and gangion material used in the 
longline (monofilament or wire). 

 

III.3.2. Modeling blue shark catch rates with GLM 

III.3.2.1. Gamma models adding a constant to the response variable 

Given that the percentage of fishing sets with zero catches was relatively small 

(1.52%), a first approach to model the blue shark CPUEs was to add a small constant (δ, 

in this case set to 1) to the CPUE values, in a way that the response variable became 
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CPUE+1. With this transformation the Yi values no longer contained zeros, but were 

still highly asymmetrical and skewed to the right (as noted in Figure III.2), and as such 

a Gamma distribution with a log link function seemed a good possible approach. 

In this approach, the variables considered significant in the simple effects 

multivariate GLM, using the variable selection method described in the methods, were 

gangion material, season, year, latitude, longitude, chlorophyll and SST. In this 

multivariate simple effect model, the GVIFs were calculated and in all cases the values 

were < 10, meaning that severe collinearity problems between these explanatory 

variables were not likely to be occurring. Specifically, the GVIF factors calculated 

were: Gangion=2.00, Season=7.30, Year=4.73, Latitude=4.92, Longitude=3.99, 

Chlorophyll=1.61 and SST=6.92. 

The functional form of the continuous explanatory variables used in this simple 

effects model (latitude, longitude, chlorophyll and SST) were tested for the assumption 

of linearity with the linear predictor using GAM plots, where it was possible to see that 

the expected CPUE seemed relatively linear with all variables, except with regards to 

the latitude and in the higher range of the SST values (Figure III.5). Specifically, the 

expected CPUE seemed to increase towards eastern longitudes and in waters with 

higher chlorophyll concentration, in both cases in a relatively linear fashion. With 

regards to the SST there was an increase along most of the observed water temperature 

values, with a peak at around 26-27 ºC, followed by a slight decrease for the highest 

temperatures in the range (Figure III.5). The effects of latitude showed a tendency for 

higher expected CPUE in the southern regions (south of 30ºS), followed by a decrease 

in CPUEs for the northern areas (towards equatorial waters) with this relation seeming 

to be non-linear (Figure III.5). 
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Figure III.5. Generalized Additive Model (GAM) plots with the shape of the 
continuous explanatory variables (Latitude - top left; Longitude - top right; 
Chlorophyll - bottom left and Sea Surface Temperature - bottom right) for modeling 
blue shark catch rates in the Southern Atlantic Ocean. 

 

The eventual non-linearity of those continuous variables was also tested with 

multivariate fractional polynomials models, and only the latitude required functional 

form transformation, specifically with a log function. The other continuous variables 

were also transformed to be used in the final models, but only using scale 

transformations, defined as: 

Latitude.t (transformed latitude) = log((Latitude+34.1)/10) 

Longitude.t (transformed longitude) = (Longitude+43.8)/10 

Chlorophyll.t (transformed chlorophyll-a) = Chlorophyll/0.1 

SST.t (transformed sea surface temperature) = SST/10 
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After this step, all possible 1st degree interactions were tested in the multivariate 

simple effects model, and the ones significant at the 1% level were included. In this 

final model, the gangion material was responsible for explaining most of the deviance, 

followed by the factors year, latitude and longitude, and then the remaining variables. 

The interactions that were significant at the 1% level and used in this final model were 

gangion material with longitude, and gangion material with chlorophyll (Table III.1). 

Table III.1. Deviance table for the Gamma GLM for predicting the expected blue 
shark CPUE in the southern Atlantic Ocean. Resid.df are the residual degrees of 
freedom and Resid.dev is the residual deviance. Significance is given by the p-
values. 

Variable Df Deviance Resid.df Resid.dev p-value 

Null 472 362.6 
Gangion 1 138.1 471 224.5 < 0.01 
Season 3 12.7 468 211.8 < 0.01 
Year 3 40.6 465 171.2 < 0.01 
Latitude.t 1 12.2 464 159.0 < 0.01 
Longitude.t 1 15.8 463 143.1 < 0.01 
Chlorophyll.t 1 2.9 462 140.2 < 0.01 
SST.t 1 10.8 461 129.4 < 0.01 
Gangion:Longitude.t 1 5.8 460 123.6 < 0.01 
Gangion:Chlorophyll.t 1 1.5 459 122.1 0.01 
 

In terms of validation of this Gamma GLM model with a residual analysis, the 

variation of the deviance residuals along the fitted values seemed to be spread in a 

relatively random way around the value of zero, and without any major increases or 

decreases in variance. The QQ plot showed that most of the values were placed along 

the expected QQ line, except for a few outliers, and a similar conclusion was reached 

with the histogram of the distribution of the deviance residuals, that also showed a 

relatively normal distribution except for a few outliers (Figure III.6). In terms of Cook 

distances, two points were identified that could have leverage and be influential in the 

estimation of the parameters (Figure III.6). 

The outliers identified in this analysis (data points 420 and 421) refer to two 

fishing sets with zero catches (CPUE=0) but that were carried out under situations that 

the model was expecting positive catches, specifically because those fishing sets were 

carried out in southeastern areas of the Atlantic Ocean in Season 4 and using wire 
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gangions. The remaining zeros in the dataset did not seem to constitute major problems 

for model fitting because they occurred in areas where those zeros are to be expected 

more often (northwest region) and in sets using monofilament gangions. In terms of the 

leverage points detected with the Cook distances (data points 95 and 229), both refer to 

fishing sets with positive catches that took place in the southwest Atlantic region. 

 

Figure III.6. Residual analysis for the Gamma GLM. The graphics plotted for the 
outlier analysis show 1) residuals histogram, 2) QQ-plot and 3) residuals along the 
predicted values; and the analysis to detect observations with leverage are 4) Cooks 
distances along the data and 5) Cook distances half-normal plot. 

 

By removing each of the two outlier values the changes in the model parameters 

were minimal, while by removing the influential values the changes were a little larger, 

but still < 20% for all parameters (Table III.2). This means that, in general, the values 

detected in the residual analysis are not influential in the estimated model parameters. 

Aditionally, when those values were removed the improvements in terms of goodness-

of-fit (R2) were only slightly noticeable (Table III.2). 



CHAPTER III  – MODELING BLUE SHARK CATCH RATES 

59 
 

Table III.2. Estimated parameters (with the respective SE) of the original model using all data-points, and four alternative models each 
excluding one possible outlier or influential value. The differences in each of the estimated parameters in percentage are given, as well as each 
model goodness-of-fit measures in terms of R2. 

Parameter 
All dataset   Excluding point 420   Excluding point 421   Excluding point 95   Excluding point 229 

Estimate SE   Estimate SE Dif(%)   Estimate SE Dif(%)   Estimate SE Dif(%)   Estimate SE Dif(%) 
(Intercept) -1.26 0.48 -1.26 0.48 0.0 -1.26 0.48 -0.7 -1.47 0.49 16.4 -1.40 0.47 10.9 
GangionWire 0.78 0.20 0.78 0.19 -0.8 0.78 0.19 -0.6 0.78 0.19 -0.2 0.82 0.19 4.4 
Season2 0.60 0.14 0.61 0.14 1.4 0.61 0.14 1.2 0.64 0.14 6.5 0.62 0.14 3.8 
Season3 0.96 0.11 0.96 0.11 0.2 0.96 0.11 0.2 0.99 0.11 3.2 0.98 0.11 1.7 
Season4 0.47 0.08 0.48 0.08 0.7 0.48 0.08 0.6 0.48 0.08 2.3 0.49 0.08 2.5 
Year2009 -0.20 0.11 -0.20 0.11 2.1 -0.20 0.11 1.0 -0.21 0.11 2.6 -0.23 0.11 13.0 
Year2010 0.56 0.11 0.56 0.11 -0.4 0.56 0.11 -0.1 0.55 0.11 -0.5 0.55 0.11 -1.2 
Year2011 0.56 0.11 0.57 0.11 0.5 0.57 0.11 0.9 0.57 0.11 1.9 0.56 0.11 -1.2 
Latitude.t -0.46 0.05 -0.46 0.05 0.2 -0.46 0.05 0.1 -0.50 0.06 8.4 -0.47 0.05 1.9 
Longitude.t 0.63 0.08 0.63 0.08 0.5 0.63 0.08 0.4 0.64 0.08 1.6 0.62 0.08 -2.0 
Chlorophyll.t -0.25 0.12 -0.25 0.12 0.6 -0.25 0.12 0.5 -0.24 0.12 -3.7 -0.21 0.12 -16.3 
SST.t 0.93 0.18 0.93 0.18 -0.1 0.93 0.18 -0.6 1.01 0.19 8.4 0.97 0.18 4.0 
GangionWire:Longitude.t -0.35 0.09 -0.35 0.09 -0.3 -0.35 0.09 -0.1 -0.36 0.09 0.9 -0.33 0.08 -5.6 
GangionWire:Chlorophyll.t 0.32 0.12   0.32 0.12 0.2   0.32 0.12 0.3   0.31 0.12 -2.2   0.26 0.12 -17.5 

R2 0.654 0.666 0.665 0.663 0.660 
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III.3.2.2. Models for count data: Poisson, quasi-Poisson and Negative Binomial 

A second possible approach to modeling was carried out with discrete 

distributions that can by themselves handle some zero values, specifically Poisson, 

quasi-Poisson and NB. In this case, and because the purpose was to compare modeling 

approaches, this type of models were applied to the complete model estimated 

previously. With these models, and similarly to what had been observed before in the 

Gamma model, the gangion material remained the most important variable for 

explaining part of the deviance, followed by the year effect, longitude, latitude and 

season (Table III.3). 

The major difference and decision for using one of those three possible models 

has to do with the dispersion of the data. While the Poisson distribution assumes a 

dispersion parameter of 1, the NB model estimates θ (the dispersion parameter for the 

model) allowing for under or overdispersion in the data. In general, if this dispersion 

parameter in the NB is similar to 1 then a Poisson model may be more adequate, while 

much smaller or larger values represent under or overdispersed data that should not be 

modeled with a Poisson distribution. In this specific case the θ value was estimated at 

4.510 (SE=0.367) meaning that the data is overdispersed and therefore a Poisson model 

might be producing biased estimates, especially with regards to the standard deviations 

of the parameters. 

Other possible solutions for this overdispersion are to either use a quasi-Poisson 

model, in this case with a calculated dispersion parameter of 7.177, or to directly 

include the dispersion parameter in the model estimates to manually correct the SE of 

the parameters. With these approaches the point estimates of the models remain the 

same as in the Poisson model, but the SE values of the parameters are increased due to 

the overdispersion of the data. Consequently, and in this specific case, the interaction 

between gangion line material and chlorophyll lost significance when considering a 

significance level of 1% (Table III.3). 
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Table III.3. Deviance table for the Poisson, quasi-Poisson and Negative Binomial 
GLM for predicting the expected blue shark catches (in number) in the southern 
Atlantic Ocean, and using the number of hooks as a model offset. Resid.df are the 
residual degrees of freedom and Resid.dev is the residual deviance. Significance of 
the variables is given by the p-values. 

Variable Df Deviance Resid.df Resid.dev p-value 

Poisson Model (with dispersion parameter)       

Null 472 9414.5 
Gangion 1 3229.6 471 6184.9 < 0.01 

Season 3 227.9 468 5957.0 < 0.01 
Year 3 1486.3 465 4470.7 < 0.01 
Latitude.t 1 515.3 464 3955.4 < 0.01 
Longitude.t 1 266.5 463 3688.9 < 0.01 
Chlorophyll.t 1 69.7 462 3619.2 < 0.01 
SST.t 1 188.8 461 3430.4 < 0.01 

Gangion:Longitude.t 1 69.6 460 3360.7 < 0.01 
Gangion:Chlorophyll.t 1 27.9 459 3332.8 0.05 

NB Model           

Null 472 1515.8 
Gangion 1 578.3 471 937.5 < 0.01 

Season 3 46.4 468 891.1 < 0.01 
Year 3 178.9 465 712.3 < 0.01 
Latitude.t 1 51.8 464 660.5 < 0.01 
Longitude.t 1 58.2 463 602.3 < 0.01 
Chlorophyll.t 1 12.6 462 589.7 < 0.01 
SST.t 1 46.5 461 543.3 < 0.01 

Gangion:Longitude.t 1 28.5 460 514.8 < 0.01 
Gangion:Chlorophyll.t 1 6.1 459 508.7 0.01 

quasi-Poisson Model           

Null 472 9414.5 
Gangion 1 3229.6 471 6184.9 < 0.01 

Season 3 227.9 468 5957.0 < 0.01 

Year 3 1486.3 465 4470.7 < 0.01 

Latitude.t 1 515.3 464 3955.4 < 0.01 

Longitude.t 1 266.5 463 3688.9 < 0.01 

Chlorophyll.t 1 69.7 462 3619.2 < 0.01 

SST.t 1 188.8 461 3430.4 < 0.01 

Gangion:Longitude.t 1 69.6 460 3360.7 < 0.01 

Gangion:Chlorophyll.t 1 27.9 459 3332.8 0.05 
 

This overdispersion problem was also confirmed when comparing the residuals 

plots, with the variance of the residuals increasing with the expected values for the 

Poisson model, while in the NB model the residuals seemed more randomly distributed 
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along the value of zero, with no major increasing or decreasing trends in their variance 

(Figure III.7). Additionally, in the Pois

probably a severe outlier (point 141, observed in the residuals plots 

another point with a very large influence (poi

plots of Figure III.7) and the removal of those could have large implications in the 

estimated parameters of the model.

this data, the Negative Binomial

data would be preferable and 

Alternatively, a quasi-Poisson

parameter to correct the SE of the parameters could also be used

Figure III.7. Residual analysis for the Poisson (plots 1
(plots 5-8) GLM models for explaining the blue shark catch rates in the Southern 
Atlantic Ocean. The graphics for the outlier analysis show the deviance residuals 
along the fitted values and the QQ
leverage represent the Cook distances along the data and the Cook distances half
normal plots. 

 

III.3.2.3. Tweedie models 

The last modeling approach was carried out with a Tweedie model. In this case, 

the index parameter (p) estimated by maximum likelihood with a likelihood functi
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profile, was estimated to be 1.492 (95% CI = [1.415, 1.571]) (Figure III.8). In this 

model, and again similarly to the previous cases, the gangion line material remained the 

most important variable for explaining part of the deviance, followed by the year effect, 

longitude, latitude and season (Table III.4). 

 

Figure III.8. Likelihood function profile (with 95% confidence interval) for the 
Tweedie model p-index (p), applied to the blue shark catch rate data in the Southern 
Atlantic Ocean. 

 

Table III.4. Deviance table for the Tweedie GLM for predicting the expected blue 
shark catch rates (CPUE) in the southern Atlantic Ocean. Resid.df are the residual 
degrees of freedom and Resid.dev is the residual deviance. Significance of the 
variables is given by the p-values. 

Variable Df Deviance Resid.df Resid.dev p-value 

Null 472 1725.34 
Gangion 1 620.92 471 1104.42 < 0.01 
Season 3 46.36 468 1058.06 < 0.01 
Year 3 236.34 465 821.72 < 0.01 
Latitude.t 1 78.66 464 743.05 < 0.01 
Longitude.t 1 53.81 463 689.24 < 0.01 
Chlorophyll.t 1 14.15 462 675.09 < 0.01 
SST.t 1 44.67 461 630.42 < 0.01 
Gangion:Longitude.t 1 22.54 460 607.88 < 0.01 
Gangion:Chlorophyll.t 1 6.03 459 601.85 0.02 
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In terms of model diagnostics, the variation of the quantile residuals along the 

fitted values seemed to be spread along the value of zero in a relatively random way, 

and without major increases or decreases in variance. The QQ plot showed that most of 

the values were placed along the expected QQ line, again with the exceptions of a few 

outliers, even though in this case they seemed to be more extreme than in the case of the 

Gamma GLM (Figure III.9). In terms of influential values detected with the Cook 

distances only a few points were detected, but in this case the leverage of the data point 

95 (also identified in the previous models) seemed to be much more influential than in 

some of the other models, in particular when compared to the Gamma GLM (Figure 

III.9). 

 

Figure III.9. Residual analysis for the Tweedie GLM model for explaining the blue 
shark catch rates in the Southern Atlantic Ocean. The graphics plotted for the outlier 
analysis show the 1) quantile residuals histogram, 2) QQ-plot and 3) quantile 
residuals along the fitted values; the analysis to detect influential observations are the 
4) Cooks distances along the data and 5) Cook distances half-normal plot. 
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III.3.2.4. Comparing GLM models 

A comparison of the estimated parameters for the various candidate GLM models 

is presented in Table III.5. It is interesting to note that regardless of the distribution used 

(Gamma, NB, quasi-Poisson or Tweedie) all parameters are providing relatively similar 

values, and always with the same signal, i.e. they are consistently either positive or 

negative, meaning that relatively similar conclusions are taken with all the candidate 

models in terms of the influence of the various explanatory variables in the expected 

blue shark catch rates. However, some parameters were either significant or non-

significant depending on the distribution used. The most obvious case was the year 

2009 (within the variable year) that was significant at the 5% level only when using the 

NB model, while it was only significant at the 10% level with the Gamma and Tweedie 

models, and non-significant with the quasi-Poisson model. Similarly, the interaction 

between gangion and chlorophyll was on the limit of significance at the 1% level using 

the Gamma and Negative Binomial models, while with the other distributions it was not 

significant at 1%. 

In terms of the different models goodness-of-fit, the R2 values obtained were 

0.654, 0.641, 0.655 and 0.636 for the models using respectively the Gamma, Poisson 

(value equal to the quasi-Poisson), NB and Tweedie distributions. Those values were all 

relatively similar, with only very slightly better fits for the Gamma and NB, and a worst 

fit for the Poisson. In terms of AIC the obtained values were 3280.2, 3561.9 and 3312.8 

for the Gamma, Negative Binomial and Tweedie models. Using this criterion, the 

Gamma model seemed to be performing better than the others, followed by the Tweedie 

and finally the NB. In this regards, the original Poisson model was performing much 

worse with a calculated AIC of 5575.9, which is consistent to the problems detected 

with the residuals in terms of overdispersion in the data. 
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Table III.5. Parameter estimation for the GLM Gamma, Negative Binomial, quasi-Poisson and Tweedie models for predicting the expected 
blue shark catches in the southern Atlantic Ocean. The Gamma and Tweedie models are predicting blue shark catch rates in CPUE (CPUE+1 
for the Gamma), while the Negative Binomial and quasi-Poisson are predicting blue shark catches in numbers (n). 

Model parameters 
Gamma   Negative Binomial   quasi-Poisson   Tweedie 

Est. SE p-value   Est. SE p-value   Est. SE p-value   Est. SE p-value 
(Intercept) -1.26 0.48 < 0.01 -8.83 0.53 < 0.01 -8.11 0.56 < 0.01 -1.57 0.51 < 0.01 
GangionWire 0.78 0.20 < 0.01 1.07 0.24 < 0.01 0.99 0.38 0.01 1.01 0.27 < 0.01 
Season2 0.60 0.14 < 0.01 0.62 0.16 < 0.01 0.58 0.17 < 0.01 0.60 0.16 < 0.01 
Season3 0.96 0.11 < 0.01 1.01 0.11 < 0.01 0.90 0.10 < 0.01 0.96 0.11 < 0.01 
Season4 0.47 0.08 < 0.01 0.51 0.09 < 0.01 0.43 0.09 < 0.01 0.47 0.09 < 0.01 
Year2009 -0.20 0.11 0.07 -0.25 0.12 0.04 -0.19 0.15 0.20 -0.22 0.13 0.08 
Year2010 0.56 0.11 < 0.01 0.56 0.13 < 0.01 0.69 0.14 < 0.01 0.62 0.13 < 0.01 
Year2011 0.56 0.11 < 0.01 0.56 0.12 < 0.01 0.51 0.13 < 0.01 0.53 0.12 < 0.01 
Latitude.t -0.46 0.05 < 0.01 -0.49 0.06 < 0.01 -0.37 0.04 < 0.01 -0.44 0.05 < 0.01 
Longitude.t 0.63 0.08 < 0.01 0.80 0.10 < 0.01 0.72 0.16 < 0.01 0.74 0.11 < 0.01 
Chlorophyll.t -0.25 0.12 0.04 -0.30 0.15 0.04 -0.39 0.22 0.08 -0.32 0.16 0.05 
SST.t 0.93 0.18 < 0.01 1.04 0.20 < 0.01 0.81 0.18 < 0.01 0.93 0.19 < 0.01 
GangionWire:Longitude.t -0.35 0.09 < 0.01 -0.50 0.11 < 0.01 -0.44 0.17 0.01 -0.46 0.12 < 0.01 
GangionWire:Chlorophyll.t 0.32 0.12 0.01   0.37 0.15 0.01   0.44 0.22 0.05   0.38 0.17 0.02 
R2 0.654 0.655 0.636 0.641 
AIC 3280.2 3561.9 3312.8 
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For the 10-fold cross-validation procedure, the estimated mean MSE values were 

236.5, 430.7, 394.6 and 245.2 for the Gamma, Poisson (equal value in the quasi-

Poisson), NB and Tweedie models, respectively. Again with this approach the models 

for explaining the continuous catch rates (Gamma and Tweedie) seemed to be 

performing better (with lower associated errors) than the models for count data (Poisson 

and NB), again with the Gamma performing a little better than the Tweedie. However, 

the results obtained with this analysis should be interpreted with care, as the models 

being compared are not predicting exactly the same response, i.e., the continuous 

distribution models are predicting blue shark CPUE (CPUE+1 in the Gamma), while the 

count data models are predicting blue shark captures in numbers (n). 

 

III.3.3. Modeling blue shark catch rates with GLMM 

The same distributions that were used with the GLM analysis were used in 

GLMM approaches, using the effect of Vessel as a random effect. In terms of residual 

analysis of those new models again there seemed to be problems with the Poisson 

distribution, with the residuals showing an increasing variance along the fitted values, 

while no major problems were found in the other models (Figure III.10). The few 

possible outliers and influential values that had been previously detected in the GLM 

models seemed to be less severe in the GLMM models, meaning that the GLMM 

approach seems to be modeling better the variability in the dataset, including those 

more extreme values. 
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Figure III.10. Residual analysis (standardized residuals along the fitted values) for 
the Gamma, Poisson, Negative Binomial and Tweedie GLMM models.

 

In terms of AIC comparisons for the GLMM, the obtained values were 3279.4, 

3560.2 and 3310.8 for the Gamma, NB and Tweedie models, respectively. Again, and 

similarly to the AIC analysis for the GLM, the best fit was obtained with the Gamma, 

followed by the Tweedie and 

for the original Poisson model, the AIC was much worse for the Poisson GLMM, in this 

case of 5529.7, again demonstrating that even thought the GLMM can account for more 

variability in the data than the GLM, the goodness

model due to overdispersion in the data

NB or a quasi-Poisson GLMM 

model was chosen. 
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Residual analysis (standardized residuals along the fitted values) for 
the Gamma, Poisson, Negative Binomial and Tweedie GLMM models.
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spersion in the data. Therefore, and like in the GLM case, 

GLMM model should be used instead if a discrete distribution 
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When comparing the AIC values between GLM and GLMM approaches, the 

GLMM models always had slightly better AIC values, even though the differences were 

generally small. Specifically, the differences in the AIC values (∆ AIC) between GLM 

and GLMM approaches of the same family were 0.8, 46.2, 1.7 and 2.0 for the Gamma, 

Poisson, NB and Tweedie models, respectively. 

With these GLMM models, and as defined in the model formulation, the random 

variable (vessel effect) followed a Normal distribution with mean 0, and in this case 

with estimated standard deviations of 0.0937, 0.1276 and 0.1205 for the Gamma, NB 

and Tweedie models, respectively. In terms of the fixed effects, the obtained coefficient 

values were again providing the same signal, i.e., being consistently either positive or 

negative and with similar estimated values (Table III.6). Still, and even though the 

differences in estimates were relatively minor, again some of the model parameters (e.g. 

2009 within the factor year) were either significant or non-significant depending on the 

specific distribution used. 
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Table III.6. Parameter estimation for the GLMM Gamma, Negative Binomial, and Tweedie models for predicting the expected blue shark 
catches in the southern Atlantic Ocean. The Gamma and Tweedie models are predicting blue shark catch rates in CPUE (CPUE+1 for the 
Gamma), while the Negative Binomial is predicting blue shark catches in numbers (n). The Poisson GLMM results are not shown due to the 
overdispersion problems identified in the residual analysis. 

Model parameters 
Gamma GLMM   Negative Binomial GLMM   Tweedie GLMM 

Estimate SE p-value   Estimate SE p-value   Estimate SE p-value 
(Intercept) -0.47 0.49 0.34 -8.34 0.58 < 0.01 -1.07 0.56 0.05 
GangionWire 0.50 0.19 0.01 0.93 0.25 < 0.01 0.87 0.28 < 0.01 
Season2 0.57 0.13 < 0.01 0.55 0.17 < 0.01 0.51 0.16 < 0.01 
Season3 0.83 0.11 < 0.01 0.89 0.12 < 0.01 0.84 0.12 < 0.01 
Season4 0.41 0.08 < 0.01 0.45 0.09 < 0.01 0.42 0.09 < 0.01 
Year2009 -0.18 0.10 0.08 -0.28 0.12 0.02 -0.26 0.13 0.04 
Year2010 0.54 0.11 < 0.01 0.53 0.12 < 0.01 0.58 0.13 < 0.01 
Year2011 0.46 0.11 < 0.01 0.43 0.13 < 0.01 0.41 0.13 < 0.01 
Latitude.t -0.44 0.05 < 0.01 -0.49 0.06 < 0.01 -0.44 0.05 < 0.01 
Longitude.t 0.49 0.08 < 0.01 0.77 0.11 < 0.01 0.71 0.12 < 0.01 
Chlorophyll.t -0.28 0.12 0.01 -0.37 0.15 0.01 -0.39 0.17 0.02 
SST.t 0.81 0.18 < 0.01 0.94 0.20 < 0.01 0.84 0.19 < 0.01 
GangionWire:Longitude.t -0.22 0.08 0.01 -0.44 0.11 < 0.01 -0.39 0.12 < 0.01 
GangionWire:Chlorophyll.t 0.33 0.12 < 0.01   0.43 0.15 < 0.01   0.44 0.17 0.01 
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III.3.4. Model interpretation and examples of predictions 

In terms of model interpretation, and by looking to the various candidate models 

coefficients presented in Figure III.11, some interpretations can be taken with regards to 

the effects of the explanatory variables in the expected blue shark catch rates. In terms 

of seasonality it is expected for the fishery to have lower catch rates of blue sharks 

during the season 1 (baseline season, Jan-Mar), while higher catch rates are expected 

during the other seasons, specifically with highest catches during season 3 (Jul-Sep). 

With regards to the environmental variables, higher catch rates are expected with 

increasing SST and decreasing chlorophyll concentrations, but because there is a 

significant interaction between chlorophyll and gangion material this is only true for the 

baseline gangion material level (i.e. monofilament); if wire gangions are used then the 

significant interaction between these two variables needs to be taken into account. In 

terms of spatial variables, the expected catch rates increase towards southern latitudes 

and eastern longitudes, but again a significant interaction between gangion material and 

longitude needs to be taken into account. Finally, and in terms of annual variability, the 

expected catch rates deceased from 2008 to 2009, followed by an increase in the more 

recent years of 2010 and 2011. 

In terms of general variability of the parameters, the gangion material coefficient 

showed the highest variability, while the latitude effect had a very small variability. 

Even though this was in general common for all candidate models, some models (for 

example the quasi-Poisson GLM) tended to have higher variability in all the parameters, 

including the loss of significance at the 5% level in some cases (e.g. parameter for year 

2009). 

In terms of model predictions, the blue shark catch rates were predicted for some 

possible theoretical scenarios under various fishing conditions, with the results 

presented in Table III.7. One immediate conclusion that can be taken is that the 

estimates, within each specific scenario, are relatively consistent between all candidate 

models, with predicted catch rate values relatively similar. Those scenarios were chosen 

to allow for spatial, operational and seasonal interpretations of the model outputs, and it 

is noted in terms of spatial predictions, that the expected blue shark catch rates are 

higher in the southern areas (when compared to the equatorial region), and also higher 

in the eastern areas (towards the African continent), when compared to the western 
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regions (Table III.7). In terms of operational characteristics of the fishing gear the 

expected catch rates with monofilament gangion are lower than when wire gangion are 

used. Finally, in terms of seasonal predictions the blue shark catch rates seem to be 

particularly higher during season 3 (between July and September) and lower in season 1 

(between January and March), while the expected catch rates in seasons 2 and 4 (April 

to June and October to December) have similar values in the middle of the range (Table 

III.7). 

 

Figure III.11. Comparison of parameter estimates for the various candidate GLM and 
GLMM models for predicting blue shark catch rates in the Southern Atlantic Ocean. 
For each parameter it is indicated the point estimate, the 50% (thick lines) and the 
95% (thin lines) confidence intervals. 
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Table III.7. Predictions of blue shark catch rates (n/1000 hooks) for possible theoretical fishing scenarios. The comparisons are established 
between one possible theoretical scenario (scenario 1) and others with spatial, operational and seasonal variations. For each model it is 
indicated the point estimate and respective standard deviations (between brackets). For the GLMMs only the variability associated with the 
fixed effects is being considered. 

Scenario Effects being compared Specific teorethical 
conditions 

GLM 
Gamma 

GLM 
NB 

GLM 
q.Poisson 

GLM 
Tweedie 

GLMM 
Gamma 

GLMM 
NB 

GLMM 
Tweedie 

1 
Spatial: SW area, all else 
remains constant 

Southwest, Season 1, Year 
2010, Wire gangion, median 
SST and Chlorophyll 

19.5 
(1.69) 

19.3 
(1.7) 

21.9 
(1.89) 

20.6 
(1.78) 

22.1 
(0.78) 

22.2 
(0.84) 

23.3 
(1.19) 

2 
Spatial: Same as scenario 1 
but in SE area; all else 
remains constant 

Southeast, Season 1, Year 
2010, Wire gangion, median 
SST and Chlorophyll 

29.3 
(2.53) 

29.6 
(2.62) 

32.4 
(2.73) 

30.9 
(2.65) 

34.1 
(0.87) 

35.4 
(0.93) 

36.3 
(1.19) 

3 
Spatial: Same as scenario 1 
but in NW area; all else 
remains constant 

Northwest (equatorial), Season 
1, Year 2010, Wire gangion, 
median SST and Chlorophyll 

8.6 
(1.20) 

8.7 
(1.17) 

12.0 
(1.49) 

10.0 
(1.28) 

9.7 
(0.77) 

9.9 
(0.83) 

11.3 
(1.19) 

4 
Spatial: Same as scenario 1 
but in NE area; all else 
remains constant 

Northeast (equatorial), Season 
1, Year 2010, Wire gangion, 
median SST and Chlorophyll 

13.1 
(1.57) 

13.2 
(1.58) 

17.7 
(1.95) 

15.0 
(1.71) 

15.3 
(0.86) 

15.7 
(0.92) 

17.6 
(1.19) 

5 

Operational: Same as 
scenario 1 but with 
monofilament gangion; all 
else remains constant 

Southwest, Season 1, Year 
2010, Monofilament gangion, 
median SST and Chlorophyll 

13.3 
(1.21) 

12.8 
(1.19) 

13.3 
(1.47) 

13.2 
(1.26) 

14.9 
(0.72) 

14.4 
(0.77) 

14.6 
(1.19) 

6 
Seasonal: Same as scenario 1 
but Apr-Jun; all else remains 
constant 

Southwest, Season 2, Year 
2010, Wire gangion, median 
SST and Chlorophyll 

36.4 
(5.12) 

36.0 
(5.60) 

39.0 
(6.50) 

37.4 
(5.77) 

39.6 
(0.80) 

38.5 
(0.84) 

38.7 
(1.20) 

7 
Seasonal: Same as scenario 1 
but Jul-Sep; all else remains 
constant 

Southwest, Season 3, Year 
2010, Wire gangion, median 
SST and Chlorophyll 

52.6 
(5.93) 

52.8 
(6.05) 

54.0 
(5.23) 

53.7 
(5.55) 

53.9 
(0.77) 

53.9 
(0.82) 

53.8 
(1.19) 

8 
Seasonal: Same as scenario 1 
but Oct-Dec; all else remains 
constant 

Southwest, Season 4, Year 
2010, Wire gangion, median 
SST and Chlorophyll 

32.0 
(2.31) 

32.1 
(2.35) 

33.8 
(2.12) 

33.1 
(2.23) 

34.6 
(0.80) 

35.0 
(0.85) 

35.5 
(1.19) 
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III.4. Discussion 

This study presents and compares several possible modeling approaches for 

explaining the blue shark catch rates in pelagic longline fisheries carried out by the 

Portuguese fleet in the southern Atlantic Ocean. The model comparison strategy 

presented seems adequate, as different model types (GLM versus GLMM) and 

distributions (Gamma, Negative Binomial, Poisson and Tweedie) can be considered for 

using with this type of data. It was interesting to note and conclude that regardless of the 

model used, the estimates of the final parameters were relatively similar, meaning that 

all of the considered approaches (with the exception of the Poisson distribution due to 

overdispersion of the data) can probably be considered for use in this case. With regards 

to the Poisson model, the problems identified in the residuals and the value of the 

estimated dispersion parameter show that the dataset is highly overdispersed, and that in 

this case either using a quasi-Poisson model, or introducing a correction in the SE of the 

parameters, should be used instead. 

In terms of deviance explained by the variables, the effects of the gangion 

material seemed to be the most important factor for explaining the blue shark catch 

rates, followed by the effects of year, spatial and seasonal effects. The major effect seen 

for the gangion material (with higher catch rates when wire gangions are used) seems to 

make sense from a biological point of view, as the wire gangions probably make bite-

offs of the sharks less likely to occur while in the longlines, as was shown for the 

Brazilian fleet by Afonso et al. (2012). The conclusions regarding the spatial and 

seasonal effects taken from this study also seem to be in line to what is common 

knowledge from the commercial fishermen in the fleet, that empirically mention higher 

catches of sharks particularly in the second semester of the year and towards eastern 

longitudes, closer to mainland Africa. Those empirical observations by the fishermen 

(also in line with the conclusions from the models) may be related with spatial and 

seasonal migratory movements of this species in the Southern Atlantic Ocean, that are 

still not entirely know, but as with most pelagic sharks may involve complex spatial and 

seasonal migratory movements. 

In the Atlantic Ocean, some previous studies have focused on modeling blue 

shark catch rates for other areas and using data from other fishing fleets. In the 

southwest Atlantic off Brazil, and using data from the Brazilian national and chartered 
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fleets, Carvalho et al. (2011) used GAM models to predict blue shark catch rates using 

spatial (latitude and longitude), seasonal (month) and environmental (SST and 

chlorophyll) effects. Even though the study areas are different, it was noteworthy that 

some of the effects seen by Carvalho et al. (2011) were similar to the conclusions of our 

study, such as for example the effect of latitude, also with higher catch rates in southern 

Brazil and lower towards equatorial waters; and the seasonal effects, also with higher 

catch rates between June and August, which is very similar to the higher catch rates of 

July to September seen in our study. One possible limitation in the Carvalho et al. 

(2011) study was that operational effects of the fishing gear, as well as the effects of the 

different vessels operating in the fleet, were not considered. Also for the Atlantic but in 

the Mediterranean Sea, Megalofonou et al. (2009b) also modeled the blue shark catch 

rates taken by the Italian and Greek fleets with a GLM, and also saw strong spatial (both 

in terms of longitude and latitude) and seasonal effects. One difference in the 

Megalofonou et al. (2009b) study was that, contrary to our study, the SST was not 

significant in the final models. 

For other Oceans in the world such as the Pacific, Bigelow et al. (1999) used 

GAM models to evaluate the blue shark catch rates in the Hawaiian based US pelagic 

longline fleet, and again the spatial variables (latitude and longitude) seemed to be 

playing a major role in terms of effects. Other variables that were used in the Bigelow et 

al. (1999) GAM models included operational variables such as soaking time and 

number of light stick used, and environmental variables such as SST, wind velocity and 

lunar index. It was interesting to note that compared to our study, the lunar index was 

significant in the Bigelow et al. (1999) study in the Pacific Ocean, while in our case it 

was tested but excluded due to non-significance. By the contrary, the wind velocity that 

was used by Bigelow et al. (1999) in the Pacific was also significant in our preliminary 

univariate models, but excluded from the final multivariate models due to excessive 

missing values in the data. 

One point that seems to be common in most of the previous studies (all also using 

fishery-dependant data from commercial fleets, as was the case of our study) is that the 

effects of having different vessels in the fleet do not seem to be accounted for in the 

final models. One example of a study were the vessel effect was also incorporated in the 

models, and even suggested as the variable explaining more of the deviance, was the 

study by Campana et al. (2009) for predicting blue shark mortality rates (binomial 
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models). However, the approach used in the Campana et al. (2009) study was different 

than the approach used in our study, as Campana et al. (2009) included the vessel effect 

as a categorical variable in the GLM (using 27 degrees of freedom to estimate all the 

parameters needed), while we used it as a random variable in a GLMM approach. In our 

opinion, our approach has the advantage of allowing for a measure of variability to be 

associated with a “general” vessel effects, rather than having to estimate one parameter 

for each of the n-1 vessels in the study as was done by Campana et al. (2009). 

One of the difficulties in modeling this type of data is the presence of zeros in the 

response variable combined with positive continuous values (usually CPUE) in the non-

zero cases. Several approaches to deal with this difficulty are available, and adding a 

constant to the response variable seems to be one possible and reasonable approach, 

particularly when the proportion of zeros is relatively low (Shono, 2008). That was the 

particular case of our study, where the proportion of zeros in the blue shark catch data 

from the southern Atlantic represented only 1.52% of the fishing sets. With this 

approach, one important issue that can be highly influential in the results is to decide the 

value of the small constant to be added, and in our case we chose to use 1, as that seems 

to be the most common in fisheries biology (e.g. Punt et al., 2000, Ortiz and Arocha, 

2004). However, it should be noted that other possibilities exist and have been used, 

such as for example adding 10% of the mean of the response variable (Campbell, 2004). 

One eventual problem with this later approach (10% of the mean) is that the actual 

value to be added depends on the dataset, so in specific cases of datasets with small 

mean values the constant being added will be very small, which can be problematic. In 

fact, while several approaches for adding different constants exist and have been used, 

one common consensus among researchers is that using very small values (e.g. 1-100) 

can be problematic (Xiao, 1997), especially in models using a log link function, due to 

the properties of the log function as it approaches zero. 

Another possibility also tested in our study was to consider discrete distributions 

that can account for some zero observations, such as the Poisson and the NB. In those 

cases, the major difference is that while in the Poisson distribution the expected 

variance is equal to the mean, the NB can account for overdispersion in the data, which 

seems to be a common characteristic of many biological and ecological datasets, 

sometimes due to the excess of zeros (Cunningham and Lindenmayer, 2005; Martin et 

al., 2005). In both those cases the models were built in a conceptually different way, as 
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the response variable considered was the number of specimens caught (counts) per set, 

and the number of hooks per set were used in the set of explanatory variables, as an 

offset variable. This means that the parameter (β) for the variable “numbers of hooks” 

did not need to be calculated, and because a log link was used in the equations the 

parameter estimate for log (number hooks) was constrained to 1. Another eventual 

limitation of this approach with discrete distributions is that conceptually it can only be 

used if the models are being created to model the catches in number. While that was the 

case of the present study (i.e. catches accounted in number (n) and the respective CPUE 

calculated in n/1000 hooks), many fisheries biology studies use biomass (kg) instead of 

numbers, with the respective CPUE calculated as kg/1000 hooks. In such cases, and if a 

discrete distribution was to be applied, the response variable would be the catches in kg, 

that as mentioned by Maunder and Punt (2004) would be best modeled as a continuous 

(not a discrete) distribution. 

In terms of the models used, it was interesting to note that both the GLM and 

GLMM approaches were producing relatively similar and consistent results. Even when 

comparative GLMM models were built using a top-down variable selection strategy as 

recommended by Zuur et al., (2009), the variables excluded due to non-significance 

were exactly the same that had been previously excluded in the GLM models using a 

stepwise variable selection approach as recommended by Hosmer and Lemeshow 

(2000). 

In terms of estimation, and while in the GLM modeling approach the use of 

maximum likelihood methodology is common to estimate the model parameters, for the 

GLMM approaches there are complications with the likelihood-based model fitting that 

comes from the difficulty of integrating over the random effects (Venables and Ripley, 

2002). As mentioned by Zuur et al. (2009) the GLMM models are currently on the 

frontier of statistical research, and there is still very limited available documentation 

aimed to biologists and ecologists. For the simpler GLMM, such as the ones used in this 

work, in which the random effects were the subject-specific intercepts (in this case 

vessel specific) which were assumed to be Normally distributed, approximate methods 

based on quasi-likelihoods or numerical approximations to integrals can be used 

(Venables and Ripley, 2002). However, for more complex and elaborate specifications 

of the random effects the only possible integration seems to be based on Markov Chain 

Monte Carlo (MCMC) schemes within Bayesian statistics, and most of those are 
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currently ongoing research topics (Venables and Ripley, 2002). Bolker et al. (2008) 

revised the applications of GLMM to ecology data and ranked the currently available 

likelihood approximation methods as: 1) penalized quasi-likelihood, 2) Laplace 

approximation, 3) Gauss-Hermite quadrature and 4) Markov Chain Monte Carlo; with 

those methods being progressively more accurate in estimation, but also more complex 

and technically challenging to program and calculate. In our study the final GLMM 

models used Laplace approximation methods to estimate the model parameters, which 

seemed to be providing accurate estimates without being extremely time consuming in 

terms of model fitting. Even though it was not fully presented in this paper, we also 

tested to fit the GLMM models with penalized quasi-likelihoods (PQL), and while the 

estimated parameters were virtually equal to the Laplace approximations, the PQL had 

the disadvantage of not allowing the calculation of goodness-of-fit measures based on 

likelihoods, such as the AIC values for each model. While this is not essential for the 

model fitting process and parameter estimation, the AIC values were one of the 

goodness-of-fit measures that were chosen to be used for comparing different model 

approaches. 

Another type of model framework that could have conceivably been used to deal 

with this type of fishery-dependant data would have been to use Generalized Estimation 

Equations (GEE) instead of GLMM. An example of an application of such methods, 

with a comparison to GLM models, was provided in the work of Coelho et al. (in press) 

for modeling blue shark mortality data (binomial models) in this same pelagic longline 

fishery. The main differences between those two modeling approaches (GEE versus 

GLMM) are that while the GEE use a correlation matrix to correct the estimated 

parameters values and standard deviations, the GLMM effectively calculate parameters 

for the variables with random effects. That is why Venables and Ripley (2002) stated 

that the mixed models are sometimes referred to as conditional or subject specific 

models, where the estimated coefficients apply to each individual but not necessarily to 

the population, while GEE are marginal models with the estimated regression 

coefficients representing the population means but not necessarily the individuals. In 

our study, and because the random variables considered where the vessels, the 

parameters estimated in the GLMM could now be used to predict vessel-specific blue 

shark catch rates, as well as to have an idea on the variability associated with the vessels 

in the fleet. 
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As a conclusion, we believe that this paper presents new and important 

information regarding blue shark catch rates in the Portuguese pelagic longline fishery 

in the Southern Atlantic Ocean, with the comparison of techniques and modeling 

approaches showing, in general, consistent results. The results presented in this paper 

can now be used to infer on the factors that are affecting more or less those blue shark 

catch rates, and eventually lead to proposals for more efficient management strategies 

on this shark species in the southern Atlantic Ocean. 
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CHAPTER IV.  FINAL REMARKS AND CONCLUSIONS 

This study presented new information with statistical models created for 

predicting blue shark catch rates and at-haulback mortality rates in the Portuguese 

longline fishery targeting swordfish in the Atlantic Ocean. With the work presented it is 

now possible to better understand and predict the impacts of this fishery in this shark 

species, both in terms of the catches and mortality rates. 

The chapter focusing on modeling the mortality rates has already been adapted for 

a peer-reviewed scientific journal and accepted for publication (Coelho et al., 2013). 

The most important conclusion of that chapter (and paper) is that the at-haulback 

mortality of blue sharks is highly dependent on the specimen size, with specimens 

tending to have lower mortality rates as they grow into larger sizes. On the other hand, 

as the specimens grow in size the odds-ratios of dying also decrease (due to the non-

linearity of the size effect), meaning that even though the probabilities of a small shark 

dying are higher than in a larger shark, if both are allowed to grow for example 10 cm in 

size the odds of dying are more reduced in the smaller specimen. Also interesting was to 

note that the differences between generalized linear models and generalized estimation 

equations was small, meaning the that even though the data comes from a fishery-

dependant source, the use of generalized linear models that assume data independency, 

is probably also valid in this case. 

The chapter that focused on modeling the catch rates is still under preparation to 

be submitted for a peer-reviewed journal, and some aspects that were not possible to 

incorporate in this thesis will be added before submission. Specifically, adding more 

data from different vessels that were not available at the time of writing this thesis. One 

shortcoming of that chapter is precisely the fact that only data from two vessels was 

available and used in the analysis, making the usefulness and interpretation of the 

random vessels effects within the generalized mixed models limited. Still, the results 

presented are already important and informative even if considered preliminary. 

Another result worthy to be highlighted was that the operational, spatial and seasonal 

variables are important to explain part of the blue shark catch rates in the Atlantic. Thus, 

with the model equations presented it is now possible to predict those catch rates with 

their associated uncertainties, under different fishing scenarios. 
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We believe that the results herein presented are important and may have 

implications in terms of fisheries management and conservation of the species. For 

example, if discards eventually become mandatory for this species, we can now use the 

catch rates models to predict the catches of blue sharks in different regions, seasons and 

fishing condition across the Southern Atlantic Ocean, and then use the mortality models 

to predict how many of those sharks are more likely to be caught and discarded already 

dead, allowing to have an estimate of the efficiency of such management measure. 

Another example of application of these models is the possibility to estimate the size-

specific mortality rates of those specimens below a certain minimum size, namely if 

minimum landing sizes are implemented, thus allowing to have an estimate of the 

efficiently of such management measure. Finally, another example would be the 

establishment of any type of spatial and/or seasonal fishing closures, as the catch rates 

models allow to predict the impacts of such closures (in terms of reduced catches) on 

the blue shark stocks. 

Even though the issues of the catch and mortality rates were addressed in this 

study, others that are also important in terms of management and conservation have 

remained unsolved. Therefore, a suggestion for future research priorities includes the 

development of statistical models aiming the prediction of the catch-at-size of the 

specimens, as it would also be important to determine if there are any spatial and/or 

seasonal effects in the catch sizes. If that is occurring, and once the respective models 

and equations are prepared, we could start predicting the expected catch-at-size under 

different fisheries management scenarios that would further contribute to our knowledge 

of the species and impacts of the fishery in the blue shark populations. 

Finally, we would like to highlight the fact that these results of this work have 

been and will continue to be presented to the Shark Working Group of the Scientific 

Committee of Research and Statistics of ICCAT. Therefore, it is expected further 

discussions and development of these models to provide the best scientific advice for 

fisheries managers, further contributing to promote the sustainable exploitation of these 

migratory shark populations in the Atlantic Ocean. 
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ANNEX 1: GLOSSARY 

In this Annex we present a glossary of some abbreviations that were used in this 

thesis. 

Abbreviation Term 
AIC Akaike Information Criterion 
AUC Area Under the Curve 
CPUE Catches Per Unit of Effort 
ERA Ecological Risk Assessment 
FL Fork Length 

F at MSY Maximum Fishing Mortality at Maximum Sustainable Yield 
GAM Generalized Additive Models 
GEE Generalized Estimation Equations 
GLM Generalized Linear Models 

GLMM Generalized Linear Mixed Models 
GVIF Generalized Variance Inflation Factors 

HYCOM HYbrid Coordinate Ocean Model 
ICCAT International Commission for the Conservation of Atlantic Tunas 
IOTC Indian Ocean Tuna Commission 
NASA National Aeronautics and Space Administration 
NOAA National Oceanic and Atmospheric Administration 
MCMC Markov Chain Monte Carlo 
MGET Marine Geospatial Ecology Tools 
MLD Mixed Layer Depth 
MSE Mean Squared Error 
MSY Maximum Sustainable Yield 
OR Odds-ratios 
PQL Penalized quasi-Likelihood 

RFMO Regional Fisheries Management Organization 
ROC Receiver Operating Characteristic Curve 
SSH Sea Surface Height 
SST Sea Surface Temperature 
TL Total Length 

tRFMO Tuna-Regional Fisheries Management Organization 
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ANNEX 2: R-CODE 

In this Annex we present examples of the the R-language code that was used for 

producing this thesis, including data analysis, statistical tests, plots and models. The 

complete scripts that were used in the thesis are not presented in full, mainly due to the 

very large size, but rather some examples on how the analysis were carried out are 

provided. We follow an R-language format where comments and notes to facilitate 

reading and understanding the code are preceded by the symbol #. 

 

##################### 
##### CHAPTER I ##### 
##################### 
 
## Plot FAO time series data 
fis<-read.table("SQServlet_marine_fishes.csv", header=T, sep=",") 
fis<-ts(fis[,2], start=c(1950,1), end=c(2010, 1), frequency=1) 
elasmo<-read.table("SQServlet_elasmobranchs.csv", header=T, sep=",") 
elasmo<-ts(elasmo[,2], start=c(1950,1), end=c(2010, 1), frequency=1) 
par(mfrow=c(2,1)) 
plot(fis/1000, main="Marine fishes", ylab="Catches (thousand ton)") 
plot(elasmo/1000, main="Elasmobranchs", ylab="Catches (thousand ton)") 
 
## Plot ICCAT-Task1 time series data 
iccat.data<-read.table("Data_ICCAT-Task1.csv", header=T, sep=",") 
all.sharks<-ts(iccat.data[,2], start=c(1950,1), end=c(2010, 1), frequency=1) 
all.bsh<-ts(iccat.data[,3], start=c(1950,1), end=c(2010, 1), frequency=1) 
pt.bsh<-ts(iccat.data[,4], start=c(1950,1), end=c(2010, 1), frequency=1) 
par(mfrow=c(3,1)) 
plot(all.sharks/1000, main="All sharks, all fleets", ylab="Catches (thousand ton)") 
plot(all.bsh/1000, main="Blue shark, all fleets", ylab="Catches (thousand ton)") 
plot(pt.bsh/1000, main="Blue shark, EU.Portugal fleet", ylab="Catches (thousand ton)") 
 
 
###################### 
##### CHAPTER II ##### 
###################### 
 
## Load dataset 
mort<-read.table("Mort_BSH.csv", header=T, dec=".", sep=",") 
mort$Year<-factor(mort$Year) 
mort$Quarter<-factor(mort$Quarter) 
summary(mort) 
str(mort) 
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## Size distribution of the samples 
fem<- subset(mort, Sex=="F") 
mac<- subset(mort, Sex=="M") 
summary(fem) 
summary(mac) 
#Plots 
par(mfrow=c(2,1)) 
with(fem, hist(FL, breaks="scott", main="Females", xlim=c(40,310), ylim=c(0,1400), 
xlab="Fork Length (cm)")) 
with(mac, hist(FL, breaks="scott", main="Males", xlim=c(40,310), ylim=c(0,1400), 
xlab="Fork Length (cm)")) 
# Test normality and homogeneity of variances, with and without transformations 
lillie.test(mort$FL) 
lillie.test(log(mort$FL)) 
lillie.test(sqrt(mort$FL)) 
leveneTest(mort$FL~mort$Sex) 
leveneTest(log(mort$FL)~mort$Sex) 
leveneTest(sqrt(mort$FL)~mort$Sex) 
# Hypothesis tests to compare sizes 
wilcox.test(FL~Sex, data=mort) 
 
## Contingency table analysis 
library(gmodels); citation("gmodels") 
# Specimen Sex 
table(mort$Sex, mort$Mort) 
CrossTable(mort$Sex, mort$Mort, expected=T, chisq=T, format="SPSS", prop.r=F, 
prop.c=T,prop.t=F,prop.chisq=F) 
# Year 
table(mort$Year, mort$Mort) 
CrossTable(mort$Year, mort$Mort, expected=T, chisq=T, format="SPSS", prop.r=F, 
prop.c=T,prop.t=F,prop.chisq=F) 
# Quarter 
table(mort$Quarter, mort$Mort) 
CrossTable(mort$Quarter, mort$Mort, expected=T, chisq=T, format="SPSS", prop.r=F, 
prop.c=T,prop.t=F,prop.chisq=F) 
# Gangion material 
table(mort$Gangion, mort$Mort) 
CrossTable(mort$Gangion, mort$Mort, expected=T, chisq=T, format="SPSS", 
prop.r=F, prop.c=T,prop.t=F,prop.chisq=F) 
# Specimen size (categorized by the quartiles) 
mort$FL_CAT<- cut(mort$FL, breaks=c(40, 188, 205, 221, 305),right=F, 
include.lowest=T) 
mort$FL_CAT<-factor(mort$FL_CAT) 
table(mort$FL_CAT, mort$Mort) 
CrossTable(mort$FL_CAT, mort$Mort, expected=T, chisq=T, format="SPSS", 
prop.r=F, prop.c=T,prop.t=F,prop.chisq=F) 
# Latitude (categorized by the quartiles) 
mort$Lat_CAT<- cut(mort$Lat, breaks=c(-34, -24.290, 1.167, 14.370, 21.710),right=F, 
include.lowest=T) 
mort$Lat_CAT<-factor(mort$Lat_CAT) 
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table(mort$Lat_CAT,mort$Mort) 
CrossTable(mort$Lat_CAT,mort$Mort, expected=T, chisq=T, format="SPSS", 
prop.r=F, prop.c=T,prop.t=F,prop.chisq=F) 
# Longitude (categorized by the quartiles) 
mort$Long_CAT<- cut(mort$Long, breaks=c(-43.780, -26.650, -22.750, -11.100, 
8.733),right=F, include.lowest=T) 
mort$Long_CAT<-factor(mort$Long_CAT) 
table(mort$Long_CAT,mort$Mort) 
CrossTable(mort$Long_CAT,mort$Mort, expected=T, chisq=T, format="SPSS", 
prop.r=F, prop.c=T,prop.t=F,prop.chisq=F) 
# SST (categorized by the quartiles) 
mort$SST_8day_CAT<- cut(mort$SST_8day, breaks=c(18.52, 23.10, 25.8, 26.77, 
28.65), right=F, include.lowest=T) 
mort$SST_8day_CAT<-factor(mort$SST_8day_CAT) 
table(mort$SST_8day_CAT,mort$Mort) 
CrossTable(mort$SST_8day_CAT,mort$Mort, expected=T, chisq=T, format="SPSS", 
prop.r=F, prop.c=T,prop.t=F, prop.chisq=F) 
# Plots 
par(mfrow=c(2,4)) 
plot(mort$Mort~mort$Sex, main="Sex", ylab="", xlab="") 
plot(mort$Mort~mort$Year, main="Year", ylab="", xlab="") 
plot(mort$Mort~mort$Quarter, main="Quarter", ylab="", xlab="") 
plot(mort$Mort~mort$Gangion, main="Branch Line", ylab="", xlab="") 
plot(mort$Mort~mort$FL_CAT, main="Size (FL)", ylab="", xlab="") 
plot(mort$Mort~mort$Lat_CAT, main="Latitude", ylab="", xlab="") 
plot(mort$Mort~mort$Long_CAT, main="Longitude", ylab="", xlab="") 
plot(mort$Mort~mort$SST_8day_CAT, main="SST (ºC)", ylab="", xlab="") 
 
# Test univariate binomial GLM models 
fit0<-glm(MortBIN~1, family=binomial(link="logit"), data=mort_2) 
summary (fit0) 
# Specimen size 
fit2<-glm(MortBIN~FL, family=binomial(link="logit"), data=mort) 
summary (fit2) 
anova(fit0, fit2, test="Chisq") 
# Specimen sex 
fit3<-glm(MortBIN~Sex, family=binomial("logit"), data=mort) 
summary (fit3) 
anova(fit0, fit3, test="Chisq") 
# Latitude 
fit4<-glm(MortBIN~Lat, family=binomial("logit"), data=mort) 
summary (fit4) 
anova(fit0, fit4, test="Chisq") 
# Longitude 
fit5<-glm(MortBIN~Long, family=binomial("logit"), data=mort) 
summary (fit5) 
anova(fit0, fit5, test="Chisq") 
# Year 
fit6<-glm(MortBIN~Year, family=binomial("logit"), data=mort) 
summary (fit6) 
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anova(fit0, fit6, test="Chisq") 
# Quarter 
fit8<-glm(MortBIN~Quarter, family=binomial("logit"), data=mort) 
summary (fit8) 
anova(fit0, fit8, test="Chisq") 
# Vessel 
fit9<-glm(MortBIN~Boat, family=binomial("logit"), data=mort) 
summary (fit9) 
anova(fit0, fit9, test="Chisq") 
# SST 
fit10<-glm(MortBIN~SST_8day, family=binomial("logit"), data=mort) 
summary (fit10) 
anova(fit0, fit10, test="Chisq") 
# Gangion 
fit12<-glm(MortBIN~Gangion, family=binomial("logit"), data=mort) 
summary (fit12) 
anova(fit0, fit12, test="Chisq") 
 
## Multivariate simple effects model 
fit23_f3<-glm(MortBIN~FL+Lat+Long+Year+Season+Gangion+Sex, 
family=binomial(link="logit"), data=mort) 
summary (fit23_f3) 
anova(fit23_f3, test="Chisq") 
 
## Assumption of sufficient binomial contrasts in the categorical variables 
table(mort$Year, mort$MortBIN) 
table(mort$Quarter, mort$MortBIN) 
table(mort$Boat, mort$MortBIN) 
table(mort$Gangion, mort$MortBIN) 
table(mort$Sex, mort$MortBIN) 
 
## Assumption of linearity in the continuous variables 
# Only 1 example is provided, but all continuous explanatory variables were tested 
# Quartiles method 
mort$FLCAT<- cut(mort$FL, breaks=c(40, 181, 201, 219, 305),right=F, 
include.lowest=T) 
table(mort$FLCAT) 
fit20<-glm(MortBIN~FLCAT+Sex+Lat+Long+Year+Quarter+Boat+Gangion, 
family=binomial("logit"), data=mort) 
summary (fit20) 
x<-c((40+181)/2, (181+201)/2, (201+219)/2, (219+305)/2) 
y<-c(0, as.numeric(fit20$coef[2]),as.numeric(fit20$coef[3]), as.numeric(fit20$coef[4])) 
plot(x, y,pch=19, main="Linearidade de idade com logit") 
lines(lowess(x,y)) 
# Fractional polynomials 
library(mfp) 
mfp(MortBIN~fp(FL)+Sex+Lat+Long+Year+Quarter+Boat+Gangion, 
family=binomial("logit"), data=mort) 
# GAM plots 
library(gam) 



ANNEX 2 – R-CODE 

105 
 

plot(gam(MortBIN~s(FL)+Sex+Lat+Long+Year+Quarter+Boat+Gangion, 
family=binomial("logit"), data=mort), se=T, xlab="Size (FL, cm)") 
 
## Testing for significant interactions 
# Only 1 example is provided, but all possible pairs were tested 
fit101<-glm(MortBIN~FL1+Lat1+Long1+Year+Season+Gangion+Sex+FL1:Lat1, 
family=binomial("logit"), data=mort_2) 
summary (fit101) 
anova (fit23_f3, fit101, test="Chisq") 
 
## Interaction plots 
#Only 1 example is provided but all significant interactions were plotted 
# Divide FL by the 10% percentiles 
mort$FLCAT2<- cut(mort$FL, breaks=quantile(mort$FL, probs = seq(0, 1, 0.1)), 
right=F, include.lowest=T) 
# Divide Longitude by the 10% percentiles 
mort$LongCAT2<- cut(mort$Long, breaks=quantile(mort$Long, probs = seq(0, 1, 
0.1)),right=F, include.lowest=T) 
#FL:Longitude interactions plots 
par(mfrow=c(1,2)) 
interaction.plot(x.factor=mort$LongCAT2, trace.factor=mort$FLCAT2, 
response=mort$MortBIN, fun=mean,  type = "l", legend=T, ylab="Mooking mortality", 
col=rainbow(10), lwd=2, xlab="Longitude class", leg.bty = "o")  
interaction.plot(x.factor=mort$FLCAT2, trace.factor=mort$LongCAT2, 
response=mort$MortBIN, fun=mean, type = "l", legend=T, ylab="Mooking mortality", 
col=rainbow(4), lwd=2, xlab="FL size class (cm)", leg.bty = "o")  
 
## Final model with transformations and interactions 
fit205 <- glm(MortBIN ~ FL1 + Lat1 + Long1 + Year + Season + Gangion + Sex + 
FL1:Long1 + FL1:Year + Long1:Season + Long1:Sex + Year:Gangion + Season:Sex, 
family = binomial(link = "logit"), data = mort) 
summary(fit205) 
anova(fit205, test="Chisq") 
 
## R2 of the models 
# R2 for the simple effects model 
R2N_2 <- (1-exp((fit23_f3$dev - fit23_f3$null) / dim(mort_2)[1]))/(1-exp(-
fit23_f3$null / dim(mort_2)[1])) 
# R2 for the model with interactions 
R2N.multi.inter<-(1-exp((fit205$dev-fit205$null)/ dim(mort_2)[1]))/(1-exp(-
fit205$null/ dim(mort_2)[1])) 
R2N.multi.inter #  [1] 0.164795 
 
# ROC Curves 
library(Epi); citation("Epi") 
# Simple effects model 
ROC(form = MortBIN~FL1+Lat1+Long1+Year+Season+Gangion+Sex, data=mort, 
plot="ROC", PV=T, MX=T, MI=F, AUC=T) 
# Model with interactions 
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ROC(form = MortBIN ~ FL1 + Lat1 + Long1 + Year + Season +  Gangion + Sex + 
FL1:Long1 + FL1:Year + Long1:Season + Long1:Sex + Year:Gangion + Season:Sex, 
data=mort, plot="ROC", PV=T, MX=T, MI=F, AUC=T, cex.lab=1.1, cex.axis=1.1) 
 
## Hosmer and Lemeshow test 
hosmerlem <- function(y, yhat, g=10) { 
   cutyhat = cut(yhat, 
   breaks = quantile(yhat, probs=seq(0, 1, 1/g)), include.lowest=T) 
   obs = xtabs(cbind(1 - y, y) ~ cutyhat) 
   expect = xtabs(cbind(1 - yhat, yhat) ~ cutyhat) 
   chisq = sum((obs - expect)^2/expect) 
   P = 1 - pchisq(chisq, g - 2) 
    return(list(chisq=chisq,p.value=P)) 
} 
# Simple effects model 
hosmerlem(mort$MortBIN, fitted(fit23_f3)) 
# Model with interactions 
hosmerlem(mort$MortBIN, fitted(fit205)) 
 
## Residual analysis 
#Residuals along the predicted values 
plot (predict(fit205), residuals (fit205, type="deviance")) 
plot (predict(fit205), residuals (fit205, type="pearson")) 
# Cooks distances 
plot(cooks.distance(fit205)) 
#Half-normal plots 
halfnorm(cooks.distance(fit205), main="Cooks Distance") 
halfnorm(residuals (fit205, type="pearson"), main="Pearson Residuals") 
halfnorm(residuals (fit205, type="deviance"), main="Deviance Residuals") 
# DF betas along the predicted values 
rdf <- dfbetas(fit205) 
head(rdf) 
plot(predict(fit205), rdf[,2], main="Size", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,3], main="Lat", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,4], main="Long", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,5], main="Year2009", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,6], main="Year2010", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,7], main="Year2011", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,8], main="Quarter", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,9], main="Branch line", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,10], main="Sex", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,11], main="FL:Long", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,12], main="FL:Year2009", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,13], main="FL:Year2010", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,14], main="FL:Year2011", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,15], main="Long:Quarter", xlab="Predicted", ylab="Df 
Betas") 
plot(predict(fit205), rdf[,16], main="Long:Sex", xlab="Predicted", ylab="Df Betas") 
plot(predict(fit205), rdf[,17], main="Year2009:Branch", xlab="Predicted", ylab="Df 
Betas") 
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plot(predict(fit205), rdf[,18], main="Year2010:Branch", xlab="Predicted", ylab="Df 
Betas") 
plot(predict(fit205), rdf[,19], main="Year2011:Branch", xlab="Predicted", ylab="Df 
Betas") 
plot(predict(fit205), rdf[,20], main="Quarter:Sex", xlab="Predicted", ylab="Df Betas") 
 
## Cross-validation 
library(boot); citation("boot") 
cv.10.err <- cv.glm(mort, fit205, cost, K = 10) 
cv.10.err$delta 
 
## Calculate the odds-ratios 
# Only one example is provided (specimen size), but calculated for all variables 
exp(fit205$coef[2]) 
mc<-summary(fit205)$cov.scaled 
exp(c(fit205$coef[2]-qnorm(0.975) * sqrt(mc[2,2]), fit205$coef[2] + qnorm(0.975) * 
sqrt(mc[2,2]))) 
# Increase of 10cm in size 
a<-10 
exp(a* fit205$coef[2]); (1-exp(a* fit205$coef[2]))*100 
exp(a* fit205$coef[2]-qnorm(0.975)*a*sqrt(mc[2,2])) 
exp(a* fit205$coef[2]+qnorm(0.975)*a*sqrt(mc[2,2])) 
 
## Fit GEE models 
library(geepack); citation("geepack") 
# Simple effects GEE 
gee4<-geeglm(MortBIN ~ FL1 + Lat1 + Long1 + Year + Season + Gangion + Sex, 
id=Setcode, family=binomial("logit"), corstr="exchangeable", data=mort) 
summary (gee4) 
anova(gee4, test="Chisq") 
# GEE with significant interactions 
gee5 <- geeglm(MortBIN ~ FL1 + Lat1 + Long1 + Year + Season + Gangion + Sex + 
FL1:Long1 + FL1:Year + Long1:Season + Long1:Sex + Year:Gangion + Season:Sex, 
id=Setcode, family=binomial("logit"), corstr="exchangeable", data=mort) 
summary (gee5) 
anova(gee5, test="Chisq") 
 
## Plot inverse-logits 
# Back-transform the FL variable 
fl.t <- I((seq(40, 305, 5)/100)^-0.5)+log((seq(40, 305, 5)/100)) 
se.fl1 <- sqrt(mc[2,2] + mc[9,9] + mc[2,9]) 
# cycle to calculate the inverse logits for all size ranges 
library(faraway) 
logit.fl <- rep(0, times=length(fl.t)) 
ilogit.fl1 <- rep(0, times=length(fl.t)) 
ilogit.icl.fl1 <- rep(0, times=length(fl.t))  
ilogit.icu.fl1 <- rep(0, times=length(fl.t)) 
for (i in 1: length(fl.t)){ 
      logit.fl[i] <- fit205$coef[1] + fit205$coef[2]*fl.t[i] 
      ilogit.fl1[i] <- ilogit(logit.fl[i]) # point estimates 
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      ilogit.icl.fl1[i] <- ilogit(logit.fl[i] - 1.96 * se.fl1) # lower 95% CI 
      ilogit.icu.fl1[i] <- ilogit(logit.fl[i] + 1.96 * se.fl1) # upper 95% CI 
} 
# Plots 
plot(ilogit.fl1, type ="l", ylim=c(0,1)) 
lines(ilogit.icl.fl1) 
lines(ilogit.icu.fl1) 
 
## Plot odds-ratios 
# Back-transform the FL variable 
fl.t.odds <-  I((seq(40, 305, by=10)/100)^-0.5)+log((seq(40, 305, by=10)/100)) 
# Cycle to calculate the odds-ratios for 10cm size increments 
fl.odds <- rep(0, times=length(fl.t.odds)) 
fl.odds.up <- rep(0, times=length(fl.t.odds)) 
fl.odds.lo <- rep(0, times=length(fl.t.odds)) 
for (i in 1:length(fl.t.odds)){ 
      fl.odds[i] <- exp(fit205$coef[2]*(fl.t.odds[i+1]-fl.t.odds[i])) 
      fl.odds.up[i] <- exp(fit205$coef[2]*(fl.t.odds[i+1]-fl.t.odds[i]) - qnorm(0.975) * 
(fl.t.odds[i+1]-fl.t.odds[i])* sqrt(mc[2,2])) 
      fl.odds.lo[i] <- exp(fit205$coef[2]*(fl.t.odds[i+1]-fl.t.odds[i]) + qnorm(0.975) * 
(fl.t.odds[i+1]-fl.t.odds[i])* sqrt(mc[2,2])) 
} 
#Plots 
library (gplots) 
plotCI(y=fl.odds, x=Sizes2, uiw=(fl.odds-fl.odds.up), liw=(fl.odds.lo-fl.odds), err="y", 
ylim=c(0.65, 1.05), ylab="Odds-Ratios (increse of 10cm in FL)", xlab="Specimen size 
(FL, cm)", main="Odds-Ratios") 
abline(h=1, lty=2) 
 
 
####################### 
##### CHAPTER III ##### 
####################### 
 
## Load dataset 
cpue<-read.table("BD_South.csv", header=T, dec=".", sep=",", na.strings = "-9999") 
summary(cpue) 
dim(cpue) 
str(cpue) 
cpue$Year<-factor(cpue$Year) 
cpue$Season<-factor(cpue$Season) 
 
## Plot distribution of the response variable 
hist(cpue$cpueBSH,col="gray87", freq=F, breaks="Scott", main="Blue shark CPUE 
distribution", xlab="CPUE (n/1000 hooks)") 
lines(density(cpue$cpueBSH)) 
qqnorm(cpue$cpueBSH) 
qqline(cpue$cpueBSH) 
 
## Correlation plots 
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# Diagonals with the histograms 
panel.hist2 <- function(x) { 
   par(new = T) 
   hist(x, col = "light gray", probability = T, axes=F, main = "", breaks = "scott") 
   lines(density(x, na.rm=T), col = "black", lwd = 1) 
   rug(x) 
} 
# Panels with the Spearman correlations 
panel.cor2 <- function(x, y, digits = 2, prefix = "", use = "pairwise.complete.obs", 
cex.cor) { 
   usr <- par("usr") 
   on.exit(par(usr)) 
   par(usr = c(0, 1, 0, 1)) 
   r <- cor(x, y, use = use, method="spearman") 
   txt <- format(c(r, 0.123456789), digits = digits)[1] 
   txt <- paste(prefix, txt, sep = "") 
   if (missing(cex.cor)) 
   cex <- 0.8/strwidth(txt) 
   test <- cor.test(x, y, method="spearman") 
   Signif <- symnum(test$p.value, corr = F, na = F, 
   cutpoints = c(0, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", " ")) 
   text(0.5, 0.5, txt, cex = cex * log(r)) 
   text(0.8, 0.8, Signif, cex = cex, col = 2) 
} 
# Final plot 
pairs(~cpueBSH +Lat+Long+CurrentVel+MoonIlu+Wind+MLD+SSH+ Salininy+ 
Chlorophyll+SST, data=bsh_corr, row1attop=F, lower.panel=panel.smooth, 
upper.panel=panel.cor2, diag.panel=panel.hist2) 
 
## Boxplots for categorical explanatory variables 
par(mfrow=c(1,3)) 
boxplot(cpueBSH ~  Year, data=cpue, ylab="CPUE (n/1000hks)", main="Year", 
col="grey85") 
boxplot(cpueBSH ~  Season, data= cpue, ylab="CPUE (n/1000hks)", main="Season", 
col="grey85") 
boxplot(cpueBSH ~  Gangion, data= cpue, ylab="CPUE (n/1000hks)", main="Gangion 
material", col="grey85") 
 
## Hypothesis tests for categorical explanatory variables 
# Test normality with and without transformations 
library(nortest); citation("nortest") 
lillie.test(cpue$cpueBSH) 
lillie.test(log(cpue$cpueBSH+1)) 
lillie.test(1/(cpue$cpueBSH+1)) 
# Test homogeneity of variances with and without transformations 
library(car); citation("car") 
leveneTest(cpue$cpueBSH~cpue$Year) 
leveneTest(log(cpue$cpueBSH+1)~cpue$Year)  
leveneTest((1/(cpue$cpueBSH+1))~cpue$Year) 
leveneTest(cpue$cpueBSH~cpue$Season) 
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leveneTest(log(cpue$cpueBSH+1)~cpue$Season) 
leveneTest((1/(cpue$cpueBSH+1))~cpue$Season) 
leveneTest(cpue$cpueBSH~cpue$Gangion) 
leveneTest(log(cpue$cpueBSH+1)~cpue$Gangion) 
leveneTest((1/(cpue$cpueBSH+1))~cpue$Gangion) 
#Non-parametric hypothesis tests 
kruskal.test(cpueBSH ~ Year, data=cpue) 
kruskal.test(cpueBSH ~ Season, data=cpue) 
wilcox.test(cpueBSH ~ Gangion, data=cpue) 
 
## Calculate % sets with 0 and positive catches 
cpue$PositiveSet <- ifelse (cpue$nBSH>=1, 1, 0) 
table(cpue$PositiveSet) 
 
## Test univariate models 
cpue$cpue.add1 <- cpue$cpueBSH+1 
# Null model 
fit.gamma.uni0 <- glm(cpue.add1 ~  1, family=Gamma(link=log), data=cpue) 
summary(fit.gamma.uni0) 
# Gangion 
fit.gamma.uni1 <- glm(cpue.add1 ~  Gangion, family=Gamma(link=log), data=cpue) 
summary(fit.gamma.uni1) 
anova(fit.gamma.uni0, fit.gamma.uni1, test="Chisq") 
# Season 
fit.gamma.uni2 <- glm(cpue.add1 ~  Season, family=Gamma(link=log), data=cpue) 
summary(fit.gamma.uni2) 
anova(fit.gamma.uni0, fit.gamma.uni2, test="Chisq") 
# Year 
fit.gamma.uni3 <- glm(cpue.add1 ~  Year, family=Gamma(link=log), data=cpue) 
summary(fit.gamma.uni3) 
anova(fit.gamma.uni0, fit.gamma.uni3, test="Chisq") 
# Latitude 
fit.gamma.uni4 <- glm(cpue.add1 ~  Latitude, family=Gamma(link=log), data=cpue) 
summary(fit.gamma.uni4) 
anova(fit.gamma.uni0, fit.gamma.uni4, test="Chisq") 
# Longitude 
fit.gamma.uni5 <- glm(cpue.add1 ~  Longitude, family=Gamma(link=log), data=cpue) 
summary(fit.gamma.uni5) 
anova(fit.gamma.uni0, fit.gamma.uni5, test="Chisq") 
# Current velocity 
fit.gamma.uni6 <- glm(cpue.add1 ~  OSCAR_mag, family=Gamma(link=log), 
data=cpue) 
summary(fit.gamma.uni6) #Not sig. 
anova(fit.gamma.uni0, fit.gamma.uni6, test="Chisq") 
# Moon Illumination 
fit.gamma.uni7 <- glm(cpue.add1 ~  moon_ilu, family=Gamma(link=log), data=cpue) 
summary(fit.gamma.uni7) #Not sig. 
anova(fit.gamma.uni0, fit.gamma.uni7, test="Chisq") 
# Wind velocity 
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fit.gamma.uni8 <- glm(cpue.add1 ~  AVISOWind, family=Gamma(link=log), 
data=cpue) 
summary(fit.gamma.uni8) 
anova(fit.gamma.uni0, fit.gamma.uni8, test="Chisq") 
# MLD 
fit.gamma.uni9 <- glm(cpue.add1 ~  HYCOMmld, family=Gamma(link=log), 
data=cpue) 
summary(fit.gamma.uni9) 
anova(fit.gamma.uni0, fit.gamma.uni9, test="Chisq") 
# SSH 
fit.gamma.uni10 <- glm(cpue.add1 ~  HYCOMssh, family=Gamma(link=log), 
data=cpue) 
summary(fit.gamma.uni10) 
anova(fit.gamma.uni0, fit.gamma.uni10, test="Chisq") 
# Salinity 
fit.gamma.uni11 <- glm(cpue.add1 ~  HYCOMsali0, family=Gamma(link=log), 
data=cpue) 
summary(fit.gamma.uni11) 
anova(fit.gamma.uni0, fit.gamma.uni11, test="Chisq") 
# Chlorophyll 
fit.gamma.uni12 <- glm(cpue.add1 ~  AquaChlo, family=Gamma(link=log), data=cpue) 
summary(fit.gamma.uni12) 
anova(fit.gamma.uni0, fit.gamma.uni12, test="Chisq") 
# SST 
fit.gamma.uni13 <- glm(cpue.add1 ~  NCDCsst_l4, family=Gamma(link=log), 
data=cpue) 
summary(fit.gamma.uni13) 
anova(fit.gamma.uni0, fit.gamma.uni13, test="Chisq") 
 
## Multivariate simple effects model 
fit.gamma3 <- glm(cpue.add1 ~ Gangion + Season + Year + Latitude.t + Longitude.t + 
HYCOMsali0.t + AquaChlo.t + NCDCsst_l4.t, family=Gamma(link=log), data=cpue) 
 
## Assumption of linearity in the continuous variables 
# Only 1 example is provided, but all continuous explanatory variables were tested 
# Quartiles method 
cpue$LatitudeCAT <- cut(cpue$Latitude, breaks=c(-34.0000, -27.3100 ,-18.4200, 
0.8333, 4.9830 ),right=F, include.lowest=T) 
table(cpue$LatitudeCAT) 
fit.gamma3.1<-glm(cpue.add1 ~  LatitudeCAT+ Vessel + Gangion + Season + Year + 
Longitude + HYCOMsali0+ AquaChlo + NCDCsst_l4, family=Gamma(link=log), 
data=cpue) 
summary (fit.gamma3.1) 
x<-c((-34.0000-27.3100)/2, (-27.3100-18.4200)/2, (-18.4200+0.8333)/2, 
(0.8333+4.9830)/2) 
y<-c(0, as.numeric(fit.gamma3.1$coef[2]),as.numeric(fit.gamma3.1$coef[3]), 
as.numeric(fit.gamma3.1$coef[4])) 
plot(x, y, pch=19, main="Linearidade de latitude")  
lines(lowess(x,y)) 
# Fractional polynomials 
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library(mfp); citation("mfp") 
mfp(cpue.add1 ~  Vessel + Gangion + Season + Year + fp(Latitude) + Longitude + 
HYCOMsali0+ AquaChlo + NCDCsst_l4, family=Gamma(link=log), data=cpue) 
# GAM plot 
library(gam); citation("gam") 
plot(gam(cpue.add1~ Vessel + Gangion + Season + Year + s(Latitude) + Longitude + 
HYCOMsali0+ AquaChlo + NCDCsst_l4, family=Gamma(link=log), data=cpue), se=T, 
xlab="Latitude") 
 
## Test significance of interactions 
# Only 1 example is provided, but all possible pairs were tested 
fit.gamma12 <- glm(cpue.add1 ~ Gangion + Season + Year + Latitude.t + Longitude.t + 
HYCOMsali0.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Season, 
family=Gamma(link=log), data=cpue) 
summary(fit.gamma12) 
anova(fit.gamma3, fit.gamma12) 
 
## Final Gamma GLM model 
#Model 
fit.gamma55 <- glm(cpue.add1 ~  Gangion + Season + Year + Latitude.t + Longitude.t 
+ AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  Gangion:AquaChlo.t, 
family=Gamma(link=log), data=cpue) 
# Summary 
summary(fit.gamma55) 
# Significance and goodness-of-fit 
anova(fit.gamma55) 
R2.fit.gamma55 <- 1-(fit.gamma55$deviance / fit.gamma55$df.residual) / 
(fit.gamma55$null.deviance / fit.gamma55$df.null) 
AIC(fit.gamma55) 
# Evaluate possible collinearity 
library(car); citation("car") 
vif(fit.gamma55) 
# Residual analysis 
res.fit.gamma55 <- residuals(fit.gamma55,type="deviance") 
plot(residuals(fit.gamma55) ~ log(fitted(fit.gamma55)),ylab="Resíduos Deviance", 
xlab=expression(log(hat(mu)))) 
abline(h=0) 
plot(fit.gamma55, which=c(1,2), cex.main=1.5, cex.lab=1.5) 
hist(res.fit.gamma55, breaks="Scott",main="Histogram", col="gray88", 
cex.main=1.5,cex.lab=1.5, xlab="Deviance residuals") 
 
## Poisson GLM model 
#Model 
fit.poi55 <- glm(nBSH ~  Gangion + Season + Year + Latitude.t + Longitude.t + 
AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  Gangion:AquaChlo.t + 
offset(log(Hookn)), family=poisson(link=log), data=cpue) 
# Summary 
summary(fit.poi55) 
# Poisson model with dispersion parameter 
pd <-sum(residuals(fit.poi55,type="pearson")^2/fit.poi55$df.res) 
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summary (fit.poi55, dispersion=pd) 
# Significance and goodness-of-fit 
anova(fit.poi55) 
R2.fit.poi55 <- 1-(fit.poi55$deviance / fit.poi55$df.residual) / 
(fit.poi55$null.deviance/fit.poi55$df.null) 
AIC(fit.poi55) 
# Residual analysis 
res.fit.poi55 <- residuals(fit.poi55,type="deviance") 
plot(residuals(fit.poi55) ~ log(fitted(fit.poi55),ylab="Resíduos Deviance", 
xlab=expression(log(hat(mu)))) 
abline(h=0) 
plot(fit.poi55, which=c(1,2), cex.main=1.5, cex.lab=1.5) 
hist(res.fit.poi55, breaks="Scott", main="Histogram", col="gray88", 
cex.main=1.5,cex.lab=1.5, xlab="Deviance residuals") 
 
## Negative Binomial GLM model 
library(MASS); citation("MASS") 
fit.nb55 <- glm.nb(nBSH ~  Gangion + Season + Year + Latitude.t + Longitude.t + 
AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  Gangion:AquaChlo.t + 
offset(log(Hookn)), link=log, data=cpue) 
# Summary 
summary(fit.nb55) 
# Significance and goodness-of-fit 
anova(fit.nb55) 
R2.fit.nb55 <- 1-(fit.nb55$deviance / fit.nb55$df.residual) / 
(fit.nb55$null.deviance/fit.nb55$df.null) 
AIC(fit.nb55) 
# Residual analysis 
res.fit.nb55 <- residuals(fit.nb55,type="deviance") 
plot(residuals(fit.nb55) ~ log(fitted(fit.nb55),ylab="Resíduos Deviance", 
xlab=expression(log(hat(mu)))) 
abline(h=0) 
plot(fit.nb55, which=c(1,2), cex.main=1.5, cex.lab=1.5) 
hist(res.fit.nb55, breaks="Scott", main="Histogram", col="gray88", 
cex.main=1.5,cex.lab=1.5, xlab="Deviance residuals") 
 
## Quasi-Poisson GLM Model 
# Model 
fit.qpoi55 <- glm(nBSH ~  Gangion + Season + Year + Latitude.t + Longitude.t + 
AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  Gangion:AquaChlo.t + 
offset(log(Hookn)), family=quasipoisson(log), data=cpue) 
# Summary 
summary(fit.qpoi55) 
# Significance and goodness-of-fit 
anova(fit.qpoi55) 
R2.fit.qpoi55 <- 1-(fit.qpoi55$deviance / fit.qpoi55$df.residual) / 
(fit.qpoi55$null.deviance/fit.qpoi55$df.null) 
 
## Tweedie GLM Model 
library(tweedie); citation("tweedie") 
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library(statmod); citation ("statmod") 
# Fit the tweedie distribution 
out <- tweedie.profile(cpueBSH ~  Gangion + Season + Year + Latitude.t + Longitude.t 
+ AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  Gangion:AquaChlo.t, 
data=cpue, p.vec=seq(1.1, 1.9, length=9), method="interpolation", do.ci=T, 
do.smooth=T, do.plot=T, phi.method="saddlepoint") 
p <- out$p.max 
# Model 
fit.tweedie55 <- glm(cpueBSH ~  Gangion + Season + Year + Latitude.t + Longitude.t 
+ AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  Gangion:AquaChlo.t, 
family=tweedie(var.power=p, link.power=0), data=cpue) 
#Summary 
summary(fit.tweedie55) 
# Significance and goodness-of-fit 
anova(fit.tweedie55, test="Chisq") 
par(mfrow=c(2,2));plot(fit.tweedie55) 
R2.fit.tweedie55 <- 1-(fit.tweedie55$deviance / fit.tweedie55$df.residual) / 
(fit.tweedie55$null.deviance/fit.tweedie55$df.null) 
AICtweedie(fit.tweedie55) 
# Residual analysis 
quantile.res.tweedie55 <- qres.tweedie(fit.tweedie55) 
plot(log(fits.tweedie55), qres.tweedie(fit.tweedie55), main="Quantile residuals") 
abline(0,0, col="red") 
qqnorm(qres.tweedie(fit.tweedie55), main = "QQ Plot", xlab="Standard Normal 
Quantiles", ylab="Quantile Residuals") 
qqline(quantile.res.tweedie55) 
hist(quantile.res.tweedie55, breaks="Scott",main="Histogram", col="gray87", 
cex.main=1.5,cex.lab=1.5, xlab="Quantile residuals") 
 
## Cross-validation 
library(boot); citation("boot") 
k <- 10 
cv.gamma55.10 <- cv.glm(cpue, fit.gamma55, K=k) 
cv.gamma55.10$delta 
cv.poi55.10 <- cv.glm(cpue, fit.poi55, K=k) 
cv.poi55.10$delta 
cv.poi55.10 <- cv.glm(cpue, fit.qpoi55, K=k) 
cv.poi55.10$delta 
cv.nb55.10 <- cv.glm(cpue, fit.nb55, K=k) 
cv.nb55.10$delta 
cv.tweedie55.10 <- cv.glm(cpue, fit.tweedie55, K=k) 
cv.tweedie55.10$delta 
 
## GLMM models with penalized quasi-likelihoods 
library(MASS); citation("MASS") 
# Gamma 
fit.mix.gamma100 <- glmmPQL(cpue.add1 ~  Gangion + Season + Year + Latitude.t + 
Longitude.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  
Gangion:AquaChlo.t, random = ~ 1| Vessel, family=Gamma(link=log), data=cpue) 
summary(fit.mix.gamma100) 
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# Poisson 
fit.mix.poi100 <- glmmPQL(nBSH ~  Gangion + Season + Year + Latitude.t + 
Longitude.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  
Gangion:AquaChlo.t + offset(log(Hookn)), random = ~ 1| Vessel, 
family=poisson(link=log), data=cpue) 
summary(fit.mix.poi100) 
#Quasi-Poisson 
fit.mix.qpoi100 <- glmmPQL(nBSH ~  Gangion + Season + Year + Latitude.t + 
Longitude.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t + 
Gangion:AquaChlo.t + offset(log(Hookn)),  random = ~ 1| Vessel, 
family=quasipoisson(link=log), data=cpue) 
summary(fit.mix.qpoi100) 
# Negative Binomial 
fit.mix.nb100 <- glmmPQL(nBSH ~  Gangion + Season + Year + Latitude.t + 
Longitude.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  
Gangion:AquaChlo.t + offset(log(Hookn)), random = ~ 1| Vessel, 
family=negative.binomial(theta=4.510, link="log"), data=cpue) 
summary(fit.mix.nb100) 
# Tweedie 
fit.mix.tweedie100 <- glmmPQL(cpueBSH ~  Gangion + Season + Year + Latitude.t + 
Longitude.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t + 
Gangion:AquaChlo.t, random = ~ 1| Vessel, family=tweedie(var.power=p, 
link.power=0), data=cpue) 
summary(fit.mix.tweedie100) 
#Residuals plots 
par(mfrow=c(2,2)) 
plot(fit.mix.gamma100, main="Gamma GLMM") 
plot(fit.mix.poi100, main="Poisson GLMM") 
plot(fit.mix.nb100, main="Negative Binomial GLMM") 
plot(fit.mix.tweedie100, main="Tweedie GLMM") 
 
## GLMM models with Laplace approximations 
library(glmmADMB); citation("glmmADMB") 
# Gamma 
fit.mix.gamma200 <- glmmadmb(cpue.add1 ~  Gangion + Season + Year + Latitude.t + 
Longitude.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  
Gangion:AquaChlo.t, random= ~1|Vessel, family="gamma", link="log", data=cpue, 
verbose=F) 
summary(fit.mix.gamma200) 
AIC(fit.mix.gamma200) 
#Poisson 
fit.mix.poisson200 <- glmmadmb(nBSH ~  Gangion + Season + Year + Latitude.t + 
Longitude.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  
Gangion:AquaChlo.t + offset(log(Hookn)),  random= ~1|Vessel, family="Poisson", 
link="log", data=cpue) 
summary(fit.mix.poisson200) 
AIC(fit.mix.poisson200) 
# Negative Binomial 
fit.mix.nb200 <- glmmadmb(nBSH ~  Gangion + Season + Year + Latitude.t + 
Longitude.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  
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Gangion:AquaChlo.t + offset(log(Hookn)), random= ~1|Vessel, family="nbinom", 
link="log", data=cpue) 
summary(fit.mix.nb200) 
AIC(fit.mix.nb200) 
# Tweedie 
library(cplm); citation("cplm") 
fit.mix.tweedie200 <-  cpglmm(cpueBSH ~  Gangion + Season + Year + Latitude.t + 
Longitude.t + AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.t +  
Gangion:AquaChlo.t+ (1|Vessel), link = "log", data=cpue) 
summary(fit.mix.tweedie200) 
AIC(fit.mix.tweedie200) 
 
## Plots to compare candidate models coefficients 
library(coefplot2); citation("coefplot2") 
vn <- c("GangionWire", "Season2" , "Season3" , "Season4" , "Year2009" , "Year2010" , 
"Year2011" , "Latitude.t", "Longitude.t", "Chlorophyll.t", "SST.t", 
"GangionWire:Longitude.t" , "GangionWire:Chlorophyll.t") 
coefplot2(list(GLM.Gamma=fit.gamma55, GLM.NB=fit.nb55, 
GLM.quasiPoisson=fit.qpoi55, GLM.Tweedie=fit.tweedie55, 
GLMM.Gamma=fit.mix.gamma200, GLMM.NB=fit.mix.nb200, 
GLMM.Tweedie=fit.mix.tweedie200), varnames=vn, CI=2, legend=T, 
legend.x="bottomleft", legend.args=c(ncol=1, cex=1)) 
 
## Example of model predictions 
#Back-transform the continuous variables 
# Latitude (1Q:-27.5100): South Atlantic  
log(((-27.5100+34.1)/10)) # [1] -0.4170317 
# Latitude (3ºQ: 0.4417): Equatorial region 
log(((0.4417+34.1)/10)) # [1] 1.239582 
# Longitude (1ºQ: -25.620): Western Atlantic 
I(((-25.72+43.8)/10)^1) #[1] 1.808 
# Longitude (3ºQ: -9.167): Eastern Atlantic 
I(((-11.59+43.8)/10)^1) #[1] [1] 3.221 
# Clorofill  (Median: 0.06904): Median value 
I((0.06904/0.1)^1) #[1] 0.6904 
# SST  (Median: 23.73): Median value 
I((23.73/10)^1)#[1] 2.373 
# New data frames with different possible scenarios 
x1 <- data.frame(Gangion="Wire",Season="1",Year="2010",Latitude.t=-
0.4170317,Longitude.t=1.808,AquaChlo.t=0.6904,NCDCsst_l4.t=2.373, Hookn=1000) 
x2 <- data.frame(Gangion="Wire",Season="1",Year="2010",Latitude.t=-
0.4170317,Longitude.t=3.221,AquaChlo.t=0.6904,NCDCsst_l4.t=2.373, Hookn=1000) 
x3 <- data.frame(Gangion= "Wire",Season="1", Year="2010", Latitude.t=1.239582, 
Longitude.t=1.808,AquaChlo.t=0.6904,NCDCsst_l4.t=2.373, Hookn=1000) 
x4 <- data.frame(Gangion="Wire", Season="1", Year="2010", Latitude.t=1.239582, 
Longitude.t=3.221, AquaChlo.t=0.6904,NCDCsst_l4.t=2.373, Hookn=1000) 
x5 <- data.frame(Gangion="Mono",Season="1",Year="2010",Latitude.t=-0.4170317, 
Longitude.t=1.808, AquaChlo.t=0.6904,NCDCsst_l4.t=2.373, Hookn=1000) 
x6 <- data.frame(Gangion="Wire",Season="2",Year="2010",Latitude.t=-0.4170317, 
Longitude.t=1.808, AquaChlo.t=0.6904,NCDCsst_l4.t=2.373, Hookn=1000) 
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x7 <- data.frame(Gangion="Wire",Season="3",Year="2010",Latitude.t=-0.4170317, 
Longitude.t=1.808, AquaChlo.t=0.6904,NCDCsst_l4.t=2.373, Hookn=1000) 
x8 <- data.frame(Gangion="Wire",Season="4",Year="2010",Latitude.t=-0.4170317, 
Longitude.t=1.808,AquaChlo.t=0.6904,NCDCsst_l4.t=2.373, Hookn=1000) 
# Example of predictions for the GLM Gamma models, predicting CPUE+1 
predict(fit.gamma55, newdata=x1, type="response", se.fit = T). 
predict(fit.gamma55, newdata=x2, type="response", se.fit = T). 
predict(fit.gamma55, newdata=x3, type="response", se.fit = T) 
predict(fit.gamma55, newdata=x4, type="response", se.fit = T) 
predict(fit.gamma55, newdata=x5, type="response", se.fit = T) 
predict(fit.gamma55, newdata=x6, type="response", se.fit = T) 
predict(fit.gamma55, newdata=x7, type="response", se.fit = T) 
predict(fit.gamma55, newdata=x8, type="response", se.fit = T) 
# Example of predictions for the GLM NB models, predicting catches (n) in 1000 hooks 
predict(fit.nb55, newdata=x1, type="response", se.fit = T) 
predict(fit.nb55, newdata=x2, type="response", se.fit = T) 
predict(fit.nb55, newdata=x3, type="response", se.fit = T) 
predict(fit.nb55, newdata=x4, type="response", se.fit = T) 
predict(fit.nb55, newdata=x5, type="response", se.fit = T) 
predict(fit.nb55, newdata=x6, type="response", se.fit = T) 
predict(fit.nb55, newdata=x7, type="response", se.fit = T) 
predict(fit.nb55, newdata=x8, type="response", se.fit = T) 
 


