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Abstract: We have considered, as general models for the evolution of animal size
in a random environment, stochastic differential equations of the form dY (t) =
b(A—Y(t))dt+ odW (t), where Y (t) = g(X(t)), X(¢) is the size of an animal at
time ¢, g is a strictly increasing function, A = g(a) where a is the asymptotic size,
o measures the effect of random environmental fluctuations on growth, and W;
is the Wiener process. We have considered the stochastic Bertalanffy-Richards
model (g(z) = z° with ¢ > 0) and the stochastic Gompertz model (g(z) =
Inz). We have studied the problems of parameter estimation for one path and
also considered the extension to several paths. We also used bootstrap methods.
Results and methods are illustrated using bovine growth data.

Keywords: growth models; stochastic differential equations; estimation; cattle
weight.

1 Introduction

The most common models used to describe the growth of an individual
animal in terms of its size X (¢) at time ¢ have assumed the form of a
differential equation dY (t) = b(A — Y (t))dt, Y (to) = yo, where we made
a change of variable Y (t) = ¢g(X(t)) with g a strictly increasing function
(which we assume known). We have yo = g(x¢) and A = g(a), where zg
is the size at birth and a is the asymptotic size or size at maturity of the
animal. The parameter b > 0 is a rate of approach to maturity.

The Bertanlanffy-Richards model (Bertalanffy (1957) and Richards (1959))
corresponds to the choice g(z) = z¢ for ¢ > 0 (typical choices are ¢ = 1
and ¢ = 1/3) and the Gompertz model corresponds to g(x) = Inz (can be
considered the limiting case of Bertalanffy-Richards model when ¢ — 0).
If the animal is growing in a randomly fluctuating environment, we can
model growth through a stochastic differential equation (SDE) of the form

dY (t) =b(A=Y(t))dt + odW(t), (1)
where o > 0 measures the strength of environmental fluctuations and W (t)

is a standard Wiener process. Garcia (1983) applied these type of models
to tree growth.
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The solution of (1) is a homogeneous diffusion process with drift and diffu-
sion coefficient, respectively, b(A — y) and 2. The solution of this SDE is
Y(t) = A+e P (yg— A) +oe™t fot eb*dW (s) (see, for instance, Braumann
(2005)). The distribution of Y (t) is Gaussian with mean A + e~%(yo — A)
—2bt)

. 2
and variance Zz(1 —e

tribution with mean A and variance Z;.
The data used for illustration is the weight of "mertolengo” cattle of the
"rosilho” strand and was provided by Carlos Roquete (ICAM-UE).

and converges, as t — 400, to a Gaussian dis-
2

2 Parameter estimation

In Filipe et al. (2007), we have considered, for a single path, the statistical
problems of parameter estimation and of prediction of future sizes of an
animal for model (1). Subsection 2.1 gives a brief summary of the estimation
part. Subsection 2.2 presents the extension of the estimation methods to
the case of several paths, assumed to be independent. We have also studied
bootstrap estimation methods, shown on subsection 2.3.

2.1 Parameter estimation for a single path

Let us assume we observe the evolution of the weight of one animal at times
0=ty <t <..<ty,,and represent the weight of the animal at time ¢
(k=1,2,...,n) by X = X(tx). Let Yy = g(Xy) and Y = (Yo, Y3, ...,Y3).
We want to estimate p = (A, b, ). Since we know the transition distribu-
tions of Y (¢), using the fact that it is a Markov process and given Yy = yo,
assumed known, we can obtain the log-likelihood function

2
Ly(p):—gln( i ) Zln 1— E})

b~ (e — A= (yho1 — A) Ep)®
: - !
k=1

with Ej, = e~?(~t+—1) Tn terms of X the log-likelihood function is Lx (p) =
vy(P)+X i In ( =Ik). The mazimum likelihood estimator (MLE),

D, is obtained by maximization of Ly (equivalent to maximization of Lx).
Using the properties of MLE and Y (¢) we can obtain the Fisher information
matrix and construct approximate confidence intervals for the parameters.
In Filipe et al. (2007), we used data of the weight in kg of a single animal for
which we had 79 observations. We have applied model (1) for the particular
cases g(x) = z¢ (¢ > 0) and g(z) = Inz (¢ = 0) (Table 1). Some choices of
¢ were considered and the models which turned out to be the best choices
were correspondent to ¢ =0 and ¢ = 1/3.
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TABLE 1. Maximum likelihood estimates, log-likelihood value and approximate
95% confidence intervals (data from one animal).

a b g LX
¢ = 0(Gompertz) 407.1+60.5 1.472+4+0.354 0.226 £0.036 —338.12
c=1/3 42244+ 81.6 1.096£0.525 0.525+0.083 —337.88

2.2 Parameter estimation for several paths

Assume we have data on m animals. The weight of animal number j
(j = 1,2,...,m) is observed at times 0 = t;0 < t;1 < ... < tjp,;, and
is, respectively, X;0 = X(t;0), Xj1 = X(tj1), s Xjm; = X(tjn,)
Let Vi = Y(tjk) = 9(Xj6) G = 1,2,...,m; k = 1,2,...,n;) and Y; =
(Yj,o,Yj,h 7Y]n])

For animal number j we can obtain the log-likelihood Lv; by proceeding as
in the case of a single path. From independence, the overall log-likelihood
for the m animals is Ly, v,... v..(P) = Z;":l Lvy,(p). The MLE p is ob-
tained, now, by maximization of Lv, v,... v..-
In Filipe and Braumann (2007), we have applied the procedure for the
stochastic Bertalanffy-Richards model, for the cases ¢ = 0 and ¢ = 1/3, to
the data of m = 5 animals of the same strand raised under similar condi-
tions. In Figure 1 we can see the observed weights for these 5 animals. For
one animal we have 79 observations and the other four have 38 observations
each. Table 2 shows the results obtained.

TABLE 2. Maximum likelihood estimates, log-likelihood value and approximate
95% confidence intervals (data from 5 animals).

a b o Lx,,.xs
c=0 3524 £ 28.3 1.708 £ 0.193 0.253 £ 0.023  -958.84
c=1/3 384.1 +46.2 1.147 + 0.211 0.506 &+ 0.047 -941.85

2.3 Bootstrap methods

The asymptotic confidence intervals obtained from the Fisher information
matrix may be quite unreliable for small sample sizes. In such case, boot-
strap methods are recommended.

In Efron and Tibshirani (1993) we can find two types of bootstrap proce-
dure, respectively, parametric bootstrap (PB) and nonparametric bootstrap
(NPB). We have applied these two bootstrap methods for the cases ¢ =0
and ¢ =1/3.
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FIGURE 1. Observed growth curves for the 5 animals.

For PB, we have considered the Gaussian distribution of Y}, mentioned
on section 1, and, using the MLE p to approximate p, generated 1000
independent "samples", y* = (y3i7yi‘i,...7y:i) (¢ = 1,...,1000). For each
one of these "samples" we have computed the estimates p*i(i = 1, ..., 1000)
(following the procedure described in subsection 2.1), and consequently, by
calculating the mean, obtained the bootstrap estimate p*.

Extending this procedure to m animals, we have generated ny‘ e (yjfo, y;ffl,
,yj*lnj) (i =1,..,1000; j = 1,...,m) using as an approximation of p the
overall MLE, P, presented in subsection 2.2. We have obtained, for each
i=1,...,1000, the maximum likelihood estimates p*! as in subsection 2.2.
From the 1000 replicates p*i(i = 1, ..., 1000), to obtain p* the procedure is
similar to the one presented for a single animal.

For the NPB method we can find in Efron and Tibshirani (1993) how to
approach the problem of dependency between observations, wich must be
considered in our case. We can see that

02 (e2tk — 2tr1)
b

er = (e"Yp —e" 1Y — A —e1))/ \/—2 , (2)

for k=1, ...,n, are i.i.d with standard Gaussian distribution. We have ob-
tained 1000 independent replicates, e*' = (ef’, ei’, ..., ex?) (i = 1,...,1000)
where the ezi (k=1,..,n;i=1,...,1000) are obtained by sampling with
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replacement the empirical distribution of the observed values of eq, ..., e,.
For each i=1,..., 1000, we have used e*! to reconstruct, using the inverted
expression of (2), a vector of n observations y*!. We can, then, obtain the
bootstrap estimates of the parameters in the same way as in PB.

In case we have m animals, in a similar way we must consider ej, i.i.d
with standard Gaussian distribution. For each path we proceed as described
above for a single animal.

For both PB and NPB, the standard bootstrap confidence intervals are
obtained using normality and the sample standard deviation of the 1000
replicates of the estimates. We can also obtain bootstrap confidence inter-
vals using the empirical quantiles, which, in our example, gives very similar
results.

Although our data has a reasonably large sample size, for illustration pur-
poses we still obtained the bootstrap estimates and 95% confidence intervals
for both PB and NPB (see Table 3).

TABLE 3. Bootstrap estimates and 95% confidence intervals

a b o
1 animal c=0 405.3 £ 59.5 1.517 & 0.376  0.222 + 0.036
(PB) c=1/3 4183 +84.1 1.180 + 0.466 0.516 + 0.085
1 animal c=10 404.8 £ 59.5 1.519 4+ 0.371 0.223 £ 0.043
(NPB) c=1/3 419.1 +£80.3 1.179 + 0.453 0.518 £+ 0.097
5 animals c=0 3524 + 314 1.714 £ 0.184 0.252 4+ 0.024
(PB) c= 1/3 384.9 + 46.7 1.159 £ 0.210 0.504 + 0.047
5 animals c=0 362.2 + 31.4 1.630 £ 0.189 0.250 4+ 0.031
(NPB) c=1/3 392,54+ 50.8 1.094 + 0.201 0.501 £ 0.057

3 Conclusions

Stochastic differential equations models for the growth of individual ani-
mals where considered and parameter estimation were developed for the
case of several animals. In progress is the study of nonparametric estima-
tion of the drift and diffusion coeflicients, with the goal of finding a more
general growth model. We have also considered the more realistic case in
which we have different asymptotic expected size for different animals (to

appear).
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