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Resumo

"Axiomática para os Números Externos da Análise Não-standard e modelação
de incertezas".

Nesta tese apresentamos uma axiomática para os números externos. Neutri-
ces e números externos foram propostos como modelos de ordens de grandeza
no contexto da Análise Não-standard. Mostramos que os números externos são
um semigrupo comutativo regular para a adição e que os números externos que
não são neutrices são um semigrupo comutativo regular para a multiplicação. A
distributividade tem uma validade restringida mas que pode ser completamente
caracterizada. Os números externos têm, em larga escala, propriedades semel-
hantes às dos números reais o que justi�ca a introdução de estruturas algébricas
comuns, de�nidas por regras axiomáticas. As estruturas resultantes têm ele-
mentos neutros individualizados tanto para a adição como para a multiplicação
e uma distributividade restringida. As estruturas apresentadas têm no entanto
muitas propriedades em comum com estruturas clássicas tais como grupos, anéis
e corpos. Mostramos que os axiomas apresentados têm um modelo nos números
externos. Modelamos os paradoxos que surjem quando se consideram várias
ordens de magnitude, chamados paradoxos Sorites, usando números externos.
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Abstract

"Axiomatics for the External Numbers of Nonstandard analysis and modelation
of uncertainties"

In this thesis we present an axiomatics for external numbers. Neutrices
and external numbers were proposed as models of orders of magnitude within
nonstandard analysis. We show that the external numbers form a commuta-
tive regular semigroup for addition and that the external numbers which are
not neutrices form a commutative regular semigroup for multiplication. The
validity of the distributive law is restricted, but it can be fully characterized.
External numbers have to a large extent algebraic properties similar to those
of real numbers. This justi�es the introduction of common algebraic structures
de�ned by axiomatic rules. The resulting structures have individualized neutral
elements for both addition and multiplication and a restricted distributive law,
but have to a large extent properties in common with classical structures such
as groups, rings and �elds. We show that the axioms presented have a model in
the external numbers. We model the paradoxes which arise when several orders
of magnitude are considered, called Sorites paradoxes, using external numbers.
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Introduction

Ars negligendi longa, vita brevis.
(Van der Corput)

Neutrices and external numbers were introduced in [38] and [39], as math-
ematical models of orders of magnitude within nonstandard analysis. Within
the external numbers we distinguish neutrices, a sort of generalized zeros. We
use an axiomatic approach in which all in�nite standard sets have nonstandard
elements, so most neutrices are external sets. Being stable for some translations,
additions and multiplications, external numbers are models of orders of magni-
tude or transitions with imprecise boundaries. In the nonstandard framework
there are many neutrices, enabling to solve paradoxes which arise when several
orders of magnitude are simultaneously considered. These paradoxes are called
Sorites paradoxes. One can be stated in the following way: a single grain of
wheat cannot be considered as a heap. Neither can two grains of wheat. One
must admit the presence of a heap sooner or later, so where to draw the line? In
fact, the heap and the grain of wheat are not of the same order of magnitude and
we might say that the set of individual grains may be modeled by the external
set of limited numbers (positive part of a neutrix) and the set of grains that
form a heap may be modeled by the external set of the in�nitely large num-
bers. It should also be possible to capture in this way some modalities, like the
di¤erence between a "good" approximation, allowing to obtain an adequately
precise numerical result in some context, and a "bad", useless, one.
The stability of orders of magnitude under some repeated additions justi�es

to model them by (convex) groups of real numbers. Historically, the term neutrix
was �rst used by Van der Corput [11], referring to groups of functions. Among
others, his objective was to deal with imprecisions arising from neglecting terms
of expansions. There are other approaches to this kind of problems, such as the
o (:) and O (:) notation (Landau notation) [8], con�dence intervals of statistics,
interval arithmetic [25] [44] and fuzzy sets [73]. Hardy in his book on the
In�nitärcalcül of Du Bois-Reymond [26] used the Landau notation to study
"how fast" a function grows to in�nity. This allows to distinguish di¤erent
scales of functions. Hardy defends that

The notions of the �order of greatness�or �order of smallness�of a
function f(n) of a positive integral variable n, when n is �large,�or

ix



x INTRODUCTION

of a function f(x) of a continuous variable x, when x is �large�or
�small�or �nearly equal to a,�are of the greatest importance even in
the most elementary stages of mathematical analysis. [26]

These other approaches are not without fault as models of imprecisions,
because they ultimately recourse to functions or precise intervals of numbers
to model imprecise situations, and do not work with the actual error but only
with an upper bound of the error. On the contrary, with external numbers it is
possible to work directly with imprecisions and errors without recourse to upper
bounds, for they have neither in�mum nor supremum and satisfy the algebraic
laws mentioned above. Moreover, the external numbers are totally ordered, even
allowing for a sort of generalized Dedekind completeness property [3] [4] [39].



Chapter 1

On the foundations of
external sets

It was from them that I learned that hard work in stable sur-
roundings could yield rewards, even if only in in�nitesimally small
increments.
(Sidney Altman - Nobel Prize in Chemistry)

1.1 Introduction

In [55] [56] Robinson founded Nonstandard Analysis giving, for the �rst time,
a correct treatment of in�nitesimals. This was indeed a great achievement
because in�nitesimals had been present in mathematics in one way or the other
since Archimedes�s �The Method of Mechanical Theorems�, without having a
proper and rigorous formulation. Nevertheless, Robinson�s original treatment
of in�nitesimals seemed overcomplicated.

It was developed [...] within a type-theoretical version of higher-
order logic. [57]

Those tools made that �rst approach not very appealing to many mathe-
maticians1 . For this reason, Robinson and Zakon later gave a much simpler,
purely set-theoretical, approach using model theory and superstructures [57]
published in [42], further developed in [74]. Also in [42], Kreisel [40] raised the
following questions2 :

1. Is there a simple formal system (in the usual sense, that is,
with a recursive, preferably �nite, list of rules and axiom schemata)

1More recently a simpli�ed version of this approach was given in [45]
2Kreisel [40] says that the �rst question posed itself as soon as Robinson published [55].

As for the second question he says that Robinson posed a related question, concerning non-
standard arithmetic, at a meeting in London in 1965.

1



2 CHAPTER 1. FOUNDATIONS OF EXTERNAL SETS

in which existing practice of nonstandard analysis can be codi�ed?
And if the answer is positive:
2. Is this formal system a conservative extension of current sys-

tems of analysis (in which existing practice of standard analysis has
been codi�ed)?

It turns out that the answer to both questions is positive and several set
theories that axiomatize the nonstandard methods have been made since (see
[34] for a book on axiomatic nonstandard theories and also [46] for a survey
paper of nonstandard set theories). Some of these theories will be reviewed
in this chapter. Nonstandard set theories can be classi�ed into two groups:
internal theories, which axiomatize standard and internal sets only and external
theories, which axiomatize external sets as well. So, external theories tend to be
more intricate and complicated. The main goal of this chapter is to give some
foundational background for external sets.
We start by recalling the axioms and some basic set theoretical notions of

ZFC, the usual framework for (standard) mathematics. Actually, almost all
nonstandard theories are conservative extensions of ZFC. This means that
every theorem of the nonstandard theory expressible in the language of ZFC
is also a theorem of ZFC. However, it will be seen that in order to deal with
external sets some axioms of ZFC need to be adapted. Nonstandard theories
also typically allow some sort of transfer in order to connect the standard and
the (internal) nonstandard worlds.
We recall the model theoretic construction of nonstandard analysis via su-

perstructures by Robinson and Zakon [57] [74] and discuss how the external
numbers may be developed in an appropriate superstructure. We then review
the nonstandard internal set theories IST and BST . The latter has an exten-
sion to the external theory HST which, as we will see, allows to construct some
neutrices and external numbers which are in general external sets.

1.2 ZFC

The most common axiomatic set theory and so the most common foundational
background for mathematics is the theory Zermelo-Fraenkel-Choice which is
usually abbreviated ZFC. For a thorough and modern treatment of ZFC we
refer to [30]. In ZFC every object is a set. This theory has a very simple lan-
guage, containing (apart from the logical symbols) only the binary membership
predicate "2". One should read x 2 y as �x is a member of y�meaning that x
is an element appearing in the set y. Classes in ZFC are informally de�ned as
extensions of formulas in the following way. If ' (x; p1; :::; pn) is a formula with
parameters p1; :::; pn then C = fx : ' (x; p1; :::; pn)g is a class. The members of a
class C are the sets x that satisfy ' (x; p1; :::; pn). We say that C is de�nable from
p1; :::; pn. If ' (x) has no parameters pi then the class C is de�nable. The reason
to consider classes is because classes are simpler to deal with than formulas. In
the following we recall the axioms of ZFC with some comments.



1.2. ZFC 3

Extensionality

The �rst axiom postulates the intuitive notion that sets with the same elements
are equal. This axiom is also useful to prove that a given set is unique.

8X8Y (8x (x 2 X , x 2 Y ), X = Y ) :

Pair

Given two sets a and b there is a set (unique by extensionality) containing
exactly a and b.

8a; b9A8x (x 2 A, x = a _ x = b) :

One calls ordered pair to the (unique) set (x; y) � ffag ; fa; bgg3 .

Separation (Scheme)

The elements x of a set X that verify the property ' (x) form a new set Y
(unique by extensionality). For each formula the following is an axiom.

8X9Y 8x (x 2 Y , (x 2 X ^ '(x))) :

By separation a subclass of a set is also a set. It follows from separation that
there is a set with no elements (unique by extensionality) called the empty set
and denoted ;. Moreover, if X and Y are sets the intersection

X
T
Y � fx 2 X : x 2 Y g

is also a set.

Union

The next axiom states that for every set A there is a (unique) set B �
S
A.

8A9B8x (x 2 B , 9X 2 A (x 2 X)) :

One usually writes X
S
Y instead of

S
fX;Y g.

Power Set

A set B is a subset of a set A if for every x 2 B one has that x 2 A and writes
B � A. If B � A and A 6= B one says that B is a proper subset of A and writes
simply B � A. For any set X there is a (unique) set Y � P (X) that contains
all subsets of X. This set is called the power set of X.

8X9Y 8x (x 2 Y , x � X) :
3This de�nition was given by Kuratowski in 1921.



4 CHAPTER 1. FOUNDATIONS OF EXTERNAL SETS

The power set axiom allows to de�ne the following notions. One de�nes the
(Cartesian) product of X and Y in the following way.

X � Y � f(x; y) 2 P (P (X [ Y )) : x 2 X ^ y 2 Y g :

A binary relation R between two sets X and Y is a subset of the Cartesian
product X � Y . A binary relation f between two sets X and Y is a function if
(x; y) 2 f and (x; z) 2 f implies y = z. A partial order relation "�" over a set
X is a binary relation satisfying the following properties:

(O1) 8a 2 X (a � a) (re�exivity).

(O2) 8a; b 2 X (a � b ^ b � a) a = b) (antisymmetry).

(O3) 8a; b; c 2 X (a � b ^ b � c) a � c) (transitivity).

A partial order relation is called a total order relation if it also satis�es

(O4) 8a; b 2 X (a � b _ b � a) (totality).

A well-ordering of a set is a total ordering of it according to which every
non-empty subset has a least element.

In�nity

The next axiom states that there is an in�nite set.

9X (; 2 X ^ 8x (x 2 X ) x [ fxg 2 X)) :

Replacement (Scheme)

The following axiom states that if a class F = f(x; y) : '(x; y; p)g, where p is a
parameter, is functional, then for every set X, F (X) is a set.

8x8y8z ('(x; y; p) ^ '(x; z; p)) y = z)

) 8X9Y 8y (y 2 Y , (9x 2 X)'(x; y; p)) :

A set A is called transitive if whenever x 2 A, and y 2 x, then y 2 A. A set S
which is strictly well-ordered with respect to 2 is an ordinal if and only if every
element of S is also a subset of S. The class of all ordinals (which is not a set)
is denoted Ord. An ordinal � = �+1 = �

S
f�g is called a successor ordinal. If

� is not a successor ordinal, then � = sup f� : � < �g is called a limit ordinal.
In the presence of the following axiom it is possible to prove that � 2 Ord if
and only if � is a transitive set of transitive sets.
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Regularity

8S (S 6= ; ) (9x 2 S) (S \ x = ;)) :

This means that every nonempty set has an 2-minimal element and, as a
consequence, there can be no in�nite sequences

::: 2 x2 2 x1 2 x0.

Regularity is very useful in the construction of models but less relevant for the
development of natural and real numbers, and in fact of all ordinary mathemat-
ics. Indeed, regularity�s main feature is to give a "nice picture" of the universe
of sets [46]. The universe of sets V is given by the Von Neumann cumulative
hierarchy described below. The cumulative hierarchy is a collection of sets V�
indexed by Ord in the following way:

� V0 = ;

� V�+1 = P (V�)

� For any limit ordinal �; V� �
S
�<�

V�

� V �
S

�2Ord
V�

The axiom of regularity implies that every set is obtained at some level of
the cumulative hierarchy over the empty set, i.e. every set is in some V� [30].
One de�nes the rank of x as the least � such that x 2 V�+1:

Choice

Let S be a nonempty family of disjoint sets. A choice function for S is a function
f such that f (X) 2 X, for every X 2 S. The following axiom states that every
family of nonempty sets has a choice function.

8S9Y 8X 2 Sn f;g (9z (Y \X = fzg)) .

1.3 Model theoretical nonstandard analysis

Model theory (see [9]) is a branch of mathematical logic that deals with models
for axiomatic systems. A model for a theory can be seen as the assignment of
meaning to the symbols of the language of the theory. So, for a given set of
axioms a model is a mathematical object that satis�es the axioms. A nonstan-
dard model is a model of a theory that is not isomorphic to the intended model
(standard model). If the standard model is in�nite and the language is �rst-
order then by the Löwenheim�Skolem theorem [61] it has nonstandard models.
Moreover, the nonstandard models can be chosen as elementary extensions or
elementary substructures of the intended model. In particular, R, the set of
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real numbers, has nonstandard models �R. This fact was deeply explored by
Abraham Robinson [55] [56], leading to the foundation of nonstandard analy-
sis. Nonstandard analysis was to a great extent inspired by Leibniz�s ideas and
intuitions towards the use of in�nitesimal and in�nitely large quantities. These
"ghosts of departured quantities" [6] had been used informally throughout the
early stages of the development of calculus. They were posteriorly abandoned
when the � � � based notions of analytic concepts such as limit, continuity,
derivative and integral were introduced by the works of Cauchy, Bolzano and
Weierstrass. In Robinson�s words [56]:

It is shown in this book that Leibniz�s ideas can be fully vindi-
cated and that they lead to a novel and fruitful approach to classical
Analysis and to many other branches of mathematics. The key to
our method is provided by the detailed analysis of the relation be-
tween mathematical languages and mathematical structures which
lies at the bottom of contemporary model theory.

With nonstandard analysis, for the �rst time in history, a rigorous foundation
for the use of in�nitesimals was found.
Later, Robinson and Zakon [57] [74] (see also [21] for a more recent treatment

of these constructions) gave a simpler approach to nonstandard analysis using
set-theoretical objects called superstructures. A superstructure V (S) over a set
S is de�ned in the following way:

V0 (S) = S

Vn+1 (S) = Vn (S) [ P (Vn (S))
V (S) =

S
n2N

Vn (S) :

Superstructures of the empty set consist of sets of �nite rank in the cumulative
hierarchy and therefore do not satisfy the in�nity axiom. Making S = R will
su¢ ce for virtually any construction necessary in analysis.
Bounded formulas are formulas where all quanti�ers occur in the form

8x (x 2 y ) :::)

or
9x (x 2 y ^ :::) :

A nonstandard embedding is a mapping � : V (X) ! V (Y ) from a superstruc-
ture V (X) called the standard model, into another superstructure V (Y ), called
nonstandard model, satisfying the following:

� �X = Y

� Transfer Principle
For every bounded formula ' (x1; :::; xn) and elements a1; :::; an 2 V (X),
the property ' is true for a1; :::; an in the standard model if and only if it
is true for �a1; :::;� an in the nonstandard model:

hV (X) ;2i j= ' (a1; :::; an), hV (Y ) ;2i j= ' (�a1; :::;
� an) :
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� Non-triviality
For every in�nite set A in the standard model, the set f�a : a 2 Ag is a
proper subset of �A.

A set x is internal if and only if x is an element of �A for some element A
of V (R). Let X be a set with A = fAigi2I a family of subsets of X. Then the
collection A has the �nite intersection property, if any �nite subcollection J � I
has non-empty intersection. A model is �-saturated if whenever fAigi2I is a
collection of internal sets with the �nite intersection property and the cardinal
of I is less than or equal to �,

T
i2I

Ai 6= ;.

As we will see in the next chapter neutrices are (external) convex subgroups
of the real number system. In the model theoretic context, a nonstandard model
of the theory of real numbers �R generates external neutrices in an obvious way,
since �R contains such external convex subgroups. It is convenient to choose a
superstructure large enough to be able to apply the usual operations of analysis
on neutrices and external numbers. It is also convenient to suppose the super-
structure to be �-saturated, for some in�nite cardinal �. Neutrices de�ned over
a (standard) setX of cardinality less than or equal to � satisfy strong properties.
Indeed, it is not di¢ cult to adapt the proofs of axiomatic nonstandard analysis
in [4] [39] to derive �rstly that these neutrices are of the lowest complexity, i.e.
are of the form [x2X [�ax; ax] and \x2X [�ax; ax], secondly that every neutrix
N of this form is the multiple N = �I by a hyperreal number � of an idempotent
neutrix I (i.e., with I:I = I) and thirdly that every external lower hal�ine of
�R is bounded from above by an external number, which is co�nal with it, or
just beyond [4] [39].
The superstructure approach allows one to use the methods of nonstandard

analysis without paying much attention to the foundational details. However,
it has some limitations if one wishes to use the nonstandard methods in its
full generality. Superstructures can only model a fragment of ZFC. Take the
following example [46], let N � X be a copy of the natural numbers. Consider
the function F with domain N such that n ! f::: f;g :::g (n brackets). Then
F is de�nable in V (X) but range(F ) =2 V (X). Another objection to the super-
structure approach�s non-unicity is the fact that di¤erent problems will most
likely need di¤erent superstructures and di¤erent embeddings. Also, the model
theoretic concepts are not very appealing to most mathematicians. Finally one
can argue that nonstandard analysis, in principle, is not concerned with su-
perstructures. This makes way for axiomatic foundational frameworks for the
nonstandard methods. Some of them will be reviewed in the following.

1.4 Theories for internal sets: IST and BST

We present two theories that concern internal sets only: IST [47] [48] [49]
and BST [32] [33] [34]. The philosophical position of the internal approach to
nonstandard analysis (IST and BST ) is that
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...we do not enlarge the world of mathematical objects in any way,
we merely construct a richer language to discuss the same objects
as before. [49]

Having a richer language enables one to say new things about the mathe-
matical objects that were not possible to say using only the language of ZFC.
Both IST andBST are conservative extensions of ZFC and therefore, unlike

the superstructure approach, all ZFC axioms remain valid. This is a very
desirable fact because it means that also all ZFC theorems, de�nitions and
constructions remain valid (as long as one considers only formulas in the ZFC
language). Also, every statement in the language of ZFC that is provable
in IST or BST can in principle be proved in ZFC (the conservative part).
Working in IST is very much like working in ZFC and perhaps for this reason
it was so far the only axiomatic nonstandard theory to be used in practice. See
for example [50] [13] [3] [4] [14].
The axiomatics IST (Internal Set Theory) was presented in 1977 [47] and in a

sense formulates within �rst-order language the behaviour of standard and inter-
nal sets of a (strong) nonstandard model. This is done by adding the unary stan-
dardness predicate "st" to the language of ZFC as well as adding to the axioms
of ZFC three new axiom schemes involving the predicate "st": Idealization,
Standardization and Transfer. One should read st (x) as �x is standard�. Nelson
suggests to interpret "standard" informally as "�xed". Formulas which do not
use the predicate st are called internal formulas (or 2 �formulas) and formulas
that use this new predicate are called external formulas (or st� 2 �formulas).
A formula ' is standard if only standard constants occur in '. Before formulat-
ing the new axioms we introduce some useful abbreviations. We write fin (x)
meaning �x is �nite�. Let ' (x) be a st� 2 �formula:

8stx' (x) abbreviates 8x (stx) ' (x))
9stx' (x) abbreviates 9x (st (x) ^ ' (x))
8finx' (x) abbreviates 8x (fin (x)) ' (x))
9finx' (x) abbreviates 9x (fin (x) ^ ' (x))
8stfinx' (x) abbreviates 8x (st (x) ^ fin (x)) ' (x))
9stfinx' (x) abbreviates 9x (st (x) ^ fin (x) ^ ' (x))

We are now able to formulate the new axioms of IST :

Idealization

8stfinF9y8x 2 F R (x; y), 9b8stx R (x; b) ; (I)

for any internal relation R.
The idealization axiom states that saying that for any �xed �nite set F there

is a y such that R (x; y) holds for all x 2 F is the same as saying that there is
a b such that for all �xed x the relation R (x; b) holds.
According to Nelson:
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The intuition behind (I) is that we can only �x a �nite number of
objects at a time. [49]

Standardization

8stA9stB8stx (x 2 B , x 2 A ^ ' (x)) ; (S)

for every st� 2 � formula ' with arbitrary (internal) parameters. According
to Nelson:

The intuition behind (S) is that if we have a �xed set, then we can
specify a �xed subset of it by giving a criterion for judging whether
each �xed element is a member of it or not. [49]

Transfer

8sty1; :::; yn8stx (' (x; y1; :::; yn)) 8x' (x; y1; :::; yn)) ; (T)

for all internal standard ' (x; y1; :::; yn). According to Nelson:

the intuition behind (T) is that if something is true for a �xed, but
arbitrary, x then it is true for all x. [49]

One interesting consequence of (I) is a theorem by Nelson [47] which states
that there is a �nite set F containing all standard sets. This implies that for any
set A, there is a �nite set F containing all standard elements of A, so all in�nite
sets have nonstandard elements. A useful consequence of (S) is the principle of
External Induction, which states that for any (external or internal) formula ',
one has

' (0) ^
�
8stn (' (n)) ' (n+ 1))

�
)
�
8stn' (n)

�
: (EI)

In [48] Nelson showed that in IST is valid a reduction algorithm, that con-
verts external formulas into internal equivalent formulas, for standard values of
the parameters.
Some care is needed though, when working in IST , because external pred-

icates are not allowed to de�ne subsets. The violation of this rule is called
illegal set formation. This is somewhat inconvenient because it implies that
there are no external sets in IST . As argued in [33] [34], the axiomatics IST
must be modi�ed in order to admit an extension to external sets in a reasonable
way. This is done by postulating a boundedness axiom that says that every set
belongs to a standard set.

Boundedness

8x9sty(x 2 y);

and since this contradicts idealization the following (bounded) form is taken
instead:
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Bounded Idealization

8stY
�
8stfinF9y 2 Y (8x 2 F R (x; y), 9b 2 Y;8stx R (x; b))

�
;

for every 2 � formula R. This yields the subsystem BST , which corresponds to
the bounded sets of IST . Notice that in usual analysis all sets are bounded. This
means that BST is completely equivalent to IST in the known applications of
IST . Nevertheless BST is somewhat more suitable for foundational purposes,
as argued in [32] [34]. For example, in BST is valid a theorem [32] (valid in
IST only for bounded formulas [48]) that allows to convert every formula ' in
an equivalent formula '0 that is of the form 9st8st , where  is an 2 �formula
(formulas of this type are called

Pst
2 formulas). This theorem permits to apply

Nelson�s reduction algorithm [48] without any restrictions.

1.5 Theories for external sets: HST

A "perfect" external set theory (a nonstandard set theory that includes external
sets) should satisfy some requirements. It should be a conservative extension
of classical mathematics (usually ZFC) so that all classical mathematical the-
orems and constructions remain valid. The theory should also allow to perform
nonstandard constructions in its full generality and therefore include a strong
version of saturation (called idealization in IST and bounded idealization in
BST ) and transfer principles. Finally it should allow to build, for any given
set, the standard set of all its standard elements. This is called standardiza-
tion. This means that ideally it should be something like an extension of IST
allowing external sets and quanti�cation over external formulas. However, as
pointed out by Hrbáµcek [27] such a theory cannot exist. In fact, the axiom
of regularity cannot be extended to the external universe. To see that let /1
denote the external set of in�nitely large real numbers. Observe that for all !
in the (nonempty) external set /1\ N, one has /1\ N \ ! 6= ;. Additionally, if
one wishes to formulate a nonstandard set theory with IST -style saturation4 ,
the replacement axiom in the external universe contradicts both power set and
choice. Let n be a nonstandard natural number. By saturation there is a 1� 1
embedding into n, for all ordinals. So by power set and transfer the class Ord
is a set (see Theorem 1:3:9 and Remark 1:3:10 in [34]). To be of standard size
means to be an image of the set of all standard elements of a standard set5 .To
see that choice fails, let x be well-ordered by a relation �. Consider the class of
all standard ordinals �Ord, well-ordered by 2. We use the theorem that when-
ever two sets are well-ordered there is an order preserving embedding of one into
the other (see Theorem 2:8 in [30]). Clearly �Ord cannot be embedded into x,
otherwise �Ord would be a set. Then there is an embedding of x into �Ord. In
fact, to an initial segment of �Ord. This means that x is of standard size. As

4 In fact, standard size saturation is enough for the arguments that follow and lead to the
"paradoxes".

5 In HST , a set X is standard size if and only if X is well-ordered (see Section 1:3a in [34]).
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a consequence, sets which are not of standard size cannot be well-ordered (see
Theorem 1:3:1 in [34]).
These results are known as the Hrbáµcek�s paradoxes. The �rst problem is

not in fact a "real" problem because the regularity axiom is given so that every
set is obtained at some level of the cumulative hierarchy over ; as mentioned
in Section 1.2 and has no great impact on which theorems are true. This "nice
picture" of the universe is contested by some mathematicians and a suitable
anti-foundation axiom can be taken instead (see for example [1]).
In [27] Hrbáµcek considered already two possibilities to avoid this. The �rst

one was to lose both power set and choice for external sets, leading to the system
NS1. The second one was to lose the replacement axiom for external sets,
which lead to his theory NS26 . A third possibility was developed by Kanovei
and Reeken (see Part 3 of [32] and chapter 6 of [33]). The idea is to restrict
saturation by a standard in�nite cardinal � in order to reinstate the power set
axiom. This is a system of partially saturated external sets which modi�es
the system HST (described below), called HSTk. This may be a solution for
many practical purposes but not a solution as a foundational system for the
nonstandard methods.
The theory BST possesses an extension to HST [33] [34], which formulates

within �rst-order language essential aspects of the behaviour of standard, inter-
nal and external sets within a nonstandard model, much as in Hrbáµcek�s system
NS1. The system HST is conservative over ZFC [27] [32] and equiconsistent
with both BST and ZFC (see Chapter 5 of [34]).
A set in HST is called internal if it is element of a standard set (see also

the "Boundedness" axiom).
Below we use (de�nable) classes, they only should be interpreted as abbre-

viations of formulas with sets. Two important de�nable classes in HST are the
class of standard sets

S �fx : st xg
and the class of internal sets

I �fx : 9y (st y ^ x 2 y)g :

The de�nition of internal set in HST is di¤erent from the de�nition of internal
set in IST . In fact, (I;2; st) is a model of BST but not a model of IST (see
Chapter 3 of [34]).
The axioms of HST are divided into three categories. The �rst deals with

axioms which are valid for all sets, the second deals with axioms which are valid
for standard or internal sets and the third deals with axioms which are valid for
standard size sets. As aforementioned, to be of standard size means to be an
image of the set of all standard elements of a standard set. Let X be a set. So
a set is standard size if it is of the form

ff (x) : x 2 X \ Sg :
6Hrbacek proposed still a third theory called NS3 that we do not consider here because it

is not a conservative extension of ZFC.
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As mentioned above in HST the power set axiom does not hold for external
sets. However, if X is an internal set then

Pint (X) = P (X) \ I

exists. So power set holds for internal sets. Moreover if a set is standard size
then P (X) is also standard size.

1.5.1 HST Axioms

Axioms for all sets

The axioms of this group are valid for all sets. These axioms are similar to
the respective ones of ZFC with the di¤erence that in HST they are presented
in the full language. This implies in particular, by the axiom of separation,
that the theory HST deals with external sets; for example if X is standard and
in�nite fx 2 X : stxg is an external set.

1. Extensionality

8X8Y (8x (x 2 X , x 2 Y ), X = Y ) :

2. Pair
8a; b9A8x (x 2 A, x = a _ x = b) :

3. Union
8A9B8x (x 2 B , 9X 2 A (x 2 X)) :

4. In�nity
9X (; 2 X ^ 8x (x 2 X ) x [ fxg 2 X)) :

5. Separation
8X9Y 8x (x 2 Y , (x 2 X ^ '(x))) :

6. Collection
8X9Y 8x 2 X (9y'(x; y)) 9y 2 Y '(x; y)) :

The power set, regularity and choice axioms of ZFC are not valid in general.
This is because, as mentioned above, each one of these axioms (if considered in
the full language of HST ) leads to a contradiction.

Axioms for standard and internal sets

In this group as well as in the next there are axioms which are not valid for all
sets. The �rst axiom scheme states that all ZFC axioms, when restricted to
standard parameters are valid in HST .
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1.

ZFCst:

This means, in particular, that the following are axioms of HST :

(a) Regularityst

8stS
�
S 6= ; )

�
9stx 2 S

�
(x \ S 6= ;)

�
:

(b) Power Setst

8stX9stY 8stx (x 2 Y () x � X) :

(c) Choicest

8stS9stY 8stx 2 Sn f;g
�
9stz (Y \ x = fzg)

�
:

The fact that every axiom of ZFC restricted to standard sets is an
axiom of HST means that the class S models ZFC.

2. Transfer

8stx1:::8stxn
�
'st (x1; :::xn), 'int (x1; :::xn)

�
;

where ' is an arbitrary closed 2 �formula containing only standard pa-
rameters. This means that the universe I is an elementary extension of S
in the ZFC language.

3. Transitivity of I
8intx8y (y 2 x) int y) :

The next axiom states that the class I is regular. This means that sets in
HST are built over I in a way similar to the Von Neumann hierarchy of
sets in ZFC over ;.

4. Regularity over I
8X 6= ;9x 2 X (x \X � I) :

5. Standardization

8X9stY (X \ S = Y \ S) :

This axiom implies that the only sets consisting entirely of standard sets
are of the form Y \ S, where Y 2 S.
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Axioms for sets of standard size

1. Saturation

If A �I is a standard size set then

((8X;Y 2 A ) X \ Y 2 A) ^ (X 2 A ) X 6= ;))) \A 6= ;:

2. Standard Size Choice

Choice is available in the case where the domain of the choice function is
of standard size.

Let X be a set of standard size and F a function on X. Then

8x 2 X ((F (x) 6= ;)) 9f (f(x) 2 F (x))) :

3. Dependent Choice

Any nonempty partially ordered set without maximal elements includes
a nonempty linearly ordered subset (sequence) where any element has its
immediate successor7 .

It is possible to maintain the notation of IST in the way that the traditional
symbols for the uniquely de�ned objects of a ZFC universe are attributed to
the objects of the internal subuniverse.
In HST neutrices and external numbers are incorporated in the following

way. Each neutrix, being a convex (bounded) subgroup of R, is a genuine set
within HST . Neutrices are de�ned by �st or �st formulas, with reference to
standard sets of all possible cardinals [4]. As shown in [33] this implies that
we may not speak of the set of all neutrices. In fact, the neutrices form a
de�nable class because quanti�cation within HST may range over the whole
universe. Then the algebraic operations on neutrices and external numbers are
also de�nable classes, as well as the function which associates to each external
number its neutrix.

7See [34], page 19 for an alternative formulation of this axiom.



Chapter 2

Neutrices and External
Numbers

Sometimes it is useful to know how large your zero is.
(Author Unknown)

2.1 Introduction

In this chapter we study, from an algebraic point of view, a class of external sets
called the external numbers. External numbers are, as a rule, bounded without
having an in�mum and supremum and invariant under at least some additions or
translations, and therefore are models of orders of magnitude or transitions with
imprecise boundaries. We show that the external numbers form a commutative
regular semigroup for addition and that the external numbers which are not
reduced to neutrices form a commutative regular semigroup for multiplication.
Although the operations are not connected by a complete distributive law, we
give necessary and su¢ cient conditions for distributivity to hold. Then we apply
those results in order to obtain some binomial formulas. We also prove in an
algebraic way some results which in [38] and [39] were proved by set-theoretic
arguments. Most of the contents of this chapter were published in [15].

2.2 Preliminaries

We start by recalling some notions and results that will be useful in the remain-
der of this thesis. Unless otherwise mentioned we follow [38] and [39].
A real number x is ilimited (or in�nitely large) if

8stn 2 N jxj > n;

is limited if
9stn 2 N jxj � n;

15
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is in�nitesimal (or in�nitely small) if

8str 2 R+ jxj < r

and is appreciable if it is limited but not in�nitesimal.
We recall that a group (G; �) is is an algebraic structure, where � is a binary

operation satisfying the following axioms:

8a; b; c 2 G ((a � b) � c = a � (b � c))

91e8 2 G (a � e = e � a = a)

8a 2 G9a0 2 G (a � a0 = a0 � a = e)

This means that the operation � is associative, has an identity element and an
inverse for each element. If the operation � also satis�es the following axiom

8a; b 2 G (a � b = b � a)

we say that (G; �) is a commutative group. A subgroup (F; �) of a group (G; �)
is a group such that F � G. We say that C � R is convex if, for all x and y in
C and all t 2 [0; 1], (1� t)x+ ty 2 C.

De�nition 2.2.1 A neutrix is an additive convex subgroup of R.

Except for f0g and R itself all neutrices are external sets (with internal
elements). The most obvious (external) neutrices are

$ �
S

st(n)2N
]�n; n[ ;

the external set of all limited numbers and

� �
T

st(n)2N

�
� 1
n
;
1

n

�
;

the external set of all in�nitesimal numbers. It has been shown by Van den
Berg [4] [5] that there are many neutrices not isomorphic by internal homomor-
phisms. Van den Berg also proved that all neutrices are external sets of the
form

S
x2X

[�ax; ax] or
T
x2X

[�ax; ax], where X contains only standard elements

(or is of standard size) and a : X ! R. One important external set which is not
a neutrix is

@ �
S

st(n)2N

�
1

n
; n

�
;

the external set of all appreciable positive numbers.
We denote the external class of neutrices from now on by N .
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Addition and multiplication on N are de�ned by the Minkowski operations.
So, if A, B are neutrices we de�ne their sum by

A+B = fa+ bj (a; b) 2 A�Bg

and their product by
AB = fabj (a; b) 2 A�Bg :

Let A be a neutrix. Then, because neutrices are convex groups, A+A = A. We
de�ne the binary operation "�" on N by

A � B , A � B.

N.B. We use the symbol� to indicate inclusion and� to indicate strict inclusion.
This means that neutrices are ordered by inclusion. An important consequence
of this fact is that the sum of two neutrices is the larger of the two:

Proposition 2.2.2 If A,B 2 N then A+B = max(A;B).

Proof. Suppose, without loss of generality, that B contains A: Then,

B � A+B � B +B = B.

Hence, A+B = B.
Neutrices are stable under multiplication by appreciable numbers, i.e. lim-

ited numbers which are not in�nitesimal.

Proposition 2.2.3 Let A be a neutrix. Then

1. For all standard n 2 N; nA = A.

2. @A = A.

Proof. 1. The proof goes by external induction (EI). Clearly the statement
is true if n = 1. Suppose that for some standard natural number n, nA = A.
Then

(n+ 1)A = nA+A = A+A = A.

2. Let a be an appreciable positive real number. Then there is a standard
natural number such that 1

n � a � n. Using Part 1 one has

A =
nA

n
=
1

n
A � aA � nA = A.

De�nition 2.2.4 An external number � is the algebraic sum of a real number
a with a neutrix A.
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The external class of external numbers will be denoted by E. If � = a + A
and � = b+B are two such external numbers, the Minkowski sum and product
are given by

�+ � = a+ b+A+B

�� = ab+ aB + bA+AB:

Notice that by Proposition 2.2.2

�+ � = a+ b+max (A;B)

�� = ab+max (aB; bA;AB) :

De�nition 2.2.5 If � = a + A is an external number, then A is called the
neutrix part of � and is denoted N(�). An external number which is not a
neutrix is called zeroless. One de�nes �� = �a+A and 1=� = 1=(a+A), if �
is zeroless.

Proposition 2.2.6 Let � = a+A be an external number. Then

8y 2 � (� = y +A) .

Proof. Let y 2 �. Then, there is x 2 A such that y = a + x and hence,
y +A = a+ x+A = a+A = �.

De�nition 2.2.7 Let A be a neutrix and � be an external number. We say
that � is appreciable with respect to A if �A = A, and that � is an absorber
of A if �A � A.

Note that numbers which are appreciable with respect to � or $ are simply
appreciable.

Proposition 2.2.8 Let � = a + A be a zeroless external number. Then A
a =

A
� � �.

Proof. If x 2 A
a , then x cannot be appreciable, otherwise a 2 1

xA = A,
contradicting the fact that � is zeroless. Hence A

a � �. Moreover
�
a = 1 +

A
a .

Hence �
a � 1 +�. So

a
� � 1 +�. Therefore

A
� =

A
a
a
� =

A
a .

Hence, if a =2 A
1

1 + A
a

= 1 +
A

a

and �
1 +

A

a

��
1 +

A

a

�
=

�
1 +

A

a

�
.

We state here some elementary properties of the multiplication. The �rst prop-
erty is a direct consequence of the de�nition of multiplication.

Lemma 2.2.9 Let � = a+A is zeroless. Then �B = aB+AB for all B 2 N .
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Lemma 2.2.10 Let � = a + A and � = b + B be zeroless external numbers.
Then �� = ab+max (aB; bA) :

Proof. Since B � �b by Proposition 2.2.8, max (BA; bA) = bA. Hence �� =
ab+max (aB; bA;BA) = ab+max (aB; bA) :

Lemma 2.2.11 Let � = a+A and � = b+B be zeroless. Then �� = �b+�B.

Proof. Using Lemma 2.2.9 and 2.2.10, we derive

�b+ �B = (a+A) b+ aB +AB

= ab+ bA+ aB +AB

= ��:

An order relation on E is given by the following.

De�nition 2.2.12 Given �; � 2 E, we say that � is less than or equal to � and
we write (with abuse of notation) � � �, if and only if

(8x 2 �)(9y 2 �)(x � y): (2.1)

We say that � is less than � and write � < �; if � � � and � \ � = ;.

Note that if �\� = ;, formula (2.1) is equivalent to (8x 2 �)(8y 2 �)(x < y).
Two external numbers are always either disjoint or one contains the other.

Lemma 2.2.13 Let � and � be two external numbers. Then

� \ � = ; _ � � � _ � � �.

Proof. Suppose that �\� 6= ;. Then, there is a real number x such that x 2 �
and x 2 �. By Proposition 2.2.6 we may write � = x+A and � = x+B. Hence,
if max(A;B) = A, � � � and if max(A;B) = A, � � �.

Proposition 2.2.14 Let A be a neutrix and let � and  be external numbers
such that � � . Then A� � A.

Proof. Suppose that � � . Then there is x 2 � and y 2  such that x � y.
Let a 2 A. Then jajx � jaj z 2 A. Hence A� � A.

Theorem 2.2.15 The relation � is a total order relation compatible with ad-
dition and multiplication in the following way:

1. 8�8�8 (� � � ) �+  � � + ).

2. 8�8� (N (�) � � ^N (�) � � ) N (��) � ��).

3. 8�8�8 (N (�) � � � � ^N () �  ) � � �).
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Proof. Let �; � and  be arbitrary external numbers.
We prove �rstly that the relation � is a total order relation. Let x 2 �.

Because x � x one has � � �, so the relation is re�exive. Suppose that � � �
and � � . Then there is y 2 � and z 2  such that x � y and y � z. Hence
x � z and the relation is transitive. Suppose now that � � � and � � �. Then
� � � and � � �. Hence by Lemma 2.2.13, one has � = � and the relation is
antisymmetric. To prove the totality property suppose that � � �. Then there
is x 2 � such that x > y, for all y 2 �. Hence � � �. We conclude that the
relation � is a total order relation.

1. Suppose that � � �. Let a 2 �. Then there is b 2 � such that a � b. Let
x 2 �+ . Then there is c 2  such that x = a+ c. Hence a+ c � b+ c 2
� +  and one concludes �+  � � + .

2. Suppose that N (�) � � and N (�) � �. If �� is not zeroless then �� =
N (��). If �� is zeroless by Lemma 2.2.10 one has �� = ab+max (aB; bA).
Let x 2 N (��). By Proposition 2.2.3.2 one has jxj 2 max (aB; bA). If
max (aB; bA) = aB there is b 2 B such that jxj = ab. Because N (�) � �,
there are positive numbers a0 2 N (�) and a00 2 � such that a � a0 � a00.
Also, there is b0 2 � such that b � b0, because N (�) � �. Then x � jxj =
ab � a

00
b0 2 �� and N (��) � ��. If max (aB; bA) = bA the proof is

analogous.

3. Finally, suppose that N (�) � �, � � � and N () � . Let x 2 �.
Then, there is a 2 � and c 2  such that x = ac. Moreover, a and c may
be taken positive because N (�) � � and N () � . Because � � � there
is b 2 � such that a � b. Then ac � bc 2 � and � � �.

2.3 Algebraic properties for addition and mul-
tiplication

We start by showing that external numbers when equipped with addition and
zeroless external numbers when equipped with multiplication are regular com-
mutative semigroups. The neutral and unity elements appear in the form of
external functions. We study these functions in some detail, also in order to
obtain cancellation laws.
We give algebraic proofs of some properties of addition and multiplication,

which were originally proved in [38] by set theoretical arguments.

2.3.1 External numbers and regular semigroups

We recall that a semigroup is a structure (S; �) such that S is nonempty and
"�" is a binary operation that satis�es the following axiom

8x; y; z 2 S (x � (y � z) = (x � y) � z) :
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A regular semigroup is a semigroup S such that every element is regular, that
is, for every a 2 S there is x 2 S such that axa = a: We shall prove that (E;+)
and (EnN ; �) are both commutative regular semigroups.
Theorem 2.3.1 The structures (E;+) and (EnN ; �) are commutative regular
semigroups.

Proof. Let � = a+A, � = b+B and  = c+C be arbitrary external numbers.
Firstly we prove that both operations are commutative. In fact, one has

�+ � = (a+A) + (b+B) = a+ b+max (A;B)

= b+ a+max (B;A) = (b+B) + (a+A) = � + �

and

�� = (a+A) (b+B) = ab+max (aB; bA;AB)

= ba+max (bA; aB;AB) = (b+B) (a+A) = ��.

Secondly we prove that both operations are associative. Indeed,

(�+ �) +  = ((a+A) + (b+B)) + (c+ C)

= (a+ b+max (A;B)) + (c+ C)

= (a+ b) + c+max (max (A;B) ; C)

= a+ (b+ c) + max (A;max (B;C))

= (a+A) + (b+ c+max (B;C)) = �+ (� + )

and

(��)  = ((a+A) (b+B)) (c+ C)

= (ab+max (aB; bA;AB)) (c+ C)

= (ab) c+max (abC; cmax (aB; bA;AB) ;max (aB; bA;AB)C)

= (ab) c+max (abC; acB; bcA; cAB; aBC; bAC;ABC)

= a (bc) + max (amax (bC; cB;CB) ; bcA;Amax (bC; cB;CB))

= (a+A) (bc+max (bC; cB;CB))

= (a+A) ((b+B) (c+ C))

= � (�) .

Finally, we prove the regularity properties. Let � = a + A be an arbitrary
external number. Put � = (�a+A) and � =

�
1
a +

A
a2

�
. Then

�+ � + � = (a+A) + (�a+A) + (a+A) = (a+A) = �:

If � is zeroless, necessarily a 6= 0, so applying Lemma 2.2.10

��� = (a+A)

�
1

a
+
A

a2

�
(a+A) =

�
1 +

aA

a2
+
A

a

�
(a+A)

=

�
1 +

A

a

�
(a+A) = a+A+

aA

a
= a+A = �:

Hence (E;+) and (EnN ; :) are commutative regular semigroups.
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2.3.2 Properties of neutral and inverse elements

Uniqueness for identity and inverse elements holds neither for addition nor for
multiplication, as seen by the following examples.

Example 2.3.2 Let � = 1 +� and " ' 0.

1. �+� = 1 +�+� = 1 +� = � and �+ "� = 1 +�+ "� = 1 +� = �.

2. Let � = 1 + "�. Then �� = (1 +�) (1 +�) = 1 + � = � and �� =
(1 +�)(1 + "�) = 1 +�+ "� = 1 +� = �:

We introduce functions which generalize the concept of neutral element in
order to have individualized neutral elements for addition and multiplication.
For � 2 E these functions give us the maximal elements that leave � invariant;
as such, they are unique neutral elements. We investigate the properties of
such functions and will see that addition and multiplication have a common
structure.

Proposition 2.3.3 There is a unique function e : E ! E such that (i) � +
e (�) = � for all � 2 E and (ii) if f : E! E is such that � + f (�) = � for all
� 2 E, then e (�) + f (�) = e (�). In fact, e (�) = N (�).

Proof. We prove that e : E! E de�ned by e (�) = N (�) is the required
function. Let � = a+A be an arbitrary external number. Then

�+ e (�) = �+N (�) = (a+A) +A = a+A = �:

Hence, for all f : E! E such that �+ f (�) = �

e (�) + f (�) = A+ f (�) = �� �+ f (�) = ��+ � = e (�) :

Proposition 2.3.4 There is a unique function u : EnN ! E such that (i)
�u (�) = � for all � 2 EnN and (ii) if v : EnN! E veri�es �v (�) = � for all
� 2 EnN , then u (�) v (�) = u (�). In fact, u (�) = 1 + N(�)

� :

Proof. We prove that u : EnN! E de�ned by u (�) = 1+ N(�)
� is the required

function. Let � = a+ A be an arbitrary zeroless external number. Then using
Proposition 2.2.8 and Lemma 2.2.10,

�u (�) = �

�
1 +

N (�)

�

�
= (a+A)

�
1 +

A

a

�
= a+max

�
a
A

a
;A

�
= a+A = �:
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Let v : EnN! E be such that �v (�) = � for all � 2 EnN . Then applying
Lemma 2.2.11

u (�) v (�) =

�
1 +

N (�)

�

�
v (�) =

�
1 +

A

a

�
v(�)

=
(a+A) v (�)

a
=
a+A

a
= 1 +

A

a
= u (�) :

Corollary 2.3.5 Let � be a zeroless external number. Then u(�) 6= e(�).

Proposition 2.3.6 There is a unique function s : E! E such that �+ s (�) =
e (�) and e (s (�)) = e (�) for all � 2 E. In fact, s (�) = ��.

Proof. Let � = a+A be an arbitrary external number. We prove that s : E! E
de�ned by s (�) = �� is the required function. one has

�+ s (�) = (a+A) + (�a+A) = A = e (�)

and
e (s (�)) = e (�a+A) = A = e (�) .

Suppose that t : E! E is such that �+ t (�) = e (�) and e (t (�)) = e (�). Then
e (t (�)) = e (�) = e (s (�)) and

t (�) = t (�) + e (t (�)) = t (�) + e (�) = t (�) + �+ s (�)

= e (�) + s (�) = e (s (�)) + s (�) = s (�) :

Proposition 2.3.7 There is a unique function d : EnN ! E such that �d (�) =
u (�) and u (d (�)) = u (�), for all � 2 EnN . In fact d (�) = 1

� =
1
a +

A
a2 .

Proof. Let � = a + A be an arbitrary external number. We prove that d :
EnN ! E, de�ned by

d (�) =
1

�
=
1

a

 
1

1 + A
a

!
=
1

a

�
1 +

A

a

�
=
1

a
+
A

a2

veri�es the required conditions. one has

�d (�) = (a+A)

�
1

a
+
A

a2

�
= 1 +

A

a
= u (�)

and, by Proposition 2.3.4 and Proposition 2.2.8,

u (d (�)) = u

�
1

a
+
A

a2

�
= 1 +

A
a2

1
a

= 1 +
A

a
= u (�) .

Uniqueness is shown in the same way as in the proof of Proposition 2.3.6.
It has been proved in Proposition 2.2.2 that always e (�+ �) = e (�) or

e (�+ �) = e (�). We prove an analogous property for multiplication.
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Proposition 2.3.8 Let � and � be zeroless external numbers. One has u (��) =
u (�) or u (��) = u (�).

Proof. Let � = a+A and � = b+B be zeroless. Then

u (��) = u (ab+ aB + bA) = 1 +
aB + bA

ab

= 1 +max(
B

b
;
A

a
) = 1 +max(

N(�)

�
;
N (�)

�
).

Hence, u (��) = u (�) or u (��) = u (�).
The fact that addition and multiplication have the above properties in com-

mon suggests the de�nition of an algebraic structure which we will call assembly.
Assemblies and their properties will be studied in Section 3.3 of Chapter 3.
We �nish by exploring the connection between the neutral and inverse func-

tions of addition and multiplication.

Proposition 2.3.9 The functions e and s have the following properties with
respect to multiplication. For all �; � 2 E

1. e (��) = �e (�) + �e (�).

2. s (��) = s (�)� = �s (�).

3. �� = e (��), � = e (�) _ � = e (�).

Proof. Let � = a + A and � = b + B be arbitrary external numbers. By
Proposition 2.3.3 one has e (�) = N (�) = A and e (�) = N (�) = B.
1. one has

e (��) = e ((a+A) (b+B))

= e (ab+ aB + bA+AB) = aB + bA+AB

and

�e (�) + �e (�) = (b+B)A+ (a+A)B

= bA+AB + aB +AB = aB + bA+AB:

Therefore e (��) = �e (�) + �e (�) :
2It holds that

s (��) = s (ab+ aB + bA+AB)

= �ab+ aB + bA+AB
= (�a+A) (b+B) = s (�)�:

3. To prove the direct implication we assume that �� = e (��). Then

ab+ aB + bA+AB = aB + bA+AB:
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This implies that ab 2 aB, ab 2 bA or ab 2 AB. Suppose that � 6= e (�) and
� 6= e (�). Then a =2 A and b =2 B: Hence ab =2 aB, ab =2 bA and ab =2 AB, a
contradiction. We conclude that

�� = e (��)) � = e (�) _ � = e (�) : (2.2)

Assume now that � = e (�) or � = e (�) : If � = e (�), by Lemma 2.2.9

�� = A� = Ab+AB = e (��) :

The other case is analogous. Hence

� = e (�) _ � = e (�)) �� = e (��) : (2.3)

Combining (2.2) and (2.3), we obtain Part 3.
Observe that the interpretation of neutrices as generalized zeros is further

justi�ed by Part 3 of the previous proposition, which states that in a sense zero
divisors can only be neutrices.
This interpretation is enhanced by the next proposition, stating that neutral

elements for addition are invariant for neutral elements for multiplication.

Proposition 2.3.10 For all � 2 E and � 2 EnN it holds that e (�)u (�) =
e (�).

Proof. Let � = a + A be an external number and assume that � = b + B is
zeroless. Then by Proposition 2.2.8

e (�)u (�) = A

�
1 +

B

b

�
= A+

AB

b
= A = e (�) :

The �nal proposition determines the neutral function for addition of the
neutral function for multiplication.

Proposition 2.3.11 For all � 2 EnN it holds that e (u (�)) = e (�) d (�) :

Proof. Assume that � = a+A is zeroless. Then by Proposition 2.3.7 and 2.2.8

e (�) d (�) = A

�
1

a
+
A

a2

�
=
A

a
= e (u (�)) :

2.4 Distributivity

External numbers are intervals of real numbers and therefore multiplication is
subdistributive with respect to addition [44], i.e. for all external numbers �; �
and 

� (� + ) � �� + �. (2.4)
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However, proper distributivity does not always hold. Take for example � =
�; � = ! + 1 and  = �!, where ! is an unlimited number. Then � (� + ) =
�((! + 1) � !) = � and �� + � = (! + 1) � �!� = !�. Nevertheless the
validity of the distributive law can be completely characterized. To this end we
introduce the following notions.

De�nition 2.4.1 Let � 2 E. If � is zeroless, we de�ne the relative uncertainty
of � to be the neutrix R (�) = A

a : If � 2 N , we de�ne R (�) = R:

Remark 2.4.2 Let � = a+A be a zeroless external number. Then R (�) � � by
Proposition 2.2.8. Moreover � = a (1 +R (�)), because Lemma 2.2.11 implies
that a (1 +R (�)) = a+ aR (�) = a+A = �.

De�nition 2.4.3 Let � and � be external numbers. We say that � is (asymp-
totically) more precise than � if R (�) � R (�).

Observe that each zeroless external number is more precise than any neutrix.

De�nition 2.4.4 Let A be a neutrix and � and  be external numbers. Then
� and  are called opposite with respect to A if (� + )A�max (j�j ; jj)A.

Examples. Two real numbers b and c which are opposite, i.e. such that
b = �c are opposite with respect to all neutrices N � f0g. Appreciable real
numbers � and  are opposite with respect to � and $ if and only if � ' �.
Let ! be unlimited. Then !+1 and �! are opposite with respect to � without
being nearly equal, because as we already saw

((! + 1)� !)� = � � !� = (! + 1)� :

If two numbers are opposite with respect to a given neutrix, none of them
can be a neutrix. To see this observe �rst that � +  = max (j�j ; jj) if both
are a neutrix or if one of them, say �, is a neutrix and  � �. In the remaining
case we may suppose that � is a neutrix and � < jj. Clearly A � (� + )A.
Since �= � �, it follows from Lemma 2.2.11 that � +  � � +  = (1 +�),
so (� + )A�(1 +�)A = A. Hence (� + )A = A = max (j�j ; jj)A.
Numbers of the same sign are never opposite with respect to a given neutrix.

In fact, two external numbers � and  which are opposite with respect to a given
neutrix A must satisfy �= � �1 +�. Indeed, if �1 + a 2 �= with a 6' 0,

(� + )A =

8<: �A=max (j�j ; jj)A jaj ' 1
(�1 + a)A = A = �A �1 + a appreciable
A=max (j�j ; jj)A �1 + a ' 0.

The latter observation enables a characterization in terms of absorbers: If �
and  are opposite with respect to A, both (� + )A � �A and (� + )A � A,
hence (�+)= and (�+)=� are absorbers of A. Oppositeness is directly related
to distributivity. Indeed, if � and  are opposite with respect to A,

(� + )A � max (j�j ; jj)A = max(�A; A) = �A+ A;
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and if � and  are not opposite with respect to A,

(� + )A = max (j�j ; jj)A = max(�A; A) = �A+ A: (2.5)

The next two lemmas are useful in dealing with oppositeness with respect to
linear combinations of neutrices.

Lemma 2.4.5 Let � = a+ A, � = b+ B and  = c+ C be external numbers.
Let M and N be neutrices.

1. If � and � are not opposite with respect to M nor N , then � and � are
not opposite with respect to M +N .

2. If � and � are not opposite with respect to M , then � and � are not
opposite with respect to M .

Proof. Suppose that � and � are not opposite with respect to M nor N .
1. As a consequence of Proposition 2.2.2 and formula (2.5) one has

(�+ �) (M +N) = (�+ �)M + (�+ �)N

= �M + �M + �N + �N

= � (M +N) + � (M +N) :

2. By formula (2.5)

(�+ �) M =  (�+ �)M

=  (�M + �M)

= �M + �M:

We are now able to state the criterion for distributivity:

Theorem 2.4.6 Let �; � and  be external numbers. Then � (� + ) = ��+�
if and only if (i) � is more precise than � or , or (ii) � and  are not opposite
with respect to N(�).

If one of the numbers is a neutrix, we may identify the following special
cases:

Theorem 2.4.7 Let �; � and  be external numbers.

1. If � 2 N and neither � 2 N , nor  2 N , then � (� + ) = ��+� if and
only if � and  are not opposite with respect to �.

2. If � 2 N ; or  2 N , then � (� + ) = �� + �:

A second important special case concerns external numbers of the same sign.

Theorem 2.4.8 If � is an external number and � and  are external numbers
of the same sign, then � (� + ) = �� + �:
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Let us illustrate the above results with some examples:

1. Let � = 1+�; � = 1+" with " ' 0, and  = 1. Then � (� + ) = ��+�
by Theorem 2.4.8. The equality follows also from Theorem 2.4.6 (ii). On
one hand,

� (� + ) = (1 +�) (1 + "+ 1) = (1 +�) (2 + ")
= 2 + "+ (2 + ")� by Theorem 2.4.6 (ii)

= 2 + "+� because 2 + " is appreciable

= 2 +�:

On the other hand,

�� + � = (1 +�) (1 + ") + (1 +�) 1
= 1 +�+ (1 +�) "+ 1 +� by Theorem 2.4.6 (ii)

= 1 +�+ "+ "�+1 +� by Theorem 2.4.6 (ii)

= 2 +�:

2. Let � = 1 +�; � = 1 + " with " ' 0, and  = �1. Then

� (� + ) = (1 +�) (1 + "� 1) = (1 +�) " = "+ "�

and

�� + � = (1 +�) (1 + ") + (1 +�) (�1)
= 1 +�+ (1 +�) "� 1 +� by Theorem 2.4.6 (ii)

= �+ "+�" by Theorem 2.4.6 (ii)

= �:

Because "� � �, subdistributivity holds, but distributivity does not. This
is in line with the fact that � is less precise than both � and  and 1 + "
and �1 are opposite with respect to �. If we change � into �0 = 1 + �,
then � is as precise as �0 and one veri�es indeed that

�
�
�0 + 

�
= � = ��0 + �:

If " is appreciable, the numbers 1 + " and �1 are no longer opposite with
respect to � and we see that

� (� + ) = "+ "� = "+� = �+ "+�" = �� + �:

3. If � = �; � = ! + $;  = �! + �, where ! ' +1; distributivity does
not hold by Theorem 2.4.7.1, for � and  are opposite with respect to �.
Indeed, one shows with the aid of Theorem 2.4.7.2 that

� (� + ) = �$ = � � �!
= �! +�$ = �(! +$) = �max (j�j ; jj) :
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4. If � =
p
! + $; � = ! + $;  = $,where ! ' +1, distributivity holds.

Indeed, by Theorem 2.4.6 (i) and Theorem 2.4.7.2

� (� + ) = (
p
! +$)(! +$) = (

p
! +$)! + (

p
! +$)$

= !
p
! +$! +

p
!$+$$ = !

p
! +$!:

Note that we have calculated in fact ��, and that � = (
p
! + $)$

=
p
!$ + $$ =

p
!$ is contained in N(��). Hence �� + � = �� =

� (� + ).

Some of these calculations may be obtained directly by the de�nition of
multiplication for external numbers. In fact this rule plays a substantial part in
the proof of Theorem 2.4.6. We prove Theorem 2.4.6 considering two separate
cases: the case where one of the numbers is a neutrix (Section 2.4.1) and the
case where none of the external numbers is a neutrix (Section 2.4.2).

2.4.1 Distributivity with neutrices

In this section we prove Theorem 2.4.6 in the case where at least one of the
external numbers �; �;  is a neutrix. We have to consider two subcases, (i) �
or  is a neutrix and (ii) � is a neutrix.

Proof of Theorem 2.4.6 in the case where � or  is a neutrix: one
has R (�) = R or R () = R. Then the criterion

R (�)�max (R (�) ;R ())_ (� + )A=Amax (j�j ; jj)

is trivially satis�ed. Conversely, suppose without loss of generality that  =
C2 N . Because aB; aC; bA;AB;AC are neutrices, by Proposition 2.2.2

� (� + ) = (a+A) (b+max (B;C))

= ab+ amax (B;C) + bA+Amax (B;C)

= ab+max (aB; aC; bA;AB;AC)

and

�� + � = ab+max (aB; bA;AB) + max(aC;AC)

= ab+max (aB; aC; bA;AB;AC) :

Hence � (� + ) = �� + �.�
For the sake of clarity we mention in the form of a corollary the special cases

which involve at least two neutrices.

Corollary 2.4.9 Let � be an arbitrary external number and let B; C 2 N .
Then � (B + C) = �B + �C:

Corollary 2.4.10 If A; B; C 2 N , then A (B + C) = AB +AC.



30 CHAPTER 2. NEUTRICES AND EXTERNAL NUMBERS

Corollary 2.4.11 Let A; C 2 N and let � be zeroless. Then A (� + C) =
A� +AC.

Proof of Theorem 2.4.6 in the case where � is a neutrix: Let � =
A be an arbitrary neutrix. Without loss of generality we may assume that
j�j � jj. Firstly suppose that A (� + ) = A� + A. Then A� + A = A� =
Amax (j�j ; jj). Hence � and  are not opposite with respect to A.
Suppose now that A is more precise than � or , or that � and  are not

opposite with respect to A. In the �rst case � or  has to be a neutrix because
R (A) = R. This case is contained in Corollaries 2.4.10 and 2.4.11. In the second
case A (� + )=Amax (j�j ; jj) = A� = A� +A.�

2.4.2 Distributivity with zeroless external numbers

Let �; � and  be zeroless external numbers. Unless stated otherwise, we always
write � = a+ A, � = b+ B and  = c+ C, where a, b and c are real numbers
and A, B and C are neutrices, with A < jaj, B < jbj and C < jcj. Hence by
Remark 2.4.2 � = a (1 +R (�)) ; � = b (1 +R (�)) and  = c (1 +R ()).
In order to prove the criterion for distributivity we suppose without loss of

generality that j�j � jj. Then we may also suppose that 0 <
�� c
b

�� � 1.
We prove the criterion for distributivity �rst in the case that a = 1, b = 1

and 0 < jcj � 1; then A � � and B � � by Lemma 2.2.8. The general case will
be obtained by rescaling.
To do so, we need to give direct proofs of distributivity in some relatively

easy special cases.

Lemma 2.4.12 One has a (� + ) = a� + a:

Proof. By Lemma 2.2.11 and Corollary 3.9.2 one has

a (� + ) = a ((b+ c) + max (B;C))

= a (b+ c) + amax (B;C)

= ab+ ac+ aB + aC

= a (b+B) + a (c+ C)

= a� + a:

Theorem 2.4.13 Let �; � and  be arbitrary external numbers such that � =
a+A. Then

�� + � = � (� + ) +A� +A.

Proof. Using Lemma 2.2.11 and Lemma 2.4.12 one has

� (� + ) +A� +A = (a+A) (� + ) +A� +A

= a (� + ) +A (� + ) +A� +A

= a� + a +A (� + ) +A� +A.
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Because A� and A are neutrices and Formula (2.4) one has

� (� + ) +A� +A = a� + a +A� +A.

Hence, by Lemma 2.2.11,

� (� + ) +A� +A = �� + �.

Proposition 2.4.14 If �; � and  are external numbers with � and  not op-
posite with respect to $, then � (� + ) = �� + �:

Proof. We assume without loss of generality that � and � are positive. Because
A$ = A, by Lemma 2.4.5.2 and by formula (2.5) it holds that (� + )A =
�A+A: Notice that �+ is zeroless. If not, both $(�+) = $(B+C) = B+C
and $(� + ) = $� � b, with b > B and b � jcj > C, a contradiction. Then by
Lemma 2.2.11 and Lemma 2.4.12

� (� + ) = a (� + ) +A (� + )

= a� + a +A� +A

= �� + �:

Lemma 2.4.15 Assume that a = 1, b = 1 and 0 < jcj � 1. Then

1. If � +  2 N ;

� (� + ) = �� + � , A � max (B;C), �� = � _ � = :

2. If � +  =2 N ;

� (� + ) = �� + � , A � max (B;C) _ (1 + c)A = A

, �� = � _ � =  _ (� + )A = A:

Proof. First observe that, by Lemma 2.2.10 and Lemma 2.2.9, one has

�� = (1 +A) (1 +B) = 1 +A+B (2.6)

and
� = (1 +A) (c+ C) = c+ cA+ C: (2.7)

Hence

��+� = 1+A+B+c+cA+C = 1+c+A+B+C = 1+c+max (A;B;C) : (2.8)

1. We start with the �rst equivalence. By hypothesis and Lemma 2.2.11, one
has

� (� + ) = (1 +A) (B + C) = max (B;C) : (2.9)
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Hence, by formula (2.8) and formula (2.9), � (� + ) = �� + � if and only if
A � max (B;C) :
To prove the second equivalence, suppose �rst that �� = � or � = . In

the �rst case, by formula (2.6)

1 +A+B = 1 +B;

which implies that A � B. In the second case by formula (2.7)

c+ cA+ C = c+ C: (2.10)

Because � and  are zeroless, one has B;C � �. Now � +  = 1+ c+B +C �
1+ c+� 2 N , which implies that c ' �1, hence cA = A. Then we derive from
(2.10) that c + A + C = c + C, so A � C. We conclude that A � max (B;C).
Conversely, suppose that A � max (B;C). Hence A � B or A � C. Then
clearly 1 + A + B = 1 + B or c + A + C = c + C and �� = � or � =  by
formula (2.6) and formula (2.7). Hence

A � max (B;C), �� = � _ � = :

2. One has � +  6= max (B;C). Hence

(� + )A = (1 +B + c+ C)A = (1 + c)A. (2.11)

We prove �rst that

� (� + ) = �� + � , A � max (B;C) _ (1 + c)A = A: (2.12)

Lemma 2.2.10 yields

� (� + ) = (1 +A) (1 +B + c+ C)

= 1 + c+B + C + (1 + c)A:

If A � max (B;C), because (1 + c)A � A both �� + � = 1 + c +max (B;C)
and � (� + ) = 1 + c + max (B;C). If (1 + c)A = A, we conclude from (2.8)
that �� + � = � (� + ) : If �� + � = � (� + ), then, by formula (2.8) it
holds that A+B+C = B+C +(1 + c)A, so A � max (B;C) or A = (1+ c)A.
Hence formula (2.12) holds. Finally we prove that

A � max (B;C) _ (1 + c)A = A, �� = � _ � =  _ (� + )A = A. (2.13)

By (2.6) and (2.7) one has

�� = � , A � B

and
� =  , C + cA = C:

Assume A � max (B;C) or (1 + c)A = A. If A � B, then �� = �. If
A � C, then C + cA = C, hence � = . If (1 + c)A = A, then (� + )A =
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(1 + c + B + C)A = (1 + c)A + BA + CA = A. Assume now that �� = � or
� = , or (� + )A = A. If �� = �, then A � B � max (B;C). If � = ,
then cA � C. If cA = A one has that A � C � max (B;C). If cA < A then
1 + c ' 1; hence (1 + c)A = A. If (� + )A = A, then (1 + c)A = A, because
� +  is zeroless. We conclude that formula (2.13) holds.
We are now able to characterize distributivity for zeroless external numbers:

Theorem 2.4.16

1. If � +  2 N ,

� (� + ) = �� + � , R (�) � max (R (�) ;R ()) :

2. If � +  =2 N ,

� (� + ) = �� + � (2.14)

, R (�)�max (R (�) ;R ())_ (� + )A=Amax (j�j ; jj) :

Proof. First, we put the products in a convenient form. Then by Lemma 2.2.9
and by Lemma 2.4.12 one has

� (� + ) = a (1 +R (�)) (b (1 +R (�)) + c (1 +R ())) (2.15)

= ab (1 +R (�))
�
1 +R (�) + c

b
+
c

b
R ()

�
and

�� + � = a (1 +R (�)) b (1 +R (�)) + a (1 +R (�)) c (1 +R ()) (2.16)

= ab
�
(1 +R (�)) (1 +R (�)) + (1 +R (�))

�c
b
+
c

b
R ()

��
:

From (2.15) and (2.16) we conclude that distributivity is equivalent to

(1 +R (�))
�
1 +R (�) + c

b
+
c

b
R ()

�
(2.17)

= (1 +R (�)) (1 +R (�)) + (1 +R (�))
�c
b
+
c

b
R ()

�
:

Since by assumption jj � j�j and jcj � jbj, we are able to apply Lemma 2.4.15.
To prove Part 1, suppose that �+ 2 N . Then b+B+c+C = B+C � �b+�c =
�b, so 1 + c

b +� � �. Hence
c
b ' �1. This implies that

c
bR () = R () : Then

R (�) � max
�
R (�) ; c

b
R ()

�
, R (�) � max (R (�) ;R ()) :

Hence, by Lemma 2.4.15.1,

� (� + ) = �� + � , R (�) � max
�
R (�) ; c

b
R ()

�
, R (�) � max (R (�) ;R ()) :
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To prove Part 2, suppose that � +  =2 N . Then, by Lemma 2.4.15.2 and
formula (2.17)

� (� + ) = �� + � , (1 +R (�)) (1 +R (�)) = 1 +R (�) (2.18)

_ (1 +R (�))
�c
b
+
c

b
R ()

�
=
c

b
+
c

b
R ()

_
�
1 +R (�) + c

b
+
c

b
R ()

�
A = A:

First, we prove the direct implication of (2.14), using (2.18). With respect to
(2.18) there are three cases to consider:
(i) (1 +R (�)) (1 +R (�)) = 1 + R (�), (ii) (1 +R (�))

�
c
b +

c
bR ()

�
= c

b +
c
bR () and (iii)

�
1 +R (�) + c

b +
c
bR ()

�
A = A:

(i) By Lemma 2.2.10

1 +R (�) +R (�) = 1 +R (�) , (2.19)

hence
R (�) � R (�) :

This implies that R (�) � max (R (�) ;R ()).
(ii) One has similarly to (2.19)

c

b
(1 +R (�) +R ()) = c

b
(1 +R ()) ;

implying that
R (�) � R () :

Hence R (�) � max (R (�) ;R ()).
(iii) By Lemma 2.2.11

(b+B + c+ C)A = bA;

and therefore
(� + )A = �A=Amax (j�j ; jj) .

Combining the three cases, we conclude that

� (� + ) = �� + � (2.20)

) R (�) � max(R (�) ;R ())_ (� + )A=Amax (j�j ; jj) :

To prove the reverse implication we need to consider two cases:
(i) (� + )A=Amax (j�j ; jj) and (ii) R (�)�max(R (�) ;R ()):
(i) One has (� + )A= j�jA: Then

(b+B + c+ C)A = (b+B)A.

This implies that �
1 +R (�) + c

b
+
c

b
R ()

�
A = A.



2.4. DISTRIBUTIVITY 35

Then by (2.18) we conclude that

(� + )A=Amax (j�j ; jj)) � (� + ) = �� + �: (2.21)

(ii) If R (�)�max(R (�) ;R ()), then R (�) � R (�) or c
bR (�) �

c
bR () and

by Lemma 2.2.10

(1 +R (�)) (1 +R (�)) = 1 +R (�)

or
(1 +R (�))

�c
b
+
c

b
R ()

�
=
c

b
+
c

b
R () :

Then by (2.18) we conclude that

R (�) � max(R (�) ;R ())) � (� + ) = �� + �: (2.22)

From (2.21) and (2.22) we obtain

R (�) � max(R (�) ;R ())_ (� + )A=Amax (j�j ; jj) (2.23)

) � (� + ) = �� + �:

We conclude by combining (2.20) and (2.23).
To complete the proof of Theorem 2.4.6 for the case of zeroless numbers we

need one more lemma.

Lemma 2.4.17 If �+2 N and � (� + ) 6= ��+�; then (� + )A � Amax
(j�j ; jj) :

Proof. Suppose that � (� + ) 6= �� + �. Then, since � +  = B + C, by
Theorem 2.4.16 we obtain R (�) > max (R (�) ;R ()). We prove that

max (R (�) ;R ())R (�) � R (�) :

Let t 2 R (�). Because R (�) � �, one has tR (�) � R (�) : Suppose by
contradiction that tR (�) = R (�). Then t 2 tR (�). Then there exists x 2
R(�) such that tx = t: Hence 1 2 R (�). This is in contradiction with the
fact that R (�) � �: Hence tR (�) � R (�). Applying this inclusion to t >
max (R (�) ;R ()) we obtain

max (R (�) ;R ())R (�) � tR (�) � R (�) :

This implies that �
B

b
+
C

c

�
A

a
� A

a
:

Because c � b, �
B

b
+
C

b

�
A � A:
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Hence, because � +  = B + C,

(� + )A � A�:

We conclude that
(� + )A � Amax (j�j ; jj) :

Proof of Theorem 2.4.6 for zeroless external numbers: If follows
immediately from Theorem 2.4.16 that

� (� + ) = �� + �

) R (�)�max (R (�) ;R ())_ (� + )A=Amax (j�j ; jj) :

If � +  =2 N , the reverse implication follows from Theorem 2.4.16.2. If
� +  2 N , the reverse implication follows from Theorem 2.4.16.1 and Lemma
2.4.17.�

2.4.3 Binomial formulas

As an application we study the e¤ect of the distributive law on some binomial
forms. Let � = a + A, � = b + B and  = c + C with a; b and c real numbers
and A;B and C neutrices.
Firstly, because � is more precise than �, we always have

� (�+ �) = �2 + ��: (2.24)

Secondly, we investigate the validity of the equality

(�� �)(�+ �) = �2 � �2: (2.25)

If � and � are neutrices it is easy to verify the equality (2.25) directly. In the
remaining case, we suppose without loss of generality that both � and � are
non-negative. Then by Theorem 2.4.8

(�� �)(�+ �) = (�� �)�+ (�� �)�

Hence by (2.24)

(�� �)�+ (�� �)� = �2 � �� + �� � �2 = �2 � �2 +N(��):

Hence always (�� �)(�+ �) � �2 � �2. Observe that N(�2 � �2) = �A+ �B
and that N(��) = �B + �A. Hence (2.25) holds if �B + �A � �A+ �B, say,
if B � A and � � �.
Thirdly, we show that if � and � are neither opposite with respect to A nor

to B,
(�+ �)

2
= �2 + 2�� + �2 (2.26)
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Indeed, by Lemma 2.4.5.1 the numbers � and � are not opposite with respect
to A+B = N(�+ �). Then by Theorem 2.4.6 and (2.24)

(�+ �)
2
= (�+ �) (�+ �) = � (�+ �) + � (�+ �)

= �2 + �� + ��+ �2 = �2 + 2�� + �2.

Finally we extend the equality (2.26) to a Binomial Theorem for external
numbers. We need some properties of the relative uncertainty.

Lemma 2.4.18 Let � = a+A and � = b+B be external numbers. Then

1. R(��) = R(�) +R(�)

2. If k 2 N is standard, R(�k) = R(�).

If � and � are zeroless the lemma is an easy consequence of Proposition
2.3.9.1. Else the equalities are trivially satis�ed.

Theorem 2.4.19 Let � = a+A and � = b+B be external numbers. If � and
� are neither opposite with respect to A nor to B, for standard n 2 N; n � 1

(�+ �)
n
=

nX
k=0

�
n

k

�
�n�k�k: (2.27)

Proof. The proof is by external induction. If n = 1, then (2.27) is clearly true.
Suppose that (2.27) is true for standard n. Then

(�+ �)
n+1

= (�+ �) (�+ �)
n
= (�+ �)

nX
k=0

�
n

k

�
�n�k�k.

The neutrix C � N
�Pn

k=0

�
n
k

�
�n�k�k

�
is a sum with a standard �nite number

of multiples of A and B. Hence Lemma 2.4.5.1 and Lemma 2.4.5.2 imply that
� and � are not opposite with respect to C. By Theorem 2.4.6

(�+ �)

nX
k=0

�
n

k

�
�n�k�k = �

nX
k=0

�
n

k

�
�n�k�k + �

nX
k=0

�
n

k

�
�n�k�k:

It follows from Lemma 2.4.18 that R(�) � R
��

n
k

�
�n�k�k

�
for all k such that

0 � k � n � 1, and R(�) � R
��

n
k

�
�n�k�k

�
for all k such that 1 � k � n .

Repeated application of Theorem 2.4.6 yields

�
nX
k=0

�
n

k

�
�n�k�k + �

nX
k=0

�
n

k

�
�n�k�k

=
nX
k=0

�
n

k

�
�n+1�k�k +

nX
k=0

�
n

k

�
�n�k�k+1:



38 CHAPTER 2. NEUTRICES AND EXTERNAL NUMBERS

Because the relative uncertainty of natural numbers is zero, again by Theorem
2.4.6

nX
k=0

�
n

k

�
�n+1�k�k +

nX
k=0

�
n

k

�
�n�k�k+1 =

n+1X
k=0

�
n+ 1

k

�
�n+1�k�k:

Lemma 2.4.20 Let a be a real number and A be a neutrix such that jaj > A.
Then, for all standard n,

anA+ an�1A2 = anA.

Proof. We prove this result by external induction.
If n = 1, we obtain aA+a0A2 = aA+A2. Because jaj > A one has aA � A2.

Then, aA+A2 = aA and the formula is valid for n = 1.
Suppose now that anA+an�1A2 = anA is valid for some standard n. Then,

by Lemma 2.4.12,

an+1A+ anA2 = aanA+ aan�1A2

= a
�
anA+ an�1A2

�
= a (anA) = an+1A.

Hence anA+ an�1A2 = anA, for all standard n, by external induction.
The following theorem gives a decomposition for the n-th power of a zeroless

external number.

Theorem 2.4.21 Let � = a + A be a zeroless external number. Then for all
standard n

�n = an + an�1A.

Proof. Again, our proof is by external induction.
If n = 1 the result is obvious:
Suppose that, for some standard n, �n = an + an�1A. Then, using the

de�nition of multiplication and Lemma 2.4.20,

�n+1 = �n� =
�
an + an�1A

�
(a+A)

= ana+ anA+ an�1aA+ an�1A2

= an+1 + anA.

Hence �n = an + an�1A, for all standard n, by external induction.
We �nish by giving a decomposition formula for the product of n zeroless

external numbers.

Theorem 2.4.22 Let �i = ai + Ai; i = 1; :::; n be zeroless external numbers.
Then for all standard n

nQ
i=1

(ai +Ai) =
nQ
i=1

ai +
nP
j=1

240@ nQ
K=1
K 6=j

ak

1AAj

35 .
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Proof. If n = 1 the equality is obvious.
Suppose the equality is true for some standard n. Then, because an+1+An+1

is zeroless, using Lemma 2.2.10,
n+1Q
i=1

(ai +Ai) =

�
nQ
i=1

(ai +Ai)

�
(an+1 +An+1)

=

0@ nQ
i=1

ai +
nP
j=1

240@ nQ
K=1
K 6=j

ak

1AAj

351A (an+1 +An+1)
=

n+1Q
i=1

ai +
nQ
i=1

aiAn+1 + an+1
nP
j=1

240@ nQ
K=1
K 6=j

ak

1AAj

35
=

n+1Q
i=1

ai +
n+1P
j=1

240@n+1Q
K=1
K 6=j

ak

1AAj

35 .
Hence

nQ
i=1

(ai +Ai) =
nQ
i=1

ai +
nP
j=1

240@ nQ
K=1
K 6=j

ak

1AAj

35, for all standard n, by ex-
ternal induction.
We �nish with a result by Justino and Van den Berg [31] that gives a ma-

joration of the neutrix part of the determinant of a matrix whose elements are
external numbers. Let A = [�ij ] be a m � n matrix. We say that A is non-
singular if � = detA is zeroless. We denote a � max

1�i�m
1�j�n

jaij j and A � max
1�i�m
1�j�n

Aij .

Corollary 2.4.23 Let n;m 2 N be standard. Let A = [�ij ] be a non-singular
m � n matrix, with �ij = aij + Aij 2 E for 1 6 i; j 6 n, such that a = 1, and
� = detA = d+D. Then

D = N (�) � A:
Proof. Let Sn denote the set of all permutations of the set f1; 2; :::; ng and
� = (p1; :::; pn) 2 Sn. Let � = (a1p1 +A1p1) ::: (anpn +Anpn). Because a = 1
one has jakpk j 6 a = 1 and Akpk � A � � for all k 2 f1; :::; ng. So, by Theorem
2.4.21, one has N (�) � N

��
1 +A

�n�
= A: Now,

� =

�������
a11 +A11 ::: a1n +A1n

...
...

an1 +An1 ::: ann +Ann

������� =
P
�2Sn

sgn (�) �

=
P
�2Sn

sgn (�) (a1p1 :::anpn +N (�)) ;

with sgn (�) 2 f�1; 1g : Then

N (�) =
X
�2Sn

N (�) � n!A = A:
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Chapter 3

Algebraic structures with
individualized neutral
elements

Finally there are simple ideas of which no de�nition can be given;
there are also axioms or postulates, or in a word primary principles,
which cannot be proved and have no need of proof.
(Gottfried Leibniz)

3.1 Introduction

In Chapter 2 (see also [15]) it was shown that the class of external numbers
equipped with addition and the class of external numbers which are not neutrices
equipped with multiplication form commutative regular semigroups. Unlike real
numbers, external numbers have individualized neutral and inverse elements for
both addition and multiplication. It was also shown that the distributive law is
valid under some restrictions that can be completely characterized. Moreover,
the external numbers are totally ordered, even allowing for a sort of generalized
completeness property [3] [4] [39]. Hence external numbers have to a large
extent algebraic properties similar to those of real numbers. This justi�es the
introduction of common algebraic structures de�ned by axiomatic rules.
For the purpose of clarity we start, in Section 3.2, with a full list of the ax-

ioms used. In Section 3.3 we de�ne a structure called assembly which is a sort
of group with neutral elements given in the form of functions. We derive some
basic algebraic properties of assemblies and study subassemblies (substructures
of assemblies which are also assemblies). In Section 3.4 we study some structure-
preserving functions between assemblies, called assembly homomorphisms. We
show that this extends the usual notion of group homomorphisms because the
usual properties of homomorphisms remain valid. In Section 3.5 we study or-

41
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dered assemblies. The notion of absolute value is extended to ordered assem-
blies. We show that the basic properties of the absolute value hold for ordered
assemblies. In Section 3.7 we present axioms for multiplication and de�ne a
structure called association which is, roughly speaking, a sort of nondistributive
ring with individualized neutral elements for both addition and multiplication.
Further axioms are presented on mixing addition and multiplication. In Section
3.8 we study associations equipped with a total order relation. We show that
ordered associations have, to some extent, properties similar to ordered rings.
A very important di¤erence between rings and associations is that the distrib-
utive law is lacking in the latter. In Section 3.9 we reduce that gap by giving
an axiom which allows to have a restricted distributive law. Further axioms
are presented, related to completeness. The resulting structure, called solid,
has many properties in common with ordered �elds. Indeed one can, roughly
speaking, understand a solid as a semi-distributive ordered �eld with generalized
neutral elements for both operations.

3.2 Axioms

In this section we give a list of the axioms used. The �rst group of axioms
concerns only one operation called addition. These axioms are somewhat similar
to the group axioms. In fact, it is our intention to generalize the group axioms
so that each element has an individualized neutral element. In the second group
we give axioms for a second operation called multiplication. The axioms of this
group are similar to the axioms of the �rst group. In this way addition and
multiplication have almost the same basic structure, much like what happens
within rings and �elds. The third group of axioms states, roughly speaking,
that there is a total order relation compatible with the operations of addition
and multiplication. A fourth group of axioms is given so that addition and
multiplication can be connected. We give axioms that connect the individualized
neutral and inverse elements for addition with multiplication and an axiom that
gives a restricted distributive law. In the �fth group we add axioms related
to completion, stating that there are (minimal) neutral elements for addition
and multiplication (0 and 1) and that there is a maximal individualized neutral
element (denoted M). We also give an axiom which allows to decompose each
element in terms of the individualized neutral element. Finally we give an
axiom that postulates the existence of nontrivial neutral elements, i.e. neutral
elements besides 0 and M . The axioms are written in the �rst-order language
L = f+;�;�g.

3.2.1 Axioms for addition

Axiom 3.2.1 (Associativity)

8x8y8z(x+ (y + z) = (x+ y) + z):
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Axiom 3.2.2 (Commutativity)

8x8y(x+ y = y + x):

Axiom 3.2.3 (Individualized neutral element)

8x9e (x+ e = x ^ 8f (x+ f = x) e+ f = e)) 1 :

Axiom 3.2.4 (Symmetric element)

8x9s (x+ s = e (x) ^ e (s) = e (x)) :

Axiom 3.2.5 (Neutral element of sum)

8x8y (e (x+ y) = e (x) _ e (x+ y) = e (y)) :

3.2.2 Axioms for multiplication

Axiom 3.2.6 (Associativity)

8x8y8z(x (yz) = (xy) z):

Axiom 3.2.7 (Commutativity)

8x8y(xy = yx):

Axiom 3.2.8 (Individualized unity element)

8x 6= e (x)9u (xu = x ^ 8v (xv = x) uv = u)) 1 :

Axiom 3.2.9 (Division element)

8x 6= e (x)9d (xd = u (x) ^ u (d) = u (x)) :

Axiom 3.2.10 (Unity element of product)

8x 6= e (x)8y 6= e (y) (u (xy) = u (x) _ u (xy) = u (y)) :

3.2.3 Order axioms

Axiom 3.2.11 (Re�exivity)

8x(x � x):

Axiom 3.2.12 (Antisymmetry)

8x8y(x � y ^ y � x) x = y):

1The dependence of e and u on x is justi�ed in Remark 3.2.28 because they appear to be
functional, i.e. e = e (x) and u = u (x).
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Axiom 3.2.13 (Transitivity)

8x8y8z(x � y ^ y � z ) x � z):

Axiom 3.2.14 (Totality)

8x8y(x � y _ y � x):

Axiom 3.2.15 (Compatibility with addition)

8x8y8z (x � y ) x+ z � y + z) :

Axiom 3.2.16 (Invariance)

8x8y (y + e(x) = e(x)) y � e(x)) :

Axiom 3.2.17 (Compatibility with multiplication)

8x8y8z ((e (x) � x ^ y � z)) xy � xz) :

3.2.4 Mixed Axioms

Axiom 3.2.18 (Scale)

8x8y9z(e(x)y = e(z)):

Axiom 3.2.19 (Symmetric of product)

8x8y (s(xy) = s(x)y) :

Axiom 3.2.20 (Neutral element of product)

8x8y (e(xy) = e(x)y + e(y)x) :

Axiom 3.2.21 (Neutral element of unity)

8x 6= e(x) (e(u(x)) = e(x)d(x)) :

Axiom 3.2.22 (Distributivity)

8x8y8z (xy + xz = x (y + z) + e (x) y + e (x) z) :

3.2.5 Completion axioms

Axiom 3.2.23 (Minimal element addition)

9m8x (m+ x = x) :

Axiom 3.2.24 (Maximal element addition)

9M8x(e (x) +M =M):



3.3. ASSEMBLIES 45

Axiom 3.2.25 (Minimal element multiplication)

9u8x (ux = x) :

Axiom 3.2.26 (Decomposition)

8x9a (x = a+ e (x) ^ e (a) = 0) :

Axiom 3.2.27 (Existence of Magnitudes)

9x (e (x) 6= m ^ e (x) 6=M) :

Remark 3.2.28 The functional notation used in Axiom 3.2.4 and in Axiom
3.2.5 is justi�ed by the fact that the element e of Axiom 3.2.3 is unique. Indeed,
if e0 satis�es Axiom 3.2.3, one has e0 = e0+e = e+e0 = e. Nontrivial existence is
postulated in Axiom 3.2.27. Also s is unique and may be considered functional.
Indeed, if s0 satis�es Axiom 3.2.4 one has s0 = s0+e(s0) = s0+e(x) = s0+x+s =
x + s0 + s = e(x) + s = e(s) + s = s. The functional notation used in Axiom
3.2.9 and in Axiom 3.2.10 is justi�ed in an analogous way. We may write �x
instead of s (x) and x � y instead of x + s (y). Also, instead of d (x) we may
write x�1. The elements m of Axiom 3.2.23 and u of Axiom 3.2.25 are also
unique (see Proposition 3.9.6 below).

Some of the axioms are �eld axioms or gentle generalizations of �eld axioms.
Others are new: Axiom 3.2.3 and 3.2.8, the idempotency of Axioms 3.2.5, 3.2.10
and 3.2.16 and the scaling properties of Axioms 3.2.18, 3.2.20 and 3.2.21. Axiom
3.2.3 is given in order to capture the idea that every element has is own (addi-
tive) imprecision. Indeed we may interpret e(x) as the �imprecision�or �error�
of x. It can also be seen as a �magnitude�or as a �generalized zero�. Similarly
we interpret u (x), given by Axiom 3.2.8 as a generalized unity element and
as a multiplicative or relative imprecision. These error functions allow one to
keep track of the imprecisions involved throughout the several operations. With
this interpretation in mind the remaining new axioms have a clearer meaning.
Indeed, Axiom 3.2.5 states that the imprecision of a sum is equal to the max-
imum of the imprecision of its elements. In a similar way Axiom 3.2.10 states
that the relative imprecision of a product is equal to the maximum of the rel-
ative imprecisions of its elements. Axiom 3.2.16 states that if a number leaves
a magnitude invariant it is smaller than this magnitude. Axiom 3.2.18 postu-
lates that a scaled magnitude, i.e. an magnitude multiplied by other element,
remains a magnitude. Axiom 3.2.20 states that the imprecision of the product
of two elements is the maximum of scaled imprecisions. Axiom 3.2.21 says that
the magnitude of a unity is also a scaled magnitude. The decomposition axiom
states that every number is the sum of a sharp element and a magnitude. The
last axiom postulates the existence of nontrivial magnitudes.

3.3 Assemblies

Roughly speaking, an assembly may be seen as a group with individualized
neutral and inverse elements. These elements appear in the form of functions,
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as mentioned in Remark 3.2.28. Throughout this section we investigate to what
extent group properties may be generalized to assemblies. In fact, we show that
many group properties are valid or may be adapted within assemblies. The
fact that each element of an assembly has his own neutral element implies that
some properties of subgroups are not valid for subassemblies (substructures of
assemblies which are also assemblies). For instance, it is a basic fact from group
theory that if (A;+) and (B;+) are two subgroups of a given group (G;+) then
A\B 6= ;. As we will see that does not remain valid for assemblies. Nevertheless
it is possible to adapt some properties of subgroups and a characterization of
subassembly is given.
We emphasize that we aim to study algebraic properties of neutrices and ex-

ternal numbers which are external sets and even classes of nonstandard analysis,
as mentioned in Section 1.5. So natural models of the introduced structures tend
to be such external sets and classes.

De�nition 3.3.1 Given a nonempty class A and a binary operation + on A,
we say that (A;+) is an assembly if A satis�es axioms 3.2.1-3.2.5.

Examples of assemblies are the following.

Example 3.3.2

1. Commutative groups. In fact, commutative groups are assemblies on
which the functions e and s are constant.

2. (B;[) where B is the set of all ordinals less than a given ordinal. Observe
that given two ordinals �; � 2 B one has � [ � = � or � [ � = �.
Then clearly commutativity and associativity hold. The remaining axioms
trivially hold by making e (�) = s (�) = �.

3. (E;+); where E is the external class of external numbers. This will be
proved in Chapter 4.

The following are not assemblies.

Example 3.3.3

1. (B;+) where B is the set of all ordinals less than a given ordinal and + is
the usual addition of ordinals is not an assembly because commutativity
fails. In fact, 1 + ! = ! 6= ! + 1.

2. (M2�2 (E) ; �) whereM2�2 (E) is the class of all 2-by-2 matrices with exter-
nal numbers as coe¢ cients equipped with the usual matrix multiplication2 .
Indeed, if N is a neutrix such that N 6= f0g one has��

1 1
1 1

��
1 �1
�1 1

���
N N
N N

�
=

�
0 0
0 0

��
N N
N N

�
=

�
0 0
0 0

�
2 In [31] matrices with external numbers as coe¢ cients are considered and Cramer�s Rule

is applied to systems of linear equations with external numbers as coe¢ cients, called �exible
systems.



3.3. ASSEMBLIES 47

and�
1 1
1 1

���
1 �1
�1 1

��
N N
N N

��
=

�
1 1
1 1

��
N �N N �N
�N +N �N +N

�
=�

1 1
1 1

��
N N
N N

�
=

�
N +N N +N
N +N N +N

�
=

�
N N
N N

�
:

Hence multiplication is not associative.

We recall that the structure (A;+) is Von Neumann regular if for all a 2 A
there is x 2 A such that a + x + a = a. In this way one may think of x as a
�weak inverse�of a.

Proposition 3.3.4 If (A;+) is an assembly, then A is Von Neumann regular.

Proof. Let a 2 A. By Axiom 3.2.4, there is s 2 A such that a+s = e(a). Then
a+ s+ a = e(a) + a = a by Axiom 3.2.3.
Within assemblies cancellation holds up to individual neutral elements.

Theorem 3.3.5 (Cancellation law) Let (A;+) be an assembly and let x; y; z 2
A be arbitrary. Then x+ y = x+ z if and only if e(x) + y = e(x) + z:

Proof. Suppose �rstly that x+ y = x+ z. Then

e(x) + y = �x+ x+ y = �x+ x+ z = e(x) + z:

Suppose now that e(x) + y = e(x) + z. Then

x+ y = x+ e(x) + y = x+ e(x) + z = x+ z:

Hence x+ y = x+ z , e(x) + y = e(x) + z:

3.3.1 Neutral function

In the following we prove that the neutral function e is linear and idempotent
with respect to addition and idempotent with respect to composition. We show
also that an element can be equal to no more than one magnitude.

Proposition 3.3.6 Let (A;+) be an assembly. Then for all x and y 2 A

1. (Idempotency for addition) e(x) + e(x) = e(x).

2. (Linearity of e) e(x+ y) = e(x) + e(y).

Proof. Let x and y be arbitrary elements of A.
1. By Axiom 3.2.3 one has x + e(x) = x. Then by the cancellation law,

e(x) + e(x) = e(x).
2. By commutativity, associativity and Axiom 3.2.3 one has

x+ y + e(x) + e(y) = x+ e(x) + y + e(y) = x+ y.
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Then by cancellation,

e(x+ y) + e(x) + e(y) = e(x+ y): (3.1)

By Axiom 3.2.5 one has that e(x+ y) = e(x) or e(x+ y) = e(y). Suppose that
e(x+ y) = e(x). Then by (3.1) and Part 1,

e(x+ y) = e(x) + e(x) + e(y) = e(x) + e(y):

If e(x+ y) = e(y) the proof is analogous. Hence e(x+ y) = e(x) + e(y).

Proposition 3.3.7 (Idempotency for composition) Let (A;+) be an as-
sembly. Then for all x 2 A

e(e(x)) = e(x):

Proof. Let x 2 A. By Axiom 3.2.4 and Proposition 3.3.6

e(e(x)) = e(x� x) = e(x) + e(�x) = e(x) + e(x) = e(x).

We show that if an element is a magnitude then that element is equal to its
own magnitude (imprecision).

Theorem 3.3.8 (Representation) Let (A;+) be an assembly and let x and
y 2 A. If x = e (y) then x = e (x).

Proof. Suppose y 2 A is such that x = e(y). Then, using Proposition 3.3.7,

e(x) = e(e(y)) = e(y) = x.

Corollary 3.3.9 Let (A;+) be an assembly and let x and y 2 A. If x = e (y)
then e (x) = e (y).

Corollary 3.3.10 Let (A;+) be an assembly and let x and y 2 A. If x 6= e (x),
then x 6= e (y).

3.3.2 Inverse function for addition

The inverse function s is an injective mapping which is linear with respect to
addition and has the symmetry property, meaning that the inverse of the inverse
of a given element is the element itself.

Proposition 3.3.11 (Symmetry) Let (A;+) be an assembly. Then for all
x 2 A

�(�x) = x:
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Proof. Let x 2 A. Observe that by Axiom 3.2.4

e(�(�x)) = e(�x) = e(x) = �x+ x:

Hence

�(�x) = �(�x) + e(�(�x)) = �(�x)� x+ x
= e(�x) + x = e(x) + x = x:

Proposition 3.3.12 (Linearity) Let (A;+) be an assembly and let x and y 2
A. Then

�(x+ y) = �x� y:

Proof. By Proposition 3.3.6.2 and Axiom 3.2.4

�(x+ y) + x+ y = e(x+ y) = e(x) + e(y)

= �x+ x� y + y = �x� y + x+ y:

Then by cancellation

�(x+ y) + e(x+ y) = �x� y + e(x+ y):

Again using Axiom 3.2.4 one obtains

�(x+ y) + e(�(x+ y)) = �x� y + e(�x) + e(�y)
= �x+ e(�x)� y + e(�y);

and consequently
�(x+ y) = �x� y:

Proposition 3.3.13 (Injectivity) Let (A;+) be an assembly and x; y 2 A.
Then

1. x = y if and only if �x = �y.

2. �x = y if and only if x = �y.

Proof. 1. Because the inverse function is functional, one only needs to prove
the direct implication. To prove it, suppose that �x = �y. Then

x = � (�x) = � (�y) = y.

2. Suppose that �x = y. By Proposition 3.3.11 �x = �(�y). Hence x = �y,
by Part 1. The other implication is analogous.
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3.3.3 Magnitude and inverse

The composition of the inverse function with the neutral function is equal to
the neutral function.

Proposition 3.3.14 Let (A;+) be an assembly and let x 2 A. Then

e(�x) = �e(x) = e(x):

Proof. By Axiom 3.2.4 one only has to show that �e(x) = e(x). Using Propo-
sition 3.3.11 and Proposition 3.3.12 one derives

e(x) = �x+ x = �x� (�x) = �(x� x) = �e(x).

Proposition 3.3.15 Let (A;+) be an assembly and let x 2 A. Then

e(x)� x = �x.

Proof. Using Proposition 3.3.14, Proposition 3.3.12 and Axiom 3.2.3, one has

e(x)� x = �e(x)� x = �(x+ e(x)) = �x

The following proposition states, roughly speaking, that the neutral function
is not a¤ected by the inverse function.

Proposition 3.3.16 Let (A;+) be an assembly and let x and y 2 A.

1. �x = e(x) if and only if x = e(x):

2. If �x = �y or �x = y then e(x) = e(y).

Proof. 1. Assume �rstly that �x = e(x). Then, e (x) = �x+x = e(x)+x = x.
Assume secondly that x = e(x). Then e (x) = x � x = e(x) � x = �x by

Proposition 3.3.15.
2. If �x = �y, then e (x) = e (�x) = e (�y) = e (y).
If �x = y, then

e (x) = e (�x) = e (y) .

Let (A;+) be an assembly and x; y; z 2 A. We consider linear additive
equations of the type x+ y = e (x) and x+ y = z where x is variable and y and
z are constant. The next result shows how to solve such equations, assuming
e (x) = e (y).

Proposition 3.3.17 Let (A;+) be an assembly and x; y 2 A. Suppose that
e (x) = e (y). Then
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1. x� y = e (x) if and only if x = y.

2. x+ y = e (x) if and only if x = �y.

3. If x+ y = z then x = z � y.

Proof. 1. If x � y = e (x) then, from the uniqueness of the inverse function,
�x = �y. Hence x = y by Proposition 3.3.13.1. If x = y then x� y = x� x =
e (x).
2. If x+ y = e (x) then the result follows from the �rst case because x+ y =

x� (�y). If x = �y then x+ y = �y + y = e (y) = e (x).
3. If x+y = z then x+e (y) = z�y: Hence x = x+e (x) = x+e (y) = z�y.

3.3.4 Subassemblies

In the following we show that substructures of assemblies which are also as-
semblies (subassemblies) have properties similar to the properties of subgroups.
An important di¤erence though is that subassemblies do not need to contain 0,
allowing both (EnR;+) and (R;+) to be subassemblies of (E;+).

De�nition 3.3.18 Given an assembly (A;+) we say that (B;+) is a subassem-
bly of (A;+) if (B;+) is an assembly and B � A.

Within group theory it is possible to characterize the subgroups of a given
group (G;+) as any nonempty subset of G which is closed under addition and
under inversions. The following theorem gives a similar characterization of
subassemblies of a given assembly.

Theorem 3.3.19 A structure (B;+) is a subassembly of an assembly (A;+) if
and only if ; � B � A and for all x; y 2 B; x� y 2 B.

Proof. Suppose �rstly that (B;+) is a subassembly of an assembly (A;+).
Let x; y 2 B. Then because (B;+) is an assembly B is nonempty and for all
x; y 2 B, x � y 2 B. Suppose secondly that ; � B � A and for all x; y 2 B;
x� y 2 B. Then the binary operation + is associative and commutative in B.
With x = y 2 B, one has x�x = e(x) 2 B and e(x)�x = e(�x)�x = �x 2 B.
Hence (B;+) is an assembly.
To prove that a structure is a subassembly of a given assembly becomes quite

simpler using the previous theorem. We illustrate this with some examples.

Example 3.3.20 The following are subassemblies of (E;+) :

1. (R;+), because R � E and (R;+) is a group.

2. B = fx+Ajx 2 Rg ; where A is a given neutrix. We have A 2 B and
B � E. If � = a + A, � = b + A 2 B then � � � = (a+A) � (b+A) =
(a� b) +A 2 B.
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3. (N ;+); where N is the class of all neutrices. The class of all neutrices is
nonempty because 0 2 N and the di¤erence of two neutrices is equal to
the larger of the two.

4. (EnR;+): Clearly � 2 EnR, hence EnR is nonempty. Let x = a + A,
y = b+B 2 EnR. Then x� y = (a� b) + max (A;B) 2 EnR.

5. (A�;+), where � 2 R and A� =

�
x 2 E : x �

S
st n

[��n; �n]
�
: Clearly

; 6= A� � E. Let x; y 2 A�. Then there are standard m;n such that
x � [��m; �m] and y � [��n; �n] : Let p = max fm;ng. Then jx� yj �
2max fx; yg � 2�p � �p+1.

The set of all magnitudes of a given assembly forms a subassembly.

Proposition 3.3.21 Let (A;+) be an assembly. If NA � fx 2 A : x = e (x)g
is nonempty then (NA;+) is a subassembly of (A;+).

Proof. Assuming that NA is nonempty let x = e (x) ; y = e (y) 2 NA. Because
A is an assembly and NA � A one has x� y 2 A. Then, by the linearity of e,

x� y = e (x)� e (y)
= e (x) + e (�y) = e (x� y) 2 NA:

Hence (NA;+) is a subassembly of (A;+) by Theorem 3.3.19.
Let (B;+) ; (C;+) be subassemblies of an assembly (A;+). The fact that

both (EnR;+) and (R;+) are subassemblies of (E;+) shows that, unlike what
happens with groups, it is possible that B \C = ;. Moreover, B [C may be a
subassembly of A and both B * C and C * B. However, the following holds.

Proposition 3.3.22 Let (B;+) ; (C;+) be subassemblies of an assembly (A;+).
Then (B + C;+) is a subassembly of (A;+) and if B\C is nonempty (B \ C;+)
is also a subassembly of (A;+).

Proof. Suppose that B \ C is nonempty. Let x; y 2 B \ C. Then, because B
and C are assemblies, x� y 2 B and x� y 2 C and then x� y 2 B \C. Hence
(B \ C;+) is a subassembly of (A;+), by Theorem 3.3.19.
Suppose now that x; y 2 B + C. Then there are u; v 2 B and r; t 2 C, such

that x = u+ r and y = v + t. Because B and C are assemblies, u� v 2 B and
r � t 2 C and then

x� y = (u+ r) + (� (v + t))
= u� v + r � t 2 B + C.

Hence by Theorem 3.3.19 (B + C;+) is a subassembly of (A;+).
By the previous propositionA = fx+N jx 2 Z; N 2 Ng ; B = fx+�jx 2 Qg

and C = fx 2 Z : x is limitedg are assemblies because A = Z+N , B = Q+�
and C = Z\$.
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3.4 Homomorphisms

A very important notion in group theory (as well as in other algebraic structures)
is the notion of homomorphism, i.e. a function that respects the algebraic
structure. The kernel of a homomorphism is, roughly speaking, a measure of
the degree to which the homomorphism fails to be injective. These notions can
readily be extended to assemblies. We start by giving some examples of assembly
homomorphisms. Then we derive some basic properties of homomorphisms and
prove that the homomorphic image of an assembly and the kernel of an assembly
homomorphism are both assemblies.

De�nition 3.4.1 Let (A;+) and (B; �) be assemblies. A map ' : A �! B is
an assembly homomorphism (or simply an homomorphism) if for all x; y 2 A;
'(x+ y) = '(x) � '(y).

The following are assembly homomorphisms:

1. All group homomorphisms, because every group is an assembly.

2. Let A be a neutrix. Then f : (E;+) �! (E;+) such that f(x) = x+A is
an homomorphism. In fact, if x; y 2 E;

f(x+y) = (x+y)+A = x+y+A+A = (x+A)+(y+A) = f(x)+f(y):

3. Let (A;+) be an assembly. Then f : (A;+) �! (A;+) such that f(x) =
e(x) is an homomorphism because if x; y 2 A

f(x+ y) = e(x+ y) =e(x) + e(y) = f(x) + f(y).

4. The function f : (E;+) �! (E;+) such that f(x) = !x for some ! � +1
is an homomorphism. Let x; y 2 E. Then, using Theorem 2.4.6,

f(x+ y) = !(x+ y) = !x+ !y = f(x) + f(y).

5. The function f : (N ;+) �! (N ;+), f(x) = �x, where � is the external
set of in�nitesimal numbers. Let x; y 2 N . Using Theorem 2.4.6,

f(x+ y) = �(x+ y) = �x+�y = f(x) + f(y).

6. [38] The function f : (N ;+) �! (En f0g ; �) such that f(x) = expS (x) �
[�ex; ex]. Let A;B 2 N . Then

expS (A+B) = [
�
�eA

�
eB ;

�
eA
�
eB ] = [�eA; eA]eB

= [�eA; eA][�eB ; eB ] = expS (A) expS (B)
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Obvious examples of functions which are not homomorphisms are nonlinear
functions. Consider for instance the function f : (E;+) �! (E;+) such that
f(x) = x2. In fact, if x = �1 +� and y = 1 +� then

f(x+ y) = f (�) = �2

and

f (x) + f (y) = (1 +�)2 + (�1 +�)2 = (1 +�) + (1 +�) = 2 +�.

However there are also functions which may appear to be linear but are
really not. As such one may not extend example 5 to E:

�(1� 1) = 0;

while
�1��1 = �:

We intend to prove that the homomorphic image of a generalized zero is
a generalized zero and that the homomorphic image of the inverse of a given
element is the inverse of the homomorphic image of that same element. These
properties generalize similar properties for group homomorphisms. In order to
do that we need the following lemma.

Lemma 3.4.2 Let ' : (A;+) �! (B; �) be an assembly homomorphism. Then

1. '(e(x)) = e('(e(x)))

2. '(e(x)) � '(x)�1 = '(x)�1

3. '(�x) = '(�x) � '(e(x))

4. '(e(x)) � '(x)�1 = e('(x)) � '(�x)

Proof. 1. One has

'(e(x)) = '(e(x) + e(x)) = '(e(x)) � '(e(x)):

Then by cancellation

e('(e(x))) = e('(e(x))) � '(e(x)) = '(e(x)):

2. Using Part 1 it holds that

'(e(x)) � '(x)�1 = e('(e(x))) � '(x)�1

= e('(e(x)))�1 � '(x)�1 = e('(e(x))�1 � '(x))
= ('(e(x)) � '(x))�1 = '(e(x) + x)�1

= '(x)�1:



3.4. HOMOMORPHISMS 55

3. Because ' is an assembly homomorphism one has

'(�x) = '(�x+ e(x)) = '(�x) � '(e(x)):

4. Observe that

'(e(x)) = '(x� x) = '(x) � '(�x): (3.2)

Then

'(e(x)) � '(x)�1 = '(x) � '(�x) � '(x)�1 = e('(x)) � '(�x):

We are now able to show that assembly homomorphisms have the expected
properties.

Proposition 3.4.3 Let ' : (A;+) �! (B; �) be an assembly homomorphism
and let x 2 A. Then

1. '(�x) = '(x)�1:

2. '(e(x)) = e('(x)):

Proof. 1. Because ' is a homomorphism

'(�x) = '(x� x� x) = '(x) � '(�x) � '(�x)
= e('(x)) � '(x) � '(�x) � '(�x).

Then by Lemma 3.4.2.3

'(�x) = e('(x)) � '(e(x)) � '(�x) = e('(x)) � '(�x).

Hence by Lemma 3.4.2.4

'(�x) = '(e(x)) � '(x)�1 = '(x)�1:

2. By formula (3.2) and Part 1 one has

'(e(x)) = '(x) � '(�x) = '(x) � '(x)�1 = e('(x)):

The homomorphic image of an assembly is also an assembly.

Theorem 3.4.4 Let ' : (A;+) �! (B; �) be an assembly homomorphism. Then
'(A) is a subassembly of B:

Proof. Clearly '(A) � B. Because A and B are assemblies they are nonempty
and then '(A) is also nonempty. Let u; v 2 '(A). Then there are a; b 2 A such
that u = '(a) and v = '(b). Then, by Proposition 3.4.3.1,

u � (v)�1 = '(a) � '(b)�1 = '(a) � '(�b) = '(a� b) 2 '(A):

Hence '(A) is a subassembly of B by Theorem 3.3.19.



56 CHAPTER 3. INDIVIDUALIZED NEUTRAL ELEMENTS

De�nition 3.4.5 Let ' : (A;+) �! (B; �) be an assembly homomorphism. We
call kernel of ' the set

Ker' � fx 2 A : '(x) = e('(x))g :

The kernel of an assembly homomorphism is also an assembly.

Proposition 3.4.6 Let ' : (A;+) �! (B; �) be an assembly homomorphism.
Then Ker' is a subassembly of A. Moreover, if ' is injective then

Ker' = fx 2 A : x = e(x)g :

Proof. It is clear that Ker' � A. By Proposition 3.4.3.2 ' (e (x)) = e (' (x))
and thenKer' 6= ;. Let x; y 2 Ker'. Then '(x) = e('(x)) and '(y) = e('(y)).
Using Proposition 3.4.3 one derives

'(x� y) = '(x) � '(�y) = '(x) � '(y)�1

= e('(x)) � e('(y))�1 = e('(x)) � e(�'(y))
= e('(x) � (�'(y))) = e('(x� y)):

Then x� y 2 Ker'. Hence Ker' is a subassembly of A, by Theorem 3.3.19.
Suppose that ' is injective. If x 2 Ker', one has '(x) = e('(x)) = '(e(x)).

Then x = e(x). If x = e(x), then '(x) = '(e(x)) = e('(x)). Hence x 2 Ker'.

The kernel of an assembly homomorphism is reduced to neutral elements if
and only if a sort of relaxed injectivity holds for the homomorphism.

Theorem 3.4.7 Let ' : (A;+) �! (B; �) be an assembly homomorphism and
let x; y 2 A. Then the following are equivalent

1. '(x) = '(y)) x+ e(y) = y + e(x)

2. '(x) = '(y)) x� y = e(x+ y).

3. Ker' = fx 2 A : x = e(x)g.

Proof. We prove that (1))(2))(3))(1).
(1))(2) Assume that ' (x) = ' (y). Then x+ e(y) = y + e(x) and x� y =

x+ e(y)� y = y + e(x)� y = e(x) + e(y) = e(x+ y).
(2))(3) Observe �rstly that if x 2 Ker' then '(x) = e('(x)) = '(e(x)):

Then x� e(x) = e(x+x): Hence x = e(x): Then Ker' � fx 2 A : x = e(x)g. If
y 2 fx 2 A : x = e(x)g, by Proposition 3.4.3.2 '(y) = '(e(y)) = e('(y)). Hence
y 2 Ker' and fx 2 A : x = e(x)g � Ker'. Then Ker' = fx 2 A : x = e(x)g.
(3))(1) Let x 2 A. Then

'(x) = e('(x)), x = e(x). (3.3)
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If '(x) = '(y), by Proposition 3.4.3

'(x� y) = '(x) � '(�y) = '(y) � (�'(y)) = e('(y)) = e('(y)) � e('(y))
= e('(x)) � e('(y)) = e('(x)) � e(�'(y))
= e('(x)) � e('(�y)) = e('(x) � '(�y)) = e('(x� y))

Then, by formula (3.3), x� y = e(x� y) = e(x) + e(�y) = e(x) + e(y). Hence

x+ e(y) = y + e(x):

3.5 Ordered Assemblies

An ordered assembly is an assembly together with a total ordering of its ele-
ments that is compatible with addition. So, an ordered assembly is an assembly
equipped with an order relation "�" satisfying axioms 3.2.11-3.2.15.
Let (A;+;�) be an ordered assembly and let x 2 A. Continuing our inter-

pretation of e (x) as a generalized zero we say that x is positive if e (x) � x
and that x is negative if x � e (x). We prove that if x is positive then �x is
negative and that if x is negative then �x is positive. Then we give an algebraic
characterization of the order relation for the function e. We also generalize this
result in Theorem 3.5.10. Finally we consider the notion of absolute value and
prove that some classical properties such as the triangular inequality remain
valid for assemblies and that other properties may be generalized.

Remark 3.5.1 Let (A;+;�) be an ordered assembly and let x; y 2 A. Observe
that if x � y,

e(x) � y � x (3.4)

and
�y + e(x) � �x+ e(y). (3.5)

Remark 3.5.2 Let (A;+;�) be an ordered assembly. It follows immediately
from the axioms that for all x; y 2 A one has

1. x is positive if and only if �x is negative.

2. x is negative if and only if �x is positive.

3. If x � y, then x+ e (y) � y.

4. If x � y, then x � y + e (x).

Let (A;+;�) be an ordered assembly. As stated in the previous remark,
x 2 A is positive if and only if �x is negative and vice-versa. A similar result
is valid for strict inequalities.
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Proposition 3.5.3 Let (A;+;�) be an ordered assembly. Then for all x; y 2 A

1. e(x) < x if and only if �x < e (x).

2. x < e (x) if and only if e(x) < �x.

Proof. Part 1 follows from Proposition 3.3.16.1 and Remark 3.5.2.1.
Part 2 follows from Proposition 3.3.16.1 and Remark 3.5.2.2.
We show that x is positive if and only if it is larger than or equal to �x.

Proposition 3.5.4 Let (A;+;�) be an ordered assembly and let x 2 A. Then
�x � x if and only if e(x) � x.

Proof. Assume �rstly that �x � x. by Axiom 3.2.14, one has e(x) � x or
x � e(x). In the �rst case there is nothing to show. In the second case, by
Remark 3.5.2.2 one has e(x) � �x then by transitivity e(x) � x. Assume
secondly that e(x) � x. Then by Remark 3.5.2.1 �x � e (x) and by transitivity
�x � x.
From now on we will assume Axiom 3.2.16. We recall that this axiom says,

according to our intended interpretation, that if an element leaves a magnitude
invariant for addition, i.e. if the sum of the element with a magnitude is equal to
the magnitude, then the element is smaller than this magnitude. In the following
theorem we use this axiom in order to give an algebraic characterization of the
order relation for the function e in terms of addition.

Theorem 3.5.5 Let (A;+;�) be an ordered assembly. Then, for all x; y 2 A;
e(x) + e(y) = e(x) if and only if e(y) � e(x).

Proof. By Axiom 3.2.16 we only need to prove the necessary part. Suppose
that e(y) � e(x). By compatibility with addition

e(y) = e(y) + e(y) � e(x) + e(y).

Now e(x) + e(y) = e(x) or e(x) + e(y) = e(y) by Proposition 3.3.6.2. If e(x) +
e(y) = e(x), there is nothing to prove. If e(x) + e(y) = e(y), by Axiom 3.2.16,
e(x) � e(y). But then, by antisymmetry, e(x) = e(y). Hence

e(x) + e(y) = e(x) + e(x) = e(x).

Corollary 3.5.6 Let (A;+;�) be an ordered assembly and let x; y 2 A. Then

e(x+ y) � e(x)) e(y) � e(x):

Proof. Suppose that e(x+ y) � e(x). Then by Theorem 3.5.5

e(x) + e(x+ y) = e(x):

Hence e (x) + e (y) = e (x) and e(y) � e(x) by Theorem 3.5.5.
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Corollary 3.5.7 Let (A;+;�) be an ordered assembly and let x; y 2 A. Then

x+ y = x) e(y) � e(x):

Proof. Suppose that x+ y = x. Then by the cancellation law

e(x) + y = e(x). (3.6)

Then by Axiom 3.2.16,
y � e (x) . (3.7)

Using Proposition 3.5.8.1 and formula (3.6), one has

e (x+ y) = e (x) + e (y) = y + e (x) + e (y) = y + e (x) � e (x) .

Hence by Corollary 3.5.6
e(y) � e(x).

We prove a generalization of Axiom 3.2.15. As a consequence one has that
the sum of two positive elements is also positive. Also, any element which is
larger than or equal to a positive element is also positive.

Proposition 3.5.8 Let (A;+;�) be an ordered assembly and let x; y 2 A.

1. If x � y and z � w, then x+ z � y + w:

2. If x and y are both positive then x+ y is also positive.

3. If e (y) � y � x then e (x) � x.

Proof. To prove Part 1 suppose that x � y and z � w. By compatibility with
addition one has

x+ z � y + z

and
y + z � y + w.

Then by transitivity
x+ z � y + w.

Part 2 follows from Part 1.
As for Part 3, suppose that e (y) � y � x. If e (y) � e (x) then e (x)+e (y) =

e (x) by Theorem 3.5.5. By compatibility with addition

e (x) = e (x) + e (y) � x+ e (x) = x:

If e (x) � e (y), one has e (x) � x; by Axiom 3.2.13.

Proposition 3.5.9 Let (A;+;�) be an ordered assembly and let x; y 2 A. Then
x � x+ e (y).
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Proof. If e (y) � e (x). Then by Theorem 3.5.5

x+ e (y) = x+ e (x) + e (y) = x+ e (x) = x:

If e (x) � e (y) then by compatibility with addition

x = x+ e (x) � x+ e (y) :

A positive number leaves a magnitude invariant if and only if it is smaller
than this magnitude. This means that if y is positive we can replace the im-
plication in Axiom 3.2.16 by an equivalence. In this way one has, for positive
elements, a complete connection between the invariance of magnitudes for ad-
dition and the order relation.

Theorem 3.5.10 Let (A;+;�) be an ordered assembly and let x; y 2 A. If y
is positive then

y � e(x), e(x) + y = e(x):

Proof. Suppose that y is positive. By Axiom 3.2.16 we only need to prove the
su¢ ciency. Suppose that y � e(x). Then by transitivity e(y) � e(x) and by
Theorem 3.5.5

e(x) + e(y) = e(x): (3.8)

Because y is positive, using the compatibility with addition and formula (3.8),

e(x) = e(y) + e(x) � e(x) + y.

And, because y � e(x),

e(x) + y � e(x) + e(x) = e(x):

Hence
e(x) = e(x) + y:

3.6 Absolute Value

In ordered assemblies it is possible to de�ne a notion of absolute value. Let
(A;+;�) be an ordered assembly and x 2 A. We show that classical properties
such as the fact that the absolute value of x is equal to the absolute value of
�x and the triangular inequality remain valid for ordered assemblies. Other
properties need to be adapted. For example, the absolute value of x is greater
than or equal to e (x) and equality is veri�ed if and only if x = e (x). Keeping
in mind the interpretation of e (x) as a generalized zero one may see those
properties as generalizations of the usual properties of the absolute value.
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De�nition 3.6.1 Let (A;+;�) be an ordered assembly and x 2 A. The ab-
solute value of x is de�ned as

jxj �
�

x; if e(x) � x
�x, if x < e(x)

Remark 3.6.2 Let (A;+;�) be an ordered assembly and x 2 A. It is clear from
the previous de�nition that the absolute value is idempotent, i.e. jjxjj = jxj.

Proposition 3.6.3 Let (A;+;�) be an ordered assembly and let x; y 2 A. Then

e(x) + y = e(x)) jyj � e(x):

Proof. If y � e (y) the result follows by Axiom 3.2.16 because jyj = y.
If y < e (y), suppose that e(x)+ y = e(x). Then e(x)� y = � (�e(x) + y) =

� (e(x) + y) = �e (x) = e (x). Then by Axiom 3.2.16 jyj = �y � e(x).

3.6.1 Absolute value and the magnitudes

We start by showing that the absolute value is always positive.

Proposition 3.6.4 Let (A;+;�) be an ordered assembly and x 2 A. Then

e(x) � jxj :

Proof. If e (x) � x then
e(x) � x = jxj :

If x < e (x), then by Remark 3.5.2.2 e(x) � �x. Hence e(x) � jxj.
By Proposition 3.3.14 and the de�nition of absolute value we may conclude

that the absolute value of the imprecision of a given element and the imprecision
of its absolute value are both equal to its imprecision.

Proposition 3.6.5 Let (A;+;�) be an ordered assembly and x 2 A. Then

e(jxj) = e(x) = je(x)j :

The next result states the positive-de�niteness of the absolute value, i.e. the
absolute value of an element is a generalized zero if and only if the element is a
generalized zero.

Proposition 3.6.6 Let (A;+;�) be an ordered assembly and let x 2 A. Then
jxj = e(x) if and only if x = e(x).

Proof. Assume �rstly that jxj = e(x).
If e (x) � x,

e(x) = jxj = x:

If x < e (x),
e(x) = jxj = �x:
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Hence x = e(x), by Proposition 3.3.16.1.
Assume secondly that x = e(x). Then by Proposition 3.6.5

jxj = je(x)j = e(x):

Proposition 3.6.7 (Symmetry) Let (A;+;�) be an ordered assembly and
x; y 2 A. Then

jxj = j�xj :

Proof. If e(x) � �x then x � e (x) by Proposition 3.5.2 and j�xj = �x = jxj.
If �x < e(x) then e(x) < x by Proposition 3.5.2.2. Hence j�xj = �(�x) = x =
jxj.
Let R be an ordered ring and let x; y 2 R. Then jx� yj = 0 if and only if

x = y. This property is called identity of indiscernibles. We prove an adapted
version of this property within ordered assemblies.

Proposition 3.6.8 Let (A;+;�) be an ordered assembly and x; y; z 2 A. Then
jx� yj = e (z) if and only if x+ e (y) = y+ e (x). Moreover e (z) = e (x)+ e (y).

Proof. By Theorem 3.3.8 one has e (z) = e (jx� yj). By Proposition 3.6.5 it
holds that

e (jx� yj) = e (x� y) = e (x) + e (y) :

Hence e (z) = e (x) + e (y).
Suppose �rstly that jx� yj = e (z). Then it follows from Proposition 3.6.6

that
x� y = e (z) = e (x) + e (y) :

Hence x+ e (y) = y + e (x).
Suppose secondly that x+ e (y) = y + e (x). Then, using Proposition 3.6.5,

jx� yj = jx� y + e (y)j = je (x) + e (y)j
= e (x) + e (y) = e (z) :

3.6.2 Basic properties of the absolute value

Any element is bounded above by its absolute value and bounded below by the
inverse of its absolute value.

Proposition 3.6.9 Let (A;+;�) be an ordered assembly and x; y 2 A. Then

� jxj � x � jxj :
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Proof. If e(x) � x, then, �x � e(x). Then �x � e(x) � x and by re�exivity
and transitivity �x � x. Moreover, because e(x) � x, jxj = x and � jxj = �x.
Then

� jxj = �x � x = jxj :

If x < e (x), then jxj = �x and � jxj = �(�x). By Remark 3.5.2.2, e(x) �
�x Then

� jxj = �(�x) = x < e (x) � �x = jxj ,

and by transitivity one concludes the result.

Proposition 3.6.10 Let (A;+;�) be an ordered assembly and x; y 2 A. If y
is positive then jxj = y if and only if x = y or x = �y.

Proof. Let y be positive.
Suppose �rstly that jxj = y. If e(x) � x one has

x = jxj = y:

If x < e (x), then
�x = jxj = y:

Hence x = �y, by Proposition 3.3.13.2.
Suppose secondly that x = y or x = �y. In the �rst case one has

jxj = jyj = y;

because y is positive. In the second case, again because y is positive,

jxj = j�yj = jyj = y:

Proposition 3.6.11 Let (A;+;�) be an ordered assembly and x; y 2 A. Then

1. jxj � y if and only if x � y and �x � y.

2. y � jxj if and only if y � x or y � �x.

Proof. 1. Suppose �rstly that jxj � y.
If e(x) � x then �x � e(x). Hence

�x � e(x) � x = jxj � y.

By transitivity x � y and �x � y.
If x < e(x), then e(x) < �x. Then

x < e(x) < �x = jxj � y

Again by transitivity x � y and �x � y.
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Suppose secondly that x � y and �x � y. If e(x) � x, then

jxj = x � y:

If x < e(x), then
jxj = �x � y:

2. Suppose �rstly that y � jxj. If e(x) � x, then

y � jxj = x:

If x < e(x), then
y � jxj = �x:

Hence y � jxj ) y � x or y � �x.
Suppose secondly that y � x or y � �x. Assume �rstly that y � x. If

e(x) � x then
y � x = jxj :

If x < e(x) and y � x, then

y � x < e(x) � �x = jxj :

Assume now that y � �x. If e(x) � x one has

y � �x � e (x) � x = jxj :

If x < e (x)
y � �x = jxj :

Hence y � jxj.

3.6.3 Triangular inequalities

Proposition 3.6.12 (Triangular inequality) Let (A;+;�) be an ordered as-
sembly and x; y 2 A. Then jx+ yj � jxj+ jyj.

Proof. Using Proposition 3.6.9 and Proposition 3.5.8.1 one has

x+ y � jxj+ jyj : (3.9)

In order to prove that also � (x+ y) � jxj+ jyj we observe that also

� jxj � jyj � x+ y. (3.10)

By Proposition 3.5.8.1,

� jxj � jyj+ jxj+ jyj � x+ y + jxj+ jyj :

By Axiom 3.2.4
e(jxj) + e(jyj) � x+ y + jxj+ jyj ;
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and by Proposition 3.6.5

e(x) + e(y) � x+ y + jxj+ jyj :

Adding �x�y to both sides of the inequality and using Proposition 3.5.8.1 and
the compatibility with addition one has

�x� y � e(x) + e(y) + jxj+ jyj :

Then by Proposition 3.6.5,

�(x+ y) = �x� y � jxj+ jyj : (3.11)

From inequalities (3.9) and (3.11), using Proposition 3.6.11.1, one concludes

jx+ yj � jxj+ jyj .

Corollary 3.6.13 Let (A;+;�) be an ordered assembly and x; y; z 2 A. Then

jx� yj � jx� zj+ jz � yj :

Proof. Using Proposition 3.6.12 one has

jx� yj � jx� z + z � yj � jx� zj+ jz � yj :

Proposition 3.6.14 Let (A;+;�) be an ordered assembly and x; y 2 A. Then

jx+ e (y)j = jxj+ e (y) :

Proof. Assume �rstly that e (x) � e (y) then by Theorem 3.5.5 e (x) + e (y) =
e (x), hence also e (jxj) + e (y) = e (jxj), so

jx+ e (y)j = jxj = jxj+ e (jxj)
= jxj+ e (jxj) + e (y) = jxj+ e (y) .

Assume now that e (x) � e (y). We study two cases: e (x) � x and x < e (x).
In the �rst case one has e (x+ e (y)) = e (x) + e (y) � x+ e (y) by Proposition
3.5.8.1. Hence

jx+ e (y)j = x+ e (y) = jxj+ e (y) :
In the second case one has e (x) < �x. Then e (x)+e (y) � �x+e (y) by Propo-
sition 3.5.8.1. Then e (�x+ e (y)) = e (x) + e (y) � �x + e (y) = � (x+ e (y)).
Hence

jx+ e (y)j = � (x+ e (y)) = �x+ e (y) = jxj+ e (y) :

In a an ordered ring R the inequalities jxj � jyj � jx+ yj and jjxj � jyjj �
jx� yj hold for all x; y 2 R. We show that these inequalities also hold within
ordered assemblies. But �rst we need the following lemma.
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Lemma 3.6.15 Let (A;+;�) be an ordered assembly and x; y 2 A. Then

jx� yj+ e (y) = jx� yj+ e (x) = jx� yj : (3.12)

Proof. One has
e (jx� yj) = e (x� y) = e (x) + e (y) :

Hence
jx� yj = jx� yj+ e (x) + e (y) ;

which implies (3.12).

Proposition 3.6.16 Let (A;+;�) be an ordered assembly and x; y 2 A. Then

jxj � jyj � jx+ yj :

Proof. Using Proposition 3.6.7 and Proposition 3.6.12 one has

jxj � jx+ e (y)j = jx+ y � yj � jx+ yj+ j�yj = jx+ yj+ jyj .

Then, by compatibility with addition,

jxj � jyj � jx+ yj+ e(jyj):

Hence
jxj � jyj � jx+ yj ;

by Lemma 3.6.15.

Proposition 3.6.17 Let (A;+;�) be an ordered assembly and x; y 2 A. Then

jjxj � jyjj � jx� yj :

Proof. By Proposition 3.6.12

jxj � jx+ e (y)j = jx+ y � yj � jx� yj+ jyj

and
jyj � jy + e (x)j = jy + x� xj � jy � xj+ jxj :

Then, using symmetry,

jxj � jyj � jx� yj+ e (jyj) = jx� yj+ e (y)

and
jyj � jxj � jy � xj+ e (jxj) = jx� yj+ e (x) :

Hence
jxj � jyj � jx� yj ;

and
� (jxj � jyj) = jyj � jxj � jx� yj

by Lemma 3.6.15. By De�nition 3.6.1 and symmetry one concludes jjxj � jyjj �
jx� yj :
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Proposition 3.6.18 Let (A;+;�) be an ordered assembly and x; y 2 A. Then

e (x) + y = e (x), jyj � e (x) :

Proof. By Proposition 3.6.3 one only needs to show the converse implication.
If y is positive then jyj = y and the result follows from Theorem 3.5.10.
If y is negative then �y is positive by Proposition 3.5.3.2. Suppose �rstly

that jyj � e (x). Then
e (x)� y = e (x) ;

by Theorem 3.5.10. Then

e (x) + y = � (�e (x)� y) = � (e (x)� y) = �e (x) = e (x) :

3.7 Associations

In this section we introduce a second operation " � " called multiplication and
consider structures which are assemblies for both addition and multiplication.
This yields a structure called association which is meant to be a sort of nondis-
tributive ring with individualized neutral elements for both operations. We in-
vestigate to what extent the properties of rings remain valid within associations.
Axioms 3.2.18 and 3.2.20 allow us to gain the necessary tools to understand how
magnitudes behave with respect to multiplication. Indeed, with these additional
axioms we are able to show that a generalized unity multiplied by a magnitude
(generalized zero) is equal to a magnitude. This is related to the well-known
result, valid in rings, saying that 1:0 = 0. We also introduce Axiom 3.2.21 in
order to be able to calculate the magnitude of a unity e (u (x)). We show how to
compute the magnitude of an inverse e

�
x�1

�
. Furthermore we show (see The-

orem 3.7.19 below) that the magnitude of a unity, the magnitude of an inverse
and the product of a magnitude by a unity are strongly connected. Let R be a
ring and let x; y 2 R. It is well-known that if xy = 0 implies that x = 0 or y = 0
for all x; y 2 R one says that the ring has no zero divisors and call the ring
an integral domain. We show that an association is a sort of (nondistributive)
integral domain because associations have no generalized zero divisors.

3.7.1 Multiplicative assemblies

De�nition 3.7.1 A structure (A;+; e; s; �; u; d) is called an association if A
satis�es axioms 3.2.1-3.2.10.

The previous de�nition means that if (A;+; e; s; �; u; d) is an association both
(A;+; e; s) and (A�; �; u; d) are assemblies, where A� = fx 2 A : x 6= e (x)g, and
multiplication is both commutative and associative in A. If no confusion is
possible by abuse of language we say that A is an association.
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De�nition 3.7.2 Let A be an association and x 2 A. We say that x is zeroless
if x 6= e (x).

Because (A�; :; u; d) is an assembly, the multiplicative cancellation law holds
taking the following form.

Proposition 3.7.3 (Multiplicative cancellation law) Let A be an associa-
tion. Let x; y; z 2 A� be arbitrary. Then

xy = xz , u(x)y = u(x)z:

Results which hold for additive assemblies should also hold for multiplicative
assemblies. A list of those results is given in Proposition 3.7.5. However, to fully
justify those results one needs to ensure that x 6= e (x) whenever u (x) or d (x)
are considered. For example in Part 4 of Proposition 3.7.5 one needs to verify
that e (u (x)) 6= u (x). In order to prove all such veri�cations we assume from
now on Axiom 3.2.18. This axiom states, roughly speaking, that one can treat
scaled magnitudes just as magnitudes. The veri�cations mentioned above are
made in the following lemma.

Lemma 3.7.4 Let A be an association and let x; y 2 A�

1. u(x) 6= e(u(x)).

2. x�1 6= e(x�1).

3. �u(x) 6= e(�u(x)).

4. u(x) 6= e(y), for all y 2 A.

Proof. 1. Suppose that u(x) = e(u(x)). Then

x = xu(x) = xe(u(x)):

By Axiom 3.2.18, there is z such that x = e(z) and by Theorem 3.3.8, x = e(x).
Hence, if x 6= e(x), then u(x) 6= e(u(x)).
2. Suppose that x�1 = e(x�1). Then

u(x) = xx�1 = xe(x�1):

By Axiom 3.2.18 there is z such that u(x) = e(z). By Theorem 3.3.8 u(x) =
e(u(x)), in contradiction with Part 1.
3. By Part 1,

u(x) 6= e(u(x)):

By Proposition 3.3.16.1 and Axiom 3.2.4

�u(x) 6= e(u(x)) = e(�u(x)):

4. Suppose towards a contradiction that u (x) = e (y). Then x = e (u (x)),
by Theorem 3.3.8, in contradiction with Part 1.
By Lemma 3.7.4, because (A�; :; u; d) is an assembly, the following holds.
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Proposition 3.7.5 Let A be an association. For all x; y 2 A�

1. u (x)u (x) = u (x) :

2. u (xy) = u (x)u (y) :

3. u (u (x)) = u (x) :

4. u (x) = (u (x))�1

5.
�
x�1

��1
= x:

6. (xy)�1 = x�1y�1:

7. u
�
x�1

�
= (u (x))

�1
= u (x) :

8. x 6= u (x)) x 6= u (y) :

9. u (x)x�1 = x�1:

10. x 6= e(x)) x�1u(x) = x�1.

3.7.2 Symmetric of the product

Let R be a ring and x; y 2 R. A well-known ring property says that � (xy) =
(�x)y. From now on we assume Axiom 3.2.19 which links multiplication with
the inverse for addition in the same manner. We show other properties involving
multiplication and the inverse for addition which are also valid in rings.

Proposition 3.7.6 Let A be an association and let x; y 2 A: Then

1. (�x)y = (�y)x.

2. (�x)(�y) = xy.

Proof. 1. By Axiom 3.2.19 one has

(�x)y = �(xy) = �(yx) = (�y)x:

2. By Axiom 3.2.19 and Proposition 3.3.11

(�x)(�y) = �(x(�y)) = �((�y)x) = �(�(xy)) = xy:

Next proposition says that the product of a magnitude by a given element
is equal to the product of the magnitude by the inverse for addition of that
element. So, in a way, when one multiplies a given element by a magnitude the
sign of that element can be neglected.

Proposition 3.7.7 Let A be an association and let x; y 2 A: Then

e(y)(�x) = e(y)x:
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Proof. By Proposition 3.7.6.1 and Proposition 3.3.14

e(y)(�x) = �(e(y))x = e(y)x:

The following proposition shows that the usual relations between the in-
verse for addition, the inverse for multiplication and the unity are preserved in
associations.

Proposition 3.7.8 Let A be an association and let x 2 A be zeroless. Then

1. (�x)u(x) = �x.

2. (�x)x�1 = �u(x).

3. u(�x) = u(x)

4. �u(x) = (�u(x))�1

Proof. 1. Because x 6= e(x), by Axiom 3.2.19,

(�x)u(x) = �(xu(x)) = �x:

2. Because x 6= e(x), by Axiom 3.2.19

(�x)x�1 = �(xx�1) = �u(x):

3. Using Proposition 3.7.5 and Proposition 3.7.6.2

u (�x) = u (�x)u (�x)
= u ((�x) (�x)) = u (xx)

= u (x)u (x) = u (x) :

4. By Lemma 3.7.4.3 one has �u(x) 6= e(�u(x)), then using Part 3, Propo-
sition 3.7.5 and Proposition 3.7.6.2

(�u(x))(�u(x))�1 = u(�u(x)) = u(u(x))

= u(x) = u(x)u(x)

= (�u(x))(�u(x))

Hence by cancellation

u (�u (x)) (�u(x))�1 = u(�u(x))(�u(x))

and one concludes that
(�u(x))�1 = �u(x):

The inverse for addition of the inverse for multiplication is equal to the
inverse for multiplication of the inverse for addition.
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Proposition 3.7.9 Let A be an association and let x 2 A be zeroless. Then

�
�
x�1

�
= (�x)�1:

Proof. By Proposition 3.7.8.4

�(x�1) = �(x�1u(x)) = x�1(�u(x))
= x�1(�u(x))�1 = (x(�u(x)))�1

= (�(xu(x)))�1 = (�x)�1:

3.7.3 Neutral element of product

We assume now Axiom 3.2.20. This axiom states, according to the intended in-
terpretation, that the imprecision of the product is equal to the maximum of the
scaled imprecisions. This enables us to connect magnitudes with multiplication.
If an element is not a magnitude then its square (element multiplied by

itself) is also not a magnitude.

Proposition 3.7.10 Let A be an association and let x 2 A�, then

x2 6= e
�
x2
�
:

Proof. Suppose that x 6= e (x) and x2 = e
�
x2
�
. Then, by Axiom 3.2.20

x2 = e
�
x2
�
= xe (x) + e (x)x = xe (x) :

Hence by cancellation and Axiom 3.2.18, for some z 2 A�

x = e (x)u (x) = e (z) :

Then x = e (x) by Theorem 3.3.8 in contradiction with our initial assumption.
Hence x2 6= e

�
x2
�
.

Proposition 3.7.11 Let A be an association and let x; y 2 A. If x = e(x) then
e(x)y = e(xy).

Proof. Suppose x = e (x). Then

e (xy) = e (e (x) y) = e (x) y:

We intend to prove that the imprecision of an element multiplied by its unity
is equal to the imprecision. This generalizes in a way the classical result 1:0 = 0
which is fundamental in rings. In order to do so we need the following lemmas.

Lemma 3.7.12 Let A be an association and let x 2 A�, then

e(u(x))u(x) = e(u(x)).
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Proof. Using Axiom 3.2.20 and Proposition 3.7.5.1 one derives

e(u(x))u(x) = e(u(x))u(x) + u(x)e(u(x))

= e(u(x)u(x))

= e (u(x)) :

Lemma 3.7.13 Let A be an association. If x 2 A� then e(x) = e(x)u(x) +
xe(u(x)):

Proof. Suppose that x 6= e(x). Then, by Axiom 3.2.8 and Axiom 3.2.20

e (x) = e (xu (x)) = e (x)u (x) + xe (u (x)) :

3.7.4 Neutral element of unity

From now on we assume Axiom 3.2.21. This axiom allows to calculate the
imprecision of the unity of an element in terms of the imprecision and the inverse
for multiplication of that element. This connects additive and multiplicative
functions in a strong way. Indeed, we are now able to show that the generalized
unity of an element multiplied by the generalized zero of that element is equal
to the generalized zero.

Theorem 3.7.14 Let A be an association. Let x 2 A�, then

e(x) = e(x)u(x):

Proof. Suppose that x 6= e(x). Then by Lemma 3.7.13 one has

e(x) = e(x)u(x) + xe(u(x)).

Then by Axiom 3.2.21 one has

e(x) = e(x)u(x) + xe(x)x�1 = e(x)u(x) + e(x)u(x).

Hence
e(x) = e(x)u(x):

Corollary 3.7.15 Let A be an association. Let x 2 A�, then

xe (u (x)) = e (x) :

Proof. By Axiom 3.2.21 and Theorem 3.7.14

xe(u(x)) = xe(x)x�1 = e(x)u(x) = e (x) :

In the following we explore the connection between magnitudes and division.
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Lemma 3.7.16 Let A be an association and let x 2 A�. Then

e(x)x�1 = e(x)x�1 + xe(x�1):

Proof. Using Axiom 3.2.20 one has

e(u(x)) = e(xx�1) = e(x)x�1 + xe(x�1).

Hence e(x)x�1 = e(x)x�1 + xe(x�1), by Axiom 3.2.21.

Proposition 3.7.17 Let A be an association and let x 2 A�. Then

e(u(x))x�1 = e(x�1)u(x):

Proof. Observe that by Lemma 3.7.4.2 x 6= e(x) implies x�1 6= e(x�1): Putting
y = x�1 and using Proposition 3.7.5.5 one has

e(x�1)x = e(x�1)x+ x�1e(x): (3.13)

By formula (3.13) and Axiom 3.2.20 one has

e(x�1)u(x) = e(x�1)xx�1 =
�
e(x�1)x+ x�1e(x)

�
x�1 (3.14)

= e(xx�1)x�1 = e(u(x))x�1.

In the next proposition we show a relation between the magnitude of the
inverse for multiplication of an element and the magnitude of the element.

Proposition 3.7.18 Let A be an association and let x 2 A�. Then

e(x�1) = e(x)x�1x�1:

Proof. Suppose that x 6= e(x). Then using Axiom 3.2.20

e(x�1) = e(x�1u(x)) = e(x�1)u(x) + x�1e(u(x)): (3.15)

Combining (3.15) and (3.14), one has

e(x�1) = e(u(x))x�1 + e(u(x))x�1 = e(u(x))x�1.

Hence e(x�1) = e(x)x�1x�1, by Axiom 3.2.21.
We show that Theorem 3.7.14, Axiom 3.2.21 and Proposition 3.7.18 are

equivalent.

Theorem 3.7.19 Let A be an association. Suppose x 2 A�: Then the following
are equivalent

1. e(u(x)) = e(x)x�1:

2. e(x)u(x) = xe(u(x)) = e (x) :
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3. e(x�1) = e(x)x�1x�1.

Proof. By Proposition 3.7.18 one has (1))(3):
(2))(1). If e(x)u(x) = xe(u(x)), then

e(x)u(x)x�1 = xe(u(x))x�1:

Hence by Proposition 3.7.5.9

e(x)x�1 = e(u(x))u(x)

and by Lemma 3.7.12,
e(x)x�1 = e(u(x)):

(3))(2). If e(x�1) = e(x)x�1x�1, by Axiom 3.2.20 one has

xe(u(x)) = xe(xx�1) = x
�
xe(x�1) + e(x)x�1

�
= x

�
xe(x)x�1x�1 + e(x)x�1

�
= x

�
e(x)u(x)x�1 + e(x)x�1

�
= x

�
e(x)x�1 + e(x)x�1

�
.

Hence e(x)u(x) = xe(u(x)) = e (x), by Corollary 3.7.15.
The product of an element by the magnitude of its inverse for multiplication

is equal to the product of the magnitude by the inverse for multiplication.

Proposition 3.7.20 Let A be an association and let x 2 A�, then

e(x�1)x = e(x)x�1 = e (u (x)) :

Proof. Suppose that x 6= e(x). Then by Axiom 3.2.21 and Theorem 3.7.19 one
has

e(x�1)x = e(x)x�1x�1x = e(x)x�1u(x) = e(x)x�1 = e (u (x)) .

In some rings (integral domains) the product of two nonzero elements is
always nonzero. Associations are a sort of (nondistributive) integral domains in
the sense that they have no generalized zero divisors.

Theorem 3.7.21 Let A be an association and let x; y 2 A. Then xy = e (xy)
if and only if x = e (x) or y = e (y).

Proof. Suppose �rstly that x = e (x) or y = e (y).
If x = e (x), then xy = e (x) y and by Axiom 3.2.18 there is z such that

xy = e (z). By Theorem 3.3.8 we conclude that xy = e (xy).
If y = e (y) the proof is analogous. Hence if x = e (x) or y = e (y), then

xy = e (xy).
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Suppose secondly, towards a contradiction, that x 6= e (x) and y 6= e (y) and
xy = e (xy). We may assume, without loss of generality that u (x)u (y) = u (x).
Then

u (x) = u (x)u (y) = xx�1yy�1

= xyx�1y�1 = e (xy)x�1y�1.

By Axiom 3.2.18 there is z such that

e (z) = e (xy)x�1y�1:

Then by Proposition 3.3.7

e (xy)x�1y�1 = e
�
e (xy)x�1y�1

�
= e (u (x))

and one concludes that u (x) = e (u (x)) in contradiction with Proposition
3.7.4.1. Hence if xy = e (xy), then x = e (x) or y = e (y).

3.8 Ordered associations

In this section we consider associations equipped with a total order relation.
We observe that an association is totally ordered and compatible with the op-
erations if there is an order relation "�" satisfying Axioms 3.2.11-3.2.17. The
compatibility with multiplication is ensured by Axiom 3.2.17.
Results in this section are in analogy with results of ordered rings. We

prove that if x and y are both positive then their product is also positive.
This implies that all squares (i.e. the multiplication of an element by itself)
are positive. Like what happens in ordered rings, the order relation is always
preserved under addition and is preserved under multiplication (in general) only
when multiplying by positive elements, even by multiplication by magnitudes.

3.8.1 Preservation properties

Let R be an ordered ring and let x; y; z; w 2 R such that y; z � 0. It is well-
known that if x � y and z � w then xz � yw. In ordered associations this
property remains valid.

Proposition 3.8.1 Let A be an ordered association and let x; y; z 2 A such
that y and z are both positive. If x � y and z � w then xz � yw.

Proof. Suppose that x � y and z � w. Then by compatibility with multiplica-
tion xz � yz and yz � yw. Hence xz � yw by transitivity.
The order relation is preserved under scaling.

Proposition 3.8.2 Let A be an ordered association and let x; y; z 2 A. If
e(y) � e(z) then xe(y) � xe(z).
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Proof. If e(x) � x, by Axiom 3.2.17 xe(y) � xe(z):
If x < e(x), by Proposition 3.5.3.2 e(�x) = e (x) < �x. Hence �xe(y) �

�xe(z) by compatibility with multiplication. By Proposition 3.7.7 xe(y) �
xe(z). We conclude that for all x, xe(y) � xe(z).

Lemma 3.8.3 Let A be an ordered association and let x; y 2 A. Then

e(x)e(y) � xe(y):

Proof. If e(x) � x, the result follows by compatibility with multiplication
because e(y) � e(y).
If x < e(x), by Proposition 3.5.3.2, e(x) < �x. Then, by Proposition 3.7.7

and Axiom 3.2.17
e(x)e(y) � �xe(y) = xe(y).

The magnitude of the product of two elements is larger than the product of
the magnitudes of its elements.

Proposition 3.8.4 Let A be an ordered association and let x; y 2 A. Then

e(x)e(y) � e(xy):

Proof. By Lemma 3.8.3, e(x)e(y) � xe(y) and e(x)e(y) � ye(x). Hence by
Proposition 3.5.2.1,

e(x)e(y) = e(x)e(y) + e(x)e(y) � xe(y) + ye(x) = e(xy).

In ordered rings the product of two positive elements is also positive. This
implies that all squares (i.e. an element multiplied by itself) are positive (larger
than or equal to zero). We show that remains true within ordered associations
and conclude that all squares are positive (larger than or equal to its magnitude).

Theorem 3.8.5 Let A be an ordered association and let x; y 2 A. If x and y
are both positive then e(x)e(y) � e (xy) � xy.

Proof. Suppose that x and y are both positive. By Axiom 3.2.17, xe(y) � xy
and ye(x) � xy. Then by Proposition 3.5.2.1 and Axiom 3.2.20,

e(xy) = xe(y) + ye(x) � xy + xy.

By adding �(xy) to both sides of the equation one has

�xy � xy.

Then by Proposition 3.5.4,
e(xy) � xy.

Hence
e(x)e(y) � xy,

by Proposition 3.8.4 and transitivity.
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Corollary 3.8.6 Let A be an ordered association and let x 2 A. Then e(x2) �
x2. Moreover, equality holds if and only if x = e (x).

Proof. We show �rstly that e(x)2 � x2. If x is positive, by Theorem 3.8.5,
e(x)2 � x2. If x is negative, by Proposition 3.5.2.2

e(�x) = e(x) � �x.

Then
e(x)e(x) = e(�x)e(�x) � �x(�x) = x2,

by Theorem 3.8.5 and Proposition 3.7.6.2. Hence e(x)2 � x2, by Axiom 3.2.14.
By compatibility with addition and Proposition 3.8.4

e(x)2 + e(x2) � x2 + e(x)2 = x2:

Hence e(x2) � x2, by Theorem 3.5.5.
If x = e (x) then

x2 = x2 + e
�
x2
�
= e

�
x2
�
+ e(x)2 = e

�
x2
�
;

by Proposition 3.8.4.
If x 6= e (x), by Proposition 3.7.10 one has x2 6= e

�
x2
�
. Hence equality holds

if and only if x = e (x).

3.8.2 Order and division

Let R be an ordered ring and let x 2 R. It is well-known that if x > 0 then
x�1 > 0. An adapted version of this result is valid within ordered associations.
Indeed, we show that the inverse for multiplication of a positive element is also
positive.

Proposition 3.8.7 Let A be an association and let x 2 A. If e (x) < x then
e
�
x�1

�
< x�1.

Proof. Suppose that e (x) < x. By compatibility with multiplication and
Theorem 3.8.5

xe
�
x�1x�1

�
� xx�1x�1 = u (x)x�1 = x�1:

Then by Axiom 3.2.20

u (x) e
�
x�1

�
= xe

�
x�1

�
x�1

= x
�
e
�
x�1

�
x�1 + x�1e

�
x�1

��
= xe

�
x�1x�1

�
� x�1:

Hence e
�
x�1

�
� x�1, by Theorem 3.7.14 because u (x) = u

�
x�1

�
. Because

x 6= e (x), by Lemma 3.7.4.2 one has x�1 6= e
�
x�1

�
. Hence e

�
x�1

�
< x�1.

The unity function is always (strictly) positive.



78 CHAPTER 3. INDIVIDUALIZED NEUTRAL ELEMENTS

Proposition 3.8.8 Let A be an ordered association and let x 2 A�. Then

e (u (x)) < u (x) :

Proof. By Lemma 3.7.4.1 one has u (x) 6= e (u (x)). To show that e (u (x)) �
u (x) we consider the cases: e (x) � x and x < e (x). On the �rst case, by
compatibility with multiplication and Axiom 3.2.21

e (u (x)) = e (x)x�1 � xx�1 = u (x) :

On the second case e (x) � �x and e
�
x�1

�
< x�1 by Proposition 3.5.3.2 and

Proposition 3.8.7. Then, using compatibility with multiplication, Proposition
3.7.7 and Proposition 3.7.20

e (u (x)) = xe
�
x�1

�
= �xe

�
x�1

�
� (�x)

�
�x�1

�
= xx�1 = u (x) :

Corollary 3.8.9 Let A be an ordered association and let x 2 A�. Then

1. If u (x) � x then e (x) � x.

2. e (x) < u (x).

Proof. 1. Put y = u (x) in Proposition 3.5.8.3, because u (x) is positive by
Proposition 3.8.8.
2. Put x = u (x) in Part 1. Then e (x) � u (x). Hence e (x) < u (x), by

Lemma 3.7.4.4.
It is well-known that in ordered rings when multiplying by a negative element

inequalities are not preserved. Indeed, let R be an ordered ring and let x; y; z 2
R. If x < 0 and y � z then xy � xz. In ordered associations this property is
somewhat modi�ed in order to take into account the magnitudes of the products
of the elements.

Proposition 3.8.10 Let A be an ordered association and let x; y; z 2 A. Sup-
pose that y � z. If x � e (x) then xz + e(xy) � xy + e(xz). Moreover, if
x = e (x) then xy � xz.

Proof. Suppose that y � z. If x � e (x), then e(�x) = e (x) � �x. By
compatibility with multiplication

(�x) y � (�x) z.

Then, by Axiom 3.2.19,
� (xy) � � (xz) .

and by (3.5) one concludes that

xz + e(xy) � xy + e(xz).

If x = e (x), by compatibility with multiplication e (x) y � e (x) z. Hence
xy � xz.
Let R be an ordered ring and let x 2 R. One has x � 1 if and only if x�1 � 1.

In ordered associations an adapted form of this property remains valid.
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Proposition 3.8.11 Let A be an ordered association and let x 2 A�. Then

1. If u(x) � x then x�1 � u(x).

2. If e(x) < x and x � u(x) then u(x) � x�1.

Proof. 1. Suppose that u(x) � x. Then by Corollary 3.8.9.1 one has e (x) � x
and then e(x�1) � x�1, by Proposition 3.8.7. Hence

x�1 = x�1u(x) � xx�1 = u (x) ;

by Axiom 3.2.17.
2. Suppose that e(x) < x and x � u(x). Then e(x�1) � x�1, by Proposition

3.8.7. Hence
u (x) = xx�1 � u(x)x�1 = x�1;

by Axiom 3.2.17.

Proposition 3.8.12 Let A be an ordered association and let x 2 A�. If e
�
x�1

�
�

x�1 � x then e
�
x�1

�
� e (x).

Proof. Suppose e
�
x�1

�
� x�1 � x. Using Axiom 3.2.17

x�1x�1 � xx�1 = u (x) :

By Proposition 3.7.18, Axiom 3.2.17 and Theorem 3.7.14 one has

e
�
x�1

�
= x�1x�1e (x) � u(x)e(x) = e (x) .

3.8.3 Absolute value of product

We show that the product of a magnitude by an element is equal to the product
of the magnitude by the absolute value of the element. We also prove that the
absolute value has the usual properties for multiplication and division.

Proposition 3.8.13 Let A be an ordered association and let x; y 2 A. Then
e (x) jyj = e (x) y.

Proof. If e (y) � y then jyj = y. Hence e (x) jyj = e (x) y.
If y < e (y) then jyj = �y. By Proposition 3.7.6.1 and Proposition 3.3.14

e (x) jyj = e (x) (�y) = � (e (x)) y = e (x) y:

Because the order relation is compatible with multiplication, the absolute
value is linear for multiplication.
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Proposition 3.8.14 Let A be an ordered association and let x; y 2 A. Then

jxyj = jxj jyj :

Proof. If x and y are both positive by compatibility with multiplication e(xy) �
xy. Then

jxyj = xy = jxj jyj :

If x and y are both negative then e(x) � �x and e(y) � �y: Then by
compatibility with multiplication, e(xy) � (�x) (�y) = xy. Hence

jxyj = xy = (�x) (�y) = j�xj j�yj :

If x is positive and y is negative, then by Proposition 3.6.7, Axiom 3.2.19
and the de�nition of absolute value,

jxyj = j� (xy)j = jx(�y)j
= x(�y) = jxj j�yj = jxj jyj :

The case where y is positive and x is negative is analogous to the previous
case.
The absolute value of the quotient of two elements is the quotient of the

absolute values of each element.

Proposition 3.8.15 Let A be an ordered association and let x; y 2 A. If y 6=
e(y) then ��xy�1�� = jxj jyj�1 :
Proof. By Proposition 3.8.14 we only need to show that

��y�1�� = jyj�1.
If e (y) < y then e

�
y�1

�
< y�1 by Proposition 3.8.7. Hence��y�1�� = y�1 = jyj�1 :

If y < e (y) then y�1 < e
�
y�1

�
by Proposition 3.8.7 and Proposition 3.7.9.

Hence ��y�1�� = � �y�1� = (�y)�1 = jyj�1 .

3.9 Distributivity

In this section we connect addition with multiplication via an adapted distrib-
utivity axiom. We recall that usual distributivity holds if given any elements
x; y; z one has x (y + z) = xy+xz. Roughly speaking the adapted distributivity
axiom states that there is a price to pay when distributivity is used. The price
is that a certain imprecision is added. However this imprecision can be easily
calculated and depends only on y; z and the imprecision of x.
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Nevertheless, in some elementary cases distributivity can be deduced using
only the axioms for ordered associations. We start by giving some examples of
these elementary properties.
We then assume the completion axioms. By assuming these axioms we are

able to show that the elements m and u given by Axioms 3.2.23 and 3.2.8 are
unique and have properties similar to those of 0 and 1 in rings. Then we consider
precise elements. Precise elements are such that their magnitude is minimal.
We show that the set of precise elements of an ordered association on which
the completion axioms are valid is closed under addition, multiplication and
inversion. We show that the unity of a precise element is also precise.
We de�ne a structure called solid which is roughly speaking an ordered �eld

with individualized neutral and unity elements. This means that results in
this section are in analogy with results valid in �elds. So, a solid is a structure
satisfying Axioms 3.2.1-3.2.22. By assuming the distributivity axiom we are able
to prove that subdistributivity always holds and that the set of precise elements
of a solid is a �eld. This means in particular that distributivity always holds for
precise elements. We then give a complete characterization of the distributive
law (3.18). We also show that in the case where y and z are both positive or
both negative and in the case where y = e (y) or z = e (z) distributivity holds.
We �nish by showing that the distributivity axiom and the characterization

of distributivity (3.18) are indeed equivalent.

3.9.1 Elementary cases

As mentioned above we start by giving some elementary distributive properties
without recurring to the distributivity axiom.

Proposition 3.9.1 Let A be an association and let x; y 2 A. Then

1. e(x)y = e(x)y + e(x)e(y):

2. e(x)(y + e(y)) = e(x)y + e(x)e(y):

3. If x 2 A�, then x(u(x) + e(x)x�1) = xu(x) + xe(x)x�1:

Proof. 1. By Axiom 3.2.3

e(x)y = e(x)y + e (e (x) y) :

Then by Axiom 3.2.20 and Proposition 3.3.7

e(x)y = e (x) y + e (e (x)) y + e (x) e (y)

= e (x) y + e (x) y + e (x) e (y)

and by Proposition 3.3.6.1

e(x)y = e (x) y + e (x) e (y) :
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2. By Part 1 one has

e(x)(y + e(y)) = e(x)y = e(x)y + e(x)e(y).

3. Suppose that x 6= e(x). On one hand, using Axiom 3.2.21,

x(u(x) + e(x)x�1) = x(u(x) + e(u(x)))

= xu(x)

= x:

On the other hand, by Proposition 3.7.14,

xu(x) + xe(x)x�1 = x+ e(x)u(x)

= x+ e(x)

= x:

Hence
x(u(x) + e(x)x�1) = xu(x) + xe(x)x�1:

Distributivity holds in the case where y and z are both magnitudes.

Proposition 3.9.2 Let A be an ordered association and let x; y; z 2 A. Then

x (e(y) + e(z)) = xe(y) + xe(z):

Proof. We may suppose without loss of generality that e(z) � e(y). Then by
Theorem 3.5.5

e(y) + e(z) = e(y). (3.16)

We prove �rstly that e(y)x+ e(z)x = e(y)x.
By Proposition 3.8.2 one has e(z)x � e(y)x. Then by Axiom 3.2.18 and

Theorem 3.5.5
e(y)x+ e(z)x = e(y)x. (3.17)

Hence by (3.16) and (3.17)

x (e(y) + e(z)) = xe(y) = xe(y) + xe(z).

An interesting special case of the previous proposition is that distributivity
holds if all the elements are magnitudes.

Corollary 3.9.3 Let A be an ordered association and let x; y; z 2 A. Then

e(x) (e(y) + e(z)) = e(x)e(y) + e(x)e(z):

Proposition 3.9.4 Let A be an ordered association and let x; y; z 2 A. If
e(z) � e(y) then x(y + e(z)) = xy + xe(z).
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Proof. Suppose that e(z) � e(y). Then by Theorem 3.5.5

x(y + e(z)) = x(y + e(y) + e(z))

= x(y + e(y)) = xy.

Now xe (z) � xe (y) by Proposition 3.8.2 and xe (y)+xe (z) = xe (y) by Theorem
3.5.5. Then using Axiom 3.2.20

xy + xe(z) = xy + e(xy) + xe(z)

= xy + e(x)y + xe(y) + xe(z)

= xy + e(x)y + xe(y)

= xy + e(xy) = xy.

Hence x(y + e(z)) = xy + xe(z).

Corollary 3.9.5 Let A be an ordered association and let x; y; z 2 A. Then

xy = x(y + e(y)) = xy + xe(y):

3.9.2 Completion Axioms

In this section we assume that A is an ordered association on which the com-
pletion axioms are also valid. We prove unicity of the elements m and u given
by Axioms 3.2.23 and 3.2.8 and call them zero and one respectively. Then we
prove that zero has the expected properties concerning the order relation and
multiplication.

Proposition 3.9.6 Let x 2 A. Then there is exactly one m such that x+m = x
and exactly one u such that xu = x.

Proof. Suppose that there are m and m0 such that, for all x, x +m = x and
x+m0 = x. Then m+m0 = m and m0 +m = m0. Hence m = m0.
Suppose now that there are u and u0 such that, for all x, xu = x and xu0 = x.

Then u:u0 = u and u0u = u0. Hence u = u0.

De�nition 3.9.7 We call zero the unique element m such that, for all x, x+
m = x and it will be denoted by 0 and one the unique element u such that, for
all x, xu = x and it will be denoted by 1:

In the following proposition we show some elementary properties of the ele-
ments 0 and 1.

Proposition 3.9.8 Let x 2 A. Then

1. 0 < 1.

2. 0 � e (x).
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3. e (0) = 0:

4. u (1) = 1.

5. If 0 � x and 0 � y, then 0 � x+ y.

6. If x � 0 and y � 0, then x+ y � 0.

7. �0 = 0.

8. If y � z and 0 � x, then yx � zx.

9. If 0 � x then e (x) � x.

Proof. 1. This is an immediate consequence of Corollary 3.8.9.2.
2. By Axiom 3.2.23,

e (x) + 0 = e (x) .

By Axiom 3.2.16 one has 0 � e (x).
3. By Axiom 3.2.23 and Proposition 3.3.6.2

e (x) = e (x+ 0) = e (x) + e (0) .

Then
x+ e (0) = x+ e (x) + e (0) = x+ e (x) = x.

Hence
e (0) = 0;

by Proposition 3.9.6.
4. By Axiom 3.2.25 and Proposition 3.7.5.2

u (x) = u (x:1) = u (x)u (1) :

Then
xu (1) = xu (x)u (1) = xu (x) = x:

Hence
u (1) = 1;

by Proposition 3.9.6.
5. Suppose that 0 � x and 0 � y. Then by Proposition 3.5.8.1

0 = 0 + 0 � x+ y:

6. Suppose that x � 0 and y � 0. Then by Proposition 3.5.8.1

x+ y � 0 + 0 = 0:

7. Using Part 3 and Proposition 3.3.14

�0 = �e (0) = e (0) = 0.

8. Directly from Axiom 3.2.17 and Part 3.
9. Suppose that 0 � x. Then e (x) = 0 + e (x) � x+ e (x) = x by compati-

bility with addition.
We prove that zero is the absorbing element for multiplication.
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Proposition 3.9.9 Let x 2 A. Then

x0 = 0:

Proof. By Proposition 3.9.8.3 and Proposition 3.9.4, for all x

x (1 + 0) = x1 + x0

Hence
x = x+ x0

for all x. Then, x0 = 0, for all x, by Proposition 3.9.6.

3.9.3 Precise elements

In this section we suppose that A is an ordered association such that the com-
pletion axioms are also valid.

De�nition 3.9.10 If x 2 A is such that e (x) = 0 we call x precise.

By Proposition 3.9.8.3, the element 0 is precise. We show that the element
1 is also precise.

Proposition 3.9.11 In A one has

e (1) = 0:

Proof. Let x 2 A. One has

x (1 + e (1)) = x1 = x:

By Proposition 3.9.4

x (1 + e (1)) = x1 + xe (1) = x+ xe (1) :

Hence x = x + xe (1). Then by Proposition 3.9.6 one has xe (1) = 0. Putting
x = 1, one obtains 1e (1) = 0. Hence e (1) = 0, by Axiom 3.2.25.
Precise numbers are closed under addition, multiplication and inversion. The

unity of a precise element is also precise.

Proposition 3.9.12 Let a; b 2 A be precise. Then a + b, ab are precise. If
a 6= 0 then u (a) and a�1 are also precise.

Proof. Since a and b are precise, e (a) = e (b) = 0. Then,

e (a+ b) = e (a) + e (b)

= 0 + 0

= 0:
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Hence a+ b is precise. By Axiom 3.2.20 and Proposition 3.9.9

e (ab) = e (a) b+ ae (b)

= 0b+ a0

= 0 + 0

= 0:

Hence ab is precise. Suppose that a 6= 0. Then by Axiom 3.2.21 and Proposition
3.9.9

e (u (a)) = e (a) a�1 = 0a�1 = 0.

Hence u (a) is precise. By Proposition 3.7.18 and Proposition 3.9.9

e
�
a�1

�
= e (a) a�1a�1 = 0a�1a�1 = 0.

Hence a�1 is precise.

Proposition 3.9.13 If a 2 A� is precise, then u (a) is precise.

Proof. By Axiom 3.2.21, Lemma 3.7.4.2 and Proposition 3.9.9

e (u (a)) = e (a) a�1 = 0a�1 = 0.

Then u (a) is precise.

3.9.4 Solids

In this section we will assume all the axioms presented in Section 3.2. This
yields a structure called solid. A solid is then a sort of semi-distributive ordered
�eld with individualized neutral elements for both addition and multiplication.
For this matter the results on this section will be related to �eld properties. In
solids it is possible to completely characterize the distributivity property in a
way similar to Theorem 2.4.6. So, the main result in this section is a criterion for
distributivity given in Theorem 3.9.19. We show that distributivity holds when
multiplying by a precise element and that the set of precise elements of a solid is
a �eld. We prove the subdistributivity of multiplication over addition. We also
prove that any unity multiplied by any magnitude is equal to the magnitude.
We �nish by showing that the criterion for distributivity given by formula (3.18)
of Theorem 3.9.19 is equivalent to Axiom 3.2.22.

De�nition 3.9.14 A structure (A;+; e; s; �; u; d) is called a solid if A satis�es
axioms 3.2.1-3.2.27.

De�nition 3.9.15 A zeroless precise element of a solid is called non-zero.

Distributivity always holds when multiplying by a precise number.

Theorem 3.9.16 Let A be a solid. Let x; y; a 2 A such that a is precise. Then

a (x+ y) = ax+ ay:



3.9. DISTRIBUTIVITY 87

Proof. By Proposition 3.9.9

e (a)x+ e (a) y = 0 + 0 = 0:

Then, by Axiom 3.2.22,

ax+ ay = a (x+ y) + e (a)x+ e (a) y = a (x+ y) :

Theorem 3.9.17 The set of precise elements of a solid A is a �eld.

Proof. The theorem follows from Theorem 3.9.16 and Proposition 3.9.12.

Theorem 3.9.18 (Subdistributivity) Let A be a solid and let x; y; z 2 A.
Then

x (y + z) � xy + xz:

Proof. Using Proposition 3.5.9 one has

x (y + z) � x (y + z) + e (x) y + e (x) z = xy + xz:

The main goal of this section is to show the following theorem.

Theorem 3.9.19 (Distributivity criterion) Let A be a solid and let x; y; z 2
A be zeroless. Then

xy + xz = x (y + z), e (x) (y + z) = e (x) y + e (x) z _R (x) � R (y) +R (z) :
(3.18)

De�nition 3.9.20 The relative uncertainty of x, noted R (x) is de�ned as fol-
lows: if x 6= e (x), then R(x) = e (u (x)). If x = e (x), then R (x) = M , where
M is given by Axiom 3.2.24.

Lemma 3.9.21 Let A be a solid and let x; y 2 A such that x 6= e (x) and
y 6= e (y). If R (x) � R (y) then e (x) y � e (y)x.

Proof. Suppose that R (x) � R (y). Then

e (x)x�1 = e (u (x)) � e (u (y)) = e (y) y�1:

By Proposition 3.8.2

e (x)u (x) y � e (y) y�1xy = e (y)u (y)x:

Then e (x) y � e (y)x, by Theorem 3.7.14.

Lemma 3.9.22 Let A be a solid and let x; y; z 2 A. If e (x) (y + z) 6= e (x) y +
e (x) z, then e (x) y = e (x) z:



88 CHAPTER 3. INDIVIDUALIZED NEUTRAL ELEMENTS

Proof. Suppose e (x) (y + z) 6= e (x) y + e (x) z. Then e (x) (y + z) < e (x) y +
e (x) z, by Theorem 3.9.18. We may assume, without loss of generality that
jyj � jzj. Then by Proposition 3.8.13 and compatibility with multiplication

e (x) y = e (x) jyj � e (x) jzj = e (x) z:

Hence
e (x) y � e (x) z; (3.19)

so e (x) y + e (x) z = e (x) z, by Theorem 3.5.5 and we conclude that

e (x) (y + z) < e (x) z: (3.20)

In order to show that e (x) z � e (x) y we prove �rstly that y < e (y). Suppose
towards a contradiction that e (y) � y. Then by compatibility with addition
and multiplication

e (x) z � e (x) (z + e (y)) � e (x) (z + y) :

In contradiction with (3.20). Hence jyj = �y.
Secondly we show that jyj > e (z). Suppose towards a contradiction that

jyj � e (z). Then

jyj+ e (z) = �y + e (z) � e (z) + e (z) = e (z) .

On the other hand

jyj+ e (z) = �y + e (z) � e (y) + e (z) � e (z) ;

because y < e (y). Hence jyj+ e (z) = e (z). But then

e (x) (y + z) = e (x) (�y � z) = e (x) (jyj+ e (z)� z)
= e (x) (e (z)� z) = e (x) (�z) = e (x) z;

in contradiction with (3.20). Hence jyj > e (z).
Thirdly we show that y + y < �z. Suppose towards a contradiction that

�z � y + y. Using Theorem 3.9.18 and (3.20) one has

e (x) z = e (x) (z + z � z) � e (x) (z + z + y + y)
� e (x) (y + z) + e (x) (y + z) = e (x) (y + z) < e (x) z;

which is a contradiction. Hence y + y < �z. Then by (3.5)

z + e (y) � �y � y + e (z) :

Then using Proposition 3.5.9 and Theorem 3.9.18

e (x) z � e (x) (z + e (y))

� e (x) (�y � y + e (z))
� e (x) (�y � y � y) � e (x) y,
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because y + y < �z and �y > e (z). Hence

e (x) z � e (x) y: (3.21)

Combining (3.19) and (3.21) one derives that e (x) z = e (x) y.
The following lemma is the converse implication of Theorem 3.9.19.

Lemma 3.9.23 Let A be a solid and let x; y; z 2 A be zeroless. If e (x) (y + z) =
e (x) y + e (x) z _R (x) � R (y) +R (z), then xy + xz = x (y + z).

Proof. We start by showing that if e (x) (y + z) = e (x) y+e (x) z, distributivity
holds. Using Axiom 3.2.20, one has

xy + xz = x (y + z) + e (x) y + e (x) z

= x (y + z) + e (x (y + z)) + e (x) (y + z)

= x (y + z) + xe (y + z) + e (x) (y + z) + e (x) (y + z)

= x (y + z) + xe (y + z) + e (x) (y + z)

= x (y + z) + e (x (y + z))

= x (y + z) :

Suppose now that R (x) � R (y) + R (z). We may suppose that e (x) (y + z) 6=
e (x) y+ e (x) z. Then e (x) y = e (x) z by Lemma 3.9.22 and e (x) y � e (y)x by
Lemma 3.9.21. Hence

xy + xz = x (y + z) + e (x) y + e (x) z

= x (y + z) + e (x) (y + z) + xe (y) + xe (z) + e (x) y

= x (y + z) + e (x) (y + z) + xe (y) + xe (z)

= x (y + z) + e (x (y + z))

= x (y + z) :

Remark 3.9.24 By Axiom 3.2.26 there is a precise element a such that x =
a+e (x) and there is a precise element b such that u (x)�1 = b+e (u (x)� 1) =
b+ e (u (x)). So one can write u (x) = 1 + b+ e (u (x)).

Proposition 3.9.25 Let A be a solid and let a 2 A be a non-zero element.
Then

u (a) = 1:

Proof. Suppose that a is a precise element such that a 6= 0. According to
Remark 3.9.24 one may write u (a) = 1 + b + e (u (a)). By Proposition 3.9.13
one has e (u (a)) = 0. Then u (a) = 1 + b. So

a = au (a) = a (1 + b) :
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Then by Theorem 3.9.16
a = a+ ab:

By cancellation
0 = e (a) = e (a) + ab = ab:

Then b = 0, by Theorem 3.7.21. Hence

u (a) = 1:

By Axiom 3.2.26 we can decompose any element as the sum of its magni-
tude with a precise element. We show that if an element is zeroless then the
absolute value of the precise part of the decomposition must be larger than the
magnitude. We also show that, for zeroless elements, dividing the magnitude
by the precise part is the same as dividing the magnitude by the element.

Proposition 3.9.26 Let A be a solid. Let x = a + e (x) 2 A be zeroless and
such that e (a) = 0. Then

1. e (x) < jaj :

2. e (x) a�1 = e (x)x�1 = e (u (x)) :

Proof. 1. Suppose �rstly that e (x) < x. Suppose towards a contradiction that
a � e (x). Then by compatibility with addition

x = a+ e (x) � e (x) + e (x) = e (x) ;

which is a contradiction. Then 0 < a, by Proposition 3.5.8.3. Hence

e (x) < a = jaj :

Suppose secondly that x < e (x). Suppose towards a contradiction that
e (x) � a. Then by compatibility with addition

e (x) = e (x) + e (x) � a+ e (x) = x;

which is a contradiction. Then 0 < �a, by Proposition 3.5.8.3. Hence

e (x) = �e (x) < �a = jaj :

2. By Part 1 and Proposition 3.9.8.2, one has 0 � e (x) < jaj, so a 6= 0.
Then a � a + e (x) = x, by Proposition 3.5.9. Then by compatibility with
multiplication, Proposition 3.9.25 and Theorem 3.7.14

e (u (x)) = e (x)x�1 � e (x)u (x) a�1 = e (x) a�1: (3.22)

Using Theorem 3.7.14, Theorem 3.9.16 and Proposition 3.9.25 one derives
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e (x) a�1 = e (x)u (x) a�1 = e (x)x�1xa�1

= e (x)x�1 (a+ e (x)) a�1

= e (x)x�1
�
1 + e (x) a�1

�
:

Then by Part 1 and Proposition 3.9.25

e (x) a�1 � e (x)x�1
�
1 + aa�1

�
= e (x)x�1 (1 + 1) :

Hence
e (x) a�1 � e (x)x�1 + x�1e (x) = x�1e (x) = e (u (x)) ; (3.23)

by Theorem 3.9.18. Combining (3.22) and (3.23) one concludes the result.
One shows that the element b of Remark 3.9.24 has to be "small" in the

sense that the absolute value of b is less than or equal to the magnitude of the
unity of x.

Lemma 3.9.27 Let A be a solid. Let x = a + e (x) 2 A be zeroless. Suppose
u (x) = 1 + b+ e (u (x)). Then jbj � e (u (x)).

Proof. Suppose that u (x) = 1 + b + e (u (x)). Because R (e (x)) = M =
R (e (u (x))), using Lemma 3.9.23 one derives

a+ e (x) = x = xu (x) = (a+ e (x)) (1 + b+ e (u (x)))

= a (1 + b) + e (x) (1 + b) + (a+ e (x)) e (u (x))

Then by Theorem 3.9.16 and Corollary 3.7.15

a+ e (x) = a+ ab+ e (x) (1 + b) + xe (u (x))

= a+ ab+ e (x) (1 + b) + e (x) :

Then
e (x) = ab+ e (x) (1 + b) + e (x) :

We show that e (x) (1 + b) � e (x). Suppose towards a contradiction that
e (x) < e (x) (1 + b). Then

e (e (x)) = e (x) = e (ab) + e (e (x)) + e (e (x) (1 + b))

= e (x) + e (x) (1 + b) = e (x) (1 + b) ;

in contradiction with our initial supposition. Then e (x) (1 + b) � e (x). Hence

e (x) = ab+ e (x) :

Then jabj � e (x), by Proposition 3.6.18. Hence

jbj � e (x) a�1 = e (u (x)) ;

by Proposition 3.9.26.2.
A unity can be written as the sum of one with the magnitude of the unity.

This gives a sort of expansion of the unity in terms of the minimal unity and
the imprecision of the unity.
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Proposition 3.9.28 (Expansion) Let A be a solid. Let x 2 A be zeroless.
Then

u (x) = 1 + e (u (x)) :

Proof. By Lemma 3.9.27 one may suppose u (x) = 1 + b + e (u (x)), with
jbj � e (u (x)). Then

b+ e (u (x)) � jbj+ e (u (x)) � e (u (x)) + e (u (x)) = e (u (x)) :

Moreover,

e (u (x)) = � (e (u (x)) + e (u (x)))
� � (jbj+ e (u (x)))
= � jbj � e (u (x))
= � jbj+ e (u (x)) � b+ e (u (x)) :

Hence
b+ e (u (x)) = e (u (x))

and
u (x) = 1 + e (u (x)) :

Lemma 3.9.29 Let A be a solid and let x 2 A�. Then 1 > e (u (x)).

Proof. Suppose towards a contradiction that 1 � e (u (x)). By Corollary 3.8.9.2
the element 1 is positive. Then using Proposition 3.9.28 and Theorem 3.5.10

u (x) = 1 + e (u (x)) = e (u (x)) ;

in contradiction with Lemma 3.7.4.4. Hence 1 > e (u (x)).
A magnitude multiplied by a unity is equal to this magnitude.

Theorem 3.9.30 Let A be a solid. Let x 2 A and y 2 A�. Then

e (x)u (y) = e (x) :

Proof. By Proposition 3.9.28

e (x)u (y) = e (x) (1 + e (u (y))) .

One has R (e (x)) =M = R (1) +R (e (u (x))). Then

e (x)u (y) = e (x) 1 + e (x) e (u (y)) = e (x) + e (x) e (u (y)) .

By Lemma 3.9.29 one has 1 > e(u(y)). Then by compatibility with multiplica-
tion e (x) � e (x) e (u (y)). Hence

e (x)u (y) = e (x) ;

by Theorem 3.5.5.
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Corollary 3.9.31 Let A be a solid. Let x; y 2 A. Then R (xy) = R (x)+R (y).

Proof. If x = e (x) or y = e (y) then R (xy) =M = R (x) +R (y).
If x 6= e (x) and y 6= e (y) then by Axiom 3.2.20 and Theorem 3.9.30

R (xy) = e (u (xy)) = e (u (x)u (y))

= e (u (x))u (y) + u (x) e (u (y))

= e (u (x)) + e (u (y))

= R (x) +R (y) :

Lemma 3.9.32 Let A be a solid and let x; y 2 A such that x 6= e (x) and
y 6= e (y). If e (x) y � e (y)x then R (x) � R (y).

Proof. Suppose that e (x) y � e (y)x. Then by compatibility with multiplica-
tion

e (x)u (y)x�1 � e (y) y�1u (x) .

By Theorem 3.9.30
e (x)x�1 � e (y) y�1.

Hence
R (x) = e (u (x)) � e (u (y)) = R (y) ;

by Axiom 3.2.21.
We are now able to prove Theorem 3.9.19.

Proof of Theorem 3.9.19: By Lemma 3.9.23 we only need to show the
direct implication.
Proof. Suppose that xy + xz = x (y + z). Then by Axiom 3.2.22

x (y + z) = x (y + z) + e (x) y + e (x) z:

By cancellation

e (x (y + z)) = e (x (y + z)) + e (x) y + e (x) z:

Then

e (x) y + e (x) z � e (x (y + z))

= e (x) (y + z) + xe (y + z)

= e (x) (y + z) + xe (y) + xe (z) :

Hence
e (x) y + e (x) z � e (x) (y + z) + xe (y) + xe (z) : (3.24)

We must consider three cases: (i) e (x) y+ e (x) z � e (x) (y + z), and if (i) does
not hold, (ii) e (x) y + e (x) z � xe (y) and (iii) e (x) y + e (x) z � xe (z) :
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(i) One has
e (x) y + e (x) z = e (x) (y + z) ;

by (3.24) and Theorem 3.9.18.
(ii) One has e (x) y = e (x) z, by Lemma 3.9.22. Then

e (x) y � xe (y) :

Hence R (x) � R (y) � R (y) +R (z) ; by Lemma 3.9.32.
(iii) One has e (x) y = e (x) z, by Lemma 3.9.22. Then

e (x) z � xe (z) :

Hence R (x) � R (z) � R (y) +R (z), again by Lemma 3.9.32.
It is an immediate consequence of Theorem 3.9.19 that if R (x) � R (y) +

R (z), then distributivity holds. We show that if either y or z is a magnitude
then distributivity holds. This generalizes Proposition 3.9.4 because there are
no conditions on the magnitudes.

Theorem 3.9.33 Let A be a solid and let x; y, z 2 A. If y = e (y) or z = e (z),
then distributivity holds.

Proof. If y = e (y) or z = e (z), then R (x) � R (y) +R (z) and hence distribu-
tivity holds, by Theorem 3.9.19.
The following result gives a characterization of distributivity in the case

where x = e (x).

Proposition 3.9.34 Let A be a solid and let x; y; z 2 A. If x = e (x), y 6= e (y)
and z 6= e (z) then x (y + z) = xy + xz if and only if e (x) (y + z) = e (x) y or
e (x) (y + z) = e (x) z.

Proof. Let A be a solid and let x; y; z be such that x = e (x), y 6= e (y) and
z 6= e (z) :
Suppose �rstly that x (y + z) = xy + xz. Then

e (x) (y + z) = e (x) y + e (x) z,

because x = e (x). Then by Axiom 3.2.5, e (x) (y + z) = e (x) y or e (x) (y + z) =
e (x) z.
Suppose secondly that e (x) (y + z) = e (x) y or e (x) (y + z) = e (x) z. We

may assume without loss of generality that e (x) y � e (x) z. Then by Theorem
3.5.5

e (x) y + e (x) z = e (x) y.

If e (x) (y + z) = e (x) y then there is nothing to prove. Suppose that

e (x) (y + z) = e (x) z: (3.25)

If z � e (y), by Theorem 3.5.10,

e (y) + z = e (y) .
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Hence

e (x) (y + z) = e (x) (y + e (y) + z)

= e (x) (y + e (y))

= e (x) y

= e (x) y + e (x) z.

If e (y) � z, by compatibility with addition and multiplication,

e (x) y + e (x) z = e (x) y � e (x) (y + z) . (3.26)

On the other hand, using Proposition 3.5.2.1 and (3.25), one has

e (x) (y + z) = e (x) z = e (x) z + e (x) z � e (x) y + e (x) z: (3.27)

Then, from (3.26) and (3.27), by antisymmetry, we conclude that

e (x) (y + z) = e (x) y + e (x) z:

We prove that distributivity always holds if y and z are both positive or
both negative.

Theorem 3.9.35 Let A be a solid and let x; y; z 2 A. If y and z are both
positive then x (y + z) = xy + xz.

Proof. Suppose that y and z are both positive. By Theorem 3.9.18 one has
e (x) (y + z) � e (x) y+e (x) z. We show that also e (x) y+e (x) z � e (x) (y + z).
We may suppose without loss of generality that e (y) � y � z. Then e (x) y �
e (x) z, by Proposition 3.8.1. Then

e (x) y + e (x) z � e (x) z + e (x) z = e (x) z

� e (x) (z + e (y)) � e (x) (y + z) .

Hence e (x) (y + z) = e (x) y+ e (x) z, and the result follows by Theorem 3.9.19.

Corollary 3.9.36 Let A be a solid and let x; y; z 2 A. If y and z are both
negative, then x (y + z) = xy + xz

Proof. Suppose that y and z are both negative. Then, by Proposition 3.5.2.2,
e (y) � �y and e (z) � �z. Then by Proposition 3.7.7

e (x) (y + z) = e (x) (� (y + z)) = e (x) (�y � z)
= e (x) (�y � z) .

Then by Theorem 3.9.35 and Proposition 3.7.7,

e (x) (y + z) = e (x) (�y) + e (x) (�z)
= e (x) y + e (x) z.

Hence distributivity holds, by Axiom 3.2.22.
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Corollary 3.9.37 Let A be a solid and let x; y 2 A. Then x (y + y) = xy+xy.

Proof. If y is positive by Theorem 3.9.35

x (y + y) = xy + xy:

If y is negative, then by Corollary 3.9.36, also

x (y + y) = xy + xy:

3.9.5 Equivalent form of the distributivity axiom

We show that the distributivity condition on Axiom 3.2.22 and (3.18) are equiv-
alent. In order to do so we show the following lemma, without using the dis-
tributivity axiom. In the proof of the following lemma we use a corollary of
Theorem 3.9.35, so it can be shown supposing (3.18) and without recurring to
this axiom.

Lemma 3.9.38 Let x; y; z 2 A. Suppose (3.18). Then

e (x) (y + z) � e (x) y + e (x) z:

Proof. Suppose without loss of generality that y � z. Then by compatibility
with addition y + z � z + z. Hence

e (x) y � e (x) z

and
e (x) (y + z) � e (x) (z + z) ;

by Axiom 3.2.16. Then using Corollary 3.9.37

e (x) (y + z) � e (x) (y + z) + e (x) y

� e (x) (z + z) + e (x) y

= e (x) (z) + e (x) (z) + e (x) y = e (x) (z) + e (x) y:

Theorem 3.9.39 Let x; y; z 2 A. Then (3.18) if and only if xy + xz =
x (y + z) + e (x) y + e (x) z.

Proof. By Theorem 3.9.19 we only need to prove the necessary part.
Suppose (3.18). By Lemma 3.9.38

e (x) (y + z) � e (x) y + e (x) z:

Then by Theorem 3.5.5,

e (x) (y + z) + e (x) y + e (x) z = e (x) y + e (x) z: (3.28)
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By Axiom 3.2.26 there is a precise number a such that x = a+ e (x). Then

x (y + z) + e (x) y + e (x) z = (a+ e (x)) (y + z) + e (x) y + e (x) z:

Because R (y + z) �M = R (e (x)), using (3.18) one has

x (y + z) + e (x) y + e (x) z = a (y + z) + e (x) (y + z) + e (x) y + e (x) z:

By (3.28)

x (y + z) + e (x) y + e (x) z = a (y + z) + e (x) y + e (x) z

Then
e (a) (y + z) = 0 (y + z) = 0 = 0y + 0z = e (a) y + e (a) z;

by Proposition 3.9.9. Hence

x (y + z) + e (x) y + e (x) z = ay + az + e (x) y + e (x) z;

by (3.18). Because R (y) �M = R (e (x)), using (3.18) one has

x (y + z) + e (x) y + e (x) z = (a+ e (x)) y + (a+ e (x)) z = xy + xz.
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Chapter 4

Models for the axioms

The happiness of life is made up of minute fractions - the little,
soon-forgotten charities of a kiss or smile, a kind look, a heart-felt
compliment, and the countless in�nitesimals of pleasurable and ge-
nial feeling.
(Samuel Coleridge)

We show that the axioms presented in Section 3.2 have a model in the class
of external numbers.
Let F be an ordered �eld and let x 2 F . Then e (x) = 0. This means that

ordered �elds trivially satisfy some of the axioms. In fact, we show that ordered
�elds satisfy all the axioms with exception of Axiom 3.2.24 and the last one.
Axiom 3.2.24 is not satis�ed because F =2 F:
In the class of external numbers there are individualized neutral elements

for both addition and multiplication. This means that the functions e and u
don�t have to be constant. We show that external numbers, provided with
addition and multiplication as de�ned in Section 2.2, are a (nontrivial) model
for the axioms because external numbers satisfy all the axioms, including Axiom
3.2.27.

4.1 Ordered �elds and the axioms

Theorem 4.1.1 Every ordered �eld (F;+; �;�) satis�es Axioms 3.2.1-3.2.26,
with the exception of Axiom 3.2.24.

Proof. Let (F;+; �;�) be an ordered �eld and let x; y; z 2 F .
We start by proving that the axioms of the �rst two groups are satis�ed.

Clearly (F;+) is an assembly with e (x) = 0 and (Fn f0g ; �) is an assembly with
u (x) = 1. Furthermore, because F is a �eld, multiplication is both commutative
and associative in F .

99



100 CHAPTER 4. MODELS FOR THE AXIOMS

Regarding the order axioms, by the de�nition of ordered �eld, we only need
to prove Axioms 3.2.16 and 3.2.17. To prove that Axiom 3.2.16 holds suppose
that y + e(x) = e(x). Then y + 0 = 0, because e (x) = 0. Hence e (x) = 0 � y:
To prove that the order relation is compatible with multiplication suppose

that x � e(x) ^ y � z. This means that x � 0 and y � z. Then, because F is
an ordered �eld, xy � xz.
We prove now that the mixed axioms hold. Observe that, because e (x) = 0,

the axiom of Scale and Axiom 3.2.20 simply state that 0 = 0 and Axiom 3.2.21
states that if x 6= 0 then 0 = 0. So we only need to prove the axiom of
distributivity. In a �eld distributivity holds, so

x (y + z) + e (x) y + e (x) z = x (y + z) + 0y + 0z = x (y + z) = xy + xz:

Hence the distributivity axiom holds.
Axiom 3.2.23 holds clearly by making m = 0, and Axiom 3.2.8 holds by

making u = 1. To prove that Axiom 3.2.26 holds put a = x. Then, because
e (x) = 0, x = a = a+ 0 = a+ e (x).

De�nition 4.1.2 We say that a structure (A;+; �) is a distributive association
if (A;+; �) is an association and if x (y + z) = xy + xz, for all x; y; z 2 A.

Corollary 4.1.3 Every �eld is a distributive association.

Corollary 4.1.4 Every ordered �eld is an ordered distributive association.

4.2 External numbers and the axioms

In a sense, ordered �elds are a trivial model for (most of) the axioms. We prove
that a nontrivial model for the axioms, i.e. a model such that the functions
e and u are not identically zero and one respectively, exists in the external
numbers (Chapter 2). To do so we start by proving that (E;+) and (EnN ; �)
are both assemblies. We recall that by Theorem 2.3.1 both (E;+) and (EnN ; �)
are commutative regular semigroups.

Theorem 4.2.1 The commutative regular semigroup (E;+) is an assembly.

Proof. Let � = a + A and  = c + C 2 E. Proposition 2.3.3 states that
e (�) = A and Proposition 2.3.6 states that s (�) = ��. So we only need to
verify Axiom 3.2.5. By Proposition 2.2.2

e (�+ ) = A+ C = max(A;C).

Then e (�+ ) = e (�) or e (�+ ) = e (). Hence (E;+) is an assembly.

Theorem 4.2.2 The commutative regular semigroup (EnN ; �) is an assembly.
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Proof. Let � = b + B and � = d + D 2 EnN . Proposition 2.3.4 states that
u (�) = 1 + B

b = 1 +R (�) and Proposition 2.3.7 states that d (�) =
1
b +

B
b2 . So

we only need to verify Axiom 3.2.10. By Lemma 2.2.10

u (��) = u (bd+ bD + dB) = 1 +
bD + dB

bd
= 1 +

D

d
+
B

b
:

If max (bD + dB) = bD, then u (��) = 1 + D
d = u (�). If max (bD + dB) = dB,

then u (��) = 1 + B
b = u (�). Hence u (��) = u (�) or u (��) = u (�) and we

conclude that (EnN ; �) is an assembly.
Because (E;+) and (EnN ; �) are assemblies the following results hold (see

also [38] [39]).

Corollary 4.2.3 Let � = a+A; � = b+B and  = c+C be external numbers.
Then

1. �+ � = �+  , A+ � = A+ .

2. The function N is idempotent for sum and for composition.

3. The function N is a homomorphism for addition.

4. The composition of the inverse function with itself is the identity map.

5. The inverse function is a homomorphism for addition.

6. �A = A.

7. If � 6= A, then � 6= B, for all b 2 N .

Corollary 4.2.4 Let �; �;  be zeroless external numbers. Then

1. �� = � , (1 +R (�))� = (1 +R (�)) :

2. The function 1 + R (�) is idempotent for multiplication and for composi-
tion.

3. The function 1 +R (�) is an homomorphism for multiplication.

4. The composition of the inverse function with itself is the identity map.

5. The inverse function is a homomorphism for multiplication.

6. (1 +R (�))�1 = 1 +R (�).

7. If � 6= (1 +R (�)), then � 6= (1 +R (�)).

Corollary 4.2.5 The structure (E;+; �) is an association.

Proof. Directly from Theorem 4.2.1 and Theorem 4.2.2.
External numbers equipped with addition, multiplication and the order re-

lation presented in De�nition 2.2.12 satisfy the order axioms.
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Theorem 4.2.6 The structure (E;+; �;�) is an ordered association.

Proof. By Theorem 2.2.15 and Corollary 4.2.5 we only need to show that
Axiom 3.2.16 and Axiom 3.2.17 are satis�ed. Let � = a + A, � = b + B and
 = c+ C 2 E.
To prove that Axiom 3.2.16 is satis�ed suppose that �+N (�) = N (�), i.e.,

a+A+B = B. Then a+A � B. Hence � � N (�).
To prove that Axiom 3.2.17 is satis�ed suppose that N (�) � � and � � .

If � = A, then A� � A by Proposition 2.2.14. If � > A and x 2 � then x > 0.
Let y 2 �. Then there is z 2  such that y � z, because � � . Then xy � xz.
Hence �� � �.
As shown in Theorem 4.1.1 real numbers, as well as ordered �elds in general,

satisfy the completion axioms with the exception of Axiom 3.2.24 and Axiom
3.2.27. The class of external numbers satis�es all the completion axioms, noting
that R itself is a neutrix.

Theorem 4.2.7 The structure (E;+; �;�) is a solid.

Proof. By Theorem 4.2.6, Theorem 2.4.13, Proposition 2.3.9 and Proposition
2.3.11 we only need to verify that the Scale axiom and the completion axioms
are satis�ed. Let � = a+A,� = b+B and  = c+ C 2 E.
Put � = bA+AB. One has

N (�)� = A (b+B) = bA+AB = N (�) .

Hence the Scale axiom is satis�ed.
Axiom 3.2.26 is trivially satis�ed. By making m = 0, M = R and u = 1,

one has 0+x = x, A+R = R and 1x = x. Clearly $ 6= 0 and $ 6= R, so Axiom
3.2.27 also holds.
We conclude that all axioms of Section 3.2 are satis�ed within the structure

of external numbers. So the following holds.

Theorem 4.2.8 The structure (E;+; �;�) is a model for axioms 3.2.1-3.2.27.



Chapter 5

Sorites

The knowledge came upon me, not quickly, but little by little
and grain by grain.
(Charles Dickens in David Copper�eld)

5.1 To be or not to be a heap

In this chapter we consider the paradoxes which arise when several orders of
magnitude are considered. This is part of the larger phenomenon known as
vagueness.
Vague predicates share (at least) the following common features:

1. Admit borderline cases

2. Lack sharp boundaries

3. Are susceptible to sorites paradoxes

Borderline cases are the ones where it is not clear whether or not the predi-
cate applies, independently of how much we know about it. For instance, most
basketball players are clearly tall and most jockeys are clearly not tall. But in
many cases is rather unclear if the person in question is tall, even if one knows
its height with great precision. Furthermore, there is no clear distinction be-
tween the set of all tall people and the set of people that are not tall. These
sets lack sharp boundaries. This leads to a collection of paradoxes called Sorites
paradoxes. One can be stated in the following way: a single grain of wheat can-
not be considered as a heap. Neither can two grains of wheat. One must admit
the presence of a heap sooner or later, so where to draw the line? This was �rst
discovered by the Greek philosopher Eubulides of Miletus. In fact, the name
Sorites derives from the Greek word for heap. However, one can reconstruct
the paradox by replacing the term �heap�by other vague concepts such as �tall�,
�beautiful�, �bald�, �heavy�, �cold�, �rich�,...

103



104 CHAPTER 5. SORITES

The argument consists of a predicate S (the soritical predicate) and a subject
expression an in the series with regards to which S is soritical. The terms of the
series are supposed to be ordered. According to Barnes [2] a predicate S must
satisfy three constraints in order to be considered soritical:

1. Appear to be valid for a1, the �rst item in the series;

2. Appear to be false for ai, the last item in the series;

3. Each adjacent pair in the series, an and an+1 must be su¢ ciently similar
as to appear indiscriminable in respect to S.

This means that the predicate S needs to be su¢ ciently vague in order to
allow small changes. Small changes do not determine the di¤erence between
a set of individual grains and a heap, between a bald man and a hairy one,
between a rich person and a poor one. However, and in spite of the vagueness
involved, it also needs to have a certain area on which S is clearly true and an
area on which S is clearly false.

The di¤erence of one grain would seem to be too small to make
any di¤erence to the application of the predicate; it is a di¤erence
so negligible as to make no apparent di¤erence to the truth-values
of the respective antecedents and consequents.
Yet the conclusion seems false. [29]

In fact, we claim that a heap and a set of individual grains of wheat are
not of the same order of magnitude. A set of individual grains may be modeled
by a standard subset of the external set of limited numbers (positive part of a
neutrix) and the set of grains that form a heap may be modeled by the external
set of the in�nitely large numbers.
It should also be possible to capture with external sets some modalities,

like the di¤erence between a "good" approximation, allowing to obtain an ad-
equately precise numerical result in some context, and a "bad", useless, one.
The stability of orders of magnitude under some repeated additions justi�es to
model them by (convex) groups of real numbers.

5.2 Paradoxical forms

The Sorites paradox can be stated in various forms. This implies that one cannot
hope to solve the paradox by pointing out a fault particular to any one of the
forms. One should instead try and reveal a common fault to all possible forms
that the paradox can take. We consider the (standard) mathematical induction
and conditional forms and then present a nonstandard point of view on those
forms. Let S represent the predicate �is not a heap�and let an represent the
sentence �n grains of wheat�.
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5.2.1 Induction

Mathematical induction is generally used (within standard mathematics) to
prove that a mathematical statement involving a natural number n holds for
all possible values of n. This is done in two steps. On the �rst step (basis)
one proves that there is a �rst element for which the statement holds. On the
second step (inductive step) one shows that if the statement holds for some n
then it also holds for n+ 1. Then the statement is valid for all n.
The Sorites paradox can now be represented in the following way:�

(Sa1 ^ 8n (San ! San+1))! 8nSan
9! (:Sa!)

So, if one admits that:

1. A single grain of wheat is not a heap.

2. If a collection of n grains of wheat is not a heap then a collection of n+1
grains of wheat is also not a heap.

One concludes (by induction) that the heap will never appear. Since at some
point the heap is obviously there one might come to the conclusion that there
is something wrong with induction or, at least, with applying induction to this
case.

5.2.2 Conditional form

The conditional form of the Sorites paradox is the most common form through-
out the literature. It can be formalized in the following way:
If 8>>>>>><>>>>>>:

Sa1
Sa1 ! Sa2
Sa2 ! Sa3

:::
Sai ! Sai+1
9j (:Saj)

Assuming Sa1, Sa1 ! Sa2, Sa2 ! Sa3; ..., Sai ! Sai+1, by modus ponens,
the conclusion is Sai, where i can be arbitrarily large. This is a fairly simple
reasoning where the premises are: a single grain of wheat does not make a heap;
if one grain of wheat does not make a heap then two grains of wheat do not
form a heap either; if two grains of wheat do not make a heap then three grains
of wheat do not form a heap either... if i grains of wheat do not make a heap
then i+ 1 grains of wheat do not form a heap either. The conclusion is that a
set of an arbitrarily large number of grains i does not make a heap. However
if one observes that there is a set of j grains that form a heap it generates a
paradox.
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5.2.3 A nonstandard point of view on paradoxical forms

We propose to replace the standard forms presented above by the following
forms which involve reasoning with nonstandard methods.
If one replaces mathematical induction by external induction (EI) in IST ,

the reasoning becomes:�
(Sa1 ^ 8stn (San ! San+1))! 8stnSan

9! (:Sa!)

So, if one admits that:

1. A single grain of wheat is not a heap.

2. If n is a standard number and if a set of n grains of wheat is not a heap
then a set of n+ 1 grains of wheat is also not a heap.

One concludes that in the presence of a standard number of grains of wheat
one does not have a heap. The heap arises when one has a nonstandard number
! ' +1 of grains of wheat.
The conditional form, using nonstandard analysis, becomes the following.
Let i be a standard natural number. If8>>>><>>>>:

Sa1
Sa1 ! Sa2
Sa2 ! Sa3

:::
Sai ! Sai+1

Then, by modus ponens, the conclusion is Sai, for i arbitrarily large but
(naive) standard. In nonstandard analysis this is modeled by allowing modus
ponens but only a standard (naive) number of times. We call "naive" the
natural numbers which can be obtained from zero by the successive addition of
one. This corresponds to Reeb�s famous slogan:

Les entiers naïfs ne remplissent pas N. [14]

We are in fact claiming that the formalization of the predicate �is not a
heap�should be an external predicate, where not being a heap means to possess
a standard number of grains.

5.3 Responses

There are several attempts to solve the Sorites paradox. These responses are
divided into the following four types ([35], pages 19-20). A �rst type of response
would be to deny the validity of the argument, refusing to grant that the conclu-
sion follows from the premises. Alternatively one can question the strict truth
of the inductive premise (or of one of the conditionals). A third possibility is to
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accept the validity of the argument and the truth of its inductive premise (or
of all the conditional premises) but contest the truth of the conclusion. Finally
one can grant that there good reasons to consider both the argument form as
valid, and accept the premises and deny the conclusion hence proving that the
predicate is incoherent.
In this section we review some of the responses to the paradox. For a wider

account on this matter see for example [35] [62] [59] and [69]. We emphasize
that the theories presented below correspond to a wide variety of related points
of view. This means that there are many versions of the theories presented. So,
when reviewing a theory we tend to give only the general lines, common to the
various versions of that theory.

5.3.1 Ideal Languages

Natural languages such as English or Portuguese distinguish between intension
and extension of terms. The intension is the internal content of a term or
concept while the extension is the range of applicability of a term by naming
the particular objects that the term denotes. The two predicates �is a creature
with a heart�and �is a creature with a kidney�(see [53]) have the same extension
because the set of creatures with hearts and the set of creatures with kidneys
are the same. However, having a heart and having a kidney are very di¤erent
things, so one concludes that

terms can name the same thing but di¤er in meaning. [53]

Hence, the distinction between intension and extension leads necessarily to
vagueness, ambiguity and indeterminacy of meaning for words and phrases. This
is in part the reason why natural languages are so powerful and allow the special
beauty only achieved by poetry. But it also means that those who want clarity
and precision of language will be unsatis�ed with natural languages. According
to Quine

The sorites paradox is one imperative reason for precision in science,
along with more familiar reasons. [54]

An ideal language would left out all such factors in order to eliminate any
vagueness.
The defenders of this response (see Frege [19], Russell [58] and Wittgenstein

[71]) consider vagueness as an eliminable feature of natural language. This would
mean that sorites arguments are not valid since they contain vague expressions.
As stated by Russell,

The fact is that all words are attributable without doubt over a
certain area, but become questionable within a penumbra, outside
which they are again certainly not attributable. Someone might
seek to obtain precision in the use of words by saying that no word
is to be applied in the penumbra, but unfortunately the penumbra
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is itself not accurately de�nable, and all the vagueness which apply
the primary use of words apply also when we try to �x a limit to
their indubitable applicability. [58]

So, this response implies that it is the philosopher�s job to discover a logically
ideal language. However, this doesn�t seem possible using classical logic:

All traditional logic habitually assumes that precise symbols are
being employed. It is therefore not applicable to this terrestrial life,
but only to an imagined celestial existence. [58]

Russell also believed that

Vagueness, clearly, is a matter of degree, depending upon the ex-
tent of the possible di¤erences between di¤erent systems represented
by the same representation. Accuracy, on the contrary, is an ideal
limit. [58]

Criticism

As follows from the above, ideal languages as a response to the sorites paradox
seem to have unsatisfying features. According to Keefe,

denying the validity of the sorites argument seems to require
giving up absolutely fundamental rules of inference. [35]

So, if one chooses to go in this direction fundamental rules such as modus
ponens or mathematical induction are to be put in question. In fact, most
philosophers nowadays believe that vagueness is an important part of natural
language and cannot be separated from it.

5.3.2 The Epistemic Theory

The Epistemic Theory is based on the idea that the precise boundaries to knowl-
edge itself cannot be known. Vagueness is seen as a particular type of ignorance.
The fact that this theory is built in the classical logic framework implies that

there are precise bounds for the extensions of vague predicates even if we do not
know where they are located. For instance, the defenders of the epistemic theory
claim that there is in fact a last grain of wheat in the series before the heap turns
up, even if one is not (nor ever will be) able to identify it de�nitively. In fact,
Williamson [69] has shown that if there is a precise boundary for penumbral
cases we cannot not know where it is. So, soritical predicates are indeterminate
in extension but not semantically.
This position, counter-intuitive as it may seem, has been notably defended

by Williamson [69] [70] and Sorensen [63] [64].
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Criticism

The �rst and major objection to this theory is its counter-intuitive nature. The
meaning of a word is (usually) determined by its use. According to Wittgenstein

For a large class of cases - though not for all - in which we employ
the word �meaning�it can be de�ned thus: the meaning of a word is
its use in the language [71]

and

if we had to name anything which is the life of the sign, we should
have to say that it is its use. [72]

For instance, the word �piano�means an actual piano because we use that
word to mean an actual piano (even if one does not know how to play). Now,
one does not usually use the word �heap�as if a single grain of wheat could make
a di¤erence. Neither, more generally, does one use any vague term as if it were
not tolerant to small changes. One does not use vague terms as if they had
precise borders. In this sense Smith [62] claims that the epistemicist is forced
to deny a link between meaning and use.
Another point that deserves criticism is that nothing is said about how

predicates get the precise extensions that they do. It is claimed that there is in
fact a last grain of wheat in the series before the heap turns up. So there should
be attempts to �nd which one is it [35]. We agree that ignorance is no excuse
for the lack of attempts to �nd the precise boundaries of vague concepts. There
should be at least some reasons to believe about where these boundaries are.

5.3.3 Supervaluationism

According to Fine, vagueness is a semantic notion not to be confused with
ambiguity nor undecidability:

Let us say, in a preliminary way, what vagueness is. I take it to be
a semantic notion. Very roughly, vagueness is de�ciency of meaning.
As such, it is to be distinguished from generality, undecidability,
and ambiguity. These latter are, if you like, lack of content, possible
knowledge, and univocal meaning, respectively. [16]

Supervaluationism proposes to solve the problem of vagueness by modifying
classical semantics, using Van Fraassen�s supervaluations. According to Van
Fraassen:

A supervaluation over a model is a function that assigns T (F) ex-
actly to those statements assigned T (F) by all the classical valua-
tions over that model. [18]

And he concludes that
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Supervaluations have truth-value gaps. [18]

In classical logic the connectives have truth values in a functional way. We
recall that a connective of statements is truth-functional if and only if the truth
value of any compound statement obtained by applying that connective is a
function of the individual truth values of the constituent statements that form
the compound. The classical logic connectives are all truth-functional (truth
tables). Supervaluationists abandon the concept of truth-functionality.
Fine applies the distinction between extension and intension [53] to vague-

ness:

Extensional vagueness is de�ciency of extension, intensional vague-
ness de�ciency of intension. Moreover, if intension is the possibility
of extension, then intensional vagueness is the possibility of exten-
sional vagueness. [16]

According to this theory, a vague predicate does not need to have a unique,
sharply bounded, truth function. Vague predicates have things to which they
de�nitely apply (positive extension), things to which they de�nitely do not
(negative extension) and a penumbra (penumbral connections). The penumbra
involves cases which seem to be neither true nor false1 (borderline cases). These
penumbral connections are instances of truth-value gaps. Truth-value gaps are
related with extensional vagueness. However,

Despite the connection, extensional vagueness should not be de�ned
in terms of truth-value gaps. This is because gaps can have other
sources, such as failure of reference or presupposition. [16]

Supervaluationists claim, roughly speaking, that a vague sentence is true if
and only if it is true for all ways of making it completely precise [16], called
precisi�cations. There are then many interpretations or precisi�cations. Each
one of these precisi�cations has no penumbra because it behaves according to
classical bivalence. The assignment of truth value for all such precisi�cations is
a supervaluation.
A sentence which is true in all precisi�cations is called supertrue and a sen-

tence which is false in all precisi�cations is called superfalse. A sentence which
is true for some precisi�cations and false on others is neither true nor false2 .
This means in particular that tautologies from classical logic are supertrue.
According to Keefe,

truth is supertruth, [35]

1Fine warns about the general confusion of under- and over-determinacy.

A vague sentence can be made more precise; and this operation should pre-
serve truth-value. But a vague sentence can be made to be either true or false,
and therefore the original sentence can be neither. [16]

2 In fact, not all supervaluationists accept this last sentence.
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meaning that a sentence is true if and only if it is true on all admissible
precisi�cations. A precisi�cation is acceptable only if the extensions of the
concepts do not overlap. The truth of a compound sentence is determined by
its truth on every precisi�cation.
For a wider account on supervaluationism see for example [18] [16] [35].

Criticism

Fodor and Lepore are particularly critic of the supervaluationist approach to
vagueness:

[...] there is something fundamentally wrong with using superval-
uation techniques either for preserving classical logic or for providing
a semantics for linguistic expressions ordinarily thought to produce
truth-value gaps. [17]

However the fault they point out is not of a logical nature. Indeed they say:

Right from the start , however, we want to emphasize that the
objections we are raising are philosophical rather than logical. We
have no argument with supervaluations considered as a piece of for-
mal mathematics. [17]

Fodor and Lepore point out as the main �aws of supervaluationism the
violation of intuitive semantic principles concerning disjunctions and existential
quanti�cation, the abandonment of classical rules of inference and the violation
of core principles concerning the concept of truth.
Let S represent the predicate �is not a heap�. Since all tautologies are su-

pertrue,
: (8n (San ! San+1))

is equivalent to
9n (San ^ :San+1) ,

which, semantically speaking, seems to postulate the existence of a sharp bound-
ary and looks for that matter like a step back towards the epistemic theory. Also
(S _ :S) is supertrue. So, for all precisi�cations one of the statements is true.
However, the statement S is borderline and therefore neither true nor false.
Keefe [35] argues that it is possible to surpass these di¢ culties at the price

of adding a new operator to the language: the �de�nitely� operator D. This
operator is however not closed under certain operations such as contraposition
and conditional introduction. So alternatives to the classical closure principles
are proposed. However, this implies that the logic used is no longer classical.
Another argument against supervaluationism is that little information is

given on what makes a precisi�cation acceptable other than saying that precisi-
�cations must respect penumbral connections and therefore admissibility is a
vague matter. Also, supervaluationism states that precisi�cations behave in a
classical way and have no penumbra. However, each precisi�cation may divide
the positive and negative extensions in di¤erent places.



112 CHAPTER 5. SORITES

5.3.4 Many-valued logics

Many-valued logics is a general term that refers to logics which have more than
two truth-values. In these logics the principle of truth-functionality is accepted
and so a sentence remains una¤ected when one of its components is replaced by
another with the same truth value. Many-valued logics became accepted as an
independent part of logic with the works of ×ukasiewicz and Post in the 1920�s.
Since then many many-valued logics emerged (e.g. [41] [20] [24] [51]) and it is
not possible nor desirable to describe them all in these pages. However we shall
discuss an application of Kleene�s three-valued logic and applications of fuzzy
logics because these are the most relevant in what concerns the phenomenon of
vagueness. For a more complete reference concerning many-valued logics see for
example [23].

Kleene�s three-valued logic

Perhaps one of the simplest and best-known examples of a many-valued logic
is Kleene�s three-valued logic [37]. Kleene thought of the third truth value
as unde�ned or underdetermined3 . So one has three truth-values: 1 (true),
0 (false) and 1

2 (unde�ned or unknown). One has truth-tables for which the
connectives are regular, i.e. in terms of ordering, unde�ned is placed below both
true and false. This means that the behavior of the third truth value should
be compatible with any increase in information. Kleene proposed the following
truth-tables for the so-called strong connectives:

p :p
1 0
0 1
1
2

1
2

p q p _ q p ^ q p! q p ! q
1 1 1 1 1 1
1 0 1 0 0 0
1 1

2 1 1
2

1
2

1
2

0 1 1 0 1 0
0 0 0 0 1 1
0 1

2
1
2 0 1 1

2
1
2 1 1 1

2 1 1
2

1
2 0 1

2 0 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

These tables are uniquely determined as the strongest possible regular ex-
tensions of the classical two-valued tables. Quanti�ers can be de�ned in the
following way: 9x : P (x) is true if P (x) is true for some value of x and it is
false if P (x) is false for all values and inde�nite otherwise; 8xP (x) is true if
P (x) is true for all values of x and false if P (x) is false for some value and
inde�nite otherwise. Tye [66] applies Kleene�s three-valued logic to the sorites

3Priest [52] gave an alternative three-valued logic conceiving the third truth-value as overde-
termined, interpreting the symbol 1

2
as being both true and false.
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paradox. However, the objections made to the bipartite division can also be
used to refute a tripartite division. In fact, Tye [66] claims that

[...] vagueness cannot be reconciled with any precise dividing lines.

because

there is no determinate fact of the matter about where truth-value
changes occur.

That is to say that there is no way to assign precise truth-values to vague
terms. So, as a solution, Tye proposes to use a vague metalanguage. He claims
that there are sets which are genuinely vague items. For instance the set of
tall men has borderline members (men which are neither clearly members nor
clearly non-members of the set).

There is no determinate fact of the matter about there are objects
that are neither members, borderline members, nor non-members.
[66]

Kleene�s three-valued logic has the undesirable feature of having no tautolo-
gies, because the two-valued tautologies can take the value 12 in the three-valued
case. As an example consider the law of excluded middle p _ :p. In Kleene�s
three-valued logic the truth table is the following:

p :p p _ :p
1 0 1
0 1 1
1
2

1
2

1
2

Tye tries to avoid this �aw by saying that a statement is a quasi-tautology if
it has no false substitution instances. So two-valued tautologies become three-
valued quasi-tautologies.
Kleene�s three-valued logic is still a precise formalization and having no

tautologies seems a price too high to pay in order to be able to deal in the
above sense with vagueness. Also, according to Keefe: [35]

[...] the appeal to quasi-tautologies adds nothing: if earning this
title is enough for his [Tye�s] purposes, then the fact that p_:p also
earns it should be of concern. Moreover, what matters for validity
does not relate to quasitautologies [sic], and assertion depends on
sentences being true not being either true or inde�nite, so the role
for the notion seems to be merely one of appeasement.
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Fuzzy logics

Fuzzy logics propose a graded notion of inference. Truth-values range in degree
between 0 and 1 in order to capture di¤erent degrees of truth. In this way, the
value 0 is attributed to sentences which are completely false and the value 1 to
sentences which are completely true. The remaining sentences are truer than
the false sentences, but not as true as the true ones so they have intermediate
logical values according to "how true" they are. According to Bogenberger

In fuzzy logic, the truth of any statement becomes a matter of degree.
[7]

Fuzzy logic is related to Zadeh�s work on fuzzy sets [73]. A fuzzy set A on
X is characterized by a membership function fA (x) with values in the interval
[0; 1]. So, a fuzzy set A is a class of objects that allow a continuum of grades of
membership. The membership degree is then the degree to which the sentence
�x is a member of A� is true. So, one can interpret the membership degrees
of fuzzy sets as truth degrees of the membership predicate in a suitable many-
valued logic.
Theories of vagueness which recourse to fuzzy logics are advocated most

notably by Machina [43] and Smith [62].
According to these theories the notion of heap is a vague one and it may

hold true of given objects only to some (truth) degree. The premises should
be considered partially true to a degree which is quite near to the maximal
degree 1. This inference has to involve truth degrees for the premises and has
to provide a truth degree for the conclusion in a way that in each step the truth
degree becomes smaller. The sentence �n grains of sand do not make a heap�
tends toward being false for an increasing number of grains.

Criticism

The problem of saying whether the sentence �a set of n grains makes a heap�is
true or not is essentially the same as to say that that sentence is true with a
certain (precise) �xed degree. This false precision is perhaps the main objection
to the application of many-valued logics to the sorites paradox. According to
Keefe

[T]he degree theorist�s assignments impose precision in a form that is
just as unacceptable as a classical true/false assignment. In so far as
a degree theory avoids determinacy over whether a is F, the objection
here is that it does so by enforcing determinacy over the degree to
which a is F. All predications of �is red�will receive a unique, exact
value, but it seems inappropriate to associate our vague predicate
�red� with any particular exact function from objects to degrees
of truth. For a start, what could determine which is the correct
function, settling that my coat is red to degree 0.322 rather than
0.321? [35]
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Also, Urquhart states that

One immediate objection which presents itself to [fuzzy logic�s] line
of approach is the extremely arti�cial nature of the attaching of
precise numerical values to sentences like �73 is a large number�or
�Picasso�s Guernica is beautiful�. In fact, it seems plausible to say
that the nature of vague predicates precludes attaching precise nu-
merical values just as much as it precludes attaching precise classical
truth values. [67]

Smith [62] tries to solve this problem, suggesting several possible solutions
and concluding that the best answer is to mix fuzzy logic with a theory called
plurivaluationism (not to be confused with supervaluationism4) called fuzzy
plurivaluationism. So, Smith accepts the semantic realism implied by the Epis-
temic view, but denies that vague predicates have to refer to a single bivalent
model.

5.3.5 Contextualism

Contextualism5 defends that interpretations change over time or according to
context. Such shifts of contexts may occur instantaneously. For instance, at
the beginning of a conversation the context is empty. Then, as the conversation
goes along, these notions are sharpened in such a way that borderline cases (un-
decided so far) get assigned to either the extension or the anti-extension of the
vague predicates in question. In fact, borderline sentences can express something
true in one context and something false in another, so they are context-sensitive.
In this way one can disagree about the truth-values of the propositions expressed
by borderline sentences, even in situations where all the relevant information is
available. This view is most prominently elaborated by Shapiro [59] [60] and
DeRose [12].
Besides contex-sensitivity Shapiro de�nes as central the concepts of judgment

dependence, open texture, and the principle of tolerance. Judgment dependence
means that both the extensions and anti-extensions for the borderline cases
are solely determined by the decisions of competent speakers. These decisions
are put in (and can be removed from) the conversational record. Open texture
means that for a vague predicate S there exists an object a such that a competent
speaker can decide whether Sa holds or not without her competency being
compromised. The principle of tolerance is de�ned as follows. Suppose that

4Supervaluationism involves only one intended (non-classical) model relevant to questions
concerning meaning and truth, while plurivaluationism allows that there may be multiple
(classical) models.

5Contextualism is often seen as an argument against philosophical skepticism. Skepticism
claims that we don�t actually know what we think we know.

But, according to contextualists, the skeptic, in presenting her argument, ma-
nipulates the semantic standards for knowledge, thereby creating a context in
which she can truthfully say that we know nothing or very little. [12]
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two objects a; b di¤er only marginally in the relevant respect on which a vague
predicate S is tolerant. Then if one competently judges Sa to hold, then Sb
also holds.

Criticism

One reason for skepticism about contextualism is that the problems with vague
expressions seem to remain whether context-sensitivity is taken into account or
not. By taking context into account one can reduce vagueness but not eliminate
completely. Indeed, sets with vague boundaries are invariant to some transla-
tions. Take for instance the word �ugly�. Even if a particular context is given
(and even if one knows a great deal about another one�s ugliness) there is still
no reason to suppose that there is a sharp boundary between what �ugly�applies
to and what it does not.
Smith [62] argues that contextualism should not be seen as a theory of

vagueness in its own right. He claims that this theory is compatible with all
other mentioned theories.

5.4 External numbers as a model

In this section we present an approach to the Sorites paradox which takes ad-
vantage of the notions and concepts of nonstandard analysis. Indeed, we believe
that neutrices (Chapter 2) are adequate to model the type of vagueness involved
in the Sorites paradox. We want to emphasize that our response solves only a
speci�c type of vagueness (of the type Sorites) and therefore is not intended as
a theory for vagueness in general. Also, we are not claiming that other theo-
ries are without value. For instance, the fuzzy logic approach has been quite
successful in solving vagueness related to tra¢ c and transportation processes
(see for example [65] [7], also [75] for other examples of applications of fuzzy set
theory). According to Teodorovíc [65]

[...] a wide range of tra¢ c and transportation engineering parame-
ters are characterized by uncertainty, subjectivity, imprecision and
ambiguity. Human operators, dispatchers, drivers and passengers
use this subjective knowledge or linguistic information on a daily
basis when making decisions.

Also,

The results obtained show that fuzzy set theory and fuzzy logic
present a promising mathematical approach to model complex tra¢ c
and transportation processes [...]

However the fuzzy logic approach is also not without fault as model of im-
precision, because it ultimately recourses to precise intervals to model imprecise
situations. Moreover, it does not work with the actual error but only with an
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upper bound of the error. On the contrary, with external numbers it is possible
to work directly with imprecisions and errors without recourse to upper bounds,
for they have neither in�mum nor supremum and satisfy strong algebraic laws
as seen in Chapter 2.

Soritical arguments share with external numbers the fact of being tolerant
to small changes but not tolerant to large changes in relevant aspects. In fact,
with external numbers it is even possible to de�ne rigorously what we mean with
terms such as �small changes�or �large changes�. The fact that large changes
come as the result of the accumulation of small changes comes as no surprise
because it is a very well known fact from nonstandard analysis that an in�nitely
large sum of in�nitesimals may become appreciable or even in�nitely large.

A simple shift from the classical forms presented in Section 5.2.1 and in
Section 5.2.2 to the forms using nonstandard concepts presented in Section
5.2.3 does not solve the problem. A million grains of wheat should form a heap
and yet that is clearly a standard number of grains. However, both these forms
suggest that the set of individual grains may be modeled by the external set of
limited numbers (positive part of a neutrix) and the set of grains that form a
heap may be modeled by the external set of the in�nitely large numbers. Indeed
"precise" objects possess sharp bounds and can be modeled by standard sets.
"Vague" objects have no clear bounds and should be for this matter modeled
by nonstandard sets which are given by external properties.

As mentioned above epistemicists believe in the existence of sharp bounds
for vague concepts, claiming that ignorance is somehow inevitable. We disagree
completely with that point of view. Indeed, the tolerance of vague terms such as
�heap�to small changes indicates that such terms do not have a sharp, de�nite
bound. By using neutrices to model such terms it is possible to avoid the
paradox and explain the tolerance to small changes.

According to Keefe [35], degree theories fail to provide an acceptable account
of vagueness and are forced to make an implausible commitment to a unique
numerical assignment for each sentence. Smith [62] argues that an adequate
account of vagueness must involve degrees of truth and that the main objections
to this theory may be overcome. His fuzzy plurivaluationism theory seems
overcomplicated for our approach on the Sorites paradox. We believe that the
problem with the fuzzy logic approach is the fact that precise numbers are used
to model imprecise predicates. This problem is overcome if one uses the external
set of limited numbers because this external set is tolerant to appreciable (but
not in�nitely large) imprecisions.

A �nal remark concerns the strength of nonstandard axioms, which may
introduce undesirable consequences of external modelling. As such, within IST ,
the proposed solution of the Sorites paradox

8<: st (0)
8n (st (n)! st (n+ 1))

9! (:st (!))
(5.1)
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implies, by the group property of the standard numbers, invariance by dou-
bling, i.e.

8n (st (n)! st (2n)) :

One easily imagines a soritical context where this is inappropriate. However,

9n (st (n) ^ :st (2n)) (5.2)

is consistent with (5.1). In such a context {(5.1), (5.2)} might be an acceptable
axiom system indeed, though of course some calculation properties will be lost.
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