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Resumo  

Regeneração in vitro de plântulas de embriões zigóticos maduros de Pinus pinea L.: 

superando os problemas de enraizamento 

Na natureza, as plantas e os microrganismos estabelecem associações de várias 

ordens. Nas culturas in vitro de plantas, mesmo as associações favoráveis com 

microrganismos foram, durante muitos anos, consideradas como contaminantes. Só 

mais tarde, as vantagens da inoculação in vitro (co-cultura) foram demonstradas e as 

técnicas de biotização (bacterização ou micorrização) usadas com o objetivo de 

melhorar as condições de crescimento in vitro.  

As dificuldades do enraizamento in vitro de uma das espécies mais importantes da 

floresta mediterrânica portuguesa, Pinus pinea L., conduziu à escolha deste sistema 

biológico, como matéria de estudo para a tese. Neste estudo, foram utilizados fungos 

ectomicorrízicos para otimizar a fase de enraizamento de plantas de Pinus pinea L. 

micropropagadas via organogénese. A introdução de ectomicorrízas no processo de 

micropropagação reativou o crescimento das raízes e induziu a melhoria dos vários 

parâmetros do sistema radicular adventício conduzindo a uma menor perda de plantas 

durante a aclimatização. Com efeito, a micorrização melhorou a funcionalidade das 

raízes, facilitando a absorção de nutrientes e de água.  

Neste trabalho, efetuou-se também uma extensiva caracterização morfológica e 

molecular das ectomicorrízas associadas a P. pinea. Das várias co-culturas testadas, 

selecionou-se a interação Pisolithus arhizus/P. pinea para estudar os sinais bioquímicos 

pré-simbióticos estabelecidos durante as etapas iniciais da co-cultura in vitro. Para 

possibilitar este estudo foi desenvolvido um novo sistema de co-cultura, o qual já está 

patenteado. Os resultados indicam que a presença de compostos fenólicos, 

nomeadamente o ácido o-coumarico, poderão ser importantes mediadores na interação 

fungo/planta.  
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Abstract 

In nature, plants and microorganisms establish symbiotic associations of various 

orders. However, for many years such associations were deemed unnecessary in in 

vitro cultures because the culture medium provides ample amounts of nutrients and 

plant growth regulators to a growing plant. Only recently, the benefits of biotization 

(bacterization or mycorrhization) of plants regenerated in vitro were demonstrated by 

improvements in their growth and vigor. 

Pinus pinea L., which is of one of the most important species of Portuguese 

Mediterranean forests, can be regenerated in vitro from embryo cotyledons but the 

growth of adventitious roots induced in shoots ceases shortly after their formation. 

Overcoming this particular biological impediment was the study subject of the thesis. In 

this study, ectomycorrhizal fungi were used to improve adventitious rooting of Pinus 

pinea L. plants micropropagated through organogenesis. The introduction of 

ectomycorrhizae during the micropropagation process reactivated the root growth and 

improved several root characteristics leading to a reduced loss of plants during 

acclimatization. In fact, the mycorrhization enhanced root functionality facilitating the 

absorption of nutrients and water. 

In this work, an extensive characterization of morphological and molecular 

ectomycorrhizae associated with P. pinea was also undertaken. Of the several fungus 

species tested, the interaction of Pisolithus arhizus/P. pinea was selected for studying 

the pre-symbiotic biochemical signals established during the initial stages of co-culture 

in vitro. To facilitate this study, a novel co-culture system was developed which has 

been patented. The results indicate that the phenolic compounds, in particular the o-

coumaric acid ester might be important mediators in the interaction between the fungus 

and stone pine. 
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Table 2 - Means ± standard errors of variables with significant differences 

between control and inoculated plants. 
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Chapter 1 

General Introduction 

The general introduction describes the taxonomy and biology of pines in order to 

provide the context for stone pine (Pinus pinea L.) as the subject of this research 

project. This is followed by a description of the problems related to in vitro adventitious 

rooting of conifers, as well as stone pine, and the original technique of in vitro 

biotization with ectomycorrhizal fungi. In addition, analysis of molecular and 

biochemical methods used to characterize the fungal species and to better understand 

the role of the signaling factors that are involved in the interaction are presented. 
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1. Plant material (Pinus pinea L.) 

Conifers are the largest and most economically important group of Gymnosperms 

(Whetten 2001). This group is present in all continents (exceptions are the Arctic zone 

and the Antarctic) and consists of dominant species widely distributed most in boreal 

forest ecosystems and even in some tropical environments (Gernandt et al. 2011, 

Neale and Kremer 2011). Within this group there is the world’s oldest known tree 

(Pinus longaeva) and the world’s tallest tree (Sequoiadendron giganteum).   

Conifers include six to eight families, with a total of 65-70 genera and 600-630 species 

(Catalogue of Life: 2007 - Conifer database). The most distinct families are shown in 

the phylogenetic diagram (Fig. 1). For a classification by linear sequence based on 

molecular data see the work of Christenhusz et al (2011).  

 

Fig. 1 - A schematic representation of the Pinophyta phylogeny (from Quinn and Price 2003). 

The earliest conifer fossils are found in the Upper Carboniferous (Stewart and Rothwell 

1993, Farjon 2008) and many of the extant families can be recognized by the late 

Triassic or early Jurassic (Singh 2006). Major fossil orders of conifers or conifer-like 

plants include the Cordaitales, Vojnovskyales, Voltziales and in some cases the 

Czekanowskiales. 

Examples of contemporary conifers include: Pines (Pinus spp.), Spruces (Picea spp.), 

Cowtail Pine (Cephalotaxus spp.), Cypress Pine (Callitris spp.), Firs (Abies spp.), 

Larches (Larix spp.), Bald Cypresses (Taxodium spp.), Yellowwood (Podocarpus spp.), 

Yews (Taxus spp.), Arbor vitae (Thuja spp.), Junipers (Juniperus spp.), Cedars 

(Cedrus spp.), Douglas-firs (Pseudotsuga spp.) and Golden Larch (Pseudolarix spp.), 

among others.  

http://www.catalogueoflife.org/show_database_details.php?database_name=Conifer+Database
http://en.wikipedia.org/wiki/Cordaitales
http://en.wikipedia.org/w/index.php?title=Vojnovskyales&action=edit&redlink=1
http://en.wikipedia.org/wiki/Voltziales
http://en.wikipedia.org/w/index.php?title=Czekanowskiales&action=edit&redlink=1
http://en.wikipedia.org/wiki/Douglas-fir
http://en.wikipedia.org/wiki/Pseudolarix
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Pinus is the largest extant genus of the Pinaceae family (Fig. 2) naturally occurring 

almost exclusively in the Northern Hemisphere, but introduced and widely naturalized 

in both hemispheres (Procheş et al. 2012) with over 100 widely recognized species 

(Richardson 1998, Farjon 2001, Alves-Freitas et al. 2011). Stone pine (Pinus pinea L.) 

is an economically important conifer distributed across the Mediterranean Basin (Fig. 

3). In Portugal it is cultivated mainly for the production of nut seeds (pinion) for the food 

consumer market. 

 

 

 

 
 
 

 

 

Fig. 2 - Taxonomic hierarchy of Pinus pinea L. (from Integrated Taxonomic Information System 

(ITIS), 2012). 

 

 

Fig. 3 - The distribution map of Pinus pinea L. throughout the Mediterranean Basin and adjacent 

zones (from Euforgen.org). 

 

Taxonomic Hierarchy  
    

 Kingdom Plantae – Planta, Vegetal, plants, plantes  

 Subkingdom Viridaeplantae – green plants  

 Infrakingdom Streptophyta – land plants  

 Division Tracheophyta – vascular plants, Tracheophytes  

 Subdivision Spermatophytina – Spermatophytes, seed plants, Phanérogames  

 Infradivision Gymnospermae – Gymnosperms, Gymnospermes, Gimnosperma  

 Class Pinopsida – conifers  

 Order Pinales – pines  

 Family Pinaceae – pines  

 Genus Pinus L. – pines  

 Species Pinus pinea L. – Italian stone pine  

    
 

 

http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=202422
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=846492
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=846494
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=846496
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=846504
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=846506
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=500009
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=500028
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=18030
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=18035
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The total area covered by stone pine is around 380,000 ha (Varol and Tel 2010). The 

Iberian Peninsula accounts for approximately 75% of Pinus pinea stands, the largest 

area occurring in Spain with an area of 464,000 ha (BDN 2008), followed by Portugal 

with an area of 130,300 ha (IFN5 2010).  

Stone pine trees can reach a maximum height of 25 meters, and the trunk is often short 

and slightly sinuous. The canopy has a horizontal spread and ascending branches that 

gives their adult crown a characteristic umbrella-like shape (Fig. 4). From this feature is 

derived one of the most common names in English: umbrella pine. Other common 

names that occur are: pinheiro manso (Portuguese); pino piñonero, pino manso, pino 

doncel, (Spanish); pin parasol, pin pignon (French) and pino domestico (Italian). 

 

Fig. 4 - Pinus pinea L. trees in a typical pine stand in Alcácer do Sal district, Portugal.  

Some P. pinea tree characteristics like glabrous twigs and green needles that occur in 

fascicles of two can be found in typical pine stands. Like other pine species, P. pinea is 

monoecious, although fecundation rarely occurs within the same tree since, in most 

cases, the male gametes and female cones are formed in different branching systems 

and maturation is sometimes not coincident on the same tree. Pollen grains are mainly 

transported by wind (anemophilous pollination) and fecundation takes place 2 years 

after pollination (Singh 2006). Cones reach maturity after 3 years and are 8-14 cm in 

length (Fig. 5a). Figure 5b shows a typical P. pinea seed without the seed-coat. They 

are heavy and mostly dispersed by small mammals (Fady et al. 2004). Seed production 
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commences after 12 to 18 years depending whether tree occurrence is in isolation or in 

stands (Moussouris and Regalo 1999). 

 

Fig. 5 - Mature cone of a P. pinea tree (a) and seed without the seed-coat (b). 

P. pinea occurs either in arid inland or coastal areas affected by salinity stress (Correia 

et al. 2010), but also grows in harsh environments. This species is highly sensitive to 

climate variants (De Luis et al. 2009b) and faces regeneration problems in many 

localities. 

Prior to the anthropogenic range expansions of the last few thousand years, stone pine 

was probably confined to the Iberian Peninsula, since is the only area that can be 

found away from ancient trade routes (Rikli 1943). There still remains a great deal of 

controversy regarding the natural expansion and origin of this species. Richardson 

(1998) stated that it is “impossible to determine its natural range". Agrimi and Ciancio 

(1994) have located in the western Mediterranean zone the origin of P. pinea, despite 

the fact that some theories hold that the species is native not only to the western 

Mediterranean but also to the eastern Mediterranean Basin (Barbéro et al. 1998). P. 

pinea was extensively planted around the Mediterranean Sea throughout history by the 

Etruscans, the Greeks, the Romans and the Arabs (Fady et al. 2004, Evaristo et al. 

2007). 

Although it has been cultivated since the Roman period for timber (for construction and 

ship-building), the most economically important product derived from the tree is its 

seed, the pine nut. World production of pine nuts is about 20,000 tons/year (Nergiz and 

Donmez 2004). The main countries where pine nuts are traditionally produced and 

consumed are Portugal, Spain, Italy, Tunisia and Turkey. 

Concerning seed production, in the case of P. pinea, as a nut-producing tree, seed 

yield is the main clonal selection criterion (Mutke et al. 2005). Due to the rise of 

traditional agriculture and long-distance trading, this species could have experienced a 

a b 

http://www.conifers.org/refs/richardson98.htm
http://www.conifers.org/refs/richardson98.htm
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further reduction in its genetic diversity, which may be explained by the recent 

expansion of the species or low mutation rates (Vendramin et al. 2007). Among widely 

distributed sexually-reproducing trees, stone pine may be considered an exception due 

to its low level of genetic diversity. Nevertheless, it should be emphasized that whereas 

some species can survive in harsh environments, they do not represent the norm (Godt 

and Hamrick 1997). An understanding of the current adaptive diversity of P. pinea is a 

prerequisite for outlining its potential distribution and the consequences that it may face 

from environmental changes in the future. 

The economic exploitation of pine nuts and the existence of great potential for P. pinea 

improvement are some of the reasons for the development of genetic breeding 

programs, based on the identification of excellent genotypes by establishing clonal 

banks with different origins (Alonso et al. 2006). The implementation of in situ 

conservation networks, as is the case with many other forest trees around the world, is 

essential. Despite the fact that the rate of survival of P. pinea in forest fires is 

considerably higher than that of other Mediterranean pines (Rodrigo et al. 2004), wild 

fires and overgrazing are still the greatest risks faced by stone pine forests. Fire 

protection and preventive measures to reduce these risks should also be introduced for 

the conservation of this typical Mediterranean pine (Fady et al. 2004). 

According to the US Food and Drug Administration, there is a growing worldwide 

market for pine nuts, due to the fact that consumption reduces the risk of coronary 

heart disease, which is attributed to the high linoleic acid content (Nergiz and Donmez 

2004). Also, the seeds have a high nutritional content, being particularly rich in proteins 

and vitamins (Savage 2001), and are thus considered a food supplement. In addition to 

their nutritional value, stone pine nuts have been considered as an aphrodisiac in 

ancient times, by Roman poets and Greek physicians (Moussouris and Regalo 1999).  

Other products of economic value include resin, bark (for tannin extraction), and pine 

cone shells (for fuel) (Khaldi et al. 2011). P. pinea is also cultivated for environmental 

protection: ecological restoration (afforestation of coastal areas and dunes), protection 

of agricultural crops (Fady et al. 2004), can potentially help mitigate desertification 

problems (Correia et al. 2010), provide food and shelter for local wildlife (Montero et al. 

2004), and is currently considered as a viable alternative for use for abandoned 

farmland (Cortizo et al. 2009). It is also an aesthetically attractive tree which is planted 

in parks and gardens throughout the world. It has been successfully introduced in North 

Africa as well as Argentina, Australia, South Africa and the USA.  

http://www.springerlink.com/content/?Author=Abdelhamid+Khaldi
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The great importance of the species derives from its environmental, aesthetic, and soil-

conservation uses, its high economic value and its ability to survive intense fire 

damage. Due to its importance and that of applications, interest in the species from 

forest managers and researchers has increased considerably. 

2. In vitro propagation 

 

In vitro propagation, most frequently termed micropropagation, refers to the application 

of plant-cell and tissue-culture technology in order to improve mainly the performance 

of important agriculture crop species. The growth of commercial micropropagation as 

an industry occurred during the 1970s and 1980s (Ahamed et al. 2001) and generated 

a great deal of excitement among researchers, mostly due to cell totipotency through 

the regeneration of entire plants from single cells (Metivier 2000, Razdan 2003, Iliev et 

al. 2010). 

 

Plant tissue culture, also known as in vitro culture is the science of growing plant cells, 

tissue or organs isolated from the mother plant on artificial culture media (George et al. 

2008). By manipulating the culture medium composition, the plant cells transferred to 

the nutrient medium will start to divide and produce cell masses that will eventually 

produce new plants, often in large numbers (Klimaszewska et al. 2011). 

The in vitro growth and development of a plant is determined by a number of complex 

factors: (a) the genetic structure of the plant (b) nutrients: water, sugars, macro- and 

micro-elements (c) physical growth factors: light, temperature, pH, O2 and CO2 

concentrations, and (d) certain organic substances: plant growth regulators (PGRs) 

and vitamins. 

Several techniques for in vitro plant propagation have been developed, for example, 

the induction of axillary and adventitious shoots, the culture of isolated meristems and 

plant regeneration by means of organogenesis and/or somatic embryogenesis. These 

different plant-tissues culture techniques can present advantages in comparison with 

traditional methods of agronomic, horticultural and forestry species propagation (Iliev et 

al. 2010). Some of these benefits include: (1) consistent production of the same 

genotypes over time, (2) greater genetic gains, (3) flexibility for the rapid deployment of 

suitable clones given changing breeding goals and/or environmental conditions, and (4) 

the capability for managing genetic diversity and genetic gain in plantation forestry 

(Park et al. 1998). Furthermore, the benefits produce plants that require fewer 

pesticides and which are in some cases pathogen-free (Ahamed et al. 2001).  
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The propagation of superior mature individuals is an effective way of achieving genetic 

gain by exploiting genetic variance (dominance, additive and epistatic) within a given 

generation without the need for proceeding through long breeding cycles (Ahuja 1993). 

Consequently, the regeneration of mature trees, either singly, or as part of conventional 

breeding programmes, could provide a powerful instrument for improving forestry 

management (Cortizo et al. 2009), and it is an increasingly essential tool for all 

propagation programs. 

In the case of trees, conventional breeding is not as straightforward since in some 

cases they have long life cycles, are self-incompatible and very slow to mature (Merkle 

and Dean 2000, Campbell et al. 2003). Maturation is an important issue since it 

induces changes in meristem behavior, thus reducing the propagation potential of 

forest trees; also, the economic value of a tree is better assessed after it reaches 

maturity (Greenwood 1995, von Aderkas and Bonga 2000, Mitchell et al. 2004).  

3. In vitro propagation in conifers 

Conifer cultures are generally initiated from immature or mature zygotic embryos. The 

uses of germinating embryos cotyledons or primordial shoots excised from seedlings or 

trees are less frequent (Bonga et al. 2009). In previous, most efforts were focused on 

propagation by first inducing adventitious shoot formation, primarily from cotyledons, 

and then roots by means of organogenesis. Success on a commercial scale has been 

limited to a few species, for example radiata pine (Pinus radiata) (Bhowmik and 

Matsuiz 2001, Bonga et al. 2003). Developed over the last two decades, somatic 

embryogenesis is considered a more effective method (Bonga et al. 2003), which is 

different from organogenesis because organs, such as shoots and roots, have one 

primary pole or growing point, whereas embryos are bipolar structures with both shoot 

and root meristems (Bhowmik and Matsuiz 2001, Preece 2003). 

Distinct steps in organogenesis include: (1) establishment or bud induction, or both; (2) 

bud and shoot development and multiplication; (3) rooting of developed shoots; and (4) 

hardening of plantlets (Saborio et al. 1997). In the case of somatic embryogenesis, the 

method can produce any number of zygotic-like somatic embryos and plants from one 

seed, thus providing a standard for mass clonal propagation (Klimaszewska et al. 

2007). Although somatic embryogenesis technology has worked well with many conifer 

species using zygotic embryos as starting material, attempts to achieve the same result 

with adult conifers have failed (Klimaszewska et al. 2011).  
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Since the genetic potential for features (height growth, branching and crown shape) 

cannot be evaluated until the tree is fully-grown, it is important to develop methods for 

propagating conifers in the mature stage (von Aderkas and Bonga 2000). In the last 25 

years there have been several reports regarding the in vitro culture of conifers (Horgan 

1987, Ewald 1998, Chang et al. 2001, Parasharami et al. 2003, Prehn et al. 2003, 

2003, Oliveira et al. 2003, Renau-Morata et al. 2005, Alonso et al. 2006, Zavattieri et 

al. 2009, Salaj et al. 2007, Bonga et al. 2010). 

Within the Pinus genus, successful micropropagation of explants is reported for a 

number of species such as P. taeda (Mott and Amerson 1981), P. pinaster (Dumas and 

Monteuuis 1995), P. ayacahuite (Saborio et al. 1997), P. nigra (Özkurt et al. 2008), P. 

sylvestris (De Diego et al. 2009), P. maximartinezii (Robledo et al. 2009), P. radiata 

(Zhang et al. 2009), P. massoniana (Zhu et al. 2010), P. kesiya (Choudhury and 

Kumaria 2010), and P. peuce (Stojičić et al. 2012). 

Micropropagation of P. pinea via organogenesis has been reported during the last few 

decades. The most common method, it is based on the induction of shoot buds from 

cotyledonary explants dissected from mature seeds and in most cases, cultured in 

media supplemented with some varieties of PGRs (see point 9)  

4. In vitro rooting 

Conifers have a major role to play in reforestation strategies, and despite the studies 

that have been published, current research on their vegetative propagation has not 

been satisfactorily investigated. One of the most common problems encountered in the 

micropropagation of conifers is the reduction in the ability of cuttings to root (Cortizo et 

al. 2009, Zhang et al. 2010). This problem is mainly related with maturation, which 

affects reproductive competence, morphology, and growth rate (Greenwood and 

Hutchison 1993, Libby and Ahuja 1993, Mitchell et al. 2004). 

The rate of spontaneous rooting is generally low in micropropagated cuttings in 

conifers (Burns et al. 1991, Budimir and Vujicic 1992, Normand et al. 1996, Stojičić and 

Budimir 2004, Ewald 2007a). In most conifer micropropagation protocols, rooting 

treatment is required in order to increase the rooting rate (Ragonezi et al 2010b).  

5. Adventitious root formation 

Esau (1953) defined the term "adventitious root” as a root that arises on an already 

lateralized root axis or at a place on the plant that is not itself a root (e.g. on a shoot). 

http://aob.oxfordjournals.org/content/90/2/293.full#ref-19
http://aob.oxfordjournals.org/content/90/2/293.full#ref-11
http://scholar.google.pt/citations?hl=pt-PT&user=pwmm93UAAAAJ&oi=sra
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These roots may occur naturally from stem tissue or may be induced by different 

conditions: a stressful environment, mechanical damage or the tissue-culture 

regeneration of shoots (Li et al. 2009). Adventitious root formation (ARF) is essential 

for plant growth regulation and development since it is a key step in the vegetative 

propagation of woody or horticultural species (Hess 1994, Sorin et al. 2006). The 

inability to induce ARF in conventional cuttings or tissue culture is a major limiting 

factor when cloning plants for genetic improvement and/or commercial applications 

(Metivier 2000). 

ARF is a complex developmental process that consists of three successive but 

interdependent physiological phases: induction, initiation and expression. Each of 

these phases has different requirements (Li et al. 2009). The chemical and physical 

factors that affect rooting include: PGR´s, nutrients (mainly the carbohydrate source), 

temperature and light (Ragonezi et al. 2010b). 

An efficient rooting treatment can lead to a high rate of rooting and higher quality of the 

root system (Ragonezi et al. 2010b). Root number, length, and the absence of callus at 

the base of the shoot could have an influence on plant behavior in the ex vitro phase 

(De Klerk et al. 1999, Hartmann et al. 2002).  

In the past few years a number of studies have been published describing attempts to 

improve rates of in vitro rooting in many species: Pinus armandii var. amamiana (Ishii 

et al. 2007); Larix sp. (Ewald 2007a); Taxus baccata L. (Ewald 2007b); Juniperus 

phoenicea (Loureiro et al. 2007); Pinus pinea L. (Zavattieri et al. 2009, Ragonezi et al. 

2010a); Pyrus communis L.  (Sun et al. 2009);  Teucrium fruticans L. (Frabetti et al. 

2009); Olea europea L. (Padilla et al. 2009); Quercus rubra L. (Vengadesan et al. 

2009a); Citrus sinensis L. Osbeck × Poncirus trifoliata L. Raf. (Montoliu et al. 2010); 

and Pistacia vera L. (Benmahioul et al. 2012).  

Also, some efforts using biotization procedures (for definition of this, see point 7 of this 

chapter) to overcome in vitro rooting and improve transplantation survival rates can be 

cited in different works and for different species: Ragonezi et al. (2012) with P. pinea 

and P. arhizus; Normand et al. (1996) used Hebeloma cylindrosporum in the rooting 

and acclimatization phases of P. sylvestris; also with this pine species, Niemi et al. 

(2000) associated with Pisolithus tinctorius; Sarmast et al. (2012) evaluated the 

application of Agrobacterium rhizogenes with Araucaria excelsa R. Br. var. glauca; in 

Gosal et al. (2008) Populus deltoides plantlets were biotized during hardening with 

Piriformospora indica and Pseudomonas fluorescens; Chittora et al. (2010) working 

http://www.springerlink.com/content/07k7w445p6000753/fulltext.html#CR68
http://www.springerlink.com/content/07k7w445p6000753/fulltext.html#CR37
http://www.springerlink.com/content/07k7w445p6000753/fulltext.html#CR38
http://www.springerlink.com/content/07k7w445p6000753/fulltext.html#CR84
http://www.springerlink.com/content/07k7w445p6000753/fulltext.html#CR149
http://www.springerlink.com/content/07k7w445p6000753/fulltext.html#CR110
http://www.springerlink.com/index/G07522203768PW47.pdf
http://www.springerlink.com/index/H46408038Q264130.pdf
http://www.springerlink.com/index/H46408038Q264130.pdf
http://www.springerlink.com/index/A741L252R0551046.pdf
http://www.cabdirect.org/search.html?q=au%3A%22Gosal%2C+S.+K.%22
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with micropropagated Terminalia bellerica Roxb plants inoculated with Piriformospora 

indica during ex vitro acclimatization; Vettori et al. (2010) analyzed the effect of 

Azospirillum brasilense Sp245 on the micropropagation of three fruit rootstocks: Prunus 

cerasifera×P. spinosa, Prunus persica × P. amigdalus, and MM 106 apple (Northen 

Spy×M1); Martins (2008) worked on micropropagated Castanea sativa plants and 

Pisolithus tinctorius. 

Certain combinations of ectomycorrhizal fungi and proper procedures of co-culture 

could be exploited for the in vitro root development improvement of stone pine or any 

other target species. Based on taxonomic and ecological extrapolation, an estimated 

86% of terrestrial plant species acquire mineral nutrients via mycorrhizal root symbionts 

(Brundrett 2009). Pinaceae is considered the oldest extant plant family that is 

associated with ectomycorrhizal fungi (Hibbett and Matheny 2009).  

6. Mycorrhizae 

Since the term symbiosis was introduced by De Bary in 1879, the importance of 

associations among the numerous organisms has increased. Mycorrhizae are 

symbiotic structures formed between plant roots and fungi. Plants provide 

photosynthetically-fixed carbon and a habitat for the fungi, whereas mycobionts provide 

dissolved- and organically-bound nutrients (Smith and Read 2008). Fungal activity 

represents an important element of active biomass in forest ecology, since 

establishment, survival and decomposition in the forest trees dynamics are largely 

dependent on these organisms (Rosling 2003). 

Seven distinct types of mycorrhizae are recognized, but several of them are very 

similar (Brundrett 2002). Endomycorrhizae and Vesicular-arbuscular mycorrhizae (AM) 

are the most widespread types. Ectomycorrhizae (ECM) occurs in certain families of 

Gymnosperms and Dicotyledons and in one Monocotyledon genus (Brundrett 2009). 

The remaining types of mycorrhizae are restricted to specific plant families. The main 

differences between a non-mycorrhizal root and a colonized root by either endo- or 

ectomycorrhizal fungi can be found in Figure 6. 

Brundrett (2002) distinguished the various stages in the beginning of the association:  

1 Fungi attracted by exudates proliferate on the surface of plants; 

2 Fungi develop mechanisms for penetrating living plants without causing harm;  

3 The space within living plants becomes an important habitat for these endophytes; 

providing them with shelter from adverse soil conditions, parasitism and predation; 

http://www.actahort.org/books/865/865_24.htm
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4 Fungi become dependent on the host for energy; 

5 Absorptive hyphae within plants increase their surface area and permeability.  

 

Fig. 6 - Morphological changes in roots as they become mycorrhizal and the effects of those 

changes on the development of a mycorrhizosphere. A - Generalized non-mycorrhizal root with 

root hairs and indicated sources of organic materials available as substrates for rhizosphere 

microorganisms. B - Endomycorrhiza with indicated morphological changes such as reduced 

tissue sloughing, lack of root hairs, presence of external hyphae, thick-walled spores, and 

associated soil aggregates; no obvious change in surface area. C - Ectomycorrhiza indicating 

dramatic morphological changes such as development of a fungal mantle plus extensive 

external hyphae and rhizomorphs and associated soil aggregates, loss of root hairs, and greatly 

increased branching and surface area (from Linderman 1988). 

The main role of this association is the acquisition of nutrients by exploring the soil 

volume around the host with the aid of the hyphae, which are more responsive and 

more extensive than the roots themselves (Van der Heijden et al. 2006b, Requena et 

al. 2007, Turk et al. 2008, Smith and Smith 2011, Cairney 2011, Kiers et al. 2011). 

Mycorrhizal colonization tends to be reduced when nutrient availability is high (Kiers 

and van der Heijden 2006) and may become inactive or be lost by attrition. Also, they 

may experience cycles of dormancy and activity, which is a common feature in the 

perennial root system of trees (Kottke and Oberwinkler 1986).  

6.1 Ectomycorrhizae 

Within ectomycorrhizal symbioses, the host (plant roots) and the symbiont (ECM fungi) 

function collectively as an entity. The development of ECM in plants frequently allows 

them to establish in habitats that neither symbiont may be able to occupy 

independently (Nehls et al. 2000). ECM fungi include at least 6000 species (Hibbett et 

al. 2000) and involve economically important woody plant families and many lineages 
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of fungi that generally belonging to Basidiomycota (agarics, bolets) and Ascomycota 

(truffles) (Brundrett 2009, Tedersoo et al. 2010a). 

ECM symbioses are restricted to <5% of terrestrial plant species (Landeweert et al. 

2001) and are ubiquitous in the Pinaceae family (Le Page et al. 1997). This mutualistic 

relationship among ECM fungi grants conifers an ecological advantage for surviving 

harsh conditions where climate is strongly seasonal and soils are nutrient-poor (Castro 

et al. 2010). Other families that are associated with ECM fungi include Fagaceae, 

Myrtaceae Dipterocarpaceae (Brundrett 2002, Smith and Read 2008, Bonfante and 

Genre 2010).  

For mycorrhizated plants the modifications in both cell organization and physiological 

and morphological facets are associated with numerous benefits. The fungus improves 

plant nutrient uptake by means of rhizosphere exploitation and in return it receives 

carbohydrates that are essential for completion of the fungal life cycle (Bonfante and 

Anca 2009). The symbiont may also alleviate the environmental stress caused by 

chemicals, herbivory, pathogens, fire or drought (Smith and Read 2008), and as 

biofertilizers they may counteract fertilization excess and thus promote sustainable 

agriculture (Bonfante and Genre 2010). 

Ectomycorrhizae are characterized mainly by the presence of a fungal sheath (mantle), 

which adheres to the root exterior and forms a hyphae structure (Ammarellou and 

Saremi 2008). The fungus mycelium is connected to the extramatrical hyphae that 

explore the substrate, and is responsible for nutrition and water uptake (Barker et al. 

1998). One of the most striking features of the ECM root is the Hartig net which 

extends into the root, penetrating between epidermal and cortical cells. The Hartig net 

forms a crossing point from the inner zone of the mantle through which the symbionts 

exchange materials (Barker et al. 1998, Bending et al. 2006, Frey-Klett et al. 2007). 

This is the primary zone for nutrient transfer in the association (Burgess et al. 1994, 

Dell et al. 1994, Brundrett 2004). In Figure 7 there is a schematic representation of 

ectomycorrhizal development events.   

6.2 Ectomycorrhiza-like structures 

As mentioned before, development between the ECM fungi and the host plant involves 

many changes in root physiology and morphology. Both root elongation and root hair 

formation are suppressed and short lateral roots go through dichotomous branching 

that generally culminates in the formation of coralloid structures. In conifers, externally 

http://en.wikipedia.org/wiki/Root
http://en.wikipedia.org/wiki/Cell_(biology)
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supplied fungal exudates, extracts, or synthetic auxins can partially mimic the effect of 

mycelium in inducing root proliferation and dichotomous branching of lateral roots 

(Smith and Read 2008). Normally in the Pinus genus, ECM roots are usually 

dichotomously branched, as described by Agerer (1987-2002), and in some cases 

extensive dichotomous and coralloid branching of lateral roots can occur without fungal 

intervention, and this kind of formation is known as an ectomycorrhiza-like structure  

(Castro et al. 2010).  

 

Fig. 7 - Schematic representation of ectomycorrhizal development. Morphological events taking 

place during early (left) and late (right) stages of Ectomycorrhizal formation are indicated (from 

Baker et al. 1998). 

Some research has been carried out on the role of the plant hormones and fungal/root 

exudates in the production of ECM or ECM-like structures in pine (Slankis 1973, Faye 

et al. 1980, Rupp and Mudge 1985, Gogala 1991, Castro et al. 2010). Faye et al. 

(1980), studying P. pinaster, demonstrated that the host plant genome contains all the 

genetic information required to form an ECM-like organ. In the work of Castro et al. 

(2010), ARF regenerated by P. pinea microshoots as well as axenic embryo root 

cultures developed ECM-like structures. It was demonstrated that these structures 

appeared in all experimental settings tested, with the frequency of dichotomous 

branching increasing with the reduction of macronutrients in the medium and also in 

cultures that spent more than one month on the same co-culture medium (which is 

similar to drought conditions in nature). These findings support those of Kaska et al. 

(1999), in which nutrient-limiting conditions were required for the formation of both 
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spontaneous and chemically-induced dichotomous and coralloid branching in three 

different species of pine: P. taeda, P. halepensis and P. muricata. A combined 

exogenous application of IAA and ethylene induced root responses equivalent to the 

presence of truffle mycelium in both host plant (Cistus incanus) and the non-host plant 

(Arabidopsis thaliana) (Splivallo et al. 2009) 

PGRs supplied by the ECM fungi have an effect on the thickness, extension and 

branching of roots, and, when applied experimentally, can induce similar root 

morphologies as in the absence of fungus (Kaska et al. 1999, Barker and Tagu 2000). 

By analyzing the anatomical aspects of the ECM-like structures, the similarity between 

extensive dichotomous branching of lateral roots that grow without fungal presence and 

those roots derived from the fungal inoculation can be observed. Due to this 

association, it may be difficult to diagnose ECM roots without histological and 

anatomical studies. Many theories may be developed on the formation of ECM-like 

structures and the most evident of them are, nutrient limiting, genetic information and 

chemically induced roots. Nevertheless, this topic has not been sufficiently investigated 

and needs to be further examined.  

6.3 - Molecular characterization of mycorrhizal fungi  

 

The identification of ECM fungi species is a difficult task. Traditionally, ectomycorrhizae 

have been identified by using colour, shape and other macroscopic features (Agerer 

1987-2002). On the other hand, many fungi species have not been described by 

morphological methods and are rarely identified using only morphological techniques 

(Iotti and Zambonelli 2006). Identification remains largely dependent on initial analysis 

based on morphotyping, and a high level of skill is required by the analyst (e.g. 

personal experience, ability, rough analysis) (Rosling 2003). 

 

The most reliable approach to the study of ectomycorrhizal community composition is a 

combination of morphological and molecular identification techniques (Gamper et al. 

2009, Walbert et al. 2010, Bahram et al. 2011, Zambonelli et al. 2012). 

                                                                                                                                                  

In the 1990s, a revolution in molecular tools addressed the cultivability issue and 

substantially enhanced the identification of ECM fungi in situ (Gardes et al. 1991b, 

Egger 1995, Horton and Bruns 2001, Anderson and Cairney 2004). With the 

application of these techniques, many common yet unidentified ECM fungi could be 

taxonomically assigned (Vrålstad et al. 2000, Kõljalg et al. 2002). Since this molecular 
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revolution, the reliability of the identification of ECM fungi species has been greatly 

improved through taxonomic analysis, phylogenetic relationships within the major 

groups of mycorrhizal fungi and the use of deoxyribonucleic acid (DNA) sequence 

databases (Horton and Bruns 2001). In recent years, a variety of DNA-based methods 

have been developed in order to identify ECM fungi (Landeweert et al. 2003a, Reich et 

al. 2009, Bonito et al. 2011) and also to verify the genetic variation inside a specific 

group (Alves et al. 2007, Caldeira et al. 2009). 

The most important methodological advance in the study of ECM communities has 

been the application of polymerase chain reaction (PCR) based techniques (Mullis and 

Faloona 1987, Gardes et al. 1991b, Lanfranco et al. 1998, Landeweert et al 2003a, 

Morris et al. 2008). PCR-based techniques targeting ribosomal DNA regions are widely 

employed because of their specificity and sensitivity (Iotti and Zambonelli 2006). These 

regions combine the advantages of high copy number, highly conserved sequence 

tracks that may serve as sites for primer design, and variable regions between the 

priming sites (Horton and Bruns 2001).  

Most molecular studies of ECM fungi involve analyses of the internal transcribed 

spacer (ITS) region. This nuclear region, which is well known in different fields of 

molecular biology and fungal systematics, lies between the small subunit (SSU) and 

the large subunit (LSU) ribosomal RNA (rRNA) genes and contains two non-coding 

spacer regions separated by the 5.8S rRNA gene (Fig. 8a,b). In fungi, it is typically 

about 650-900 bp in size, including the 5.8S gene. It is usually amplified by either the 

universal primer pair ITS1 and ITS4 (White et al. 1990, Gardes et al. 1991b, Gardes 

and Bruns 1993) or even with the pair ITS1 and ITS5 which has a slightly larger 

fragment. 

The similarity of sequence of the ITS region is widely used in taxonomy and molecular 

phylogeny studies for identifying and distinguishing species, due to the high degree of 

variation between closely related species (Baldwin et al. 1995, Gomes et al. 2002, 

Kanchanaprayudh et al. 2003, Mello et al. 2006, Rajaratnam and Thiagarajan 2012). 

Several studies also use short standardized DNA regions namely “barcodes” for 

identifying biological material (Chase and Fay 2009). Molecular DNA barcoding of fungi 

identification has, during the last 15 to 20 years, become an essential part of fungal 

ecology research and has provided new insights into the diversity and ecology of many 

different groups of fungi (Horton and Bruns 2001, Anderson and Cairney 2004, Seiffert 

2009). At present, metagenomic approaches and pyrosequencing are promising tools 

in the identification of microbial communities (Uroz et al. 2012, Tedersoo et al. 2010b). 

http://en.wikipedia.org/wiki/Pyrosequencing
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Fig. 8 - Commonly used primers used for amplifying parts of the entirety of the ITS region. a) 

Relative position of the primers, design of the subsets and number of sequences in each 

subset. b) Primer sequences, references and position of the primer sequence according to a 

reference sequence of Serpula himantioides (AM946630) stretching the entire nrDNA repeat 

(from Bellemain 2010). 

7. Biotization 

Biotization could be defined as the use of beneficial microbial inoculants(s) in in vitro 

cultivated plant material for promoting developmental and physiological changes that 

may: enhance growth, induce plant disease resistance for dealing with biotic or/and 

abiotic stress, and among other benefits for producing useful compounds. 

The in vitro culture conditions result in plantlets with altered morphology, anatomy and 

physiology, which may be susceptible to biotic and abiotic stresses in acclimatization 

(Vestberg et al. 2004, Chandra et al. 2010); also this phase, this can make the cost-

intensive process higher in plantlet production. The transplantation stage continues to 

be a major bottleneck in the micropropagation of many plants (Saadat and Heenerty 

2001, Hazarika 2003). As a result, significant losses can occur during the 

Primer Author Primer sequence Position 

 

Forward primers 

   

NS7 White et al. 1990 GAGGCAATAACAGGTCTGATGC 1403-1426 

ITS1-F Gardes and Bruns 1993 CTTGGTCATTTAGAGGAAGTAA 1723-1744 

ITS5 White et al. 1990 GGAAGTAAAAGTCGTAACAAGG 1737-1758 

ITS1 White et al. 1990 TCCGTAAGGTGAACCTGCGG 1761-1779 

ITS3 White et al. 1990 GCATCGATGAAGAACGCAGC 2024-2045 

 

Reverse primers    

ITS2 White et al. 1990 GCTGCGTTCTTCATCGATGC 2024-2043 

ITS4 White et al. 1990 TCCTCCGCTTATTCATATGC 2390-2409 

ITS4-B Gardes and Bruns 1993 CAGGAGACTTGTACACGGTCCAG 2526-2548 

LR3 Vilgalys and Gonzalez 1990 CCGTGTTTCAAGACGGG 3029-3045 

a 

b 
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acclimatization phase due to the combined effect of nutritional and environmental 

stress to microplants (Grunewaldt-Stoecker 1997, Swain et al. 2010). In particular, 

fresh-rooted plants frequently demonstrate a delicate and inefficient root system, 

stomata with vulnerable closure mechanisms, lower cuticle production and water stress 

followed by death (Vettori et al. 2010). 

During recent years, numerous studies have focused on the application of colonizing 

microorganisms (e.g. rhizobacteria and mycorrhizal fungi) in rooted plants. They have 

made it possible to increase the adaptive capacity and consequently the survival rate of 

micropropagated plants in the acclimatization phase due to their ability to induce plant 

resistance to different forms of environmental stress (Vettori et al. 2010, Ragonezi et al. 

2012). 

The following are examples of biotization between several plant species and microbial 

inoculants: Gay et al. (1992) used ECM fungi as a tool for enhancing the rooting of 

micropropagated cuttings of Pinus halepensis; Martins et al. (1996) also reported 

Amanita muscaria, Laccaria laccata, Piloderma croceum and Pisolithus tinctorius as 

useful in the acclimatization of micropropagated plantlets of Castanea sativa. Grange 

et al. (1997) studied the effect of different genotypes of Hebeloma cylindrosporum on in 

vitro rooting of micropropagated cuttings of Prunus avium and P. cerasus. Paxillus 

involutus with seedlings of Pinus sylvestris was evaluated by Rudawska and 

Kieliszewska (1997). Reddy and Satyanarayana (1998) screened ECM fungi, 

Cenococcum geophilum, Laccaria laccata, Paxillus involutus and two isolates of 

Pisolithus tinctorius, in order to inoculate micropropagated plantlets of Populus 

deltoids. Also, P. tinctorius was used in Q. suber woods (Díez et al. 2000). In the work 

of Senthilkumar et al. (2008), Oryza sativa L. was inoculated with rhizobia; Glomus 

deserticola was used in Prunus avium (Lovato et al. 2006); Glomus etunicatum in the 

inoculation of Curcuma zedoaria (Miachir et al. 2004); strawberry and banana 

microplants were inoculated with arbuscular mycorrhizae respectively (Murphy et al. 

1997, Mandhare and Suryawanshi 2005). 

Nonpathogenic organisms in plant tissue culture in order to improve the 

micropropagation system can be exploited once the conditions in the co-culture are 

optimized. Such microorganisms would not only act as inducers of the responses 

against stress resistance but may also occupy microsites on the host plants, making 

them unavailable to pathogens (Nowak 1998). 
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Although the biotization technique is of the greatest importance for the growth, 

improvement and development of the micropropagated plantlets, some disadvantages 

in the establishment of the association may be highlighted, such as inoculum 

contamination and unexpected behavior of the symbiont and the host under in vitro 

conditions.  

In many cases, the colonization process among host-microorganism interactions is 

initiated before actual physical contact (Harrison 2005). The initial stages of 

mycorrhizal colonization events are dependent both on fungal growth and rhizospheric 

signals (Martin et al. 2001, Badri et al. 2009), mainly through root exudates that 

mediate the interactions with neighboring plants and microorganisms (Weir et al. 2004, 

Bais et al. 2006, Broeckling et al. 2008). Current research into ECM development and 

functioning is aimed at understanding this plant-microbe interaction and the 

developmental and physiological processes that underly the colonization and 

morphogenesis modifications.  

8. Signalling 

Signaling is a crucial step in any host/symbiont interaction. During all the stages (pre-

symbiotic, physical contact and mycorrhization) the signals exchanged between plant 

and fungi are fundamental. Some aspects, for example the rhizosphere monitorization, 

the research of the chemical signals and following the evolution of the interaction are 

extremely important. 

As with many host-microbe interactions, it is possible to describe the beginning of the 

colonization process with signaling (pre-symbiotic stage) between the two partners 

progressing to the symbiosis stage. The pre-symbiotic phase of the interaction 

culminates in a physical encounter between symbionts, by means of the adhesion of 

the fungus to the root surface (Barker et al. 1998, Pandey 2002, Bonfante and Genre 

2010). These signals lead to a complex development of specific structures in both the 

plant and the fungus, observable by morphological transformations. Signaling is a 

critical constituent of any symbiosis; nevertheless, very little is known about the nature 

of these signals and how this process is instigated. 

Mycorrhizal fungi are able to achieve an intimate association with their host. The 

fungus must deal with host protection mechanisms and be able to initiate nutrient 

transfer across the root-fungus interface (Reis et al. 2011). In this way, intense cell 

activity occurs both before and after physical contact between partners. Up- and down-

regulation of gene expression is a major mechanism for controlling ectomycorrhizal 
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symbiosis development and functioning (Martin 2007). Signaling evidence of fungal 

origin may be involved in this process and may be different from the signals involved 

before the fungus penetration into the root tissue (Podila 2002). 

Communication in the rhizosphere is essential for many interactions and their 

corresponding evolution. Identification of the molecules that participate in this 

colonization at the developmental and physiological level is extremely important, 

especially for understanding the host-symbiont interaction (Baptista et al. 2011, Felten 

et al. 2012). According to Martin et al. (2001), molecules that control the interactions 

can be classified as follows: 

• Tropism of hyphae for host tissues (rhizospheric signals);  

• Attachment and invasion of host tissues by hyphae (adhesins, hydrolases); 

• Induction of organogenetic programs in both fungal and root cells (hormones and 

secondary signals); 

• Facilitating survival of the mycobiont, despite plant defense responses; 

• Coordinating strategies for exchanging carbon and other metabolites for in planta 

colonization and for balancing growth of the soil fungal web with its role in gathering 

minerals from the soil. 

The early plant host signals secreted into the rhizospheric include auxins, flavonoids, 

cytokinins, alkaloids, strigolactones and other metabolites. Recently, plant phenolic 

compounds (p-coumaric acid, coumarin, naringenin and other flavonoids) have also 

been cited as potential signalling candidates during mycorrhizal formation (Lynn and 

Chang 1990, Mandal et al. 2010, Bonfante and Genre 2010, Amalesh et al. 2011, Plett 

and Martin 2012, Hassan and Mathesius 2012). Some of the chemical structures of 

these compounds appear in Figures 9 and 10. These substances may be involved in 

the positive responses between the host and the symbiont. 

 

    

 

 

Fig. 9 - Chemical structures of signalling compounds secreted into the rhizosphere by the plant 

host. A: Indole-3-acetic acid, B: 6-Benzylaminopurine, C: Coumaric acid and D: Naringenin. 

 

A                              B                                   C                                      D 

 

http://www.springerlink.com/content/?Author=Paula+Baptista
http://en.wikipedia.org/wiki/Indole-3-acetic_acid
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Martin et al. (2001) illustrate some of the responses between partners in the signalling 

compounds between Eucalyptus globulus and Pisolithus sp. inoculation in Figure 10.  

 

 

Fig. 10 - The molecular cross-talk taking place in the rhizosphere of Eucalyptus globulus 

colonized by Pisolithus. Root exudates alter the morphology of the mycelium of Pisolithus. 

These morphological changes are induced by the flavonol rutin, which stimulates fungal growth, 

expressed as colony diameter (a). Low concentrations of zeatin modify the hyphae branching 

angle (b) and the accumulation of the tryptophan betaine, hypaphorine (c). On the other hand, 

Pisolithus-secreted hypaphorine and indole-3-acetic (IAA) trigger morphological changes (i.e. 

arrest of root hair elongation and stimulation of short root formation) in the root system (d). 

(Béguiristain and Lapeyrie 1997) (from Martin et al. 2001).  

 

Like some of the substances shown in Figure 10, the several rhizospheric signals 

exchanged between the symbionts and the molecular communication are responsible 

for important morphological changes (Martin et al. 2007, Dahm and Golińska 2011). 

Auxins serve as extremely potent morphogenetic signals for root systems. At low 

http://www.springerlink.com/content/?Author=Hanna+Dahm
http://www.springerlink.com/content/?Author=Patrycja+Golińska
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concentrations, they increase root growth and stimulate the formation of new 

meristems and lateral roots (Tagu et al. 2002). Splivallo et al. (2009) reported that IAA 

and ethylene produced by truffles (Tuber borchii and Tuber melanopsorum) act 

together on plant roots inducing changes such as root shortening, increased branching, 

and root hair elongation. In the case of Pinaceae ECM, dichotomous branching of short 

roots occurs, sometimes resulting in the formation of coralloid structures made up of 

the assemblage of numerous root branching (Barker and Tagu 2000). For the 

arbuscular mycorrhizae host interaction, abundant data are available on the effect of 

flavonoids on hyphal growth, hyphal differentiation and root colonization (Vierheilig et 

al. 1998, Scervino 2005a, Steinkellner et al. 2007). Also strigolactones have been 

identified as the AM fungi hyphal branching factor in root exudates of the AM host plant 

Lotus japonicus (Akiyama et al. 2005). 
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9. Background to the Doctoral Dissertation and Aims 

The stone pine is one of the oldest forest resources used in Portugal. The tree is 

exploited in multiple ways, and main products are wood, resin and pinions. The first two 

have diminished in importance nowadays, especially when compared with the great 

economic value of the fruit, the pinion. In 1988, an outline of a breeding program, was 

presented whose main objective was to genetically improve the quality and quantity of 

pinions (Barreira and Alpuim 1988). Since then, various actions have been carried out 

as part of integrated ID projects, in particular PAMAF 2090 “Improvement of P. pinea L. 

for the production of edible seeds in Southern Portugal” and PIDDAC 212 

“Improvement of Pinus pinea L. for pinion production”, both under the auspices of the 

National Forestry Station. At an early stage of the implementation of these breeding 

programs Provenance Regions were delimited, serving for the purposes of basic 

identification and selection for the reproductive material in accordance with the rules for 

the certification of seeds. At the same time, selected stands, good producers of pinion, 

were subsequently registered in the National Catalog of Basic Materials (CNMB) (http: 

www.dgrf.min-agricultura.pt). The selection of good pinion-producing trees (plus trees), 

sited in the above-mentioned zones, was the starting point for the establishment of new 

areas as well as the installation of clonal orchards producing seeds and grafting 

material. 

Two different approaches for increasing selected material were studied as part of 

PAMAF 2090: grafting and micropropagation. The vegetative propagation of selected 

“plus trees” was based on genetic research on the heritability of relevant characters to 

obtain maximal gains in pinion production, such as cone weight, the number of seeds 

per cone and seed length. These characteristics are in accordance with Alpuim and 

Rocha (1994) maternal inheritance (0.81, 0.81 and 0.55, respectively), justifying the 

use of good mother plant producers as plant material for vegetative propagation to 

achieve plantations with the greatest commercial value. Nevertheless, clonal 

propagation by means of grafting and cutting is an arduous task, and therefore not 

ideal for the large-scale multiplication of elite cultivars. Micropropagation of conifers 

has been shown to be feasible in other conifers, and for this reason in 1997 

micropropagation studies funded by the PAMAF 2090 began at the Breeding and 

Biotechnology Laboratory of ICAAM (LMBV), University of Évora (a partner in the 

project) in Portugal. 

The first attempts at P. pinea L. in vitro culture were carried out in the 1990s 

(Diamantoglou et al. 1990). Due to the economic and ecological interest of this species 

http://www.dgrf.min-agricultura.pt/
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in the Mediterranean basin, and as soon as successful protocols for other conifers 

organogenesis had been established, different groups throughout the region began 

their own in vitro cultivation.  

During the 1990s, organogenesis from excised immature cotyledons was initiated in 

Spain (García-Ferriz et al. 1994). In Florence, in Italy, Capuana and Gianini (1995) 

established in vitro propagation from mature cotyledons collected from open pollinated 

trees in natural pine stands. Also, at the ENEA Research Center near Rome, complete 

plants were obtained from adventitious buds induced in isolated cotyledons (González 

et al. 1998). 

These research efforts differed with respect to several culture factors, including basal 

medium, growth regulator concentration and exposure time, and environmental 

conditions. As an example, the basal media used in each micropropagation of stone 

pine was variable (DCR; MS; SH, GD; LP * see medium name in abbreviations). The 

different research actions differed with regard to many of these factors; however, the 

use of embryo explants from cotyledons (mature or immature seed source) such as the 

initial plant material and N6-Benzylaminopurine (BAP) in the induction of adventitious 

shoots were common to all protocols. Generally, in conifers the shoots are produced by 

direct organogenesis at the surface of cotyledons without callus formation between 6-

10 weeks after the beginning of the culture.  

In Portugal, in the work of Zavattieri A, Figueira S, Cavaleiro C, Peixe A (unpublished), 

two different approaches have been tested: axillary bud induction in one year mother 

plants (different treatments that include foliar cytokinins application and decapitation of 

terminal apices) and direct organogenesis from complete mature embryos or from 

excised cotyledons from mature seeds in accordance with Dantas (1995). The best 

results obtained were between 50-215 shoots per cotyledon (unpublished). Ordás et al. 

2007 reported a total of 200 elongated shoots derived from one seed after 22 weeks in 

culture using modified ½ LPC (medium modified by Humara et al. 1999). In the works 

of Medina (1996) and Teles Ameixa (1997), best results were obtained in GD medium 

supplemented with 1,5 mg/l BAP. On average 6.6 new pine shoots were produced from 

each shoot after 3 sub-cultures (84 days). González et al. (1998) reported a maximum 

number of shoots obtained from cotyledons explants in ½ LP medium supplemented 

with 1 mg//l BAP with 44% shoot survival and the shoot elongation in the same medium 

with 0.5% activated charcoal (AC) (multiplication rate was not shown). In Alonso et al. 

(2006), the isolated shoots derived from cotyledons were successively subcultured on 

½ LP with AC (LPC) or BA and IBA for 15 days and transferred back to ½ LPC medium 
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for 30 days. An average of 4.64 multiplication rate and 97.4% of shoots higher than 

10mm were obtained after 4 subcultures (26 weeks). 

Major improvements were carried out from 2000 to 2010 in micropropagation protocols 

in order to increase the number of shoots produced per cotyledon in the Iberian 

Peninsula. Two groups were particularly involved in this, led by Prof. Ordás in Spain 

(Valdés et al. 2001, Moncaleán et al. 2003, Moncalean et al. 2005, Alonso et al. 2006, 

Cortizo et al. 2009) and Prof. Zavattieri in Portugal, whose focus is mainly on solving 

problems during the rooting phase (Oliveira et al. 2003, Zavattieri et al. 2009, Ragonezi 

2010a). Outside the Iberian Peninsula, Sul and Korban (2004) investigated the effect of 

salt formulation, carbon source, cytokinins, and auxins in shoot organogenesis from 

cotyledons.  

Acceptable multiplication rates were obtained for Pinus pinea L. and the findings 

published in a number of works mentioned in the bibliography. Continuous research 

efforts led the team headed by Prof. Zavattieri to select the most suitable protocol for 

shoots induction from mature cotyledons: WPM media supplemented with 5 mg/l BAP, 

2% sucrose, 0.70% Difco-Bacto agar (Difco®) and 25/19ºC day night temperatures, 16h 

photoperiod of cool-white fluorescent light at 80 µmol m-2 s-1. For elongation the 

medium also consisted of WPM with 100 mg/l of myo-inositol, 2% sucrose 0.65% agar-

agar (Merk®) and 2% AC. In the case of multiplication, the medium was the same as in 

the elongation protocol, without AC and supplemented with 0.1 mg/L of NAA and 

4mg/L of BAP. When microshoots reached at least 2 cm length they were transferred 

to the rooting medium. This was the protocol in use in the laboratory at the beginning of 

this thesis.  

Even when micropropagation protocols for stone pine culture initiation, maintenance 

and multiplication had been established, the number of rooted shoots was of low 

frequency (as frequently observed in other conifers) and had a short growth span. 

Much effort was made to overcome a bottleneck in the in vitro adventitious root 

formation (ARF). Significant progress was made with different combinations of carbon 

source, light and temperature during the induction and expression phases of the ARF 

(Zavattieri et al. 2009). 

Even when these results seemed quite promising, the adventitious roots formed 

stopped growing which complicated the process or made it impossible to transfer pine 

plants to ex vitro conditions. On the other hand, in parallel research, the LMBV group 

demonstrated that some fungi could help to overcome this difficulty: a co-culture double 
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phase solid system was devised to rescue halted root growth, with successful transition 

to acclimatization stages and outplanting. From a random sample of 12 fungi derived 

from soil samples from the pine stand of Mata de Valverde (Alcácer do Sal) at least 9 

had positive effects (Oliveira et al. 2003). These results opened a new interesting field 

in the study of the beneficial effect of microorganisms in overcoming the rooting phase 

and improving acclimatization. In 2007 the Foundation for Science and Technology 

(FCT) funded the PTDC/AGR-CFL/71437/2006 project “Analysis and mastering of root 

growth signalling by ectomycorrhizal fungi in Pinus pinea L.“ coordinated by Prof. 

Amely Zavattieri (LMBV) for the continuation of biotization research involving stone 

pine and ectomycorrhizal fungi.  

The project included a doctoral thesis with the following aims:  

- to improve the rooting phase of Pinus pinea L.; 

- to use in vitro co-culture (biotization) to solve in vitro rooting problems and increase 

acclimatization survival; 

- to characterize the fungus-root interactions that enable the development of roots; 

- to evaluate the causal relationships between sustained rooting in vitro and the 

subsequent performance of inoculated plants; 

- to properly characterize the different species of ECM fungi collected in pine stands 

during all stages of biotization; 

- to identify the primary factors controlling the development of the symbiosis and 

signalling mediators between ECM fungi and Pinus pinea roots.  

This doctoral thesis focuses mainly on overcoming adventitious rooting problems in 

microshoots of Pinus pinea L. In this study, a new insight into the innovative biotization 

technique used in the micropropagation emphasises the potential for using ECM fungi 

to promote root growth. The identification of signalling mediators between ECM fungi 

and stone pine roots was facilitated by a rigorous molecular protocol developed to 

characterize the inoculated fungi. 
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10. Outline of the Doctoral Dissertation  

This doctoral thesis was designed to be based on a number of papers that have been 

submitted or accepted for publication, or published, and that will provide an account of 

the research that underpins this thesis. Firstly, there is a general introduction (Chapter 

1) and details of extensive bibliographical research are provided regarding the different 

subjects of the thesis. All the publications presented (Chapters 2-8) were written to 

stand alone, therefore, the reader may find some repetition in parts of the manuscripts, 

especially in the introduction and method sections. This results from the common use 

of the sample, instruments and procedures in the set of publications. All publications 

are linked to the rationale of the thesis and there is a logical sequence to them. To 

conclude, final considerations and future perspectives are presented (Chapter 9), 

comprising all issues addressed in the thesis. This doctoral thesis was organized on 

the basis of a clear research rationale; all the articles are linked so that the main aim is 

achieved. 
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Abstract In conifers, vegetative propagation of superior  

genotypes is the most direct means for making large genetic  

gains, because it allows a large proportion of genetic  

diversity to be captured in a single cycle of selection. There  

are two aims of vegetative propagation, namely large-scale  

multiplication of select genotypes and production of large  

numbers of plants from scarce and costly seed that originates  

from controlled seed orchard pollinations. This can be  

achieved, in some species, either through rooted cuttings or  

rooted microshoots, the latter regenerated through tissue  

culture in vitro. Thus far, both strategies have been used but  

often achieved limited success mainly because of difficult  

and inefficient rooting process. In this overview of tech- 

nology, we focus on the progress in defining the physical and  

chemical factors that help the conifer cuttings and micro- 

shoots to develop adventitious roots. These factors include  

plant growth regulators, carbohydrates, light quality, tem- 

perature and rooting substrates/media as major variables for 
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Introduction 

 

Vegetative propagation of trees has been a useful tool in  

traditional tree improvement and holds important prospects  

for reforestation (Libby 1986). It provides the possibility  

for multiplication of select superior trees with favorable  

genetic combination and to produce genetically homoge- 

nous plant material that will grow predictably and uni- 

formly. In addition, improved efficiency in management  

and finished product utilization may also be achieved  

(Sutton 2002). 

Conifers (cone-bearing trees) are the best known and  

most important economically among gymnosperms, cov- 

ering approximately 60% of the forested areas of the world,  

and are mostly used for the production of softwood lumber,  

pulp and paper (Wenger 1984). Conifers comprise eight  

families, 68 genera and 629 species (Farjon 1998) includ- 

ing pines (Pinus spp.), spruces (Picea spp.), cowtail pine  

(Cephalotaxus spp.), cypress pine (Callitris spp.), firs  

(Abies spp.), larches (Larix spp.), bald cypresses (Taxodi- 

um spp.), yellowwood (Podocarpus spp.), yews (Taxus  

spp.), arbor vitae (Thuja spp.) and junipers (Juniperus spp.)  

(Farjon 1998). 

In spite of the major role conifers are bound to play in  

reforestation strategies, current research on their vegetative  

propagation is not sufficiently developed (Sutton 2002). In  

part,  this  is  due  to  the  slow  progress  in  propagation  

methods, mainly because of rooting problems associated  

with the tree maturation phase, an age-related develop- 

mental  process  that  affects  reproductive  competence,  

morphology, and growth rate (Greenwood and Hutchison  

1993). This notwithstanding, commercial scale propagation  

through rooted cuttings of young trees has been reported  

for radiata pine (Pinus radiata D. Don.), Norway spruce  

(Picea abies [L.] Karst.), Sitka spruce (Picea sitchensis  

[Bong.] Carr.), black spruce (Picea mariana [Mill.] B.S.P.)  

and sugi (Cryptomeria japonica D. Don) (Menzies et al.  

2001). For a few economically important forest conifer  

species,  an  alternative  vegetative,  large-scale  in  vitro  

propagation technology has been developed, called somatic  

embryogenesis  that  utilizes  mature  or  immature  seed  

embryos as starting explants (reviewed by Klimaszewska  

et al. 2007). The advantages of somatic embryogenesis  

over rooted cuttings are: unlimited number of clonal 

 

 
 

 
somatic plants that can be produced from a single seed  

embryo  (without  a  need  for  a  separate  step  involving  

adventitious  rooting)  and  the  possibility  of  long-term  

storage of a given genotype in liquid nitrogen (cryopres- 

ervation). For example, in Norway spruce, both means of  

vegetative  propagation,  namely  somatic  embryogenesis  

and  rooted  cuttings  of  donor  somatic  trees,  are  being  

combined for clonal selection and commercial production  

of  genetically  superior  seed  families (Lamhamedi  and  

Tousignant 2008). 

Adventitious roots are post-embryonic roots that arise  

from the stem and leaves and from non-pericycle tissues in  

old roots. These roots may form naturally from stem tissue  

or may be induced by stressful environmental conditions,  

by mechanical damage or following tissue culture regen- 

eration of shoots (Li et al. 2009). Adventitious root for- 

mation (ARF) is a critical step in vegetative propagation.  

An efficient rooting treatment can lead to a high percentage  

of rooting and a higher quality of the root system (De Klerk  

et al. 1997). Quality involves root number and length, and  

the absence of callus at the base of a shoot, all of which  

influence the performance of the plants after transfer to soil  

(Mohammed and Vidaver 1990). Many factors, during the  

rooting phases, can cause poor quality of the shoots at the  

time of planting, thus affecting growth (De Klerk et al.  

1999; Hartmann et al. 2002; Mohammed and Vidaver  

1990). 

Adventitious rooting is a complex developmental pro- 

cess that consists of three successive but interdependent  

physiological phases: induction, initiation and expression,  

and each of these phases have different requirements. The  

induction phase comprises molecular and biochemical  

events without visible changes. The initiation phase is  

characterized by cell divisions and root primordia organi- 

zation. The expression phase is characterized by intra-stem  

growth of root primordia and root emergence (Li et al.  

2009). The chemical and physical factors that affect root- 

ing include plant growth regulators (PGRs) (Wiesman et al.  

1989; Davis and Haissig 1990), nutrients (the carbohydrate  

source foremost) (Wiesman and Lavee 1995), temperature  

and light (Haissig 1990; Corrêa and Fett-Neto 2004).  

Increasing body of knowledge on ARF pathway activation  

is generated from research on angiosperms. Recently, it has  

been discovered that nitrate, both a nitrogen source and a  

signal molecule, is transported by the NRT1.1 nitrate  

transporter and the transduction of nitrate signal is asso- 

ciated with a modification of auxin transport (Krouk et al.  

2010). Thus, the NRT1.1 represses lateral root growth in  

Arabidopsis  at  low  nitrate  concentration  by  promoting  

auxin  transport  out  of  these  roots.  In  mung  bean,  the  

adventitious  root  induction  phase  was  regulated  by  a  

complex set of cellular messengers, among which some  

were  activated  by hydrogen  peroxide,  nitric  oxide  and  
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calcium (Li and Xue 2010). However, the signaling net- 

work responsible for root development has not been dis- 

covered yet. 

In tissue culture, plant regeneration can be achieved  

either through the development of axillary shoot buds or  

through adventitious shoot formation, most frequently from  

callus. In both cases, the microshoots have to be rooted  

through adventitious rooting. The process of in vitro organ  

regeneration from the explants occurs through an apparent  

reversal of cell differentiation and acquisition of meriste- 

matic characteristics (Gahan 2007). Because many envi- 

ronmental and endogenous factors regulate rooting, some  

aspects of this regulation can be exploited to control  

rooting in vitro, through the application of chemicals, light  

and/or temperature control, or biotization. Different types  

of  chemicals  may  be  applied:  PGRs  to  promote  cell  

dedifferentiation, trigger the initial meristematic activity  

(Wiesman et al. 1989; Davis and Haissig 1990) and to  

promote the elongation and development of formed roots  

(Hartmann et al. 2002; Wiesman et al. 1989); nutrients to  

promote growth of the new roots (Wiesman and Lavee  

1995); and protecting agents, such as biocides, to help  

protect against pathogens during the entire rooting period if  

carried out in a non-sterile substrate (Henrique et al. 2006). 

Adventitious rooting in conifers has long been dis- 

cussed, but the available information is fragmentary and  

circumstantial. Since the extensive articles by Gaspar and  

Coumans  (1987)  and  Mohammed  and  Vidaver  (1988)  

appeared over 20 years ago, no other review on root pro- 

duction  and  plantlet  development  in  conifers  has  been  

published. Some aspects, widely discussed in those  

reviews, such as biological factors, root morphogenesis,  

genetic stability and acclimatization, are not covered in the  

present review. Instead, we focused on the progress in  

defining the chemical and physical factors that help the  

conifer cuttings and in vitro regenerated microshoots to  

develop adventitious roots. We compiled (mostly in the  

tabular form) the most successful, for a given conifer  

species, protocol/s of chemical treatments and physical  

factors that promoted adventitious rooting in both propa- 

gation systems. 

 

 

Rooting of conifer cuttings 

 

Four discrete stages of adventitious root formation in cut- 

tings can be distinguished (Hamann 1998): (1) proliferation  

of cells at the base of the cutting, (2) differentiation of  

wound vascular tissue and periderm, (3) dedifferentiation  

of a zone near the wound cambium and wound phloem to  

form a root initial, and (4) formation of a root meristem. To  

obtain high-quality young plants in the shortest possible  

time, cuttings must root quickly and abundantly. Cuttings

 

must also be able to produce lateral branching and grow  

fast after rooting (Moe and Andersen 1988). Propagation  

by cuttings has long been established in many conifer  

species. Ritchie (1991) calculated that more than 65 mil- 

lion rooted conifer cuttings were already produced around  

the world, and that half of this production was for sugi  

(C. japonica) in Japan, at least 10 million for radiata pine  

(P. radiata) in Australia and New Zealand, and about 

21 million for Norway spruce (P. abies), Sitka spruce 

(P. sitchensis) and black spruce (P. mariana) in Canada, 

Scandinavia and the British Isles together. 

In conifers, in addition to chemical and physical rooting  

treatments, the success of propagation by cuttings depends  

on a variety of other factors that include cutting collection  

time and season, cutting size, whether the needles are kept  

or not, condition and age of the source plant, plant nutri- 

tional condition, pruning treatments, and type and health of  

the cuttings at collection (Silva 1985). The role of donor  

plant growing conditions has long been recognized as  

important in influencing the rooting capacity of cuttings  

(Hartmann and Kester 1983; Moe and Andersen 1988). 

 

Plant growth regulators 
 

Auxins 

 

For many decades, IBA has been applied to different plant  

species to induce adventitious roots, and conifers follow  

the rule. Nordstrom et al. (1991) attributed this preference,  

relative to IAA, to the higher stability of IBA. On the other  

hand, in many conifers the cuttings respond well to a pulse  

treatment with NAA. The combinations of various types of  

PGRs, the concentrations and application are extensive and  

are summarized in Table 1. Although IBA promoted  

rooting of cuttings in most of the conifers, in Pinus spp.  

NAA was also used at concentrations that varied between 

1.6 and 2.7 mM. IBA was most frequently used at 24.6 or 

49 µM mixed with talc or in water solution, and usually  

involved a quick dip or pulse treatment of the cut surfaces,  

with or without additional wounding, and was followed by  

transfer of the cuttings to substrates or to water nutrient  

solutions for rooting. In most cases, mixtures of sand,  

perlite and/or vermiculite were used in the substrates  

without any particular preference. The highest mean root- 

ing percentage obtained in various experiments was 86%  

(Table 1). 

 

Polyamines 

 

Polyamines are generally considered to be growth regula- 

tors that are implicated in a range of developmental pro- 

cesses (Martin-Tanguy 2001; Kaur-Sawhney et al. 2003;  

Couée et al. 2004). It has been reported that the inhibition 
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Table 1 Treatments and growth conditions applied in two phases of rooting of conifer cuttings  

Conifer species Plant material Root induction Root growth Environmental conditions Rooting References 

Abies fraseri Cuttings IBA at 4 mM, 3 s dip Horticultural perlite:peat 3:2 (v/v) 26.1 ± 2/20.5 ± 2 C day/night 31% Rosier et al. 

(2004a, b) 

Cedrus deodara Cuttings IBA at 5,000 ppm in talc or NAA at Unknown Unknown 69% Shamet and 

10,000 ppm with activated charcoal, Bhardwaj 

both with 1% captan and 1% sucrose (1995) 

Cedrus deodara Cuttings collected IBA at 5,000 ppm, quick dip Sand:perlite Bottom heat maintained at 24 C. 67% Nicholson 

‘Shalimar’ in late fall to Greenhouse, 120 days under (1984) 

early winter intermittent mist 

Chamaecyparis Apical cuttings IBA at 10,000 ppm for 5 s Vermiculite Not mentioned 99% Stumpf 

lawsoniana Parl. 15 cm long et al. 

(1999) 

Cupressus dupreziana Cuttings collected IBA at 500-1,000 ppm, 24 h soaking Coarse sand:perlite (1:1, v/v) Bottom heat intermittent mist with 90% Nicholson 

Camus in early winter in a solution ambient temperature of 15.5-23.8 C et al. 

(1999) 

Cupressocyparis Callused cuttings, IBA at 10,000 ppm and double Sterilized pumice (particle size 1-15 mm) Tunnel house, less than 25 C. Sun, 43% De Silva 

leylandii Dallim. and with a callus size wounding and one part Southland peat (v/v). tunnel shading of c. 40-50%. et al. 

A. B. Jackson of c. 1 cm (2005) 

diameter 

Juniperus scopulorum Cuttings K-IBA in 0.9% talc powder Peat:perlite (2:1) medium under low Unknown 96% Bielenin 

‘‘Skyrocket’’ polytunnels, no mist greenhouse (2003) 

Larix x eurolepis Cuttings IBA at 0.5%in talc powder including a Peat:compost:pouzzolane (2:1:3) under Unknown 87% Pâques and 

(European  x Japanese fungicide, greenhouse conditions Cornu 

larch) dipped in the solution (1991) 

Picea sitchensis (Bong.) Cuttings IBA at 10
-6

 to 10
-5

 M, water solution PGRs were prepared as aqueous solutions and 20 C, 16 h L, 70-90 LI, CW fluorescent 70%, Selby et al. 

Carr. no nutrients were used lamps 20 days (1992) 

Pinus banksiana Cuttings NAA at 5.4 mM, pulse treatment for Conventional polyethylene-covered 10-30 C, 16 h L, 1,500 (sunny) 350 LI 87% Browne 

10 s and then 1:1 (v/v) forestry mix/ greenhouse (poly-house) (cloudy) et al. 

vermiculite (2000) 

Pinus banksiana Cuttings IBA at 25 mM in 100% ethanol, brief Intermittent water-mist in a sand-perlite 750-900 LI (sunny) to 200 LI (cloudy) 94%, Haissig 

wetting of the cut basal surface of the substrate 25 days (1990) 

cuttings 

Pinus banksiana Cuttings (central NAA at 5.4 mM, pulse treatment for Phosphoglucoisomerase multipots (PGI-45, 20-28/14 to18 C day/night, 16 h L and 95% Browne 

axis, 3 months) 10 s and then 1:1 (v/v) Forestry mix/ 110 ml, Plastiques Gagnon, Que.) filled 350-700 (sunny) to 150-270 LI et al. 

vermiculite with medium (1:1 v/v forestry mix/ (cloudy), 500-W high-pressure sodium (1996) 

vermiculite) lamps 

Pinus caribaea var. Cuttings IBA at 19.7 mM, immersion in a gel 50% carbonized rice hulls and 50% Intermittent mist system in an enclosed 95% Henrique 

hondurensis Morelet solution for 2 s vermiculite polyethylene propagation house et al. 

(2006) 

Pinus contorta Cuttings IBA at 1.23 mM pulse treatment for Brief rinse in water and culture in Hoagland 22 C and 200 LI, fluorescent tubes 100% Lindroth 

(hypocotyl) 6h and then  in Hoagland nutrient solution (Philips TLD 58 W/84) and et al. 

solution incandescent light (2001) 
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Table 1  continued  

Conifer species Plant material Root induction Root growth Environmental conditions Rooting References 

Pinus elliottii var. Cuttings Pasteurized coarse perlite:pine bark peat 1:1:1 (v/v/v), with additions Controlled environment 25 C, 11.5-13 h L, 70% of natural 83%, Rasmussen 

elliottii  x P. (lateral tip) of 0.5 kg Micromax m
-3

 (Granular by Scotts Australia) and glasshouse with the daylight irradiance (about 12 weeks et al. 

caribaea var. 2.5 kg Osmocote m
-3

 (Low Start 5-6 month by Scotts Australia) appropriate temperature 2,300-2500 micro-Einstein’s in (2009) 

hondurensis treatment SE QLD) 

Pinus radiata Derooted IBA at 44.3 µM in 1/2 MS, 0.8% agar, 2% sucrose, Plant growth room 22 C with continuous lighting 95% Li and 

seedling for 10 d at 80 LI Leung 

cuttings (2000) 

Pinus sylvestris Cuttings IBA at 4,000 ppm dipped for 10 s in a solution of 95% ethanol Inserted in 90 ml 25 C and then 20 C 54.4% Hogberg 

and the PGR containers filled with (2005) 

60% peat and 40% perlite 

Pinus strobus L. Cuttings NAA at 1.6 mM, 5 min pulse treatment Moist silica:sand 24 C, 16 h L, 40 LI CW fluorescent 97%, Goldfarb 

tubes 4 weeks et al. 

(1998) 

Pinus taeda L. Cuttings Unknown Perlite:vermiculite 1:1 20-27 C, 14 h L, CW fluorescent 80% Hamann 

(seedlings (v/v) tubes (1998) 

and hedged 

donor plants) 

Pinus taeda L. Cuttings IBA at 10 µM, pulse treatment then transferred to distilled Unknown 27/20 C day/night, 16 h L, 100 LI, 82%, Diaz-Sala 

(hypocotyl) water for rooting CW fluorescent tubes 15-30 et al. 

days (1996) 

Pinus taeda Cuttings NAA at 2.7 M, 5 min pulse as described by Diaz-Sala et al. (1996) Unknown 16 h L, 90 LI, CW fluorescent tubes Greater Greenwood 

than et al. 

80%, (2001) 

30 days 

Pinus taeda Cuttings IBA 10 µM in distilled water was stuck through holes in with The IBA solution was 27/20 C day/night, 100 LI, 94%, Greenwood 

(hypocotyl) styrofoamrafts (Hansen and Ernstsen 1982) and floated in trays replaced with distilled fluorescent and incandescent \25 days and Weir 

made of PVC water after 11 days lamps (1994) 

Pinus virginiana Cuttings (open- IBA or NAA at 6 mM, applied for 3 s Horticultural perlite:peat 25.5 ± 2/20.0 ± 2 C day/night 47% (semi- Rosier et al. 

pollinated 3:2 (v/v) temperatures hard (2004a, b) 

progeny) woody) 

Pseudotsuga Cuttings, IBA at 12.3-123 mM or NAA at 2.5-7.5 mM dipped for 10 s Peat moss:fine sand Rooting medium heated to 21 C and 68% Copes and 

menziesii (Mirb.) 15 cm long 2:1 (v/v) intermittent mist. Natural light in a Mandel 

Franco conventional glasshouse (2000) 

Thuja occidentalis Cuttings K-IBA 0.6% in talc powder, dipped Peat:perlite 2:1 (v/v) under Unknown 100% Bielenin 

´Smaragd´ low polytunnels (2003) 

greenhouse without  

misting  

LI light intensity in µmol m
-2

 s
-1  

L photoperiod  
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of polyamine synthesis blocks the mitotic cell cycle by  

blocking the transition between G1 and S phase where  

increased levels of spermidine and spermine have been  

found (Couée et al. 2004). Both Martin-Tanguy and Carré  

(1993) and Tarenghi et al. (1995) hypothesized that the  

endogenous concentrations of polyamines might be growth  

limiting based on observations of the developmental  

stimulation of higher plants. A direct relationship between  

high polyamine content, such as putrescine and spermine,  

and the onset of ARF has been demonstrated, which  

accentuates the possible participation of these substances in  

the general cellular processes of division and differentia- 

tion in the rooting process (Couée et al. 2004; Martinez- 

Pastur et al. 2007). Polyamine metabolism has also been  

pointed as responsive to environmental circumstances,  

therefore playing an important role in the relations between  

plant and external conditions (Couée et al. 2004; Tang and  

Newton 2005b). 

Tang and Newton (2005b) tested the influence of poly- 

amines on the overall rooting frequency of Pinus virgini- 

ana. In their trials, the administration of 0.001 mM  

putrecine or spermidine in the NAA supplemented medium  

resulted in a 25% increase of rooting frequency, whereas 

0.001 mM spermine caused a 6.7% decrease of rooting 

frequency. 

 

Ethylene 

 

The information concerning ARF in cuttings of conifers  

and ethylene is limited to a few articles. In general, Ethrel  

(a commercial formulation of the slow-release ethylene  

compound ethephon) promoted rooting and root growth in  

Engelmann spruce 2 weeks after planting (Scagel and  

Linderman 2000). Ethrel induced changes in root initiation  

of cuttings of Douglas fir [Pseudotsuga menziesii (Mirb.)  

Franco] 2 weeks after application and these changes were  

positively correlated with subsequent increases in shoot  

growth. In these studies, the results indicated that exoge- 

nously applied Ethrel influenced root initiation indirectly  

by increasing levels of free IAA at the rooting site (Scagel  

et al. 2000). Ethrel was also reported to increase IAA  

conjugates in roots of Engelmann spruce (Picea engel- 

mannii Parry ex Engelm.), lodgepole pine (Pinus contorta  

Dougl.) and Douglas fir. On the other hand, Bollmark and  

Eliasson (1990) concluded that the enhanced rooting of  

Norway spruce (P. abies) hypocotyl cuttings, promoted by  

the treatment with ACC or Ethrel, was attributed to the  

ethylene-mediated acceleration of the breakdown of  

cytokinins. 

When cuttings of Japanese black pine (Pinus thunbergii  

Parl.) were soaked for 10 min in Ethrel solution (69.2 µM  

ethephon) 24 h prior to soaking in Oxyberon (19.7 mM  

IBA solution), a significantly higher rooting ability was 

 

 

 
observed compared  with  the  controls  without  the  pre- 

treatment with Ethrel (Mori, Miyahara, Tsutisumi, Kondo,  

unpublished). Similarly in P. abies L. (Karst), the hypo- 

cotyl cuttings produced 64 adventitious roots after 28-days  

treatment with 0.1 µM Ethephon compared with 22 roots in  

untreated controls and with two roots after treatment with  

the ethylene inhibitor CoCl2 at 10 µM (Wang and Pan  

2006). 

 

Ethylene inhibitors 

 

Several  ethylene  inhibitors,  compiled  by  Kumar  et  al.  

(1998),  inhibit  both  ethylene  biosynthesis  or  ethylene  

actions in a plant. Among the most commonly used are  

aminoethoxyvinylglycine (AVG) and aminooxyacetic acid  

(AOA), both inhibiting 1-aminocyclopropane-1-carboxylic  

acid (ACC) synthase and cobalt ions that inhibit the con- 

version of ACC to ethylene (Biddington 1992). Another  

inhibitor widely used is the silver ion, either as nitrate or as  

more mobile thiosulphate (STS), which excels in ethylene  

action inhibition (Beyer 1976). Inhibition of ethylene may  

lead to a lower number of adventitious roots, decrease of  

response to endogenous and exogenous auxins and reduced  

root hair formation (Clark et al. 1999). Ethylene itself has  

been reported to have no effect or even inhibit rooting  

depending on its concentration and genotypes, and there- 

fore its role is still disputed (Mudge 1988). Inhibitors,  

when at high concentrations can promote stress, resulting  

in the synthesis of ethylene and root formation, thus  

defeating the purpose of their use. De Klerk et al. (1999)  

reported that STS may induce ethylene formation because  

silver is a heavy metal and damages the tissue. When STS  

was added along with auxins, the appearance of the rooted  

microcuttings at the time of transplanting was strongly  

improved (De Klerk et al. 1999). 

As described by Kumar et al. (1998), ethylene inhibitors  

work within specific concentrations. The use of these  

substances under or above the recommended levels, might  

not have an inhibiting effect as desirable, or might promote  

the ethylene synthesis due to tissue damage (De Klerk et al.  

1999). Also, there is not much work relating conifers with  

ethylene inhibiting substances, since the actual major sci- 

entific goal is to promote and improve conifer rooting and  

not the opposite. Nonetheless, such a study is fundamental  

to fully comprehend the role of ethylene in conifer ARF. 

 

Plant growth retardants 

 

Plant growth retardants are organic compounds that retard  

cell division and cell elongation (Arteca 1995). A number  

of growth retardants and inhibitors have been tested for  

their ability to influence rooting of cuttings. They are  

responsible for antagonizing the activity or inhibiting the  
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synthesis of gibberellins, which normally inhibit rooting 

(Hartmann and Kester 1983; Davis et al. 1988). 

Henrique et al. (2006) investigated the effect of different  

levels of auxins (NAA, IBA) and gibberellin synthesis  

inhibitor (PBZ) on the rooting of 4-6 cm long shoots  

obtained from cuttings of Pinus caribaea var. hondurensis  

Morelet. Sixty days after planting, the IBA-treated cuttings  

rooted at a higher frequency than those treated with NAA,  

but IBA applied together with PBZ was the most effective  

treatment.  However,  daminozide (currently  used  as  a  

growth  retardant  for  many  plants)  inhibited  rooting  of  

Chamaecyparis  obutusa  seedling  cuttings  after  spray  

application  of 2,000 ppm  wettable  solution (Shigehiro  

2006). 

 

Carbohydrates 

 

Non-structural carbohydrates usually accumulate in needle  

fascicles during propagation, sometimes after an initial  

decrease.  However, concentrations of specific carbohy- 

drates such as sucrose or glucose in needle fascicles may  

not be uniform among tissues or with time during propa- 

gation (Veierskov 1988). Perhaps, the changing concen- 

trations  of  specific  carbohydrates  in  cuttings  during  

propagation are linked to the direct control of ARF, for  

instance,  because  auxin  treatments  often  concomitantly  

promote adventitious rooting and modify concentrations of  

individual carbohydrates within specific regions of cuttings  

during propagation (Haissig 1990). 

Nevertheless, in a study with Sitka spruce cuttings, little  

correlation between rooting and concentration of sugars in  

stems and foliage was found (Van den Driessche 1983). It  

is possible that interaction between carbohydrates and  

hormones, nitrogen and carbon ratios, light and carbohy- 

drate and also temperature pre-treatments, as well as the  

carbohydrates status of the mother plants, make the com- 

parison of results from different studies difficult. 

 

Light 

 

Roots of P. radiata cuttings from seedlings had the highest  

dry weight under high PPFD, which had a red to far-red  

ratio similar to daylight (Wenger 1984). In other experi- 

ments with P. radiata, the best rooting conditions for short  

shoots were: treatment with 50 ppm IBA for 24 h, then  

planting at 20-25 C under a 12-h photoperiod (as com- 

pared to 18-h photoperiod or continuous illumination). The  

needle fascicles rooted better if they were collected during  

winter or early spring, suggesting a direct influence of short  

days (Kummerow 1966). 

Both McClelland et al. (1990) and Corrêa et al. (2005)  

have stressed the need for increased efficiency of the pro- 

cess and that rooting should be carried out in the dark for

 

the first few days. However, rooting can be influenced by  

light intensities, as reported by Kunneman and Ruesink  

(1997) who showed better responses to 66-83 µmol m
-2  

s
-1

 in a few Juniperus cultivars, while 27-37 µmol m
-2 

s
-1 

were more suitable for the Chamaecyparis and  

Cupressocyparis cultivars.
 

 

Temperature 

 

A temperature range between 18 and 27ºC is commonly  

used during rooting of the cuttings. The effect of artificial  

light, CO2 and temperature on rooting in ornamental cul- 

tivars of Chamaecyparis, Cupressocyparis and Juniperus  

was studied by Kunneman and Ruesink (1997). These  

authors demonstrated that rooting was best at a constant  

temperature of 23ºC, compared with 17 and 29ºC. On the  

other hand, for Pinus taeda L., the best rooting of cuttings  

(seedlings and hedged donor plants) (80%) was obtained by  

maintaining the  air  temperature  at  approximately 27ºC  

during  the  day (14-h  photoperiod)  and 20ºC  at  night  

(Hamann 1998), and the temperature of the rooting med- 

ium was kept at 25ºC using a root zone heating system. 

Cedrus spp., in general, are difficult to root, for example  

Cedrus libani A. Rich. is considered almost impossible to  

propagate by cuttings; however, Cedrus deodara (Roxb.)  

G.Don ‘Shalimar’ can be rooted to 67% if cuttings are  

collected in late fall to early winter and, after a quick dip in  

IBA solution, placed in a sand-perlite medium maintained  

at 24ºC with bottom heat (Nicholson 1984 cited by Pijut  

2000). In Table 1, other examples of temperature treat- 

ments for adventitious root formation in conifer cuttings  

are listed. 

 

Substrates for rooting 

 

The blends of propagation substrates should create suitable  

air and drainage characteristics and remain moist, but not  

waterlogged during the period of time that roots are initi- 

ated. Different substrates can be used to promote rooting in  

conifer cuttings, the most common being vermiculite,  

perlite or a combination of both. However, the require- 

ments of various species can be very different. Davidescu  

et al. (2003) found that propagation by cuttings of Thuja  

occidentalis L. ‘Columna’ and T. occidentalis ‘Danica’  

was best in peat substrate in August. Six substrates were  

used in Picea cuttings by Mazăre et al. (2007): sand, per- 

lite, peat, sand with perlite, sand with peat and perlite with  

peat, all at 1:1. The rooted cuttings were at a higher pro- 

portion in sand with peat, but increased rooting index (13%  

as visually established based on the number of primary and  

secondary roots) was obtained in perlite with peat. 

Rooting of loblolly pine (P. taeda) cuttings has been  

extensively studied, but the description of substrates used 
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Table 2 Treatments and growth conditions applied in two phases of rooting of conifer microshoots in vitro  

Conifer species Plant material Root induction Root growth Environmental Rooting (%) References 

conditions 

Juniperus Shoots (terminal NAA, IAA or IBA separately, or in The same medium without auxins 26 ± 2 C, 16 h L, 80 None of the auxins or auxin Gómez and 

oxycedrus shoots from lateral combination in solidified medium B LI, Gro-lux (F36W/ combinations tested Segura 

branches—5 cm (SH macronutrients supplemented GRO) promoted satisfactory (1994) 

length) with 3% sucrose, 0.7% agar) for rooting. The frequency of 

30 days rooted shoots ranged 

from 7 to 10% 

Juniperus Shoots 2-3 cm long IBA at 2.4 µM, 5 min dipping and Plantlets with 2 cm long roots were 22 ± 1 C, 16 h L, 40% Loureiro et al. 

phoenicea (from axillary cultured on medium without PGRs transferred to pots with sterilized 400 LI, OSRAM (2007) 

buds) mixture of peat:perlite 3:2 (v/v) (Munich, Germany) 

L36W/21lamps 

Larix sp. Shoots (newly NAA at 10.7 µM in L9 medium for After 2 weeks, the induced shoots 17 C and 16 h L, 100% Ewald (2007a) 

formed shoot tips, 2 weeks were transferred directly into Jiffy-7 white light (OSRAM 

approximately peat pellets (ø 42 mm) saturated L58W/31-830) 

3-4 cm long and with water 

without any visible 

bud primordia) 

Picea sitchensis Adventitious shoots PGR-free ½ MS, 0.7% agar Transfer to a mixture of equal 20 ± 1 C, 16 h L, 1.5 84%, 22 weeks Drake et al. 

(from cotyledons) volumes of Levington M3 compost LI, CW fluorescent (1997) 

(Fisons, Ipswich, UK), perlite and lamps 

vermiculite (William Sinclair 

Horticulture Ltd., Lincoln, UK) in 

9 cm diameter plastic pots 

Picea Adventitious shoots IBA at 14.8 or 24.6 µM in ½ SH Fresh liquid medium (1/2 SH) without 26 ± 2 C, 16 h L, ±8.5% López- 

chihuahuana (from embryos) liquid medium, placed vertically on PGRs 46-48 LI Escamilla 

filter paper for 48 h et al. (2000) 

Pinus armandii Adventitious shoots IBA at 4.9-14.8 µM in RIM medium Transfer to pots with florialite 25 C, 16 h L, 70 LI, Unknown Ishii et al. 

var. amamiana (from embryos) containing 0.1% hyponex for fluorescent light (2007) 

2 weeks under 100% humidity 

Pinus ayacahuite Adventitious shoots NAA at 100 µM solution for 8 h Transfer to ½ GD medium PGR-free 25 ± 1 C, 16 h L, 40% Saborio et al. 

(from zygotic with 0.05% activated charcoal, 60-80 LI, Sylvania (1997) 

embryos) 30 mM sucrose and 1% agar Gro-Lux F40T12 

Gro-WS lights 

Pinus contorta Adventitious shoots IBA at 1.23 mM for 6 h and then 12 weeks later potted in mineral wool Unknown 70% Hogberg et al. 

(from embryos) liquid medium (2005) 

Pinus contorta Adventitious shoots IBA at 1.23 mM, pulse treated for 6 h Cultured in liquid mineral nutrient 20 C, 110 LI, 77% Flygh et al. 

(from embryos) solution, composed according to the fluorescent light (1998) 

nutrient requirements of P. sylvestris supplemented with 

given by Ingestad (1979) with N incandescent light 

concentration at 4.5 mM 

Pinus heldreichii Adventitious shoots IBA at 1 mM, pulse treatment for 2 or Transfer to a greenhouse 25 ± 2 C, 8 h L, 47 14%, for up to 18 weeks Stojicic et al. 

(from embryos) 5 h, afterward transferred to ½ GD LI, white fluorescent (1999) 

with 2% sucrose tubes 
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Table 2 continued  

Conifer species Plant material Root induction Root growth Environmental Rooting (%) References 

conditions 

Pinus Shoots (from IBA at 2.46 µM plus NAA at 2.7 µM Transfer after 7 days to a mixture of 14-19 C, 18 h L, 84% clone A, 32% clone B, Scaltsoyiannes 

brutia x Pinus fascicle buds- plus 0.65% agar (Sigma) plus 1.5% peat:perlite 1:1 (v/v) 65-70 LI, high- 10-16 weeks et al. (1994) 

halepensis clone A and B) sucrose pressure lamps (HPI/ 

T, SON, 400 W) 

Pinus canariensis Adventitious shoots IBA at 1 mM, 4 h liquid pulse Transfer to peat:vermiculite, 1:1 (v/v) Unknown 83% Martínez 

(from adventitious treatment Pulido et al. 

buds induced from (1990) 

cotyledon 

explants) 

Pinus eldarica Adventitious shoots BA at 0.22 µM, IBA at 10 µM and ½ SH medium with 1% activated 16 h L, 26/18 C day/ 78% Sen et al. 

(from adventitious NAA at 5 µM in ½SH medium charcoal. Vermiculite:perlite:peat 2: night, 250 LI (1994) 

buds induced from 2:1 (v/v) in plastic bags to maintain 

cotyledon high humidity for 4 weeks 

explants) 

Pinus Adventitious shoots IBA at 9.8 µM, BA at 2.2 µM and 2% Subculture onto ½ GD medium with 25 ± 2 C, 14 h L, 80 70% Zhang et al. 

massoniana L. (from adventitious sucrose in ½ GD medium for IBA at 0.98 lM and BA at 2.2 lM LI, CW fluorescent (2006) 

buds induced from 1 week for 4 weeks. Then, transfer to pots tubes 

mature embryos) filled with a mixture of vermiculite 

and perlite 3:1 (v/v) 

Pinus elliotti Adventitious shoots IAA at 1 µM and IBA at 1 µM Perlite:peat moss:vermiculite 1:1:1 23 C, 16 h L, 100 LI, 26-35% Tang and 

(induced from (v/v/v) CW fluorescent Newton 

callus) tubes (2007) 

Pinus kesiya Adventitious shoots NAA at 16.1 µM in GD medium for Subculture to the same medium 25 ± 1 C, 16 h L, 67% Nandwani et al. 

(from 2 to 3 week 24 or 120 h without PGR 50-70 LI, CW (2001) 

old seedling fluorescent and 

explants) incandescent lamps 

Pinus pinaster Adventitious shoots NAA at 5.4 µM in induction medium Same medium without PGRs with 3% 25 ± 1 C, 16 h L, 86%, 3 weeks Álvarez et al. 

(from adventitious (RW macroelements,  ½ MS sucrose. Then, transfer to a sterile 80 ± 5 LI (2009) 

buds induced from microelements, 50 mg l
-1

 myo- peat:vermiculite, 1:1 (v/v) 

embryos) inositol, 2 mg l
-1

 glycine, 1 mg l
-1 

thiamine, 1 mg l
-1

 pyridoxine, 

1 mg l
-1

 nicotinic acid, 1% sucrose) 

Pinus pinaster Shoots (from NAA at 10
-6

 M for the first 16 days Unknown Unknown 92%, 30 days Faye et al. 

axillary buds) in basal nutrient medium with nitrate (1989) 

at 3.3 mM and glutamine at 2 mM 

Pinus pinea L. Adventitious shoots IBA at 10 µM in DCR (½ Peat:sand:perlite (2:1:1 v/v) mixture 23 ± 1 C, 16 h L, 34% Capuana and 

(from cotyledons) macroelements) with 3% sucrose for 80-100 LI Giannini 

10 days (1995) 
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Table 2 continued  

Conifer species Plant material Root induction Root growth Environmental Rooting (%) References 

conditions 

Pinus pinea L. Adventitious shoots NAA at 10 µM in ½ LPC (LP medium The same medium without PGRs and 1 week at 19 C dark, 68%, 3-6 weeks Alonso et al. 

(from embryos) with 0.5% (w/v) of activated then transferred to sterile peat:perlite 2 weeks at 19 C, 16 (2006); Ordás 

charcoal), 1:4 (v/v) L, 100 LI and then et al. (1999) 

20% glucose and 0.8% Roko-Agar 21 C 16 h L, 100 LI, 

white fluorescent 

tubes 

Pinus pinea L. Adventitious shoots NAA at 0.05 µM in ½ MS medium Unknown 23 C, 16 h L, 60-70 15-20% Sul and Korban 

(from cotyledons) LI, CW fluorescent (2004) 

tubes 

Pinus pinea L. Adventitious shoots NAA at 10.7 µM in ½ WPM The same without PGR and with 1 week at 19 C dark, 70%, 4 weeks Ragonezi et al. 

(from cotyledons) macroelements with 0.117 M 58.4 mM glucose 2 weeks at 19 C, (2010) 

glucose and 0.8% agar 16 h L, 90 LI and 

then 21 C, 16 h L 

and 90 LI, CW 

fluorescent tubes 

Pinus pinea L. Adventitious NAA at 10.7 µM with 0.117 of The same without PGR and with Induction for 2 weeks Average 53% when Zavattieri et al. 

microshoots (from sucrose or 0.117 M of glucose in 58.4 mM sucrose and then for 0.117 M of glucose was (2009) 

cotyledons) WPM gelled with 0.65% Difco expression 25/19 C used in the medium 

Bacto-agar day/night 16 h L 

Pinus radiata Shoots (from IBA at 8.2 mM and NAA at 5.4 mM Transfer to ½ LP medium 24 ± 2 C, 16 h L, 28% Prehn et al. 

isolated in 5% National Midesa agar for 5 d supplemented with 10% sucrose 20-30 LI, CW (2003) 

meristems) fluorescent tubes 

Pinus radiata Shoots (seedlings NAA, IBA and BAP at 2.7, 5.0 and Transfer to ½ SH medium with 1% 23 ± 2 C, 16 h L 80 43% Schestibratov 

from a mixed 0.11 µM, respectively, for 10 days sucrose and without PGR LI CW— et al. (2003) 

population of in SH macro- and micro-salts, 3% fluorescence tubes 

open-pollinated sucrose 

seed) 

Pinus roxburghii Shoots (from BA at 10 µM in   MS medium with Transfer to semisolid (0.6% agar) and 25 ± 2 C, 16 h L, 30 97% Kalia et al. 

Sarg axillary buds) 2% sucrose and 0.6-0.8% agar liquid ½ MS with filter paper LI, CW fluorescent (2007) 

bridges for elongation of roots. The tubes 
rooted plantlets were washed  

thoroughly and transferred to liquid  

¼ MS medium containing 1%  

sucrose and absorbent cotton  

Pinus sylvestris Shoots (from NAA at 53.8 µM in 0.6% water agar. Transfer to l/2-strength basal medium 26 ± 2 C, 16 h L, 64% Zel et al. 

axillary buds) Shoots were placed for 24 h (1/8-strength MS medium as 107-240 LI, (1988) 

modified by Cheng (1975), Sylvania Gro-Lux 

supplemented with 3% sucrose, 1% and fluorescent LV 

Difco Bacto-agar) with 1% sucrose 20 

and 1% agar  
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Table 2 continued  

Conifer species Plant material Root induction Root growth Environmental Rooting (%) References 

conditions 

Pinus sylvestris Adventitious shoots NAA at 0.67 mM in 1/6 MS medium The same medium without PGR Unknown 33% Sonia Tsai and 

(from zygotic for 24 h Huang (1985) 

embryos) 

Pinus sylvestris Adventitious shoots NAA at 2.7 µM ½ GD medium ½ The same medium without PGR for Unknown 6% Häggman et al. 

(from cotyledons) micronutrients, ½ macronutrients, 4 week (1996) 

and ½ organics of those in GD 

medium 1% agar 

Pinus strobus L. Adventitious shoots IAA at 0.01 mM and IBA at 0.01 mM Perlite:peat moss:vermiculite 24 C, 16 h L, 50 LI, 36%, 6 weeks Tang and 

(from zygotic in PS medium (1:1:1 v/v) in a greenhouse CW fluorescent Newton 

embryos) tubes (2005a, b) 

Pinus taeda L. Adventitious shoots IBA at 2.46 µM, GA3 at 1.44 µM and Vermiculite:commercial compost 3:1 25 C, 16 h L, 100 LI, Unknown Tang and Guo 

(from zygotic BA at 4.43 µM in TE medium (v/v) CW fluorescent (2001) 

embryos) tubes 

Pinus virginiana Adventitious shoots NAA at 0.05 µM in TE medium for Established in soil in a greenhouse 24 C, 16 h L, 50 LI, 18% Tang et al. 

Mill. (from zygotic 6 weeks CW fluorescent (2004) 

embryos) tubes 

Pseudotsuga Adventitious shoots NAA at 10.7 µM in ½ DCR with 1% The same without PGR (only in light) Unknown 40%, 4 weeks Hutzell and 

menziesii (from cotyledons) sucrose for 6 days (2 days in Durzan 

(Mirb.) Franco darkness and 4 days in light) (1993) 

Sequoia Shoots (from IBA at 12.3 µM in ½ MS medium The same without PGR 22 ± 3 C, 9 h L, 60 61% Blazkova et al. 

sempervirens axillary buds) with 2% sucrose, 0.75% Difco agar, LI, CW fluorescent (1997) 

(Lamb.) Endl for 3 months tubes 

Taxus meirei Shoots (from IBA at 12.5 µM ½ MS medium The same without PGR 24 ± 1 C, 16 h L, 45 55% Chang et al. 

steckling) supplemented with 20 g l
-1

 sucrose LI, CW fluorescent (2001) 

for 3 months tubes 

Taxus brevifolia Adventitious shoots Treated with ABT rooting powder Transfer rooted shoots to 2-inch pots 26 C, 16 h L, 80 LI 58% Chee (1995) 

(from zygotic (ABT Research Center, Beijing, of plant growth medium 

embryos) China) (vermiculite: perlite 1:1 (v/v), J. 

Mollenma Co., Grand Rapids, MI, 

USA) 

Taxus baccata L. Shoots (from closed IBA at 9.8 µM, spermidine at JIFFY 7 peat pellets saturated with 15-17 C, 16 h L, 30 Unknown Ewald (2007b) 

buds or shoot tips) 6.88 mM and TDZ at 4.5 mM in 1/3 water LI, white light 

L9 medium with 0.5% sucrose radiation 

Thuja Adventitious shoots IBA at 25 mM in 1/3 MS, 3% sucrose Transfer to autoclaved Redi-Earth 20 C, 16 h L, 30-40 60%, 3-4 weeks Harry et al. 

occidentalis L. (from zygotic and 0.7% agar (W.R. Grace & Co., Ontario) LI (1987) 

embryos)  

LI light intensity in µmol m
-2

 s
-1  

L photoperiod  
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was not always included. Hamann (1998), working with  

this species, used a substrate consisting of equal parts of  

perlite and coarse vermiculite, to a depth of 1.5 ± 2 cm  

and obtained 80% rooting. In Brazil, with the same species,  

the cuttings were placed in plastic tubes containing Mec- 

plant (substrate composed of biostabilized pine bark)  

overlaid with vermiculite (Alcantara et al. 2007). Table 1  

shows a compilation of different substrates applied to  

conifer cuttings. 

 

 

In vitro rooting of conifer microshoots 

 

Many basic studies on rooting are now carried out in vitro.  

Using seedling explants and in some cases also explants  

from mature trees, it has become current, in some species,  

to produce rooted micropropagated shoots (microcuttings)  

by in vitro organogenesis (Niemi et al. 2004). Tissue cul- 

ture method facilitates administration of PGRs and other  

compounds and avoids microbial degradation of applied  

compounds (De Klerk et al. 1999). According to many  

workers, further research is required on the influence of  

factors such as donor plant age, genotype and type of  

explant, microcutting quality, auxin treatment, root sys- 

tem and environmental conditions on rooting and accli- 

matization (Fett-Neto et al. 2001; Greenwood et al. 2001;  

Bielenin 2003; Henrique et al. 2006). Adventitious rooting  

of microshoots is characterized by the same four phases as  

rooting of cuttings (see above). 

 

Rooting medium 

 

The success of plant tissue culture as a means of plant  

propagation is greatly influenced by the composition of the  

culture medium. In vitro rooting of conifer microshoots  

usually occurs in gelled nutrient media (mostly agar- and  

gellan-gum based) as substrate. This ensures the consistent  

distribution of PGRs, macro- and micronutrients, and also  

provides a better contact between shoots and substrate,  

resulting in more synchronous rooting (Mohammed and  

Vidaver 1990). However, the quality of produced roots is  

not always satisfactory. Gelled media probably obstruct gas  

exchange and inhibit the development of the vascular  

system in roots, as well as the production of root hairs  

(Skolmen and Mapes 1978). Culture media and physical  

supports currently used for rooting of conifer shoots are  

listed in Table 2. Nutrients are usually reduced to half the  

strength of that used for shoot production (Blazkova et al.  

1997). In general, it has been reported that lower concen- 

tration of salts in the culture medium, particularly nitrogen,  

seems to favor the adventitious rooting of cuttings (Ordás  

et al. 1985).  In  our  experience,  reducing  the  WPM  

macronutrients  to  half  strength  increases  significantly 

 

 

 
the percentage of rooted microshoots of Pinus pinea L. 

(Ragonezi et al. 2010). 

 

Plant growth regulators 

 

In vitro organogenesis is a complex series of events that a  

cell or groups of cells undergo in response to external/  

internal stimuli such as phytohormones. According to  

Thorpe (1980), organogenesis is a developmental process  

that comprises (a) attainment of competence or pre- 

induction phase, (b) induction or determination phase, and 

(c) expression phase or post-initiation phase. Cell/tissue  

responses  to  form  adventitious  roots  may  be  different  

according to species, physiological status of the explants,  

the phase of the rooting process, and the interaction of the  

chemical  and  physical  factors  of  the  culture.  Table 2  

summarizes the available information in the scientific lit- 

erature, including species, rooting induction treatments,  

culture media, physical conditions, light regimes and  

rooting percentages. 

Most frequently, the treatments involved IBA (13 ref- 

erences) or NAA (15 references). For five species, a mix- 

ture of IBA either with NAA or IAA was used. On the  

other hand, one research report cited 97% rooted shoots of  

Pinus roxburghii when 10 µM BA was applied before  

transfer to a liquid medium for root expression. In one  

experiment, Taxus brevifolia treated with ABT rooting  

powder (developed by ABT Research and Development of  

Chinese Academy of Forestry) produced roots in 58% of  

the microshoots derived from cotyledon explants. In one  

case, it was possible to root 84% of the microshoots of 

P. sitchensis derived from cotyledons without any appli- 

cation of PGRs and by rooting directly in a substrate mix.  

IBA was applied at concentrations that ranged from 1 to 

25 µM, most often between 2.5 and 14.8 µM, and only in  

one study IBA was applied at 25 µM. NAA concentrations  

varied between as low as 0.05 and 100 µM, with 10.7 µM  

being the most commonly used. However, the best results  

were obtained with NAA at concentrations higher than 

50 µM, while low concentrations gave poor rooting per- 

centages. The physical support for the shoots during the 

root expression phase was either a substrate (16 references) 

or a culture medium without PGRs (18 references). 

 

Carbohydrates 

 

Sucrose is commonly used in tissue culture media because  

it is the main sugar translocated in the phloem of many  

plants. However, other carbohydrates such as glucose and  

fructose have been also used to improve organogenesis  

(Faye et al. 1989; Ordás et al. 1999; Zavattieri et al. 2009).  

The exogenous sucrose (in the presence or absence of  

auxin) is beneficial for the rooting of most herbaceous and  
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woody plants (Haissig 1982). Generally, enrichment with  

sucrose improves rooting, but this has its limits, as sucrose  

at high concentrations tends to have negative effects,  

especially during the root expression phase. A negative  

interaction between carbohydrates and light could emerge  

at such high concentrations, either through transformation  

of added sugars into soluble and storage forms, or through  

altered nitrogen/sucrose or auxin/sucrose ratios (Moncou- 

sin 1991). 

In conifers, the data on the influence of carbohydrates in  

adventitious rooting are limited. Zavattieri et al. (2009)  

made a direct comparison between different carbon sources  

(sucrose or glucose at different concentrations) for the  

induction and expression phases of the adventitious roots in  

microshoots of Pinus pinea. An increased number of roots  

per shoot and an accelerated root formation were consis- 

tently obtained using glucose. However, there were no  

differences in the overall frequency of rooting. Light (16-h  

photoperiod, 25/19 ºC day/night) and less sugar were ben- 

eficial for the ensuing root expression phase. Large dif- 

ferences in the ability to form roots were observed among  

clones with the rooting percentages ranging between 0 and  

over 75%. Other examples can be found in Table 2. 

 

Light 

 

Plants grown in vitro have been in most cases subjected to  

fluorescent lamps. These fluorescent lamps have a broad  

emission peak in the yellow-red region of the spectrum  

with different spectral emissions and wavelengths from 350  

to 750 nm. However, little attention has been given to the  

wavelength specificity and its effect on organogenesis,  

especially in ARF. 

Broad-spectrum CW light is often used in rooting  

studies conducted in vitro (Flygh et al. 1998; Stojičić et al.  

1999; Zhang et al. 2006; Ishii et al. 2007; Tang and Newton  

2007). Different types of light sources such as Growth-lux  

(GL) (Gómez and Segura 1994), high-pressure lamps  

(Scaltsoyiannes et al. 1994) and their combinations such as  

fluorescent light supplemented with incandescent light  

(Flygh et al. 1998) are also applied. Different light quality  

influenced the rooting frequencies according to the PPFD  

used. Under the intensity of 90 µmol m
-2

 s
-1

 from CW 

lamps, 70% microshoots of P. pinea rooted; however,  

under GL lamps, with the same intensity, rooting was  

<50% (Ragonezi et al. 2010). 

In the case of shoots of Sitka spruce (P. sitchensis), the  

rooting frequency was high (84%) when cultivated under  

low illumination (1.5 µmol m
-2

 s
-1

) (Drake et al. 1997),  

but in Juniperus phoenicea 40% of rooting was achieved  

under light intensity of 400 µmol m
-2

 s
-1

. The majority of  

studies relating to ARF applied light intensities that varied  

from 60 to 80 µmol m
-2

 s
-1

 (Gómez and Segura 1994; 

 

Scaltsoyiannes et al. 1994; Nandwani et al. 2001; Zhang  

et al. 2006; Ishii et al. 2007). The influence of light  

(quality) on ARF in shoots of other species is listed in  

Table 2. 

 

Photoperiod 

 

A photoperiod of 16 h is generally used for in vitro rooting  

of most conifers (Anderson and Ievinsh 2002; Parasharami  

et al. 2003). However, different photoperiodism require- 

ments to induce ARF have been published. As an example  

Burkhart and Meyer (1991), while testing the effect of GA  

inhibitors to promote in vitro rooting of axillary shoots of  

white pine (Pinus strobus L.), obtained 43% rooted shoots  

with a pulse treatment of NAA under a long (18 h) pho- 

toperiod with CW lamps at 50 µmol m
-2

 s
-1

. In Picea  

glauca (Moench)  Voss,  a  higher  percentage  of  shoots  

rooted  under  continuous  light (Campbell  and  Durzan  

1975). 

 

Temperature 

 

Most rooting protocols reported temperatures in the range 

of 23-27 C (Table 2). Apart from the example of T. oc- 

cidentalis shoots that rooted at 60 and 10% at 25 and 

20°C, respectively (Harry et al. 1987), the lower tem- 

perature ranges tended to be beneficial in the induction of  

roots from shoots of many other gymnosperms. Picea  

glauca rooting was greater at 20/18°C day/night temper- 

ature regimes, compared with 24/18, 20/15 or 25/25°C  

(Rumary and Thorpe 1984); in Douglas fir, 19°C pro- 

moted rooting and normal plants, while at 24°C few roots  

formed along with callus at the stem/root junction, caus- 

ing discontinuity in the vascular system (Cheng 1977). In  

white pine (P. strobus), the highest rooting frequency was  

obtained after elongated shoots were treated at 4°C for 

4 weeks (Tang and Newton 2005a). The positive effect of  

combining low temperature and darkness in the induction  

phase (for the first 2 weeks) was observed in P. pinea L.,  

which rooted at a higher percentage at 19°C compared  

with 25°C (Ragonezi et al. 2010). This is in agreement  

with the results reported for P. menziesii (Cheng and Voqui 

1977) and P. radiata (Smith 1986). A possible  

explanation for the effect of low temperature and darkness  

in promoting ARF was given by Hartmann et al. (2002).  

They noted that under these physical environmental  

conditions, fewer cell wall deposits, less vascular tissue  

and thinner walls might have facilitated the movements  

of exogenous PGRs to regeneration sites. In loblolly pine  

(P. taeda), Hutchison et al. (1999) observed that during  

the first 2 days of the rooting process the cambium layer  

of the hypocotyls dedifferentiated into parenchyma cells  

in both hypocotyls and epicotyls. Since dedifferentiation 
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is a part of the regeneration process (Christianson and 

Warnick 1983), a higher proportion of already undiffer- 

entiated cells may improve shoot or root organogenesis. A 

possible effect of low temperature and darkness could be 

explained by their influence on auxin metabolism in 

relation  to  rooting  through  modification  of  peroxidase 

activities  and  formation  of  endogenous  phenolic  com- 

pounds (Druart et al. 1982). 

 
 

Conclusions 

 

Although difficult to unify, the research results covered in  

this review highlight some tentative suggestions to explore  

the physicochemical variables in experimental rooting of  

conifers, as a guideline for development of more effective  

conditions for each species. This review also shows the  

difficulty in establishing correlations between species, PGR  

concentrations and treatments or any other of the variables  

cited. 

However, an ongoing research on elucidating important  

aspects of ARF signaling network in angiosperms should  

eventually provide a better understanding of the process and  

aid in developing efficient rooting protocols. Whether the  

same or similar molecular events will be identified in coni- 

fers, the evolutionary and physiologically different organ- 

isms, remains unknown. A study undertaken by Brinker et al.  

(2004) in P. contorta showed that the transcription level of  

200 genes changed from root induction to development  

suggesting a complex network of interactions in this conifer  

species. 
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Abstract 

In the present study of Pinus pinea L., further improvement of microshoot 
rooting was achieved by applying Cool-white light at increased intensity from 60 to 

90 µmol m
-2

 s
-1

. In contrast, light provided by Gro-lux lamps promoted rooting of 
the microshoots at the same frequency regardless of its intensity. Majority of 

microshoots (70.4%) grown under Cool-white lamps at the intensity of 90 µmol m
-2

 

s
-1

 were also significantly taller when compared with those from other tested 
treatments. 
 
INTRODUCTION 

The light-mediated changes in plant growth and development are referred to as 
photomorphogenesis, and plants have extraordinary versatility to perceive different light 
signals in different developmental contexts. Different groups of photoreceptors of the 
photosensory systems regulate plant development, namely cryptochromes, phototropins 
and phytochromes each of them monitoring different wavelengths regions of the spectrum 
(Quail, 2002). Plants use phytochrome to detect and respond to red and far-red 
wavelengths and cryptochromes were the first blue light receptors isolated and 
characterized. Light can also modify the efficacy of plant growth regulators (PGRs) as 
well as affect the endogenous hormone balance. Auxin plays a central role in the 
determination of rooting capacity, and light conditions are known to affect auxin 
metabolism and tissue receptivity (Reid et al., 1991). From an applied point of view, plant 
morphogenesis may be influenced by the correct choice of lamps and filters (Fuerakranz 
et al., 1990). For example, red-light improved rooting percentage and root numbers in 
shoots of two genotypes of grape propagated in vitro (Poudel et al., 2008). However, little 
is known about the effect of green and yellow lights, which seem to be involved in the 
regulation of in vitro plant development (Loreti et al., 1991).  

The purpose of this work was to establish if light quality and intensity, within the 
visible range, influence root growth and development of Pinus pinea microshoots with the 
aim of enhancing the present rooting protocol achieved with Cool-white (CW) lamps. 
 
MATERIAL AND METHODS 
 
Plant Material 

Cotyledons from non-germinated embryos of stone pine (Pinus pinea L.) were 
used as explants. The seed coat was cracked with a nut cracker and discarded. The 
remainder megagametophytes were surface sterilized by immersion in 70% (v/v) ethyl 
alcohol for 2 minutes followed by three rinses in sterile bi-distilled water. They were then 
disinfected with sodium hypochlorite 10% (v/v) (commercial bleach with 5% free 
chlorine) for 25 minutes followed by four rinses in sterile bi -distilled water. All of the 
following steps were carried out under aseptic conditions. An embryo was excised from 
the megagametophyte by making a longitudinal incision with a scalpel and by gently 
pulling the edges of the cleft with two forceps. Finally, the cotyledons were excised from 
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the embryo axes with a cut at their bases. 
 
Microshoot Induction from Embryo Cotyledons 

The whole set of cotyledons of each of 20 excised embryos was cultured 
separately in a Petri-dish (9 x 1.5 cm) containing WPM (McCown and Lloyd, 1981) 
medium supplemented with 5 mg/L of benzylamino purine (BAP) for shoot 
organogenesis. After a month, the explants with shoot buds were transferred to a fresh 
PGR-free medium with 2 g/L of activated charcoal (AC) to promote shoot elongation. 
 
Rooting of Microshoots 

Seven, eleven, and six clonal shoots were tested at 60, 90, and 110 µmol m
-2

 s
-1

, 
respectively. In all experiments, shoots 2 cm in height were transferred to WPM with half 
concentration of the macronutrients, 0.65% Difco Bacto-Agar and different carbon 
sources (see below), and adjusted to pH 5.8 before autoclaving. For root induction, which 
lasted two weeks, the medium was supplemented with 10.7 μM naphthalene acetic acid 
(NAA) (Oliveira et al., 2003), and 0.12 M glucose (WPMRI). The cultures were kept for 

two weeks in a growth chamber; the first week in darkness. During the 2
nd

 week of 
induction (under 16 h photoperiod and constant temperature of 19ºC) and during root 
expression phase, two light sources were used: Sylvania Gro-lux lamps 18W (GL) and 
Philips Cool-white lamps 18W (CW) at different photosynthetic photon flux (PPF – see 
above) depending on the experiment. In all experiments root expression medium was 
WPM consisting of half concentration of the macronutrients, without PGRs and with 
0.058 M glucose (WPMRE) at 16 h photoperiod and 24/19ºC day/night temperatures. The 
root emergence was monitored for six weeks. 
 
Light Sources Spectra 

Gro- lux: The color tone of GL light is violet; this is the result of the combination 
of blue and red wave lengths. Cool-white: Broad-spectrum CW light lamps supply blue, 
yellow, and green light but very little far red light (Fig. 1). Light intensity was measured 
in the middle of the culture flask with the quantum sensor (Skye Instruments Ltd., UK 
SKP 200). 
 
Evaluated Parameters and Statistical Analyses 

Rooting percentages and the number of roots produced over time for each light 
quality and intensity were monitored. The percentages of rooted microshoots were 
compared by the analysis of variance (ANOVA) for clones and light sources using 
Statistica six Sigma. Means were compared by Duncan’s Range test. 
 
RESULTS 

P. pinea microshoots rooted at 40% under CW lamps and at 47.1% under GL 
lamps at 60 µmol m

-2
 s

-1
 (Fig. 2, Experiment 1). In order to test if increased to 90 µmol 

m
-2

 s
-1

 light intensity from both types of lamps would influence the rooting response; one 
additional lamp was added in each tissue culture chamber (Experiment 2). Since there 
were no statistical differences among clones in the first experiment, the data analysis in 
experiment 2 considered only light quality and light intensity. In the latter experiment 
70.4% microshoots rooted under CW and 51% under GL lamps (Fig. 2). There was a 
significant difference in the rooting percentage under CW lamps at 60 versus 90 µmol m

-2
 

s
-1

, but no difference was observed at the two intensities for GL lamps (Fig. 2, Table 1). 
This indicated that the P. pinea microshoots were not sensitive to variation in the 
photosynthetic photon flux (PPF) from GL lamps with respect to rooting response. When 
the light was increased to 110 µmol m

-2
 s

-1
 , reduction of the rooting percentages was 

observed for both lamp types, particularly for GL (Fig. 2).  
The number of roots produced per week increased exponentially during two weeks 

on WPMRE medium under both types of light (Fig. 3). 
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DISSCUSION 

During the first week of the rizhogenic process (induction) the combination of 
0.12 M glucose with 10.7 μM NAA in the medium, and continuous darkness were the 
most favorable conditions compared with previously tested ones (unpublished results).  

Rooting percentage was influenced by different light quality according to the PPF 
used. The fact that similar rooting percentages were obtained for GL lamps at 60 and 90 

µmol m
-2

 s
-1

 indicated that an increase in light intensity did not stimulate rooting. In 
contrast, increased intensity of CW light increased the rooting percentage by more than 
30%. This is an interesting result from the practical point of view because without any 
change in the tissue culture protocol, except for one additional CW lamp in the culture 
chamber, it was possible to obtain an increased number of rooted stone pine plantlets. 

However, at a higher light intensity (110 µmol m
-2

 s
-1

) ARF was inhibited under both 
lamps indicating that optimal conditions were exceeded. 

Comparing both fluorescent lamps spectra, GL lamps emit blue and red waves and 
CW more yellow and green. These differences in the spectra could explain the results of 
this study, which are consistent with the previous observations that phytochrome was 
mainly involved in root formation (Tyburski and Tretyn, 1999) and that blue light 
inhibited photomorphogenesis (Seibert et al., 1975). The yellow component of CW lamps 
might have enhanced adventitious rooting in P. pinea similarly to the results of 
Fuerakranz et al. (1990). The authors reported that yellow light and CW lamps were 
superior for rooting of Prunus serotina compared with red and blue lights alone.  

Maximum rooting that occurred after approximately 15 days in the expression 
medium and was consistent in all the treatments, indicated that the time to trigger 
microshoot response and growth of new roots were independent from the light quality, 
and that this parameter was determined by other physiological factors. 
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Table 
 
 

 

Table 1. Duncan test for variable rooting percentage. 
 

 Light Intensity GL 60, GL 90, GL 110, CW 60, CW 90, CW 110, 
 quality  47143 45714 05000 42643 71571 16667 

1 GL 60  0,8900 0,0005* 0,6830 0,0229* 0,0089* 

2 GL 90   0,0007* 0,7663 0,0215* 0,0103* 

3 GL 110    0,0012* 0,0000* 0,2629 

4 CW 60     0,0127* 0,0161* 

5 CW 90      0,0000* 

6 CW 110       
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Fig. 1. Spectra of Sylvania Gro-lux lamps (white) and Philips Cool-white lamps (black). 
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Fig. 2. Rooting of P. pinea microshoots under different light quality and intensity. See 

significance in the Duncan Range test above. 
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Abstract 

Pinus pinea L. (stone pine) is one of the major plantation species in Iberian 
Peninsula, being Portugal the largest edible seed producer in the world. The 
induction and improvement of in vitro rhizogenesis of microshoots of Pinus pinea 
was developed in our laboratory using a co-culture system with ECM fungi. In the 
acclimation phase in mixed substrates, or in rhizotrons, anatomical and 
morphological studies were done to observe the evolution of the root system in 
microshoots from the co-culture system vs. control plants. Extensive dichotomous 
and coralloid branching of lateral roots occurred spontaneously in inoculated and 
control plants as well. Moreover, similar branching occurred in liquid culture of 
excised seedling roots without the presence of ECM fungi. The striking similarity of 
these organs with pine ectomycorrhizas prompted their anatomical analysis; 
however the presence of Hartig net was not confirmed. These results suggested that 
the development of ECM-like structures might have occurred spontaneously. 
 
INTRODUCTION 

Mycorrhizas are symbiotic structures formed between plant roots and fungi that 
act as an extension of absorption system, where the fungal partner obtains photosynthetic 
sugars from the host plant while, in return, the plant receives mineral nutrients from the 
fungus (Smith and Read, 1997). Ectomycorrhizas (ECM) are the main absorption organs 
in conifers, and the exchange of nutrients occurs in a specific structure that is formed 
between the fungal hyphae and the outer root layers. This structure is known as the Hartig 
net, which is formed by the hyphae penetrating from the surrounding mantle into the root 
apoplast (Smith and Read, 1997; Brundrett et al., 1996). This mutualistic relationship with 
fungi grants conifers an ecological advantage to withstand the harsh living conditions.  

Stone pine is an extremely appreciated edible nut producer and one of the major 
plantation species in the Iberian Peninsula. Achieving its clonal propagation is a major 
goal in the biotechnological development for this species, but has met overwhelming 
difficulties. The complex interactions between pines and their ECM partners suggest that 
they might be capable of overcoming such difficulties. The objective of our work was to 
ameliorate the in vitro adventitious rooting (which does not develop well in the agar 
cultures) by co-culturing with ECM fungi collected from Stone pine stands (Oliveira et 
al., 2003). It was also to characterize the fungi-root interactions that enable the 
development of roots in microshoots and to identify the signalling mediators between 
ectomycorrhizal fungi and stone pine roots. These potentially new insights into the 
interactions that take place in the pine rhizosphere could allow us to develop an axenic 
system that mimics the promoting effect of ECM fungi. 
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MATERIALS AND METHODS 
 
Plant Material 

Mature seeds of stone pine were obtained in March 2007 from selected ‘plus’ trees 
(Alcácer do Sal Region, Portugal) and were stored in a cold chamber at 4°C until used. 
 
Shoot Organogenesis 

For the description of shoot organogenesis, see Oliveira et al. (2003) and Ragonezi 
et al. (2008). 
 
Root Organogenesis 

Microshoots were placed in rooting medium. The media used were WPMRI and 
WPMRE (woody plant medium root induction and expression, respectively) (Ragonezi et 
al., 2008). 
 
Fungi 

Fungi were isolated from single ectomycorrhizas as described by Oliveira et al. 
(2003) collected at the same location as the cones used for obtaining mature seeds for 
organogenesis experiments. The fungi were maintained in pure culture using standard 
procedures (Brundrett et al., 1996). Sixty-five independent isolates were obtained 
(unpublished results) and screened for their effect on root growth, many of which are 
included in the present study. 
 
In Vitro Co-Culture 

Following the rooting induction and expression phase, the individuals that showed 
root development were transferred to the double-layer medium and, after a brief period of 
adaptation to the medium, inoculated with selected fungi, with matching controls to 
monitor root growth in the absence of inoculation (Oliveira et al., 2003). 
 
Acclimation 

The plantlets were transferred to vermiculite for two weeks and then transferred 
two different substrate systems to observe the development of the root system: mixed 
substrate in containers, or peat in a rhizotron (Finlay and Read, 1986). During acclimation 
plants grew in a growth chamber at 25/19°C day/night temperatures, with 16 h 
photoperiod (270 μmol s

-1
m

-2
) for 10 weeks. The relative humidity of the growth 

chamber started at 80% and gradually decreased to 60%. Plants were watered as required 
with alternating sterile water and liquid WPM (macronutrients only). 
 
Rhizotron 

Rhizotrons allow the visualization of root development whenever desired without 
disturbing the normal functions of the plants. Basically, they are made of two acrylic 
plates, 20 x 20 cm each, with interval made by 5 mm spacers and filled with turf, in order 
to support and feed the plants, as suggested by Finlay and Read (1986) with some 
adaptations from Bending and Read (1996). The root growth was observed thereafter for 
4 to 6 weeks, the time required for most of the plants to explore the available space in the 
rhizotron. Rhizotrons were very useful for the identification of target structures, as well as 
other symbiotic features that could then be extracted for further studies with minimal 
disturbance to the rest of the root architecture. 
 
Axenic Root Cultures 

Root segments of 2 cm long obtained from germinated seeds were excised and 
were cultured in liquid medium in an orbital shaker (125 rpm) according to Kaska et al. 
(1999) for 3 to 4 weeks. Afterward, the roots were photographed and used for histological 
comparison. 
 
 

 

70 



 
Root Microscopy 

Two different methods were used to study root anatomy: 1) hand sections of root 
segments were obtained according to Brundrett (2008): segments were placed between 

pieces of laboratory Parafilm
®

 and cut as thin as possible using a razor blade under a 
Zoom Stereo Research Microscope 7-70X Olympus SZH10. Structural details of the root 
anatomy and in some cases of the Hartig-net of ECM (when found) were observed under 
Light Microscope with image acquisition device Olympus CX -40 and photographs were 
taken with a Canon Power-Shot A630 camera. 2) Dichotomous and short roots were fixed 
in FAA, dehydrated in an aqueous series of ethanol (70, 80, 95, 100%), clarified in xylol, 
embedded in paraffin and cut with a rotary microtome (8–10 µm).The sections were 
stained with toluidine blue, mounted in entellan acid and observed under light microscope 
(Giomaro et al., 2000). 
 
RESULTS AND DISCUSSION 

Adventitious roots regenerated by stone pine microshoots as well as axenic 
embryo root cultures developed mycorrhizal- like (dichotomous) root laterals even 
without fungal infection. This is not exceptional and was observed for intact plants as 
well as for excised roots. In the former, these structures appeared in all experimental 
settings tested, with the frequency of dichotomous branching increasing as a consequence 
of a reduction of macro-nutrients in the medium (compared with complete 
macronutrients) and also in cultures that spent more than one month on the same co-
culture medium. These results suggested that without any fungus interaction, some stone 
pine genotypes responded to less favourable in vitro growing conditions (i.e., lower 
nutrient concentration and/or lower water availability) by producing mycorrhizal 
coralloid-like structures. Also coralloid structures appeared as a consequence of applied 
naphthalene acetic acid (NAA) in the induction medium (Fig. 1b).  

On the other hand, under in vitro co-culture (pine-fungus) there was a great 
variability in the plant response. Some combinations of pine clones with specific fungi 
showed dichotomous branching while others did not (Figs. 2a, b).  

After a few months in substrate, at the moment of transferring to larger containers, 
dichotomous ectomycorrhizal-like root tips were detected for several inocula, each 
producing a different rootlet type, indicative of specificity in the development of these 
structures as a function of the provided inoculum. At least in these earlier stages, non-
inoculated controls were devoid of such structures (Fig. 3). Rhizotron-contained plants 
did not show any such developments. A careful examination of all ECM- like 
morphotypes failed to reveal Hartig net anatomical features, thus not confirming the 
symbiotic nature of these structures. The mycorrhizal potential of the fungal inocula is 
still under investigation, thus not allowing to determine whether that is due to the 
taxonomical identity of the fungi or the mimicry of dichotomous development by ECM 
fungi which might start a symbiotic relationship but failed to persist in that condition.  

Some plants presented a great number of monopodial short roots with root hairs; 
others dichotomous branching without hairs and also dichotomy with hairs (Figs. 4a, b, 
c). Only through the histological observations it was possible to distinguish between true 
mycorrhizal symbioses and mycorrhizal-like structures as well as ectoendomycorrhizae, 
the latter not correlating with a particular co-culture inoculum, thence probably from 
contamination with E-type propagules (Figs. 5a, b).  

Axenic root cultures showed profuse dichotomous branching similar to those of in 
vitro cultured plants (Fig. 6).  

Many environmental or cultural conditions could have influenced the capacity of 
some stone pine clones to produce mycorrhizal-like structures. At the current stage of our 
study it is impossible to know if there is a correlation between pine clones and their 
propensity to form mycorrhizal-like structures. Responses to the inocula used in the co-
culture (either the resumed growth of roots previously formed as a consequence of plant 
growth regulators treatment, or dichotomous branching) was not consistently correlated 
with the induction of mycorrhizal symbiosis in the acclimation phase. Nevertheless, the 
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characterization of biochemical signals that are likely mediating these effects will 
continue to be pursued, in order to understand the possible physiological implications for 
the plants from the development of these structures. 
 
CONCLUSIONS 
- This is the first report on the abundant mycorrhizal-like structures in stone pine roots 

that were produced by axenic cultures, in in vitro-cultures and in subsequent 
acclimation phase in mixed substrates.   

- There was a strong similarity between extensive dichotomous and coralloid branching 
of lateral roots that grew spontaneously in stone pine with those derived from fungal 
inoculation.   

- Due to this similarity it may be difficult to diagnose ectomycorrhizas without 
confirmation of the ECM status by histological analysis.   

- Since this response appeared to be ‘genotype dependent’ more studies will be needed 
to establish correlation between stone pine clones and the root system morphology.   

- The biochemical studies that are being carried out presently on the co-cultured roots 
could elucidate the nature of the compounds that cause a highly effective adventitious 
rooting in the presence of certain fungi and afterwards in the acclimation phase.  
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a b 

 
 
Fig. 1. (a) After more than one month without transferring to new medium, some 

genotypes developed coralloid mycorrhizal-like structures. (b) Coralloid 
structures also appeared as a consequence of NAA in the rooting induction 
medium. The arrow indicates a normal root type induced by auxin treatment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 

 

Fig. 2. (a) Differential responses in the in vitro adventitious root formation in co-culture 
system. Root with dichotomous branching. (b) Normal in vitro growth of the root 
system. Mycelium could be seen growing on the surface of the culture medium in 
both culture vessels. 
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Fig. 3. Left: Rooted plants in the acclimation phase. Plants after 4 months in the 

acclimation phase. (a) Inoculated pine plant, identified as DD03, shows a good 
development of the aerial part and (b) also compact and dichotomous branched 
root system. (c) Control plant, not inoculated with less aerial part development 
and a linear root system 23 cm long. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a b c 

 
Fig. 4. (a) Different anatomical structures of the roots in plants derived from co-culture 

after 4 month in the acclimation phase (pine clones/different fungi isolates). 
Extensively dichotomous branching without hairs, (b) dichotomous short root 
with hairs and (c) ectomycorrhizal-like structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a b 

 

Fig. 5. (a) Short root covered with mycelia. (b) Longitudinal section shows the 

intracellular hyphae. 
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Fig. 6. Dichotomous branching observed in the liquid axenic root cultures after one month 

of growth. 
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Abstract 

Stone pine (Pinus pinea L.), like other conifers, forms ectomycorrhizas (ECM), which 

have beneficial impact on plant growth in natural environments and forest ecosystems. 

An in vitro co-culture of stone pine microshoots with pure mycelia of isolated ECM 

sporocarps was used to overcome the root growth cessation not only in vitro but also to 

improve root development during acclimation phase. Pisolithus arhizus (Scop.) 

Rauschert and Lactarius deliciosus (L. ex Fr.) S.F. Gray fungi, were collected, pure 

cultured and used in in vitro co-culture with stone pine microshoots. Samples of P. 

arhizus and L. deliciosus for the in vitro co-cultures were collected from the pine stands 

southwest Portugal. The in-situ characterization was based on their morphotypes. To 

confirm the identity of the collected material, ITS amplification was applied using the 

pure cultures derived from the sporocarps. Additionally, a molecular profile using PCR 

based genomic fingerprinting comparison was executed with other genera of 

Basidiomycetes and Ascomycetes. Our results showed the effectiveness of the 

techniques used to amplify DNA polymorphic sequences, which enhances the 

characterization of the genetic profile of ECM fungi and also provides an option to 

verify the fungus identity at any stage of plant mycorrhization. 

 

Key words - Pisolithus arhizus, Lactarius deliciosus, Pinus pinea, M13-PCR, ITS 
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Introduction 

Ectomycorrhizal fungi (ECM) are major components of the soil fungal communities in 

most forests around the world and, are ecologically and economically important (Mello 

et al., 2006). Plants in Betulaceae, Pinaceae and Fagaceae families are obligate ECM 

(Smith and Read, 1997). ECM fungi include species from multiple families in the 

Basidiomycetes, Ascomycetes and some from the Zygomycetes (Bruns et al., 2002). 

Globally, as many as 10,000 fungus species and 8000 plant species maybe involved in 

ECM associations (Taylor and Alexander, 2005).  

Development and growth of pine (Pinus spp.) roots are regulated in nature by ECM 

(Smith and Read, 1997). Inoculation with specific fungi can enhance pine root 

formation and/or subsequent root branching of cuttings (Normand et al., 1996; 

Karabaghli et al., 1998; Niemi et al., 2000). Some research results demonstrated the 

potential for use of ECM fungi in the vegetative propagation of conifers (Gay, 1990; 

Niemi et al., 2005) and during in vitro rooting of pine shoots (Zavattieri et al., 2009; 

Ragonezi et al., 20010a). Inoculations enhanced plant performance and contributed to 

alleviation of stress related with acclimation in a nursery and the subsequent growth in 

the field. 

Stone pine (Pinus pinea L.) is one of the most important pines economically (due to the 

valued edible nut production) in the Mediterranean basin and it forms ectomycorrhizas. 

Rincón et al., (1999) reported that at least eight genera of ECM were associated with 

P. pinea seedlings in the nursery (Amanita, Hebeloma, Laccaria, Lactarius, Pisolithus, 

Rhizopogon, Scleroderma, and Suillus). Two species of fungi are commonly used for 

inoculation in controlled mycorrhization programs associated with P. pinea: Pisolithus 

arhizus (Scop.) Rauschert, (Marx et al., 1982; Burgess et al., 1995) a cosmopolitan 

fungus which grows in warm temperate regions of the world and is easy to propagate in 

vitro (Marx et al., 1982; Cline et al., 1987) and Lactarius deliciosus (L. ex Fr.) S.F. 

Gray, typically a Basidiomycetes which produces high commercially valuable edible 

fruiting bodies (Singer, 1986; Hutchison, 1999; FAO, 2004; Hortal et al., 2006). 

In nature, and also in controlled inoculations, genetically distinct mycelia of the same 

ECM species were found on the root system of a single tree (Guidot et al., 1999). This 

was also demonstrated by others studies with Pinus banksiana (De La Bastide et al., 

1995) and Pinus pinaster (Gryta et al., 1997). Even in cases where the in vitro 

inoculation was controlled, genetic diversity has been found in ex vitro phases caused 
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by the lack of effective sterilization of the mixed substrates, contamination from the 

environment in the growth chamber and in some cases from the irrigation source. On 

the other hand, ECM fungi are relatively selective of host plant species (Allen et al., 

1995) and host responses could be partially attributable to variation between different 

fungus taxa and strains. For all these reasons, accurate characterization and 

identification of the ECM fungi are fundamental requirements for in vivo or in vitro 

mycorrhization programs.  

The traditional method of fungal identification by colour, shape and other macroscopic 

features and microscopic characteristics (Agerer, 1987-2002) could be applied only to 

a limited number of fungal species (Iotti and Zambonelli, 2006).Neverthless, today a 

wide range of molecular techniques can be used to distinguish DNA sequence for the 

identification of ECM fungi (Gardes et al.; 1991a, 1991b; Henrion et al., 1992; Hortal et 

al., 2006) and also to verify the genetic variation within a specific group (Alves et al., 

2007; Caldeira et al., 2009). 

Amplification of the internal transcribed spacer (ITS) regions in the ribosomal genes 

(rDNA) usually reveals interspecific variations (Bruns et al., 1991, Gomes et al., 2000, 

Horton 2002). This region has four primary advantages over other regions: 1 - it is 

multicopy, so the amount of sample material needed for successful amplification is low; 

2 - it has well-conserved fungal specific priming sites directly adjacent to multiple highly 

variable regions; 3 - there are many sequences already available for comparison, 

which facilitates the identification of unknown samples; and 4 - it correlates well with 

morphologically defined species in many groups (Smith et al., 2007).  

Genetic profiles and polymorphic sequences on the other hand, are important tools for 

rapid and effective characterization of ECM species (Caldeira et al., 2009). The 

polymerase chain reaction (PCR) based genomic fingerprinting is a good alternative to 

methods that rely on specifically targeted primers. This technique, which analyzes the 

whole genome, has been shown to be relatively robust and discriminatory (Alves et al., 

2007). PCR fingerprinting is also used in the study of genetic variability in yeast and 

filamentous fungi (Godoy et al., 2004; Alves et al., 2007; Lopes et al., 2007). 

The goals of the present study were, first to identify ECM fungi associated with stone 

pine stands through PCR amplification of the ITS region of the ribosomal genes and to 

use them in in vitro mycorrhization experiments. Second goal was to test the 

applicability of the M13-PCR fingerprinting methodology for monitoring different species 
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of Basidiomycetes and Ascomycetes which can be found in association between P. 

pinea and ECM fungi. 

Material and methods 

Collection of mushrooms from stone pine (Pinus pinea L.) stand 

Fruiting bodies of Pisolithus arhizus (Scop.) Rauschert and Lactarius deliciosus (L. ex 

Fr.) S.F. Gray were collected from a pure stand of stone pine (N 38° 25'; W 7° 56') in 

January of 2010. Morphological identification was done in situ at the collection time. 

Specimens were stored at 4ºC prior to sterilization and isolation procedures. Voucher 

specimens of Pisolithus arhizus and Lactarius deliciosus were deposited at Évora 

University Herbarium with the numbers UEVH-FUNGI 2001610 and UEVH-FUNGI 

2001712, respectively. 

 

Mycelia isolation and fungal cultures 

For the asepsis, the fruiting bodies were cut into large pieces, placed in running water 

for 10 min and then in 70% ethanol for 2 min. Then, pieces were rinsed with sterile 

distilled water in a laminar flow unit, placed in 20% (v/v) commercial bleach (≤ 5% 

active chlorine) for 10 min and rinsed four times with sterile water. The larger pieces 

were then cut in smaller pieces (50 mm3) for growth and subsequently DNA extraction 

or were stored at -20ºC. Isolates were cultured in Hagen medium (Modess, 1941). The 

formulation of modified Hagen per liter was: KH2PO4 0.5 g, NH4CL 0.5 g, MgSO4 7H2O 

0.5 g, FeCL3 (1%) 0.5 ml, glucose 5 g, malt extract 5 g, thiamine HCL 50 µg and agar 

15 gand the pH was adjusted to 4.5-5.0. With the purpose to avoid the contamination 

by bacteria, 100 mg ml-1 of Rifampicin (Sigma-Aldrich®) was added to the media after 

cooling. Pieces of sporocarps were kept in petri dishes Hagen medium, grown at 25ºC 

in the dark and sub-cultured at weekly intervals. Isolates have been growing in Hagen 

slants for 14 days at 25ºC and stored at 4ºC. Fungal isolates of Pisolithus arhizus and 

Lactarius deliciosus were deposited in the Culture Collection of the Biotechnology 

Laboratory of University of Évora and  preserved at −80°C in cryovials containing 10% 

glycerol. 

 

DNA extraction 

The extraction of the genomic DNA from the smaller fragments of sporocarps and from 

the mycelia (after 14 days of culture) was performed using the modified microsphere 

method (Martins, 2004; Guimarães et al., 2011). The quality and quantity of the 

obtained DNA was evaluated by agarose gel.   

http://maps.google.com/maps?q=38.429320,+-7.943587&num=1&t=h&vps=5&jsv=278a&sll=38.332022,-8.002035&sspn=0.280356,0.512238&ie=UTF8&hl=pt-PT&geocode=FYhiSgIdXcqG_w&split=0
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ITS region amplification and sequencing 

The region containing partial portions of the small subunit (18S), both internal 

transcribed spacers (ITS) and the 5.8S of the rDNA repeat unit was amplified using the 

oligonucleotides primers ITS5 (5’-GGAAGTAAAAGTCGTAACAAGG-3’) and ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’) (Gardes and Bruns, 1993). PCR reactions were 

carried out on a MyCycler Thermal Cycler (BIO-RAD) and consisted of initial 

denaturing at 95ºC for 3 min followed by 30 cycles at 92ºC each 30 s, 55ºC for 30 s, 

and 72ºC for 1 min. The reaction was completed by a 10-min extension at 72ºC. PCR 

products were analyzed by agarose gel (1%) electrophoresis, purified with the 

NucleoSpin Extract II Kit (Macherey-Nagel) and sequenced by capillary electrophoresis 

using the ABI PRISM 3730 xl sequencer (Applied Biosystems) with the Kit BDT v1.1 

(Applied Biosystems). 

M13-PCR amplification  

 The M13 primer (5’- GAGGGTGGCGGTTCT-3’) was used for the PCR. The PCR 

conditions consisted of an initial denaturing step of 5 min at 94 °C followed by 40 

cycles of 1 min at 94 °C, 1 min at 50 °C and 2 min at 72 °C. The reaction was 

completed with a final extension at 72 °C for 5 min and then cooled at 4 °C. A sample 

of each PCR reaction product was electrophoresed in a 1.5% agarose gel and 

visualized, by staining with ethidium bromide, in a UV transilluminator (BIO-RAD). To 

evaluate the reproducibility of the assay, each sample has been analyzed in at least 

three independent PCR reactions. A negative control (without DNA template) has been 

included in every run. Subsequently, DNA sequence analysis was employed for 

confirmation of the fingerprint technique characterization. 

Data analysis  

The nucleotide sequences of the ITS region were aligned with those of related fungal 

species retrieved from the GenBank (National Center for Biotechnology Information - 

NCBI) databases for the homology analysis using the BLASTN 2.2.25+ program. The 

phylogenetic relationships between different species were inferred after multiple 

alignments using CLUSTAL W (Thompson et al., 1994). The distances of the DNA 

arrays were calculated with the option of Jukes-Cantor and from these matrixes, using 

the Neighbor-Joining method, the phylogenetic tree was constructed, using the 

program Mega 5 (Tamura, 2011).  
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For the M13-PCR analysis, the phylogenetic tree was generated by the Unweighted 

Pair Group Method with arithmetic Average (UPGMA), through the use of the Dice 

coefficient of similarity using Quantity One 1-D Analysis software (BIO-RAD). 

Results and discussion 

Collection of fruiting bodies from stone pine stand 

Representative voucher specimens of Pisolithus arhizus and Lactarius deliciosus 

fruiting bodies are shown in Fig. 1a and Fig. 2a. Based on preliminary tests, we have 

selected Hagen medium as the most suitable for isolation and growth of the mycelia 

from sporocarps. The cultured mycelia were characterized by yellowish-ochraceous 

with paler margin in the case of P. arhizus (Fig. 1b) and pinkish with paler margin for L. 

deliciosus (Fig. 2b). The microscopic features showed the secondary mycelia at the 

septa of a Basidiomycota hypha (Fig. 1c e 2c). 

 

Fig. 1 - Pisolithus arhizus sporocarp collected in a stone pine stand selected for Pinus 
pinea-ECM associations study (a). The mycelia cultured in Hagen medium (b). 
Secondary mycelia. Each interval 2.5 µm (c).  
 

 

Fig. 2 - Lactarius deliciosus sporocarps collected in a pine stand selected for Pinus 
pinea-ECM associations study (a). The mycelia cultured in Hagen medium (b). 
Secondary mycelia. Each interval 2.5 µm (c). 
 

Fresh mycelia of each culture were used to inoculate stone pine microshoots at the 

rooting phase (Fig. 3). The mycorrhization of the plants were confirmed in the 

acclimatization phase (Fig. 4a and b) revealing the typical ECM structure. The ECM 

fungi presence was monitored and confirmed during the mycorrhization process, by 

a b 

a 

c 

b c 
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applying two molecular complementary approaches: ITS sequencing and M13-PCR 

amplification. 

 

Fig. 3 - In vitro co-culture of Pinus pinea and P. arhizus mycelium (arrows). 

 

Fig. 4 - Cryostat transversal root section of the colonized by P. arhizus pine root 
showing the mantle hyphae (M) (100x); Scale bar 20 µm (a). Details of the transversal 
section showing well-differentiated Hartig-net (HN) in cortical cells (1250x); Scale bar 
7.5 µm (b). 
 

Species identification of P. arhizus and L. deliciosus  

In the past, the most common approach to evaluate fungal biodiversity in various 

plants/ systems has been the sample collection, fungal isolation and identification   

based on classical methods (Genilloud et al., 1994; De Jager et al., 2001; Moreira et 

al., 2001; Schmit and Lodge, 2005), but nowadays several molecular techniques can 

be used namely for ECM fungi identification (Rosling, 2003; Leake et al., 2004; Hortal 

et al., 2006; Caldeira et al., 2009).  

Amplification of the ITS region is a common approach in molecular identification 

strategies (Hortal et al., 2006; Alves et al., 2007). PCR products of ITS4/ITS5 primers, 

corresponding to the ITS1, 5.8S and ITS2 regions of the rDNA were approximately 644 

bp and 400 bp obtained from dikariontic isolates from Pisolithus sp. P1001 and 

Lactarius deliciosus UEZB1 respectively. Sequence alignments of P. arhizus showed 

M HN 

a 

b 

b 
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identities that ranged from 99-100% among isolates belonging to P. arhizus. 

Sequences were aligned at the NCBI for isolates corresponded to other Pisolithus spp. 

In the case of L. deliciosus the homology was over 99%. The most similar sequences 

of P. arhizus and L. deliciosus are shown in Table 1. The phylogenetic tree (Fig. 5) was 

obtained from the alignment of these sequences. We identified two different clusters, 

Pisolithus sp. P1001 and L. deliciosus isolate UEZB1 (Fig. 5). Multiple alignment of 

Pisolithus sp. cluster corresponded to a partial sequence of 18S RNA gene and ITS1, 

5.8S ribosomal RNA gene and ITS2, and partial sequence of 28S RNA ribosomal 

region. L. deliciosus UEZB1 corresponded to partial sequence of ITS1, 5.8S ribosomal 

RNA gene, ITS2 and partial sequence of 28S ribosomal RNA. Both sequences were 

published in GenBank with accession number HQ896485 and JQ066791, respectively. 

Table 1. ITS rDNA homology from fungal strains used in the phylogenetic tree 
construction. The nucleotide sequences of the ITS region were aligned with those of 
related fungal species retrieved from the NCBI databases (www.ncbi.nlm.nih.gov).  

Strains Identification nº (NCBI) Homology 

Pisolithus sp. KH-NC09 gb|GQ429212.1 99% 

Pisolithus microcarpus emb|AM084706 100% 

Pisolithus tinctorius R15 gb|AF374695 99% 

Pisolithus microcarpus VIC30598 gb|HQ693097 100% 

Lactarius deliciosus H:6002989 gb|GU373514.1 100% 

Lactarius sp. isolate cm130.ps gb|EU668299.1 100% 

Lactarius deliciosus isolate CSUFTXY7 gb|HQ635086.1 100% 

Lactarius deliciosus LDTA30 gb|FJ858745.1 100% 

 

 

Fig. 5 - Phylogeny tree based on the ITS sequence 

 gb|JQ066791| L. deliciosus isolate UEZB1 

 gb|GU373514.1| L. deliciosus  

 gb|EU668299.1| Lactarius sp. 

 gb|HQ635086.1| L. deliciosus . 

 gb|FJ858745.1| L. deliciosus  

 gb|GQ429212.1| Pisolithus sp. KH-NC09. 

 gb|HQ896485 Pisolithus sp. P1001 

 emb|AM084706 Pisolithus microcarpus 

 gb|AF374695 Pisolithus tinctorius  

 gb|HQ693097 Pisolithus microcarpus  

1 

http://www.ncbi.nlm.nih.gov/
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Intraspecies identification by M13-PCR  

The amplification using the M13 primer has generated a profile with 7-14 DNA 

fragments ranging from 100 to 2700 bp in the Basidiomycetes sporocarps species (P. 

arhizus, L. deliciosus and R. roseolus), Pisolithus sp. isolated P1001 and select 

Ascomycetes (P. brevicompactum, A. niger, Cladosporium sp.1, and F. oxysporum). 

These Ascomycetes species could live in association with ECM fungi and were 

commonly found in the isolation process. Reproducibility of the M13-PCR fingerprinting 

techniques was checked by comparing the banding profiles resulting from independent 

extractions and amplifications of the same fungi strain. The different samples have 

generated distinct patterns in the electrophoresis analysis (Fig.6).  

 

Fig 6 - Fingerprinting patterns obtained from obtained by amplification of genomic DNA. 
Lanes: 1 and 11 DNA molecular ladder 100 bp plus (Fermentas), 2: Pisolithus arhizus 
culture, 3: Pisolithus arhizus sporocarps, 4: Lactarius deliciosus sporocarps, 5: 
Rhizopogon roseolus sporocarps, 6: Penicillium brevicompactum sporocarps, 7: 
Aspergillus niger sporocarps 8: Cladosporium sp., 9: Fusarium oxysporum sporocarps, 
10: Control. 

   1      2    3     4      5     6     7     8     9     10   11  
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The M13-PCR band profile generated in each fingerprint varied according to the 

species included in this study:  10 fragments ranging from 200-900 bp for P. arhizus, 7  

fragments for L. deliciosus (from 200-550 bp) and 9 fragments for R. roseolus (from 

200-750 bp). The Ascomycetes, P. brevicompactum presented 9 fragments (from 200-

1100 bp), A. niger 10 fragments (from 200-1850 bp), Cladosporium sp.1 presented 13 

fragments (from 200-1850 bp) and F. oxysporum 14 fragments (from 200- 2700 bp). 

The Ascomycetes group presented a higher DNA fragments (ranging from 950-2700 

bp) than the Basidiomycetes, with fragments from 150-900 bp. Figure 7 shows a 

phylogenetic tree based on M13-PCR fingerprinting.  In the analysis of the phylogenetic 

tree, P. arhizus formed a cluster of 41% similarity with R. roseolus, which forms a 

cluster with L. deliciosus with a homology of 34%. This approach also allowed the 

distinguishing between Basidiomycetes and Ascomycetes group, which formed a 

cluster with 15% of similarity for P. brevicompactum, 8% for A. niger, 5% for F. 

oxysporum and 2% for Cladosporium sp.1. 

 

Fig. 7 - Phylogenetic tree analysis based on the PCR fingerprinting patterns for 
different species of Basidiomycetes and Ascomycetes. To evaluate the reproducibility 
of the assay, each sample has been analyzed in at least three independent PCR 
reactions. The distance values between branches are reported as percentage of 
similarity (0-100%). 

These results demonstrated that M13-PCR discriminated among between species and 

taxonomic groups. Based on the specific PCR fingerprints and the high interspecies 

variation of these banding patterns, a clear distinction among all species was feasible. 

M13-PCR highlighted differentiation at the species and strain level (Caldeira et al., 

2009). In this study, the M13-PCR approach was a rapid method to amplify DNA 

polymorphic sequences, with a high level of similarity for the same species, which 
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enhances the characterization of the genetic profile of sporocarps such as L. 

deliciosus, P. arhizus and R. roseolus.  

The advantages of this DNA amplification method are the technique simplicity, 

universal availability of PCR primers, reproducibility and amenability to the computer 

database analysis. Using only a single primer M13-PCR, it was possible to achieve 

high levels of resolution. This makes the procedure much faster and easier, and greatly 

reduces the cost (Alves et al., 2009). Hence, PCR fingerprinting offers a simple and 

reliable alternative method to resolve taxonomic problems and to "label" strains of 

filamentous fungi (Meyer et al., 1991). 

Conclusions 

Results of this study demonstrate that the combined use of sequence analysis of the 

ITS regions of the rDNA and the PCR fingerprinting technique can be successfully 

applied as an excellent tool to examine the species collected in the field associated 

with Pinus pinea and also as a methodology to monitor the fungi species involved in all 

the steps in a mycorrhization program. The applied molecular techniques accurately 

characterized field collected sporocarps and confirmed the presence of the fungus in 

inoculated plants.  

Owing to its low cost and rapidity, the M13-PCR has a wide application in applied 

mycology as was demonstrated in this study. Also, we confirmed that the M13-PCR 

technique has a high level of reproducibility because the fungal samples amplified in 

independent PCRs displayed similar banding pattern profiles.  
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Abstract  

Stone pine (Pinus pinea L.) is an economically important forest tree in the Mediterranean region and has been  

the target of breeding and selection through micropropagation mainly for its ecological and ornamental aspects.  

A crucial step in micropropagation is adventitious rooting of microshoots, which often is highly inefficient  

in most conifer species including stone pine. Hence, we conducted in vitro co-culture of Pinus pinea micro- 

shoots with the ectomycorrhizal fungus Pisolithus arhizus (isolated from natural stands) in order to promote  

adventitious root growth and plant survival during acclimatization. Significant differences were found in the  

number of branches, in the number of roots plus branches, in total length of roots, in total length of roots plus  

branches, in average root length and in the length of the longest root in inoculated plants during in vitro root- 

ing compared with non-inoculated plants. The roots of inoculated plants also grew better in vermiculite and  

during acclimatization in a mixed substrate compared with roots of control plants resulting in the development  

of vigorous root system. Overall, mycorrhizal inoculation increased the survival rate of the regenerated pine.  

 

Key words: co-culture, in vitro mycorrhization, micropropagation, root system. 

 
 

INTRODUCTION 

Stone pine (Pinus pinea L.) is an important species  

widely distributed in the Mediterranean region (Capua- 

na and Giannini 1995). The trees have been exploited  

for their edible seeds (pine nuts) since prehistoric times  

and currently, in addition to being cultivated for the  

seeds, it is also a widespread horticultural tree (Nergiz  

and Donmez 2004). P. pinea has been successfully  

introduced into North Africa as well as Argentina and  

South Africa. In other places e.g. California, Scotland,  

and Southern England it is usually confined to parks and  

gardens (Fady et al. 2004). In Portugal, there is large- 

scale production of clonal stone pine genotypes using  

grafting and in vitro organogenesis from mature embryo  

cotyledons (Alpuim 2000, Carneiro 2002, Zavattieri et  

al. 2009, Ragonezi et al. 2010a). However, the number 

 

 

 

 

of rooted microshoots obtained through organogenesis  

is low, because similarly to other conifers, stone pine  

rooting is difficult and genotype dependent (Cuesta  

et al. 2006, Ragonezi et al. 2010b). Another in vitro  

method of micropropagation is somatic embryogen- 

esis, which in a few pine species is relatively efficient  

but has limited use in stone pine due to difficulties in  

somatic embryo maturation and conversion to plants  

(Carneros et al. 2009). 

P. pinea, like other conifers, forms ectomycor- 

rhizas (ECM), which have beneficial impact on plant  

growth in natural environments (Read 1991) and for- 

est ecosystems (Grove and Le Tacon 1993). Central  

to the success of these symbioses is the exchange of  

nutrients between symbionts (Smith and Read 1997)  

and the extended function of the root system (Smith 
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and Read 1997, Read and Perez-Moreno 2003, van  

der Heijden et al. 2003). This relationship with fungi  

grants conifers an ecological advantage to withstand the  

harsh living conditions in sandy soils and coastal areas.  

Many Basidiomycetes fungi and some Ascomycetes  

fungi are characterized primarily by the presence of a  

mantle (sheath) and a Hartig net consisting of modified  

fungal hyphae that develop among root cells (Smith and  

Read 1997). This relates not only to the extent of root  

colonization but also to the development of hyphae in  

the soil (Colpaert et al. 1992, Thomson et al. 1994).  

Generally, gymnosperms have a Hartig net that devel- 

ops around epidermal and cortical cells (Peterson and  

Massicotte 2004). 

Pisolithus arhizus (Scop.) Rauschert is a cosmopoli- 

tan fungus in warm temperate regions of the world and  

forms ECM associations with a wide range of tree spe- 

cies, both angiosperms and gymnosperms (Marx 1977,  

Chambers and Cairney 1999). Moreover, P. arhizus 

is well adapted to diverse environmental conditions, is 

relatively easy to grow in vitro and has the ability to 

recognize and become associated with host plants 

(Béguiristain and Lapeyrie 1997, Reis et al. 2011). 

Several studies have shown the potential of using  

ECM fungi in conifer propagation (Gay et al. 1990,  

Niemi et al. 2000, 2004, 2005). Inoculation of specific  

fungi can enhance root formation and or subsequent  

root branching of cuttings in vivo and in seedlings (Ka- 

rabaghli et al. 1998, Niemi et al. 2000, Normand et al.  

1996). Rincón et al. (1999) identified at least eight gen- 

era of fungi that formed ECMs in control inoculation of 

P. pinea seedlings in the nursery (Amanita, Hebeloma, 

Laccaria, Lactarius, Pisolithus, Rhizopogon, Sclero-

derma, and Suillus), but the numbers of mycorrhizal 

short roots varied among isolates. Fungal inoculations 

can increase the plant ability to overcome the stress 

related with nursery and growth after 

transplantation (García et al. 2011, Fini et al. 2011). 

It has been previously shown that ECM-derived 

fungal isolates promoted sustained root growth of in 

vitro propagated stone pine microshoots, but in that 

study most of the fungal-isolates that induced renewed 

root growth were not identified (Oliveira et al. 2003). 

The aims of the present study were first, to isolate  

from a pure stand of P. pinea the ectomychorrizal 

fungus, identify it and obtain pure culture of the 

mycelia and second, to determine whether in vitro 

inoculation of stone pine micropropagated plants with 

P. arhizus would promote the adventitious root growth 

and thereby improve acclimatization by decreasing the 

loss of plants during weaning. 
 

MATERIALS AND METHODS 

Collection of P. arhizus fruiting bodies from 

a Pinus pinea stand 

Fruiting bodies of P. arhizus were collected from a 

 

  

 

pure P. pinea stand (N 38° 25’; W 7° 56’) in January 

2010. Identification was done on-site at the collection 

time and later confirmed in laboratory. Morphological 

identification was based on keys, monographs and field 

guides (Pegler et al. 1995, Calonge 1998, Gerhardt et al. 

2000). Specimens were stored at 4ºC before sterilization 

and isolation procedures. 

 

Mycelia isolation and fungal cultures 

For the asepsis, the fruiting bodies were cut into  

large pieces, placed in running water for 10 min and  

then in 70% ethanol (Sigma-Aldrich®, Sintra, Portugal)  

for 2 min. Next, the pieces were rinsed with sterile dis- 

tilled water in a laminar flow unit, placed in 20% (v/v)  

sodium hypochlorite 10% (v/v) (commercial bleach  

with 5% free chlorine) for 10 min and rinsed four times  

in sterile water. The large pieces were then cut in small  

pieces (50 mm3) for growth or were stored at -20ºC.  

For growth, the pieces of fruiting bodies were placed  

in Petri dishes with a medium. The cultures were kept  

at 25ºC in dark and subcultured at weekly intervals.  

Three different media were initially tested for P. arhizus  

isolation and culture; BAF (biotin-aneurin-folic acid  

agar; Oort 1981), Hagen (Modess 1941) and MMN  

(modified Melin-Norkrans, Marx 1969). The media  

were autoclaved for 20 min at 121ºC and the pH was  

adjusted to 4.5-5.0 for Hagen, 5.7-6.2 for MMN and 

5.8-6.3 for BAF. Hundred mg ml-1 Rifampicin (Sigma- 

Aldrich®, Sintra, Portugal) was added to each medium 

after autoclaving. After 14 days in culture, Hagen 

medium was chosen for mycelium maintenance and 

growth because it was cost-effective and suitable for 

making mycelium plugs for the co-cultures. 

 

Identification of the fungal isolates 

DNA was extracted from fresh mycelia using Nu- 

cleoSpin® Plant Kit for extraction of genomic DNA  

(Macherey-Nagel, Cascais, Portugal). The quality and  

quantity of the obtained DNA was evaluated by agarose  

gel. The region containing partial portions of the small  

subunit (18S), both internal transcribed spacers (ITS)  

and the 5.8S of the rDNA repeat unit was amplified  

using the oligonucleotides primers ITS 5 (5’-GGAAG- 

TAAAAGTCGTAACAAGG-3’) and ITS4 (5’-TC- 

CTCCGCTTATTGATATGC-3’) (Gardes and Bruns  

1993). PCR reactions were carried out on a MyCycler  

Thermal Cycler  (BIO-RAD, Amadora, Portugal) and  

consisted of initial denaturing at 95ºC for 3 min fol- 

lowed by 30 cycles at 92ºC each 30 s, 55ºC for 30 s,  

and 72ºC for 1 min. The reaction was completed by a 

10 min extension at 72ºC. PCR products were analyzed  

by agarose gel (1%) electrophoresis, purified with the  

NucleoSpin Extract II Kit (Macherey-Nagel, Cascais,  

Portugal) and sequenced by capillary electrophoresis  

using the ABI PRISM 3730 xl sequencer with the Kit  

BDT v1.1 (Applied Biosystems, Porto, Portugal). The  
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sequences of the ITS region were aligned with those 

of related fungal strains retrieved from the GenBank 

databases for the homology analysis. 

 

Plant material 

Mature seeds of P. pinea derived from cones of  

open pollinated select trees (adapted for pinion produc- 

tion) were obtained in March 2009. The pine stand is  

located in Mata de Valverde farm, National Forestry  

Station, Alcácer do Sal. Seeds were stored in a cold  

chamber at 4ºC until used. Seeds were used to obtain  

cotyledon explants. The seed coat was cracked with a  

nut cracker and discarded. The megagametophytes were  

surface disinfested by immersion in 70% (v/v) ethanol  

(Sigma-Aldrich®, Sintra, Portugal) for 2 min followed  

by three rinses in sterile bi-distilled water. They were  

then immersed in sodium hypochlorite 10% (v/v)  

(commercial bleach with 5% free chlorine) for 25 min  

followed by four rinses in sterile water. All of the fol- 

lowing steps were carried out under aseptic conditions.  

An embryo was excised from the megagametophyte by  

making a longitudinal incision with a scalpel and by  

gently pulling the edges of the cleft with two forceps.  

Finally, the cotyledons were excised from the embryo  

axes with a cut at their bases. Plants obtained from all  

the cotyledons of a seed were designated as one clone. 

 

Microshoot induction from embryo cotyledons 

The cotyledons were cultured separately in a Petri  

dish with semi-solid Woody Plant Medium (WPM)  

(Lloyd and McCown 1980) supplemented with 22.2  

µM 6-benzylaminopurine (BAP), 20 g l-1 sucrose, 7  

g l-1 agar (Sigma-Aldrich®, Sintra, Portugal) and with  

pH adjusted to 5.8 before autoclaving. The culture  

chamber conditions during the shoot induction stage  

were 25º/19ºC (day/night), 16 h photoperiod provided  

by cool-white fluorescent light at 80 μmol m-2 s-1. After  

a month, the explants with shoot buds were transferred  

to fresh WPM medium with 2 g l-1 of activated charcoal  

(Sigma-Aldrich
®
, Sintra, Portugal) to promote shoot  

elongation. 

 

Rooting of microshoots 

Elongated microshoots, ~2 cm long, were trans- 

ferred to rooting medium based on WPM with half  

concentration of the macronutrients, 7 g l-1 agar and  

different carbon sources (see below), and adjusted to  

pH 5.8 before autoclaving. For root induction, the me- 

dium was supplemented with 10.7 μM α-naphthalene  

acetic acid (NAA) and 0.12M glucose (WPMRI). The  

cultures were kept for two weeks in a growth chamber  

at a constant temperature of 19ºC. The first week the  

cultures were in darkness and the second week under a 

16 h photoperiod. Root expression was obtained after  

transferring the microshoots to WPM consisting of  

half concentration of the macronutrients, without plant 

 

growth regulators and with 0.058 M glucose (WPMRE)  

and incubated in a growth chamber at 16-h photoperiod  

provided by cool-white fluorescent lamps at 80 μmol  

m-2 s-1 and 25º/19ºC day/night. Roots appeared after 3  

to 6 weeks. 

 

Co-culture in vitro 

After the rooting induction and expression stages, 

51 rooted plants were transferred to 100 ml Erlenmeyer  

flasks containing double layer WPM. The bottom me- 

dium layer was without sucrose (45 ml in the flask) and  

the top medium layer was with 1.5% sucrose (5 ml in the  

flask) to allow fungal growth as previously described  

by Oliveira et al. (2003) (Fig. 1A). Twenty six plants  

were inoculated with P. arhizus and the other 25 (not  

inoculated) served as controls. Before fungal inocula- 

tion, care was taken to ensure that both groups of plants  

were uniform with respect to the number and length  

of roots. The inoculation was done with fresh mycelia  

from the cultures grown in the dark at room temperature.  

Five mm agar plugs with the fungal “lawn” were cut out  

with a cork borer and placed in the vicinity of a plantlet.  

All plantlets remained in the double layer medium for 

4 weeks at 16 h photoperiod provided by cool-white  

fluorescent lamps at 80 μmol m-2 s-1 and 25º/19ºC day/  

night. At the beginning of the mycorrhization experi- 

ment the initial position and length of roots of all plants  

in both groups (control and inoculated) were marked  

on the bottom glass of the flask with permanent marker  

pen. At weekly intervals, new colour marks were made  

to trace root growth inside the flask. The total growth  

of a plant root was the sum of all incremental measure- 

ments made at weekly intervals with a ruler put on the  

glass bottom of the flask (Fig. 1B). After four weeks,  

plants were taken out of the culture medium and before  

transplanting to sterile vermiculite the total number  

of roots and branches per plant were counted and the  

primary roots and root branches length were measured. 

The verification of the accuracy of root 

measurements in vitro 

A parallel experiment was done with the aim to 

verify the accuracy of the indirect measurements 

(IM) of the length of primary roots and root branches 

through the glass bottom of a flask. These measurements 

were made on 20 plants using the same procedure as 

described above during in vitro culture (through the 

bottom glass of a flask). At the end of this experiment 

plants were taken out and their roots were measured 

again (direct measure, DM). Data obtained with both 

methods were statistically compared. 

 

Acclimatization 

After the co-culture, the plants including controls  

went through acclimatization with the aim to follow  

the growth of the root system. The acclimatization was 
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Fig. 1. In vitro co-culture of Pinus pinea and the mycelium of Pisolithus arhizus. A) in a double layer WPM medium. Arrow  

indicates place of inoculation with the mycelium, B) Bottom of a culture vessel showing colour mark (arrow) made to measure  

the weekly root growth with a ruler, C) Details of a dichotomous ectomycorrhizal structure covered with yellowish-brown  

mycelium collected from a plant 30 days after inoculation, D and E) Cryostat transversal root section colonized by P. arhizus  

showing the mantle (M) developed at the root apex of a short root and internal Hartig-net hyphae (HN) (200 ×) (Scale bar 20  

µm), D). Details of the transversal section showing well-differentiated Hartig-net (HN) in cortical cells (2000 ×) (Scale bar 7.5 

µm) (E). 

 

 

done in two stages: 1) in sterile vermiculite and 2) in  

sterile mixed substrate (vermiculite : perlite : peat, 2 :  

1 : 1 - Europerlita Española S. A.). The acclimatiza- 

tion lasted 10 weeks in a growth chamber at 25/19ºC  

day/night and 16 h photoperiod (270 mmol s
-1

m
-2

), and  

at the relative humidity of 80%. Plants were watered  

as required alternating sterile water and liquid WPM  

(without glucose). 

 

Vermiculite 

Plants were planted into plastic cups (~15 cm high 

and 5 cm in diameter) with sterile vermiculite. Number 

and length of roots and root branches were recorded at 

the time of transfer from in vitro to vermiculite and also 

after 2-week growth at the moment of transplanting to 

sterile mixed substrate in larger vessels (~20cm high 

and 4 cm in diameter). 

 

Mixed substrate 
After 2-week growth in mixed substrate, plants  

were carefully removed, the root system of each plant 

 

 

 

 

measured as described above (first measurement) and 

plants were replanted. Measurements were repeated 

after 4 more weeks at the end of the experiment (second 

measurement). The lengths of the primary roots and root 

branches were recorded. 

 

Anatomical and histological studies 

Mycorrhized root samples from the mixed substrates  

were collected at the end of the experiment (6 weeks)  

and identified for histological and anatomical studies.  

Roots were fixed in 4% glutaraldehyde diluted in 0.1  

M HEPES buffer (N-2 Hydroxyenthyl piperazine-N´-2- 

ethane sulfonic acid), pH 6.8 and stored in a refrigerator  

for 24 h. Afterwards roots were washed two times in  

1N PBS (phosphate buffer saline) with 4% sucrose for 

15 min and finally washed in PBS with 15% sucrose. 

After washing, roots were placed in PBS with 15% 

sucrose and 7.5% of microbiology gelatin (Merck®, 

Lisboa, Portugal) for 1 to 2 h at 37°C. 

Other Petri dishes with the same gelatin base were  

prepared and after 1 h when the solution solidified, roots 
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were placed on the surface of the gelatin and covered  

with 1 cm layer of molten gelatin solution. Petri dishes  

were stored in a refrigerator for 1 h; blocks (1 cm × 1 cm  

× 1 cm) of gelatin with roots were cut out, frozen and  

stored at -80ºC. Longitudinal and transverse sections,  

approximately 5-10 µm thick, were cut at -33ºC using  

a cryostat (Cryosect, Seaward Ltd, London), transferred  

to glass slides and stained with a common fountain  

pen ink. Sections were observed under an Olympus  

microscope at the magnification of 1125 ×. 

 

Statistical analyses 

When plants are inside flasks, counting roots and  

root branches can be easily done without risk of errors.  

The same cannot be done for root lengths, length of  

the longest root, and the total root length. Therefore,  

indirect measurement (IM) made through the glass bot- 

tom of flasks were compared with direct measurements  

(DM) of the same plants at the time of transplantation  

to vermiculite. This was done by fitting a straight line  

forced through the origin (DM = a IM) and examining  

the 95% confidence interval of regression coefficient a. 

Numbers of roots and branches and the lengths of 

plants, which were randomly assigned to control and 

treatment groups at the time of inoculation with the 

fungus were compared by two-tailed exact or approxi- 

mate Student’s t tests after checking for homocedasticity 

using the two-tailed F distribution. 

The experiment was a 2 × 4 factorial design with  

inoculation (inoculated and non-inoculated) and stage  

(in vitro, vermiculite, first and second period of growth  

in mixed substrate) as main effects. In order to maxi- 

mize the independency of effects of inoculation at each  

stage, growth was expressed for each variable as the  

difference between the measured values at the end and  

at the beginning of each stage. Therefore, growth could  

have negative, zero, or positive values. For example,  

negative values in number of roots could result from  

root loss when plants were uprooted at the end of a  

given stage, zero values when there was no change in  

root number, positive values when there was an increase  

in root number between the beginning and the end of  

a given stage. 

Main effects and interactions were analysed by  

factorial ANOVA. Prior to that homocedasticity was in- 

vestigated using the two-tailed F distribution and when- 

ever heterocedasticity was found data was transformed  

using the Box-Cox transformation (Box and Cox 1964,  

Rohlf 1992). Because of the significance of interactions  

between the main factors (see Results and discussion)  

the effects of inoculation were investigated separately  

for in vitro, vermiculite and mixed substrate stages by  

Student’s t tests. Comparisons were one-tailed and prior  

to t tests, homocedasticity was investigated using the  

two-tailed F distribution. Whenever heterocedasticity  

was found comparisons of means were done using the 

 

approximate Student’s t distribution. A comparison- 

wise significance level of 0.05 was used throughout. 

Data are expressed as means ± standard errors. 
 

RESULTS AND DISCUSSION 

Pisolithus arhizus 

Representative voucher specimen of the fruiting  

body collected in the pine stand was deposited at Évora  

University Herbarium (UEVH-FUNGI 2001610). In  

Hagen medium the mycelia were yellowish-ochraceous  

with paler margin. The subsequent ITS rDNA sequenc- 

ing, with 644 bp, showed 99-100% homology with P.  

arhizus sequences found in NCBI (National Center for  

Biotechnology Information), confirming the success  

of our isolation and culture procedures. P. arhizus se- 

quence was deposited in GenBank (NCBI identification  

number:  HQ896485). 

 

Root growth in vitro 

Straight line equation forced through the origin  

could always be fitted to describe the relationship  

between direct measurements (DM) and indirect  

measurements (IM). For the length of the longest root  

DM = 0.957 IM (p < 10-4, R2 = 0.981; 95% confidence  

interval for the regression coefficient 0.890 - 1.024)  

and for total root length DM = 0.990 IM (p < 10-4,  

R2 = 0.982; 95% confidence interval for the regression  

coefficient 0.923 - 1.056). Thus no significant differ- 

ences occurred in pairwise comparisons between DM  

and IM of root length. The IM allowed the determina- 

tion of root lengths, which was used as reference at  

the beginning of the experiment and could be used, if  

desired, to follow root growth during co-culture. To  

our knowledge, this was the first time that the indirect  

method of root length determination during in vitro  

culture was addressed and effectively used. 

There were no significant differences between  

the plants chosen for inoculation with the fungus and  

control plants before the onset of the experiment in  

the number of roots and in the total length of roots.  

Conversely, significant differences were found between  

the two groups of plants before the onset of the experi- 

ment in the number of branches, in the number of roots  

plus branches, in the length of the longest root and in  

the average root length calculated as the ratio of total  

length of roots / number of roots (Table 1). Throughout  

the experiment, plant mortality was observed only in  

control plants, in which three plants died during the  

growth in vermiculite. 

Interaction between the main factors inoculation and  

stage was not significant for the change of number of  

branches (p = 0.320), change of number of roots plus  

branches (p = 0.224) and change of average length of  

roots (p = 0.359), and for these variables neither was  

the factor inoculation. Conversely, significant interac- 
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Table 1. Means ± standard errors of variables in plants assigned to control and to inoculation at the onset of the ex- 

periment.  

 

Variable Assigned to control Assigned to inoculation p 

Number of roots 2.6 ± 0.3 1.8 ± 0.2 0.055 

Number of branches 0.8 ± 0.3 0.0 ± 0.0 0.044 

Number of roots plus branches 3.4 ± 0.4 1.8 ± 0.2 0.003 

Total length of roots (mm) 29.5 ± 3.3 36.3 ± 5.5 0.301 

Length of the longest root (mm) 11.5 ± 0.9 18.0 ± 1.9 0.007 

Average root length (mm) 11.8 ± 1.5 22.7 ± 4.1 0.024 

Differences were investigated by exact or approximate Student’s t tests and at the probability level 0.05. Sample size was n = 13. 

 

 

tion between main factors was found in the change of 

number of roots (p = 0.016), change of total length of 

roots (p = 0.014), change of total length of roots plus 

branches (p = 0.002) and change of length of the longest 

root (p = 0.049). Therefore, the effects of inoculation 

were separately analysed for each growth stage using 

Student’s t tests (Table 2). 

Inoculated plants had significantly higher changes  

in the number of root branches and in the number of  

roots plus branches, during in vitro growth compared  

with control plants. In addition, the number of root  

branches in inoculated plants but not of roots, signifi- 

cantly increased during the co-culture, while in control  

plants no change occurred in the number of roots and  

in the number of roots plus branches. It is well known  

that Pisolithus spp. secret hypahorine, indole-3-acetic  

acid (IAA) and other growth regulators that trigger  

morphological changes in the root system (Martin et al.  

2001, Niemi et al. 2000). The involvement of P. arhizus  

in promoting root branching to form second and third- 

order laterals in both conifer and angiosperm hosts were  

previously reported by Chambers and Carney (1999).  

The results of our study on in vitro root growth con- 

firmed what was determined in situ by other researchers. 

 

 

Root growth in vermiculite 

During growth in vermiculite differences were  

found in the change of length of the longest root, in  

the change of total root length, in the change of total  

length of roots plus branches and in the change of  

average length of roots. No significant differences  

were observed in the change of number of roots or of  

branches, but like during in vitro growth, if differences  

occurred, mean changes in inoculated plants were sig- 

nificantly higher than mean changes in control plants.  

The magnitude of changes in inoculated plants during  

vermiculite growth was between 8 fold (change in  

total length of roots) and 15 fold (change in length of  

the longest root) greater than in control plants. Also,  

on average the change in control plants was up to 10%  

of the corresponding values and in inoculated plants it  

was up to 73%. 

These results are largely in agreement with the  

findings of Ostonen et al. (2009) on the effects of dif- 

ferent ECM on the anatomotype of the root system  

in Alnus spp. They observed that different functional  

parameters of short ECM roots, e.g., specific root  

area (SRA), specific root length (SRL), and root tis- 

sue density (RTD) were modified depending on the  
 
 

Table 2. Means ± standard errors of variables with significant differences between control and inoculated plants. 
 

Growth stage Variable Control Inoculated p 
 

In vitro 
Change in number of branches  

Change in number of roots plus branches 

0.0 ± 0.0 1.4 ± 0.6 0.018 

0.0 ± 0.0 1.4 ± 0.6 0.018  

Change in total length of roots (mm) 3.8 ± 3.1 29.2 ± 7.2 0.003 

Vermiculite 
Change in total length of roots plus branches (mm) 

Change in average root length (mm) 

2.8 ± 4.2 32.3 ± 7.1 0.002 

0.9 ± 1.2 9.7 ± 3.4 0.014  

Change in length of the longest root (mm) 1.0 ± 2.0 14.7 ± 3.7 0.002 

Mixed substrate,  

2nd measurement 

Change in number of roots 

Change in number of roots plus branches 

Change in total length of roots (mm) 

-1.0 ± 0.3 -0.1 ± 0.1 0.001 

-1.0 ± 0.3 -0.1 ± 0.1 0.001 

-4.2 ± 8.8 17.4 ± 7.6 0.038  

Differences were investigated separately for each stage by exact or approximate Student’s t tests and at the probability level  

0.05. Sample size in control was n = 10 except in vitro where n = 13; in inoculated plants always n = 13.  
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colonizing fungal species. There are other examples of 

root anatomotype changes (Reithmeier 2011), however 

most of the research was done in nurseries and in the 

natural environment. 

 

Root growth in mixed substrate 

No significant differences were found during the  

first 15 days in mixed substrate between inoculated and  

control plants suggesting that the two groups grew at  

the same rate. These results indicated that the substrate,  

nutritionally richer than vermiculite was sufficient for  

the growth of control plants or that the effect of the  

fungus was less evident compared with the nutritionally  

poor conditions used during the first acclimatization  

stage. But this lack of effects was temporary because  

during the second period of acclimatization in mixed  

substrate significant differences were found in the  

change of number of roots, change of number of roots  

plus branches and change in total root length. These  

changes were significantly higher in inoculated plants  

than those in control plants. Reduction in the number  

of roots and, as a consequence, in total root length,  

likely resulted from the second uprooting of plants  

from mixed substrate which was necessary to count and  

measure the roots. Overall it suggests that inoculated  

plants were more robust and able to better withstand  

the stress imposed by uprooting than control plants. 

These results demonstrated the dynamic interaction  

of the substrate organic matter with ectomycorrhizal  

colonization and root growth. Rosling (2003) extensive- 

ly analysed the relationship between mycelium growth  

and the activity of ectomycorrhizal fungi in different  

soil substrates and its potential to modify their micro- 

environment and subsequent root colonization. Rincón  

et al. (2005) have also demonstrated an interaction  

between the substrates and the optimal fungal growth  

and root colonization. Although, our study focused only  

on stone pine root growth and not on the fungal mycelia  

behaviour in the employed substrates, the results of  

others might suggest that similar interaction occurred  

in the present work, which to our knowledge is the first  

attempt to investigate root development during such a  

short period of time. 

 

Mycorrhiza anatomical and histological studies 

Plants were very useful for the identification of  

target structures and for the observation of the sym- 

biosis with minimal disturbance to the rest of the root  

architecture. Samples of the dichotomous roots from  

the plants grown in mixed substrate and collected  

after acclimatization were used for the anatomical and  

histological observations (Fig. 1C). According to our  

previous experience, the symbiotic structures were  

highly variable in their complexity, but the transverse  

sections of the ectomycorrhizal roots showed a well  

developed mantle and Hartig net (Fig. 1D and E). 

 

Co-culture of P. pinea plants with P. arhizus ef- 

fectively helped to overcome one of the most common  

problems associated with the in vitro rooting: the in- 

hibition of adventitious root growth under the culture  

conditions and the survival of the plants ex vitrum.  

Even in nutritionally poor vermiculite used during the  

early stage of acclimatization, none of the inoculated  

plantlets died and we observed a vast mycorrhizal  

symbiosis establishment. Moreover, fewer roots were  

lost during transplantation, which likely resulted from  

morphological modifications of the mycorrhized roots  

such as the presence of the hyphae around the roots and  

the internal Hartig net which increased root thickness  

and contributed to a more robust root system. 

The adventitious rooting of P. pinea was initially  

induced in vitro by NAA and at the time of inoculation  

there were no significant differences in the number of  

roots per plantlet. Therefore, it may be surmised that  

the significant differences in root growth observed  

during in vitro co-culture stage was not caused by the  

external auxin supply necessary for the root induction  

stage. Also, the fact that the change in number and  

length of roots and branches was significantly higher  

in the inoculated plants suggests the importance of the  

fungal presence. Both increased root branching and  

length were beneficial for acclimatization of stone  

pine plantlets. 
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Abstract 

In ectomycorrhizal symbiosis, plant roots and fungi function together as a unit. Previously, we 

showed improvement in various root parameters during in vitro co-culture of Pinus pinea and 

Pisolithus arhizus before physical contact occurred, as well as increased survival rate of the 

inoculated plantlets during acclimatization. To better understand the positive effects on root 

growth parameters before the establishment of physical contact between these partners, the 

biochemical compounds released to the liquid phase of the co-culture medium were 

analysed. It is known that biochemical signals lead to the development of complex structures 

in both the plant and the fungus that constitute an ectomycorrhiza. The results of HPLC-UV 

and LC-DAD-MS analysis of the liquid phase medium samples that were collected from 1 to 

10 days of in vitro co-culture are presented. O-coumaric acid ester, a phenolic compound, 

was identified in root exudates of stone pine from the second day and its presence was 

detected for up to 10 days of co-culture. This result contributes to the understanding of the 

role of phenolic compounds in pine/ ectomycorrhiza symbiosis establishment and also 

explains some of our previous results.  

Keywords   Adventitious roots, ectomycorrhiza, phenolics, stone pine, symbiosis 

  

mailto:cazi04@yahoo.com.br


 

 

104 

 

Introduction  

 

Ectomycorrhizae (ECM) are symbiotic structures between plant roots and fungi. In the 

ectomycorrhizal symbiosis, the host (plant roots) and the mycobiont (ectomycorrhizal fungus) 

function collectively as an entity. The development of ECM in plants frequently allows them 

to get established in habitats that neither symbiont could occupy independently (Nehls et al. 

2000).  

 

ECM development involves a series of complex processes that occur simultaneously in 

symbionts. Extramatrical hyphae, the mantle and the intraradicular hyphal network are active 

metabolic bodies that provide essential nutrients (e.g. nitrogen, phosphate) to the host plant 

and carbohydrates for the fungal partner making this a mutualistic association (Allen 1991; 

Varma and Hock 1994; Smith and Read 1997; Martin et al. 2001).  

 

Successful colonization of roots by mycorrhizal fungi and further development of the 

ectomycorrhizal structure, results from a coordinated series of events mediated by 

biochemical signals (Seddas et al. 2009). During ECM establishment the molecular dialog 

initiate developments that lead to physical steps in the association once the detection or 

attraction of the partner occur before physical contact (Harrison 2005).The fungus must face 

the host defense mechanisms and be able to initiate the mutual nutrient transfer across the 

root-fungus interface (Reis et al. 2011). This is achieved by an intense cell activity before and 

after physical contact between partners. In a recent review by Bonfante and Genre (2010) 

the identification of several novel nutrient transporters has revealed some cellular processes 

that underlie symbiosis, but the biochemical signals prior to physical contact and their 

functions still need to be elucidated, especially for ectomycorrhizal fungi. 

 

Martin et al. (2001) suggested that rhizospheric signals including auxins, flavonoids, 

alkaloids, cytokinins, and other metabolites produced by both partners could act in a 

synergistic or in antagonistic way. More recently plant phenolic compounds such as p-

coumaric acid, coumarin, naringenin and other flavonoids were also cited as potential 

candidates of signals during mycorrhizal formation (Lynn and Chang 1990; Mandal et al. 

2010; Amalesh et al. 2011; Plett and Martin 2012; Hassan and Mathesius 2012). Phenolic 

compounds are ubiquitous in plants and participate in several important functions which 

enable them to adapt to changing biotic and abiotic environments (Boudet 2007). 
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Several studies have shown the benefits of using ECM fungi (Amanita, Hebeloma, Laccaria, 

Lactarius, Pisolithus, Rhizopogon, Scleroderma, and Suillus) in conifer micropropagation 

(Grange et al. 1997; Wallander 2000; Rai 2001; Wu et al. 2003; Taylor et al. 2004; Niemi et 

al. 2004; Adriaensen et al. 2006). Among many advantages the mycorrhized plants (either 

with arbuscular mycorrhizal (AM) or ECM fungi) were more efficient in water and nutrient 

absorption through an increased area of soil colonization, had increased pathogen resistance 

and increased transplantation survival compared with non mycorrhized plants. In addition 

some ECM and ericoid fungi could breakdown phenolic compounds present in the soil that 

might interfere with nutrient uptake (Allen et al. 1989; Brundrett 1991; Grandmaison et al. 

1993; Newsham et al. 1995; Little and Maun 1996; Bending and Read 1997; Cordier et al. 

1998; Bratek et al. 2002). 

 

Recently, we demonstrated that in vitro co-culture of Pinus pinea plantlets with Pisolithus 

arhizus helped to overcome the cessation of adventitious root growth and resulted in a root 

system that was better adapted to post transplantation stress. None of the inoculated 

plantlets died in spite of using exclusively sterile vermiculite in the early phase of 

acclimatization during which a vast mycorrhizal symbiosis was established. Moreover, fewer 

roots were lost during transplantation which was facilitated by the morphological 

modifications of the mycorrhized roots such as the presence of the hyphae around the roots 

and the internal Hartig net, which increased root thickness and contributed to a more robust 

root system (Ragonezi et al. 2012).  

 

In this study the objective was to characterize the chemical nature of the mediators and the 

period of in vitro co-culture during which the signaling between P. arhizus and roots of P. 

pinea occurred. We present biochemical results of high-performance liquid chromatography 

(HPLC-UV) and a liquid chromatography - diode array detector - mass spectrometry (LC-

DAD-MS) analysis of the metabolites released into the liquid phase of the double layer 

medium during the first days of plant/fungus co-culture.   

 

Material and methods 

 

Reagents 

Acetic acid (glacial) 100% anhydrous for analysis EMSURE® ACS, ISO, Reag. Ph Eur 

contained the SVHC above 0.1% (VWR® Carnaxide, Portugal) was stored at room 

temperature in the dark. Methanol gradient grade for liquid chromatography LiChrosolv® 

Reag. Ph Eur contained no SVHC above 0.1% was obtained from VWR® and stored as 
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above. All other chemical reagents used for preparation of solutions were reagent grade from 

Merck® (Lisbon, Portugal). 

 

Plant material and micropropagation of P. pinea   

Mature seeds of P. pinea were obtained in March 2009 from selected ‘plus’ trees (Alcácer do 

Sal region, Portugal) and were stored in a cold chamber at 4ºC until used. For the description 

of shoot organogenesis see Oliveira et al. (2003). For rooting, elongated microshoots, ±2 cm 

long, were transferred to a rooting medium based on Woody Plant Medium (WPM) (Lloyd 

and McCown 1981) with half concentration of the macronutrients, 0.65% agar (Difco Bacto-

Agar®) and different carbon sources (see below), and adjusted to pH 5.8 before autoclaving. 

For root induction, the medium was supplemented with 10.7μM naphthalene acetic acid 

(NAA) and 0.12M glucose (WPMRI). The cultures were kept for two weeks in a growth 

chamber at a constant temperature of 19 ºC. The first week the cultures were in darkness 

and the second week under a 16 h photoperiod.  Root expression was obtained after 

transferring the microshoots to WPM consisting of half concentration of the macronutrients, 

without plant growth regulators and with 0.058 M glucose (WPMRE) and incubated in a 

growth chamber provided with 16 h photoperiod by cool-white fluorescent lamps at 80 μmol 

m–2 s–1 and 25º/19ºC day/night temperatures. Roots appeared after 3–6 weeks. 

 

Fungi purification and identification 

Collection of fruiting bodies of Pisolithus arhizus (Scop.) Rauschert and molecular 

identification of pure isolate was described by Ragonezi et al. (2012). P. arhizus sequence 

was deposited in the GenBank (NCBI identification number: HQ896485). 

 

Co-Culture Technique 

Preparation of the Double-phase Medium  

After the root induction and expression phases the plantlets were transferred to 6.6 x 5.9 cm 

glass culture vessels (100ml, Sigma-Aldrich®, Sintra, Portugal) containing  Double-phase 

Medium. All medium components: perlite (Europerl®), WPM with 6g/l gellan gum (Phytagel™, 

Sigma-Aldrich®) (WPMS) and WPM without gelling agent and carbohydrate (WPML) were 

first sterilized. Subsequently, the Double-phase Medium (approved patent Nº 105239 of the 

National Institute of Industrial Property, INPI) was prepared in a horizontal laminar flow 

chamber as follows: 1) 15 ml of molten WPMS was poured into each vessel together with 0.9 

g of perlite. After the medium cooled down and solidified the perlite remained at the top and 

together formed the “solid phase” medium layer which was then flipped over inside the 
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vessel with a sterile metal spatula, 2) 30 ml of WPML were poured into the culture vessel 

forcing the “solid phase” medium to float on its surface due to the perlite. In consequence, 

the upper part of the “solid phase” medium had no physical contact with the liquid medium 

(Fig. 1). 

 

Fig. 1 - Illustration of double-phase medium preparation and plant culture; a, 1 – cover; 2 – 
flask; 3 and 4 - WPMS medium with perlite at the top. b and c, 3 and 4 –  WPMS medium 
with perlite facing down, 5 - WPML, 6 - plantlet; 7 – root (Patent approved by INPI Nº 
105239). 

 

Co-culture of P. pinea plants with P. arhizus mycelia 

First, P. pinea plantlets were placed in the double-phase medium (Fig. 2). The roots were 

introduced into the liquid phase of the double-phase medium by making an opening in the 

upper semi-solid medium using  heat sterilized perforating tool. The surface of the semi-solid 

medium was then inoculated with fresh mycelia of P. arhizus and the co-culture vessels were 

capped and transferred to the culture chamber with a 16h photoperiod, 24ºC/19ºC day/night, 

respectively. The cultures were kept under cool white lamps (Philips Master LD36W/840) 

with photosynthetic photon flux density of 90 µmol m-2 s-1. The development of plants and 

mycelia was monitored daily. 

 

Fig. 2 - Negative controls: pine plantlet without fungus (a) and fungal mycelium without pine 
plantlet (b). In vitro co-culture of Pinus pinea and Pisolithus arhizus mycelia in double-phase 

medium (c).  

a c b 

a b c 
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Negative controls 

Identical double-phase medium and culture conditions were used for two negative controls; 

pine cultures without fungal inoculation and mycelium culture without pine plants.  

Biochemical analysis  

Collection of liquid medium samples 

The vessels containing the co-cultures (plantlets and fungus) and those containing only pine 

plants or P. arhizus (negative controls) were transferred to the horizontal laminar flow unit in 

order to collect samples of the liquid phase medium for the analysis. Using a sterile spatula, 

the edge of the solid phase was slightly lifted and the vessel was tilted to allow the liquid 

medium flow into a 50 mL centrifuge tube (Falcon™). The tubes were filled up to half their 

volume (about 25 mL each). The sampling was done on day 1, 2, 3, 5 and 10 of culture. The 

tubes with liquid medium samples were immediately stored at -20ºC. 

 

Preparation of samples  

Target substances - The preparation of standard solutions (SS) of target substances (IAA, 

Rutin and IBA) for chromatographic analysis was done as follows: 1 mg of the tested 

substance was dissolved in 10 mL of methanol, corresponding to a final concentration of 100 

mg dm-3. The solutions were then diluted 1:10 (also in methanol) to provide work solutions 

(WS) for injections.   

Samples - Samples of liquid phase medium collected at different time intervals (1st, 2nd, 3rd, 

5th and 10th day) were freeze-dried in a Christ® Alpha 1-4 Freeze dryer (Biotech International, 

Germany) and subsequently lyophilized. Each lyophilized sample was resuspended in 3 mL 

of miliQ water:methanol (40:60 v/v) solution.  The liquid was filtered through a nylon syringe 

filter (0.45µm, VWR®), into HPLC-UV/LC-DAD-MS vial (VWR®) and frozen at -20ºC. For 

injection into HPLC-UV the samples were thawed on ice in the dark. 

Doped substances - Sample doping was performed using SS of the target substances. SS 

was diluted in the liquid phase of the sample: 1 mL of SS and 9 mL of sample. The mixture 

was filtered through a nylon syringe filter (0.45µm) into HPLC-UV/LC-DAD-MS vial and 

frozen at -20ºC. For injection into HPLC-UV the samples were thawed on ice in the dark. 

Analysis of samples by HPLC-UV  

All samples were analyzed in an HPLC-UV system ELITE LaChrom VWR HITACHI equipped 

with a VWR HITACHI L-2100 pump, a Rheodyne injector and a VWR HITACHI L-2400 UV 

detector. The reversed phase analytical column was a Supersher 100 Merck RP-18 (250 x 
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4.6 mm, 5μm) with a pre column LiChrospher 100 RP-18. The data acquisition and automatic 

processing were performed using an EzChom Elite Software.  

 

The separation was achieved in isocratic mode, and the mobile phase was composed of 

60% methanol, 1% acetic acid and 39% miliQ water, for 45 minutes, at a flow rate of 0.7 mL 

min -1. All analyses were performed at room temperature, the injection volume was 20 µL and 

the chromatographic profile was recorded at 210 nm. 

 

Analysis of samples by LC-DAD-MS 

LC-DAD-MS (Liquid chromatography - Diode array detector - Mass spectrometry) analyses 

were carried out in a LCQ Advantage Thermo Finnigan mass spectrometer equipped with an 

electrospray ionization source and using an ion trap mass analyzer. The conditions of 

analysis were: capillary temperature 300ºC; source voltage 4.5 kV, source current 100 µA, 

and capillary voltage -45 V in negative ion mode. The mass spectrometer equipment was 

coupled to an HPLC system with autosampler (Surveyor Thermo Finnigan) and diode array 

detector (DAD). The analytical column was a reversed phase Zorbax Eclipse XDB (C18, 

particle size 3.0 µm, 150 mm x 2.1 mm). The chromatographic separation was performed 

with mobile phase at a flow rate of 0.2 mL min-1, by injecting 20 L of each sample and the 

elution program was similar to the one used in the HPLC-UV analysis. The DAD detector 

was scanned from 200 to 500 nm and the chromatographic profile was recorded at 210 nm. 

 

Results 

 

HPLC-UV analysis 

In order to identify potential signalling compounds, samples of the liquid phase medium 

collected after the 1st, 2nd, 3rd, 5th and 10th day of P. pinea and P. arhizus co-culture were 

analysed by HPLC-UV. With the exception of the 1st day sample, in all other samples a clear 

peak was recognized. For example, the chromatograms of the 2nd day samples showed a 

peak at retention time (RT) 11.50 min (Fig. 3A), but there was no corresponding peak in the 

negative control (plant culture without fungus) (Fig. 3B).  

To determine the identity of the unknown compound (UC), standard solutions of target 

substances, which have been previously identified in ectomycorrhizal symbiosis such as IAA, 

Rutin and IBA were analyzed with the same method and at the same conditions as the 

samples. When the 2nd day sample was doped with these target compounds the RT of UC 

did not correspond to any RT of the target substances (Fig. 4 A, B and C).  
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Fig. 3 - HPLC-UV chromatograms of the medium sample collected from co-culture of P. 
pinea plantlet and P. arhizus on the 2nd day (a) and P. pinea microshoot without fungal 

inoculation collected on the 2nd day (b). Peak at RT 11.50 min corresponds to the unknown 
compound (UC). 

 

 

 

Fig. 4 - HPLC-UV chromatograms of samples from the co-culture of P. pinea plantlet and P. 
arhizus collected on the 2nd day and doped with IAA (a), Rutin (b) and IBA (c). Peaks at RT 

11.84, 11.44 and 11.58 min correspond to the unknown compound (UC). 

 

b 

a 

c 

b 

a 
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LC-DAD-MS analysis 

Samples of the liquid phase medium collected after the 1st, 2nd, 3rd, 5th and 10th day of co-

culture were also examined by LC-DAD-MS. The results were consistent with those obtained 

by HPLC-UV. Only in the 1st day medium sample from plant/fungus co-culture the peak for 

the UC did not appear. In all other co-culture samples the presence of the metabolite was 

confirmed. When peak areas were compared among the samples, there was a slight trend 

toward increased amounts with longer co-culture time. 

The chromatograms of all collected samples revealed several peaks which likely 

corresponded to other compounds present in the culture medium (Fig. 5). The 2nd day 

sample was used as reference for the identification of the UC by LC-DAD-MS. Fig. 5c shows 

the DAD total scan and Fig. 5d the total ion current chromatograms with RT of 7.85 and 8.04 

min, respectively. The UV spectrum of this compound, obtained on-line by the DAD detector, 

showed two wavelength maxima at 222 and 276 nm (Fig. 6a). The full MS spectra showed 

an ion signal at m/z 231 with abundance of 100% corresponding to the molecular [M-H] 

parent ion, and at m/z 145, the peak corresponding to benzoyl fragment characteristic of 

benzoic acids due to the loss of OH or OR groups (Fig. 6b).  
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Fig. 5 - DAD total scan (a, c, e, g, i) and total ion current (b, d, f, h, j) chromatograms of the P. 
pinea/P. arhizus co-culture medium samples collected at different time intervals. Letters a and b 
correspond to the 1st day, c and d to the 2nd day, e and f to the 3rd day, g and h to the 5th day, and I 
and j to the 10th day. 
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Fig. 6 - UV (a) and mass spectra (b) of the unknown compound (UC) in the P. pinea/P. 
arhizus co-culture sample collected on the 2nd day. 

The UC was identified as an ester of o-coumaric acid (also known as 2-Coumaric acid; trans-

2-Hydroxycinnamic acid; (2E)-3-(2-hydroxyphenyl) acrylic acid; O-hydroxycinnamic acid; 2-

Propenoic acid, 3-(2-hydroxyphenyl)-(E)-) and o-hydroxyphenylacetic acid). The chemical 

structure of this compound and its identification was based on the fragmentation pattern and 

UV spectra that were similar to those reported by Atoui et al. (2005) (Fig. 7). 

 

Fig. 7 - Chemical structure of o-coumaric acid. 

LC-DAD-MS analysis also confirmed the results obtained by HPLC-UV in negative controls 

(P. arhizus mycelium and P. pinea microshoots cultured separately) in which no ester of o-

coumaric acid was identified (Fig. 8).  

 

RT: 0.00 - 30.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (min)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

u
A

U

4.46

5.00

5.38

6.07
7.86 8.18 9.64 13.270.75 14.64

NL:
2.19E5

Total Scan  
PDA 7F

RT: 0.00 - 30.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Time (min)

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

15.71

12.95

27.92

15.77
13.81 23.08

0.75 15.146.98 20.71
19.4015.90

0.94 1.56

21.27 28.15

26.91
6.88 23.576.26 16.68

18.499.654.81 28.498.13 26.3711.77 21.74

NL:
3.07E6

Base Peak 
 MS 7F

 

 

a b 

b a 



 

 

114 

 

RT: 0.00 - 30.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (min)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

u
A

U

4.35

5.13

8.475.68

6.93 9.31 9.650.10 13.39 21.621.61

NL:
1.43E5

Total Scan  
PDA 25

RT: 0.00 - 30.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Time (min)

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

12.11

21.40

29.99

29.74
12.32

27.20

5.04

15.35 22.464.80
0.09 1.17

29.5812.42
19.67

10.98

16.136.89
1.56 28.6113.27 16.38 19.22 23.202.60 3.48 7.13 23.798.25

NL:
1.79E6

Base Peak 
 MS 25

 Fig. 8 - DAD total scan (a, c) and total ion current (b, d) chromatograms of liquid medium phase samples of the 

two negative controls. Letters a and b corresponds to the culture of P. arhizus mycelia, c and d to the culture of 

P. pinea plantlets. 

Discussion 

Signalling compounds in the ECM symbiosis are less known than those in the arbuscular 

associations. In AM symbioses flavonones, flavones and isoflavones are capable of 

stimulating spore germination, hyphal elongation and hyphal branching (Siqueira et al. 

1991b; Graham 1991; Tsai and Phillip 1991; Harrison and Dixon 1993; Scervino et al. 

2005a).  In the case of legumerhizobia symbiosis other phenolic acids like hydroxybenzoic 

and hydroxycinnamic acids that are derived from the general phenylpropanoid pathway act 

as signalling molecules in the initiation of the symbioses, and as agents in the plant defense 

(Mandal et al. 2010). In ECM associations indole auxins, phenolic compounds and flavonoids 

were implicated as signaling molecules. It is well known that Pisolithus spp. secret 

hypahorine, IAA and other growth regulators that trigger morphological changes in the root 

system of host plants (Niemi et al. 2000; Martin et al. 2001). The involvement of P. arhizus in 

promoting branching to form second and third-order lateral roots in both conifer and 

angiosperm hosts were previously reported by Chambers and Carney (1999). In earlier study 

we demonstrated that the presence of P. arhizus during in vitro co-culture with P. pinea 

plantlets enhanced the adventitious root growth, before the physical contact occurred, and 

later after mycorrhization improved the survival rate of plants during acclimatization 

(Ragonezi et al. 2012). 

In the present study, we identified a putative signalling compound that was present in the 

liquid phase of the double phase medium in the co-cultured P. pinea plantlets with P. arhizus. 

LC-DAD-MS analysis identified the substance as an ester of o-coumaric acid, which is a 

phenolic acid produced by plants and other organisms as secondary metabolite and a 

common chemical constituent in the plant kingdom (Abdul-Raman and Habib 1989; Vega et 

al. 2008; Ngoc et al. 2009; Sellami et al. 2009; Canuto et al. 2012). Among many effects 

d 
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phenolic acids exert allelopathy and are implicated in the development of ecological 

interactions with the adjoining plant and with some rhizospheric organisms (Kefeli et al. 

2003). For example, o-coumaric acid abundantly produced by Euapatorium adenophorum (a 

notorious weed worldwide) had a selective allelopathic effect that was toxic for Arabidopsis 

thaliana seed germination and plant growth but not for its own seed germination (Zheng et al. 

2012). This result suggests that o-coumaric acid might render E. adenophorum a competitive 

advantage over neighbouring plants during its invasion and establishment. Whether P. pinea 

o-coumaric acid has an allelopathic effect requires further elucidation. 

Our results demonstrated that o-coumaric acid ester was produced in the first two days of the 

co-culture and that its concentration tended to increase during the first 10 days. No o-

coumaric acid ester was identified in the negative controls suggesting that pine roots might 

have secreted this compound in response to the presence of fungal mycelium. It is therefore 

plausible that o-coumaric acid ester played a signalling role in establishing the relationship 

with ECM associations before the physical contact.  

Metabolites such as butanoic acid, cinnamic acid, o- and p-coumaric acid, vanillic acid or p-

hydroxybenzamide occurred in the rhizosphere of Arabidopsis when challenged with the 

Gram-negative bacterial pathogen Pseudomonas syringae pv. tomato (Bais et al. 2005). The 

authors reported that bacteria could effectively modify the antimicrobial plant response, 

because the strains which were partly resistant to these compounds were able to block the 

exudation of antimicrobials using a mechanism based on the type III secretory system (Bais 

et al. 2005).  

In this study P. arhizus mycelium grew continuously in co-cultures and this could be 

attributed to a similar ability possessed by Pseudomonas strains to modify and/or use o-

coumaric acid for its benefit. Similar results were obtained by Zeng and Mallik, (2006) who 

studied the detoxifying effect of ECM fungi (Laccaria laccata, L. bicolour and Paxilus 

involutus) of black spruce (Picea mariana) phenolic compounds produced by the understory 

plant Kalmia angustifolia. Ferulic acid and o-coumaric acid were degraded within 10 days 

and the degraded amount depended on the fungus species. The authors concluded that 

certain ECM fungi not only offered protection to the host plants against phenolic 

allelochemicals released from neighbouring plants, but could also use them as carbon 

source. This is one of the mechanisms that ECM fungi use to control species interactions in 

higher plants by changing the rhizosphere chemistry. In our study on day 10 of co-culture the 

compound was either not degraded yet or the degradation by the fungus (or utilization for 

growth) was substituted by the plant secreting new o-coumaric acid ester. In another study 
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by Münzenberger et al. (2003) detoxification of ferulic acid by ECM fungi Laccaria 

amethystina and Lactarius deterrimus grown in liquid culture showed different detoxification 

pattern. Both studies confirmed the ability of the symbiont to degrade and detoxify phenolic 

compounds and that this ability was not only species-specific, but also specific to different 

strains of the same fungus species.  

To our knowledge, this is the first time that an o-coumaric acid derivative was identified in the 

mutualistic interaction between pine species and P. arhizus and that this compound possibly 

participated in the initial cross-talk between the partners and also that P. arhizus could live 

and grow in the presence of o-coumaric acid ester.  

Acknowledgments 

This research was supported by the Portuguese Foundation for Science and Technology 

(FCT) through the project PTDC/AGR-CFL/71437/2006). 

 

References 

Abdul-Raman AA, Habib SA (1989) Allelopathic effects of alfalfa (Medicago sativa) on 

bladygrass (Imperata cylindrica). J. Chem. Ecol. 15:2289–2300. Doi: 

10.1007/BF01012082 

Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves 

growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558 

Allen MF, Allen BE, Friese CF (1989) Responses of the non-mycotropic plant Salsola kali to 

invasion by vesicular-arbuscular mycorrhizal fungi. Nem Phyto. 111:45-49 

Allen MF (1991) The Ecology of Mycorrhizae. Cambridge University Press, New York, USA 

Amalesh S, Gouranga D, Sanjoy KD (2011) Roles of flavonoids in plants. Int. J. Pharm. Sci. 

Tech. 6 (1): 12-35 

Atoui A K, Mansouri A, Boskou G, Kefalas P (2005) Tea and herbal infusions: Their 

antioxidant activity and phenolic profile. Food Chem. 89, 27–36.  

Bais HP, Prithiviraj B, Jha AK, Ausubel FM, Vivanco JM (2005) Mediation of pathogen 

resistance by exudation of antimicrobials from roots. Nat. 434:217-21 

Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal 

and ericoid mycorrhizal fungi. Mycol. Res. 101: 1348-1354. 

Bonfante P, Genre A (2010) Nature Communications. 1, 1doi: 10.1038/ncomms1046. 

Bratek Z, Vörös I, Takács T, Parádi I, Rudnóy  S, Halász K (2002) Advantages of application 

of mycorrhizated plants in environment-friendly agriculture and forestations. Acta 

Biologica Szegediensis Vol. 46(3-4)187-188. 



 

 

117 

 

Brundett MC (1991) Mycorrhizas in natural ecosystems. In: Macfayden A, Begon M, Fitter 

AH (eds) Advances in Ecological Research, Vol. 21 Academic Press, London, pp. 171-

313 

Boudet AM (2007) Evolution and current status of research in phenolic compounds. 

Phytochem. 68(22-24): 2722-35 

Canuto KM, Lima MA, Silveira ER (2010) Amburosides C-H and 6-o-protocatechuoyl 

coumarin from Amburana cearensis. J. Braz. Chem. Soc. 21:1746–1753.  

Chambers SM, Cairney JWG (1999) Pisolithus. In: Cairney JWG, Chambers SM, eds. 

Ectomycorrhizal fungi. Key genera in profile. Springer, Berlin, pp 1–31. 

Cordier C, Pozo MJ, Barea JM, Gianinazzi-Pearson V (1998) Cell defence responses 

associated with localized and systematic resistance to Phytophthora parasitica induced 

by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11: 1017-1028. 

Grange O, Bärtschi H, Gay G (1997) Effect of the ectomycorrhizal fungi Hebeloma 

cylindrosporum on in vitro rooting of micropropagated cuttings of arbuscular 

mycorrhiza-forming Prunus avium and Prunus cerasus. Trees Struct Funct 12(1): 49-56 

Springer Berlin/Heidelberg. 

Graham TL (1991) A rapid, high resolution high performance liquid chromatography profiling 

procedure for plant and microbial aromatic secondary metabolites. Plant Physiol 

95:584-593. 

Grandmaison J, Olah GM, van Calsteren MR, Furlan V (1993) Characterisation and 

localization of plant phenolics likely involved in the pathogen resistance expressed by 

endomycorrhizal root. Mycorrhiza 3: 155-164 

Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 

59:19–42 

Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene 

transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in 

roots of Medicago truncatula. Mol Plant-Microbe Interact 6:643–54 

Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling 

opportunities and challenges for improving plant–microbe interactions. J. Exp. Bot 1-16 

doi:10.1093/jxb/err430. 

Kefeli VI, Kalevitch MV, Borsari B (2003) Phenolic cycle in plants and environment. J Cell 

Mol Biol 2: 13-18.  

Lloyd G, McCown, B (1981) Commercially feasible micropropagation of mountain laurel, 

Kalmia latifolia, by the use of shoot tip culture. Proc Plant Prop Soc 30:421-427. 

Little LR, Maun MA (1996) The 'Ammophila problem' revisited: a role for mycorrhizal fungi. J 

of Ecol 84: 1-7. 



 

 

118 

 

Lynn DG, Chang M (1990) Phenolic signals in combination: implications for plant 

development. Annual Review of Plant Physiology and Plant Molecular Biology. 41:497-

526. 

Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in 

plant–microbe symbioses. Plant Signal Behav 5: 359-368. 

Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental 

cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New 

Phytol 151:145–154,  

Muzenberger B, Hammer E, Wray V, Schauer F, Schmidt J, Strack D (2003) Detoxification of 

ferulic acid by ectomycorrhizal fungi. Mycorrhiza, v. 13, n. 2, p.117-121.  

Nehls U, Wiese J, Hampp R (2000) External super concentration as a signal controlling gene 

expression, pp. 19–26, in G. K. Podila and D. D. Douds Jr. (eds.). Current Advances in 

Mycorrhizae Research. American Phytopathological Society, St. Paul, MN. 

Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual 

grass from root pathogenic fungi in the field. J of Ecol 83 991-1000. 

Niemi K, Salonen M, Ernstsen A, Heinonen-Tanski H, Häggman H (2000) Application of 

ectomycorrhizal fungi in rooting of Scots pine fascicular shoots. Can J For Res 

30:1221-1230  

Niemi K, Scagel C, Häggman H (2004) Application of ectomycorrhizal fungi in vegetative 

propagation of conifers. Plant Cell Tiss Org Cult 78:83–91. 

Ngoc TM, Lee I, Ha DT, Kim HJ, Min BS, Bae K (2009) Tyrosinaseinhibitory constituents 

from the twigs of Cinnamomum cassia. J Nat Prod 72:1205–1208 

Oliveira P, Barriga J, Cavaleiro C, Peixe A, Potes AZ (2003) Sustained in vitro root 

development obtained in Pinus pinea inoculated with ectomycorrhizal fungi. For. 

76:579-587. 

Patent - Method for extraction of metabolic root exudates from in vitro plant cultures of Pinus 

pinea L nº 105239. Submitted at the National Institute of Industrial Property Portugal 

(INPI). 

Plett JM, Martin F (2012) Poplar Root Exudates Contain Compounds that Induce the 

Expression of MiSSP7 in Laccaria bicolor. Plant Signal Behav. 1;7(1):12-5. 

Rai MK, Shekhawat NS, Harish, Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role 

of abscisic acid in plant tissue: a review of recent progress. Plant Cell Tiss Organ Cult 

106:179–190. 

Ragonezi C, Caldeira AT, Martins MR, Dias LS, Santos-silva C, Ganhão E, Miralto O, 

Pereira I, Louro R, Klimaszewska K, Zavattieri MA (2012) Pisolithus arhizus (Scop.) 



 

 

119 

 

Rauschert improves growth of adventitious roots and acclimatization on in vitro 

regenerated plantlets of Pinus pinea. Propag. Ornam. Plants 12:139-147. 

Reis FS, Ferreira ICFR, Barros L, Martins A (2011) A comparative study of tocopherols 

composition and antioxidant properties of in vivo and in vitro ectomycorrhizal fungi, 

LWT - Food Science and Technology, Volume 44, Issue 4, Pages 820-824. 

Scervino J, Ponce M, Erra-Balsells R, Vierheilig H, Ocampo JA, Godeas A (2005a) 

Flavonoids exhibit fungal species and genus specific effects on the presymbiotic 

growth of Gigaspora and Glomus. Mycol Res 109: 789–794. 

Seddas P, Gianinazzi-Pearson V, Schoefs B, Küster H, Wipf, D, Balu F (2009) 

Communication and Signaling in the Plant–FungiSymbiosis: The Mycorrhiza. in Plant-

Environment Interactions. Signaling and Communication in Plants. Springer Berlin 

Heidelberg. pp 45-71 

Sellami IH, Maamouri E, Chahed T, Wannes WA, Kchouk ME, Marzouk B (2009) Effect of 

growth stage on the content and composition of the essential oil and phenolic fraction 

of sweet marjoram (Origanum majorana L.). Ind Crop Prod. 30:395. 

Siqueira JO, Safir GR, Nair MG (1991b) Stimulation of vesicular-arbuscular mycorrhizae 

formation by flavonoid compounds. New Phytol. 118:87-93. 

Smith SE, Read DJ (1997) Mycorrhizal symbiosis. 2nd ed. London: Academic Press. 

Taylor AFS, Gebauer G, Read DJ (2004) Uptake of nitrogen and carbon from double- 

abelled (15 N and 13 C) glycine by mycorrhizal pine seedlings. New Phytol. 164: 383–

388 

Tsai SM, Phillips DA (1991) Flavonoids releasaed naturally from alfalfa promote 

development of symbiotic Glomus spores in vitro. Appl. Environ. Microbiol. 57, 1485–

1488.  

Varma A, Hock B (1998) Mycorrhiza: structure, function, molecular biology and 

biotechnology. (eds) Springer, Berlin Heidelberg New York  

Vega M, De Carvalho M, Vieira I, Braz-filho R (2008) Chemical constituents from the 

Paraguayan medicinal plant, Eupatorium macrocephalum Less. J Nat Med. 62:122–

123. 

Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by 

different ectomycorrhizal fungi. Plant Soil 218: 249–256. 

Wu T, Sharda JN, Koide RT (2003) Exploring interactions between saprotrophic microbes 

and ectomycorrhizal fungi using a protein–tannin complex as an N source by red pine 

(Pinus resinosa). New Phytol. 159: 131–139. 

Zeng R, Mallik A (2006) Selected ectomycorrhizal fungi of black spruce (Picea mariana) can 

detoxify phenolic 484 compounds of Kalmia angustifolia. J Chem Ecol 32:1473-1489. 



 

 

120 

 

Zheng G, Jia Y, Zhao X, Zhang F, Luo S, Li S, Li W (2012)  o-Coumaric acid from invasive 

Eupatorium adenophorum is a potent phytotoxin. Chemoecology 22:131-138. 

 

 

 

 

 

 

 



121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8 

Patent - System and Method for in 

vitro Culture of Plants for 

Analysis of Metabolites Released 

by the Root System Nº 105239  

 

Patent approved by the National Institute of Industrial Property Portugal (INPI) 
Castro MR, Ragonezi C, Oliveira P, Zavattieri, A. Patent INPI Nº 105239 



122 

 

Patent - System and method for in vitro culture of plants for analysis of 

metabolites released by the root system Nº 105239 

 

Abstract 

This invention is about the system development and in vitro culture method made up by 

two phases, solid and a liquid, the first to the plant support and the second to allow the 

analysis of the surrounding medium of the roots. This system is designed to allow an 

easy extraction of the metabolic compounds released/disseminated in the liquid phase 

during the root growth, in order to facilitate further processing and biochemical 

characterization. Considering that a proper root growth is a key factor for further 

strengthening and establishment of the plants in the field, the determination of the 

biochemical substances responsible for a better plant performance may lead to his 

artificial synthesis and implementation as an additive for organic fertilizers. Since is a 

closed system with known variables, this method could be applied in tests with 

pesticides, herbicides and other similar products.  

  

 

 
 

 
 

 

Fig. 1 - A - Illustrative scheme of the final appearance of the solid phase system 

preparation in a culture flask of in vitro plants. B: Schematic illustration of the final 

aspect of the method with inclusion of rooted plants. Figures numbers legend: 1 - 

cover; 2 - flask; 3 - solid phase; 4 - floating substrate; 5 - gelled culture medium; 6 - 

liquid phase; 7 - shoot; 8 - stem; 9 – roots 
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Claims (based on Figure 1) 

 

1. Culture system for in vitro plants analysis of metabolites released by the root system 

characterized to contain a nutritive liquid medium (6) which supports a floating inert 

substrate (4) and a solid nutrient medium (5). 

 

2. System according to claim 1 characterized by containing partners of biotization on 

the gelified surface (5). 

 

3. Method of preparing the in vitro culture system described in claims nºs 1 and 2, 

characterized by the following sequence of steps: 

 

a. Preparation of nutrient media use in the solid phase (3) and in the liquid (6); 

 

b. Addition of the gelling agent to the nutrient medium from the solid phase, dissolving 

by heat, and distribution for the in vitro plant culture flasks already containing the 

floating substrate, before they reach the gelification temperature; 

 

c. Solid phase inversion to guide the floating layer (4) under the gelling medium (5); 

 

d. Pour the nutritive liquid phase in the already prepared flasks with the solid phase 

with the floating layer facing downward, resulting in the liquid phase (6); 

 

e. Perforation of the solid phase (3) for insertion of the root system (9) and the stem (8) 

of the plant; 

 

f. Plant culture, optionally incorporating other organisms on the gelling medium of the 

solid phase; 

 

g. Extraction of the liquid phase (6) for further analysis. 

 

4. Method according to claim 3, characterized by recycling of the solid phase (3) of the 

same plant (7, 8 and 9) by introducing a new liquid phase (6) for studies and analyzes 

with temporal component. 

 

5. Method according to claim 3, characterized by recycling of the solid phase (3), by 

introducing a new liquid phase (6) and a new plant (7, 8 and 9). 
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Chapter 9 

Final considerations and Future 

perspectives  

 

Since each of the research issues addressed by this thesis and the respective 

outcomes have already been extensively reported in the different publications, only a 

summary of the main findings and a brief critical review are provided here. For more 

detailed information, the reader is referred to specific chapters. 
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The vegetative propagation of most conifer species through the rooting of cuttings is 

often limited by poor rooting ability. Micropropagation is also plagued by difficulties 

during the rooting phases of microshoots. An exhaustive review of conifer rooting was 

carried out and the findings published (Adventitious rooting of conifers: influence of 

physical and chemical factors, Chapter 2) to amass the available information on this 

specific topic. Based on the information compiled, various physical and chemical 

factors were adjusted in order to improve the rate and quality of in vitro rooting of stone 

pine, which were hitherto extremely low. An improvement in microshoot rooting of up to 

70% in most clones was achieved; these results far surpassed the rooting success 

obtained by other researchers. A protocol was finally defined for a combination of 

suitable auxin and carbon source concentration in half strength WPM macronutrients; 

light source and light intensity were also adjusted during root induction and expression 

phases. These results were presented at an international meeting (see Annexes) and 

published (Influence of light quality and intensity on adventitious root formation in 

microshoots of Pinus pinea L., Chapter 3). 

Although great advances have been made in rooting percentages, the roots obtained 

stopped growing which prevented the acclimatization of the pine plants in substrate. A 

new strategy was developed based on the co-culture of P. pinea and different 

ectomycorrhizal fungi. The reasons for this new approach were based on previous 

findings showing positive results in root system growth in the presence of various fungi 

tested during the expression phase of stone pine rooted microshoots (see Oliveira et 

al. 2003). This association produced positive results, since it effectively helped to 

overcome one of the most common problems associated with in vitro rooting: the 

cessation of adventitious root growth under the culture conditions, as well as the 

improvement of various rooting parameters. Additionally, it helped to mitigate the 

stressful transition from the in vitro to ex vitro phase since the association was 

extremely beneficial for the acclimatization of stone pine plantlets (Pisolithus arhizus 

(Scop.) Rauschert improves growth of adventitious roots and acclimatization on in vitro 

regenerated plantlets of Pinus pinea L., Chapter 6). 

 

As explored above as part of this thesis, in mycorrhizae symbiosis, plant roots and 

fungi function together as a unit. In some cases, adventitious roots regenerated by 

microshoots can develop mycorrhizal-like structures (dichotomous) without fungal 

presence which closely resembles inoculated roots. The results, presented in 

Mycorrhiza-like structures in rooted microshoots of Pinus pinea L (Chapter 4) 

demonstrated the appearance of mycorrhiza-like structures in both rooted microshoots 
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and axenic embryo root cultures of P. pinea. Many environmental or cultural conditions 

influenced the capacity of this species to produce mycorrhizal-like structures; also the 

use of PGRs can induce similar root morphologies in the absence of fungi. In this 

regard, it is also important to emphasize that the use of histological and anatomical 

techniques was essential for differentiating mycorrhized from non-mycorrhized roots.  

 

The identification of ectomycorrhizal collecting fungi species in pine stands was carried 

out in the field by means of morphological characterization and then the isolates 

confirmed by means of molecular techniques. Using a suitable molecular method, in 

this case the M13-PCR technique, it was possible to separate the different groups that 

can be found in pine stands. In addition, sequence analysis of ITS regions was 

employed to identify and confirm the identity of fungi during mycorrhization stages (if 

the species used at the beginning of trials is the same in the final stage). These results 

are presented in the article entitled Molecular approach to characterize 

ectomycorrhizae fungi from Mediterranean pine stands in Portugal (Chapter 5).  

The nature of the signals released by the ECM symbionts, and how these signals 

behave within the partners, and whether these molecules may in the future be used in 

axenic cultures to mimic fungi in order to improve the rooting system and 

acclimatization, provide a stimulus for the chemical analysis of the signalling 

compounds present in ECM/pine plant co-cultures. In the analysis of the co-culture 

medium, the identified signaling compound o-coumaric acid ester appeared in the first 

hours of indirect contact between P. pinea and P. arhizus mycelium. The biochemical 

signalling compound found in this study also contributes towards an understanding of 

the role of phenolic compounds for pine/ECM symbiosis establishment and could also 

explain our previous results which showed an increase in various root parameters 

during co-culture before physical contact (O-coumaric acid ester, a potential signaling 

molecule detected during early in vitro co-culture between Pinus pinea L. plantlets and 

the ectomycorrhizal fungus Pisolithus arhizus (Scop.) Rauschert, Chapter 7). 

The co-culture between pine plants and P. arhizus mycelium was developed in a 

culture medium that had two layers of semi-solid medium. During the first attempts to 

identify the signalling compounds it became evident that the use of gelling agents such 

as gellan gum (Phytagel) or agar (Agar-Agar) posed an obstacle to the extraction of the 

target compounds from the media, especially at low concentrations. For this reason, a 

novel system composed of semi-solid-liquid culture media was developed that allowed 

the analysis of the metabolites released by the roots (approved Portuguese Patent - 

System and method for in vitro culture of plants for analysis of metabolites released by 
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the root system, Chapter 8). In order to determine the chemical composition of the 

medium surrounding the roots, several studies were required to ascertain whether a 

compound could be detected in a minute concentration. The exclusive use of liquid 

culture medium without support for the plant was a non-viable solution because the 

plant tended to sink. Using a filter paper platform to support the plant seemed to 

provide the best way of dealing with this issue in the short term; however, after full 

imbibition the plantlets showed hydric stress and produced morphological abnormalities 

due to hyperhydricity. In our trials, we replaced the filter paper with a different support 

platform which maintained the plantlet above surface of the liquid medium, the roots in 

the medium and simultaneously eased the root metabolic exudates extraction. In this 

way, such difficulties were overcome. 

As a final point, it should be emphasized that during this thesis a large number of 

different techniques had to be learned and subsequently applied for the successful 

accomplishment of tasks. Complexities presented in the thesis range from 

micropropagation protocols to histological, molecular and analytical techniques, and 

the process of mycorrhization in vitro. The living organisms presented here belong to 

different kingdoms with completely different characteristics and were able to interact in 

a positive way when conditions were ideal. A large number of papers have explored 

mycorrhization ex vitro or in vitro mycorrhization in petri dishes using pine seeds. For 

this paper, we had to acquire a great deal of knowledge in the field and experiment with 

innovatory techniques. Lastly, we are pleased to report that all the thesis aims were 

achieved on time.   
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Future perspectives  

Further studies should focus on increasing our knowledge of the symbiotic association 

between plant species and microbial inoculants in biotization procedures. In the field of 

signalling, additional work is required to elucidate how the interaction starts because 

the beginning of the association is crucial and it determines the success of the 

relationship. It is also important to experiment with different types of ECM fungi in 

associations with the purpose of determining the most efficient ones for the restoration 

of root growth, acclimatization and transfer to soil.  

The findings of this thesis should be interpreted in accordance with the explicit 

characteristics of each species and the specificity of both partners is a crucial feature 

for the establishment of association. 

This thesis has provided new and relevant information about the symbiotic association 

between Pinus pinea and Pisolithus arhizus, which may also be applied to different 

types of conifer/ECM associations or any other plant species or microbial inoculants, as 

long as the association promotes positive effects.  

Finally, it should be stressed that this thesis opens the way for new avenues of 

research to be explored. For instance, ectomycorrhiza-like structures need further 

investigation as regards the genes involved and the stressful situations that activate 

them. In the case of signalling mediators, each phase of the effective establishment of 

symbiosis between P. arhizus, as well as other ECM fungi associated with stone pine 

could be chemically analyzed. In addition, it would be interesting to carry out metabolic 

tests by adding the o-coumaric acid in to the plants growth medium. Furthermore, 

complementary research should be carried out on the survival of in vitro inoculated 

fungi in the nursery and under field conditions after outplanting. This could be done by 

using different techniques to study the competence of the ECM fungi introduced 

artificially versus the naturally-occurring fungi. 
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Other publications (poster/oral presentations and published sequences)  

 

 

 



Annexes  

 

130  
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MYCORRHIZA-LIKE STRUCTURES DURING IN VITRO 

CULTURE OF STONE PINE (PINUS PINEA L.). A MATTER OF 

STRESS? 

 

A. Zavattieri, M.O. Miralto, C. Ragonezi, K. Klimaszewska, 

L.S. Dias, I. Pereira 

 

Laboratory of Plant Breeding and Biotechnology, 

ICAAM Institute,University of Évora, 

Ap. 94; 7002-554 Évora, Portugal 

E-mail: mosi@uevora.pt 

 

Keywords: fungus-plant interactions, mycorrhizal systems, genotype, 

micropropagation, Pinus pinea, osmotic potential 

 

Pinus pinea is one of the most important species grown in the Iberian Peninsula and it 

is Portugal’s largest edible seeds producer. The induction and improvement of in vitro 

rhizogenesis of microshoots of Pinus pinea L. was developed in our laboratory using in 

vitro co-culture system of pine micro-shoots with ECM fungi. Unexpectedly, extensive 

dichotomous and coralloid branching of lateral roots occurred during in vitro rooting at 

the expression phase in our control plants. On the other hand, non inoculated plants 

that remained in the culture medium for longer than a month, in increasingly dry 

medium, developed more numerous mycorrhizal-like structures. This would suggest a 

correlation between osmotic and/or nutritional stress and the abundance of these 

mimicing structures. Results of changes in the osmotic potential of the culture medium 

(water content) and their influence on the number of dichotomous branching as well as 

the genotype dependence on the production of such structures will be presented. 

Analysis of dichotomous and coralloid roots (derived from in vitro cocultures) with and 

without fungus inoculation, were analyzed during the acclimation phase through 

histological observation. The cryostat sections revealed anatomical differences, both 

internal and external. The dichotomous branching of short lateral roots and the 

formation of coralloid organs are diagnostic of ectomycorrhizas in many pine species, 

but the micorrhyzae-like structures found in the control plants show a striking similarity 

to those of ectomycorrhizas. This phenomenon has been observed previously in other 

pine species and might be indicative of the long coevolution of these two kingdoms for 

millions of years. Therefore, it is possible that in the past mycorrhiza-like structures 

might have been erroneously assumed as plant-fungi associations. 
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THE USE OF ECTOMYCORRHIZAL FUNGI TO RESTORE ROOT 

GROWTH DURING IN VITRO ROOTING AND MINIMIZE LOSSES 

DURING THE ACCLIMATION OF STONE PINE (PINUS PINEA L.) 

 

C. Ragonezi, K. Klimaszewska, L.S. Dias, A.T. Caldeira, M.R. Martíns, 

C. Santos-Silva, R. Louro, M.O. Miralto, E. Ganhão 

A. Zavattieri 

 

Laboratory of Plant Breeding and Biotechnology ICAAM Institute, 

University of Évora, Ap. 94; 7002-554 Évora, Portugal 

E-mail: zavattieri@uevora.pt 

 

Keywords: fungus-plant interactions, in vitro mycorrhization, Pisolithus arhizus, 

rooting, acclimation 

 

The ICAAM Institute aims to study Mediterranean forest ecosystems in all aspects. Our 

Plant Breeding and Biotechnology Laboratory of ICAAM has always been involved in 

biotechnology of Mediterranean woody species, and has developed various in vitro 

techniques for vegetative propagation of Quercus and Pinus (Ragonezi et al. 2010, 

Zavattieri et al. 2009). The power of clonal propagation for the improvement of these 

woody species is indisputable. However, despite the fact that a lot of improvement in 

micropropagation has been made, we have always faced problems in the rooting 

phase (lack or reduced root growth), acclimation (water stress, loss of plants) and 

transfer to the field (low adaptability, low plant establishment). In this context, a few 

years ago we found an adequate “natural solution” for the in vitro mycorrhization. 

Different ECM fungi from pure and mixed stands of Pinus pinea were tested for their 

ability to enhance root formation and root sustainability, acclimation performance and 

survival of plants. Results of growth and physiological parameters during the in vitro 

and ex vitro acclimation phases of microplants inoculated with Pisolithus arhizus 

growing in different substrates and different conditions during ex vitro development and 

colonization will be presented. 

 

Literature 
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P8.2 – Misleading Mycorrhiza?  

Author: Carla Ragonezi 

Co-authors: Castro, M.R.; Santos-Silva,C.; Lima, M.; Klimaszewska, K; Vaz, M; 

Zavattieri, Mª.A.         Pg. 82 

 
Pinus pinea L. is an important Mediterranean forest species, mostly due to its 

edible seeds. Those seeds constitute a relevant resource for the Portuguese economy. 

To enhance in vitro rhizogenesis of P. pinea microshoots a co-culture system with 

ectomycorrhiza-derived fungi was developed. Plant and fungi were grown in double-

layer WPM medium (with ½ the macronutrients and 0.2% of sucrose). Acclimation was 

made in pots containing mixed substrates, or in peat rhizotrons. Furthermore, axenic 

root cultures were prepared with roots excised from microshoots previously induced 

with auxin treatment. Observations were made monthly and root samples were taken 

from co-culture system and axenic cultures for further histological analysis. Structures 

similar to pine ectomycorrhiza (fine dichotomous and coralloid branching) occurred not 

only in co-cultures but in uninoculated controls, continuing to develop in the acclimation 

phase even in the absence of any symbiosis, and also in the axenic root cultures. The 

latter observation shows that axenic cultures may mimic the signaling from 

ectomycorrhizal fungi that is believed to induce the characteristic branching. This can 

be exploited in order to understand how plants perceive their mutualistic partners. 

Other anatomical and histological differences were found between mycorrhiza-like and 

fungal-induced structures. 
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P-114 

Analysis and mastering of root growth signalling by ectomycorrhizal fungi in 

Pinus pinea L. microshoot cultures 

 

Zavattieri, M. A.2, Lima, M.2, Castro, M. R. 2, Ragonezi, C.2, de Oliveira, P.3, 

Klimaszewska, K.1  

 

1 Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 

Québec,Canada. 

2Laboratory of Breeding and Plant Biotechnology, ICAAM, University of Évora, PT 

3Laboratory of Microbiology, ICAAM, University of Évora, PT 

 

Stone pine (Pinus pinea L.) is one of the most characteristic conifers in the 

Mediterranean basin. This species is of great economic importance because of its 

edible seeds (pine nuts). In order to ensure that Portugal remains one of the main 

world producers of pine nuts it is necessary to propagate superior individuals 

characterized by high seed yield and quality. Attempts have been made to develop a 

tissue culture method for clonal propagation using cotyledon explants (Oliveira et al., 

2003) but poor rooting of microshoots and genotype dependence limited the use of this 

technique. Subsequently, our research effort was focused on rooting improvement by 

changing the medium carbon source and physical conditions (light and temperature) 

during rooting induction. In parallel experiments we also demonstrated that microshoot 

coculture with ectomycorrhizal fungi could rescue halted root growth and also help with 

successful acclimatization and outplanting. Of a random sample of 12 fungi derived 

from P. pinea ectomycorrhizas, at least six had consistently the same effect. Thus, our 

objectives are to ameliorate mass propagation of selected pine genotypes using 

ectomycorrhizal fungi for in vitro rooting, and to characterize biochemically the 

interactions between fungi and microshoots. Two hypotheses are being tested: 1) that 

the fungi promote rooting with diffusible mediators; 2) once these mediators are 

identified, that this action can be reproduced in axenic cultures. Results of the first year 

co-cultures, as well as anatomical and morphological characterization of the root 

systems derived from co-cultures and their comparison with axenic cultures will be 

presented. 
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Pinus pinea L. (stone pine) is one of the major plantation species in Iberian Peninsula, 

being Portugal the largest edible seed producer in the world. The induction and 

improvement of in vitro rhizogenesis of microshoots of Pinus pinea was developed in 

our laboratory using a co-culture system with ECM fungi. In the acclimation phase in 

mixed substrates, or in rhizotrons, anatomical and morphological studies were done to 

observe the evolution of the root system in microshoots from the co-culture system vs. 

control plants. Surprisingly, extensive dichotomous and coralloid branching of lateral 

roots was seen to occur spontaneously in inoculated, as well in control and, moreover, 

similar branching occurred in liquid culture of excised seedling roots without the 

presence of ECM fungi, both with, and without hormone induction. The striking 

similarity of these organs with pine ectomycorrhizas prompted their anatomical analysis 

since dichotomous branching of short lateral roots and the formation of coralloid organs 

are diagnostic of ectomycorrhizas. This fact was observed before in other pines and 

proves the long co-evolution of these two kingdoms for millions of years. Therefore, 

natural structures may be erroneously assumed as plant-fungi associations. Plant and 

fungal symbiont where cultured in double-layer WPM medium with half the 

macronutrients and 1% of sucrose. Using rhizotrons and histological cuts it was 

possible to identify between natural (or chemical induced) and fungal-induced 

structures. Observations were made every month and showed the formation of small 

mycelia in several inoculated clones and appearing of Micorrhyzae-like structures, both 

dichotomous and coralloid in symbiotic and control plants. Further analysis showed 

anatomical differences between the fungal induced and control plants formations. Root 

samples were taken to perform the histological sections, both fresh hand-sectioned or 

fixed. After histological cutting, other anatomical differences were found, at a much 

smaller scale, both internal and external. However, the presence of Hartig net was not 

confirmed. These results suggested that the development of ECM-like structures might 

have occurred spontaneously. This new approach pursues the understanding of the 

physiological mechanisms related with the production of these interesting structures, as 

a survival mechanism for pine trees and as a launching pad for fungi colonization of the 

root systems. 
 

 

Mycorrhiza-like structures in rooted microshoots of Pinus pinea L. 

Latest developments of a new insight. 

 

Mário Rui Castro1*, Carla Ragonezi1, Krystyna Klimaszewska2, Mónica 

Lima1, Paulo de Oliveira1, Maria Amely Zavattieri1 
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Achieving in vitro rooting in recalcitrant pine  

Ragonezi, C.; Castro, M.R.; Zavattieri1, M.A.; Lima, M. 

Laboratory of Plant Breeding and Biotechnology, ICAM, University of  

Évora;  Ap. 94; 7002-554 Évora Codex. (e-mail: cazi04@hotmail.com) 
 

Stone pine (Pinus  pinea  L.)  is  one  of  the  most  characteristic  species  in  

the Mediterranean basin, being Portugal one of the main world producers. Its 

economic importance is based on its edible seeds. Stone pine planting stocks are 

largely derived from seeds collected from natural stands, and the conventional 

method of propagation is by planting nursery-grown seedlings. However, with this 

propagation procedure, the quality of the resulting material is unknown. Modern 

techniques for clonal propagation include grafting and cuttings of desirable 

genotypes. Such methods are labour-intensive, and therefore not ideal for large-scale 

multiplication of elite trees. Due to the tremendous importance of developing a 

reproducible tissue culture method for clonal propagation, an intensive study has 

been carried out in our group for over a decade to overcome the recalcitrance of 

this species to root in vitro. During this period of time, slow but continuous 

increments of the rooting percentage of this species was achieved. Studies were 

carried out introducing variations in media composition. Auxins and 

carbohydrates were tested at different concentrations, light, and temperature were 

used at different levels and many other different compounds (coumarine; 

salicylic acid, polyamines, etc) were also tested, for both the induction and 

expression phases of the rhizogenic process. Changes in the methods of 

applying auxins were also studied (quick-deep vs. pulse treatment). Before 2008, 

the highest rooting percentage obtained was 41,37% (Zavattieri et al., 2007). As a 

result of successive observations that most of the clones rooted approximately ten 

days after their transference to the expression medium (response to hormone 

treatment), but others took approximately one month, a new experiment was 

conducted to evaluate the effect of media dilution in promoting root induction and 

development. The only change introduced in the above protocol consisted in a 

reduction of macronutrients in the basal media. This simple modification of the 

previous established protocol significantly increased the total rooting percentage in all 

clones tested. The rooting percentages per clone ranged from 34% to 90%. Thus, in 

140 microshoots of Pinus pinea, 88 rooted, giving an overall percentage of 62,85% 

which represents an increase of 20% comparatively with media with full 

strength macronutrients.  
 

Key words: Pinus pinea, Stone pine, rhizogenesis, adventitious root formation.  
 
Zavattieri et al., 2007 Acta of the 3rd International Symposium on Acclimatization and 

Establishment of Micropropagated Plants; aemp 2007  
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NCBI Sequences 

Ragonezi, C, Klimaszewska K, Santos-Silva C, Martins MR, Caldeira AT, 

Zavattieri A 2011 Pisolithus sp. P1001 18S ribosomal RNA gene, partial 

sequence, internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal 

transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial 

sequence. GenBank: HQ896485.1 National Center for Biotechnology Information, 

GENBANK, USA  

Pisolithus sp. P1001 18S ribosomal RNA gene, partial sequence; internal transcribed 

spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete 

sequence; and 28S ribosomal RNA gene, partial sequence 

GenBank: HQ896485.1 

LOCUS       HQ896485                 645 bp    DNA     linear   PLN 25-JUL-2011 

ACCESSION   HQ896485 

VERSION     HQ896485.1  GI:340561862 

ORGANISM  Pisolithus sp. P1001 

            Eukaryota; Fungi; Dikarya; Basidiomycota; Agaricomycotina; 

            Agaricomycetes; Agaricomycetidae; Boletales; Sclerodermatineae; 

            Pisolithaceae; Pisolithus. 

  AUTHORS   Ragonezi,C., Klimaszewska,K., Santos-Silva,C., Martins,M.R., 

            Caldeira,A.T. and Zavattieri,A. 

  TITLE     Direct Submission 

  JOURNAL   Submitted (10-JAN-2011) Chemistry Department, University of Evora, 

            Rua Romao Ramalho, 59, Evora 7000 671, Portugal 

ORIGIN       

        1 cgtaacaagg tttccgtagg tgaacctgcg gaaggatcat tagcgaaact cgaaaggtgc 

       61 ggagggggga cctttgccgg tccttcgaag ccctttttac tttgtccaca cctctgtgca 

      121 cccccgttcg cgcgaggttc ttcggaaccc tgtgcgatgc ttatctcgaa ctcgtatgtc 

      181 tacagaatgt aacctagtgt gttggaaatg gaaatacaac tttcagcaac ggatctcttg 

      241 gctctcgcat cgatgaagga cgcagcgaat cgcgataagt aatgtgaatt gcagattttc 

      301 cgtgaatcat cgaatctttg aacgcacctt gcgctccttg gtattccgag gagcatgcct 

      361 gtttgagtgt cattgaaaat ctcaagccga gctgttttga ctttggttga aaaagcccgg 

      421 attttggagt gttgggaggt ctgcaggcag tcctgatctt ttgggactgc cagctctcct 

      481 gaaatgcatt agtgggatgg gcgtgtgacc agcctcttcg acgtcgtaat gcgatcgtcg 

      541 tggactgtga gctttttccc ccccttgact ttgctattgt gtgaaggctt gacctcaaat 

      601 caggtaggac tacccgctga acttaagcat atcaataagc ggagg 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1064584
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Ragonezi C, Caldeira AT, Martins MR, Santos-Silva C, Klimaszewska K, Louro R, 

Ganhao E, Zavattieri A 2012 Lactarius deliciosus isolate UEZB1 internal 

transcribed spacer 1, partial sequence, 5.8S ribosomal RNA gene and internal 

transcribed spacer 2, complete sequence, and 28S ribosomal RNA gene, partial 

sequence. GenBank: JQ066791.1 National Center for Biotechnology Information, 

GENBANK, USA  

Lactarius deliciosus isolate UEZB1 internal transcribed spacer 1, partial sequence; 

5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and 

28S ribosomal RNA gene, partial sequence 

GenBank: JQ066791.1 

LOCUS       JQ066791                 439 bp    DNA     linear   PLN 20-MAR-2012 

ACCESSION   JQ066791 

VERSION     JQ066791.1  GI:380467948 

ORGANISM  Lactarius deliciosus 

            Eukaryota; Fungi; Dikarya; Basidiomycota; Agaricomycotina; 

            Agaricomycetes; Russulales; Russulaceae; Lactarius. 

  AUTHORS   Ragonezi,C., Caldeira,A.T., Martins,M.R., Santos-Silva,C., 

            Klimaszewska,K., Louro,R., Ganhao,E. and Zavattieri,A. 

  TITLE     Direct Submission 

  JOURNAL   Submitted (23-NOV-2011) Chemistry Department, University of Evora, 

            Rua Romao Ramalho, 59, Evora 7000 671, Portugal 

ORIGIN       

        1 acgcgcaatc aatacaactt tcaacaacgg atctcttggc tctcgcatcg atgaagaacg 

       61 cagcgaaatg cgatacgtaa tgtgaattgc agaattcagt gaatcatcga atctttgaac 

      121 gcaccttgcg ccccttggta ttccgagggg cacacccgtt tgagtgtcgt gaaattctca 

      181 accttctcgg ttttcttctg gacaccgaag gaggcttgga cattggaggc ctttgctggc 

      241 gtctcttaga cccagctcct cttaaatgaa ttagcggggt cctctttgcc gatccttgac 

      301 atgtgataag atgtttccat gacttggttt ctggctctgt tgcatttggg acccgcttct 

      361 aaccgtctcg acgagacaac gtttgggcgt gtctcccttc tcgggagact ctctcaaccc 

      421 ccacgaaccc ttgacctca 
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