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RESUMO

Modelagdo de taxas de captura e mortalidade de tintureira capturada
pela frota Portuguesa de palangre de superficie no Oceano Atlantico

A tintureira Prionace glauca € um tubardo pelédgico relativamente abundante e
frequentemente capturado como espécie acessoOrigpemmarias de palangre de
superficie. Apesar dos parametros biologicos tefj@msido relativamente bem
estudados, os impactos das pescarias nestas pigmilago ainda bastante incertos.
Assim, o0 presente estudo pretendeu criar e apersemtdelos para melhor avaliar os
impactos da pescaria Portuguesa de palangre defisigoélirigida ao espadarte nas
populacdes de tintureira. Especificamente, o trabapresenta modelos relativos a
mortalidade durante a operacdo de pesca utilizamaidelos binomiais, recorrendo a
abordagens com modelos lineares generalizadosag@egide estimacgédo generalizadas;
e modelos relativos as taxas de captura usando losotieeares generalizados e
modelos mistos generalizados. Os resultados apaekesnpodem agora ser usados para
prever as taxas de captura e de mortalidade dardird em diferentes cenarios de
pesca, contribuindo assim para uma melhor compfieetdss impactos desta pescaria
nesta especie.



ABSTRACT

Modelling catch and mortality rates of blue shark captured by the
Portuguese longline fleet in the Atlantic Ocean

The blue sharkHrionace glaucais a relatively abundant and wide ranging pelagic
shark, commonly captured as bycatch in pelagiclioadisheries. While it is a species
with relatively known biological parameters, thepimets of the fisheries in their
populations is still largely unknown. Thereforeg thresent study aimed to create and
present models for understanding the impacts oPtirtuguese pelagic longline fishery
targeting swordfish, in this shark species. Spedlify, the work focused on modeling
two different fisheries aspects, namely the atd@ck mortality using binomial models
with generalized linear models and generalizedredion equations; and the catch rates
using generalized linear models and generalizecednimodels. The results presented
can now be used to predict the catch and mortalitgs under various fishing scenarios,
and contribute to a better understanding of theattsp of the fishery in this shark
species.
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CHAPTER . GENERAL INTRODUCTION

I.1. General introduction to the Chondrichthyan fishes

Chondrichthyan fishes (sharks, rays, skates andestais) are an old animal group
that first appeared during the Devonian periodhwite earliest evidence in the fossil
record dating from 409-363 million years (Ma) ag@ompagno, 2005). They survived
several major mass extinction episodes, includifog, example, the Cretaceous—
Paleogene mass extinction event 65.5 Ma that catlmeeéxtinction of the dinosaurs.
The modern Chondrichthyans living today in the wdbiceans derived from the forms

that were present during the Mesozoic period, 28584 (Grogan and Lund, 2004).

Chondrichthyans are characterized by an internalegdn formed by flexible
cartilage, without the formation of true bone ireithskeletons, fins or scales. Other
characteristic that further separate the Chondn@ris from other fishes are the
presence of claspers in males (sexual organs wsedséminate females) that are
formed by the mineralization of the endoskelet@sue along the pelvic fins (Grogan
and Lund, 2004). It is accepted that the class @hcimhyes is a monophyletic group
(Compagneet al, 2005) that is divided into two sister taxa: thbdass Elasmobranchii
that groups sharks, rays and skates and the sabElalbcephali that groups the
chimaeras (Table 1.1). Within this group, the Elabmnanchs are recognized from their
multiple (5 to 7) paired gill openings on the sidéshe head, while the Holocephalans
have a soft gill cover with just a single openingeach side of the head that protects
the 4 pairs of gill openings (Compaget al, 2005). There are currenttyrca 1180
Chondrichthyan species described worldwide (Whited d.ast, 2012), including
approximately 480 species of sharks, 650 batoidsc@chimaeras.

Chondrichthyan fishes occupy a wide range of habyzes, including freshwater
rivers and lake systems, inshore estuaries anateg@oastal waters, the open sea, and
the deep ocean. Although sharks are generally titooigbeing wide-ranging, only a
few (including some commercially important specigapke oceanic migrations.
Overall, some 5% of Chondrichthyan species areracdfound offshore and migrating

across ocean basins), 50% occur in shelf waters do\200 m depth, 35% are found in



CHAPTER| — GENERAL INTRODUCTION

deeper waters from 200 to 2000 m, 5% occur in frester, and 5% have been recorded

in several of these habitats (Carehal, 1998).

Table 1.1: Extant orders of the class Chondrichthgesording to Compagno (2001)
and Compagnet al. (2005).

Subclass Superorder Order Common name

Holocephali Chimaeriformes Chimaeras
Hexanchiformes Cow and frilled sharks
Squaliformes Dogfish sharks

Squalomorphii  Squatiniformes Angel sharks
Pristiophoriformes Saw sharks
Elasmobranchii Rajiformes Batoids
Heterodontiformes Bullhead sharks
Orectolobiformes  Carpet sharks
Lamniformes Mackerel sharks
Carcharhiniformes Ground sharks

Galeomorphii

I.2. Theexploitation of Chondrichthyanswith emphasison the pelagic sharks

In recent years elasmobranch fishes have becoragvedy important fisheries
resources, with a substantial increase in fishifigrteworldwide (Vannuccini, 1999;
Barker and Schluessel, 2005). However, elasmobsaheve not traditionally been
highly priced products, with the exception of tiresfof some species that are marketed
at very high prices in oriental markets for shark doup (Bonfil, 1994; Clarket al,
2007). The exploitation of elasmobranch resourcas bheen attributed in part to
fisheries specifically targeting elasmobranchs .(€gmpbellet al, 1992; Castillo-
Genizet al, 1998; Francis, 1998; Hurley, 1998; McVeginal, 2006; Cartamikt al,
2011) but perhaps more importantly to the bycatichisberies targeting other species
(e.g. Stevens, 1992; Buencuertoal, 1998; McKinnell and Seki, 1998; Fran@tal,
2001; Beerkircheet al, 2003; Coelheet al, 2003; Megalofonowt al, 2005; Coelho
and Erzini, 2008; Belcher and Jennings, 2011; Goettal, 2012a). Game fishing also
has some impact on elasmobranch fishes, espeoialtyhe large pelagic species (e.qg.
Stevens, 1984; Pepperell, 1992; Campetra, 2006, Lynctet al, 2010).
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Even though elasmobranchs are currently impacted cbynmercial and
recreational fisheries, there is still limited infeation about these species life cycles,
biological parameters, movement patterns and hHabttkzation, and in the general
impact of fisheries in their populations. Elasmalata fishes have typically K-strategy
life cycles, characterized by slow growth rates aaduced progeny, with maturity
occurring late in their life cycle (Smitkt al, 1998; Stevenst al, 2000; Cortés, 2000;
Cortés, 2007). This low fecundity and relativelgthisurvival rate of newborns suggests
that there is a strong relationship between the baunof mature females in the
population and the new recruits for the next cqghom¢aning that the success of the
future generation is mainly dependant on the ptessature population abundance
(Ellis et al, 2005).

While the total worldwide marine fishes landinggrseto have reached a plateau
in the late 1980’s, elasmobranch catches increpsegtessively since the 1950’s until
the early 2000's, followed by a decreasing trendtifie more recent years (Figure 1.1).
However, and even though the marine fish catchemmg®e have remained relatively
stable since the late 1980’s, the fisheries havéieghin these last decades from
catching mainly long lived high trophic level fish@owards catching more short lived,
low trophic level invertebrates and small planktwes pelagic fishes (Paulst al,
1998; Pauly and Palomares, 2005). This effect,irally called “fishing down the
marine food web” by Paulet al. (1998) shows that the marine ecosystems top
predators (such as the sharks) are the first ooesuffer from overfishing and
population declines. Indeed, most elasmobranchgragators at, or near the top of the
marine food webs (Cortés, 1999), and are extreingbprtant for the entire ecosystems
balance, by regulating not only their direct maiays, but also second and third degree
non-prey species through the trophic linkages (®tbret al, 2002). The effects of the
removal of such predators from the marine ecosystam difficult to foresee, but may
be ecologically and economically significant, andynpersist over long time periods
(Stevenset al, 2000).
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Figure I.1: Global capture of marine fishes (top)l &lasmobranchs (bottom) from
1950 to 2010. Data from FAO FIGIS data collectiBAQ, 2012)

Up until the 1980’s, elasmobranch fisheries weraegally unimportant small
fisheries, with generally a low commercial valugaditionally, these elasmobranch
fisheries of the past were multi-specific fisheritgat caught several species of
elasmobranchs depending on the region and seadbe géar. There was little interest
in these fisheries, mainly due to their relativeigall scale and low commercial value.
Bonfil (1994) reported that cartilaginous fishesreva minor group which contributed
with an average of 0.8% of the total world fishéamdings between 1947 and 1985,
while bony fishes such as clupeoids, gadoids amdnbomids, accounted for 24.6%,
13.9% and 6.5%, respectively. In the last decadewever, the declining catches per
unit effort (CPUE) and rising prices of traditiorfabd fishes, along with the growing
market for shark fins for the oriental markets, dawmade the previously underutilized

elasmobranchs increasingly important resourcest(@atsal, 1999).

The history of elasmobranch fisheries worldwideigates, however, that these
resources are usually not sustainable. Most elasanob targeted fisheries have been
characterized byBdoom and burstscenarios, where an initial rapid increase of the
exploitation and catches is followed by a rapidlidecin catch rates and eventually a
complete collapse of the fishery (Stevestsal, 2000). Bonfil (1994) and Shotton

4
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(1999) provided reviews of world elasmobranch figgge and included examples of
situations where commercial catches have beenndagli such as in the northeast
Atlantic and Japan, and examples of situationsigti koncern such as in India. Baum
et al. (2003) stated that the northwest populations wfdaelagic sharks including the
scalloped hammerhea&phyrna lewini and the thresherélopias vulpinusand A.
superciliosushave declined by more than 75% over the lasteEssy and even though
the values presented in Bawthal. (2003) seem to have been severely overestimated

(Burgesset al, 2005), there is consensus that there are curreatlyes for concern.

However, and even though overexploitation and patpan collapses is the most
common scenario in elasmobranch fisheries, Walke99¢) demonstrated that
elasmobranch stocks can be harvested sustainatblgramide for stable fisheries when
carefully managed. Some species such as the togd, Shaleorhinus galeuysthe
sandbar sharlCarcharhinus plumbeushe great white sharkiarcharodon carcharias
and several species of dogfishes (order Squalifsyrhave very low productivity and
cannot withstand high levels of fishing, wheredgeospecies such as the gummy shark,
Mustelus antarcticysthe Atlantic sharpnose sharfRhizoprionodon terraenovaghe
bonnethead,Sphyrna tiburo and the blue sharkPrionace glaucahave higher

productivity and can support higher levels of frehimortality (Walker, 1998).

Within the industrial oceanic fisheries such asglomes, driftnets and purse
seines, the pelagic longlines are responsible fustrof the captures of oceanic sharks at
a global level, which are usually captured durihg fishing operations that target
swordfish and tunas (Aires-da-Sihet al, 2008). Several pelagic shark species are
frequently caught in those oceanic longline fise®ribut the two most important and
abundant are the blue sharRrionace glauca and the shortfin mako]surus
oxyrhynchus In the case of the Portuguese fishery, those spe&cies together can
account for more than 50% of the total oceanic lioedishery catch, and can represent
more than 95% of the total elasmobranch catch (@aalal, 2012a).

I.3. Thestudied species, blue shark (Prionace glauca)

The blue sharkRrionace glauca (Figure 1.2) is one of the most wide ranging of

all sharks, found throughout tropical and tempesaies from latitudes of about 60°N to

5



CHAPTERI| — GENERAL INTRODUCTION

50°S (Last and Stevens, 2009) (Figure 1.3). It isetagic species mainly distributed
from the sea surface to depths of about 350 m, thargh deeper dives of up to 1000m
have been recorded (Campaed,al, 2011). The blue shark is an oceanic species
capable of large scale migrations (Queiebtzal, 2005; Silvaet al, 2010; Campanat

al., 2011), but it can also occasionally occur clasanshore waters, especially in areas

where the continental shelf is narrow (Last and/&ts, 2009).

Figure 1.2: The blue sharRrionace glaucgDrawing by: Jodo T. Tavares/Gobius).

e e

Figure 1.3: Global distribution map for the blue dhaPrionace glaucaThe color
scale represents the relative probabilities of oerce, with red and yellow
representing higher and lower probabilities of ooeonce, respectively. Map
generated from Fishbase (Froese and Pauly, 20i®) AguaMaps, a presence-only
species distribution model (Reaetyal, 2010).

The blue shark reaches a maximum size of aboutc88@otal length (TL), and
size at 50% maturity for the Atlantic has beenneated at 218 cm TL for males and

6



CHAPTER| — GENERAL INTRODUCTION

221 cm TL for females (Pratt, 1979). The blue shsuk placental viviparous shark, and
shows a relatively high fecundity within the elasmanchs, producing an average of 35
pups per litter (Zhet al, 2011), with the maximum litter size recorded lgel!35 pups,
after a gestation period of 9-12 months (Compad®84; Castro and Mejuto, 1995;
Snelsoret al, 2008). The pups are born at 35-50 cm TL, andepeoductive cycle has
been reported as seasonal in most areas, withoth@gybeing born usually in the spring
and summer (Pratt, 1979; Stevens, 1984; Nakano,; 198Zin et al, 1994). Age and
growth studies have suggested that longevity islmfut 20 years, with the males
maturing at 4-6 and females at 5-7 years of agev€ss, 1975; Caillieet al, 1983;
Nakano, 1994; Skomal and Natanson, 2003; Lessal, 2004; Blanco-Parrat al,
2008; Megalofonotet al, 2009a). The diet of the blue shark consists mgaohlsmall
pelagic fishes and cephalopods, particularly squakke Jret al, 2009; Markaida and
Sosa-Nishizaki, 2010; Prett al, 2012). However, invertebrates such as pelagic
crustaceans, small sharks, and seabirds have ako teported to be taken as food
(Compagno, 1984).

Blue sharks are a highly migratory oceanic speci) complex movement
patterns and spatial structure probably relatedht reproduction cycles and prey
distribution (Montealegre-Quijano and Vooren, 20I@Gvareset al, 2012). Some
tagging studies have shown extensive movementguef $harks in the Atlantic, with
numerous trans-Atlantic migrations probably accasmgld by using the major oceanic
current systems (Stevens, 1976; Stevens 1990; 6auetiral, 2005; Silvaet al, 2010;
Campanaet al., 2011). At least in the north Atlantic, data on tHestribution,
movements and reproductive behavior seems to suggaesmplex reproductive cycle,
involving major oceanic migrations associated withting areas in the north-western

Atlantic and pupping areas in the north-easteramit (Pratt, 1979; Stevens, 1990).

The blue shark is possibly the most abundant opalhgic shark species, and
even though it can be captured by a variety offiglgears, most captures take place as
bycatch in pelagic longlines targeting tunas andrdiish (Aires-da-Silveet al, 2008;
Stevens, 2009). In the Atlantic Ocean, the manageoféhe oceanic tuna and tuna-like
species (including pelagic sharks) is a mandate I@CAT, the International
Commission for the Conservation of Atlantic Tun&CAT maintains the catch records
from those fisheries (Figure 1.4) and carries dotls assessments and other research
initiatives for determining their vulnerability $tes.

7
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Figure 1.4: Nominal catches of all pelagic sharkcsp® by all oceanic fleets in the
Atlantic Ocean (above), blue sharks captured byfledits (center) and blue shark
captured by the Portuguese fleet (below). Data flGBAT Taskl (nominal catch

information) database (ICCAT, 2012a).

Within the ICCAT scientific work, an Ecological RisAssessment (ERA) was
carried out for priority species of pelagic shaikghe Atlantic in 2010 (Cortést al,
2010), with that analysis currently being updatethwnore recent information (Cortés
et al, 2012). With both analyses it was demonstrated rthast pelagic sharks have
exceptionally limited biological productivity ands such, can be overfished even at
very low levels of fishing mortality, with the blughark in particular shown to have an
intermediate vulnerability. More recently, and fbe Indian Ocean (managed by IOTC,
the Indian Ocean Tuna Commissipran ERA analysis was also conducted for pelagic
and some coastal shark species (Mwetual, 2012) and similar results were obtained
for the blue shark, also characterized for havimglatively higher productivity but also

a high susceptibility to longline fisheries, makirig a species with an overall
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intermediate level of vulnerability. The last blsigark stock assessment for the Atlantic
Ocean was carried out by ICCAT in 2008 (ICCAT, 20Ghd although a high level of
uncertainty was reported in the models, the reshitsved that the current biomass was
believed to be above the biomass that would supllatimum Sustainable Yield
(MSY), and the harvest levels were believed to leéow the Maximum Fishing
Mortality (F) at MSY.

[.4. Challengesin modeling Chondrichthyans bycatch

The main goal of fisheries science and stock assm#s are to inform decision
makers on the potential consequences of differeartagement actions, using the best
available scientific information and data (Ludwe) al, 1993; Hilborn and Walters,
1992; McAllisteret al, 1999; Quinn and Deriso 1999; Hilborn, 2006). Tinereasing
concerns on the vulnerability of elasmobranch ssetd fisheries has lead, in recent
years, to an increased interest on assessing theem@tion status and carrying out
stock assessments for those populations (McAllisteal, 2008). In general and when
compared to other fishes, the current availablermétion for assessing the status of
elasmobranch populations is usually very poor, asdsuch most elasmobranchs are
today in what is called data-poor situations. TiBi® situation characterized by little
available information in terms of their biology de.age and growth, reproduction,
ecology, migratory movements), but also in termsrelfable time-series of their

historical abundance and fisheries catches.

One commonly used analytical method that has beptied to some shark
populations are demographic methods, which areulipafticularly because they rely
primarily on biological aspects (Cortés, 2002; Moknd Cailliet, 2002), rather than on
the historical catches or indexes of abundance.iffngs required are basic population
dynamics parameters, such as the rate of surviypetheach age/stage, the duration of
each life stage (in case of stage-based approacies)the fecundity or number of
newly born offspring produced per female at eack/sigge. One important limitation
on those methods is that they assume that there density-dependence, and that the
estimated parameters are those of theoretical popos under stable conditions.

Typical approaches for studying species demograptiyde life table analysis (e.g.
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Cailliet, 1992; Cortés, 1995) and matrix algebralgsis (e.g. Aires-da-Silva and
Gallucci, 2007; Smitket al., 2008). The most important output of those methiods
fisheries management is the estimationr,othe intrinsic rate of population increase
under a stable condition and assuming density-ieclggnce, as this parameter provides

an indication of the population resilience to exjaiton.

For more elaborate and data-intensive stock assetsmethods, one common
approach used for some shark species are surpbakigiion methods (e.g. shortfin
mako assessment carried out by ICCAT, 2012b), tis&ts information from total
catches and relative indexes of abundance of duksver time. Ideally, these indexes
of abundance should be based on fishery-indeperaiasets, collected for example
during scientific surveys using statistically adagpuprotocols (e.g. random sampling
over predetermined strata such as area, seasan.eyea However, these type of data
are very difficult to obtain and costly in the pglarealm, as the sampling collection
would have to occur in the high seas and cover watg geographical areas. Therefore,
and particularly when dealing with pelagic bycagpecies such as sharks, the data
available is usually based on fishery-dependenasgds, collected by commercial
fishing vessels while operating during their norrfisthing operations. Because of this,
for calculating time series with the relative indexof abundance useful for stock
assessment, it is first necessary to adjust thefdathe impacts of factors other than
the changing abundances of the species over tirhereTare several methods for
achieving this, but a recent common approach isige statistical models such as
Generalized Linear Models (GLM) to build the timeries of the species abundance
over time that only reflects the changes in thendbace, and where other effects
inherent to the fishery-dependence itself have besroved. A good revision on the use
of GLM for standardizing fishery-dependant datasetstock assessment purposes was
presented by Maunder and Punt (2004). For addge#isenlack of independence in the
data, alternative approaches such as GeneralizezhiLiMixed Models (GLMM) that
use random effects on some variables allowing thieoduction of variability
(McCulloch and Searle, 2001; Bolkeat al, 2009), and Generalized Estimating
Equations (GEE) that introduce a dependence steictuthe data (Zeger and Liang,
1986; Zegeet al.,1988), can be used.

Another potential issue and challenge when modelatg from shark populations
is that the datasets of bycatch species often banee (sometimes many) fishing sets

10
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with zero catches. Those represent the fishing thets existed (have an associated
effort), but resulted in zero catches for the speaf concern, and this poses a special
mathematical problem in terms of modeling. For eplenone possible and common
way of modeling catch rate data is to use GLM vatlog link and some continuous
distribution (e.g. Gaussian, Gamma), but in dasagdéth zeros adjustments need to be
made for accommodating those observations, givahttielog of zero is undefined.
Possible solutions for those observations haveadfiggm simple solutions like adding
a small constant to the observed data, to more lexngpproaches like zero-inflated
models. Adding a small constant to the data wasnanmon approach in the past, but as
mentioned by Campbell (2004) the value of the cortstio be added can be somewhat
arbitrary and that constitutes a problem as biasimtroduced in the analysis. Still,
when the proportion of zeros in the datasets ave(#b-10% of the data), this approach
is still commonly used in fisheries science. Besitles strategy, Maunder and Punt
(2004) summarized other three classes of methaatscn handle zero observations,
specified as: 1) statistical distributions thabwallfor zero observations (e.g. Poisson,
Negative Binomial, Tweedie); 2) methods that irdldhe expected numbers of zeros
(zero-inflated models); and 3) the delta-lognorrapproach (Loet al, 1992) that
combines two separate models, usually one binamialel for modeling the proportion
of positives and one continuous distribution mael modeling the predicted values

conditional to the positive observations.

I.5. General objectives of the study with a note on the dissertation style

Given the general lack of information on the fisagrof the blue shark captured
as bycatch in pelagic longline fisheries, and timaasingly importance of this species
as a marine fisheries resource, there was a neeartyg out a study focusing this
species and its impacts in pelagic longline fidk®riThe specific objectives of the

present study were to:

1) Provide a general introduction to the Chondhghnh fishes, their biology and
susceptibility to fishing mortality, with a partiems emphasis on the oceanic sharks and

especially the blue shark (Chapter I);

11
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2) Model the hooking mortality of the blue sharkpttaed in the Portuguese
longline fishery in the Atlantic Ocean (Chapter II)

3) Model the catch rates of the blue shark captimethe Portuguese longline

fishery in the South Atlantic Ocean (Chapter Ill);

Each of the following chapters (specifically chaptd and Ill) of this thesis has
been written in a paper-style format, suitable apgropriate to be published in a
scientific journal. Each of those chapters contgga complete study and can be read
independently of the others. At the beginning afheehapter information regarding that
particular chapter publication status is given.l&aland figures appear in the text inside
each chapter, but all acknowledgements have beewilsal at the beginning of the
thesis and all references have been compiled imahdection. A final Annex section is
provided with a compilation of the R-language ctitkt was produced and used in this

thesis.

12
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CHAPTER II. MODELING AT-HAULBACK MORTALITY OF BLUE SHARKS CAPTURED

IN A PELAGIC LONGLINE FISHERY IN THE ATLANTIC OCEAN.l

I1.1.Introduction

In the Atlantic Ocean several pelagic shark spearescommonly bycatch on
pelagic longline fisheries (e.g. Buencuerpgt al, 1998; Peterseret al, 2009;
Simpfendorferet al, 2002) but still, information on their life histgr population
parameters and the effects of fisheries on thegmilgtions is limited. Generally,
elasmobranchs have K-strategy life cycles, chanaetd by slow growth rates and long
lives, and reduced reproductive potential with feffspring and late maturity. The
natural mortality rates are usually low, and inseghfishing mortality may have severe
consequences on these populations, with populatiedines occurring even at
relatively low levels of fishing mortality (Smitét al, 1998; Stevenst al, 2000). Of
the several elasmobranch species caught in supkgegic longline fisheries, the blue
shark, Prionace glauca is the most frequently caught species (e.g. Goelhal,
2012a).

Previous studies have focused on elasmobranch Imortduring fishing
operations, but most were carried out for coagteti®s caught in trawl fisheries. Those
include the studies by Mandelman and FarringtorO20or the spurdogSqualus
acanthia3 and Rodriguez-Cabell@et al. (2005) for the small-spotted catshark
(Scyliorhinus caniculp For pelagic elasmobranchs caught in pelagicefisls in the
NW Atlantic Ocean, Campanat al. (2009) analyzed blue sharks captured by the
Canadian fleet and studied both the short termattyri{recorded at-haulback) and the
longer term mortality (recorded with satellite talketry). Also for the NW Atlantic, Diaz
and Serafy (2005) worked with data from the U.3agie fishery observer program and
analyzed factors affecting the live release of Isliarks.

Knowledge on the at-haulback mortality can be useelvaluate conservation and

management measures that include the prohibitiorretain particular vulnerable

! Based on a published manuscript: Coelho, R., Infante, P. & Santos, M.N. 2013. Application of
Generalized Linear Models and Generalized Estimation Equations to model at-haulback mortality of blue
sharks captured in a pelagic longline fishery in the Atlantic Ocean. Fisheries Research, 145: 66-75.
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species, such as those recently implemented by stmae Regional Fisheries
Management Organizations (tRFMOs). In particulad &or the Atlantic Ocean, the
International Commission for the Conservation dbAtic Tunas(ICCAT) has recently
implemented mandatory discards for the bigeye HaegICCAT Rec. 09-07), the
oceanic whitetip (ICCAT Rec. 10-07), hammerhead®CAT Rec. 10-08) and silky
sharks (ICCAT Rec. 11-08). However, important pagters, such as the at-haulback
fishing mortality (recorded at time of fishing ge@trieval), remain largely unknown
and therefore the efficiency of such measures r@s@ins unknown. Even considering
that all specimens of these particular speciesavebeing discarded, fishing mortality
is still occurring due to at-haulback mortality, @t of the catch is already dead at time
of fishing gear retrieval and is therefore beingcdrded dead.

At-haulback mortality studies are also importanttesy can be incorporated into
stock assessments, such as the study by Cetrigls(2010), which used an ecological
risk assessment analysis for eleven species omelasnchs captured in pelagic
longlines in the Atlantic Ocean. With this analysi®th the susceptibility and the
productivity of each species are analyzed in ortterrank and compare their
vulnerability to the fishery. One of the parametéhst can be included in the
susceptibility component is the probability of sual after capture, which can in part
be inferred from the mortality at-haulback.

This study had two main objectives:

1) to compare the use of Generalized Linear Mo¢élsM) and Generalized
Estimation Equations (GEE) for predicting the atdback mortality of blue sharks
captured in the Portuguese pelagic longline fisharyhe Atlantic Ocean targeting

swordfish and,

2) to identify variables that are significant anaflience the blue shark at-

haulback mortality rates.
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I1.2.Material and M ethods

I1.2.1. Data collection

Data for this study was collected by fishery obeesvfrom thePortuguese

Institute for Sea and Atmospheric ReseaftfPMA, |.P.) that were placed onboard

Portuguese longliners targeting swordfish alongAtiantic Ocean. Data was collected

between August 2008 and December 2011. Duringpsadd, information from a total

of 762 longline sets corresponding to 1,005,486kkawas collected. The study covered

a wide geographical area (from both hemispheretjeoAtlantic Ocean (Figure 11.1).
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Figure II.1: Location of the longline fishing sedsalyzed in this study along the
Atlantic Ocean. The scale bar is represented iticeumiles (NM).

For every specimen that was caught, onboard fisleservers recorded the

species, specimen size (FL, fork length measurethé¢onearest lower cm), sex, at-

haulback condition (alive or dead at time of fighigear retrieval), fate (retained or

discarded), and the condition if discarded (alivel®@ad at time of discarding). For each

15



CHAPTERII — MODELING BLUE SHARK AT-HAULBACK MORTALITY

longline set carried out some additional informatiwas recorded, including date,
geographic location (coordinates: latitude and i), number of hooks deployed in
the set, and branch line material used (monofilanoenwire). Additional variables
relative to the fishing sets that were calculadegosterioriincluded the Sea Surface
Temperature (SST), which was interpolated from|s&tedata using the known date
and location of each fishing set. The algorithmduse interpolate SST data followed
the methods described by Kilpatrigit al. (2001), and was applied using the Marine
Geospatial Ecology Tools (MGET) developed by Rabetral. (2010).

[1.2.2. Preliminary data analysis

The length frequency distribution of male and fesmblue sharks captured was
analyzed, and compared with a 2-sample Kolmogorousv test and a Mann
Whitney rank sum test. Those non-parametric tesiee whosen after calculating the
skewness and kurtosis coefficients for the datd, @nfirming that the data was non-
normal with a Lilliefors test. The proportions otatl and alive blue sharks were
calculated for each level of each categorical dataur(trip, sex, year, quarter, vessel,
branch line material), and the differences in thepprtions were compared with
contingency tables and Chi-square statistics (uSiatgs’ continuity correction in the
cases of 2x2 tables). For this preliminary analytkis continuous variables FL, latitude,

longitude and SST were categorized by their quesrtil

[1.2.3. Statistical Modeling

Generalized Linear Models (GLM) and Generalizedriation Equations (GEE)
were used to model blue shark at-haulback mortadityl compare the odds of a shark
being dead at-haulback given the various variabtessidered. The response variable
was the condition of the specimens at time of heakb(Y;: binominal variable, i.e.,
dead or alive), and for this study we considered the event occurred if the shark died
during the fishing operation. Therefore, the resgomariable was coded with 1 for
sharks dead at-haulback and coded with O for stainkes at-haulback.
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Each captured sharkj follows a Bernoulli distribution withp; (probability of

succeswersusdying at-haulback z;), and can be specified as:
Yi~B(1,m;)
With the expected value and the variance defined by
E(Y) =m;
Var(V)) = m; x (1 —m)

The relationship (link function) between the mealue of Y; and the model

covariates considered for this model wasltwgt, and the model was therefore defined

by:

- n.

logit(m;) = log (—1 _ln') = Po + Prx1; + Baxa; + o + PrXi,
l

Wherex; are the model variables afichre the coefficients that were estimated by

maximum likelihood.

The explanatory variables initially considered tbe model were the specimen
size (FL in cm), sex (male or female), fishing lbea (latitude and longitude in decimal
degrees), year (2008 to 2011), quarter of the {kar January to March, 2 = April to
June, 3 = July to September and 4 = October tomkes, vessel identity (two vessels
involved in the study), branch line material (woe monofilament) and SST (decimal
degrees in °C). Some potential additional varialese not considered due to being
unbalanced or correlated with other variables, sagtihe month with quarter of the

year, and fishing trip with vessel.

The first modeling approach was carried out with MGLThe univariate
significance of each explanatory variable was aeiteed by the Wald statistic and with
likelihood ratio tests, comparing each univariatedel with the null model. The
significant variables were then used to construgitreple effect multivariate GLM, with
the non-significant variables (at the 5% leveljngtiated consecutively from the model.
The significance of each variable was determinedth®sy Wald statistic and by an
analysis of deviance table. At this stage, thealdeis had been eliminated in the first

step were further tested, in order to determineea@ntual significance within the
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framework of a multivariate model, as recommendg#ibsmer and Lemeshow (2000).
Once a final multivariate simple effects model gsionly significant variables was
obtained, each pair of possible first degree imtevas between variables was tested.
The interactions were considered for inclusiorhia final model if significant at the 1%
level both with the Wald statistic, and with likediod ratio tests comparing the models

with and without the interaction.

The GLM assumptions in terms of both the continuarsd categorical
explanatory variables were assessed. Regardingptitenuous variables, GLM have the
assumption that those variables are linear witHitigar predictor (in this case thagit)
and such linearity was assessed with the methddsofetizing the continuous variables
by the quartiles as described by Hosmer and Leme$h@00), and by analyzing GAM
plots. If transformations were required, then tlesthpossible solution was estimated
with multivariate fractional polynomials and tharisformed variables were used in the
models instead of the original values, following tinethod developed by Royston and
Altman (1994) and recommended by Hosmer and LemegRB000). Regarding the
categorical variables, GLM assume that all levdighe categories have sufficient
information in the binomial response to allow casts in the data and achieve model
convergence. These assumptions follow the contmgeables and Chi-square tests
assumptions, in which the contingency tables shoatchave cells with zero values, or
more than 25% of the cells with predicted valuegeiothan 5. These assumptions were
validated by building contingency tables for allteggorical variables that were

considered.

Another assumption in the GLM modeling approactiné the data in the sample
should be independent, in this case thatlemrrespond to a succession of independent
Bernoulli trials. Given that the data used in thligdy is fisheries-dependant data, it is
plausible to consider that this assumption wasvatitiated. Therefore an alternative
modeling approach with Generalized Estimation Equat (GEE) was considered as
this allows for a working correlation to be estigthtwithin the data. Within this GEE
model framework, the fishing set was considerethagrouping variable, meaning that
the data could be considered to be clustered anthaependent within each fishing set.
This allowed for a model formulation in which thieid shark at-haulback mortality data
recorded within each fishing set carried out byhearticular vessel in each particular
fishing trip did not require the assumption of ipdadence. With this GEE model
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formulation, the correlation structure of the dafighin each set was assumed to be of
the type exchangeable, as this seems to be theadeguate correlation structure for
clustered data (Halekadt al, 2006).

With the final model estimated, examples of mod&trpretation were presented.

One parameters that is important to interpret sidgical terms in the specimen size,
and therefore the probabilities of a shark dyingailback with varying specimen sizes
were calculated. Additionally, the odds-ratiosifareasing specimen sizes by 10cm FL
(also calculated along the range of shark sizékersample), were also calculated and
presented. The probabilities were calculated asrherse-logitfunction of the final

equations considered, and the odds-ratios wereallagdd as the exponential values of
the differences (in 10cm FL sizes) in tlogits. For this specific example, the variables

that were interacting with FL were considered taheheir baseline levels.

[1.2.4. Diagnostics and goodness-of-fit

A residual analysis using Pearson and Devianceluals was used to search for
outliers, and the Cooks distances and DfBetas wsesl to identify eventual values
with influence in the estimated parameters of tredets. Model goodness-of-fit was
assessed with the Hosmer and Lemeshow statistigithaps the observations into 10%
guantiles (deciles) according to their predictetues, and uses a chi-square test for
comparing the observed versus predicted valueadh group (Hosmer and Lemeshow,
2000). Additionally, the Nagelkerke coefficient determination (B (Nagelkerke,
1991) was also calculated. The discriminative caypat the models was determined by
the Area Under the Curve (AUC) value of the Reae@perating Characteristic (ROC)
curves, with the determinations of the model sesiit(capacity to correctly detect the
event = mortality at-haulback) and model specifiditapacity to correctly exclude

sharks not dead at-haulback).

Cross validation was carried out withkdold cross validation procedure (with
k=10) to estimate the expected level of fit of thedels to new data, and to assess
eventual over-fitting problems. Because the modelthis study are of the binomial
type, the cross validation procedure was usedtimate the misclassification error rate,

with the procedure randomly partitioning the orairsample intok-subsamples, and
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then retaining one subsample as the validationsdatand using the remainirngl
subsamples as training datasets to build the mo@lleés cross-validation procedure was
repeatedk times, with each of thie subsamples used one time as the validation dataset
and the use df=10 was chosen as this seems to be an adequatefgalmodels using
large datasets (Fushiki, 2011). Finally, a boopgieal cross validation procedure was
also used to calculate new AUC values, that wemapawed to the original AUC
calculated using the entire dataset.

All statistical analysis for this study was carriedt with the R Project for
Statistical Computing version 2.14.1 (R Developmé&dre Team, 2012). Most
functions are available in the core R Program, dmme analysis required additional
libraries, including library “gmodels” (Warnes, 2H) for the contingency table
analysis, library “gplots” (Warnes, 2011b) for sowfethe graphics produced, library
“moments” (Komsta and Novomestky, 2012) for datamsaries including the kurtosis
and skewness coefficients, library “gam” (Hasti@12) for the GAM models and plots,
library “mfp” (Ambler & Benner, 2010) for the muMtariate fractional polynomials
transformations, library “geepack” (Halekeh al, 2006) for the GEE models, library
“Epi” (Carstenseret al, 2011) for the ROC curve plots, and library “bo@@anty and
Ripley, 2011) for the cross validation procedure.

[1.3.Results
[1.3.1. Description of the catches

A total of 26,383 blue shark specimens were captaretl recorded during the
sampling period. Of those, complete capture inféiwna including at-haulback
condition, size, sex, date and coordinates of thgture was available for 24,958
specimens (94.6% of the blue shark catch) andrbbysis was therefore performed on
those specimens. Of the specimens analyzed, 133BR%) were females, while the
remaining 11,428 (45.8%) were males. The femalesiaza in the sample was 199.5
cm FL (SD = 31.7) with the distribution rangingmat0 to 305 cm FL, while the males
had a mean size of 194.5 (SD= 36.9) and the sgtghiition ranged from 69 to 295 cm
FL (Figure 11.2). The size distribution of males darfemales was considered

significantly different, given that the null hypetis that both sexes come from the
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same continuous distribution was rejected (2-sariaknogorov-Smirnov test: D =
0.06, p-value < 0.001). Likewise, the ranks of simes of males and females was also
significantly different (Mann-Whitney test: W = 2987, p-value = 0.002). The non-
normality in the size data was confirmed with aiéfbrs test (D = 0.030, p-value <
0.001), with the data having a skewness coeffio#nr.41 (negatively asymmetrical)
and a kurtosis coefficient of 4.99 (leptokurtic a)atNote that the kurtosis coefficient
used was calculated as the ratio between thea#nple moment and the square f 2

sample moment, and therefore the reference valua feesokurtic sample would have

been 3.
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Figure 11.2: Size frequency distribution of femaled male blue sharks captured and
analyzed during this study.
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[1.3.2. Proportions of hooking mortality

In general terms, 13.3% of the blue shark specintieaswere captured during
this study were dead at-haulback, while the remgi86.7% were alive. In terms of the
categorical variables, the proportions of alivedlddue sharks were significantly
different between all levels of the variables thatre initially considered, specifically
fishing trip (chi-square = 2092.5, df = 13, p-vaki®.001), sexes (chi-square = 94.4, df
= 1, p-value < 0.001), year (chi-square = 1191f{2; d, p-value < 0.001), quarter (chi-
square = 193.8, df = 3, p-value < 0.001), vessattity (chi-square = 181.3, df = 1, p-
value < 0.001) and branch line material (chi-squar&9.4, df = 1, p-value < 0.001)
(Figure 11.3).

Regarding the continuous variables, and considetiieg data grouped by the
quartiles, the proportions of alive:dead sharksendifferent between sizes (chi-square
= 833.5, df = 3, p-value < 0.001), latitude (chuare = 643.2, df = 3, p-value < 0.001)
and longitude (chi-square = 323.3, df = 3, p-valu®.001), but not significantly
different considering SST (chi-square = 2.8, df =p3value = 0.419) (Figure 11.3).
Besides not being significant in the contingendyldaanalysis, the SST was also found
to be significantly correlated with latitude (Pearscorrelation = 0.605, p-value <
0.001; Spearman correlation = 0.581, p-value <1),08nd with longitude (Pearson
correlation = -0.363, p-value = 0.001; Spearmametation = -0.353, p-value < 0.001)
which might create multicollinearity problems if thothe SST and the geographical
coordinates were used as explanatory variablesnmléivariate model. Additionally,
and because the geographical coordinates wereableafor all fishing sets, while SST
was only available for part of the sets (specifickdr 231 of the 762 sets carried out),
the SST variable was discarded and not used ifithlemodels.
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Figure 11.3: Proportions of alive and dead bluerkbaat-haulback with the various
categorical and continuous explanatory variablassiclered for the analysis. The
continuous variables are categorized by their gaart

11.3.3. Simple effects GLM and GEE models

The functional form of the continuous explanatogyriables (FL, latitude and
longitude) was assessed with GAM plots. The atibeakd mortality tended to decrease
with increasing specimen size, towards northeituldés and eastern longitudes (Figure
1.4).
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Figure 1l.4. Generalized Additive Model (GAM) plotwith the shape of the
continuous explanatory variables (FL, latitude dadgitude) for modeling blue
shark at-haulback mortality.

As verified with multivariate fractional polynomg&imodels, only the longitude
was significantly linear, while the specimen sinel datitude were non-linear variables
that needed to be transformed in order to be ust#dnvthe assumptions of GLM. By
applying the multivariate fractional polynomial nsdormations to those three
continuous variables, the best candidate alteresitito the transformations of the

functional form were:

Size (FL):(%)_O'5 +log (=)

Latitude:log (A25240)  (Letssan)’

Longitude:(“"22)

The transformation regarding the longitude is apdnscale transformation, while
the transformations for specimen size and latitugler to transformations in the
functional form. These transformed variables weseduin the models instead of the
original values.
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In the simple effects multivariate model, all thariables that were initially
considered were significant at the 5% level exdépt vessel effect. Regarding the
quarter of the year the overall effect was sigaifiic but no differences were found
between quarters 1 and 2 (Wald statistic: z = -8.32value = 0.747) and quarters 1
and 4 (Wald statistic.: z = 0.578; p-value = 0.56Bherefore, this variable was
simplified into a binomial variable (season), codeith: season 1 = quarter 3 and

season 2 = quarters 1, 2 and 4.

The results of the simple effects GLM parametersemms of significance are
given in the analysis of deviance presented in @&#ll, where it is possible to see the
contribution of each parameter for explaining pdrthe deviance observed in the blue
shark at-haulback mortality. The parameters thatcantributing more for the model
deviance explanation are the effects of the yedr specimen size, followed by the
geographical location of the capture (latitude dmagitude). Finally, the effects of
season, branch line material and sex are contnigpugiss for the blue shark at-haulback
mortality deviance explanation, but are still sfgraint variables in the model (Table
[1.1).

Table II.1. Deviance table for the simple effectsMsfor the binomial response
(alive or dead) status of blue sharks at-haulbResid.df are the residual degrees of
freedom and Resid.dev is the residual deviancaiffignce of the terms is given by
the p-values of the chi-square test. The “.t” notet after the continuous variables
(FL, Lat and Long) represent the utilization of ttransformed variables in the
models.

Parameter Df Deviance Resid.df Resid.dev p-value

Null 24957 19561

FL.t 1 645.24 24956 18915 <0.001
Latitude.t 1 273.10 24955 18642 < 0.001
Longitude.t 1 251.79 24954 18390 < 0.001
Year 3 908.63 24951 17482 <0.001
Season 1 11.06 24950 17471 <0.001
Branch line 1 7.07 24949 17464 0.008
Sex 1 12.71 24948 17451 <0.001

When applying a GEE model to those variables, amgidering the fishing set as
the grouping (cluster) variable, the estimatedealation value was low (alpha = 0.058,

SE = 0.019), and the estimated parameters were sremjar between the GLM and
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GEE models, with only some minor differences (Tabbl2). The overall parameter
interpretation would be similar with both modelirmpproaches, given that the
parameters were consistently positive or negativenacomparing the models. The only
major different in these multivariate simple effeotodels was that the effect of sex was
significant in the GLM model but not significantt (fne 5% level) within the GEE
framework (Table 11.2).

Table 11.2. Multivariate simple effect GLM and GERodel parameters (coefficients
and standard errors) for the binomial responsedar dead) status of blue sharks at
haulback. Significance of the explanatory variabkegiven by the Wald statistic
with the respective p-values. The “.t" notationteathe continuous variables (FL,
Lat and Long) represent the utilization of the sfanmed variables in the models.

Variable Generalized Linear Model Generalized Estimating Eq.
Estimate SE Wald p-value Estimate SE Wald p-value
Intercept 3.95 0.35 114 <0.001 4.29 0.49 75.9.08D
FL.t -4.19 0.23 -185 <0.001 -4.29 0.34 156<40.001
Lat.t -0.01 0.00 -145 <0.001 -0.01 0.01 60.0 Goa.
Long.t -0.25 0.02 -10.4 <0.001 -0.21 0.05 19.5 .G0Q
Year2009 0.51 0.11 4.7 <0.001 0.41 0.18 53 0.021
Year2010 1.60 0.09 16.8 <0.001 1.34 0.18 58.6 08D.
Year2011 1.79 0.09 195 <0.001 1.70 0.16 1148.001
Season2 -0.19 0.07 -3.0 0.003 -0.23 0.10 5.2 0.023
BranchWire -0.19 0.09 -2.3 0.022 -0.28 0.12 56 0.018
SexMale 0.15 0.04 3.6 <0.001 0.06 005 1.7 0.197

I1.3.4. Modelswith interactions

Several possible®1degree interactions between the variables wergfisignt at
the 1% significance level and therefore a modehwsignificant interactions was
created. In this model, year and specimen size stdr¢he most important explanatory
variables, followed by the location, season, brdim@ material and sex (Table 11.3). In
terms of interactions, specimen size was signiflgaimteracting with longitude and
year; specimen sex was interacting with longitude season; longitude was interacting
with season; and branch line material was intengcivith year (Table 11.3). The
interactions between longitude and season, andeleetwear and branch line material
seemed to be particular significant in this modéth relatively high values of deviance
(Table 11.3).
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Table 11.3. Deviance table for the GLM model wiigrsficant I* degree interactions
for the binomial response (alive or dead) statublo¢ sharks at-haulback. Resid.df
are the residual degrees of freedom and Resid.dethe residual deviance.
Significance of the terms is given by the p-valuébe “.t" notations after the

continuous variables (FL, Lat and Long) represémsuse of transformed variables
in the models.

Parameter Df Deviance Resid.df Resid.dev p-value
Null 24957 19561

FL.t 1 645.24 24956 18915 <0.001
Lat.t 1 273.1 24955 18642 <0.001
Long.t 1 251.79 24954 18390 <0.001
Year 3 908.63 24951 17482 <0.001
Season 1 11.06 24950 17471 0.001
Branch line 1 7.07 24949 17464 0.008
Sex 1 12.71 24948 17451 <0.001
FL.t:Long.t 1 13.62 24947 17437 <0.001
FL.t:Year 3 41.96 24944 17395 <0.001
Long.t:Season 1 71.25 24943 17324 <0.001
Long.t:Sex 1 15.06 24942 17309 <0.001
Year:Branchline 3 80.81 24939 17228 <0.001
Season:Sex 1 8.71 24938 17220 0.003

Like with the simple effects model, a GEE model vaéso applied to this case
(considering interactions), again considering tishifg set as the grouping (cluster)
variable. Like in the simple effects model, theretation within the fishing set was low
(alpha = 0.051, SE = 0.022), and the parameteirnastd with both the GLM and GEE
models were similar, with consistently positivermygative parameters (Table 11.4). In
this case, the only major difference between ustigM or GEE was the loss of
significance (at the 1% significance level) for theeraction between season and
specimen sex (Table 11.4).
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Table 11.4. Multivariate GLM and GEE parameters kg todels with significant™1
degree interactions (coefficients and standard€rfor the binomial response (alive
or dead) status of blue sharks at-haulback. Stanfie of the explanatory variables
is given by the Wald statistic with the respectperalues. The “.t” after the
continuous variables (FL, Lat and Long) represémtsuse of transformed variables

in the models.

Generalized Linear M oddl

Generalized Estimating Eq.

Variable Estimate SE Wald p-value Estimate SE Wald p-value
Intercept 3.90 1.26 3.1 0.002 2.50 1.39 3.2 0.073
FL.t -4.24 0.88 4.8 <0.001 -3.21 0.98 10.8 0.001
Lat.t -0.01 0.00 -13.4 <0.001 -0.01 0.00 52.8 <0.001
Long.t -0.96 0.29 -3.3 0.001 -0.50 042 1.4 0.231
Year2009 7.85 1.67 4.7 <0.001 6.49 1.90 11.6 0.001
Year2010 2.32 1.34 1.7 0.083 2.61 158 2.7 0.100
Year2011 5.70 1.35 4.2 <0.001 5.52 1.44 146 <0.001
Season2 0.85 0.184.7 <0.001 0.78 0.27 8.3 0.004
BranchWire -1.26 0.21 -6.0 <0.001 -1.25 0.27 22.3 <0.001
SexMale 0.17 0.17 1.0 0.301 0.30 0.16 3.6  0.056
FL.t:Long.t 0.83 0.20 4.1 <0.001 0.51 0.30 2.9 0.087
FL.t:Year2009 -5.47 1.19-46 <0.001 -4.51 1.37 10.8 0.001
FL.t:Year2010 -1.85 0.94 -2.0 0.050 -2.07 1.10 3.5 0.060
FL.t:Year2011 -3.61 0.96 -3.8 <0.001 -3.52 1.03 11.8 0.001
Long.t:Season2 -0.49 0.05-9.0 <0.001 -0.44 0.09 219 <0.001
Long.t:SexMale -0.12 0.04-3.0 0.003 -0.13 0.0412.1 0.001
Year2009: BranchWire 0.04 0.290.1 0.894 0.01 0.37 0.0  0.983
Year2010: BranchWire 2.12 0.307.0 <0.001 1.94 0.42 21.3 <0.001
Year2011: BranchWire 1.42 0.246.0 <0.001 1.41 0.30 22.1 <0.001
Season2:SexMale 0.36 0.123.0 0.003 0.14 0.12 1.5 0.226

By using significant interactions, model interpteta gets more complex as the
effects of the interacting variables need to besmmred at the same time. Regarding
the interaction between size and year, the at-laaklbmortality for all size classes
tended to increase along the years, but the relatisrease was different between sizes,
with the smaller specimens having a more sharpeas® in mortality for the more
recent years (Figure 11.5). In terms of the relatlwetween size and longitude, the at-
haulback mortality remained at relatively low levelor the larger size classes
throughout the entire longitude range, while a peékat-haulback mortality was

observed for the smaller size classes towardsastem longitudes (Figure 11.5).
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Figure I1.5. Interactions between specimen size) (Fith year (a) and longitude (b).
The classes of the continuous variables specinmnasid longitude are categorized
by the deciles.

The categorical variable sex was significantly iatéing with both season and
longitude (Figure 11.6). On both cases the male alitytrates tended to be higher than
that for females, but there were some small diffees in the changing patterns. For the
relation between sex and season there was an seckenortality during the combined
winter (autumn to spring) season, but the increpsate was higher for males than for

females (Figure 11.6).

The other significant*Ldegree interaction considered in the model wawsdrs
branch line material and year. In general terms,atihaulback mortality when using
monofilament branch lines remained relatively hiogitween 2008 and 2011 (except for
2010, when a decrease was observed), while anasiage trend along the time period

was observed for wire branch lines (Figure 11.6).
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Figure 11.6. Interactions plots between specimer sgéth season (a), sex with
longitude (b), season with longitude (c) and braleé material with year (d). The
classes of the continuous variable longitude aregoaized by the deciles.

[1.3.5. Diagnostics and goodness-of-fit

For the final multivariate model, validation witlhhet Pearson and Deviance

residuals confirmed that there were no values girasented major and significant

outliers (Figure 11.7). For the Cooks distances tpaints presented values relatively

higher than the remaining and those could posdielywalues with influence in the

estimated parameters (Figure 11.7).
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Figure II.7: Residual analysis (Pearson and Dewaesiduals) and leverage values
(Cooks distances) for the final GLM model includitte main effects and the'1l
degree interactions. The residuals are plottedrimg of the predicted values and the
Cooks distances along the data index. A half-nonphatl of the Cooks distances is
presented to help identify the extreme values.

The DfBetas were also calculated, identifying plolesobservations that had more
influence in the parameter estimation. Two obs@matseem to be possibly influential
(Figure 11.8), with those two observations corresgiag to the values that had also been
identified with the Cooks distances, specificalie tdata points 17,469 and 17,487 in

the dataset used for the models.

Because of those two observations, two new modets wreated, with each new
model excluding each of those data points ideuwtifiehe results of the new models
with the respective new estimated parameters andr8presented in Table I.5. It is

possible to see that for most of the parameterdiffierences in the estimations are
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relatively small and lower than 20%. In terms ofpnovement of the explained
deviance, by removing these possible influentidues the differences were almost
negligible, with the improvement in the’ Rf the two alternative models lower than
0.2% when compared to the original model using ddta points. Because the
differences in the estimated parameters were iergésmall, and the improvements in
terms of the deviance explained are almost neddigthe remaining model diagnostics,
goodness-of-fit and model discriminative capacigrevtested for the original models
using all data points in the dataset and withoutliekng any possible outliers or

influential values.
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Figure 11.8. Df Betas for the final GLM model indung the main effects and
interactions. The DfBetas are plotted along thedipted values, and the two
observations that are possibly influential in soaighe estimated parameters are
identified.
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Table II.5. Estimated parameters (with the respec8E) of the original model using all data poirded two alternative models each
excluding one possible influential outlier. Thefeliences in each of the estimated parameters (gepige) are also included.

Par ameter All dataset Excluding point 17,469 Excluding point 17,487
Estimate SE Estimate SE Dif(%) Estimate  SE Dif(%)
(Intercept) 3.90 1.26 3.48 1.30 10.70 3.57 129 185
FL.t -4.24 0.88 -3.94 0.91 7.10 -4.00 0.90 5.62
Lat.t -0.01 0.00 -0.01 0.00 -0.09 -0.01 0.00 -0.09
Long.t -0.96 0.29 -0.96 0.29 -0.60 -0.96 0.29 -0.32
Year2009 7.85 1.67 8.28 1.70  -5.59 8.19 1.69 -4.38
Year2010 2.32 1.34 2.76 1.38 -18.66 2.66 1.37 346
Year2011 5.70 1.35 6.14 1.39 -7.69 6.04 1.38 -6.03
Season2 0.85 0.18 0.85 0.18 0.26 0.85 0.18 0.15
GangionWire -1.26 0.21 -1.27 021 -0.71 -1.27 0.21-0.71
SexM 0.17 0.17 0.17 0.17 2.15 0.17 0.17 0.30
FL.t:Long.t 0.83 0.20 0.83 0.20 -0.42 0.83 0.20 230.
FL.t:Year2009 -5.47 1.19 -5.79 1.22 -5.73 -5.72 11.2 -4.49
FL.t:Year2010 -1.85 0.94 -2.16 097 -16.74 -2.09 960. -13.14
FL.t:Year2011 -3.61 0.96 -3.92 099 -8.65 -3.86 80.9 -6.80
Long.t: Season 2 -0.49 0.05 -0.49 0.05 0.10 -0.49 .050 0.01
Long.t:SexM -0.12 0.04 -0.12 0.04 0.90 -0.12 0.04 .080
Year2009:GangionWire 0.04 0.29 0.05 0.29 -18.60 500 0.29 -18.96
Year2010:GangionWire 2.12 0.30 2.13 0.30 -042 2.13 0.30 -0.43
Year2011:GangionWire 1.42 0.24 1.43 0.24 -0.55 1.43 0.24 -0.64
Season 2:SexM 0.36 0.12 0.36 0.12 0.08 0.36 0.12 .22-0
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In terms of model goodness-of-fit, both the simpféects and the model with
interactions passed the Hosmer and Lemeshow té#t, thhe simple effects model
having a chi-square = 11.8 (p-value = 0.162) ardntiodel with interactions having a
slightly better fit (chi-square = 9.6, p-value 295). The same type of improvement
was observed for the Nagelkerké WRilues, with the simple effects GLM having ah R
of 0.149 and the model with interactions a highepf0.165. Finally the discriminative
capacity of the models also improved by addingnieractions, with the simple effects
model having an AUC (estimated from the ROC cunfe].741, and the model with
interactions a higher AUC value of 0.750, with astvity of 74% and a specificity of
65% for a cut point of 0.144 (Figure 11.9). Those @Wliscriminative values are,

according to Hosmer and Lemeshow (2000), considacedptable.

a) Simple effects GLM b) GLM with interactions
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Figure 11.9. Receiver Operating Characteristic (RQ@Qrves for the multivariate
GLM using simple effects (a) and considering intéoms (b), for the binomial
response (alive or dead) status of blue sharkawabhack. The Area Under the Curve
(AUC) values are given, as well as the sensitiyBens), specificity (Spec) and
predictive values (PV) at the optimal responsepaitis (Ir.eta).
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The 10-fold cross validation procedure resultednrestimated prediction error of
13.4% for the multivariate simple effects modeld @ansimilar prediction error of 13.3%
for the model with interactions. The bootstrappezks-validation procedure resulted in
an AUC = 0.748, which is very similar to the originrAUC using the entire dataset
(0.750) and also validates the models. Additionally/bootstrapped models also passed

the Hosmer and Lemeshow test (p-value > 0.05 oraaks) for model goodness-of-fit.

[1.3.6. Examples of model interpretation

One parameter that in biological terms is partidylanportant to interpret and
analyze is the influence of the specimen sizesherptobabilities of dying at-haulback,
as well as the influence in the odds-ratios, amdetfiore the final model estimated was
used for prediction and interpretation of the @feaf changing specimen sizes on the
mortality rates and odds-ratios. It was possiblesée that the probabilities of a
specimen dying at-haulback decreases with incrgasipecimen size, but those
decreasing probabilities are steeper for the smaflecimens and tend to stabilize for

the larger specimens (Figure 11.10).

By interpreting the odds-ratios (in this case claltad for an increase of 10cm FL
in specimen size), it is possible to see that sisagk increases in size the odds of dying
decrease, but these odds are non-linear and vényte size. For example, for a blue
shark close to the size of birth (e.g. 50 cm FL)irarease of 10 cm FL in size will
result in the odds of dying decreasing by 22%, W&o Cl varying between 14% and
30% (Figure 11.10). On the other hand, for a largeult blue shark with 250 cm FL, an
increase of 10 cm FL in size with result in the ®ad dying decreasing by only 11%,
with 95% CI varying between 7% and 15% (FiguredQ).1
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Figure 11.10. Probabilities of a blue shark dyirghaulback with varying specimen
size (left), and the odds-ratios of a blue shaikglat-haulback (for an increased 10
cm FL of specimen size) along the size rangeset#ptured specimens (right).

I1.4.Discussion

This study focused on the parameters affecting slhagk at-haulback mortality in
a large scale swordfish pelagic longline fisheryhia Atlantic Ocean. In general, 13.3%
of the blue shark capture was dead at-haulbackjtwas possible to determine that
several variables had significant effects on thartality rates and a statistical model
was produced.

Several studies have previously addressed bluek sitanaulback mortality in
pelagic longline fisheries, including the worksifiz and Serafy (2005) and Campana
et al. (2009) in the Atlantic, and Moye=t al. (2006) in the Pacific. For the Canadian
fleet in the northwest Atlantic, Campaed al. (2009) estimated the blue shark at-
haulback mortality in the 12-13% range as measbsedishery observers, which is
relatively similar to the 13.3% estimated in ouudst However, using telemetry
technology to account for the post-release moytalitampanaet al. (2009) also
reported that the actual mortality values coulccleser to 20% due to the added post-
release mortality. In the Pacific Ocean, Mogesl. (2006) also addressed post-release

mortality using satellite telemetry, and in the easf blue shark noted that the

36



CHAPTERII — MODELING BLUE SHARK AT-HAULBACK MORTALITY

survivorship of sharks landed in an apparently thgatondition was likely to be high.
This means that our estimates of 13.3% mortalibbably represent accurately the at-
haulback mortalities of blue shark in the Portugugslagic longline fishery, but at this
stage the total mortalities (that also need to aetdor post release mortality) still

remain unknown.

The most significant factors affecting mortalityonr study were the year effect,
followed by specimen size. The yearly variationsynhe related with inter-annual
variability inherent to the species or the fishgpatial/seasonal patterns, or eventual
changes in the fishery that may be contributinghanges in these rates. It should be
mentioned, however, that the data analyzed ingthidy was collected by the fishery
observer program that tries to cover the geograpseasonal variability of the fleet in
terms of catch rates, but it is a fishery-dependentce of data that cannot cover those

geographical/seasonal patterns in a truly baladesan.

With regards to the specimen size, the probatlsliied odds-ratios show that the
larger specimens have lower probabilities of belegd at-haulback than the smaller
specimens. However, these effects are non-linedh twe odds-ratios of surviving
higher for the smaller specimens (as they growiza)sand then tending to stabilize as
the sharks reach larger sizes. Some previous stidie already looked into effects of
specimens sizes in the mortality rates (e.g. Diagd 3erafy, 2005; Camparet al,
2009), and similar results were reached, with desing probabilities of at-haulback
mortality as the specimens increase in size. Thiesalts have a direct effect on
eventual management and conservation initiativesh sas the establishment of
minimum and/or maximum landing sizes, as the efficy of such measures will have
specific effects depending on the shark sizes. éxample, the establishment of a
minimum landing size would have a more limited emation effect, as the smaller
specimens are the ones that have higher probabiltf dying due to the fishing
process, and would therefore tend to be discarbleddy dead.

Even though the models created and presented sebenvalid and perform well
for predicting blue shark at-haulback mortality esat(as verified by the residual
analysis, goodness-of-fit, and cross-validatiorcpdures), some limitations need to be
addressed and considered. One characteristic aftody was that the hook style effect
was not considered, mainly because the Portuguesgirie fleet uses exclusively J-
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style hooks. Therefore, the values reported instudy refer specifically to fisheries
using this type of hooks, while other pelagic longlfleets may use different hooks
such as circle and/or tuna hooks. Some previoudiestthave reported that blue shark
mortality rates were higher with J-style hooks wheompared to circle hooks
(Carrutherset al, 2009), while on the other hand Coeltaal. (2012b) reported that for
the elasmobranch species more commonly discardgdhigeye thresher and crocodile
shark) the hook style (J-styles. circle hooks) seemed unrelated to at-haulback
mortality. Likewise, Kerstetter and Graves (2008pashowed that even though several
target and bycatch species seemed to have higtesr o& survival at-haulback with
circle hooks, the effects were not statisticallgngicant for most species. On the
contrary, Afonscet al. (2011) compared J-style with circle hooks in tbatb-western
Atlantic Ocean and concluded that circle hooks vedfieient in reducing the mortality
rates of most species caught, both in pelagic aadtal longline fisheries, observing at
the same time that the catch rates of some sp@aghsding the blue shark, were higher
with circle hooks. In the North Pacific Ocean, hoetw Yokotaet al. (2006) showed
that the hooks (circlgs. tuna hooks) had little effect on the catch rated mortalities

of blue shark. This variability in results seemsstgpport the fact that specific studies

and assessments should be carried out speciffoalbach fishery and fleet in question.

One possible shortcoming in our study was the tfa&t the fishing gear soaking
time was not considered, with several previousistute.g. Campanet al, 2009; Diaz
and Serafy, 2005; Morgan and Burgess, 2007) hagiergonstrated that the soaking
time was also a significant variable for predictirj-haulback mortality on
elasmobranchs. Besides the fishing gear soaking, tilorgan and Carlson (2010) also
demonstrated that the capture time (measured witk imers) was also influential in
the mortality rates of some demersal shark speaipsired in bottom longline fisheries.
Finally, and even though in our study the gangiatamal had a relatively small effect
on the mortality rates, other authors have showhsbme components of longline gear
may interact to influence catch rates and relatiogtality estimates (e.g. Afonst al,
2012, Wardet al, 2008). As suggested by these authors, it couldypethesized that
nylon leaders could catch relatively more dead lsliarks than wire leaders because
healthy and robust specimens, which would be mkedylto be alive at gear retrieval,
may have more chances of biting through the nyt@hescaping.
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The logistic models used in our study seem adedoat@aluate the contribution
of potential explanatory variables to blue sharkatlback mortality, as the response
variable is binomial (deags. alive sharks at fishing gear haulback). The modedated
used both biological factors such as specimen asizeé sex, as well as fishery
operational factors such as geographical locatr@htaanch line material. In our study
the vessel effect was tested but not consideradfis@gnt, while a previous study by
Campanaet al. (2009) had verified that the vessel effect wasifigant. One important
difference between the two studies is in the nunobeessels monitored that was much
larger in the Campanat al. (2009) study. Eventual differences between differe
vessels can hypothetically be due to: 1) vessalglifferent trips and sets) targeting
different species, and using therefore differentargespecifications, such as
monofilamentvs. steel branch line materials; 2) vessels with déife crews that may
handle the sharks in different ways; 3) vesselagusifferent fishingmetiersthat can
result in different soaking times of the fishingagewhich will be influent in the
mortality rates. Such possibilities are hypotheket cannot be easily verified at this
stage, but it is feasible to consider that a cati@h in the mortality data within vessels,

fishing trips or fishing sets may exist in thosdnéisy-dependents datasets.

For addressing such eventual lack of independencthe sample, the ideal
scenario would be to collect fishery-independertadaut for the large pelagic species
such data would be extremely costly, and therefmigeries-dependent data (either
logbooks or fishery observer datasets) is usudlly only available data for such
analysis. However, models such as GLM or GAM asstlraethe data is independent,
and therefore making inference from such data witbth models may result is biased
estimates. For such cases, the use of GEE modglg be a valid alternative approach,
as this modeling technique calculates a workingetation matrix that approximates
the true correlation on the observations (Wang @adey, 2003). Therefore, in our
study we opted for a methodology of comparing GLMhwGEE models, using the
fishing sets as the grouping variable in the GEEel®y and assuming therefore a
possible lack of independence of data within easinirfg set. With the GEE models a
working correlation matrix is estimated, that iserihused to correct the model
parameters. However, the estimated correlationnpetier was low, meaning that this
lack of data independence between fishing sets doesseem to be significantly
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affecting the GLM estimates, which could thus basidered also valid for predicting
blue shark mortality rates.

This paper presents new and important informatiothe impacts of this pelagic
longline fishery on blue shark populations in aevitlantic area. The results can now
be used to predict the effects of the fishery areldhark mortality, and specifically on
how several factors are contributing to this mdastatates. One immediate application
is, for example, to determine the efficiency of mwal future management and
conservation initiatives such as the establishrméninimum and/or maximum landing
sizes. The results can also be incorporated intardustock assessment models,
including ecological risk assessment analysis edrout regularly by tRFMOs for
bycatch species.
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CHAPTER IIl. MODELING BLUE SHARK CATCH RATES IN A PELAGIC LONGLINE

FISHERY IN THE SOUTHERN ATLANTIC OCEAN.2

[11.1. Introduction

The blue sharkRrionace glaucais one of the most wide ranging of all pelagic
sharks, found throughout tropical and temperate g¢kast and Stevens, 2009). It is
capable of large scale migrations (Queiedzal, 2005; Silvaet al, 2010; Campanat
al., 2011), and has complex movement patterns andikpaticture probably related to
the reproduction cycles and prey distribution (Rra979; Stevens, 1990). The blue
shark is possibly the most abundant of all pelaiiarks, with most captures taking
place as bycatch in pelagic longlines targetingasuand swordfish (Aires-da-Silet
al., 2008).

Modeling and understanding the catch rates dynamfcany species is an
extremely important aspect for fisheries manageraadtconservation, as it allows for
a better understanding in terms of the speciesilalision and impacts by the fisheries.
Some of the previous blue shark studies availabtbe literature are mainly descriptive
in nature (e.g. Montealegre-Quijano and Vooren, 20Wwhile others have used
advanced modeling techniques to analyze this tymata. Previous examples of such
modeling approaches include the studies of Bigetiwal. (1999) and Walsh and
Kleiber (2001) that used Generalized Additive MedéBEAM) to model blue shark
catch rates in the Hawaiian based USA pelagic Inadishery in the North Pacific;
Megalofonouet al. (2009b) that used Generalized Linear Models (GliMiletermine
the operational, spatial and seasonal effects taftedlue shark catch rates in the
Mediterranean Sea by the ltalian and Greek pelbmigline fleets; Carvalhet al.
(2011) that created a GAM model for predicting bdlmark catch rates in the southwest
Atlantic in areas of operation of the Brazilianefleand Vdgleret al. (2012) that also
used GAM models for modeling the blue shark casdbs in the eastern tropical Pacific
by the Mexican fleet. All of those examples haveulsed relatively small areas (when

the oceanic nature of the species is considered) Hawaiian region in the Bigelogt

’ Based on a manuscript in Preparation: Coelho, R., Infante, P. & Santos, M.N. Modeling blue shark
(Prionace glauca) catch rates in a pelagic longline fishery in the southern Atlantic Ocean using fixed and
mixed effects generalized linear models.
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al. (1999) and Walsh and Kleiber (2001) studies; eastdediterranean in the
Megalofonouet al. (2009b) study; southwestern Atlantic off Braziltimee Carvalhoet
al. (2011) study; and eastern tropical Pacific off Mexin the Vdgleret al. (2012)
study. At this stage, the authors are unaware yppaevious study where such modeling

analysis was performed for this species at a widéesoceanic level.

Most of the previous studies used statistical nod@th the main objective of
standardizing the catch rates of blue shark foatarg annual indexes of abundance.
This process is, in theory, used to remove factther than the annual changes in
abundance of the population that can have an ingrathe catch rates over time. The
primary objective of such studies is not necesgaoilcreate models for understanding
the factors affecting the catch rates, but to obtadexes of relative abundance that
reflect the actual changes of the species’ aburefa@idaunder and Punt, 2004), and
where other factors that can affect the catcheg. (geasonality, fishery-specific
operations, regional effects) have been removednipkes of such approaches are the
works by Carvalhcet al. (2010) for the Brazilian and Tavares al. (2012) for the
Venezuelan pelagic longline fisheries, in both saséth the authors using GLM
approaches to standardize the annual catch ratesvise, most of the technical works
carried out within the scope of the tuna Regionahiement Fisheries Organizations
(tRFMO) use such approaches for creating annu&xiesl of abundance for utilization

within stock assessments (e.g. Coedhal, 2011; Hiraoka and Yokawa, 2012).

Given that many of the previous works focusing dhark catch rates in pelagic
fisheries have been mainly descriptive in natuesehbeen somewhat limited in spatial
coverage and in comparisons of modeling technicared have been mainly created for
standardizing annual catch rates, the authors dere that there was the need for a
new study, covering a wider oceanic spatial scald asing/comparing several
modeling techniques. Therefore, the present studg wlaborated with the main
objective of modeling blue shark catch rates inRloetuguese pelagic longline fishery
targeting swordfish over a wide geographical arethe southern Atlantic Ocean. For
achieving this main goal, and because of the chenatics of this fishery-dependant
dataset (data collected by the commercial fishgriassecondary objective was to
explore and compare different modeling approaches)g different possible model
types (GLM - Generalized Linear Models and GLMM er@ralized Linear Mixed
Models) and distributions (Gamma, Poisson, Negd&imemial and Tweedie).
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I11.2. Material and Methods
I11.2.1.Data collection

Data for this study was collected by fishery obsesvirom thePortuguese Sea
and Atmospheric Research InstittBMA, 1.P.) placed onboard Portuguese longliners
targeting swordfish in the Atlantic Ocean. Data wa#lected between October 2008
and December 2011. During that period, informafimm a total of 533 longline sets
corresponding to 728,254 deployed hooks was celieatith this study focusing on the
southern Atlantic region (Figure 111.1). For therpases of this study the southern
Atlantic region was defined by the latitudes southef 5°N, following the stock
delimitations of major shark species used by ICCAJCAT, 2006-2009). For each
fishing set that was carried out, information wasorded for the date, fishing set
location (latitude and longitude), number of hoalsed in the set, gangion material

(monofilament or wire), and the species-specificitas in number (n) of specimens.

Additional variables relative to the fishing setsit were calculated posteriori
(using the fishing set location and date) includkd lunar phase (category) and
illumination (scaled luminosity from 0 to 1), searface temperature (SST, °C) using
data from the NOAA National Climatic Data CenterefRoldset al, 2007; NOAA,
2012), Chlorophyll-a (mg/f) using data from the NASA Ocean Color Group (NASA,
2012), salinity (mg/L), mixed layer depth (MLD, dbpin meters at which the
temperature drops 0.2°C) and sea surface height)(&$ng HYCOM models (Bleckt
al., 2002, HYCOM, 2012), current velocity (m/s) andddic energy (fis?) from the
NOAA Ocean Surface Current Analysis (OSCAR, 201&l). the data from those
variables were interpolated from the different sesrusing the Marine Geospatial
Ecology Tools (MGET) developed by Robegtsal. (2010).
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Figure 1ll.1. Location of the 533 fishing sets @agr out by the Portuguese longline
fleet in the southern Atlantic Ocean (south oftlamte 5°N) that were analyzed for
this study

[11.2.2.Preliminary data analysis

The catch per unit of effort (CPUEY; the response variable in this study) was
calculated for each fishing set as the number o€ ldharks captured (n) per 1000
deployed hooks (n/1000 hooks). This variable wadyaed in terms of shape with a
histogram and a QQ plot, and tested for normaliih @ Kolmogorov—Smirnov test

with Lilliefors correction.

The candidate continuous explanatory variables vaei@yzed with correlation
matrices plots and by calculating non-parametriea®man correlation coefficients.
Those plots and correlation tests were mainly dse@ preliminary analysis between
the response variable and the candidate explanatoigbles, as well as for eventual
correlations between the explanatory variables. ther relationships between the
response variable and the candidate categoricimiory variables, boxplots and non-
parametric tests were used to assess if differeocesred in the blue shark CPUE of

the various categories of these variables. Thepavametric tests were used because
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the assumptions of normality (tested with a Lilhef test) and homogeneity of
variances (tested with Levene tests) were not iedrifeven after transforming the

response variable.

[11.2.3.Statistical modeling
[11.2.3.1. Modeling approaches

The first modeling approach carried out in thisdgtto explain the blue shark
catch rates in the southern Atlantic Ocean wasopadd with GLM models
(McCullagh and Nelder, 1989; Agresti, 2002) that ba noted as:

n(Y;) = Bo + B1x1; + Baxz; + -+ Brxp,; + &

Where 1 represents the link functiork; the model variablesf the model

coefficients that were estimated by maximum likedid, anc: represents the errors.

The variable selection criteria followed the steggvapproach recommended by
Hosmer and Lemeshow (2000). The univariate sigaiiie of each explanatory variable
was determined by the Wald statistic and by thelillood ratio tests, comparing each
univariate model with the null model. The signifitavariables were then used to
construct a simple effect multivariate GLM, withetimon-significant variables (at the
5% level) eliminated consecutively from the modédlthis stage, the variables that had
been eliminated in the first step were furthergdsin order to determine an eventual
significance within the framework of a multivariateodel. Once a final multivariate
simple effects model was obtained, each pair obiptes ' degree interactions was
tested, and those were considered for inclusiothenfinal model if significant at the

1% level, using Wald statistics and likelihood odtsts.

In terms of the GLM assumptions regarding the exgilary variables, the
assumption of linearity (in the continuous variablevith the linear predictor was
assessed by creating and analyzing GAM plots. iflences of non-linearity were
present, then multivariate fractional polynomiansformations were carried out, and
the transformed explanatory variables were usethénfinal models (Royston and
Altman, 1994).
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Another assumption in the GLM models that was atereid was the fact that the
samples should be independent (randomly collectadt)in this case the data comes
from a fishery-dependent source, i.e., from the ro@ncial fishery. This means that
some variables, for example the skill of the skipged crew for handling the fishing
gear that may have implications on the catch ratese not controlled. To handle this
lack of independence, an alternatively modelingrapph with Generalized Linear
Mixed Models (GLMM) was carried out (Jiang, 2007itzRaurice et al, 2009).
GLMM are extensions of GLM and combine the promsrtiof two statistical
frameworks widely needed in biological studies, ebminear mixed models, which
incorporate random effects, and generalized limeadels, which handle non-normal
data (Bolkeret at, 2008). Within GLMM, two types of variables can @@nsidered, the
fixed effects and the random effects. Random effdgpically include blocks in
experiments or observational studies that are ga{@d across sites or times, but can
also encompass variation among individuals, spewegsons or time periods (Bolket
al., 2008). The choice of what should be a fixed amlom effect can sometimes be a
conceptual choice, and in our study we chose toasseandom variables the vessel
effect, given that conceptually the variability fihe blue shark catch rates between
vessels may depend on the intrinsic characterisfiesach fishing vessel, skipper and
crew, while the other possible explanatory variab{ee. season, year, branch line
material, SST, Chlorophyll, MLD, SSH, current vatgcand lunar luminosity) were
considered as fixed effects. Because the GLMM ia #tudy were used mainly as a
comparative technique with the more commonly usédiGpproaches, the same
variables that were selected for the final GLM nisdeere used, adding only the vessel
effect as a random variable. However, and for caimspa and validation purposes, a
GLMM with the variables selected using a stepwisgp-down strategy, as

recommended by Zuur at. (2009) for these types of models, was also created

The GLMM used in this study can be defined as
n(Yij) = Bo + Bixyij + Baxzij + -+ BrXpij + a;j + &

Wheren represents the link functiow, the model fixed effects variables,the
model coefficients that were originally estimatedhwenalized quasi-likelihood (PQL)
(Venables and Ripley, 2002) and then with Laplamgr@ximations in the final models

(Bolker et al, 2008),a represents the random variable with a distributiefined by
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a~N(0,0?), ande represents the errors. In this specific caserttiexj of the equation
represents the different vessels, given that dmyviessel effect was used as a random

variable, and the indaxrepresents the samples.

[11.2.3.2. Dealing with zeros in the response variable

Both the blue shark catches in numbers per sear{d)the CPUE (n/1000 hooks)
are types of response variables characterizeddoin some zero values, specifically
in the fishing sets with zero catches of blue shaBecause of these characteristics,
several alternative approaches in terms of erridutions were used and tested. Most
of the distributions used in this work can be dedinn several different ways, and we
used the notations presented by Zeiual. (2009).

The first approach to deal with the zeros in thepomse variable was to add a
small constantd) to all observed CPUE values, so that the respaasable was
transformed into CPUE &, and become a continuous positive variable thabnger
contained zeros. The choice of thealue to be added can be somewhat subjective, and
after testing some possible alternatives (1 and @D#he mean), we added the value of
1, which seems to be a common approach in mangrieshbiology studies (e.g. Ortiz
and Arocha, 2004; Purdt al, 2000). With the response variable transformethis
way (Y; now CPUE+1), a Gamma distribution defined¥pyGamma(u, v) was used to

model the data, with the expected values and vegidefined by:

EY)=u

2
Var(Y) = #7

Wherey is the mean and’ defines the dispersion, with small values oélative

to 12 implying that the spread of the data is large.

The second alternative approach was to use distiiisifor categorical (count)
data, such as the Poisson and the Negative BinofNR), and in those cases the
response variable used was the blue shark catehmsrber (n). In both those cases the

number of hooks in each specific set was used enrifht-hand side of the model
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equations as a variable offset, functioning as»gosure variable, which indicates the
number of times the event (catches in number) cdwdde occurred in terms of
opportunities (number of hooks used).

Assuming a Poisson distribution the catches of birarks in number

follow Y;~P(u), with expected value and variance defined by:

EY)=npu
Var(Y) =pu

Assuming a NB distribution the catches of blue kkarin number

follow Y;~NB(u, k), with expected value and variance defined by:

EY)=u

12

Var(Y) = u + ”

Wherek defines the dispersion parameterkihas large values (relative {3)

2
then the term* /k approximates 0 and the variance ¥f becomespu, which

approximates to a Poisson distribution. This NB tlaerefore be used instead of a
Poisson distribution in cases where the data isdisfgersed.

Additionally, and as another possible approach tealdwith eventual
overdispersion in the data in this type of modalguasi-Poisson model was also used
for comparative purposes with the Poisson and Neg&inomial. The quasi-Poisson
estimation allows to deal with this type of probkerfover or under-dispersion) as
instead of specifying a probability distributiorr fine data it establishes a relationship
between the mean and the variance in the formvafiance function, that can include a
dispersion or scale parameter as a multiplicatactol (Faraway, 2006; Zuwat al,
2009). In this model the mean and variance arengoye

EY)=u

Var(Y) =@ X u
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Whereg is the dispersion or scale parameter. Althouginis models the Poisson
distribution is not specified, it still uses thersatype of model structure in terms of link
function. If thee value = 1 then, in theory, the estimated pararaeted standard errors
are equal to the Poisson GLM, while valuespof 1 andp < 1 refer to overdispersed

and underdispersed data, respectively (&, 2009).

Finally, another approach to model this data wasiezh out with Tweedie
distributions, also called compound Poisson—Gamistuiltutions (Dunn, 2004), that
are defined by:

EY)=npu
Var(Y) = @ x u?

In which ¢ is the dispersion parameter apds the index parameter. When the
index () parameter has values between 1 and 2, the diStnbis continuous for
positive real numbers, but has an added discress @20, which seems appropriate to
model CPUE data (continuous data with an added wfassros). The index parameter
for this specific dataset was calculated outsigeniodels, by maximizing the likelihood

profile function of possible values pfbetween 1 and 2.

In all the modeling approaches tested (both GLM @h#iM) the link function
used in the models was tlogy. Within the Poisson and NB models, because ofltigs
link, the model offsets were defined #&sg(number of hooks), constraining that

parameterlpg (number hooks)] to 1.

[11.2.3.3. Model comparison, validation and goodness-of-fit

For each model that was run the residuals wer¢epl@nd analyzed, to determine
visually if major problems were taking place, suah overdispersion problems, the
presence of outliers or influencial observatiomsgéneral the deviance residuals were
used (Zuuret al, 2009), except in the Tweedie models where thentijearesiduals

were used as recommended by Dunn and Smyth (1996).
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For each model the values of the AIC - Akaike Infation Criterion (Akaike,
1974), and R - Nagelkerke coefficient of determination (Nageke 1991), were
calculated and used for model comparison in teringoodness-of-fit. With the final
models calculated, the estimated coefficients werspared between approaches (GLM
versus GLMM) and between different distributions (GammBpisson, Negative

Binomial and Tweedie).

Because multiple explanatory variables were useth@se models, which may
potentially cause multicollinearity problems, Gealied Variance Inflation Factors
(GVIF) were calculated for the models main effeff®ex and Monette, 1992). The
definition of threshold values for these GVIF sedmbe somewhat arbitrary, but as a
general rule most authors recommend that valuesehithan 5 may be cause for
concern, while values higher than 10 can indicatess collinearity problems (Hadét
al., 1995; O'Brien, 2007).

Another validation measure used, particularly ttedaine eventual over-fitting
problems in the models, was to measure the predietiror of the models by usinga
fold cross validation procedure, in this case udinf0 as this was demonstrated to
produce the best results in large datasets witlb@%Borra and DiCiaccio, 2010). With
this procedure, the data was randomly divided f@cequally sized groups, with new
models fitted sequentially using data from only @ups (training sets) and used to
predict and calculate the errors using the groap wWas left outside (testing set). The

measure of error considered was the Mean Squared (4SE), defined as:
1 n
MSE = ;Z(?l -1,)°
i=1

WhereY is the vector of the fitted predictions awds the vector of the observed
values. This MSE was calculatkdimes in each model being tested (using sequéntial
each of the training/testing sets), and a finabsrealidation error (€fV) calculated as

the mean of th& MSE values obtained.

Finally, the candidate models were compared arerpreted in terms of blue
shark catch rate predictions. Eight possible dfier scenarios were considered,

reflecting theoretical changes in the fishery inme of spatial, operational and seasonal
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aspects. The spatial scenarios considered refldotedgeneral regions in the study
area, specifically the SW, NW, NE and SE, consitethe £ and & quartiles of the

latitude and longitude gradients; the operatiortanarios reflected possible changes
between wire and monofilament gangions; and theosed scenarios reflected the

various seasons along the year.

Data analysis for this paper was carried out with R Project for Statistical
Computing 2.14.1 (R Development Core Team, 2012) AD Model Builder 10.0
(Fournieret al, 2012). In the R program some additional libraviese used for specific
analyses, including the Levene tests and calcuatfoGVIF (library “car”, Fox and
Weisberg 2011), fitting Tweedie distributions anddels including the maximum
likelihood estimation of the index parameter (ltyrétweedie”, Dunn 2010), fractional
polynomials models and transformation (library “mfAmbler and Benner, 2010),
GAM models and plots (library “gam”, Hastie, 2011ijfing GLMM models using
ADMB (library “giImmADMB, Skauget al, 2012), fitting GLMM models with the
tweedie distribution (library “cplm”, Zhang, 2012Jitting GLMM models with
penalized quasi-likelihoods (library “MASS”, Venabl and Ripley, 2002), and cross
validation procedures (library “boot”, Canty ancpkely, 2011).

11.3. Results
[11.3.1.Preliminary data analysis

Of the 533 fishing sets that were monitored andlusehis study, positive blue
shark catches occurred in almost all (specifically525), meaning that only 8 sets
(1.52%) had zero catches of blue shark. In thetipessets the catches of blue shark in
number varied from 1 to 184, with an overall averaf 28.75 (SD=25.73) specimens
per set. The catch rates (CPUE, n/1000 hooks) cafigen O to 176.9, with an average
of 21.13 (SD=19.71) per set. The CPUE distributs@s not normally distributed (K-S
with Lilliefors correction: D = 0.142, p-value <(0@1), and was highly asymmetrical

and skewed to the right (Figure 1l11.2).

51



CHAPTERIIl —MODELING BLUE SHARK CATCH RATES

Blue shark CPUE distribution
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Figure 1l1.2. Distribution of blue shark CPUEs (60D hooks) for the Portuguese
pelagic longline fishery in the southern Atlantic&an. A smooth kernel density line
and a QQ plot with the distribution are also repnésd.

In terms of preliminary analysis of the explanategriables, the southern blue
shark CPUE had a significant and positive correfativith longitude, wind velocity,
mixed layer depth and chlorophyll, and a significaegative correlation with latitude,
sea surface high, salinity and SST (Figure IlIBB).the contrary, blue shark CPUE did
not show a significant correlation with intensity moon illumination and current
velocity (Figure 111.3). Some of the possible exp@éory variables were also correlated
between themselves, such as for example sea suhight that was negatively
correlated with both latitude and longitude, or StBat was highly correlated with
latitude (Figure I11.3).
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Figure 111.3. Scatterplots matrices with the relationships betwieleie shark CPU!
and the candidate continuous explanatory variabseslin the models. The lowe
diagonal panels show the scatterplots with smamtles$s regression lines. The up
diagonal panels show the values of the-parametric Spearman correlations and
respective significance levels: * - p-value < 0.01; ** - p-glue < 0.05; - p-value <
0.1. The diagonals show the distribution of thaaldes with histograms and dens

lines.

While for most of the variables the informationtive database was complete (
there were no missing values), some of the varg that were extrapolatea posteriori
had this additional problem of having some missiatues. Particularly problemat
were the cases of the current velocity with 103smig values (corresponding to 19.:
of the fishing sets), and the wind velocity v 208 missing values (corresponding
39.0% of the fishing sets). Because of those issuts missing values and becat
those two more problematic variables were highlyredated with some of the oth

possible explanatory variab, they were not condered for using in the final mode
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When tested in univariate models, the current vglowas not significant (Wald

statistic = 1.149, p-value = 0.251,; likelihood oatiest p-value = 0.224), while the wind
velocity was significant (Wald statistic = 2.646yalue = 0.009; likelihood ratio test p-
value = 0.008). It should be noted that for thosévariate models and tests, new
subsets of data were build with the removal oih@ising values from those variables,

so that the likelihood ratio tests for comparingted models could be performed.

Some variations in the blue shark CPUE were dalantéhe categorical variables
that were analyzed (Figure 111.4). Specificallydamsing non-parametric statistical tests,
significant differences were detected in the blhark CPUE between years (Kruskal-
Wallis: Chi2=69.6, df=3, p-value < 0.001), seas@fuskal-Wallis: Chi2=105.5, df=3,
p-value < 0.001) and gangion line material (Mannivwéy: W=4664, p-value < 0.001).
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Figure 111.4. Boxplots with the blue shark CPUE tdlzution for the categorical

variables analyzed, specifically year of capturé0@ 2009, 2010, 2011), season
(1=Jan-Mar, 2=Apr-Jun, 3=Jul-Sep, 4=0ct-Dec) andggan material used in the
longline (monofilament or wire).

[11.3.2.Modeling blue shark catch rateswith GLM

[11.3.2.1. Gamma models adding a constant to the responsablari

Given that the percentage of fishing sets with zsatches was relatively small
(1.52%), a first approach to model the blue shdPkJEs was to add a small constait (
in this case set to 1) to the CPUE values, in a thay the response variable became
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CPUE+1. With this transformation thé values no longer contained zeros, but were
still highly asymmetrical and skewed to the righs$ fioted in Figure 111.2), and as such
a Gamma distribution with lag link function seemed a good possible approach.

In this approach, the variables considered sigmificin the simple effects
multivariate GLM, using the variable selection nuethdescribed in the methods, were
gangion material, season, year, latitude, longitucdorophyll and SST. In this
multivariate simple effect model, the GVIFs werdcatated and in all cases the values
were < 10, meaning that severe collinearity prolslebetween these explanatory
variables were not likely to be occurring. Speadifig, the GVIF factors calculated
were: Gangion=2.00, Season=7.30, Year=4.73, La&#d®2, Longitude=3.99,
Chlorophyll=1.61 and SST=6.92.

The functional form of the continuous explanatogyiables used in this simple
effects model (latitude, longitude, chlorophyll a88T) were tested for the assumption
of linearity with the linear predictor using GAMqat$, where it was possible to see that
the expected CPUE seemed relatively linear withvatlables, except with regards to
the latitude and in the higher range of the SSTiesal(Figure II.5). Specifically, the
expected CPUE seemed to increase towards eastegitulbes and in waters with
higher chlorophyll concentration, in both casesainrelatively linear fashion. With
regards to the SST there was an increase alongahdse observed water temperature
values, with a peak at around 26-27 °C, followedalslight decrease for the highest
temperatures in the range (Figure 111.5). The effagftlatitude showed a tendency for
higher expected CPUE in the southern regions (solB0°S), followed by a decrease
in CPUEs for the northern areas (towards equater@dérs) with this relation seeming

to be non-linear (Figure I11.5).
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s(Latitude)

s{AguaChlo)

Figure 1lI1.5. Generalized Additive Model (GAM) pktwith the shape of the
continuous explanatory variables (Latitude - toft; ldongitude - top right;
Chlorophyll - bottom left and Sea Surface Tempegatubottom right) for modeling
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blue shark catch rates in the Southern AtlanticaDce

multivariate fractional polynomials models, and yotie latitude required functional
form transformation, specifically with kpg function. The other continuous variables

were also transformed to be used in the final nmddlut only using scale

The eventual non-linearity of those continuous alales was also tested with

transformations, defined as:

Latitude.t (transformed latitude) = log((LatitudeB)/10)
Longitude.t (transformed longitude) = (Longitude#8)3L0
Chlorophyll.t (transformed chlorophyll-a) = Chloifopl/0.1
SST.t (transformed sea surface temperature) = $ST/1

56



CHAPTERIIl —MODELING BLUE SHARK CATCH RATES

After this step, all possible®Idegree interactions were tested in the multivariat
simple effects model, and the ones significanthat 1% level were included. In this
final model, the gangion material was responsibteeikplaining most of the deviance,
followed by the factors year, latitude and longéudnd then the remaining variables.
The interactions that were significant at the 1%eleand used in this final model were

gangion material with longitude, and gangion matexith chlorophyll (Table 111.1).

Table 1ll.1. Deviance table for the Gamma GLM foegicting the expected blue
shark CPUE in the southern Atlantic Ocean. Residrdf the residual degrees of

freedom and Resid.dev is the residual deviancenifgignce is given by the p-
values.

Variable Df  Deviance Resid.df Resid.dev p-value
Null 472 362.6

Gangion 1 138.1 471 224.5 <0.01
Season 3 12.7 468 211.8 <0.01
Year 3 40.6 465 171.2 <0.01
Latitude.t 1 12.2 464 159.0 <0.01
Longitude.t 1 15.8 463 143.1 <0.01
Chlorophyll.t 1 2.9 462 140.2 <0.01
SST.t 1 10.8 461 129.4 <0.01
Gangion:Longitude.t 1 5.8 460 123.6 <0.01
Gangion:Chlorophyll.t 1 1.5 459 122.1 0.01

In terms of validation of this Gamma GLM model wdhresidual analysis, the
variation of the deviance residuals along the ditt@lues seemed to be spread in a
relatively random way around the value of zero, amthout any major increases or
decreases in variance. The QQ plot showed that ofdste values were placed along
the expected QQ line, except for a few outlierg] arsimilar conclusion was reached
with the histogram of the distribution of the dewa residuals, that also showed a
relatively normal distribution except for a few berts (Figure I11.6). In terms of Cook
distances, two points were identified that couldehkeverage and be influential in the
estimation of the parameters (Figure I1.6).

The outliers identified in this analysis (data pgeid20 and 421) refer to two
fishing sets with zero catches (CPUE=0) but thatewsarried out under situations that
the model was expecting positive catches, spelifitecause those fishing sets were

carried out in southeastern areas of the Atlantiead in Season 4 and using wire

57



CHAPTERIIl —MODELING BLUE SHARK CATCH RATES

gangions. The remaining zeros in the dataset dideem to constitute major problems
for model fitting because they occurred in areagrehhose zeros are to be expected
more often (northwest region) and in sets usingafitament gangions. In terms of the
leverage points detected with the Cook distancata(doints 95 and 229), both refer to

fishing sets with positive catches that took pliscthe southwest Atlantic region.
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Figure 111.6. Residual analysis for the Gamma GLMhe graphics plotted for the
outlier analysis show 1) residuals histogram, 2)-0& and 3) residuals along the
predicted values; and the analysis to detect obtens with leverage are 4) Cooks
distances along the data and 5) Cook distanceshbatfal plot.

By removing each of the two outlier values the gemin the model parameters
were minimal, while by removing the influential uak the changes were a little larger,
but still < 20% for all parameters (Table 111.2)hi$ means that, in general, the values
detected in the residual analysis are not inflaémti the estimated model parameters.
Aditionally, when those values were removed theroapments in terms of goodness-

of-fit (R?) were only slightly noticeable (Table 111.2).
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Table 1ll.2. Estimated parameters (with the redpec8E) of the original model using all data-pojrésid four alternative models each
excluding one possible outlier or influential valide differences in each of the estimated para@igercentage are given, as well as each
model goodness-of-fit measures in terms of R

Par ameter All dataset Excluding point 420 Excluding point 421 Excluding point 95 Excluding point 229
Estimate SE Estimate SE Dif(%) Estimate SE Dif(%) Estimate SE Dif(%) Estimate SE  Dif(%)

(Intercept) -1.26 048 -1.26 048 0.0 -1.26 048 -0.7 -1.47 049 164 -1.40 0.47 10.9
GangionWire 078 020 0.78 0.19 -0.8 0.78 0.19 -0.6 0.78 0.19 -0.2 0.82 0.19 4.4
Season2 060 014 061 014 14 061 014 1.2 0.64 0.14 6.5 0.62 0.14 3.8
Season3 09 011 096 0.11 0.2 096 0.11 0.2 0.99 0.11 3.2 0.98 0.11 1.7
Season4 047 0.08 048 0.08 0.7 0.48 0.08 0.6 0.48 0.08 23 0.49 0.08 25
Year2009 -0.20 0.11 -0.20 0.11 21 -0.20 0.11 1.0 -0.21 011 26 -0.23 0.11 13.0
Year2010 056 011 056 011 -04 056 0.11 -0.1 0.55 0.11 -05 0.55 0.11 -1.2
Year2011 056 011 057 0.11 0.5 0.57 0.11 0.9 0.57 011 1.9 0.56 011 -1.2
Latitude.t -046 005 -046 0.05 0.2 -0.46 0.05 0.1 -0.50 0.06 8.4 -0.47 0.05 1.9
Longitude.t 063 0.08 0.63 0.08 0.5 0.63 0.08 04 0.64 0.08 1.6 0.62 0.08 -2.0
Chlorophyll.t -0.25 0.12 -0.25 0.12 0.6 -0.25 0.12 0.5 -0.24 012 -37 -0.21 0.12 -16.3
SST.t 093 018 093 0.18 -0.1 093 0.18 -0.6 1.01 019 84 0.97 0.18 4.0
GangionWire:Longitude.t -0.35 0.09 -035 0.09 -0.3 -0.35 0.09 -0.1 -0.36  0.09 0.9 -0.33 0.08 -5.6
GangionWire:Chlorophyll.t 0.32  0.12 032 0.12 0.2 032 0.12 0.3 0.31 0.12 -2.2 0.26 0.12 -175
R 0.654 0.666 0.665 0.663 0.660
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[11.3.2.2. Models for count data: Poisson, quasi-Poisson arddiive Binomial

A second possible approach to modeling was caroed with discrete
distributions that can by themselves handle some galues, specifically Poisson,
quasi-Poisson and NB. In this case, and becausgutipese was to compare modeling
approaches, this type of models were applied to dbmplete model estimated
previously. With these models, and similarly to whad been observed before in the
Gamma model, the gangion material remained the nmogortant variable for
explaining part of the deviance, followed by theawyeffect, longitude, latitude and

season (Table 1l1.3).

The major difference and decision for using onghoise three possible models
has to do with the dispersion of the data. While Boisson distribution assumes a
dispersion parameter of 1, the NB model estimatéte dispersion parameter for the
model) allowing for under or overdispersion in teta. In general, if this dispersion
parameter in the NB is similar to 1 then a Poissmael may be more adequate, while
much smaller or larger values represent under erdispersed data that should not be
modeled with a Poisson distribution. In this speatfase théd value was estimated at
4.510 (SE=0.367) meaning that the data is overdispeand therefore a Poisson model
might be producing biased estimates, especialllp végards to the standard deviations
of the parameters.

Other possible solutions for this overdispersios tar either use a quasi-Poisson
model, in this case with a calculated dispersiorampater of 7.177, or to directly
include the dispersion parameter in the model edémto manually correct the SE of
the parameters. With these approaches the poimiates of the models remain the
same as in the Poisson model, but the SE valutteegfarameters are increased due to
the overdispersion of the data. Consequently, anthis specific case, the interaction
between gangion line material and chlorophyll Isgnificance when considering a
significance level of 1% (Table III.3).
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Table I11.3. Deviance table for the Poisson, quasisson and Negative Binomial
GLM for predicting the expected blue shark catcfiasnumber) in the southern
Atlantic Ocean, and using the number of hooks asodel offset. Resid.df are the
residual degrees of freedom and Resid.dev is thidual deviance. Significance of
the variables is given by the p-values.

Variable Df Deviance Resid.df Resid.dev p-value

Poisson Model (with dispersion parameter)
Null 472 9414.5

Gangion 1 3229.6 471 6184.9 <0.01
Season 3 227.9 468 5957.0 <0.01
Year 3 1486.3 465 4470.7 <0.01
Latitude.t 1 515.3 464 3955.4 <0.01
Longitude.t 1 266.5 463 3688.9 <0.01
Chlorophyill.t 1 69.7 462 3619.2 <0.01
SST.t 1 188.8 461 3430.4 <0.01
Gangion:Longitude.t 1 69.6 460 3360.7 <0.01
Gangion:Chlorophyll.t 1 27.9 459 3332.8 0.05
NB Model

Null 472 1515.8

Gangion 1 578.3 471 9375 <0.01
Season 3 46.4 468 891.1 <0.01
Year 3 178.9 465 712.3 <0.01
Latitude.t 1 51.8 464 660.5 <0.01
Longitude.t 1 58.2 463 602.3 <0.01
Chlorophyill.t 1 12.6 462 589.7 <0.01
SST.t 1 46.5 461 543.3 <0.01
Gangion:Longitude.t 1 28.5 460 514.8 <0.01
Gangion:Chlorophyll.t 1 6.1 459 508.7 0.01

guasi-Poisson Model
Null 472 9414.5

Gangion 1 3229.6 471 6184.9 <0.01
Season 3 227.9 468 5957.0 <0.01
Year 3 1486.3 465 4470.7 <0.01
Latitude.t 1 515.3 464 3955.4 <0.01
Longitude.t 1 266.5 463 3688.9 <0.01
Chlorophyill.t 1 69.7 462 3619.2 <0.01
SSTit 1 188.8 461 3430.4 <0.01
Gangion:Longitude.t 1 69.6 460 3360.7 <0.01
Gangion:Chlorophyll.t 1 27.9 459 3332.8 0.05

This overdispersion problem was also confirmed wbemparing the residuals
plots, with the variance of the residuals incregswith the expected values for the
Poisson model, while in the NB model the residsalsmed more randomly distributed
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along thevalue of zero, with no major increasing or decmeggrends in their varianc
(Figure 111.7). Additionally, in the Poison model there was one datoint that is
probably a severe outlier (point 141, observedenresiduals plotof Figurelll.7) and
another point with avery large influence (pnt 95, observed in the cooks distan
plots of Figure Ill.7 and the removal of those could have large impboa in the
estimated parameters oktimodel Therefore, if a model for counts was used to m
this data, the Negativeimial distribution approach that can handle overdispe
data would be preferable arprobably more accurate than a Poisson distribut
Alternatively, a quasiRoissol model or a Poisson model including a disper:

parameter to correct the SE of the parameters @isddbe use.
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Figure 111.7. Residual analysis for the Poisson (plo-4) and Negative Binomi:
(plots 58) GLM models for explaining the blue shark catektes in the Southel
Atlantic Ocean. The graphics for the outlier analyshow the deviance residu.
along the fitted values and the -plots, while the plotso detect observations wi
leverage represent th@ook distances along the data and the Cook distanak-
normal plots.

111.3.2.3. Tweedie models

The last modeling approach was carried out withhved&die model. In this cas

the index parametep) estimated by maximum likelihood with a likelihodanction
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profile, was estimated to be 1.492 (95% CI = [1,41%71]) (Figure 111.8). In this
model, and again similarly to the previous cadesgangion line material remained the
most important variable for explaining part of theviance, followed by the year effect,

longitude, latitude and season (Table 111.4).
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Figure II1.8. Likelihood function profile (with 95%onfidence interval) for the
Tweedie model p-indexp], applied to the blue shark catch rate data inSthethern
Atlantic Ocean.

Table 111.4. Deviance table for the Tweedie GLM faredicting the expected blue
shark catch rates (CPUE) in the southern Atlantedd. Resid.df are the residual
degrees of freedom and Resid.dev is the residuabniee. Significance of the

variables is given by the p-values.

Variable Df Deviance Resid.df Resid.dev p-value
Null 472 1725.34

Gangion 1 620.92 471 1104.42 <0.01
Season 3 46.36 468 1058.06 <0.01
Year 3 236.34 465 821.72 <0.01
Latitude.t 1 78.66 464 743.05 <0.01
Longitude.t 1 53.81 463 689.24 <0.01
Chlorophyll.t 1 14.15 462 675.09 <0.01
SST.t 1 44.67 461 630.42 <0.01
Gangion:Longitude.t 1 22.54 460 607.88 <0.01
Gangion:Chlorophyll.t 1 6.03 459 601.85 0.02
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In terms of model diagnostics, the variation of theantile residuals along the
fitted values seemed to be spread along the vdlzero in a relatively random way,
and without major increases or decreases in vaiante QQ plot showed that most of
the values were placed along the expected QQ dig&in with the exceptions of a few
outliers, even though in this case they seemee tmdre extreme than in the case of the
Gamma GLM (Figure 111.9). In terms of influentialales detected with the Cook
distances only a few points were detected, buti;idase the leverage of the data point
95 (also identified in the previous models) seeiteede much more influential than in
some of the other models, in particular when corgbdao the Gamma GLM (Figure
111.9).
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Figure I11.9. Residual analysis for the Tweedie Giohbdel for explaining the blue
shark catch rates in the Southern Atlantic Oce&e. graphics plotted for the outlier
analysis show the 1) quantile residuals histogran,QQ-plot and 3) quantile
residuals along the fitted values; the analysdetect influential observations are the
4) Cooks distances along the data and 5) Cookmistahalf-normal plot.
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[11.3.2.4. Comparing GLM models

A comparison of the estimated parameters for tm®ws candidate GLM models
Is presented in Table I11.5. It is interesting e that regardless of the distribution used
(Gamma, NB, quasi-Poisson or Tweedie) all parammeter providing relatively similar
values, and always with the same signal, i.e. @@y consistently either positive or
negative, meaning that relatively similar conclusicare taken with all the candidate
models in terms of the influence of the variouslargtory variables in the expected
blue shark catch rates. However, some parameters wither significant or non-
significant depending on the distribution used. Thest obvious case was the year
2009 (within the variable year) that was significahthe 5% level only when using the
NB model, while it was only significant at the 108tel with the Gamma and Tweedie
models, and non-significant with the quasi-Poissoodel. Similarly, the interaction
between gangion and chlorophyll was on the limisighificance at the 1% level using
the Gamma and Negative Binomial models, while i other distributions it was not

significant at 1%.

In terms of the different models goodness-of-fite t} values obtained were
0.654, 0.641, 0.655 and 0.636 for the models usksgectively the Gamma, Poisson
(value equal to the quasi-Poisson), NB and Tweedigibutions. Those values were all
relatively similar, with only very slightly bettdits for the Gamma and NB, and a worst
fit for the Poisson. In terms of AIC the obtainedues were 3280.2, 3561.9 and 3312.8
for the Gamma, Negative Binomial and Tweedie modelsing this criterion, the
Gamma model seemed to be performing better thaattess, followed by the Tweedie
and finally the NB. In this regards, the originali$3on model was performing much
worse with a calculated AIC of 5575.9, which is sistent to the problems detected

with the residuals in terms of overdispersion ia data.
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Table II1.5. Parameter estimation for the GLM GamiNagative Binomial, quasi-Poisson and Tweedie rsofte predicting the expected
blue shark catches in the southern Atlantic Oc&ar. Gamma and Tweedie models are predicting blak statch rates in CPUE (CPUE+1
for the Gamma), while the Negative Binomial andsijtRoisson are predicting blue shark catches inbausn(n).

Model parameters Gamma Negative Binomial guasi-Poisson Tweedie

Est. SE p-value Est. SE p-value Est. SE p-value Est. SE p-value
(Intercept) -1.26 0.48 <0.01 -8.83 0.53<0.01 -8.11 0.56 <0.01 -1.57 0.51<0.01
GangionWire 0.78 0.20 <0.01 1.07 0.24<0.01 0.99 0.38 0.01 1.01 0.27 <0.01
Season2 0.60 0.14<0.01 0.62 0.16<0.01 0.58 0.17<0.01 0.60 0.16 <0.01
Season3 096 0.11<0.01 1.01 0.11<0.01 090 0.10<0.01 096 0.11<0.01
Season4 0.47 0.08<0.01 0.51 0.09<0.01 0.43 0.09<0.01 0.47 0.09<0.01
Year2009 -0.20 0.11 o0.07 -0.25 0.12 0.04 -0.19 0.15 0.20 -0.22 0.13 0.08
Year2010 0.56 0.11 <0.01 056 0.13<0.01 0.69 0.14<0.01 0.62 0.13<0.01
Year2011 056 0.11 <0.01 056 0.12<0.01 051 0.13<0.01 0.53 0.12<0.01
Latitude.t -0.46 0.05 <0.01 -0.49 0.06<0.01 -0.37 0.04<0.01 -0.44 0.05<0.01
Longitude.t 0.63 0.08 <0.01 0.80 0.10<0.01 0.72 0.16<0.01 0.74 0.11<0.01
Chlorophyll.t -0.25 0.12 0.04 -0.30 0.15 0.04 -0.39 0.22 0.08 -0.32 0.16 0.05
SST.t 0.93 0.18 <0.01 1.04 0.20<0.01 0.81 0.18<0.01 0.93 0.19<0.01
GangionWire:Longitude.t -0.35 0.09<0.01 -0.50 0.11<0.01 -0.44 0.17 0.01 -0.46 0.12<0.01
GangionWire:Chlorophyll.t 0.32 0.12 0.01 0.37 0.15 0.01 0.44 0.22 0.05 0.38 0.17 0.02
R® 0.654 0.655 0.636 0.641
AlIC 3280.2 3561.9 3312.8
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For the 10-fold cross-validation procedure, thénestied mean MSE values were
236.5, 430.7, 394.6 and 245.2 for the Gamma, Pwoigsqual value in the quasi-
Poisson), NB and Tweedie models, respectively. Agath this approach the models
for explaining the continuous catch rates (Gammd dmweedie) seemed to be
performing better (with lower associated errorgntthe models for count data (Poisson
and NB), again with the Gamma performing a littegter than the Tweedie. However,
the results obtained with this analysis should riderpreted with care, as the models
being compared are not predicting exactly the saesponse, i.e., the continuous
distribution models are predicting blue shark CRGBUE+1 in the Gamma), while the
count data models are predicting blue shark capiaraumbers (n).

[11.3.3.Modeling blue shark catch rateswith GLMM

The same distributions that were used with the GaMalysis were used in
GLMM approaches, using the effect of Vessel asndom effect. In terms of residual
analysis of those new models again there seemdzk tproblems with the Poisson
distribution, with the residuals showing an incregsvariance along the fitted values,
while no major problems were found in the other sisdFigure 111.10). The few
possible outliers and influential values that haerb previously detected in the GLM
models seemed to be less severe in the GLMM mode&sining that the GLMM
approach seems to be modeling better the varmbilitthe dataset, including those

more extreme values.
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Figure 111.10. Residual analysis (standardized residuals alonditieel values) foi
the Gamma, Poisson, Negative Binomial and Tweedil& models

In terms of AIC comparisons for the GLMM, the obied values were 3279.
3560.2 and3310.8 for the Gamma, NB and Tweedie models, réisjehe Again, anc
similarly to the AIC analysis for the GLM, the bdgtwas obtained with the Gamrr
followed by the Tweedi@and NB models Finally, and similarly to what was obtain
for the original Bisson model, the AIC was much worse for the PoisSbMM, in this
case of 5529.7, again demonstrating that even titdhg GLMM can account for mo
variability in the data than the GLM, the goodr-of-fit is still worse in a Poisso
model due to overdpersion in the da. Therefore, and like in the GLM caseither a
NB or a quasi-Poisso8LMM model should be used instedich discrete distributiol

model was chosen.
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When comparing the AIC values between GLM and GLMBbproaches, the
GLMM models always had slightly better AIC valuesen though the differences were
generally small. Specifically, the differences lre tAIC values 4 AIC) between GLM
and GLMM approaches of the same family were 0.8,46.7 and 2.0 for the Gamma,

Poisson, NB and Tweedie models, respectively.

With these GLMM models, and as defined in the mddehulation, the random
variable (vessel effect) followed a Normal disttibn with mean 0, and in this case
with estimated standard deviations of 0.0937, 061&@d 0.1205 for the Gamma, NB
and Tweedie models, respectively. In terms of tkedf effects, the obtained coefficient
values were again providing the same signal, being consistently either positive or
negative and with similar estimated values (Tabl&)l Still, and even though the
differences in estimates were relatively minor,iagame of the model parameters (e.g.
2009 within the factor year) were either significan non-significant depending on the

specific distribution used.
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Table 11l.6. Parameter estimation for the GLMM Gamnegative Binomial, and Tweedie models for preicthe expected blue shark
catches in the southern Atlantic Ocean. The GanmdaTaveedie models are predicting blue shark caatésrin CPUE (CPUE+1 for the
Gamma), while the Negative Binomial is predictingeoshark catches in numbers (n). The Poisson GLddlts are not shown due to the

overdispersion problems identified in the residarslysis.

Model parameters . Gamma GLMM Negative Binomial GLMM .TweedieGLMM
Estimate SE p-value Estimate SE p-value Estimate SE p-value
(Intercept) -0.47 0.49 0.34 -8.34 0.58 <0.01 -1.00.56  0.05
GangionWire 0.50 0.19 0.01 0.93 0.25 <0.01 0.87 280.<0.01
Season2 0.57 0.13 <0.01 0.55 0.17 <0.01 0.51 04®.01
Season3 0.83 0.11 <0.01 0.89 0.12 <0.01 0.84 042.01
Season4 0.41 0.08 <0.01 0.45 0.09 <0.01 0.42 089.01
Year2009 -0.18 0.10 0.08 -0.28 0.12 0.02 -0.26  0.18.04
Year2010 0.54 0.11 <0.01 0.53 0.12 <0.01 0.58 30.k0.01
Year2011 0.46 0.11 <0.01 0.43 0.13 <0.01 041 30.kx0.01
Latitude.t -0.44 0.05 <0.01 -0.49 0.06 <0.01 404 0.05 <0.01
Longitude.t 0.49 0.08 <0.01 0.77 0.11 <0.01 0.710.12 <0.01
Chlorophyll.t -0.28 0.12 0.01 -0.37 0.15 0.01 -0.39 0.17 0.02
SST.t 0.81 0.18 <0.01 0.94 0.20 <0.01 0.84 0.190.0&
GangionWire:Longitude.t -0.22 0.08 0.01 -0.44 0.11<0.01 -0.39 012 <0.01
GangionWire:Chlorophyll.t 0.33 0.12 <0.01 0.43 0.15 <0.01 0.44 0.17 0.01
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[11.3.4.Modéel interpretation and examples of predictions

In terms of model interpretation, and by lookingthe various candidate models
coefficients presented in Figure 111.11, some iptetations can be taken with regards to
the effects of the explanatory variables in theeexgd blue shark catch rates. In terms
of seasonality it is expected for the fishery towendower catch rates of blue sharks
during the season 1 (baseline season, Jan-Marle Wigher catch rates are expected
during the other seasons, specifically with highegithes during season 3 (Jul-Sep).
With regards to the environmental variables, higbatch rates are expected with
increasing SST and decreasing chlorophyll conceotrs, but because there is a
significant interaction between chlorophyll and gi@am material this is only true for the
baseline gangion material level (i.e. monofilamgiftyvire gangions are used then the
significant interaction between these two variablesds to be taken into account. In
terms of spatial variables, the expected catcls raigrease towards southern latitudes
and eastern longitudes, but again a significastradtion between gangion material and
longitude needs to be taken into account. Finalty] in terms of annual variability, the
expected catch rates deceased from 2008 to 20@yéal by an increase in the more
recent years of 2010 and 2011.

In terms of general variability of the parameteéhg gangion material coefficient
showed the highest variability, while the latituetect had a very small variability.
Even though this was in general common for all adatd models, some models (for
example the quasi-Poisson GLM) tended to have higiability in all the parameters,
including the loss of significance at the 5% lewesome cases (e.g. parameter for year
2009).

In terms of model predictions, the blue shark casths were predicted for some
possible theoretical scenarios under various fgshoonditions, with the results
presented in Table IlIl.7. One immediate conclusibat can be taken is that the
estimates, within each specific scenario, are ivelyt consistent between all candidate
models, with predicted catch rate values relatigatyilar. Those scenarios were chosen
to allow for spatial, operational and seasonalrprgations of the model outputs, and it
is noted in terms of spatial predictions, that éxpected blue shark catch rates are
higher in the southern areas (when compared tednatorial region), and also higher
in the eastern areas (towards the African contjpemben compared to the western
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regions (Table 1l.7). In terms of operational cuaeristics of the fishing gear the

expected catch rates with monofilament gangionaser than when wire gangion are

used. Finally, in terms of seasonal predictions ihe shark catch rates seem to be
particularly higher during season 3 (between Jaly &eptember) and lower in season 1
(between January and March), while the expectechaattes in seasons 2 and 4 (April

to June and October to December) have similar galuéhe middle of the range (Table

11.7).

Regression estimates
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Figure 111.11. Comparison of parameter estimateghe various candidate GLM and
GLMM models for predicting blue shark catch rateshe Southern Atlantic Ocean.
For each parameter it is indicated the point eseémihe 50% (thick lines) and the
95% (thin lines) confidence intervals.
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Table III.7. Predictions of blue shark catch rai@d.000 hooks) for possible theoretical fishingrsges. The comparisons are established
between one possible theoretical scenario (scerddriand others with spatial, operational and seasweariations. For each model it is
indicated the point estimate and respective stahdaviations (between brackets). For the GLMMs dhby variability associated with the

fixed effects is being considered.

. . Specific teorethical GLM GLM GLM GLM GLMM GLMM GLMM
Scenario Effects being compared conditions Gamma NB g.Poisson Tweedie Gamma NB Tweedie

. Spatial SWarea, all else  Son0woon S€ASONL YeA g5 193 919 206 221 222 233
remains constant SST and Chglorgphyil (1.69) (L.7)  (1.89)  (1.78)  (0.78)  (0.84)  (1.19)
Spatial Same as scenario 1 Southeast, Season 1, Year

2 but in SE area; all else 2010, Wire gangion, median 29.3 29.6 324 30.9 34.1 354 36.3
remains constant SST and Chlorophyll (2.53) (2.62) (2.73) (2.65) (0.87) (0.93) (1.19)
Spatial Same as scenario 1 Northwest (equatorial), Season

3 but in NW area; all else 1, Year 2010, Wire gangion, (1850) (18'177) &248) (ioz'g) (CS);.777) (553) (ill.g)
remains constant median SST and Chlorophyll ' ' ' ' ' ' '
Spatial Same as scenario 1 Northeast (equatorial), Season

: : . 13.1 13.2 17.7 15.0 15.3 15.7 17.6

4 but in NE area; all else 1, Year 2010, Wire gangion,
remains constant median SST and Chlorophyll (1.57) (1.58) (1.95) (1.71) (0.86) (0.92) (1.19)
Operational Same as

¢ scenario 1 but with Soumwest, Seasonl, Year 133 128 133 132 149 144 146
monofilament gangion; all © " - ¥OGX! AT Chl% roghy“’ (121) (119) (147) (126) (0.72)  (0.77)  (1.19)
else remains constant
SeasonalSame as scenario Southwest, Season 2, Year

6 but Apr-Jun; all else remain2010, Wire gangion, median 36.4 36.0 39.0 374 39.6 385 38.7
constant SST and Chlorophyll (5.12) (5.60) (6.50) (5.77) (0.80) (0.84) (2.20)
SeasonalSame as scenario Southwest, Season 3, Year

7 but Jul-Sep; all else remains2010, Wire gangion, median 226 528 240 537 539 539 238
constant SST and Chlorophyll (5.93) (6.05) (5.23) (5.55) (0.77) (0.82) (2.19)
SeasonalSame as scenario Southwest, Season 4, Year
—_— ) " . C 32.0 32.1 33.8 33.1 34.6 35.0 35.5

8 but Oct-Dec; all else remain2010, Wire gangion, median (2.31) (2.35) 2.12) (2.23) (0.80) (0.85) (1.19)

constant SST and Chlorophyll
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I11.4. Discussion

This study presents and compares several possibldelmg approaches for
explaining the blue shark catch rates in pelagmglioe fisheries carried out by the
Portuguese fleet in the southern Atlantic Oceane Thodel comparison strategy
presented seems adequate, as different model tgeM versus GLMM) and
distributions (Gamma, Negative Binomial, Poissod &aweedie) can be considered for
using with this type of data. It was interestingntide and conclude that regardless of the
model used, the estimates of the final parameterg welatively similar, meaning that
all of the considered approaches (with the excaptiothe Poisson distribution due to
overdispersion of the data) can probably be consttior use in this case. With regards
to the Poisson model, the problems identified ie thsiduals and the value of the
estimated dispersion parameter show that the dasasighly overdispersed, and that in
this case either using a quasi-Poisson model tardacing a correction in the SE of the

parameters, should be used instead.

In terms of deviance explained by the variableg #ffects of the gangion
material seemed to be the most important factorefqrlaining the blue shark catch
rates, followed by the effects of year, spatial aedsonal effects. The major effect seen
for the gangion material (with higher catch ratdseewwire gangions are used) seems to
make sense from a biological point of view, as\lie gangions probably make bite-
offs of the sharks less likely to occur while iretlonglines, as was shown for the
Brazilian fleet by Afonsoet al. (2012). The conclusions regarding the spatial and
seasonal effects taken from this study also seerbetan line to what is common
knowledge from the commercial fishermen in thetflé®at empirically mention higher
catches of sharks particularly in the second sesnedtthe year and towards eastern
longitudes, closer to mainland Africa. Those engpgiriobservations by the fishermen
(also in line with the conclusions from the modeisdy be related with spatial and
seasonal migratory movements of this species irSthghern Atlantic Ocean, that are
still not entirely know, but as with most pelagi@sgts may involve complex spatial and

seasonal migratory movements.

In the Atlantic Ocean, some previous studies hamided on modeling blue
shark catch rates for other areas and using data tither fishing fleets. In the
southwest Atlantic off Brazil, and using data froime Brazilian national and chartered
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fleets, Carvalhet al. (2011) used GAM models to predict blue shark caatbs using
spatial (latitude and longitude), seasonal (mondéimd environmental (SST and
chlorophyll) effects. Even though the study areasdifferent, it was noteworthy that
some of the effects seen by Carvatha@l.(2011) were similar to the conclusions of our
study, such as for example the effect of latitidso with higher catch rates in southern
Brazil and lower towards equatorial waters; and gbasonal effects, also with higher
catch rates between June and August, which is sierjar to the higher catch rates of
July to September seen in our study. One possitmigation in the Carvalheet al.
(2011) study was that operational effects of tehifig gear, as well as the effects of the
different vessels operating in the fleet, were gwisidered. Also for the Atlantic but in
the Mediterranean Sea, Megalofonetual. (2009b) also modeled the blue shark catch
rates taken by the Italian and Greek fleets wi@lLM, and also saw strong spatial (both
in terms of longitude and latitude) and seasondces. One difference in the
Megalofonouet al. (2009b) study was that, contrary to our study, %I was not

significant in the final models.

For other Oceans in the world such as the Pad#igelow et al. (1999) used
GAM models to evaluate the blue shark catch rateabe Hawaiian based US pelagic
longline fleet, and again the spatial variabledit(lde and longitude) seemed to be
playing a major role in terms of effects. Otheriables that were used in the Bigeletv
al. (1999) GAM models included operational variableghs as soaking time and
number of light stick used, and environmental uaga such as SST, wind velocity and
lunar index. It was interesting to note that conegato our study, the lunar index was
significant in the Bigelowet al. (1999) study in the Pacific Ocean, while in ouse#
was tested but excluded due to non-significancethBycontrary, the wind velocity that
was used by Bigelowt al. (1999) in the Pacific was also significant in @ueliminary
univariate models, but excluded from the final nvaltiate models due to excessive

missing values in the data.

One point that seems to be common in most of theigus studies (all also using
fishery-dependant data from commercial fleets, as thie case of our study) is that the
effects of having different vessels in the fleetrii seem to be accounted for in the
final models. One example of a study were the Vestect was also incorporated in the
models, and even suggested as the variable expjamore of the deviance, was the
study by Campanat al. (2009) for predicting blue shark mortality ratdsnpmial
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models). However, the approach used in the Cameiah (2009) study was different
than the approach used in our study, as Camgalka(2009) included the vessel effect
as a categorical variable in the GLM (using 27 degrof freedom to estimate all the
parameters needed), while we used it as a randaablain a GLMM approach. In our
opinion, our approach has the advantage of alloiang measure of variability to be
associated with a “general” vessel effects, rathan having to estimate one parameter

for each of the n-1 vessels in the study as waes 8grCampanat al. (2009).

One of the difficulties in modeling this type oftdas the presence of zeros in the
response variable combined with positive continualaes (usually CPUE) in the non-
zero cases. Several approaches to deal with tfiisutty are available, and adding a
constant to the response variable seems to be assbfe and reasonable approach,
particularly when the proportion of zeros is ralaly low (Shono, 2008). That was the
particular case of our study, where the proportibzeros in the blue shark catch data
from the southern Atlantic represented only 1.52%6the fishing sets. With this
approach, one important issue that can be higlfliyantial in the results is to decide the
value of the small constant to be added, and ircase we chose to use 1, as that seems
to be the most common in fisheries biology (e.gatRat al, 2000, Ortiz and Arocha,
2004). However, it should be noted that other pl#ses exist and have been used,
such as for example adding 10% of the mean ofdbpanse variable (Campbell, 2004).
One eventual problem with this later approach (16Rthe mean) is that the actual
value to be added depends on the dataset, so difispmses of datasets with small
mean values the constant being added will be vaallswhich can be problematic. In
fact, while several approaches for adding differ®ristants exist and have been used,
one common consensus among researchers is that weip small values (e.g.*19)
can be problematic (Xiao, 1997), especially in medesing aog link function, due to

the properties of thieg function as it approaches zero.

Another possibility also tested in our study wasonsider discrete distributions
that can account for some zero observations, ssitheaPoisson and the NB. In those
cases, the major difference is that while in thesgn distribution the expected
variance is equal to the mean, the NB can accaurdvierdispersion in the data, which
seems to be a common characteristic of many bicdbgand ecological datasets,
sometimes due to the excess of zeros (Cunninghaniiadenmayer, 2005; Martiat
al., 2005). In both those cases the models were ipugltconceptually different way, as
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the response variable considered was the numbsgeaimens caught (counts) per set,
and the number of hooks per set were used in thefsexplanatory variables, as an
offset variable. This means that the parametefqr the variable “numbers of hooks”

did not need to be calculated, and becausagdink was used in the equations the
parameter estimate fdog (number hooks) was constrained to 1. Another exsnt

limitation of this approach with discrete distrilmurts is that conceptually it can only be
used if the models are being created to modeldhehes in number. While that was the
case of the present study (i.e. catches accoumtedmber (n) and the respective CPUE
calculated in n/1000 hooks), many fisheries biolefiidies use biomass (kg) instead of
numbers, with the respective CPUE calculated as0k§) hooks. In such cases, and if a
discrete distribution was to be applied, the resporariable would be the catches in kg,
that as mentioned by Maunder and Punt (2004) wbalbest modeled as a continuous

(not a discrete) distribution.

In terms of the models used, it was interestinghdte that both the GLM and
GLMM approaches were producing relatively similadaonsistent results. Even when
comparative GLMM models were built using a top-dovamiable selection strategy as
recommended by Zuugt al, (2009), the variables excluded due to non-sigaifce
were exactly the same that had been previouslyuded in the GLM models using a
stepwise variable selection approach as recommehgetiosmer and Lemeshow
(2000).

In terms of estimation, and while in the GLM modgliapproach the use of
maximum likelihood methodology is common to estientite model parameters, for the
GLMM approaches there are complications with tkelihood-based model fitting that
comes from the difficulty of integrating over trendom effects (Venables and Ripley,
2002). As mentioned by Zuwet al. (2009) the GLMM models are currently on the
frontier of statistical research, and there id s#ry limited available documentation
aimed to biologists and ecologists. For the sim@keMM, such as the ones used in this
work, in which the random effects were the subggeific intercepts (in this case
vessel specific) which were assumed to be Nornaifiiributed, approximate methods
based on quasi-likelihoods or numerical approxioreti to integrals can be used
(Venables and Ripley, 2002). However, for more clex@nd elaborate specifications
of the random effects the only possible integradeams to be based on Markov Chain
Monte Carlo (MCMC) schemes within Bayesian staisstiand most of those are
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currently ongoing research topics (Venables andeRj002). Bolkeret al. (2008)
revised the applications of GLMM to ecology datal aanked the currently available
likelihood approximation methods as: 1) penalizedasitlikelihood, 2) Laplace
approximation, 3) Gauss-Hermite quadrature and djkbvv Chain Monte Carlo; with
those methods being progressively more accuragstimation, but also more complex
and technically challenging to program and caleuldh our study the final GLMM
models used Laplace approximation methods to estith@ model parameters, which
seemed to be providing accurate estimates withemgbextremely time consuming in
terms of model fitting. Even though it was not yupiresented in this paper, we also
tested to fit the GLMM models with penalized quiileelihoods (PQL), and while the
estimated parameters were virtually equal to theldae approximations, the PQL had
the disadvantage of not allowing the calculatiorgobdness-of-fit measures based on
likelihoods, such as the AIC values for each moWéhile this is not essential for the
model fitting process and parameter estimation, A€ values were one of the
goodness-of-fit measures that were chosen to beé fasecomparing different model

approaches.

Another type of model framework that could haveamwably been used to deal
with this type of fishery-dependant data would hbgen to use Generalized Estimation
Equations (GEE) instead of GLMM. An example of gplacation of such methods,
with a comparison to GLM models, was provided i@ Work of Coelhcet al. (in press)
for modeling blue shark mortality data (binomial adiets) in this same pelagic longline
fishery. The main differences between those two ehiod approaches (GEkersus
GLMM) are that while the GEE use a correlation mato correct the estimated
parameters values and standard deviations, the Gle¥idttively calculate parameters
for the variables with random effects. That is wgnables and Ripley (2002) stated
that the mixed models are sometimes referred tecoaslitional or subject specific
models, where the estimated coefficients applyatthendividual but not necessarily to
the population, while GEE are marginal models witie estimated regression
coefficients representing the population meansnmitnecessarily the individuals. In
our study, and because the random variables coesdidehere the vessels, the
parameters estimated in the GLMM could now be usegredict vessel-specific blue
shark catch rates, as well as to have an ideasowatiability associated with the vessels

in the fleet.
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As a conclusion, we believe that this paper presemw and important
information regarding blue shark catch rates inRloetuguese pelagic longline fishery
in the Southern Atlantic Ocean, with the comparis#intechniques and modeling
approaches showing, in general, consistent reslitis.results presented in this paper
can now be used to infer on the factors that dectfig more or less those blue shark
catch rates, and eventually lead to proposals forenefficient management strategies
on this shark species in the southern Atlantic @cea
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CHAPTER IV. FINAL REMARKSAND CONCLUSIONS

This study presented new information with statadtienodels created for
predicting blue shark catch rates and at-haulbaoktality rates in the Portuguese
longline fishery targeting swordfish in the Atlantbcean. With the work presented it is
now possible to better understand and predict tiygacts of this fishery in this shark

species, both in terms of the catches and mortaitgs.

The chapter focusing on modeling the mortalitysdtas already been adapted for
a peer-reviewed scientific journal and acceptedpiaolication (Coelhcet al, 2013).
The most important conclusion of that chapter (aagber) is that the at-haulback
mortality of blue sharks is highly dependent on #pecimen size, with specimens
tending to have lower mortality rates as they gnotw larger sizes. On the other hand,
as the specimens grow in size the odds-ratios imfgdgiso decrease (due to the non-
linearity of the size effect), meaning that eveouth the probabilities of a small shark
dying are higher than in a larger shark, if both @towed to grow for example 10 cm in
size the odds of dying are more reduced in thelsmgpecimen. Also interesting was to
note that the differences between generalized dimeadels and generalized estimation
equations was small, meaning the that even thobhghdata comes from a fishery-
dependant source, the use of generalized lineaelndidat assume data independency,
is probably also valid in this case.

The chapter that focused on modeling the catcls riatstill under preparation to
be submitted for a peer-reviewed journal, and saspects that were not possible to
incorporate in this thesis will be added beforemsisgion. Specifically, adding more
data from different vessels that were not availal#he time of writing this thesis. One
shortcoming of that chapter is precisely the fhett tonly data from two vessels was
available and used in the analysis, making the Usefa and interpretation of the
random vessels effects within the generalized mixedlels limited. Still, the results
presented are already important and informativeneifeconsidered preliminary.
Another result worthy to be highlighted was that thperational, spatial and seasonal
variables are important to explain part of the tdhark catch rates in the Atlantic. Thus,
with the model equations presented it is now pdssip predict those catch rates with

their associated uncertainties, under differemirfig scenarios.
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We believe that the results herein presented angoriiant and may have
implications in terms of fisheries management aodservation of the species. For
example, if discards eventually become mandataryhis species, we can now use the
catch rates models to predict the catches of laeks in different regions, seasons and
fishing condition across the Southern Atlantic Ogesnd then use the mortality models
to predict how many of those sharks are more likelge caught and discarded already
dead, allowing to have an estimate of the efficgen€ such management measure.
Another example of application of these modelshes possibility to estimate the size-
specific mortality rates of those specimens belosedain minimum size, namely if
minimum landing sizes are implemented, thus allgwio have an estimate of the
efficiently of such management measure. Finallyotlaer example would be the
establishment of any type of spatial and/or seddstang closures, as the catch rates
models allow to predict the impacts of such closuyie terms of reduced catches) on

the blue shark stocks.

Even though the issues of the catch and mortatitgsr were addressed in this
study, others that are also important in terms ahagement and conservation have
remained unsolved. Therefore, a suggestion forrdutasearch priorities includes the
development of statistical models aiming the prgoiic of the catch-at-size of the
specimens, as it would also be important to detesnii there are any spatial and/or
seasonal effects in the catch sizes. If that isiotty, and once the respective models
and equations are prepared, we could start pradithie expected catch-at-size under
different fisheries management scenarios that wauttler contribute to our knowledge
of the species and impacts of the fishery in the Bhark populations.

Finally, we would like to highlight the fact thatese results of this work have
been and will continue to be presented to the Skidokking Group of the Scientific
Committee of Research and Statistics of ICCAT. &fwee, it is expected further
discussions and development of these models tadadhe best scientific advice for
fisheries managers, further contributing to prontbesustainable exploitation of these

migratory shark populations in the Atlantic Ocean.
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ANNEX 1: GLOSSARY

In this Annex we present a glossary of some abatievis that were used in this
thesis.

Abbreviation Tem

AIC Akaike Information Criterion
AUC Area Under the Curve
CPUE Catches Per Unit of Effort
ERA Ecological Risk Assessment
FL Fork Length
F at MSY Maximum Fishing Mortality at Maximum Susstable Yield
GAM Generalized Additive Models
GEE Generalized Estimation Equations
GLM Generalized Linear Models
GLMM Generalized Linear Mixed Models
GVIF Generalized Variance Inflation Factors
HYCOM HYbrid Coordinate Ocean Model
ICCAT International Commission for the ConservatadrAtlantic Tunas
I0OTC Indian Ocean Tuna Commission
NASA National Aeronautics and Space Administration
NOAA National Oceanic and Atmospheric Administratio
MCMC Markov Chain Monte Carlo
MGET Marine Geospatial Ecology Tools
MLD Mixed Layer Depth
MSE Mean Squared Error
MSY Maximum Sustainable Yield
OR Odds-ratios
PQL Penalized quasi-Likelihood
RFMO Regional Fisheries Management Organization
ROC Receiver Operating Characteristic Curve
SSH Sea Surface Height
SST Sea Surface Temperature
TL Total Length
tRFMO Tuna-Regional Fisheries Management Orgamigati
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ANNEX 2: R-Cobe

In this Annex we present examples of the the Rdagg code that was used for
producing this thesis, including data analysistigtieal tests, plots and models. The
complete scripts that were used in the thesis ar@msented in full, mainly due to the
very large size, but rather some examples on hawattalysis were carried out are
provided. We follow an R-language format where canta and notes to facilitate
reading and understanding the code are preced#telsymbol #.

HAHIHHAHHIHH R
#H### CHAPTER | ##H#HH#
HAHHIHHAHHIHH R

## Plot FAO time series data
fis<-read.table("SQServlet_marine_fishes.csv", bead, sep=",")
fis<-ts(fis[,2], start=c(1950,1), end=c(2010, Teduency=1)
elasmo<-read.table("SQServlet_elasmobranchs.ceafdr=T, sep=",")
elasmo<-ts(elasmol,2], start=c(1950,1), end=c(2Q),Krequency=1)
par(mfrow=c(2,1))

plot(fis/1000, main="Marine fishes", ylab="Catch#sousand ton)")
plot(elasmo/1000, main="Elasmobranchs", ylab="Cadtleousand ton)")

## Plot ICCAT-Task1 time series data
iccat.data<-read.table("Data_ICCAT-Task1.csv", leead, sep=",")
all.sharks<-ts(iccat.data[,2], start=c(1950,1),=s{@010, 1), frequency=1)
all.bsh<-ts(iccat.data[,3], start=c(1950,1), en@8d(0, 1), frequency=1)
pt.bsh<-ts(iccat.data[,4], start=c(1950,1), end6t(® 1), frequency=1)
par(mfrow=c(3,1))

plot(all.sharks/1000, main="All sharks, all flegtglab="Catches (thousand ton)")
plot(all.bsh/1000, main="Blue shark, all fleetslaly="Catches (thousand ton)")
plot(pt.bsh/1000, main="Blue shark, EU.Portugatfleylab="Catches (thousand ton)")

HIHHHH AR
#H### CHAPTER || ##HH##
HHHH AR

## L oad dataset

mort<-read.table("Mort_BSH.csv", header=T, dec=5ep=",")
mort$Year<-factor(mort$Year)
mort$Quarter<-factor(mort$Quarter)

summary(mort)

str(mort)
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## Size distribution of the samples

fem<- subset(mort, Sex=="F")

mac<- subset(mort, Sex=="M")

summary(fem)

summary(mac)

#Plots

par(mfrow=c(2,1))

with(fem, hist(FL, breaks="scott", main="Femaledim=c(40,310), ylim=c(0,1400),
xlab="Fork Length (cm)"))

with(mac, hist(FL, breaks="scott", main="Males"im{c(40,310), ylim=c(0,1400),
xlab="Fork Length (cm)"))

# Test normality and homogeneity of variances, &l without transformations
lillie.test(mort$FL)

lillie.test(log(mort$FL))

lillie.test(sqrt(mort$FL))

leveneTest(mort$FL~mort$Sex)

leveneTest(log(mort$FL)~mort$Sex)

leveneTest(sqrt(mort$FL)~mort$Sex)

# Hypothesis tests to compare sizes

wilcox.test(FL~Sex, data=mort)

## Contingency table analysis

library(gmodels); citation("gmodels")

# Specimen Sex

table(mort$Sex, mort$Mort)

CrossTable(mort$Sex, mort$Mort, expected=T, chisdeimat="SPSS", prop.r=F,
prop.c=T,prop.t=F,prop.chisq=F)

# Year

table(mort$Year, mort$Mort)

CrossTable(mort$Year, mort$Mort, expected=T, chisdefimat="SPSS", prop.r=F,
prop.c=T,prop.t=F,prop.chisq=F)

# Quarter

table(mort$Quarter, mort$Mort)

CrossTable(mort$Quarter, mort$Mort, expected=Ts@hT, format="SPSS", prop.r=F,
prop.c=T,prop.t=F,prop.chisq=F)

# Gangion material

table(mort$Gangion, mort$Mort)

CrossTable(mort$Gangion, mort$Mort, expected=TsahT, format="SPSS",
prop.r=F, prop.c=T,prop.t=F,prop.chisq=F)

# Specimen size (categorized by the quartiles)

mort$FL_CAT<- cut(mort$FL, breaks=c(40, 188, 2081 2305),right=F,
include.lowest=T)

mort$FL_CAT<-factor(mort$FL_CAT)

table(mort$FL_CAT, mort$Mort)

CrossTable(mort$FL_CAT, mort$Mort, expected=T, chiBgformat="SPSS",
prop.r=F, prop.c=T,prop.t=F,prop.chisq=F)

# Latitude (categorized by the quartiles)

mort$Lat CAT<- cut(mort$Lat, breaks=c(-34, -24.290,67, 14.370, 21.710),right=F,
include.lowest=T)

mort$Lat_ CAT<-factor(mort$Lat_CAT)
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table(mort$Lat_ CAT,mort$Mort)

CrossTable(mort$Lat_ CAT,mort$Mort, expected=T, ghiE, format="SPSS",
prop.r=F, prop.c=T,prop.t=F,prop.chisq=F)

# Longitude (categorized by the quartiles)

mort$Long_CAT<- cut(mort$Long, breaks=c(-43.780,.68®, -22.750, -11.100,
8.733),right=F, include.lowest=T)

mort$Long CAT<-factor(mort$Long_ CAT)

table(mort$Long_CAT,mort$Mort)

CrossTable(mort$Long_CAT,mort$Mort, expected=Tsqghil, format="SPSS",
prop.r=F, prop.c=T,prop.t=F,prop.chisq=F)

# SST (categorized by the quartiles)

mort$SST_8day_CAT<- cut(mort$SST_8day, breaks=6@,&3.10, 25.8, 26.77,
28.65), right=F, include.lowest=T)

mort$SST_8day CAT<-factor(mort$SST_8day_ CAT)

table(mort$SST_8day CAT,mort$Mort)
CrossTable(mort$SST_8day_CAT,mort$Mort, expectedhisq=T, format="SPSS",
prop.r=F, prop.c=T,prop.t=F, prop.chisq=F)

# Plots

par(mfrow=c(2,4))

plot(mort$Mort~mort$Sex, main="Sex", ylab="", xlali¥
plot(mort$Mort~mort$Year, main="Year", ylab="", da"")
plot(mort$Mort~mort$Quarter, main="Quarter", ylab=Xlab=""
plot(mort$Mort~mort$Gangion, main="Branch Line"apE"", xlab=
plot(mort$Mort~mort$FL_CAT, main="Size (FL)", ylabi% xlab=""
plot(mort$Mort~mort$Lat_ CAT, main="Latitude", ylaBs xlab=""
plot(mort$Mort~mort$Long_CAT, main="Longitude", ya™', xlab=
plot(mort$Mort~mort$SST_8day CAT, main="SST (°G)gb="", xlab=""

# Test univariate binomial GLM models
fitO<-gIm(MortBIN~1, family=binomial(link="logit"),data=mort_2)
summary (fit0)

# Specimen size

fit2<-gim(MortBIN~FL, family=binomial(link="logit"), data=mort)
summary (fit2)

anova(fit0, fit2, test="Chisq")

# Specimen sex

fit3<-glm(MortBIN~Sex, family=binomial("logit"), dea=mort)
summary (fit3)

anova(fit0, fit3, test="Chisq")

# Latitude

fitd<-gIm(MortBIN~Lat, family=binomial("logit"), dé&a=mort)
summary (fit4)

anova(fit0, fit4, test="Chisq")

# Longitude

fit5<-gim(MortBIN~Long, family=binomial("logit"), d&ta=mort)
summary (fit5)

anova(fit0, fit5, test="Chisq")

# Year

fité<-gIm(MortBIN~Year, family=binomial("logit"), @ta=mort)
summary (fit6)
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anova(fit0, fit6, test="Chisq")

# Quarter

fit8<-glm(MortBIN~Quarter, family=binomial("logit") data=mort)
summary (fit8)

anova(fit0, fit8, test="Chisq")

# Vessel

fit9<-gim(MortBIN~Boat, family=binomial("logit"), éita=mort)
summary (fit9)

anova(fit0, fit9, test="Chisq")

# SST

fitl0<-gIm(MortBIN~SST_8day, family=binomial("lodi}, data=mort)
summary (fit10)

anova(fit0, fit10, test="Chisq")

# Gangion

fitl2<-gim(MortBIN~Gangion, family=binomial("logi§; data=mort)
summary (fit12)

anova(fit0, fitl2, test="Chisq")

## Multivariate simple effects model
fit23_f3<-gIm(MortBIN~FL+Lat+Long+Year+Season+Gangi+Sex,
family=binomial(link="logit"), data=mort)

summary (fit23_f3)

anova(fit23_f3, test="Chisq")

## Assumption of sufficient binomial contrastsin the categorical variables
table(mort$Year, mort$MortBIN)

table(mort$Quarter, mort$MortBIN)

table(mort$Boat, mort$MortBIN)

table(mort$Gangion, mort$MortBIN)

table(mort$Sex, mort$MortBIN)

## Assumption of linearity in the continuous variables

# Only 1 example is provided, but all continuouplaratory variables were tested
# Quartiles method

mort$FLCAT<- cut(mort$FL, breaks=c(40, 181, 20192305),right=F,
include.lowest=T)

table(mort$FLCAT)
fit20<-gIm(MortBIN~FLCAT+Sex+Lat+Long+Year+QuarteBbat+Gangion,
family=binomial("logit"), data=mort)

summary (fit20)

x<-c((40+181)/2, (181+201)/2, (201+219)/2, (219+2Rpb

y<-c(0, as.numeric(fit20$coef[2]),as.numeric(fit208f[3]), as.numeric(fit20$coef[4]))
plot(x, y,pch=19, main="Linearidade de idade conitl)

lines(lowess(x,y))

# Fractional polynomials

library(mfp)

mfp(MortBIN~fp(FL)+Sex+Lat+Long+Year+Quarter+Boataggion,
family=binomial("logit"), data=mort)

# GAM plots

library(gam)
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plot(gam(MortBIN~s(FL)+Sex+Lat+Long+Year+Quartert@®Gangion,
family=binomial("logit"), data=mort), se=T, xlab=i& (FL, cm)")

## Testing for significant interactions

# Only 1 example is provided, but all possible parere tested
fitl01<-giIm(MortBIN~FL1+Latl+Longl+Year+Season+GanmgSex+FL1:Latl,
family=binomial("logit"), data=mort_2)

summary (fit101)

anova (fit23_f3, fit101, test="Chisq")

## I nteraction plots

#0Only 1 example is provided but all significantarections were plotted

# Divide FL by the 10% percentiles

mort$FLCAT2<- cut(mort$FL, breaks=quantile(mort$flobs = seq(0, 1, 0.1)),
right=F, include.lowest=T)

# Divide Longitude by the 10% percentiles

mort$LongCAT2<- cut(mort$Long, breaks=quantile(madfig, probs = seq(0, 1,
0.1)),right=F, include.lowest=T)

#FL:Longitude interactions plots

par(mfrow=c(1,2))

interaction.plot(x.factor=mort$LongCAT2, trace.factmort$FLCAT2,
response=mort$MortBIN, fun=mean, type ="I", legefhdylab="Mooking mortality",
col=rainbow(10), lwd=2, xlab="Longitude class", ety = "0")
interaction.plot(x.factor=mort$FLCAT2, trace.factonort$LongCAT2,
response=mort$MortBIN, fun=mean, type = "I", legemdylab="Mooking mortality",
col=rainbow(4), lwd=2, xlab="FL size class (cmgglbty = "0")

## Final model with transformations and interactions

fit205 <- gim(MortBIN ~ FL1 + Latl + Longl + Year $Season + Gangion + Sex +
FL1:Longl + FL1:Year + Longl:Season + Longl:SexeaiGangion + Season:Sex,
family = binomial(link = "logit"), data = mort)

summary(fit205)

anova(fit205, test="Chisq")

## R2 of the models

# R2 for the simple effects model

R2N_2 <- (1-exp((fit23_f3%dev - fit23_{3$null) /rd{mort_2)[1]))/(1-exp(-
fit23_f3$null / dim(mort_2)[1]))

# R2 for the model with interactions
R2N.multi.inter<-(1-exp((fit205%dev-fit205%null)ird(mort_2)[1]))/(1-exp(-
fit205%null/ dim(mort_2)[1]))

R2N.multi.inter # [1] 0.164795

#ROC Curves

library(Epi); citation("Epi")

# Simple effects model

ROC(form = MortBIN~FL1+Latl+Longl+Year+Season+GamgtSex, data=mort,
plot="ROC", PV=T, MX=T, MI=F, AUC=T)

# Model with interactions
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ROC(form = MortBIN ~ FL1 + Latl + Longl + Year + &®n + Gangion + Sex +
FL1:Longl + FL1:Year + Longl:Season + Longl:SexeaiGangion + Season:Sex,
data=mort, plot="ROC", PV=T, MX=T, MI=F, AUC=T, cdab=1.1, cex.axis=1.1)

## Hosmer and L emeshow test
hosmerlem <- function(y, yhat, g=10) {
cutyhat = cut(yhat,
breaks = quantile(yhat, probs=seq(0, 1, 1/gpluide.lowest=T)
obs = xtabs(cbind(1 - y, y) ~ cutyhat)
expect = xtabs(cbind(1 - yhat, yhat) ~ cutyhat)
chisg = sum((obs - expect)*2/expect)
P =1 - pchisq(chisq, g - 2)
return(list(chisg=chisq,p.value=P))
}

# Simple effects model
hosmerlem(mort$MortBIN, fitted(fit23_f3))
# Model with interactions
hosmerlem(mort$MortBIN, fitted(fit205))

## Residual analysis

#Residuals along the predicted values

plot (predict(fit205), residuals (fit205, type="dance"))

plot (predict(fit205), residuals (fit205, type="pean"))

# Cooks distances

plot(cooks.distance(fit205))

#Half-normal plots

halfnorm(cooks.distance(fit205), main="Cooks Distl)

halfnorm(residuals (fit205, type="pearson"), maiRearson Residuals")
halfnorm(residuals (fit205, type="deviance"), mdiDeviance Residuals")

# DF betas along the predicted values

rdf <- dfbetas(fit205)

head(rdf)

plot(predict(fit205), rdf[,2], main="Size", xlab=tBdicted", ylab="Df Betas")
plot(predict(fit205), rdf[,3], main="Lat", xlab="Rdicted", ylab="Df Betas")
plot(predict(fit205), rdf[,4], main="Long", xlab="iedicted", ylab="Df Betas")
plot(predict(fit205), rdf[,5], main="Year2009", xtx"Predicted", ylab="Df Betas")
plot(predict(fit205), rdf[,6], main="Year2010", tx"Predicted", ylab="Df Betas")
plot(predict(fit205), rdf[,7], main="Year2011", xdx"Predicted", ylab="Df Betas")
plot(predict(fit205), rdf[,8], main="Quarter", xlatiPredicted", ylab="Df Betas")
plot(predict(fit205), rdf[,9], main="Branch lineXlab="Predicted", ylab="Df Betas")
plot(predict(fit205), rdf[,10], main="Sex", xlab=t&dicted", ylab="Df Betas")
plot(predict(fit205), rdf[,11], main="FL:Long", xla&="Predicted", ylab="Df Betas")
plot(predict(fit205), rdf[,12], main="FL:Year2009%)ab="Predicted", ylab="Df Betas")
plot(predict(fit205), rdf[,13], main="FL:Year2010%Jab="Predicted", ylab="Df Betas")
plot(predict(fit205), rdf[,14], main="FL:Year2011X)ab="Predicted", ylab="Df Betas")
plot(predict(fit205), rdf[,15], main="Long:Quarterklab="Predicted", ylab="Df
Betas")

plot(predict(fit205), rdf[,16], main="Long:Sex", ab="Predicted", ylab="Df Betas")
plot(predict(fit205), rdf[,17], main="Year2009:Breln"', xlab="Predicted", ylab="Df
Betas")
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plot(predict(fit205), rdf[,18], main="Year2010:Breln"’, xlab="Predicted", ylab="Df
Betas")

plot(predict(fit205), rdf[,19], main="Year2011:Bren"', xlab="Predicted", ylab="Df
Betas")

plot(predict(fit205), rdf[,20], main="Quarter:Sexlab="Predicted", ylab="Df Betas")

## Cross-validation

library(boot); citation("boot")

cv.10.err <- cv.glm(mort, fit205, cost, K = 10)
cv.10.err$delta

## Calculate the odds-ratios

# Only one example is provided (specimen size)chlaulated for all variables
exp(fit205%coef[2])

mc<-summary(fit205)$cov.scaled

exp(c(fit205%coef[2]-qnorm(0.975) * sqrt(mc[2,2]it205%coef[2] + gnorm(0.975) *
sqrt(mc(2,2])))

# Increase of 10cm in size

a<-10

exp(a* fit205$coef[2]); (1-exp(a* fit205%coef[2])}00

exp(a* fit205%coef[2]-gnorm(0.975)*a*sqrt(mc[2,2]))

exp(a* fit205%coef[2]+qnorm(0.975)*a*sqrt(mc[2,2]))

## Fit GEE models

library(geepack); citation("geepack")

# Simple effects GEE

geed<-geeglm(MortBIN ~ FL1 + Latl + Longl + YeaBeason + Gangion + Sex,
id=Setcode, family=binomial("logit"), corstr="exahgeable", data=mort)

summary (gee4)

anova(gee4, test="Chisq")

# GEE with significant interactions

geeb <- geeglm(MortBIN ~ FL1 + Latl + Longl + YeaBeason + Gangion + Sex +
FL1:Longl + FL1:Year + Longl:Season + Longl:Sexea¥Gangion + Season:Sex,
id=Setcode, family=binomial("logit"), corstr="exahgeable", data=mort)

summary (geeb)

anova(geeb, test="Chisq")

## Plot inver se-logits

# Back-transform the FL variable

fl.t <- 1((seq(40, 305, 5)/100)"-0.5)+log((seq(48D5, 5)/100))

se.fl1 <- sqrt(mc[2,2] + mc[9,9] + mc[2,9])

# cycle to calculate the inverse logits for allesianges

library(faraway)

logit.fl <- rep(0, times=length(fl.t))

ilogit.fl1 <- rep(0, times=length(fl.t))

ilogit.icl.fll <- rep(0, times=length(fl.t))

ilogit.icu.fl1 <- rep(0, times=length(fl.t))

for (i in 1: length(fl.t)){
logit.fl[i] <- fit205%coef[1] + fit205%coef[Pfl.1[i]
ilogit.fI1[i] <- ilogit(logit.fl[i]) # point estimates
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ilogit.icl.fI1[i] <- ilogit(logit.fl[i] - 1.96 * se.fl1l) # lower 95% CI
ilogit.icu.fl1[i] <- ilogit(logit.fl[i] + 1.96 * se.fl1) # upper 95% CI
}
# Plots

lines(ilogit.icl.fl1)
lines(ilogit.icu.fl1)

## Plot odds-ratios
# Back-transform the FL variable
fl.t.odds <- I((seq(40, 305, by=10)/100)"-0.5)Hsq(40, 305, by=10)/100))
# Cycle to calculate the odds-ratios for 10cm siweements
fl.odds <- rep(0, times=length(fl.t.odds))
fl.odds.up <- rep(0, times=length(fl.t.odds))
fl.odds.lo <- rep(0, times=length(fl.t.odds))
for (i in 1:length(fl.t.odds)}{
fl.odds[i] <- exp(fit205%coef[2]*(fl.t.oddstil]-fl.t.odds][i]))
fl.odds.up[i] <- exp(fit205%coef[2]*(fl.t.od(is-1]-fl.t.odds[i]) - gnorm(0.975) *
(fl.t.odds][i+1]-fl.t.odds[i])* sqrt(mc[2,2]))
fl.odds.lo[i] <- exp(fit205%coef[2]*(fl.t.ods[i+1]-fl.t.odds][i]) + gnorm(0.975) *
(fl.t.odds][i+1]-fl.t.odds[i])* sqrt(mc[2,2]))
}
#Plots
library (gplots)
plotCl(y=fl.odds, x=Sizes2, uiw=(fl.odds-fl.odds)ypw=(fl.odds.lo-fl.odds), err="y",
ylim=c(0.65, 1.05), ylab="0Odds-Ratios (increse 08¢ in FL)", xlab="Specimen size
(FL, cm)", main="0dds-Ratios")
abline(h=1, Ity=2)

HAHHH R
#H### CHAPTER || ######
HAHHHH AR

## L oad dataset

cpue<-read.table("BD_South.csv", header=T, decsép=",", na.strings = "-9999")
summary(cpue)

dim(cpue)

str(cpue)

cpue$Year<-factor(cpue$Year)

cpue$Season<-factor(cpue$Season)

## Plot distribution of theresponse variable

hist(cpue$cpueBSH,col="gray87", freq=F, breaks=tScmain="Blue shark CPUE
distribution”, xlab="CPUE (n/1000 hooks)")

lines(density(cpue$cpueBSH))

ggnorm(cpue$cpueBSH)

qqline(cpue$cpueBSH)

## Correlation plots
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# Diagonals with the histograms
panel.hist2 <- function(x) {
par(new =T)
hist(x, col = "light gray", probability = T, ageF, main ="", breaks = "scott")
lines(density(x, na.rm=T), col = "black", lwdl3
rug(x)
}
# Panels with the Spearman correlations
panel.cor2 <- function(x, y, digits = 2, prefix 5 Use = "pairwise.complete.obs",
cex.cor) {
usr <- par("usr")
on.exit(par(usr))
par(usr =¢c(0, 1, 0, 1))
r <- cor(x, y, use = use, method="spearman")
txt <- format(c(r, 0.123456789), digits = digjid
txt <- paste(prefix, txt, sep =)
if (missing(cex.cor))
cex <- 0.8/strwidth(txt)
test <- cor.test(x, y, method="spearman")
Signif <- symnum(test$p.value, corr = F, na = F,
cutpoints = ¢(0, 0.01, 0.05, 0.1, 1), symbotg's**" ek e i wy)
text(0.5, 0.5, txt, cex = cex * log(r))
text(0.8, 0.8, Signif, cex = cex, col = 2)
}
# Final plot
pairs(~cpueBSH +Lat+Long+CurrentVel+Moonllu+Wind+MtESSH+ Salininy+
Chlorophyll+SST, data=bsh_corr, rowlattop=F, lonengi=panel.smooth,
upper.panel=panel.cor2, diag.panel=panel.hist2)

## Boxplotsfor categorical explanatory variables

par(mfrow=c(1,3))

boxplot(cpueBSH ~ Year, data=cpue, ylab="CPUE{afhks)", main="Year",
col="grey85")

boxplot(cpueBSH ~ Season, data= cpue, ylab="CPUBQ0hks)", main="Season",
col="grey85")

boxplot(cpueBSH ~ Gangion, data= cpue, ylab="CRWEO00hks)", main="Gangion
material”, col="grey85")

## Hypothesistestsfor categorical explanatory variables
# Test normality with and without transformations
library(nortest); citation("nortest")
lillie.test(cpue$cpueBSH)
lillie.test(log(cpue$cpueBSH+1))
lillie.test(1/(cpue$cpueBSH+1))

# Test homogeneity of variances with and withoam$formations
library(car); citation("car")
leveneTest(cpue$cpueBSH~cpue$Year)
leveneTest(log(cpue$cpueBSH+1)~cpue$Year)
leveneTest((1/(cpue$cpueBSH+1))~cpue$Year)
leveneTest(cpue$cpueBSH~cpue$Season)
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leveneTest(log(cpue$cpueBSH+1)~cpue$Season)
leveneTest((1/(cpue$cpueBSH+1))~cpue$Season)
leveneTest(cpue$cpueBSH~cpue$Gangion)
leveneTest(log(cpue$cpueBSH+1)~cpue$Gangion)
leveneTest((1/(cpue$cpueBSH+1))~cpue$Gangion)
#Non-parametric hypothesis tests
kruskal.test(cpueBSH ~ Year, data=cpue)
kruskal.test(cpueBSH ~ Season, data=cpue)
wilcox.test(cpueBSH ~ Gangion, data=cpue)

## Calculate % setswith 0 and positive catches
cpue$PositiveSet <- ifelse (cpue$nBSH>=1, 1, 0)
table(cpue$PositiveSet)

## Test univariate models

cpue$cpue.addl <- cpue$cpueBSH+1

# Null model

fit,gamma.uniO <- gim(cpue.addl1 ~ 1, family=Gamimé&€log), data=cpue)
summary(fit.gamma.uniO)

# Gangion

fit,gamma.unil <- gim(cpue.addl ~ Gangion, famBgnma(link=log), data=cpue)
summary(fit.gamma.unil)

anova(fit.gamma.unio, fit.gamma.unil, test="Chisq")

# Season

fit,gamma.uni2 <- glm(cpue.addl ~ Season, familga@a(link=log), data=cpue)
summary(fit.gamma.uni2)

anova(fit.gamma.unio, fit.gamma.uni2, test="Chisq")

# Year

fit,gamma.uni3 <- gim(cpue.addl ~ Year, family=Gaaflink=log), data=cpue)
summary(fit.gamma.uni3)

anova(fit.gamma.unio, fit.gamma.uni3, test="Chisq")

# Latitude

fit,gamma.uni4 <- gim(cpue.addl ~ Latitude, famBamma(link=log), data=cpue)
summary(fit.gamma.uni4)

anova(fit.gamma.unio, fit.gamma.uni4, test="Chisq")

# Longitude

fit,gamma.uni5 <- glm(cpue.addl ~ Longitude, fambamma(link=log), data=cpue)
summary(fit.gamma.unib)

anova(fit.gamma.unio, fit.gamma.uni5, test="Chisq")

# Current velocity

fit,gamma.uni6 <- gim(cpue.addl ~ OSCAR_mag, fgatBamma(link=log),
data=cpue)

summary(fit.gamma.uni6) #Not sig.

anova(fit.gamma.unio, fit.gamma.uni6, test="Chisq")

# Moon Illumination

fit,gamma.uni7 <- gim(cpue.add1l ~ moon_ilu, famBamma(link=log), data=cpue)
summary(fit.gamma.uni?7) #Not sig.

anova(fit.gamma.unio, fit.gamma.uni7, test="Chisq")

# Wind velocity
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fit,gamma.uni8 <- gim(cpue.add1l ~ AVISOWind, faypsiGamma(link=log),
data=cpue)

summary(fit.gamma.uni8)

anova(fit.gamma.unio, fit.gamma.uni8, test="Chisq")

# MLD

fit,gamma.uni9 <- gim(cpue.add1l ~ HYCOMmId, famiyamma(link=log),
data=cpue)

summary(fit.gamma.uni9)

anova(fit.gamma.unio, fit.gamma.uni9, test="Chisq")

# SSH

fit,gamma.unilO <- gim(cpue.add1l ~ HYCOMssh, fgmamma(link=log),
data=cpue)

summary(fit.gamma.unil0)

anova(fit.gamma.unio, fit.gamma.unilO, test="Chjsq"

# Salinity

fit,gamma.unill <- gim(cpue.add1l ~ HYCOMsali0, igmGamma(link=log),
data=cpue)

summary(fit,gamma.unill)

anova(fit.gamma.unio, fit.gamma.unill, test="Chjsq"

# Chlorophyll

fit,gamma.unil2 <- gim(cpue.add1l ~ AquaChlo, fgm@Bamma(link=log), data=cpue)
summary(fit.gamma.unil2)

anova(fit.gamma.unio, fit.gamma.unil2, test="Chjsq"

# SST

fit,gamma.unil3 <- gim(cpue.add1l ~ NCDCsst_|4,ifgnGamma(link=log),
data=cpue)

summary(fit.gamma.unil3)

anova(fit.gamma.unio, fit.gamma.unil3, test="Chjsq"

## Multivariate ssmple effects model
fit,gamma3 <- gim(cpue.addl ~ Gangion + Seasonat ¥d. atitude.t + Longitude.t +
HYCOMsaliO.t + AquaChlo.t + NCDCsst_I4.t, family=@aa(link=log), data=cpue)

## Assumption of linearity in the continuous variables

# Only 1 example is provided, but all continuouplaratory variables were tested
# Quartiles method

cpue$LatitudeCAT <- cut(cpueS$Latitude, breaks=c(8a0, -27.3100 ,-18.4200,
0.8333, 4.9830 ),right=F, include.lowest=T)

table(cpue$LatitudeCAT)

fit,gamma3.1<-gim(cpue.addl ~ LatitudeCAT+ Vess@angion + Season + Year +
Longitude + HYCOMsali0O+ AquaChlo + NCDCsst_|4, fdysGamma(link=log),
data=cpue)

summary (fit.gamma3.1)

x<-c((-34.0000-27.3100)/2, (-27.3100-18.4200)/28(4200+0.8333)/2,
(0.8333+4.9830)/2)

y<-c(0, as.numeric(fit.gamma3.1$coef[2]),as.nun(tigamma3.1$coef[3]),
as.numeric(fit.gamma3.1$coef[4]))

plot(x, y, pch=19, main="Linearidade de latitude")

lines(lowess(x,y))

# Fractional polynomials

111



ANNEX 2 —R-CoDE

library(mfp); citation("mfp")

mfp(cpue.addl ~ Vessel + Gangion + Season + YdaflLatitude) + Longitude +
HYCOMsaliO+ AquaChlo + NCDCsst_14, family=Gammakliriog), data=cpue)

# GAM plot

library(gam); citation("gam")

plot(gam(cpue.add1l~ Vessel + Gangion + Season # ¥ sf_atitude) + Longitude +
HYCOMsaliO+ AquaChlo + NCDCsst_14, family=Gammakliriog), data=cpue), se=T,
xlab="Latitude")

## Test significance of interactions

# Only 1 example is provided, but all possible parere tested

fit,gammal2 <- gim(cpue.addl ~ Gangion + Seasoratr ¥ Latitude.t + Longitude.t +
HYCOMsaliO.t + AquaChlo.t + NCDCsst_|4.t + GangiSerason,
family=Gammay(link=log), data=cpue)

summary(fit.gammal?2)

anova(fit.gamma3, fit,gammal?2)

## Final Gamma GLM model

#Model

fit,gammab5 <- gim(cpue.addl ~ Gangion + Seasypat + Latitude.t + Longitude.t
+ AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.Gangion:AquaChlo.t,
family=Gamma(link=log), data=cpue)

# Summary

summary(fit.gammab5)

# Significance and goodness-of-fit

anova(fit.gammab5)

R2.fit.gammab5 <- 1-(fit.gammab5$deviance / fit.gaabbhdf.residual) /
(fit.gammab5$null.deviance / fit.gamma55$df.null)

AIC(fit.gamma55)

# Evaluate possible collinearity

library(car); citation("car")

vif(fit.gammab5)

# Residual analysis

res.fit.gammab5 <- residuals(fit.gammab5,type="deee")
plot(residuals(fit.gamma55) ~ log(fitted(fit. gamntgpylab="Residuos Deviance",
xlab=expression(log(hat(mu))))

abline(h=0)

plot(fit.gammab5, which=c(1,2), cex.main=1.5, cek#1.5)
hist(res.fit.gamma55, breaks="Scott",main="Histograool="gray88",
cex.main=1.5,cex.lab=1.5, xlab="Deviance residyals"

## Poisson GLM model

#Model

fit.poi55 <- gim(nBSH ~ Gangion + Season + Yearatitude.t + Longitude.t +
AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.Gangion:AquaChlo.t +
offset(log(Hookn)), family=poisson(link=log), datepue)

# Summary

summary(fit.poi55)

# Poisson model with dispersion parameter

pd <-sum(residuals(fit.poi55,type="pearson" ) 2pii55$df.res)
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summary (fit.poi55, dispersion=pd)

# Significance and goodness-of-fit

anova(fit.poi55)

R2.fit.poi55 <- 1-(fit.poi55%deviance / fit.poi55$cHsidual) /
(fit.poi55%null.deviance/fit.poi55$df.null)

AIC(fit.poi55)

# Residual analysis

res.fit.poi55 <- residuals(fit.poi55,type="deviange"
plot(residuals(fit.poi55) ~ log(fitted(fit.poi55) gb="Residuos Deviance",
xlab=expression(log(hat(mu))))

abline(h=0)

plot(fit.poi55, which=c(1,2), cex.main=1.5, cex4h5)
hist(res.fit.poi55, breaks="Scott", main="Histograrob|="gray88",
cex.main=1.5,cex.lab=1.5, xlab="Deviance residyals"

## Negative Binomial GLM model

library(MASS); citation("MASS")

fit.nb55 <- gim.nb(nBSH ~ Gangion + Season + Yeaatitude.t + Longitude.t +
AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.Gangion:AquaChlo.t +
offset(log(Hookn)), link=log, data=cpue)

# Summary

summary(fit.nb55)

# Significance and goodness-of-fit

anova(fit.nb55)

R2.fit.nb55 <- 1-(fit.nb55%deviance / fit.nb55%d&idual) /
(fit.nb55%null.deviance/fit.nb55%df.null)

AIC(fit.nb55)

# Residual analysis

res.fit.nb55 <- residuals(fit.nb55,type="deviance")
plot(residuals(fit.nb55) ~ log(fitted(fit.nb55),ylatResiduos Deviance",
xlab=expression(log(hat(mu))))

abline(h=0)

plot(fit.nb55, which=c(1,2), cex.main=1.5, cex.ldb5)

hist(res.fit.nb55, breaks="Scott", main="Histogramd|="gray88",
cex.main=1.5,cex.lab=1.5, xlab="Deviance residjals"

## Quasi-Poisson GLM Model

# Model

fit.gpoi55 <- gim(nBSH ~ Gangion + Season + Yedmatitude.t + Longitude.t +
AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.Gangion:AquaChlo.t +
offset(log(Hookn)), family=quasipoisson(log), dataue)

# Summary

summary(fit.gpoi55)

# Significance and goodness-of-fit

anova(fit.qpoiss)

R2.fit.gpoi55 <- 1-(fit.gpoi55%deviance / fit.qpoisdsf.residual) /
(fit.gpoi55%null.deviance/fit.qpoi55%df.null)

## Tweedie GLM Model
library(tweedie); citation("tweedie")
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library(statmod); citation ("statmod")

# Fit the tweedie distribution

out <- tweedie.profile(cpoueBSH ~ Gangion + Seasdfear + Latitude.t + Longitude.t
+ AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.Gangion:AquaChlo.t,
data=cpue, p.vec=seq(1.1, 1.9, length=9), methoterppolation”, do.ci=T,
do.smooth=T, do.plot=T, phi.method="saddlepoint")

p <- out$p.max

# Model

fit.tweedie55 <- gim(cpueBSH ~ Gangion + Seasofear + Latitude.t + Longitude.t
+ AquaChlo.t + NCDCsst_l4.t + Gangion:Longitude.Gangion:AquaChlo.t,
family=tweedie(var.power=p, link.power=0), data=epu

#Summary

summary(fit.tweedie55)

# Significance and goodness-of-fit

anova(fit.tweedie55, test="Chisqg")

par(mfrow=c(2,2));plot(fit.tweedie55)

R2.fit.tweedie55 <- 1-(fit.tweedie55%deviance / fietedie55%df.residual) /
(fit.tweedie55%null.deviance/fit.tweedie55%df.null)
AlCtweedie(fit.tweedie55)

# Residual analysis

qguantile.res.tweedie55 <- gres.tweedie(fit.tweedie55
plot(log(fits.tweedie55), gres.tweedie(fit.tweedgsmain="Quantile residuals”)
abline(0,0, col="red")

ggnorm(qgres.tweedie(fit.tweedie55), main = "QQ Rlekab="Standard Normal
Quantiles", ylab="Quantile Residuals")

ggline(quantile.res.tweedie55)

hist(quantile.res.tweedie55, breaks="Scott",mainstéyram"”, col="gray87",
cex.main=1.5,cex.lab=1.5, xlab="Quantile residyals"

## Cross-validation

library(boot); citation("boot")

k<-10

cv.gammab5.10 <- cv.glm(cpue, fit.gamma55, K=k)
cv.gammab5.10%delta

CV.poi55.10 <- cv.glm(cpue, fit.poi55, K=Kk)
cv.poi55.10%delta

Cv.poi55.10 <- cv.glm(cpue, fit.qpoi55, K=Kk)
cv.poi55.10%delta

cv.nb55.10 <- cv.gim(cpue, fit.nb55, K=Kk)
cv.nb55.10%delta

cv.tweedie55.10 <- cv.glm(cpue, fit.tweedie55, K=Kk)
cv.tweedie55.10%delta

## GLMM modelswith penalized quasi-likelihoods

library(MASS); citation("MASS")

# Gamma

fit.mix.gammal00 <- gimmPQL(cpue.addl ~ Gangidpeaison + Year + Latitude.t +
Longitude.t + AquaChlo.t + NCDCsst_I4.t + Gangioonigitude.t +
Gangion:AquaChlo.t, random = ~ 1| Vessel, familys@#a(link=log), data=cpue)
summary(fit.mix.gammal00)
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# Poisson

fit. mix.poil00 <- gimmPQL(NBSH ~ Gangion + Seaso¥ear + Latitude.t +
Longitude.t + AquaChlo.t + NCDCsst_I4.t + Gangioonigitude.t +
Gangion:AquaChlo.t + offset(log(Hookn)), random #|-Vessel,
family=poisson(link=log), data=cpue)

summary(fit. mix.poil00)

#Quasi-Poisson

fit. mix.qpoil00 <- gimmPQL(NBSH ~ Gangion + Seasowear + Latitude.t +
Longitude.t + AquaChlo.t + NCDCsst_I4.t + Gangioonigitude.t +
Gangion:AquaChlo.t + offset(log(Hookn)), random 2| Vessel,
family=quasipoisson(link=log), data=cpue)

summary(fit. mix.qpoil00)

# Negative Binomial

fit. mix.nb100 <- gimmPQL(nBSH ~ Gangion + Seasoviear + Latitude.t +
Longitude.t + AquaChlo.t + NCDCsst_I4.t + Gangioonigitude.t +
Gangion:AquaChlo.t + offset(log(Hookn)), random #|-Vessel,
family=negative.binomial(theta=4.510, link="log9ata=cpue)
summary(fit.mix.nb100)

# Tweedie

fit. mix.tweediel00 <- gimmPQL(cpueBSH ~ GangioBeason + Year + Latitude.t +
Longitude.t + AquaChlo.t + NCDCsst_I4.t + Gangioonigitude.t +
Gangion:AquacChlo.t, random = ~ 1| Vessel, family=ddie (var.power=p,
link.power=0), data=cpue)

summary(fit. mix.tweedie100)

#Residuals plots

par(mfrow=c(2,2))

plot(fit. mix.gammal00, main="Gamma GLMM")

plot(fit.mix.poil00, main="Poisson GLMM")

plot(fit. mix.nb100, main="Negative Binomial GLMM")
plot(fit.mix.tweedie100, main="Tweedie GLMM")

## GLMM modelswith L aplace approximations

library(gimmADMB); citation("gimmADMB")

# Gamma

fit.mix.gamma200 <- gimmadmb(cpue.addl ~ Gangi@eason + Year + Latitude.t +
Longitude.t + AquaChlo.t + NCDCsst_I4.t + Gangioonigitude.t +
Gangion:AquaChlo.t, random= ~1|Vessel, family="gaa\nink="log", data=cpue,
verbose=F)

summary(fit.mix.gamma200)

AIC(fit. mix.gamma200)

#Poisson

fit. mix.poisson200 <- gimmadmb(nBSH ~ Gangion a8 + Year + Latitude.t +
Longitude.t + AquaChlo.t + NCDCsst_I4.t + Gangioonigitude.t +
Gangion:AquaChlo.t + offset(log(Hookn)), randomHVWessel, family="Poisson",
link="log", data=cpue)

summary(fit. mix.poisson200)

AIC(fit.mix.poisson200)

# Negative Binomial

fit. mix.nb200 <- gimmadmb(nBSH ~ Gangion + Seasorear + Latitude.t +
Longitude.t + AquaChlo.t + NCDCsst_I4.t + Gangiaonigitude.t +
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Gangion:AquaChlo.t + offset(log(Hookn)), random3\dssel, family="nbinom",
link="log", data=cpue)

summary(fit.mix.nb200)

AIC(fit.mix.nb200)

# Tweedie

library(cplm); citation("cplm™)

fit. mix.tweedie200 <- cpglmm(cpueBSH ~ GangioBeason + Year + Latitude.t +
Longitude.t + AquaChlo.t + NCDCsst_I4.t + Gangioonigitude.t +
Gangion:AquaChlo.t+ (1|Vessel), link = "log", datpue)

summary(fit. mix.tweedie200)

AIC(fit.mix.tweedie200)

## Plots to compar e candidate models coefficients

library(coefplot2); citation("coefplot2™)

vn <- c("GangionWire", "Season2" , "Season3" , "deds§ , "Year2009" , "Year2010",
"Year2011", "Latitude.t", "Longitude.t", "Chlorogh.t”, "SST.t",
"GangionWire:Longitude.t" , "GangionWire:Chlorophy1)
coefplot2(list(GLM.Gamma=fit.gamma55, GLM.NB=fit.&5,
GLM.quasiPoisson=fit.qpoi55, GLM.Tweedie=fit.twee8b,
GLMM.Gamma=fit.mix.gamma200, GLMM.NB=fit. mix.nb200,
GLMM.Tweedie=fit.mix.tweedie200), varnames=vn, Cli&gend=T,
legend.x="bottomleft", legend.args=c(ncol=1, cex=1)

## Example of modéd predictions

#Back-transform the continuous variables

# Latitude (1Q:-27.5100): South Atlantic

log(((-27.5100+34.1)/10)) # [1] -0.4170317

# Latitude (3°Q: 0.4417): Equatorial region

l0g(((0.4417+34.1)/10)) # [1] 1.239582

# Longitude (1°Q: -25.620): Western Atlantic

1(((-25.72+43.8)/10)1) #[1] 1.808

# Longitude (3°Q: -9.167): Eastern Atlantic

1(((-11.59+43.8)/10)"1) #[1] [1] 3.221

# Clorofill (Median: 0.06904): Median value

1((0.06904/0.1)"1) #[1] 0.6904

# SST (Median: 23.73): Median value

1((23.73/10)"1)#[1] 2.373

# New data frames with different possible scenarios

x1 <- data.frame(Gangion="Wire",Season="1",YearZRQQLatitude.t=-
0.4170317,Longitude.t=1.808,AquaChlo.t=0.6904,NC&d4g.t=2.373, Hookn=1000)
X2 <- data.frame(Gangion="Wire",Season="1",YearZRQQLatitude.t=-
0.4170317,Longitude.t=3.221,AquaChlo.t=0.6904,NC&d4g.t=2.373, Hookn=1000)
x3 <- data.frame(Gangion= "Wire",Season="1", Yeafd®@"', Latitude.t=1.239582,
Longitude.t=1.808,AquaChlo.t=0.6904,NCDCsst_14.8¥3, Hookn=1000)

x4 <- data.frame(Gangion="Wire", Season="1", Yea1@', Latitude.t=1.239582,
Longitude.t=3.221, AquaChlo.t=0.6904,NCDCsst_14.373, Hookn=1000)

x5 <- data.frame(Gangion="Mono",Season="1",Yeard@0Latitude.t=-0.4170317,
Longitude.t=1.808, AquaChlo.t=0.6904,NCDCsst_14.373, Hookn=1000)

X6 <- data.frame(Gangion="Wire",Season="2",Year2@(Latitude.t=-0.4170317,
Longitude.t=1.808, AquaChlo.t=0.6904,NCDCsst_14.373, Hookn=1000)
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X7 <- data.frame(Gangion="Wire",Season="3",Year2@(Latitude.t=-0.4170317,
Longitude.t=1.808, AquaChlo.t=0.6904,NCDCsst_14.373, Hookn=1000)

x8 <- data.frame(Gangion="Wire",Season="4",Year2@(Latitude.t=-0.4170317,
Longitude.t=1.808,AquaChlo.t=0.6904,NCDCsst_14.8¥3, Hookn=1000)

# Example of predictions for the GLM Gamma modptsdicting CPUE+1
predict(fit.gammab5, newdata=x1, type="responsefijts= T).
predict(fit.gamma55, newdata=x2, type="responsefijts= T).
predict(fit.gammab5, newdata=x3, type="responsefijts= T)

predict(fit.gammab55, newdata=x4, type="responsefijts= T)

predict(fit.gammab5, newdata=x5, type="responsefijts= T)

predict(fit.gammab55, newdata=x6, type="responsefijts= T)

predict(fit.gammab5, newdata=x7, type="responsefijts= T)

predict(fit.gammab55, newdata=x8, type="responsefijts= T)

# Example of predictions for the GLM NB models,gioting catches (n) in 1000 hooks
predict(fit.nb55, newdata=x1, type="response",ise.m)

predict(fit.nb55, newdata=x2, type="response",ise.)

predict(fit.nb55, newdata=x3, type="response",ise.m)

predict(fit.nb55, newdata=x4, type="response",ise.)

predict(fit.nb55, newdata=x5, type="response",ise.m)

predict(fit.nb55, newdata=x6, type="response",ise.)

predict(fit.nb55, newdata=x7, type="response",ise.m)

predict(fit.nb55, newdata=x8, type="response",ise.)
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