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ABSTRACT  

Dietary manipulation to improve the nutritional value of lipids from lamb meat 

Lamb meat is characterized by high contents of saturated fatty acids and low levels of 

polyunsaturated fatty acids (PUFA), properties that are regarded as being negative to 

human health. To meet the nutritional recommendations is necessary improving the fatty 

acid (FA) composition of lamb meat. The main motivation of this thesis was explored 

some nutritional strategies that allows improve the nutritional value of lipid fraction from 

lamb meat. Data presented here show that supplementation of diets with vegetable oils 

rich in PUFA is an effective approach to decrease the saturation of lamb meat and 

increase its content in PUFA. Moreover, supplementation with blend of sunflower and 

linseed oils allowed increase simultaneously meat content in conjugated isomers of 

linoleic acid and n-3 long chain PUFA. Inclusion of sodium bentonite and Cistus 

ladanifer in oil supplemented diets also showed to be a good approach to improve the FA 

composition of lamb meat.  

 

 

 

 

 

 

 

 

Keywords: lamb meat; fatty acid composition; lipid metabolism; sunflower oil; linseed 

oil; sodium bentonite; grape seed extract; Cistus ladanifer.  
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RESUMO 

Manipulação da dieta para melhorar o valor nutricional dos lípidos da carne de 

borrego 

A carne de borrego é caracterizada por altos teores em ácidos gordos (AG) saturados e 

baixos níveis de ácidos gordos polinsaturados (AGPI), propriedades que são consideradas 

prejudicais para a saúde humana. Para atender às recomendações nutricionais é necessário 

melhorar a sua composição em AG. A principal motivação desta tese foi explorar 

algumas estratégias nutricionais que permitam melhorar o valor nutricional da fracção 

lipídica da carne de borrego. Os resultados obtidos mostram que a suplementação das 

dietas com óleos vegetais ricos em AGPI é uma abordagem eficaz para reduzir a 

saturação da carne de borrego e aumentar o seu conteúdo em AGPI. Além disso, a 

suplementação com mistura de óleos de girassol e de linho permitiu aumentar 

simultaneamente o conteúdo em isómeros conjugados do ácido linoleico e em AGPI n-3 

de cadeia longa. A inclusão de bentonite sódica e de Cistus ladanifer em dietas 

suplementadas com óleo também mostrou ser uma boa abordagem para melhorar a 

composição em AG da carne de borrego.             

 

 

 

 

 

 

Palavras-chave: carne de borrego; composição em ácidos gordos; metabolismo lipídico; 

óleo de girassol; óleo de linho; bentonite sódica, extracto de grainha de uva; Cistus 

ladanifer.   
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INTRODUCTION 

In recent years, fatty acid (FA) composition of ruminant fat has received much interest 

due to its implications for human health and meat quality. The edible products of 

ruminant have been associated to an increase of the risk of cardiovascular diseases, due to 

its high content in saturated fatty acids (SFA) and trans fatty acids (TFA) and low content 

in polyunsaturated fatty acids (PUFA). In rumen the dietary lipids are extensively 

hydrolysed and the unsaturated FA liberated (mostly C18 PUFA) are also extensively 

biohydrogenated (Jenkins et al., 2008), resulting in a high level of SFA in fat, as well as 

in several unsaturated C18 FA, including trans FA (Bessa et al., 2007). The nutritional 

recommendations indicate that the SFA content of most Western-type diets should be 

reduced and the PUFA content should be increased, particularly in n-3 PUFA (WHO, 

2003). These recommendations have led to declining the consumption of ruminant edible 

products. However, ruminant edible products may also be a good dietary source of some 

health benefit FA, such as n-3 PUFA and conjugated linoleic acid isomers (CLA). The 

ruminant fats are naturally rich in CLA isomers, particularly of rumenic acid (18:2 cis-9, 

trans-11), and are the main sources of these isomers in the human diet
 
(Chin et al., 1992). 

The 18:2 cis-9, trans-11 is formed by ruminal biohydrogenation of linoleic acid (18:2n-6) 

(Harfoot and Hazelwood, 1997) and mainly by endogenous conversion of vaccenic acid 

(18:1 trans-11) by stearoyl-CoA desaturase (SCD) in tissues (Griinari et al., 2000). The 

18:1 trans-11 is an intermediate produced during ruminal biohydrogenation of both 

18:2n-6 and α-linoleic acid (18:3n-3) (Harfoot and Hazelwood, 1997).    

Manipulation of FA composition of ruminant fat, to reduce the SFA and increase the 

PUFA, particularly in n-3 long chain polyunsaturated fatty acids (≥ 20 carbons, LC-

PUFA) and CLA contents, is a major target in ruminant meat and milk research. Several 
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studies have been show that there is an opportunity to improve the nutritional value of 

ruminant fat through the changes in diet. Lipid supplementation is a effective mean of 

improving the FA composition of ruminant fat (Chilliard and Ferlay, 2004, Scollan et al., 

2006, Sinclair, 2007). However, ruminal biohydrogenation (BH) of unsaturated FA 

constitute the main limitation to enrichment of PUFA in ruminant fat by unprotected lipid 

supplementation. Thus, the modulation of ruminal BH in order to increase the dietary 

PUFA and benefit biohydrogenation intermediates (BI) that escape from rumen may be a 

good approach for to improving the healthiness of ruminant meat and milk. Moreover, the 

intramuscular FA deposition results from balance between uptake, de novo synthesis and 

mobilization. Many these metabolic pathways are strongly regulated in order to maintain 

the homeostasis, but are also influenced by several factors, such as genotype, gender, age 

and mainly by dietary factors. The strong regulation of FA content and composition in 

membrane phospholipids (Raes et al., 2004), the main local of PUFA deposition, suggest 

that there may be limitation to the incorporation of higher amount of PUFA in 

phospholipids. Moreover, it has been postulated that deleterious effects of some trans 

PUFA are due to their incorporation in phospholipids. However, information about 

deposition of most FA, as BI in intramuscular polar (PL) and neutral lipid (NL) fractions 

is very scarce.  

Globally, this work aims to contribute for the study the lipid metabolism in ruminants, 

particularly contribute for current knowledge over FA metabolism in rumen and muscle. 

We intend explore several nutritional approach that might modulate the ruminal BH in 

order to increase the flow of dietary PUFA and benefit BI from rumen, increasing thus 

availability of these FA for deposition in muscle. We also intend to explore the 

intramuscular FA deposition between polar and neutral lipid fractions. 
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This thesis is structured in 7 chapters. In Chapter 1, ―Scientific background and 

objectives‖, the general FA composition of ruminant meats will be present, and the 

nutritional value of FA, consumptions and dietary recommendations will be summarily 

reviewed. Subsequently, will be approached the ruminant lipid metabolism, particularly 

ruminal metabolism, intestinal absorption and transport, as well as deposition and 

endogenous synthesis in muscle. Finally, will be reviewed the dietary strategies for 

improve the nutritional value of lamb meat. After this brief overview, the specific 

objectives of this work will be described. The chapters 2 to 6 are based on scientific 

manuscripts, already published (4) or provisionally accepted for publication with 

revisions (1) in international peer reviewed journals.  

Previous data obtained by our group showed that blend of sunflower and linseed oils may 

a good approach to obtain simultaneously lamb meat enriched in CLA and n-3 LC-PUFA 

(Bessa et al., 2007). In order to explore this approach, more levels of stepwise 

substitution of sunflower oil with linseed oil were tested, and results are present in 

Chapter 2. Detailed C18 FA distribution between intramuscular PL and NL obtained in 

this trial is reported in Chapter 3.  

In Chapter 4 are presents the results obtained from one trial where we tested if 

incorporation of sodium bentonite in diets supplemented with vegetable oils rich in PUFA 

might modify the ruminal BH, increasing escape of dietary PUFA from rumen and 

change the BI profile.       

Following the same objective, i.e. improve the nutritional value of lamb meat by 

modulation the ruminal BH, we explored the utilization of dietary condensed tannins 

(CT) sources in diets supplemented with vegetable oils rich in PUFA (Chapter 5). 

However, the susceptibility of PUFA to oxidation, might limit the nutritional strategies 
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which aim at increasing PUFA concentration in meat. Several CT sources show 

antioxidant activity. Thus, in this trial we also evaluated if inclusion of CT sources in 

diets affect the colour stability and antioxidant potential of lamb meat during storage 

(Chapter 6). 

Finally, chapter 7 intends to summarise and discuss in an integrated form the results 

obtained in each of the five previous chapters, the main conclusions and relevant 

perspectives for future research are show in this topic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 

SCIENTIFIC BACKGROUND AND OBJECTIVES 
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1.1. FAT CONTENT AND FATTY ACID COMPOSITION OF RUMINANT MEAT  

Total fat content of meat is affected by a several factors, including species, age, weight at 

slaughter, sex, breed, part of the carcass and diet (Valsta et al., 2005, Sinclair, 2007). The 

intramuscular lipid content of most ruminant meat is less than 50 g/kg (Scollan et al., 

2006, Sinclair, 2007), a value generally considered to characterize a low-fat food. 

Ruminant meats are known to have higher content of SFA and lower levels of PUFA 

compared to those from non-ruminant origin. In general, intramuscular fat of ruminant 

animals is composed of approximately 45-55% of SFA, 45-50% of monounsaturated FA 

(MUFA) and relatively minor amounts of PUFA (Givens et al., 2006). Thus, the 

polyunsaturated/saturated ratio (P/S) in ruminant meats is typically low, around 0.1-0.2 

(Raes et al., 2004, Sinclair, 2007). Palmitic (16:0) and stearic (18:0) acids are the main 

SFA, while  oleic (18:1 cis-9) is the predominant MUFA (Scollan et al., 2006, Sinclair, 

2007). The 18:2n-6, 18:3n-3 and arachidonic acid (20:4n-6; ARA) are the main PUFA 

(Raes et al., 2004). Meat also contains important levels of n-3 LC-PUFA, but much lower 

than in fish (Howe et al., 2007). Comparing meats, the highest concentrations of 

eicosapentaenoic (20:5n-3; EPA) and docosahexaenoic (22:6n-3; DHA) acids 

(EPA+DHA) were found in poultry meat (~2% of total FA), followed by sheep meat 

(~1%), pork (~0.6%), and beef and veal (~0.5%) (Givens et al., 2006). Docosapentaenoic 

acid (22:5n-3; DPA) is the predominant n-3 LC-PUFA in meat, and beef and lamb meat 

has a higher proportion of  DPA than fish (Howe et al., 2006, Howe et al., 2007). 

Ruminant meats usually have a more favourable n-6/n-3 ratio when compared with non-

ruminant animals, due to the relatively higher content of 18:3n-3 in pastures and forages 

(Prates and Bessa, 2009). 
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Trans FA occur in higher amounts in ruminant meats than in those from non-ruminant, 

representing usually 2–4% of total FA in ruminant meats (Valsta et al., 2005).  Trans 18:1 

isomers constitute about 80% of total TFA in meat and meat products, being the 18:1 

trans-11 the main trans 18:1 isomer (about 60% of total trans 18:1 isomer ) (Prates and 

Bessa, 2009). However, high concentrations of 18:1 trans-10 had been found in meat of 

ruminants fed a concentrate based diet (Bessa et al., 2005).  

Meat from ruminants has higher levels of CLA than meat from non-ruminant. The highest 

CLA concentrations were found in lamb meat (4.3–19.0 mg/g fat), followed by beef (1.2–

10.0 mg/g fat), representing 0.5–2% of total FA (Schimd et al., 2006, Prates and Bessa, 

2009). Pork and chicken meat show small levels of CLA and usually lower than 2 mg/g 

fat (Parodi, 2003, Schimd et al., 2006). Meat CLA content is positively related with 

intramuscular fat content (Raes et al., 2004). Rumenic acid is the main CLA isomer in 

meat, constituting about 80% of total CLA (Schimd et al., 2006).  Usually the second 

most prevalent CLA isomer in meat is the 18:2 trans-7, cis-9 (Yurawecz et al., 1998, 

Martins et al., 2007). The 18:2 trans-10, cis-12 is present in residual levels in foodstuffs.  

 

1.2. NUTRITIONAL VALUE OF FATTY ACID, CONSUMPTIONS AND DIETARY 

RECOMMENDATIONS  

Consumers are becoming more aware of the relationship between diet and health and this 

has increased the consumer interest in the nutritional value of food. Particular attention 

has been given to FA composition of foods; especially in ruminant edible products, as 

milk or meat due to its implications for human health. Ruminant products have high 

content of SFA and low levels of PUFA, propriety that is regarded as being 

disadvantageous within the human diet. A high intake of SFA is positively associated 

with cardiovascular disease, due to increase the total cholesterol and low density 
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lipoprotein (LDL)-cholesterol blood levels (Givens, 2005). However, individual SFA 

show different cholesterolemic responses. Lauric (12:0), myristic (14:0) and palmitic 

(16:0) acids have a cholesterol-raising effect, whereas stearic acid (18:0) appears to have 

neutral effect on serum cholesterol (Williams, 2000, Givens, 2005). Within 

hypercholesterolemic SFA, the 14:0 is considered more potent than 12:0 and 16:0 acids in 

inducing the increase the total cholesterol and LDL-colesterol (Kris-Etherton and Yu, 

1997). However, nutritional recommendations, not consider the specific cholesterolemic 

effect of the individual SFA and only indicate that intake of SFA should not exceed 10% 

of total energy intake (Elmadfa and Kornsteiner, 2009). Intake estimations showed that in 

Western Europe, SFA provides on average between 10 to 19% of total energy intake, with 

the lowest contribution in most Mediterranean countries (Hulshof et al., 1999).  

In contrast to SFA, the PUFA and MUFA are generally regarded as beneficial for human 

health (Scollan et al., 2006). Substitution of SFA by MUFA or PUFA reduced plasma 

total cholesterol and LDL-colesterol, being the PUFA more potent to reduction the 

cholesterol than MUFA (Williams, 2000). Oleic acid (18:1 cis-9), the most predominant 

MUFA in ruminant fat, is known to have the hypocholesterolemic properties, reducing 

the plasma cholesterol and LDL-cholesterol levels (Kris-Etherton and Yu, 1997). The 

recommended intake of MUFA can amount up to 15-20% of total energy intake, and 

regarding the PUFA 2.5-9% of energy intake should be from n-6 PUFA (18:2n-6) and 

0.5-2% from n-3 PUFA (Elmadfa and Kornsteiner, 2009). The minimum dietary 

requirement of 18:3n-3 for adults is 0.5% of total energy intake (Elmadfa and 

Kornsteiner, 2009). It is also recommended that P/S ratio of whole human diet should be 

higher than 0.45 (Department of Health, 1994). However, this nutritional index based 

only on chemical structure of FA may not be an adequate way to evaluate the nutritional 

value of fat, because it not considers the specific effect of individual SFA and ignore the 
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effects of MUFA (Santos-Silva et al., 2002a). Utilization of indices based on functional 

effects of individual FA, as hypocholesterolaemic/hypercholesterolaemic FA ratio 

(Santos-Silva et al., 2002a), or atherogenicity and thrombogenicity indices (Ulbricht and 

Southgate, 1991) seems a better approach for evaluate the potential effect of dietary fat on 

human health.  

Western diets are generally characterized by excessive amounts of n-6 PUFA and 

deficient n-3 PUFA, with n-6/n-3 ratios around 15/1-17/1 (Simopoulos, 2004). Despite 

the higher intake of both n-6 PUFA and n-3 PUFA is associated with reduction of the 

cardiovascular diseases risk (Stanley et al., 2007), the excessive amount of n-6 PUFA in 

diet favors the development of many diseases, such as cardiovascular diseases, cancer and 

inflammatory and autoimmune diseases (Simopoulos, 2004). In contrast, increased the n-

3 PUFA levels in diets have protective effect (Simopoulos, 2004). The 18:2n-6 and 

18:3n-3, essential FA for humans, are precursors of LC-PUFA via a series of stepwise 

dasaturations and elongations (conversion pathways of 18:2n-6 and 18:3n-3 in respective 

LC-PUFA are present in section 1.3.3). Linoleic acid is the precursor of ARA and the 

18:3n-3 is converted to EPA, DPA and DHA acids. The LC-PUFA are deposited mainly 

in membrane phospholipids and constitute substrate for synthesis of the eicosanoids, such 

as prostaglandins, thromboxanes or leukotrienes (Calder, 2001). Despite the FA 

composition of the membrane phospholipids to be strictly controlled in order to maintain 

the cellular homeostasis, its composition in FA is sensitive to changes of diet FA 

composition (Scollan et al., 2006). The membrane phospholipids FA composition of 

inflammatory and immune cells determines the type of eicosanoids formed (Calder, 

2003), and the eicosanoid derived from n-6 and n-3 PUFA have different biological 

actions and potencies. The eicosanoids derived from ARA are metabolically more potent 

in promoting inflammation, platelet aggregation, and immune and vascular reactivity than 
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those derived from n-3 LC-PUFA (Calder, 2001, Calder, 2003). Moreover, the EPA also 

induced the suppression in the production of eicosanoids derived from ARA (Calder, 

2001).  

Nutritional recommendation indicate that the n-6/n-3 ratio in human diets should not 

exceed 4 (Department of Health, 1994). However, the value of dietary n-6/n-3 ratio in 

modifying the cardiovascular diseases has been questioned (Stanley et al., 2007, Griffin, 

2008). The 18:2n-6 and 18:3n-3 competes for the same elongation and desaturation 

enzymes, limiting the efficiency of its conversion to n-6 and n-3 LC-PUFA (Brenner, 

1989) and it is generally assumed that higher dietary n-6/n-3 reduces the n-3 LC-PUFA 

synthesis. However, recently was reported that the conversion of 18:3n-3 in humans is 

influenced by the absolute amounts of 18:2n-6 and 18:3n-3 in diets and not by dietary n-

6/n-3 ratio (Goyens et al., 2006). Moreover, the dietary n-6/n-3 ratio does not modifies 

the cardiovascular diseases risk (Stanley et al., 2007, Griffin, 2008). Thus, it is considered 

that the n-6/n-3 ratio is not a useful concept, and that distract attention from the n-3 LC-

PUFA absolute amounts in the diet (Stanley et al., 2007). The health benefits of n-3 

PUFA are mostly associated with absolute dietary intake of n-3 LC-PUFA, mainly EPA 

and DHA, while the principal biological role of 18:3n-3 seems to be as  precursor for to 

n-3 LC-PUFA (Burdge and Calder, 2005). The EPA and DHA shown to have anti-

atherogenic, anti-trombotic and anti-inflamatory effects (Givens et al., 2006) and may 

also have important roles in reducing the cancer, obesity and type 2 diabetes (WHO, 

2003). Some studies show that intake of EPA and DHA may protect against the 

neurological disorders, including the Alzheime‘s diseases, as reviewed by Whelan and 

Rust (2006). The conversion of dietary 18:3n-3 to n-3 LC-PUFA is very limited in adult 

humans, so the 18:3n-3 is probably a quite limited sources of EPA and DHA (Burdge and 

Calder, 2005). However, several epidemiological studies shown that high intake of 18:3n-
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3 reduces the cardiovascular disease risk (Zhao et al., 2004), probably due to increase the 

synthesis of EPA (Givens et al., 2006). The recent intake estimation of the EPA and DHA 

in various countries, reviewed by Givens and Gibbs (2008) showed a large variation in 

mean intake of these FA, ranging from 75 mg/day in Belgian children to 950 mg/day in 

adults in Japan. However, many of these values are below the recommended daily intake. 

Simopoulos (2004) reported that adequate intake of EPA + DHA is the 0.3% of diet 

energy (i.e. 650 mg/day considering diets with 2000 kcal). The minimum recommended 

by Scientific Advisory Committee of Nutrition and Committee on Toxicity (2004) is the 

450 mg of EPA + DHA/day. Recently was reported that the adequate intake of  EPA + 

DHA should range between 250-2000 mg/day (Elmadfa and Kornsteiner, 2009).The 

concentrations of n-3 LC-PUFA in ruminant meats are lower than those within fish or fish 

oil. However, the consumption of fish or fish oil in most Western countries is low 

(Givens and Gibbs, 2008), so may be important the contribution of meat to increase the n-

3 LC-PUFA intake. The meat, specially the beef and lamb meat has a high proportion of 

DPA (Howe et al., 2007), contributing substantially to the DPA intake (Astorg et al., 

2004, Howe et al., 2006). The biological effects of DPA has been little researched, but 

recent evidence suggest that DPA is just as important as EPA and DHA for the health 

benefits associated with n-3 LC-PUFA (Howe et al., 2007). However, the DPA is not 

considered in dietary recommendation for n-3 LC-PUFA.  

Generally, TFA intake is associated to deleterious effects on human health (Hunter, 

2006).  However, evidence suggests that individual TFA have differential biological 

effects. Trans FA are provided in human food by ruminant products, mainly composed by 

18:1 trans-11, and by industrial hydrogenated vegetable oils, that shown high levels of 

several 18:1 trans FA, mainly 18:1 trans-9 and 18:1 trans-10 (Pfeuffer and Schrezenmeir, 

2006). Epidemiological studies showed a positive association between cardiovascular 
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disease risk and consumption of TFA from industrial sources, but not with consumption 

of TFA from ruminant sources (Chardigny et al., 2008). Moreover, the 18:1 trans-11 has 

been suggest as beneficial TFA because it‘s the precursor of 18:2 cis-9, trans-11 in 

animals and man (Scollan et al., 2006). However, the biological effects of TFA from 

ruminant origin are less known, and the some results are contradictory. Recently 

epidemiologic study (Motard-Bélanger et al., 2008) showed that a same daily intake of 

TFA from ruminant and from industrial sources (3.6% of energy intake) has a same 

negative effect on cardiovascular disease risks factors, but moderate TFA intake from 

ruminant origin (1.5% of energy intake) has a neutral effect on these risk factors. The 

contribution of TFA from ruminant sources in ranges from 30 to 80% of total TFA intake, 

representing to 0.3 – 0.8% of dietary energy (Craig-Schmidt, 2006). Thus, the actual 

amounts of  TFA from ruminant origin consumed in diets do not contribute importantly to 

risks of cardiovascular disease (Motard-Bélanger et al., 2008). The present nutritional 

recommendation indicate that TFA should contribute with less than 1% of total energy 

intake of the human diets (Elmadfa and Kornsteiner, 2009). Intake estimations showed 

that in Western Europe, TFA provides on average between 0.5 to 2.1% of total energy 

intake, with the lowest contribution in most Mediterranean countries (Hulshof et al., 

1999).  

In recent years, CLA have received much attention due their potential beneficial 

properties to human health. Conjugated linoleic acid is a collective term that refers to a 

mixture of positional (from carbons 6,8 to 12,14) and geometric (trans, trans; trans, cis; 

cis, trans; and cis, cis) isomers of 18:2n-6 with a conjugated double-bond system (Wahle 

et al., 2004). Numerous beneficial physiological effects have been attributed to CLA, 

including anticarcinogenic, anti-adipogenic, anti-diabetogenic, anti-atherogenic and anti-

inflammatory effects as reviewed by Wahle et al. (2004). The CLA research has focused 
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mainly on the effects of two isomers, 18:2 cis-9, trans-11 and 18:2 trans-10, cis-12 and 

specific physiology effects have been associated to each these CLA isomers. The anti-

adipogenic effect of CLA has been associated to 18:2 trans-10, cis-12 isomer (Park et al., 

1999, Chardigny et al., 2003), whereas the both 18:2 cis-9, trans-11 and 18:2 trans-10, 

cis-12 isomers appear to be are similarly active in anticarcinogenesis (Pariza et al., 2001). 

Recently was reported that a mixture of trans, trans CLA isomers had a greater 

anticarcinogenic activity in induced rat mammary tumorigenesis as compared to 18:2 cis-

9, trans-11 and 18:2 trans-10, cis-12 isomers (Islam et al., 2010). Most evidence of the 

benefit effects of CLA isomers has been obtained by laboratory animals and by cell 

culture studies (Pariza et al., 2001, Wahle et al., 2004). In human studies inconsistent 

effects have been reported, and the beneficial effect of CLA for human health remains to 

establish (Tricon and Yaqoob, 2006). Moreover, only few studies have explored the 

health effects in humans of CLA naturally present in food (Prates and Bessa, 2009). The 

main dietary source of CLA in food is ruminant meat, milk and their products (Parodi, 

2003). Martins et al. (2007) reviewing the daily intake estimative of 18:2 cis-9, trans-11 

or CLA for several countries showed that its consumption ranges between 15 and 1000 

mg. Based in consumption of food rich in CLA was estimated that daily intake of CLA 

for the Portuguese population is about 74 mg (Martins et al., 2007). Recommendations 

for the intake of CLA in human yet are not established. Based on animal studies have 

been extrapolated the CLA intake necessary to promote health benefits in humans. Using 

this methodology was suggested that consumption of 720-800 mg of CLA/person/day 

would be necessary for anticarcinogenic protective effects in humans (Parish et al., 2003, 

Watkins and Li, 2003). 
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1.3. RUMINANT LIPID METABOLISM 

1.3.1. Ruminal lipid metabolism 

Fatty acid metabolism in the rumen has a major influence on the FA composition of 

ruminant products. In rumen, the dietary lipids are extensively metabolized, resulting in 

marked differences between FA composition of edible products of ruminants (mostly 

SFA) and FA composition of its diet (mostly unsaturated FA) (Jenkins et al., 2008).The 

main types of dietary lipids entering the rumen are triacylglycerols, galactolipids and 

phospholipids (Jenkins et al., 2008). In ruminants fed forage the dietary lipid consists 

mainly in galactolpids and phospholipids, while cereals and plant oils contribute mainly 

with triacylglycerols (Harfoot and Hazelwood, 1997). The most abundant FA present in 

forages is 18:3n-3, whereas cereals and plant oils contain predominantly 18:2n-6 and 18:1 

cis-9 (Woods and Fearon, 2009). However, in the linseed and linseed oil the most 

abundant FA is 18:3n-3 (Woods and Fearon, 2009). In rumen the dietary lipids are 

transformed via two major processes – lipolysis and BH. 

 

1.3.1.1. Ruminal lypolisis   

In rumen the dietary lipids are rapidly hydrolyzed, which lipases hydrolyze the ester 

linkages in complex lipids, causing the release the constituent FA (Garton et al., 1961, 

Dawson et al., 1977). The extent of lipolysis is generally high (>85%) (Bauchart et al., 

1990a). However, have been identified several factors that decrease the extent of 

hydrolysis, such as dietary fat lipid level (Beam et al., 2000, Atkinson et al., 2006) and 

low pH (Van Nevel and Demeyer, 1996). It is generally accepted that microbial lipases 

are the main responsible for hydrolysis of plant lipids in rumen (Dawson et al., 1977). 

However, there is evidence that plant lipases may contribute for overall ruminal lipolysis. 
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In 1974, Faruque et al. (1974) showed that plant lipases remain actives for up to 5 h in 

rumen, and suggested that hydrolysis of triacylglycerols and galactolipids from grass was 

due primarily to plant enzyme activity. More recently, was reported intense lipolysis in 

leaves of fresh red clover and fresh ryegrass incubated in buffer (Lee et al., 2002, Van 

Ranst et al., 2009). Dierick and Decuypere (2002) showed that after 56 days of storage 

approximately 25 to 30% of the lipids in ground raw maize, wheat and barley was 

hydrolyzed, and for sorghum and oats the degree of lipolysis was 50 and 65%, 

respectively. Among the various types of ruminal microorganisms the bacteria are 

considered the most active in lipolysis. Rumen hydrolysis has been most extensively 

characterized in Anaerovibrio lipolitica which hydrolyzes triacylglycerols and 

Butyrivibrio fibrosolvens which hydrolyzes phospholipids and glycolipids (Harfoot and 

Hazelwood, 1997).  

 

1.3.1.2. Ruminal biohydrogenation 

After lypolisis, the unsaturated FA released are biohydrogenated. Biohydrogenation 

requires a free carboxyl group to proceed and thus factors that affect hydrolysis also 

influence the BH. The ruminal BH consist in conversion of the unsaturated FA to SFA via 

initial isomerization, followed by hydrogenation of double bonds mediated by rumen 

microorganisms (Harfoot and Hazelwood, 1997). Ruminal BH of C18 unsaturated FA has 

been extensively studied, because are the main FA present in ruminants food. These FA 

are extensively biohydrogenated in rumen, and the disappearance of 18:2n-6 and 18:3n-3 

in the rumen averages 80 and 92%, respectively (Doreau and Ferlay, 1994). However, the 

biohydrogenation also occurs on 20- and 22-carbon FA, as EPA and DHA (Chilliard et 

al., 2000). Wachira et al. (2000) reported the BH values between 72 and 79% for EPA 
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and DHA, respectively in whether sheep fed diets that contained fish oil or linseed and 

fish oil.  

The role of BH is as yet unclear, but the most accepted theory is that ruminal 

biohydrogenation is a detoxification strategy to prevent the toxic effects of unsaturated 

FA on rumen microbe (Harfoot and Hazelwood, 1997, Jenkins et al., 2008). It is reported 

that different unsaturated FA have differential antimicrobial effect, which the DHA, EPA 

and 18:3n-6 are more toxic for biohydrogenating bacteria than 18:3n-3, and this latter 

than 18:2n-6 (Maia et al., 2007, Maia et al., 2010). The 18:1 trans-11 show to have little 

toxic effect (Maia et al., 2010), but the 18:2 cis-9, trans-11 is almost as toxic as 18:2n-6 

(Kim et al., 2000, Maia et al., 2010). Moreover, the sensitivity of ruminal 

microorganisms to the toxic effects of PUFA is variable, being Butyrivibrio hungatei and 

Butyrivibrio proteoclasticus group much more sensitive than the rest of the Butyrivibrio 

Pseudobutyrivibrio cluster (Maia et al., 2010). Paillard et al.(2007) found that the 

different PUFA sensitivity of ruminal species is related with their enzymatic mechanism 

of butyrate formation, being most sensitive the species that formed butyrate via butyrate 

kinase mechanism, as rather than acyl CoA transferase. 

 

1.3.1.2.1. Biohydrogenation microorganisms  

Bacteria play the main role in FA biohydrogenation (Jenkins et al., 2008). Diverse 

bacterial strains with different capacities of hydrogenation were isolated, as reviewed by 

Harfoot and Hazelwood (1997). Thus, the bacteria involved in BH process were classified 

as group A and B, which group A bacteria hydrogenated 18:2n-6 and 18:3n-3 to 18:1 

trans-11, whereas group B bacteria convert the same FA to 18:0 (Harfoot and 

Hazelwood, 1997). Butyrivibrio fibrosolvens was identified many years to undertake BH 
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of FA, but not form 18:0 from 18:2n-6 and 18:3n-3 (Polan et al., 1964, Kepler et al., 

1966, Kepler and Tove, 1967). Recently, B. proteoclasticus was identified as a stearate 

producer (Wallace et al., 2006). Phylogenetic analysis based on 16S ribosomal RNA 

(rRNA) sequence analysis, indicated that the stearate producers was clustered on branch 

with B. proteoclasticus (Jenkins et al., 2008). The high capacity to metabolize 18:2n-6 to 

18:2 cis-9, trans-11 has been associated entirely with the Butyrivibrio group (Kemp et al., 

1975, Paillard et al., 2007).  

Metabolism of 18:2n-6 by B. fibrosolvens or by B. proteoclasticus  result in formation of 

cis-trans CLA isomers with double bonds in 9, 11 position, mainly 18:2 cis-9, trans-11, 

as well in 18:1 trans-11, but no 18:2 trans-10, cis-12 and 18:1 trans-10 is formed (Maia 

et al., 2007, Wallace et al., 2007). A significant production of 18:2 trans-10, cis-12 by 

some Megasphaera elsdenii strains in cultures enriched with starch was reported by Kim 

et al. (2002). Other studies indicate that Propionibacterium acnes may be responsible for 

the formation of 18:2 trans-10, cis-12 (Wallace et al., 2007, McKain et al., 2010). In fact, 

in digesta samples from cows producing high amounts of 18:2 trans-10, cis-12 was found 

<10
3
/g of M. elsdenii, while much large number of P. acne were detectable (Lourenço et 

al., 2010). However, the P. acnes not convert 18:2 trans-10, cis-12 to 18:1 trans-10 

(McKain et al., 2010). 

Protozoa appear to have a minor role in BH, so BH in ruminal digesta was only slightly 

decreased following removal of protozoa from the rumen and presence of protozoa was 

not necessary for biohydrogenation to occur (Dawson and Kemp, 1969). Recently, was 

demonstrated that ruminal fungi have ability to biohydrogenate 18:2n-6, producing 18:2 

cis-9, trans-11 and 18:1 trans-11 as end product (Nam and Garnsworthy, 2007), but their 

activity is very low in comparison of bacteria (Maia et al., 2007, Nam and Garnsworthy, 

2007). 



  Scientific background and objectives 

  

19 

1.3.1.2.2. Biohydrogenation pathways and biohydrogenation intermediates   

It well known that in ruminal content occurs several BI, including 18:3, 18:2 conjugated 

or non-conjugated and 18:1 isomers. The origin of some BI is already established, and 

some BH pathway had been proposed. Specific isomers have been associated to BH of 

dietary 18:2n-6 and 18:3n-3, although no putative pathways for its occurrence have been 

proposed. Established and putative BH pathways of 18:1 cis-9, 18:2n-6 and 18:3n-3 are 

show in Figure 1.1. In the Table 1.1 are present the established and putative BI of 18:1 

cis-9, 18:2n-6 and 18:3n-3.  

Oleic acid, is usually described as being hydrogenated directly to 18:0, without the 

formation of FA intermediates (Harfoot and Hazelwood, 1997). However, in vitro studies 

using labelled 18:1 cis-9, demonstrated that biohydrogenation of 18:1 cis-9 result in the 

formation of the 18:0 as well as in multiples trans and cis 18:1 isomers (Mosley et al., 

2002, AbuGhazaleh et al., 2005, Mosley et al., 2006). Harfoot and Hazelwood (1997) 

described the established BH pathway of  18:2n-6 and 18:3n-3. These FA are initially 

isomerised to their conjugated FA, followed by hydrogenation of the double bonds. The 

18:2n-6 is isomerised to 18:2 cis-9, trans-11, which is then hydrogenated to 18:1 trans-

11, and finally to 18:0. The 18:3n-3 is metabolised in a similar way, being  isomerised to 

18:3 cis-9, trans-11, cis-15, followed by reductions of double bonds at carbons 9, 15 and 

11 to yield 18:2 trans-11, cis-15, 18:1 trans-11 and 18:0, respectively. The established 

pathways for biohydrogenation of 18:3n-3 also included the 18:1 trans-15 and 18:1 cis-15 

as octadecenoic biohydrogenated intermediates.  

The BI pattern is strongly dependent from the ruminal environment, and consequently 

dependent from the dietary regimen offered to animals. High proportion of concentrates 

supply induce to strong increase the flow of 18:1 trans-10 from rumen (Piperova et al., 
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2002, Loor et al., 2004). Griinari and Bauman (1999) proposed that in this ruminal 

conditions the 18:2n-6 and 18:3n-3 are isomerized by cis-9, trans-10 isomerase to 

octedecadienoic conjugated 18:2 trans-10, cis-12 and octadecatrienoic conjugated 18:3 

trans-10, cis-12, cis-15, respectively. After isomerisation, the double bonds cis-12, and 

the double bond cis-15 in case the 18:3n-3 are hydrogenate, resulting in 18:1 trans-10.  

In fact, high levels of 18:2 trans-10, cis-12 in duodenal flow (Kucuk et al., 2001, 

Sackmann et al., 2003), as well as in milk (Piperova et al., 2002) and meat (Bessa et al., 

2005) has been found in ruminants fed diets rich in concentrate. However, as far as we 

know, the 18:3 trans-10, cis-12, cis-15 and 18:2 trans-10, cis-15 only were identified in 

vitro studies when incubated 18:3n-3 in rumen microorganisms cultures (Kemp et al., 

1975, Or-Rashid et al., 2009).  

Using labeled 18:2n-6, was found that 18:2n-6 may be converted in seven CLA isomers 

with double bonds in either the 9,11 or 10,12 positions, being all possible cis-trans 

combinations represented, except the trans-9, cis-11 (Jenkins et al., 2008). Moreover, 

other CLA isomers have been associated to ruminal biohydrogenation of 18:2n-6, such as 

18:2 trans-8, trans-10, 18:2 trans-7, trans-9, 18:2 trans-8, cis-10 and 18:2 trans-7, cis-9 

(Collomb et al., 2004, Bessa et al., 2007). Jouany et al. (2007) also showed that 

incubation of 18:2n-6 increase 18:2 cis-9, trans-12, as well as several octadecenoic FA 

compared with control incubations.  

Ruminal BH of 18:3n-3 result in greater diversity of products. Wasowska et al. (2006) 

confirm the established 18:3n-3 biohydrogenation pathway when incubated 18:3n-3 in 

strained rumen fluid, and reported that 18:3 trans-9, trans-11, cis-15 is also a transient 

intermediate of 18:3n-3 metabolism, which is also hydrogenated to yield 18:2 trans-11, 

cis-15. 
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 Figure 1. 1 Established and putative biohydrogenation pathways. 
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Table 1. 1 Established and putative biohydrogenation intermediates of oleic, linoleic and 

linolenic acids 

18:1 cis-9 18:2 cis-9, cis-12  18:3 cis-9, cis-12, cis-15 

trans-6
1 

cis-9, trans-11
3 

cis-9, trans-11, cis-15
3 

trans-7
1 

trans-10, cis-12
4 

trans-10, cis-12, cis-15
4, 5 

trans-9
1 

trans-9, trans-11
6, 8 

trans-9, trans-11, cis-15
10 

 

trans-10
1 

trans-9, cis-11
6 

trans-9, cis-11, cis-15
5
 

trans-11
1 

cis-9, cis-11
6 

cis-9, trans-13, cis-15
11 

trans-12
1 

cis-9, trans-12
8 

cis-9, trans-12, cis-15
12 

trans-13
1 

trans-10, trans-12
6 

cis-9, trans-12, trans-15
12 

trans-14
1 

cis-10, trans-12
6 

trans-9, trans-12, trans-15
12

 

trans-15
1 

cis-10, cis-12
6, 8

 trans-11, cis-15
3 

trans-16
1 

trans-8, trans-10
7
 trans-13, cis-15

11
 

cis-11
2 

trans-8, cis-10
7, 8

 cis-9, trans-13
8,
 
9, 11 

cis-12
2 

trans-7, trans-9
7, 8

 cis-12, cis-15
8
 

cis-13
2 

trans-7, cis-9
7, 8 

cis-9, cis-15
8,
 
13, 14

 

cis-14
2 

trans-4
9 

cis-10, cis-15
13

 

cis-15
2 

trans-5
9 

cis-11, cis-15
13 

cis-16
2 

trans-6-8
8,
 
9 

trans-10, cis-15
4,13

 
 

trans-9
8,
 
9 

trans-11, trans-15
15

 

 trans-10
4
 cis-9, cis-11

9 

 trans-11
3 

cis-9, trans-12
9
 

 trans-12
8,
 
9
 trans-9, cis-12

9
 

 cis-12
8,
 
9
 trans-9, trans-12

9
 

 cis-13
9 

cis-11, trans-13
7, 9

 

 
 

trans-11, trans-13
7, 8, 9 

  trans-11, cis-13
14

 

  cis-/trans-12, 14
 7, 8 

  trans-12, trans-14
 7, 8

 

  trans-5
9 

  trans-6-8
9 

  trans-9
9
 

  trans-10
4
 

  trans-11
3
 

  trans-12
9 

  trans-13-14
8, 9 

  trans-15
3 

  cis-13
9 

  cis-15
3
 

1 Mosley et al. (2002); 2 Mosley et al. (2006); 3 Harfoot and Hazlewood (1997); 4 Griinari and Bauman 
(1999); 5 Or-Rashid et al. (2009), 6 Jenkins et al. (2008);  7 Collomb et al. (2004); 8 Bessa et al. (2007); 9 

Jouany et al (2007); 10 Wasowska (2006); 11 Destaillats et al. (2005); 12 Loor et al. (2004); 13 Kemp et al. 

(1975); 
14 

Hino (2006); 
15

 Jerónimo et al. (2010). 
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Recently, Or-Rashid et al. (2009) reported that 18:3n-3 also may be isomerized to 18:2  

trans-9, cis-11, cis-15. Some FA present in fat (milk and meat) or digesta of ruminats has 

been associated to ruminal biohydrogenation of 18:3n-3 and other possible pathways of 

18:3n-3 biohydrogenation has been proposed. Destaillats et al. (2005) found in milk fat 

the 18:3 cis-9, trans-13, cis-15, and proposed that this conjugated octadecatrienoic FA 

result from the initial isomerization of 18:3n-3, being then reduced to 18:2 cis-9, trans-13 

and 18:2 trans-13, cis-15 and subsequently to 18:1 trans-13. The production of 18:2 cis-9, 

trans-13 from 18:3n-3 biohydrogenation is consistent with its increase in ruminal fluid, 

duodenal flow, blood plasma and milk of cows fed diets supplemented with linseed oil 

(Loor et al., 2004, Loor et al., 2005). Moreover, Bessa et al. (2007) only detected the 

presence of 18:2 cis-9, trans-13 in meat from lambs fed linseed oil. However, the 18:2 

trans-13, cis-15 has yet to be identified in ruminant fats. 

Bessa et al., (2007) reported the presence of 18:2 cis-12, cis-15 only in meat from lambs 

fed linseed oil, and proposed that the 18:2 cis-12, cis-15 results from the direct reduction 

of the 18:3n-3 cis-9 double bond. By analogy with the 18:2n-6 biohydrogenation 

pathway, which is reduced only after formation of a conjugatated intermediate, these 

authors proposed that 18:2 cis-12, cis-15 might be isomerized to 18:2 cis-12, trans-14 and 

further reduced to 18:1 trans-14. However, unlike 18:2n-6, the 18:2 cis-12, cis-15 could 

be reduced directly (Kemp and Lander, 1984), resulting in 18:1 cis-15. Kemp et al. 

(1975) described several non conjugated dienoic acids as minor intermediates of the 

18:3n-3 biohydrogenation, including 18:2 cis-9, cis-15, 18:2 cis-10, cis-15, 18:2 cis-11, 

cis-15 and 18:2 trans-10, cis-15. More recently, Jouany et al. (2007) showed that 

incubation of 18:3n-3 also increase the 18:2 cis-9, cis-11, 18:2 trans-9, cis-12, 18:2 cis-9, 

trans-12, 18:2 trans-9, trans-12 and 18:2 trans-11, trans-13 compared with control 



Chaper 1 

 

24 

incubations. Hino and Fukuda (2006) reported that conjugated 18:2 trans-11, cis-13 is 

formed by isomerizarion of 18:2 trans-11, cis-15. 

Loor et al., (2004) reported the increase of the duodenal flow of 18:3 cis-9, trans-12, cis-

15, 18:3 cis-9, trans-12, trans-15 and 18:3 trans-9, trans-12, trans-15 in cows with 

dietary linseed oil supplementation. Recently, Jerónimo et al. (2010a) found the 18:2 

trans-11, trans-15 only in meat from lambs fed linseed oil, suggesting that this FA is 

probably an intermediate of 18:3n-3 BH. The 18:2 trans-12, trans-14 and 18:2 cis-/trans-

12,14 also are closely associated with 18:3n-3 ingestion (Collomb et al., 2004, Bessa et 

al., 2007).  

 

1.3.1.3. Microbial fatty acid uptake and synthesis  

Ruminal microorganisms are able either to incorporate and synthesize FA of different 

chain lengths. Bessa (2001) estimated that the microbial lipid syntheses is about 8.8 g/kg 

dry matter intake (DMI). Synthesis occurs from volatile FA in most cases (Doreau and 

Ferlay, 1994). The saturated straight- and branched-chain FA are synthesized by a very 

similar mechanism and the difference between two systems is mainly related to the 

substrate specificity of the acyl-CoA:ACP transacylase (Kaneda, 1991). The de novo 

synthesis of straight-chain FA is achieved by repeated condensation of malonyl-

coenzyme A with acetyl-CoA as primer, yielding 16:0 as the dominant end product 

(Fulco, 1983, Kaneda, 1991). For synthesis the linear odd-chain FA the propionyl-CoA is 

used as primer, instead of acetyl-CoA (Fulco, 1983, Kaneda, 1991). Odd-chain FA also 

can be obtained by reduction the chain length through α-oxidation (Emmanuel, 1978). 

Branched-chain FA are formed from branched-chain amino acids (valine, leucine, and 

isoleucine) and their corresponding branched short-chain carboxylic acid (isobutyric, 
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isovaleric, and 2-methylbutyric acid) (Vlaeminck et al., 2006). The FA composition of 

rumen bacteria is characterized by a large proportion of odd- and branched-chain FA in 

their membrane lipids (Kaneda, 1991), being the odd- and branched-chain FA presents in 

ruminant fat largely derived from ruminal bacteria (Vlaeminck et al., 2006). The odd- and 

branched-chain FA profile of rumen bacteria is substantial different between species, 

where cellulolytic bacteria present high levels of branched-chain FA, while the amylolytic 

bacteria are relatively enriched in linear odd-chain FA (Vlaeminck et al., 2006). So, the 

odd- and branched-chain FA have been proposed as market for the rumen microbial 

ecosystem (Vlaeminck et al., 2006, Bessa et al., 2009). Rumen microbes also are able to 

synthesize unsaturated FA. Bacterial cis- and trans- monounsaturated FA may result the 

desaturation of saturated FA (Doreau and Chilliard, 1997). It is also reported the 

syntheses of dienoic FA by ruminal bacteria, but in lesser extent (Emmanuel et al., 1974, 

Emmanuel, 1978). The de novo FA synthesis is influenced by amount of FA present in 

rumen, decreasing when ruminal FA concentration increases (Demeyer et al., 1978).    

The extent of dietary FA incorporation in bacterial cell lipids is higher than extent of 

synthesis (Doreau and Chilliard, 1997). The incorporation of FA in rumen bacteria 

appears to be a low selective process, reflecting the ruminal FA concentration (O´Kelly 

and Spiers, 1991, Jerónimo, 2004) and dietary lipid supplementation result in FA 

enrichment of rumen bacteria (Legay-Carmier and Bauchart, 1989, Bauchart et al., 

1990b, O´Kelly and Spiers, 1991, Bessa, 2001, Jerónimo, 2004). Synthesized and 

assimilated FA are esterified as phospholipids and sterol esters (Demeyer et al., 1978). 

When large amounts of FA are fed, they are stored as free FA in cytosolic droplets 

(Bauchart et al., 1990b).   
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1.3.2. Intestinal absorption and transport of lipids  

The lipids entering the small intestine of ruminants are composed mainly by non-

esterified saturated FA (Drackley, 2000). The remaining lipid components are microbial 

phospholipids and small amounts of triacylglycerols and glycolipids from residual feed 

material, which are hydrolyzed by intestinal and pancreatic lipases (Doreau and Ferlay, 

1994). Fatty acids are mainly adsorbed on feed particles, microbial cells and desquamated 

endothelial cells. Biles salts, together with lysolecithins desorb the FA, which allow the 

formation of the micelles (Doreau and Chilliard, 1997). These micelles allow the lipid 

absorption at the jejunum. Short FA (<12 carbons) are secreted as free FA into the portal 

vein, while medium and long chain FA (>12 carbons) are absorbed by the epithelial cells 

of the small intestine  and re-esterified (Hocquette and Bauchart, 1999). The lipids 

formed are incorporated into chylomicrons and very-low density lipoproteins (VLDL), 

which are mostly transported in lymph, but also via portal vein to the liver, muscle or 

adipose tissues (Noble, 1981). Triacylglycerols are the major lipid class in lymph with 

much smaller amounts of phospholipids and cholesterol esters, whereas in plasma the 

cholesterol esters and phospholipids are the principal components, with much smaller 

amounts of triacylglycerols, unesterified FA and free cholesterol (Christie, 1981).  

In rumen the essential FA, 18:2n-6 and 18:3n-3 are extensively biohydrogenated, 

reducing significantly the availability of these FA for absorption. However, in ruminants 

nearly all of the 18:2n-6 (and presumably 18:3n-3) that reach the small intestine is 

incorporated into phospholipids and cholesterol esters (Drackley, 2000), that are lipids 

with a very slow turnover in body, allowing that the essential FA are retained for their 

critical functions (Noble, 1981).  
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1.3.3. Muscle fatty acids metabolism – Fatty acids syntheses and deposition in muscle 

Muscle lipids are composed of PL, mainly phospholipids presented in the cell 

membranes, and NL consisting mainly of triacylglycerols in the adipocytes that are 

located along the muscle fibers and in interfascicular area (De Smet et al., 2004). 

Moreover, high intramyocellular triacylglycerols deposition was found in skeletal muscle 

with high lipid content (Malenfant et al., 2001).  

Intramuscular triacylglycerols content is strongly related to the total fat content and varies 

from 0.2 and 5 g/100 g of muscle weight (De Smet et al., 2004, Raes et al., 2004). In 

contrast to triacylglycerols, the content of phospholipids in muscle is relatively constant 

and independent the total fat content (Wood et al., 2008), and varies between 0.2 and 1 

g/100 g of muscle weight (De Smet et al., 2004, Raes et al., 2004). Figure 1.2 illustrates 

the increasing importance of NL fraction in total lipid with fattening proceeds and the 

fairly constant level of PL. However, the content of phospholipids is depends the 

metabolic fiber type of the muscle, which more oxidative muscle shown higher 

proportion of phospholipids, due to the higher content of mitochondria (Raes et al., 

2004).   

Intramuscular FA has a dual origin, by either taken up from plasma or by de novo 

synthesis in muscle. Pre-formed FA are transported in plasma as non-esterified FA, which 

circulate bound to serum albumin, or as triacylglycerols incorporated into lipoproteins. 

Following secretion from intestinal cells or liver, chylomicrons and VLDL move through 

the peripheral blood, and its triacylglycerols are hydrolyzed by the lipoprotein lipase, 

releasing FA (Hocquette and Bauchart, 1999, Drackley, 2000). By diffusion the FA 

released are incorporate in cells.   
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Figure 1. 2 Relationship between content of total fatty acids and total fatty acids in 

neutral and polar lipids in lamb meat and beef. 

1Data of lamb meat: Demirel et al. (2004), Cooper et al. (2004), Jerónimo et al. (2009, 2010b); 2 Data of 

beef: Choi et al. (2000); Scollan et al. (2001, 2003); Noci et al. (2005, 2007a); Warren et al. (2008). 

 

De novo FA synthesis occurs in the cytosol and is a sequential cyclical process in which 

acetyl (2-carbon) units are added successively to an initial starting molecule, usually 

acetyl-CoA (Drackley, 2000). The source of the acetyl units is acetyl-CoA, which in 

ruminants derived from acetate produced during fermentation of dietary carbohydrates in 

rumen. In the first step of FA synthesis, the acetyl-CoA carboxylase enzyme converts the 

acetyl-CoA to malonyl-CoA, which is the source of acetyl units in the elongation process 

(Drackley, 2000). Conversion of malonyl-CoA to saturated long chain FA is mediated by 

FA synthase complex, that consist of two multifunctional polypeptide chains, each 

containing seven distinct enzyme activities necessary to elongate a growing FA (Smith, 

1994). In non lactating ruminants, adipose tissue is the principal site for de novo FA, with  

16:0 being the main end product (Drackley, 2000). Palmitic acid may be desaturated 



  Scientific background and objectives 

  

29 

and/or elongated to form other FA. The 18:0 present in adipose tissue lipids may arise 

from intestinal supply or by conversion of 16:0 by the action of FA elongase.   

Stearoyl-CoA desaturase (SCD) enzyme, also known as 9-desaturase plays a key role in 

the lipid metabolism, because it introduces a cis-double bond at the Δ9 position in SFA 

and octadecenoic TFA. The 18:0 and 16:0 are the main substrates for SCD, which are 

converted into 18:1 cis-9, 16:1 cis-9 (palmitoleic acid), respectively (Ntambi and 

Miyazaki, 2004). However, other SFA, and unsaturated FA, including 18:1 trans-11 also 

are substrates for the SCD. Vaccenic acid, formed during ruminal BH of both 18:2n-6 and 

18:3n-3, in tissues is converted by SCD in 18:2 cis-9, trans-11 (Figure1.3) (Griinari et 

al., 2000). Palmquist et al. (2004) and Griinari et al. (2000) showed that the primary 

source of 18:2 cis-9, trans-11 is endogenous synthesis, so content of 18:2 cis-9, trans-11 

in muscle and milk depend mainly the availability of precursor (18:1 trans-11) and the 

SCD.  

18:3 cis-9, cis-12, cis-15 18:2 cis-9, cis-12

18:2 cis-9, trans-11

18:1 trans-11 18:1 trans-11

18:0

SCD

Rumen
Tissues

Mammary gland

18:0 18:1 cis-9
SCD

Incorporation

18:3 cis-9, cis-12, cis-15

18:2 cis-9, cis-12

18:2 cis-9, trans-11

 

 Figure 1. 3 Pathways of 18:2 cis-9, trans-11 biosynthesis  
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The factors that might affect the expression and activity of SCD have been extensively 

studied, although mainly in laboratory animals and humans. Ntambi and Miyazaki (2004) 

in their revision about regulation of SCD showed that developmental processes and 

dietary (e.g. PUFA, vitamin A), hormonal (e.g. insulin, glucagon) and environmental 

factors (e.g. temperature changes, metals) affect the SCD expression/activity in liver and 

adipose tissue from rodents. However, there is very limited information about regulation 

of expression and activity of SCD in ruminants. 

Polyunsaturated FA, especially of the n-6 and n-3 series inhibits the SCD expression 

(Sessler et al., 1996, Sessler and Ntambi, 1998). The inhibitory effect of dietary PUFA on 

lipogenic enzymes, including SCD are related to the degree of unsaturation and the chain 

length of FA (Clarke and Jump, 1993, Sessler et al., 1996). The 18:3n-3 showed to be 

more effective in suppression the SCD gene expression in murine adipocytes than 18:2n-6 

(Sessler et al., 1996). In accordance with this result, Herdmann et al. (2010) reported 

recently the decrease of SCD protein expression in cattle muscle and subcutaneous 

adipose tissue induced by linseed oil (rich in 18:3n-3) supplementation of diets. Our 

studied also showed that dietary replacement of sunflower oil (rich in 18:2n-6) with 

linseed oil decreases the SCD messenger (mRNA) abundance in lamb muscle (Jerónimo 

et al., 2008). Feeding forage or pasture compared to concentrate results in a depression 

the SCD expression in adipose tissue of lambs (Daniel et al., 2004b) and steers (Duckett 

et al., 2009), probably due to increases the 18:3n-3 supply. Moreover, the higher 

plasmatic insulin concentration in animals fed concentrate diets than fed forage diets also 

might explain the higher SCD expression in adipose tissue from lambs fed concentrate 

(Daniel et al., 2004b), so insulin increases significantly the expression of ovine SCD in 

cultured ovine adipose tissue explants (Daniel et al., 2004a). Waters et al. (2009) reported 

higher inhibitory effect of dietary fish oil (rich in n-3 LC-PUFA) on SCD gene expression 
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in cattle muscle when compared with soybean oil (rich in 18:2n-6). However, some 

studies not found effect of the changed the PUFA dietary supply on SCD expression and 

activity in ruminant tissues (Archibeque et al., 2005, Pavan and Duckett, 2007, Bernard et 

al., 2009). Recently was reported that SCD protein expression also may be regulated by 

plant secondary compounds. Vasta et al. (2009c) showed that supplementation of forage-

based diet with CT from quebracho increases the SCD protein expression in lamb muscle.   

In tissues the essentials FA, 18:2n-6 and 18:3n-3 can be desaturated and elongated to 

produce LC-PUFA (Figure 1.4). The both n-6 and n-3 PUFA are metabolized by a same 

desaturation/elongation pathway. 

18:2n-6 18:3n-3

18:3n-6 18:4n-3

20:3n-6 20:4n-3

20:4n-6 (ARA) 20:5n-3 (EPA)

22:4n-6 22:5n-3 (DPA)

22:5n-6 22:6n-3 (DHA)

∆6-desaturase

elongase

∆5-desaturase

elongase

elongase

24:4n-6 24:5n-3

β-oxidation

24:5n-6 24:6n-3

∆6-desaturase

n-6 n-3

 

Figure 1. 4 Biosynthesis of n-6 and n-3 long chain polyunsaturated fatty acids   

(adapted from Brown (2005)) 
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This pathway involves 5- and 6-desaturases and chain-elongation enzymes. The 6- 

and 5-desaturase introduce cis-double bonds at the Δ6 and Δ5 positions, respectively 

and elongases adds two carbons units in carbon chain. In last step of 18:2n-6 and 18:3n-3 

conversion the chain is shortened in two carbons by β-oxidation. Linoleic acid is the 

precursor of ARA, and 18:3n-3 can be converted to EPA, DPA and DHA acids.  

The conversion 18:3n-3 to n-3 LC-PUFA has been extensively studied, due to benefic 

proprieties of n-3 LC-PUFA. In humans, as well as in ruminants the conversion of 18:3n-

3 to their LC-PUFA is very limited (Burdge et al., 2003, Givens and Gibbs, 2008). Both 

n-3 and n-6 PUFA compete for same desaturase and elongase enzymes, and although 

these enzymes have preference for the n-3 PUFA (Brenner, 1989), higher dietary intake 

of 18:2n-6 limits the 18:3n-3 conversion to n-3 LC-PUFA (Burdge and Calder, 2005) and 

result in greater conversion of 18:2n-6 to n-6 LC-PUFA (Palmquist, 2009). Moreover, 

results obtained with rodents suggest that n-3 and n-6 LC-PUFA synthesis may be limited 

by dietary PUFA supply, so 6- and 5-desaturase mRNA levels decreases when n-6 

PUFA and n-3 PUFA are supplied from diet (Cho et al., 1999a, Cho et al., 1999b). 

Recently was reported that supplementation of diet with 18:3n-3 (linseed oil) decreases 

the 6-desaturase protein level in cattle muscle (Herdmann et al., 2010). However, this 

study showed that despite the lower 6-desaturase protein abundance, the intramuscular 

content of individual n-3 LC-PUFA increased with 18:3n-3 supplementation.   

Saturated FA and MUFA are mainly deposited in triacylglycerols, whereas PUFA are 

mainly found in phospholipids. Thus, the 18:1 cis-9, 18:1 trans-11 and 18:2 cis-9, trans-

11 present in meat are much more predominant in NL than PL (Wood et al., 2008). In 

triacylglycerols the PUFA, mainly of 18:2n-6 and 18:3n-3 represent 2 to 30 g/ 100 g of 

total triacylglycerols FA (Raes et al., 2004). Phospholipids containing high levels of 
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PUFA (20-50 g/100 g of total FA in phospholipids), mainly 18:2n-6 and 18:3n-3, as well 

their longer chain derivatives, as ARA, EPA, DPA and DHA (Raes et al., 2004). 

However, the 18:2n-6 and 18:3n-3 are deposited differentially between triacylglycerols 

and phospholipids, which 18:2n-6 is deposited preferentiality in phospholipids, while the 

18:3n-3 is more equal partitioned between both lipids fractions (De Smet et al., 2004, 

Wood et al., 2008). Although, the distribution of these major FA is established, there is 

very little information about deposition of several FA between PL and NL fractions, as 

the most of the minor BI.   

The triacylglycerols FA composition is influenced by dietary FA, but in lesser extension 

in ruminants than in monogastrics, due to ruminal BH of dietary FA (Raes et al., 2004, 

Scollan et al., 2006). One function of the unsaturated FA is maintaining the appropriate 

fluidity of cell membranes and changes in the fluidity of cell membranes can affect 

membrane functions and cellular activity (Wahle, 1983, Spector and Yorek, 1985). Thus, 

the phospholipids  FA composition is strictly controlled in order to maintain membrane 

properties, being less influenced by diet (Raes et al., 2004). However, differences in 

phospholipids FA composition caused by diet are observed (Scollan et al., 2006), and FA 

composition of PL follow the same general pattern of NL (Cooper et al., 2004, Demirel et 

al., 2004, Nuernberg et al., 2005). Nevertheless, some works suggest that there is 

adaptive mechanisms in phospholipids that allow respond of changes in FA availability, 

maintaining the membranes proprieties (Lands et al., 1990, Scislowski et al., 2004). 

Wood et al. (2008) reviewed the results of Warren et al. (2008) suggest that the capacity 

for incorporation of PUFA into phospholipids is limited. Possibly this limitation is due to 

strong regulation of FA composition, which may limit any strategy for meat enrichment 

in PUFA.  
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1.4. DIETARY STRATEGIES FOR IMPROVING THE FATTY ACID COMPOSITION OF LAMB 

MEAT 

Meat FA composition is affected by several factors, such as intrinsic factors linked animal 

(e.g. species, breed, type of muscle, age/body weight) and environmental factors (e.g. 

nutrition, season, climate and accommodation). Fatness is the major animal factor 

influencing the FA composition of meat. The animal factors affects the fat content of 

meat and fat content itself have an important impact on FA composition, due differential 

FA deposition between triacylglycerols and phospholipids (Wood et al., 2008).  As 

referred above, triacylglycerols is characterized by a high proportion of SFA and MUFA, 

whereas phosoholipids show a high proportion of PUFA (De Smet et al., 2004, Raes et 

al., 2004, Wood et al., 2008). With increasing the body fatness, the deposition of fat in 

muscle occurs mainly in the NL fraction, whereas the content of phospholipids in cell 

membrane remains very fairly constant (Figure 1.1). This variation is associated with an 

increased the proportion of SFA and MUFA and a decreased the proportion of PUFA in 

intramuscular fat, due to effect of dilution the phospholipids fraction in total lipids. 

However, differences in intramuscular fat composition caused by intrinsic animal factors 

are smaller than those induced by dietary factors (De Smet et al., 2004). In monogastrics 

animals the quality of meat can be relatively easy improved by dietary manipulation. 

However, in ruminants the BH of unsaturated FA constitute a limitation of enrichment of 

PUFA in ruminant fat. Modifying the ruminal BH of dietary PUFA through animal diets 

may be a way to improve the healthiness of ruminant fat. Thus, dietary strategies that can 

change the ruminal BH, increasing the dietary PUFA and benefit BI (18:2 cis-9, trans-11 

and 18:1 trans-11) that escapes from rumen has been sought. It is identified that several 

dietary factors are able to modulate the ruminal BH, such as amount and type of lipid 

supplement, basal diet and plant secondary compounds, resulting in differences in the 
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amounts of PUFA that escape from rumen BH and in type and distribution of BI. 

Although several studies did not evaluated the ruminal BH and rumen outflow of FA, 

showed that dietary manipulation is the most effective means of improving the FA 

composition of ruminant meat (Scollan et al., 2006, Sinclair, 2007).  

 

1.4.1. Basal diet 

The composition of basal diet is able to modify the ruminal BH and consequently the 

intramuscular FA composition. Ruminal BH of C18 FA reduces with increase the 

concentrate proportion in diet (Kalscheur et al., 1997, Kucuk et al., 2001, Sackmann et 

al., 2003, Loor et al., 2004), apparently because of the lower pH that is typically observed 

on these diets (Kalscheur et al., 1997). Moreover, diets rich in concentrate change the 

rumen BH pathways of PUFA that favours the production of 18:2 trans-10, cis-12 and 

18:1 trans-10 instead 18:2 cis-9, trans-11 and 18:1 trans-11 (Griinari and Bauman, 1999), 

resulting in greater flow of 18:2 trans-10, cis-12 and 18:1 trans-10 to duodenum 

(Sackmann et al., 2003, Loor et al., 2004). Thus, diets rich in concentrate results in lower 

accumulation of 18:2 cis-9, trans-11 and 18:1 trans-11 in lamb muscle as compared to 

diets rich in forage and pasture (Table 1.2). Generally, in muscle from lambs fed high-

concentrate diets the 18:1 trans-10 is the predominate 18:1 trans isomer, however the 

content of 18:2 trans-10, cis-12 is residual (Daniel et al., 2004b, Bessa et al., 2005). 

Forage and pasture has shown to be one of the best strategies to increase the 

intramuscular content of 18:1 trans-11 and 18:2 cis-9, trans-11, as well as n-3 PUFA 

(Raes et al., 2004, Schimd et al., 2006, Scollan et al., 2006, Sinclair, 2007). 

 

 



 

 

Table 1. 2 Effect of basal diet on 18:1 trans-10, 18:1 trans-11, 18:2 trans-10, cis-12 and 18:2 cis-9, trans-11 

contents (% of total fatty acids) in intramuscular fat of lambs 

 18:1t10 18:1t11 18:2t10c12 18:2c9t11 Reference 

Pasture 3.34
1 

- 0.87 Santos-Silva et al. (2002) 

Pasture supplemented with concentrate 3.16
1 

- 0.72 

Concentrate 2.87
1 

- 0.24 
      

Pasture – low feed rate 4.71
1
 - 0.94 Aurousseau et al. (2004) 

Pasture – high feed rate 5.02
1
 - 1.29 

Concentrate – low feed rate 3.12
1
 - 0.60 

Concentrate – high feed rate 3.23
1
 - 0.53 

      

Pelleted dehydrated grass 0.38 2.25 0.01 1.29 Daniel et al. (2004)
2
 

Concentrate 1.73 0.85 0.02 0.74 
      

Pasture  - 5.7 - 1.90 Nuernberg et al. (2005) 

Concentrate - 3.8 - 1.08 
      

Pelleted dehydrated lucerne 0.58 2.44 0.00 0.85 Bessa et al. (2005) 

Concentrate 3.83 0.96 0.05 0.55 
      

Pasture 4.4
1 

- 1.1 Aurousseau et al. (2007a) 

Pasture + Concentrate for a short time 4.7
1 

- 1.0 

Pasture + Concentrate for a long time  2.0
1 

- 0.9 

Concentrate 1.6
1 

- 0.7 
1
 – Sum of all 18:1 trans isomers; 

2
 – Fatty acids reported as mol/100 mol fatty acid methyl ester. 

3
6
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Lambs fed forage or pasture compared with concentrate have a 2-7-fold increase of  

18:3n-3 in muscle (Aurousseau et al., 2004, Daniel et al., 2004b, Bessa et al., 2005, 

Nuernberg et al., 2005, Demirel et al., 2006, Aurousseau et al., 2007a). Although the 

efficiency of 18:3n-3 conversion to n-3 LC-PUFA is low, some studies showed that 

feeding pasture or forage increases the concentration of n-3 LC-PUFA in lamb muscle 

(Santos-Silva et al., 2002a, Bessa et al., 2005, Demirel et al., 2006, Aurousseau et al., 

2007a), mainly in phospholipids (Nuernberg et al., 2005, Aurousseau et al., 2007b). 

These authors found that concentration of n-3 LC-PUFA was 1.2-2.5-fold more in muscle 

of lambs fed forage or pasture than in lambs fed diets rich in concentrate.  

Within forages, it was reported that their botanical composition affects the FA 

metabolism in rumen (Lourenço et al., 2008b) and particular forages may provide added 

benefits (Lourenço et al., 2010). As botanically diverse pasture and silage that result in 

greater proportion of BI in rumen content of lambs, particularly in 18:1 trans-11 and 18:2 

cis-9, trans-11 despite the similar precursor proportion supply (Lourenço et al., 2007a, 

Lourenço et al., 2007b). These results have been associated with presence of plant 

secondary metabolites in botanically diverse pastures that might affect microbial BH 

activity in rumen (Lourenço et al., 2008b).   

 

1.4.1. Lipid supplementation 

Inclusion of lipid sources rich in PUFA in ruminant diets has been extensively explored 

as approach to improve the nutritional value of its products. Unsaturated FA have a potent 

antimicrobial effects (Maia et al., 2007, Maia et al., 2010), changing the microbial 

ecology  and consequently ruminal BH. Drastic changes in BH pattern due unprotected 

lipid supplementation, namely a strong accumulation of 18:1 trans-11 and low 
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concentrations of 18:0, have been reported in vitro (Fievez et al., 2007). However, in vivo 

the effect of unprotected lipid supplementation on BH pattern is usually much less 

expressive. Dietary supplementation with vegetable oils rich in PUFA increases the 

rumen outflow of dietary PUFA, most individual BI and main end product of BH (18:0) 

(Table 1.3). In most dietary conditions, the supplementation of diets with vegetable oils 

result in a strong increases the rumen outflow of 18:1 trans-11 and 18:2 cis-9, trans-11. 

However, the effect of lipid supplementation on rumen FA metabolism varies with 

composition of the basal diet, and in case the diet rich in concentrate, the lipid 

supplementation induces to strong increases the rumen outflow of 18:1 trans-10 (Duckett 

et al., 2002, Loor et al., 2004), being in some cases the predominant 18:1 trans isomer in 

duodenum (Duckett et al., 2002). 

Bessa et al. (2005) compared the effect of the supplementation of concentrate based diet 

and dehydrated lucerne with 10% of soybean oil on intramuscular FA composition of 

lambs (Table 1.4), and reported that the supplementation of concentrate diet increases the 

contents of 18:1 trans-10 and 18:2 trans-10, cis-12 but not the 18:1 trans-11 and 18:2 cis-

9, trans-11. In contrast with concentrate, lipid supplementation of forage diet resulted in 

significant increase the content of 18:1 trans-11 and 18:2 cis-9, trans-11 in lamb muscle. 

Bas et al. (2007) and Manso et al. (2009) also not observed increase the 18:2 cis-9, trans-

11 in lamb muscle when supplemented concentrate based-diets with extruded linseed or 

sunflower oil.  

 

 

 



  

 

Table 1. 3 Effect of dietary supplementation with unprotected lipid sources rich in PUFA on fatty acid rumen outflow (g/day) 

1 – Sum of all 18:1 trans isomers; 2 – Fatty acid flow adjusted for 50 kg of body weight. 

 18:3n-3 18:2n-6 18:2c9t11 18:1t11 18:1t10 18:0 Reference/Animals 

Duodenal flow      

High-concentrate diet  1.58 30.74 0.19 5.02 3.43 180.6 Duckett et al. (2002) 

Beef steers High-concentrate diet + 2.37% corn oil 1.61 38.21 0.25 5.22 17.9 342.3 
       

High-concentrate diet 0.11 1.90 0.06 1.38
1 

16.1 Kucuk et al. (2004) 

Wether lambs High-concentrate diet + 3.2% soybean oil of DM 0.20 2.63 0.07 2.63
1 

27.5 

High-concentrate diet + 6.3% soybean oil of DM 0.23 2.91 0.08 9.07
1 

33.1 

High-concentrate diet + 9.4% soybean oil of DM 0.35 3.77 0.07 10.4
1 

51.8 
        

Forage and concentrate (65:35)  8.93 21.8 0.31 21.4 1.46 196.5 Loor et al. (2004)   

Dairy cows Forage and concentrate (65:35) + 3% linseed oil of DM 12.9 20.2 0.52 61.7 6.61 454.7 
        

Forage and concentrate (35:65)  8.92 36.5 0.31 26.0 20.2 201.7 Loor et al. (2004) 

Dairy cows Forage and concentrate (35:65) + 3% linseed oil of DM 29.6 42.8 0.86 139 50.6 313.7 

        

High-concentrate diet 0.17 1.53 0.004 2.62 - 21.7 Atkinson et al. (2006)
2 

Wether lambs High-concentrate diet + 3% high-linoleate safflower oil of DM 0.12 3.30 0.012 5.40 - 23.0 

High-concentrate diet + 6% high-linoleate safflower oil of DM 0.26 6.10 0.20 25.2 - 48.2 

High-concentrate diet + 9% high-linoleate safflower oil of DM 0.54 7.64 0.38 40.8 - 49.4 
        

Omasal flow        

Grass silage and concentrate (60:40)  1.5 5.53 1.93 14.9 1.3 237 Shingfield et al. (2008)  

Dairy cows 

 
Grass silage and concentrate (60:40) + 250 g of sunflower oil/day 1.2 8.68 4.77 30.2 4.1 408 

Grass silage and concentrate (60:40) + 500 g of sunflower oil/day 1.0 8.72 9.23 54.7 8.6 514 

Grass silage and concentrate (60:40) +  750 g of sunflower oil/day 0.9 12.5 11.6 126 20.6 672 

3
9
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Although some studies reported increases the 18:2 cis-9, trans-11 content in lambs 

muscle by supplementation of diets rich in concentrate with unsaturated vegetable lipid 

sources, these increases are small (Bolte et al., 2002, Kott et al., 2003, Boles et al., 2005, 

Berthelot et al., 2010). Intramuscular 18:2 cis-9, trans-11 content of lambs fed diets rich 

in concentrate supplemented with vegetable oils and oilseed rich in PUFA varied between 

0.08 and 1.45% of total FA. However the most values are below to 1% of total FA and 

the value more frequently observed is 0.44% of total FA (Table 1.4). Whereas in lambs 

fed only forage or pasture with vegetable oils or oilseed the intramuscular content of 18:2 

cis-9, trans-11 varied between 1.16 and 2.37% of total FA. Thus, supplementation of 

diets rich in concentrate with vegetable lipid sources rich in PUFA seems to be 

inadequate to obtain an expressive increases in  intramuscular content of 18:2 cis-9, trans-

11. Diets rich in concentrate are extensively used in ruminants fattening, and nutritional 

strategies that allow increased the CLA of meat from animals fed high-concentrate diet 

are needed.   

Feeding lipid sources rich in 18:2n-6 and 18:3n-3 will increase the 18:2 cis-9, trans-11 

content in ruminant meat (Schimd et al., 2006). However, different responses on 

intramuscular CLA content are observed between vegetable lipid sources, mainly due 

their content in 18:2n-6 and 18:3n-3. Bessa et al. (2007) and Noci et al. (2007a) reported 

that linseed oil (rich in18:3n-3) is less effective in the increase of 18:2 cis-9, trans-11 in 

lamb meat and beef, respectively than sunflower oil (rich in 18:2n-6). This response is in 

accordance with higher accumulation of 18:2 cis-9, trans-11 in ruminal fluid in cows fed 

sunflower oil than fed linseed oil (Loor et al., 2005), because during ruminal BH of 

18:3n-3 is not produced 18:2 cis-9, trans-11.  
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Despite the intense BH of dietary PUFA in rumen, generally feeding dietary unprotected 

lipid sources rich in 18:2n-6 and 18:3n-3 increases the muscle concentration of these FA, 

which improves the P/S ratio in meat (Table 1.4). However, the lipid sources rich in 

18:2n-6 have a negative effect on meat n-6:n-3 ratio (above 4), while feeding linseed oil 

or linseed improve the n-6:n-3 ratio. Previous data obtained by our group showed that 

blend of unprotected lipid sources rich in 18:2n-6 and rich in 18:3n-3 may a good 

approach to obtain simultaneously lamb meat enriched in CLA and n-3 PUFA (Bessa et 

al., 2007). 

Feeding a ruminally protected lipid sources allow increases the intestinal supply of 

unsaturated FA (Jenkins and Bridges Jr., 2007) and may be a good strategy to increase the 

18:3n-3 content in ruminant meats (Table 1.4). Demirel et al. (2004) and Kitessa et al. 

(2009) reported that lambs fed lipid sources of 18:3n-3 formaldehyde-treated has 1.8-fold 

more 18:3n-3 in muscle than lambs fed control diets. Cooper et al. (2004) showed that 

protected lipid source rich of 18:3n-3 is more effective in increase the 18:3n-3 in lamb 

muscle than linseed oil. Despite the protected source supply only one-third of 18:3n-3 

supplied by linseed oil, muscle from lambs fed protected lipids had 1.4-fold more 18:3n-3 

than lambs fed linseed oil. Sinclair et al. (2005) tested the effect of linseed oil adsorption 

in clay (vermiculite) in FA duodenal flow in wethers, and reported that linseed oil 

adsorbed in clay result in higher flow of 18:2n-6 and 18:3n-3 and lower flow of 18:0 than 

linseed oil or formaldehyde-treated whole linseed oil. Although improve the P/S ratio in 

lamb meat this strategies results in lower deposition of CLA in muscle than unprotected 

vegetable lipid source (linseed oil) (Cooper et al., 2004).     

 

 



 

 

 

Table 1. 4 Effect of dietary unsaturated lipid supplementation on intramuscular fatty acid composition (% of total fatty acids) of lambs  

 SFA MUFA PUFA 
Reference 

 16:0 18:0 18:1c9 18:1t11 18:2n-6 18:3n-3 n-3 LC-PUFA 18:2c9t11 

Dried grass + 4.4% megalac 25.4 14.5 34.2 3.83
1 

4.9 1.40 1.60 1.02 Wachira et 

al. (2002) Dried grass + 10.5%  whole linseed 21.8 14.3 30.9 6.61
1 

4.0 3.10 2.64 1.55 

Dried grass + 3.6% fish oil 25.0 11.9 25.9 7.06
1 

3.4 1.40 4.40 1.10 

Dried grass + 5.2% whole linseed + 1.8% fish oil 23.9 12.2 27.4 8.59
1 

3.5 1.99 3.26 1.66 
          

Concentrate  25.0 13.5 43.2 1.60 3.3 0.31 0.10 0.34 Bolte et al.  

(2002) Concentrate + 15 % high oleate safflower 23.3 15.3 41.2 3.60 2.9 0.48 0.18 0.56 

Concentrate + 17 % high linoleate safflower  23.3 14.4 36.1 6.20 4.5 0.37 0.13 0.87 
          

Concentrate 23.3 13.2 42.9 - 5.5 0.82 - 0.39
 

Kott et al.  

(2003) Concentrate + 15% safflower seeds 22.5 13.6 40.6 - 8.1 0.56 - 0.85
 

          

Concentrate + 4.3% linseed oil 20.7 17.5 31.6 5.17
1 

4.80 2.70 1.60 1.09 Cooper et al. 

(2004) Concentrate + 4.3% fish oil 24.9 13.6 28.5 4.79
1 

3.30 1.54 2.78 0.74 

Concentrate + 11.1%  Protected linseed and soybean (PLS) 20.3 15.7 29.5 2.78
1 

14.5 3.68 1.34 0.68 

Concentrate + 2.1% fish oil + 15.5% Algae 24.3 13.6 27.1 4.89
1 

4.10 0.79 6.11 0.75 

Concentrate + 15.5% Algae + 11.1% PLS 23.0 13.9 28.1 5.50
1 

10.1 2.50 4.03 0.82 
          

Dried grass + 3.5% megalac 23.1 12.8 38.6 1.67
1 

4.1 2.01 2.22 - Demirel et 

al. (2004) Dried grass + 8.5% protected whole linseed 22.9 13.6 27.3 1.97
1 

3.3 3.66 2.37 - 

Dried grass + 4.2% protected whole linseed + 1.5% fish oil 23.5 13.5 33.0 3.56
1 

3.5 2.41 4.17 -  
          

Lucerne hay 21.4 17.7 30.4 1.45 5.91 2.50 2.80 0.55 Santos-Silva  

et al. (2004) Lucerne hay + 8 % soybean oil 19.0 15.1 23.8 10.0 7.16 1.27 1.31 2.37 

Ground and pelleted dehydrated lucerne  24.0 15.5 33.9 2.18 6.42 1.62 1.54 0.64 

Ground and pelleted dehydrated lucerne + 8 % soybean oil  18.8 15.5 24.3 7.62 10.8 1.11 0.81 1.83 
          

Concentrate 22.3 10.5 34.6 - 8.44 - - 0.62 Boles et al.  

(2005) Concentrate + 3% safflower oil 20.6 9.51 28.3 - 14.0 - - 0.99 

Concentrate + 6% safflower oil 19.7 9.30 25.0 - 16.1 - - 1.45 
          

4
2

 



  

 

         1
 – Sum of all 18:1 trans isomers. 

 

Concentrate  24.4 14.1 35.6 0.96 6.4 0.36 0.68 0.55 Bessa et al.  

(2005) Concentrate + 10 % soybean oil  22.7 14.2 26.0 0.72 9.5 0.61 0.93 0.44 

Pelleted dehydrated lucerne  22.7 16.6 31.1 2.44 7.2 2.69 1.73 0.85 

Pelleted dehydrated lucerne + 10 % soybean oil 20.4 14.2 25.6 8.46 9.3 1.16 0.53 2.39 
          

Concentrate + 2% linseed oil + 1.5% corn oil (n-6/n-3–2.3) 20.9 12.4 28.9 3.50 16.5 2.1 2.75 0.46 Kim et al.  

(2007) Concentrate + 3.5% soybean oil (n-6/n-3–8.8) 20.8 12.7 25.0 3.80 19.5 0.9 2.24 0.48 

Concentrate + 1.6 % corn oil + 3.5% soybean oil (n-6/n-3–

12.8) 
19.0 12.7 23.4 3.30 22.1 0.7 2.65 0.44 

Concentrate + 2.2 % corn oil + 1.3% soybean oil (n-6/n-3–

15.6) 
17.6 12.3 18.8 2.70 28.0 0.9 3.16 0.23 

          

Pelleted dehydrated lucerne 17.0 15.2 29.4 1.03 10.2 2.01 3.47 0.44 Bessa et al.  

(2007) Pelleted dehydrated lucerne + 6% sunflower oil 16.0 13.7 24.2 4.75 15.7 0.51 1.63 1.50 

Pelleted dehydrated lucerne + 4% sunflower oil + 2% linseed 

oil 
16.7 13.9 25.8 5.25 12.0 1.52 1.81 1.49 

Pelleted dehydrated lucerne + 6% linseed oil 16.5 13.3 25.3 4.09 9.5 4.08 2.73 1.16 
          

Concentrate 23.9 14.4 40.0 0.85 3.90 0.48 0.45 0.07 Bas et al.  

(2007) Concentrate + 3% extruded linseed 24.4 12.6 39.7 0.65 3.65 0.78 0.42 0.08 

Concentrate + 6% extruded linseed 24.2 13.4 40.1 0.80 4.15 1.08 0.57 0.12 

Concentrate + 9% extruded linseed 23.8 14.2 37.7 0.90 4.15 1.34 0.59 0.08 
          

Concentrate 23.8 16.4 37.0 3.54
1 

5.99 0.44 1.73 0.35 Manso et al. 

(2009) Concentrate + 4% sunflower oil 22.2 17.3 35.2 6.30
1 

5.75 0.30 2.03 0.39 
          

Concentrate   23.3 21.9 37.5 1.28 5.78 0.92 1.12 1.04 Kitessa et al. 

(2009) Concentrate + 10% protected linseed oil and soybean seeds 

(3:7) 
21.3 21.7 34.0 1.05 9.85 1.67 1.53 1.08 

          

Concentrate   22.3 11.5 35.1 0.54 9.61 0.56 1.02 0.05 Berthelot  

et al. (2010) Concentrate + 10% extruded linseed 21.5 11.5 32.5 0.73 10.6 2.47 1.64 0.11 

4
3
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Supplementation of diets with lipid sources rich in 18:3n-3 (protected and unprotected 

sources) generally also increases the intramuscular concentration of n-3 LC-PUFA, with 

greater increase in EPA than DPA and DHA (Wachira et al., 2002, Demirel et al., 2004, 

Berthelot et al., 2010). Although feeding lipid sources rich in 18:3n-3 increases 

significantly the individual n-3 LC-PUFA, in some cases these increases are little 

expressive, reflecting the low conversion of 18:3n-3 to n-3 LC-PUFA. Sinclair (2007) 

reported that there is a poor and non-significant relationship between duodenal 18:3n-3 

flow and muscle content of EPA+DHA, being muscle content of EPA+DHA strongly 

related with duodenal flow of EPA+DHA. Supplementation of ruminant diets with 

preformed sources, as fish oil or marine algae has been shown to be more effective to 

increase the EPA and DHA in lamb meat than lipid sources rich in 18:3n-3 (Wachira et 

al., 2002, Cooper et al., 2004, Demirel et al., 2004).  

In contrast with vegetable lipid sources, inclusion of fish oil in ruminant diets induce to 

drastic changes in BH pattern in vivo, decreasing the flow of 18:0 to the duodenum and 

increasing the flow of 18:1 trans-11 (Kim et al., 2008), suggesting that fish oil inhibit the 

last step of biohydrogenation. The n-3 LC-PUFA (EPA and DHA) are more toxic for BH 

bacteria than main PUFA present in vegetables oils and oilseeds, being the B. 

proteoclasticus group the most sensitive ruminal species to toxic effects of PUFA (Maia 

et al., 2007, Maia et al., 2010). Thus, it would be expected that fish oil reduces the 

stearate producers‘ bacteria in rumen. However, Kim et al. (2008) analysing the bacterial 

population in rumen by quantitative PCR (qPCR) of 16S rRNA genes did not found clear 

effect of fish oil on number of B. proteoclasticus. Nevertheless the microbial ecology of 

the rumen was substantially changed with addition of fish oil in diets, showing that fish 

oil has an inhibitory effect on the BH of FA in the rumen via its influence on microbial 

ecology. 
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Sinclair et al. (2005) reported that dietary supplementation with fish oil or with blend of 

fish oil with marine algae decrease the sheep duodenal flow of 18:0 and increase the  flow 

of 18:1 trans when compared with linseed oil. In accordance with this result Wachira et 

al. (2002) and Cooper et al. (2004) found lower proportion of 18:0 in muscle and adipose 

tissue of lambs fed fish oil or blend of fish oil with algae than lambs fed whole linseed or 

linseed oil. However, the effect on total 18:1 trans in is less consistently. These two 

studies also showed that utilization of fish oil alone or mixture with algae is less efficient 

to increase the CLA content in lamb tissues when compared to lipid sources rich in 

PUFA. So inclusion of fish oil or blend of fish oil with algae in diets result in similar 

levels of 18:2 cis-9, trans-11 to control diet (without PUFA supplementation) (Cooper et 

al., 2004), but lower than diets supplemented with lipid sources rich in 18:3n-3 (whole 

linseed or linseed oil) (Wachira et al., 2002, Cooper et al., 2004). Nevertheless, 

combining fish oil with whole linseed led to similar levels of 18:2 cis-9, trans-11  to 

whole linseed alone (Wachira et al., 2002).   

 

1.4.2. Plant secondary compounds 

The effects of plant secondary compounds, as essential oils, saponins and tannins on 

ruminal BH is presently under extensive research. These classes of plant secondary 

metabolites are known for their ability to influence the ruminal microbes and several 

studies showed that some these metabolites have potential to manipulate the ruminal BH. 

However, evidence of the effects of plant secondary metabolites on BH has been obtained 

mainly by in vitro studies, so the effect of the most these metabolites in ruminal 

ecosystem is not known. Durmic et al. (2008) observed that some ethanolic extracts and 

essential oils from Australian plants to inhibit the growth and/or activity of pure cultures 

of some bacteria involved in ruminal BH, such B. fibrisolvens and B. proteoclasticus in 
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batch culture incubations. This study also showed that some plants inhibited the 

saturation of 18:2n-6 and other BI such 18:2 cis-9, trans-11 and 18:1 trans-11. In 

addition, Lourenço et al. (2009) reported that essential oil rich in monoterpenes limonene 

and carvone induces to accumulation of 18:2 cis-9, trans-11 in vitro. Using a continuous 

culture fermenter system, Lourenço et al. (2008a) showed that cinnamaldehyde, a main 

component of cinnamon bark essential oil (Cinnamon cassia) affected strongly the 18:2n-

6 BH, causing a shift from the major BH pathways to a secondary pathway as evidenced 

by higher proportion of 18:2 trans-10, cis-12 and 18:1 trans-10 in fermenter effluent.  

The effect of saponins on ruminal BH has been inconsistent. It was reported that range of 

saponins inhibited the 18:2n-6 metabolism in mixed digest in vitro (N. McCain, data 

published by Lourenço et al., 2010). In accordance with this results Wallace et al.  (1994) 

observed than a Yucca schidigera extract (rich in saponin) affect selectively the growth of 

ruminal bacteria, inhibiting the growth of B. fibrisolvens more than other bacteria. This 

result suggests that saponins might be successful used in controlling FA BH (Wallace et 

al., 1994). However, recently was reported that extract of Y. schidigera and triterpene 

saponin from Quillaja bark are inefficient in modifying the BH of 18:3n-3 in vitro 

(Lourenço et al., 2008a, Khiaosa-Ard et al., 2009). Differences between results have been 

attributed to different types of saponins used (Lourenço et al., 2008).   

Two recent in vitro studies have shown that CT extracts from Acacia mearnsii and 

Schinopsis lorentzii (quebracho) inhibited the conversion of 18:1 trans-11 to 18:0, while 

no effect was detected on 18:2 cis-9, trans-11 production (Khiaosa-Ard et al., 2009, 

Vasta et al., 2009a). The inhibitory effect of CT on ruminal BH was confirmed in vivo 

studies, which the inclusion of quebracho tannins to lamb diets reduces the ruminal BH, 

particularly the last step of the BH, leading to accumulation of 18:1 trans-11 in rumen 

(Vasta et al., 2009b, Vasta et al., 2010b). The accumulation of 18:1 trans-11 rumen is 
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consistent with reported effects of CT on rumen microbial population. Durmic et al. 

(2008) showed that an extract deriving from A. mearnsii has a selective inhibitory effect 

on B. proteoclasticus but not on B. fibrisolvens. Recently, Vasta et al. (2010b) also 

showed that inclusion of quebracho tannins in lambs diets decreased the relative 

abundance of B. proteoclasticus in rumen content, however increased the abundance of B. 

fibrisolvens. These results show that inclusion of CT sources in ruminant diets may be a 

useful tool to increase the rumen ouflow of 18:1 trans-11.  

To date, little information has been published on the effect of diet rich in CT on 

intramuscular FA composition of lambs. Moreover, the effects reported not have been 

consistent (Table 1.5). In accordance with inhibitory effect of CT on ruminal BH 

reported in studies in vitro and in vivo, Vasta et al. (2009b, 2009c) showed that lambs fed 

diets supplemented with quebracho powder contained lower proportion of 18:0 and 

higher proportions of 18:1 trans and PUFA in muscle than lambs fed control diet. 

Nevertheless, these authors not found significantly effect on content of 18:2 cis-9, trans-

11.Vasta et al. (2007) showed that carob pulp inclusion in diets decreased the content of 

18:1 trans-11 and 18:2 cis-9, trans-11 in lamb muscle. In contrast, lambs fed fresh sulla 

as sole diet have 1.98-fold more 18:2 cis-9, trans-11 in muscle than lambs fed 

concentrate. These differences observed in results may be due to differences in type and 

amount of CT used in experiments.  



 

 

Table 1. 5 Effect of dietary condensed tannins sources on intramuscular fatty acid composition (% of total fatty acids) of lambs 

 

 

 

 18:0 18:1t11 18:1trans 18:2c9t11 18:2n-6 18:3n-3 Reference 

Control  14.5 
- 

2.42
 

0.46 17.4 1.18 Priolo et al. (2005) 

Fresh sulla - 1.78% of CT DM  13.9 
- 

1.61
 

0.91 11.5 4.98 
        

Control 9.86 1.82 - 0.73 14.8 6.84 Vasta et al. (2007) 

Control + carob pulp - 2.7% of CT DM 8.09 0.95 - 0.48 11.2 4.78 
        

Control 15.2 2.19 - 0.58 8.20 1.43 Vasta et al. (2009) 

Control + quebracho powder  - 4.0% of CT DM 13.7 3.71 - 0.62 11.7 2.01 
        

Control 14.2 0.69 2.39 0.46 9.2 1.00 Vasta et al. (2009) 

Control + quebracho powder - 4.0% of CT DM  11.5 1.32 5.23 0.96 10.7 1.38 

4
8
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1.5. RESEARCH OBJECTIVES 

Facing to nutritional recommendations the alteration of the FA composition of ruminant 

edible products is need and has been under intense research. In this study, we aimed 

explore some nutritional strategies in order to improve the nutritional value of 

intramuscular fat of lamb meat. Thus, we conducted three in vivo trials with Merino 

Branco lambs, with following specific objectives: 

 To determine the best blend of sunflower and linseed oils to obtain the  

simultaneously lamb meat enriched in n-3 PUFA and CLA (Chaper 2);  

 To investigate the deposition of C18 BI in the intramuscular PL and NL fractions 

and effect of dietary replacement of sunflower oil with linseed oil on its deposition 

in both lipid fractions (Chaper 3);   

 To evaluate the effect of sodium bentonite inclusion in diets supplemented or not 

with blend of vegetable oils rich in PUFA on intramuscular FA composition of 

lamb (Chaper 4);   

 To investigate the effect of grape seed extract and leaves and stems of Cistus 

ladanifer shrub inclusion in diets supplemented or not with blend of vegetable oils 

rich in PUFA on the ruminal BH and intramuscular FA composition (Chaper 5), 

as well as on lipid oxidative and colour stability during storage (Chaper 6). 
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ABSTRACT 

The effect of stepwise replacement of dietary sunflower oil (SO) with linseed oil (LO) on 

carcass composition, meat colour and FA composition of intramuscular lipids of lamb 

meat was investigated. Thirty-six lambs were fed one of four diets consisting of pellets of 

lucerne with oil (60 g/kg DM): the diet varied in the composition of oil added and were: 

100% SO; 66.6% SO plus 33.3% LO; 33.3% SO plus 66.6% LO; and 100% LO. The 

experimental period was 7 weeks. Live slaughter weight, hot carcass weight and 

intermuscular fat percentage of chump and shoulder increased linearly with replacement 

of SO by LO. Total FA content of longissimus dorsi muscle and PL and NL were not 

affected by the treatments. Replacement of SO with LO increased the content of 18:3n-3 

and total n-3 LC-PUFA and decreased the 18:2n-6, total n-6 LC-PUFA and 18:2 cis-9, 

trans-11 in meat lipids. Maximum CLA concentration (42.9 mg/100 g fresh muscle) was 

observed with 100% of SO, decreasing linearly by SO with LO replacement. Maximum 

n-3 LC-PUFA was predicted to be 27 mg/100 g of fresh muscle at 78% of SO with LO 

replacement. Considering both CLA and n-3 LC-PUFA, the maximum levels were 

estimated to be reached at 52% of replacement of SO with LO. The utilization of blends 

of SO and LO is a good approach for obtaining lamb meat enriched with both CLA and n-

3 LC-PUFA.   

 

Keywords: lamb meat; conjugated linoleic acid; polyunsaturated fatty acids, sunflower 

oil; linseed oil 
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2.1. INTRODUCTION 

Ruminant meats have been associated with an increase in the risk of cardiovascular 

diseases, due to their high content of SFA (Givens, 2005). However, ruminant meats may 

also be a good dietary source of some nutrients with health benefits including some FA 

such as LC-PUFA and CLA. The decrease of SFA and the increase of health-beneficial 

FA has been a main topic of ruminant meat research. The beneficial effects of EPA and 

DHA acids are well documented and include anti-atherogenic, anti-thrombotic and anti-

inflammatory actions
 
(Givens et al., 2006). It is important to increase the intake of EPA 

and DHA in the human diet because the synthesis of these FA from dietary 18:3n-3 is 

very limited (Burdge and Calder, 2005). Although, food of marine origin are the richest 

sources of EPA and DHA, its contribution to human diet in most Western countries is low 

(Givens and Gibbs, 2008). Thus, the enrichment of foods consumed in relatively high 

quantities with EPA and DHA is one option to increase the intake of these n-3 PUFA. 

There are opportunities to increase the concentration of n-3 LC-PUFA in ruminant meats 

(Givens et al., 2006). The inclusion of 18:3n-3 source in lamb diets, such as forages
 

(Bessa et al., 2005), pastures
 
(Santos-Silva et al., 2002a), linseeds (Wachira et al., 2002, 

Demirel et al., 2004) or linseed oil
 
(Cooper et al., 2004, Bessa et al., 2007) increases the 

concentration of n-3 LC-PUFA in meat.  

The CLA acronym refers to a group of positional and geometric isomers of 18:2n-6, in 

which the double bonds are conjugated, and many studies suggest that CLA exhibits 

anticarcinogenic, anti-adipogenic, anti-diabetogenic, anti-atherogenic and anti-

inflammatory effects (Wahle et al., 2004). Ruminant fats are among the richest natural 

sources of CLA isomers, particularly of the rumenic acid (18:2 cis-9, trans-11), and are 

the main sources of these isomers in the human diet
 
(Chin et al., 1992). The 18:2 cis-9, 

trans-11 is formed during the ruminal BH of 18:2n-6 to stearic acid (Harfoot and 
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Hazelwood, 1997) and by endogenous conversion of 18:1 trans-11 by ∆9-desaturase in 

tissues (Griinari et al., 2000). Feeding lipid sources rich in 18:2n-6 and 18:3n-3 will 

increase the 18:2 cis-9, trans-11 content of ruminants meat
 
(Santos-Silva et al., 2004, 

Bessa et al., 2005, De La Torre et al., 2006, Bessa et al., 2007). However, feeding linseed 

oil (rich in 18:3n-3) seems to be less effective in the increase of 18:2 cis-9, trans-11 in 

muscle than sunflower oil (rich in 18:2n-6)
 
(Bessa et al., 2007, Noci et al., 2007a). Bessa 

et al. (2007) observed that a blend of sunflower and linseed oils may be a good approach 

to obtain simultaneously an enrichment in n-3 PUFA and CLA in lamb meat. Thus, in this 

work we intended to further explore this approach, studying more levels of stepwise 

substitution of sunflower oil (SO) with linseed oil (LO) in order to determine the best 

blend, as well as to extend the FA analysis to neutral and polar muscle lipid fractions. 

 

2.2. MATERIALS AND METHODS 

2.2.1. Animals management and sampling procedures 

Animal handling followed the EU directive 86/609/EEC, concerning animal care. Thirty-

six Merino Branco ram lambs were used in a trial carried out in the Centro de 

Experimentação do Centro Alentejo (Reguengos de Monsaraz, Portugal). The lambs were 

born in September 2005, and were reared on pasture with their dams until weaning, that 

occurred at about 90 days of age. The average initial weight of lambs was 22.9 ± 2.78 kg 

(mean ± SD).  Animals were randomly assigned to four groups of nine lambs each. The 

four experimental diets were as follows: pelleted dehydrated lucerne with sunflower oil 

(S); pelleted dehydrated lucerne with a blend of 66.6% of sunflower oil and 33.3% of 

linseed oil (2SL); pelleted dehydrated lucerne with a blend of 33.3% of sunflower oil and 

66.6% of linseed oil (S2L); pelleted dehydrated lucerne with of linseed oil (L). The target 
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for oil inclusion was 60 g/kg on a dry matter (DM) basis, resulting in pellets with ether 

extract range between 70 and 76 g/kg of DM. The diets were prepared in an industrial 

unit and oil was sprayed over the pelleted dehydrated lucerne. The chemical composition 

of the diets is presented in Table 2.1.   

 

Table 2. 1 Chemical composition of the experimental diets. 

 SO replaced with LO (%)
1 

 
0 33.3 66.6 100 

g/kg dry matter 

Crude protein 153 153 153 152 

Ether extract 70 71 72 76 

NDF
2
 500 482 485 481 

 

Fatty acid composition (% of total fatty acids) 

16:0  8.2 8.3 7.9 7.0 

18:0  2.4 3.0 3.3 3.4 

18:1 cis-9 20.4 19.5 17.7 15.6 

18:2n-6  57.1 43.9 30.6 18.3 

18:3n-3 6.3 20.4 33.6 48.0 
1 0% of sunflower oil (SO) by linseed oil (LO) replacement – diet S; 33.3% of SO with LO replacement – diet 2SL; 
66.6% of SO with LO replacement – diet S2L; 100% of SO with LO replacement – diet L; 2 Neutral detergent fibre. 

 

After an adaptation period of 7 days to the experimental conditions, lambs stayed on trial 

for 7 weeks. Feed was offered daily at morning at a rate of 110% of ad libitum intake 

calculated by daily refusal weighing. The animals were weighed weekly just before 

feeding. At the end of trial, lambs were transported to the experimental abattoir of the 

Unidade de Investigação em Produção Animal – Instituto Nacional de Recursos 

Biológicos (UIPA-INRB; Vale de Santarém, Portugal). After weighing, to obtain the live 

slaughter weight, lambs were stunned and slaughtered by exsanguination. Carcasses were 

immediately weighed to obtain the hot carcass weight, which was used to assess the 
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dressing percentage. The carcasses were kept at 10 ºC for 24 h, and then chilled at 2 ºC 

until the third day after slaughter. The kidney knob channel fat (KKCF) and the kidneys 

were removed and the carcasses were split along the spine. The left sides of the carcasses 

were separated into eight joints
 
(Santos-Silva et al., 2002b), and the chumps and the 

shoulders were dissected into muscle, subcutaneous and intermuscular fats and bone. The 

colour of longissimus muscle was measured at the level of the 13
th

 thoracic vertebra, 

using a Minolta CR-300 chromometer (Konica Minolta, Portugal) in the L*, a* and b* 

system after 1 hour of exposure to air to allow blooming. After removing the epimysium, 

the longissimus dorsi muscle was minced, vacuum packed, freeze-dried and stored at -80 

ºC until lipid analysis.  

 

2.2.2. Lipid analysis 

Fatty acid methyl esters (FAME) of feed lipids were prepared by a one-step extraction 

transesterification, using toluene and heptadecanoic acid (17:0) as internal standard, 

according to the procedure reported by Sukhija and Palmquist (1988).  

Intramuscular lipids were extracted by the method of Folch et al. (1957), using 

dichloromethane and methanol (2:1 v/v), instead of chloroform and methanol (2:1 v/v), as 

described by Carlson (1985). The lipid extract was separated into neutral (NL) and polar 

(PL) lipids, using a solid-phase extraction procedure described by Juaneda and Rocquelin
 

(1985) and silica gel cartridges (LiChrolut
®
 Si, 40-63µm, 500 mg/ml, Standard, Merck 

KGaA, Darmstadt, Germany). The NL fraction was eluted with dichloromethane and the 

PL fraction with methanol. The total lipids, NL and PL of muscle were transesterified 

with sodium methoxide followed by hydrochloric acid in methanol (1:1 v/v) as described 

by Raes, et al. (2001). Quantification of muscle lipids FAME was done using 
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nonadecanoic acid (19:0) as internal standard. The FAME were analysed using a 

HP6890A chromatograph (Hewlett- Packard, Avondale, PA, USA), equipped with a 

flame-ionization detector (GC-FID) and fused silica capillary column (CP-Sil 88; 100 m 

× 0.25 mm i.d. × 0.20 µm of film thickness; Chrompack, Varian Inc., Walnut Creek, CA, 

USA). Helium was used as the carrier gas and the injector split ratio was 1:50. The initial 

column temperature of 100 ºC was held for 15 min, increased to 150 ºC at 10 ºC/min and 

held for 5 min. Then, was increased to 158 ºC at 1 ºC/min, held 30 min, and finally 

increased to 200 ºC at a rate of 1 ºC/min, and maintained for 60 min. The injector and 

detector temperatures were 250 and 280 ºC, respectively. Identification was accomplished 

by comparison of sample peak retention times with those of FAME standard mixtures 

(Sigma, St. Louis, MO, USA). For the resolution of 18:1 cis-9 from both 18:1 trans-13 

and 18:1 trans-14 (that co-eluted in our GC-FID conditions) a second temperature 

program was used. The initial temperature column of 70 ºC was held for 4 min, increased 

to 110 ºC at 8 ºC/min and then increased to 170 ºC at 5 ºC/min, held 10 min, and finally 

increased to 220 ºC at a rate of 4 ºC/min, and maintained for 25 min. Thus, the relative 

amounts of 18:1 cis-9 and 18:1 trans-13/14 were calculated from the second temperature 

program and applied to the area of the common peak identified in initial temperature 

program. Also, the FA 20:3n-9 co-eluted with the 18:3 cis-9, trans-11, cis-15 in our GC-

FID conditions, its quantification was conducted as describe in Bessa et al. (2007). CLA 

reported here is the GC-FID peak that included the predominant 18:2 cis-9, trans-11 

isomer but also the minor 18:2 trans-7, cis-9 and the 18:2 trans-8, cis-10 isomers.  
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2.2.3. Statistical analysis  

The effect of dietary replacement of SO with LO was analyzed using the GLM procedure 

of SAS (SAS Institute, Inc., Cary, NC, USA). The model included the linear and 

quadratic effects of dietary oil replacement. The model used to study the growth 

performance and carcass traits include covariates. The average daily gain, live slaughter 

weight, hot carcass weight and dressing percentage were adjusted to the same initial live 

weight. The KKCF and muscle, bone, intermuscular fat and subcutaneous fat, obtained 

after chump and shoulder dissection and colour parameters were adjusted to hot carcass 

weight. Least square means and standard error of the mean (SEM) are presented in tables. 

 

2.3. RESULTS  

2.3.1. Growth performance, carcass composition and meat colour 

Average daily weight gain, live slaughter weight, hot carcass weight, dressing percentage, 

carcass and meat traits are presented in Table 2.2. The dietary replacement of SO with 

LO tended to increased the average daily weight gain (P = 0.065) and increased linearly 

the live slaughter weight, hot carcass weight and intermuscular fat percentage on chump 

and shoulder. The other carcass traits and meat colour parameters were not affected by 

the type of dietary oil used.  
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Table 2. 2 Effect of dietary replacement of sunflower oil (SO) with linseed oil (LO) on 

growth and carcass composition of Merino Branco lambs. 

 
SO replaced with LO (%)

1 

SEM 
P values 

 
0 33.3 66.6 100 Linear Quad. 

Initial live weight (kg) 25.4
 

23.5
 

21.5 21.2
 

0.77
2 

 

Average daily gain (g) 223 226 238 260 13.3 0.065 0.517 

Live slaughter weight (kg) 29.6 30.4 32.7 32.1 0.49 0.003 0.546 

Hot carcass weight (kg) 13.7 14.2 14.7 14.6 0.32 0.001 0.587 

Dressing percentage (%)
3
 45.2 45.5 43.8 44.1 0.67 0.070 0.962 

KKCF (%)
4
 2.0 2.7 2.4 2.7 0.23 0.221 0.282 

Muscle (%)
5
 58.0 57.0 57.0 55.6 0.85 0.084 0.797 

Intermuscular fat (%)
5
 11.2 11.9 11.9 12.8 0.40 0.011 0.816 

Subcutaneous fat (%)
5
 9.62 9.90 10.0 10.6 0.680 0.321 0.825 

Bone (%)
5
 19.9 19.9 19.6 19.7 0.54 0.764 0.925 

 

Colour
6 

    L* 38.6 39.6 39.7 38.4 0.73 0.543 0.090 

    a* 12.8 13.8 13.7 14.0 0.63 0.598 0.649 

    b* 4.4 5.0 5.0 5.4 0.44 0.505 0.848 
1 0% of sunflower oil (SO) by linseed oil (LO) replacement – diet S; 33.3% of SO with LO replacement – diet 2SL; 

66.6% of SO with LO replacement – diet S2L; 100% of SO with LO replacement – diet L; 2 Standard deviation; 3 

Dressing percentage = (hot carcass weight x 100/ live slaughter weight); 4 kidney and knob channel fat; 5 Average of 

chump and shoulder; 6 L* - lightness; a* - redness; b* - yellowness.     

 

2.3.2. Meat fatty acids 

The intramuscular fatty acids (IMFA) content and the pattern of muscle PL, NL fractions 

and total FA are presented in Tables 2.3, 2.4 and 2.5 respectively. The sums and ratio of 

FA from polar, neutral and total lipids are presented in Table 2.6.  

The dietary replacement of SO with LO did not affect the total FA concentration in PL, 

NL and total muscular FA, which averaged 17.0 ± 1.70, 74.8 ± 6.15, and 91.9 ± 6.75 

mg/g muscle DM (mean ± SEM), respectively. The NL:PL ratio did not changed among 

treatments and averaged 4.3 (19% of PL and 81% of NL).  
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 2.3.2.1. Meat polar lipids 

The major FA in PL were the 18:2n-6, that decreased from 24% in the lambs fed S diet to 

14% in the lambs fed L diet, and the 18:1 cis-9, that increased from 13% in the lambs fed 

S diet to 19% in the lambs fed L diet, followed by 16:0, that represented 11% of total FA, 

18:0, that represented 10% of total FA, and ARA, that decreased from 8% in the lambs 

fed S diet to 6% in the lambs fed L diet (Table 2.3). The dietary replacement of SO with 

LO did not affect the SFA, except for 17:0 which increased quadratically. The 

replacement of SO with LO decreased linearly all the n-6 PUFA and 17:1 cis-9. 

Otherwise, the 16:1 cis-9, 18:1 cis-9, 18:3n-3, EPA and DHA increased linearly and DPA 

increased quadratically with oil exchange. The 18:1 trans-11 and CLA were unaffected 

by treatments. The sum of the remaining area (others) included about 8.4% of 

dimethylacetals, 8.1% of BI other than 18:1 trans-11 and CLA, 0.25% of branched-chain 

FA and 4.2% of unidentified peaks. 

 

2.3.2.2. Meat neutral lipids 

The major FA in NL for all diets was the 18:1 cis-9 (32% of total FA), 16:0 (21% of total 

FA) and 18:0 (16% of total FA) (Table 2.4). The replacement of SO with LO in the diets 

decreased linearly the 18:1 trans-11, n-6 PUFA and CLA, increased linearly the 18:3n-3 

and EPA, but did not affect the 18:1 cis-9, DPA and DHA. The 16:0 and 14:1 cis-9, 16:1 

cis-9 and 17:1 cis-9 showed a quadratic response with higher concentration in treatments 

where both SO and LO were present (2SL and S2L) than in S and L diets. The sum of the 

remaining area (others) include about 10.3% of BI other than 18:1 trans-11 and CLA, 

0.81% of branched-chain FA, a residual amount of dimethylacetals (0.06%) and 1.3% of 

unidentified peaks.  
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Table 2. 3 Effect of dietary replacement of sunflower oil (SO) with linseed oil (LO) on 

fatty acid concentration (mg/g fresh muscle) and composition (g/100 g total fatty acids) of 

polar lipids in longissimus muscle from Merino Branco lambs. 

 SO replaced with LO (%)
1
 

SEM 
P values 

 0 33.3 66.6 100 Linear Quad. 

Total fatty acids  3.9 3.9 3.7 3.8 0.38 0.756 0.818 
 

14:0 0.20 0.23 0.25 0.22 0.038 0.632 0.411 

15:0 0.17 0.19 0.19 0.17 0.009 0.738 0.071 

16:0 10.7 11.3 10.7 10.6 0.25 0.403 0.164 

16:1 cis-9 0.28
 

0.38
 

0.39
 

0.43
 

0.026 0.001 0.298 

17:0 0.49
 

0.54
 

0.54
 

0.53
 

0.012 0.027 0.019 

17:1 cis-9 1.40 1.42 1.37 1.21 0.063 0.049 0.143 

18:0 10.2 10.2 10.4 10.4 0.21 0.484 0.935 

18:1 trans-11 2.80 2.77 2.92 2.26 0.101 0.091 0.062 

18:1 cis-9 12.1 15.7 14.4 18.0
 

0.67 <0.001 0.975 

18:2n-6 23.9 19.6
 

17.8 13.5 0.58 <0.001 0.983 

CLA
2
 1.10 1.22 1.12 1.05 0.050 0.308 0.055 

18:3n-3 1.29 2.55 4.73 5.93 0.225 <0.001 0.898 

20:0 0.12 0.13 0.16 0.12 0.011 0.781 0.056 

20:2n-6 0.15
 

0.13
 

0.14
 

0.08
 

0.014 0.004 0.266 

20:3n-9 0.73 0.80 0.73 0.73 0.044 0.738 0.455 

20:3n-6 0.64
 

0.57
 

0.50
 

0.41
 

0.015 <0.001 0.682 

20:3n-3 0.07 0.07 0.10 0.08 0.016 0.448 0.659 

20:4n-6 8.3
 

7.0
 

6.8
 

6.0
 

0.22 <0.001 0.242 

20:5n-3 0.72
 

1.12
 

1.80
 

1.98
 

0.068 <0.001 0.147 

22:4n-6 0.70
 

0.55
 

0.48
 

0.40
 

0.026 <0.001 0.153 

22:5n-3 1.41
 

1.70
 

1.98
 

1.87
 

0.050 <0.001 <0.001 

22:6n-3 0.30 0.33 0.52 0.43 0.029 <0.001 0.103 

Others
3
 22.2 21.3 22.1 23.6 0.40 0.019 0.006 

1 0% of sunflower oil (SO) by linseed oil (LO) replacement – diet S; 33.3% of SO with LO replacement – diet 2SL; 

66.6% of SO with LO replacement – diet S2L; 100% of SO with LO replacement – diet L; 2 Include 18:2 cis-9, trans-
11, 18:2 trans-8, cis-10 and 18:2 trans-7, cis-9 isomers; 3 Include branched-chain fatty acids, biohydrogenation 
intermediates other than 18:1 trans-11 and CLA, dimethylacetls and unidentified peaks.    
 
 
 
 
 

 
 
 
 
 
 



 Chapter 2 

 

64 

 

Table 2. 4 Effect of dietary replacement of sunflower oil (SO) with linseed oil (LO) on 

fatty acid concentration (mg/g fresh muscle) and composition (g/100 g total fatty acids) of 

neutral lipids fraction of longissimus muscle from Merino Branco lambs. 

 SO replaced with LO (%)
1
 

SEM 
P values 

 0 33.3 66.6 100 Linear Quad. 

Total fatty acids  16.0 16.8 17.7 16.9 1.38 0.565 0.582 
 

12:0 0.12 0.12 0.13 0.11 0.011 0.657 0.689 

14:0 1.99 2.15 2.35 2.11 0.102 0.211 0.066 

14:1 cis-9 0.05 0.06 0.06 0.05 0.005 0.723 0.039 

15:0 0.30 0.29 0.29 0.27 0.015 0.173 0.858 

16:0 20.5 21.6 21.5 20.6 0.43 0.931 0.030 

16:1 cis-9 1.26 1.35 1.30 1.12 0.058 0.114 0.031 

17:0 0.91 0.84 0.85 0.84 0.026 0.098 0.317 

17:1 cis-9 0.17
 

0.31
 

0.20
 

0.18
 

0.020 0.589 0.002 

18:0 16.7 16.4 16.0 16.6 0.53 0.831 0.358 

18:1 trans-11 6.35 5.99 7.08 5.42 0.402 0.008 0.832 

18:1 cis-9 30.6 31.4 30.5 29.4 0.84 0.262 0.286 

18:2n-6 4.56 3.54 2.99 2.26 0.126 <0.001 0.271 

CLA
2
 2.40 2.27 2.03 1.60 0.087 <0.001 0.181 

18:3n-3 0.70 1.08 1.77 1.87 0.102 <0.001 0.204 

20:0 0.09 0.08 0.09 0.13 0.008 0.002 0.014 

20:2n-6 0.07
 

0.04
 

0.04
 

0.03
 

0.003 <0.001 0.013 

20:3n-9 0.08 0.05 0.05 0.06 0.006 0.0280 0.003 

20:3n-6 0.04
 

0.03
 

0.03
 

0.02
 

0.003 <0.001 0.675 

20:3n-3 0.01
 

0.02
 

0.04
 

0.04
 

0.003 <0.001 0.004 

20:4n-6 0.24
 

0.17
 

0.14
 

0.12
 

0.015 <0.001 0.084 

20:5n-3 0.04
 

0.03
 

0.04
 

0.05
 

0.004 0.047 0.090 

22:4n-6 0.05
 

0.03
 

0.02
 

0.02
 

0.003 <0.001 0.156 

22:5n-3 0.11 0.11 0.11 0.11 0.006 0.964 0.686 

22:6n-3 0.04 0.03 0.03 0.03 0.006 0.777 0.632 

Others
3
 11.9 11.7 13.6 16.9 0.37 <0.001 <0.001 

1 0% of sunflower oil (SO) by linseed oil (LO) replacement – diet S; 33.3% of SO with LO replacement – diet 2SL; 
66.6% of SO with LO replacement – diet S2L; 100% of SO with LO replacement – diet L; 2 Include 18:2 cis-9, trans-
11, 18:2 trans-8, cis-10 and 18:2 trans-7, cis-9 isomers; 3 Include branched-chain fatty acids, biohydrogenation 

intermediates other than 18:1 trans-11 and CLA, dimethylacetls and unidentified peaks.    
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2.3.2.3. Meat total lipids 

The total FA in muscle reflects the weighted combination of PL and NL fractions. The 

major FA in total lipids for all diets were the 18:1 cis-9 (27% of total FA), 16:0 (19% of 

total FA) and 18:0 (15% of total FA), which were not affected by the treatments (Table 

2.5). Most of the minor SFA (12:0, 14:0, 15:0 and 20:0) and 17:1 cis-9 were also not 

affected by treatments. The 17:0 decreased, whereas the 14:1 cis-9 increased, linearly 

with replacement of SO with LO, although the concentration of 16:1 cis-9 showed a 

quadratic response with higher concentration in treatments where both SO and LO were 

present (2SL and S2L) than in S and L diets.  

The replacement of SO with LO in the diets decreased linearly the 18:1 trans-11, n-6 

PUFA (except the 20:2n-6), CLA and 20:3n-9 and increased linearly all n-3 PUFA 

although, both EPA and DPA (and hence the n-3 LC-PUFA) showed also positive 

quadratic response. Lambs fed S diet had higher 18:2n-6 (+46%) and n-6 PUFA (+40%) 

than lambs fed L diet. However, the proportion of n-6 LC-PUFA in total n-6 PUFA was 

lower in lambs fed S diet (24%) than in lambs fed L diet (28%).  

 

2.3.2.4. Sums and ratios of fatty acids  

The total SFA in muscle remained unaffected by dietary treatments averaging 36% of 

total FA and 80% in the NL fraction. The total MUFA in muscle averaged 40% of total 

FA and 88% were in the NL fraction. The total PUFA in muscle, tended to decreased 

linearly (P = 0.054) from 27% in S diet to 24% in L diet. Polar lipids contributed with 

51% of total PUFA in the S diet, which decreased linearly to 41% of total PUFA in the L 

diet. However, the contribution of PL to total LC-PUFA is higher (86% for n-6 LC-PUFA 

and 78% for n-3 LC-PUFA) when compared to NL.  
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Table 2. 5 Effect of dietaty replacement of sunflower oil (SO) with linseed oil (LO) on 

fatty acid concentration (mg/g fresh muscle) and composition (g/100 g total fatty acids) of 

total lipids in longissimus muscle from Merino Branco lambs. 

 SO replaced with LO (%)
1
 

SEM 
P values 

 0 33.3 66.6 100 Linear Quad. 

Total fatty acids 20.0 20.7 21.3 20.7 1.52 0.67 0.656 
 

12:0 0.12 0.11 0.12 0.12 0.007 0.705 0.599 

14:0 1.55 1.72 1.78 1.70 0.076 0.135 0.109 

14:1 cis-9 0.06 0.07 0.07 0.09 0.007 0.043 0.726 

15:0 0.27 0.26 0.25 0.25 0.012 0.278 0.794 

16:0 18.1 19.2 18.6 18.2 0.43 0.896 0.075 

16:1 cis-9 0.73
 

0.89
 

0.83
 

0.73
 

0.040 0.848 0.003 

17:0 0.79 0.74 0.73 0.71 0.022 0.010 0.522 

17:1 cis-9 0.36 0.37 0.38 0.32 0.025 0.491 0.145 

18:0 14.8 14.8 14.4 14.3 0.35 0.206 0.805 

18:1 trans-11
 

5.90 5.50 5.18 4.85 0.349 0.038 0.909 

18:1 cis-9 26.3 28.0 26.5 26.9 0.71 0.936 0.336 

18:2n-6 9.36
 

7.52
 

6.74
 

5.09
 

0.379 <0.001 0.786 

CLA
2
 2.13 2.06 1.84 1.56 0.086 <0.001 0.251 

20:0 0.10 0.07 0.07 0.08 0.084 0.081 0.062 

18:3n-3 0.93
 

1.57
 

2.62
 

3.05
 

0.109 <0.001 0.404 

20:3n-9 0.27 0.22 0.19 0.19 0.016 <0.001 0.051 

20:2n-6 0.07 0.07 0.07 0.07 0.005 0.721 0.965 

20:3n-6 0.22
 

0.16
 

0.15
 

0.13
 

0.011 <0.001 0.304 

20:3n-3 0.01
 

0.05
 

0.08
 

0.09
 

0.008 <0.001 0.068 

20:4n-6 2.45 1.91 1.87 1.52 0.148 <0.001 0.510 

20:5n-3 0.19
 

0.29
 

0.51
 

0.50
 

0.021 <0.001 0.041 

22:4n-6 0.21
 

0.16
 

0.16
 

0.15
 

0.016 0.010 0.195 

22:5n-3 0.46
 

0.54
 

0.62
 

0.54
 

0.030 0.018 0.014 

22:6n-3 0.14 0.15 0.19 0.20 0.016 0.013 0.964 

Others
3
 14.5 13.4 16.0 18.8 0.55 <0.001 0.002 

1 0% of sunflower oil (SO) by linseed oil (LO) replacement – diet S; 33.3% of SO with LO replacement – diet 2SL; 
66.6% of SO with LO replacement – diet S2L; 100% of SO with LO replacement – diet L; 2 Include 18:2 cis-9, trans-
11, 18:2 trans-8, cis-10 and 18:2 trans-7, cis-9 isomers; 3 Include branched-chain fatty acids, biohydrogenation 
intermediates other than 18:1 trans-11 and CLA, dimethylacetls and unidentified peaks.    
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Table 2. 6 Effect of dietary replacement of sunflower oil (SO) with linseed oil (LO) on 

sums of fatty acids (g/100 g total fatty acids) and nutritional indices value of total, polar 

and neutral lipids in longissimus muscle from Merino Branco lambs. 

 SO replaced with LO (%)
1 

SEM 
P values 

 0 33.3 66.6 100 Linear Quad. 

Polar lipids        

   SFA
 

22.0 22.8 22.5 22.2 0.38 0.847 0.183 

   MUFA
 

23.5 27.0 25.6 27.7 0.66 0.002 0.326 

   PUFA
 

40.8 38.0 39.7 36.4 0.74 0.006 0.777 
 

   n-6 PUFA
2 

33.7 27.9 25.7 20.5 0.61 <0.001 0.679 

   n-6 LC-PUFA
3 

9.81 8.28 7.89 6.93 0.242 <0.001 0.255 

   n-3 PUFA
4
 3.79 5.77 9.13 10.3 0.314 <0.001 0.247 

   n-3 LC-PUFA
5 

2.50
 

3.22
 

4.40
 

4.36
 

0.122 <0.001 0.011 
        

Neutral lipids        

   SFA
 

40.9 41.7 41.5 41.1 0.52 0.833 0.247 

   MUFA
 

46.9 46.1 44.2 43.5 0.52 <0.001 0.995 

   PUFA
 

9.89
 

10.3
 

12.1
 

13.0
 

0.443 <0.001 0.520 
        

   n-6 PUFA
2 

4.95 3.82 3.21 2.45
 

0.132 <0.001 0.185 

   n-6 LC-PUFA
3 

0.40
 

0.28
 

0.23
 

0.19
 

0.020 <0.001 0.180 

   n-3 PUFA
4
 0.89

 
1.28

 
2.00

 
2.11

 
0.105 <0.001 0.190 

   n-3 LC-PUFA
5 

0.19
 

0.20
 

0.23
 

0.23
 

0.012 0.011 0.924 
        

Total lipids        

   SFA
 

36.0 37.2 36.2 35.6 0.58 0.471 0.119 

   MUFA
 

40.6
 

41.6
 

39.2
 

39.8
 

0.57 0.106 0.743 

   PUFA
 

26.9 24.5 25.9 23.6 1.01 0.054 0.728 

   P/S
6 

0.30 0.25 0.27 0.24 0.016 0.029 0.569 
        

   n-6 PUFA
2 

12.3
 

9.82
 

8.98
 

6.96
 

0.51 <0.001 0.650 

   n-6 LC-PUFA
3 

2.94 2.30 2.25 1.87 0.169 <0.001 0.448 

   n-3 PUFA
4
 1.74

 
2.61

 
4.01

 
4.38

 
0.134 <0.001 0.106 

   n-3 LC-PUFA
5 

0.81
 

1.04
 

1.39
 

1.33
 

0.058 <0.001 0.024 

   n-6/n-3 7.04 3.78 2.26 1.60 0.143 <0.001 <0.001 

SFA - sum of saturated fatty acids; MUFA - sum of monounsaturated fatty acids; PUFA - sum of polyunsaturated fatty 
acids; 1 0% of SO with LO replacement – diet S; 33.3% of SO with LO replacement – diet 2SL; 66.6% of SO with LO 
replacement – diet S2L; 100% of SO with LO replacement – diet L; 2 n-6 PUFA = (18:2n-6 + 20:2n-6 + 20:3n-6 + 

20:4n-6 + 22:4n-6);  3 n-6 LC-PUFA = (20:2n-6 + 20:3n-6 + 20:4n-6 + 22:4n-6); 4 n-3 PUFA = (18:3n-3 + 20:3n-3 + 
20:5n-3 + 22:5n-3 + 22:6n-3); 5 n-3 LC-PUFA = (20:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3); 6 P/S = (18:2n-6 + 18:3n-
3)/(12:0 + 14:0 + 16:0 + 18:0). 
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In PL fraction, the percentage of n-6 LC-PUFA on total n-6 PUFA increased from 29% 

on the S diet to 34% on the L diet. The percentage of n-3 LC-PUFA on total n-3 PUFA 

was higher than the observed for n-6 PUFA and decreased from 66% on the S diet to 43% 

on the L diet.  The percentage of LC-PUFA on total PUFA was much lower on NL. The 

n-6 LC-PUFA was not affected by treatments and averaged 8% of n-6 PUFA in the NL 

fraction. Otherwise, the percentage of n-3 LC-PUFA on n-3 PUFA decreased from 21% 

on the S diet to 11% on the L diet. The replacement of SO with LO in the diets decreased 

linearly the P/S ratio and quadratically the n-6/n-3 ratio in total muscle FA.  

 

2.4. DISCUSSION 

2.4.1. Growth performance and carcass composition 

Generally, the type of dietary lipid supplement has no effect on growth performance and 

carcass traits of lambs
 
(Wachira et al., 2002, Cooper et al., 2004, Demirel et al., 2004, 

Bessa et al., 2007, Kim et al., 2007). However, in the present trial, stepwise replacement 

of SO with LO increased linearly the live slaughter weight and hot carcass weight of 

lambs and modified the proportions of intermuscular fat obtained after dissection of the 

chump and shoulder. These results might be explained by the slight differences found in 

ether extract concentration of experimental diets (Table 2.1), or by eventual differences 

on feed intake (not monitored).  

 

2.4.2. Meat fatty acid content 

The total IMFA content is determined mostly by the amount of FA in the NL fraction, 

since the level of FA in the PL fraction is fairly constant
 
(Scollan et al., 2006, Wood et 
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al., 2008). In agreement with other reports
 
(Wachira et al., 2002, Kim et al., 2007) the 

IMFA content was independent of the lipid type included in the diet. Moreover, Bessa et 

al. (2007) did not observe differences in IMFA content between lambs supplemented with 

sunflower oil or linseed oil, although the animals supplemented with a blend of these two 

oils showed a higher IMFA content. The experiment described here did not confirm the 

increase in IMFA with dietary blends of sunflower and linseed oils. Consistently, the 

PL:NL ratio did not change with the diet, and the values are in agreement with those 

described in the literature
 
(Cooper et al., 2004, Demirel et al., 2004). 

  

2.4.3. Meat fatty acid composition 

As expected, the FA pattern of NL fraction was characterized by a high proportion of 

SFA and MUFA, whereas the PL fraction showed a high proportion of PUFA (Raes et al., 

2004). The FA composition in PL is less influenced by dietary factors than NL, although 

changes induced by diet in PUFA of PL have been reported (Scollan et al., 2006). The 

replacement of SO with LO in the diet induced changes in PL that follow the same 

general pattern observed in NL, as reported by others (Cooper et al., 2004, Demirel et al., 

2004, Nuernberg et al., 2005). Nevertheless, some selective deposition in lipid fractions 

was evident. Both 18:2n-6 and 18:3n-3 were selectively incorporated in PL although, as it 

was previously shown, the selectivity for PL (wt% FA in PL/wt% FA in NL) was higher 

for 18:2n-6 (5.7) than for 18:3n-3 (2.5) (De Smet et al., 2004). 

The FA composition of membrane phospholipids is the major determinant of membrane 

fluidity and, thus, membrane function and cellular metabolism (Wahle, 1983, Spector and 

Yorek, 1985). In the present experiment, the dietary replacement of SO with LO 

decreased the proportion of 18:2n-6 (-10.3%) and increased 18:3n-3 (+4.6%) and 18:1 
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cis-9 (+5.9%) in PL. This suggests that the presence of a homeoviscous adaptation 

mechanism, in which the degree of unsaturation of C18 FA in membrane PL is maintained 

fairly constant. Thus, 18:2n-6 (2 double bonds) seems to be replaced by a pondered 

mixture of 18:3n-3 (3 double bonds) and 18:1 cis-9 (1 double bond). A similar 

homeoviscous adaptation was suggested by Scislowski et al. (2004), that found that 

dietary 18:2n-6  supplementation did not change the fluidity of bovine lipoproteins 

although extensive 18:2n-6  incorporation can occur.  Moreover, the dietary replacement 

of SO with LO led to a substitution of n-6 LC-PUFA (mainly 20:4n-6) by n-3 LC-PUFA, 

maintaining fairly constant the proportion of cis PUFA with more than 3 double bonds in 

PL (about 10%), as already reported by Lands et al. (1990) in rats. The proportion of LC-

PUFA in PL is 20 times more than in NL, which is consistent with the very high 

selectivity of LC-PUFA for PL. Thus, this might imply that any strategy for meat 

enrichment in LC-PUFA will be restricted by a fixed ceiling allowed in PL by metabolic 

regulation mechanisms. Wood et al. (2008), reviewing the results of Warren et al. (2008) 

also suggested that the capacity for incorporation of PUFA into phospholipids is limited.  

The capacity of conversion of 18:3n-3 to health promoting n-3 LC-PUFA is limited in 

humans
 
(Burdge and Calder, 2005) which reinforces the importance of its dietary supply. 

Dietary replacement of SO with LO resulted in a partial substitution of n-6 LC-PUFA by 

n-3 LC-PUFA in membranes. The competition between 18:2n-6 and 18:3n-3 for 

desaturation and elongation enzymes might affect the conversion to LC derivatives 

(Brenner, 1989). The higher proportion of n-3 LC-PUFA in total n-3 PUFA, relative to n-

6 LC-PUFA in total n-6 PUFA, is likely due to the preference of these enzymes for 

18:3n-3 (Brenner, 1989).  

The increase of n-3 LC-PUFA in muscle lipids was linear until 66.6% of replacement of 

SO with LO in the diets was reached, and then stabilize, whereas the decrease of n-6 LC-
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PUFA remains linear. This difference between n-3 LC-PUFA and n-6 LC-PUFA suggests 

that 18:3n-3 might be more powerful in the down-regulation of the expression of 

desaturases and elongases involved in the conversion to LC derivatives, than 18:2n-6.  In 

fact, it is well established that the ∆6- and ∆5-desaturase mRNA levels are low when n-6 

PUFA and n-3 PUFA are supplied from the diet (Cho et al., 1999a, Cho et al., 1999b). 

However, to our knowledge the comparison of the effects of 18:2n-6 and 18:3n-3 on ∆6- 

and ∆5-desaturase expression has not yet been evaluated. Notwithstanding this, it was 

reported that the inhibitory potency of dietary PUFA on other enzymes of lipid 

metabolism,  like fatty acid synthase and ∆9-desaturase increases with the degree of 

unsaturation and chain length (Clarke and Jump, 1993, Sessler et al., 1996). An 

alternative explanation for the lack of linearity of the increase of n-3 LC-PUFA in PL 

may be related to homeoviscous regulation of the incorporation of these highly 

unsaturated FA in membranes.      

The higher deposition of CLA in NL fraction (88% of total CLA), relative to PL fraction, 

has been previously reported (Wood et al., 2008). The content of 18:2 cis-9, trans-11 in 

meat decreased with replacement of dietary SO with LO, confirming the previous results 

obtain by our group (Bessa et al., 2007). In addition, Noci et al. (2007) observed that the 

18:2 cis-9, trans-11 content in longissimus muscle was higher in heifers supplemented 

with sunflower oil than with linseed oil. The explanation might be found in ruminal BH 

pathways of 18:2 n-6 and 18:3 n-3. Most of the 18:2 cis-9, trans-11 present in tissues 

derive from endogenous desaturation of 18:1 trans-11 (Palmquist et al., 2004), which is 

originated during BH of both 18:2 n-6 and 18:3 n-3. However, 18:2 cis-9, trans-11 is also 

synthesized by direct isomerisation of 18:2 n-6 in the rumen.  
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2.4.4. Nutritional quality of meat lipids 

The P/S and n-6/n-3 ratio are indices used to evaluate the nutritional value of fat for 

human consumption. Lamb meat has usually a high SFA concentration and low P/S 

values 
 
(Sinclair, 2007). As previously reported (Szumacher-Strabel et al., 2004, Bessa et 

al., 2007), the proportion of SFA in muscle lipids was not affected by the lipid type 

included in the diet. The major determinant of both SFA and P/S in the meat lipids is the  

IMFA content and the diet (De Smet et al., 2004, Scollan et al., 2006). Increasing the 

PUFA content of the diet, by including sources rich in either n-6 or n-3 PUFA, generally 

improves the P/S ratio (Sinclair, 2007). This was also observed in the present trial, and in 

all diets, the P/S ratio was always lower than 0.45, which is the minimum value 

recommended for human diet by the Department of Health
 
(1994).    

The n-6/n-3 ratio is highly influenced by FA composition of the diet fed to the animals 

(Raes et al., 2004). Consistently, the decrease in the dietary n-6/n-3 ratio, caused by 

replacement of SO with LO in the diets, decreased the n-6/n-3 ratio of intramuscular 

lipids. All the diets with LO resulted in n-6/n-3 ratios below 4, which is the maximum 

recommended value for human diets by public health agencies (Department of Health, 

1994). Recently, the value of n-6/n-3 in modifying cardiovascular disease has been 

questioned (Stanley et al., 2007). The health benefits of n-3 PUFA may be mostly 

associated with absolute n-3 LC-PUFA (mainly EPA and DHA) dietary intake. Thus, 100 

g of fresh muscle of lambs fed the S diet supply 16 mg of n-3 LC-PUFA, whereas that 

from lambs fed the L diet supply 27 mg. These values correspond to 3.6 and 6% of the 

average recommended daily intake for human diet (450 mg/person/day - Scientific 

Advisory Committee on Nutrition/Committee on Toxicity (2004)), respectively.  
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The supplementation of ruminant diets with fish oil has been showed to be more effective 

to increase the EPA and DHA in meat than lipid sources rich in 18:3n-3 (Scollan et al., 

2001, Cooper et al., 2004, Demirel et al., 2004). However, there are concerns that the fish 

oil may give rise to meat of shorter shelf life and with impaired flavour (Nute et al., 

2007), as well as on the sustainability of increased use of fish oil in the food chain 

(Givens et al., 2006). Despite, the synthesis of EPA and DHA from dietary 18:3n-3 being 

limited; our results showed that the vegetable oil source rich in 18:3n-3 may be one 

possible alternative to increase the n-3 LC-PUFA in lamb meat.  

The CLA intake, mainly the 18:2 cis-9, trans-11 isomer, is expected to give protective 

anticarcinogenic effects on humans (Banni et al., 2003). The optimal dietary intake of 

CLA remains to be established, although extrapolation from animal trials, suggests that 

the ingestion of 720-800 mg/person/day would be necessary for anticancerinogenic 

protective effects in humans (Parish et al., 2003, Watkins and Li, 2003). In lambs fed the 

S diet, 100 g of fresh muscle supply 43 mg of CLA, whereas that in lambs fed L diet only 

supply 31 mg. Moreover, about 19% of dietary 18:1 trans-11may be converted to 18:2 

cis-9, trans-11 by ∆9-desaturase (Turpeinen et al., 2002), contributing to CLA 

concentration. Thus, considering the 18:1 trans-11 content of lamb meat the potential 

CLA supply would increase by 22 mg/100 g muscle for lambs fed S diet and 19 mg/100 g 

fresh muscle in lambs fed L diet.  

The response of meat CLA and n-3 LC-PUFA to the dietary replacement of SO with LO 

is plotted in Figure 2.1. Assuming that both FA groups have the same health value, the 

better oil blend can be estimated from the sum of CLA and n-3 LC-PUFA. The CLA 

content decreases linearly with the replacement of dietary SO with LO, but the maximum 

concentration of n-3 LC-PUFA is obtained with 78% of replacement of SO with LO (27 
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mg/100 g fresh muscle) and the maximum of the sum of CLA and n-3 LC-PUFA were 

obtained with 52% of replacement of SO with LO.  

 

 

 

 

 

 

 

 

 

 

Figure 2. 1 Effect of dietary replacement of sunflower oil (SO) with linseed oil (LO) on 

concentration of CLA, n-3 LC-PUFA and sum of both group FA. 

CLA = 44.87 ± 2.431 – 0.11 ± 0.039 x, R2 = 0.81; n-3 LC-PUFA = 14.88 ± 2.631 + 0.31 ± 0.127 x - 0.002 ± 

0.0012 x2, R2 = 0.94 and CLA + n-3 LC-PUFA = 57.70 ± 3.072 + 0.38 ± 0.148 x – 0.004 ± 0.0014 x2, R2 = 

0.87; 1 Include 18:2 cis-9, trans-11, 18:2 trans-8, cis-10 and 18:2 trans-7, cis-9 isomers. 

 

2.5. CONCLUSIONS 

The dietary replacement of SO with LO increased significantly the n-3 LC-PUFA in lamb 

meat, with the highest value of n-3 LC-PUFA achieved with 78% of SO with LO 

replacement. However, the synthesis of EPA and DHA from dietary 18:3n-3 seems to be 

limited, and thus the EPA and DHA enriched lamb meat contributes only in a small 

amount to the recommended daily intake for human diet. The results indicate that the 

maximum of 18:2 cis-9, trans-11 concentration is observed with 100% of SO, decreasing 

linearly by SO with LO replacement. Thus, the data indicate that the utilization of blends 
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of sunflower and linseed oil is a valid approach for obtaining lamb meat enriched with 

both CLA and n-3 LC-PUFA.   

 

ACKNOWLEDGEMENTS   

The authors would like to thank the abattoir staff, particularly Paula Santos, for their 

cooperation in carcass and meat determinations and to the Centro de Experimentação do 

Centro Alentejo staff, for their assistance in animal management and lambs weight 

control. Financial support through the grant POCI/CVT/61202/2004 and individual 

fellowships to E. Jerónimo (SFRH/BD/23675/2005) and S. P. Alves 

(SFRH/BD/37793/2007), both from Fundação para a Ciência e a Tecnologia (FCT), are 

acknowledged.  

 

 



 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

CHAPTER 3 

BIOHYDROGENATION INTERMEDIATES ARE DIFFERENTIALLY DEPOSITED 

BETWEEN POLAR AND NEUTRAL INTRAMUSCULAR LIPIDS OF LAMBS 

 

Eliana Jerónimo
1,2

, Susana P. Alves
1,3

, Cristina M. Alfaia
2
, José A. M. Prates

2
, José 

Santos-Silva
1
, Rui J. B. Bessa

1,2
 

 

1 
Unidade de Investigação em Produção Animal, Instituto Nacional de Recursos 

Biológicos, Fonte Boa, 2005-048 Vale de Santarém, Portugal 

2
 CIISA, Centro de Investigação Interdisciplinar em Saúde Animal, Faculdade de 

Medicina Veterinária, Pólo Universitário do Alto da Ajuda, 1300-477 Lisboa, Portugal  

3 
REQUIMTE, ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade 

do Porto, Campus Agrário de Vairão, 4485-661 Vairão VC, Portugal 

 

Adapted from European Journal of Lipid Science and Technology (2011), doi: 

10.1002/ejlt.201000398.   

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

79 

 

ABSTRACT 

The deposition in intramuscular PL and NL of C18 FA, with emphasis on rumen BI were 

studied using twenty-six lambs fed oil supplemented diets where sunflower oil (SO) was 

progressively replaced by linseed oil (LO). Lambs were fed one of four diets consisting 

on dehydrated lucerne with either: 6% SO, 4% SO plus 2% LO, 2% SO plus 4% LO and 

6% LO. The profile of C18 FA was greatly affected by replacement of SO with LO in both 

lipid fractions. In PL, oil replacement led to an extensive substitution of 18:2n-6 with 

18:3n-3 and 18:1 cis-9 resulting in a fairly constant degree of unsaturation of C18 FA in 

membrane PL. C18 FA were differentially incorporated in NL and PL. Cis isomers like 

18:1 cis-11, 18:1 cis-12, 18:1 cis-15 and 18:2 cis-12, cis-15 were preferentially 

incorporated in PL with the exception of 18:2 cis-9, cis-15. Trans C18 FA, including CLA 

isomers, were preferentially incorporated in NL with the exception of 18:2 cis-11, trans-

13. The preferential deposition of biohydrogenation derived trans C18 FA, including CLA 

isomers in NL, suggests that their potential for competitive interactions with elongation 

and desaturation metabolic pathways of essential FA might be low. 

 

Keywords: neutral lipids; polar lipids; C18 fatty acids; selective deposition 
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3.1 INTRODUCTION 

The FA composition of ruminant edible fats is mostly determined by complex interactions 

between dietary factors and rumen metabolism (Harfoot and Hazelwood, 1997). Dietary 

lipids are extensively hydrolysed in the rumen and the unsaturated FA liberated (mostly 

C18 PUFA) are also extensively biohydrogenated (Jenkins et al., 2008). The extension of 

rumen BH will determine the amount of essential PUFA absorbed and, thus, available for 

tissue deposition. However, only a variable proportion of essential PUFA that disappears 

in the rumen is completely biohydrogenated to 18:0. The rumen BH of C18 PUFA 

pathways produces several unsaturated C18 FA derived from geometric and positional 

isomerisations and partial reductions of the substrates, hereafter named as BI. The extent 

of BH and particularly the pattern of BI are mainly affected by the type and amount of 

dietary lipids (Harfoot and Hazelwood, 1997) and basal diet (Bessa et al., 2005). 

The BI include mostly FA with trans double bonds, like trans octadecenoates and the 

conjugated and non-conjugated isomers of 18:2n-6, whose identification and 

quantification can be a difficult analytical task. The cis-9, trans-11 and trans-10, cis-12 

conjugated isomers of linoleic acid have been extensively studied and many animal 

studies suggest some isomeric specific effects such as anticarcinogenic, anti-adipogenic, 

anti-diabetogenic, anti-atherogenic and anti-inflammatoty effects (Wahle et al., 2004). 

However, the bioactive properties of most of the BI have not been extensively studied. 

The consumption of TFA has been associated with adverse effects in health (Hunter, 

2006). Several studies compared the effect of TFA from industrial sources, mainly 

composed by 18:1 trans-9, with TFA from ruminant sources, mainly composed by 18:1 

trans-11. Epidemiological evidence indicates that TFA from ruminant sources, in actual 

amounts consumed in diets, do not significantly contribute to the risk of coronary heart 
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disease (Motard-Bélanger et al., 2008). However, results obtained were contradictory and 

biological activities of individual TFA are still to be established.  

It has been postulated that deleterious effects of some trans PUFA are due to their 

incorporation in membrane lipids, thus allowing possible competition with essential FA to 

FA elongation and desaturation systems (Wahle and James, 1993, Chardigny et al., 

2007). It is expected that FA that are preferentially deposited in membrane lipids have 

greater potential to exert either deleterious or beneficial biological activities. Although the 

information about the selectivity of BI distribution to PL and NL might be highly relevant 

for the disclosure of potential biological effects of these isomers, it is very scarce and for 

most of the minor BI it is missing.  

We conducted a trial where the effect of stepwise dietary substitution of sunflower oil 

(SO) with linseed oil (LO) of lambs fed forage on intramuscular FA was studied 

(Jerónimo et al., 2009). Detailed information on BI distribution between intramuscular PL 

and NL is reported here and provides novel data on their selective deposition into muscle 

lipids. Moreover, the original experimental design allows us to explore if the selectivity 

of BI changes over a range of concentrations and different patterns induced by high 

dietary 18:2n-6 and 18:3n-3.   

 

3.2 MATERIALS AND METHODS 

3.2.1 Animal management and sampling procedures 

Animals, diets and the experimental design were described in detail by Jerónimo et al. 

(2009, chapter 2). Briefly, four groups of nine lambs each were fed one of the four 

experimental diets: pelleted dehydrated lucerne with 6% of sunflower oil (diet S); pelleted 

dehydrated lucerne with 4% of sunflower oil and 2% of linseed oil (diet 2SL); pelleted 
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dehydrated lucerne with 2% of sunflower oil and 4% of linseed oil (S2L); pelleted 

dehydrated lucerne with 6% of linseed oil (L). After 7 weeks of trial, lambs were 

slaughtered in the experimental abattoir. Samples of longissimus dorsi muscle were 

collected and processed as described by Jerónimo et al. (2009, chapter 2).  

 

3.2.2 Lipid analysis 

Intramuscular lipid extraction, separation of NL and PL fractions, FAME preparation and 

gas-liquid chromatography conditions are fully described by Jerónimo et al. (2009, 

chapter 2). Briefly, lipids were extracted according to a modified Folch et al. (1957) 

procedure, lipid fractions were separated by solid-phase extraction columns according to 

Juaneda and Rocquelin (1985) using silica gel cartridges (LiChrolut
®
 Si, 40-63µm, 500 

mg/ml, Standard, Merck KGaA, Darmstadt, Germany). Fatty acid methyl esters were 

prepared by basic/acid sequential transesterification reaction as described by Raes et al. 

(2001). Quantification of FAME was done using 19:0 as internal standard. The FAME 

were analysed using a HP6890A chromatograph (Hewlett-Packard, Avondale, PA, USA), 

equipped with a flame-ionization detector (GC-FID) and fused silica capillary column 

(CP-Sil 88; 100 m × 0.25 mm i.d. × 0.20 µm of film thickness; Chrompack, Varian Inc., 

Walnut Creek, CA, USA).  

Identification of common FA was accomplished by comparison of sample peak retention 

times with those of FAME standard mixtures (Sigma, St. Louis, MO, USA) or 

synthesized standards and, when no standards were available, by using published 

chromatograms obtained with similar analytic conditions (Alves and Bessa, 2009). The 

synthesis of 18:2 cis-9, cis-15 and 18:2 cis-12, cis-15 was performed as described by 

Alves and Bessa (2007), and the synthesis of others non-conjugated 18:2 isomers, the 
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18:2 trans-9, cis-12 and the 18:2 cis-9, trans-12 was performed by isomerisation reaction 

of 18:2n-6 with iodine and UV light (Delmonte et al., 2003). Structural analyses of some 

unknown peaks were conducted by gas chromatography mass spectrometry (GC-MS) 

using a Varian Saturn 2200 system (Varian Inc., Walnut Creek, CA, USA) equipped with 

a CP-Sil 88 capillary column. The characterization of the 18:2 trans-11, trans-15 was 

conducted by GC-MS analysis of its 4,4-dimethyloxazoline derivative. The molecular ion 

at m/z 333 confirmed the presence of the octadecadienoic FA structure. Furthermore, the 

strong ion at m/z 264 confirmed the location of the 11,15 double bond system due to 

fragmentation between C-13 and C-14, which is typical of octadecadienoic bis-methylene 

interrupted FA. Additionally, gaps of 12 amu between m/z 224 and 236, and between m/z 

278 and 290 confirmed the location of the double bond position at 11 and 15, 

respectively. The mass spectrum of the 18:2 trans-11, trans-15 is presented in Figure 3.1. 

The region of non conjugated 18:2 isomers on the GC-FID chromatogram is displayed in 

Figure 3.2.  
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Figure 3. 1 GC-MS mass spectrum of the 4,4-dimethyloxazoline (DMOX) derivative of 

18:2 trans-11, trans-15. 
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Figure 3. 2 Partial GC-FID chromatogram of neutral lipids from lambs fed: S - pellet 

dehydrated lucerne with 6% of sunflower oil; 2SL - pelleted dehydrated lucerne with 4% 

of sunflower oil and 2% of linseed oil; S2L - pelleted dehydrated lucerne with 2% of 

sunflower oil and 4% of linseed oil; L - pelleted dehydrated lucerne with 6% of linseed 

oil.  

Peak identification: 1) 19:0 (standard); 2) 18:2 trans-11, trans-15; 3) 18:2 cis-9, trans-13 + 18:2 trans-8, 

cis-12 + 17 cyclo; 4) 18:2 trans-8, cis-13 + 18:2 cis-9, trans-12; 5) 18:1 cis-16; 6) 18:2 trans-9, cis-12; 7) 

18:2 trans-11, cis-15; 8) 18:2n-6; 9) 19:1; 10) 18:2 cis-9, cis-15; 11) 18:2 cis-12, cis-15. 

 

Two partially conjugated 18:3 isomers were tentatively identified by acetonitrile covalent 

adduct chemical ionization mass spectrometry (CACI-MS). As already published 

(Lawrence and Brenna, 2006), homoallylic FAME exhibit higher CACI-MS 

[M+54]
+
/[M+54-32]

+
 intensity ratios compared to partially conjugated FAME. Indeed, 

these ratios ranged from 8.1 for the 18:3n-3 to 1.1 and 1.2 for the other two 18:3 isomers, 

suggesting their partially conjugated structure. The GC-FID region of conjugated 18:2 

and 18:3 isomers, showing the homoallylic 18:3n-3 (peak 1) and both partially conjugated 

18:3 isomers (peaks 5 and 7), is displayed in Figure 3.3. 
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Figure 3. 3  Partial GC-FID chromatogram of neutral lipids from lambs fed diet L.  

Peak identification: 1) 18:3n-3; 2) 18:2 cis-9, trans-11 + 18:2 trans-8, cis-10 + 18:2 trans-7, cis-9; 3) 21:0 + 

18:2 trans-10, cis-12; 4) 18:2 trans-11, cis-13; 5) partially conjugated 18:3; 6) 20:2n-6; 7) 18:3 cis-9, trans-

11, cis-15 + 20:3n-9. 

 

 

For the resolution of 18:1 cis-9 from both 18:1 trans-13 and 18:1 trans-14 (that co-eluted 

in our GC-FID conditions) a second temperature program was used. The initial 

temperature column of 70 ºC was held for 4 min, increased to 110 ºC at 8 ºC/min and then 

increased to 170 ºC at 5 ºC/min, held for 10 min, and finally increased to 220 ºC at a rate 

of 4 ºC/min, and maintained for 25 min. Thus, the relative amounts of 18:1 cis-9 and 18:1 

trans-13/trans-14 were calculated from the second temperature program and applied to 

the area of the common peak identified in the initial temperature program. The 20:3n-9 

co-eluted with 18:3 cis-9, trans-11, cis-15 in our GC-FID conditions; their relative 

amounts were thus calculated from the GC-MS abundance relative to the area of the main 

peak identified by GC-FID. Methyl esters of CLA isomers were individually analysed by 

triple column silver-ion in series (ChromSpher 5 Lipids, 250 mm  4.6 mm i.d.  5 m 

particle size, Chrompack, Bridgewater, NJ, USA), using a HPLC system (Agilent 1100 

Series, Agilent Technologies Inc., Palo Alto, CA, USA), as described by Bessa et al. 

(2007).  
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3.2.3 Calculation of selectivity indices 

 To evaluate the selective deposition of C18 FA in PL and NL fractions, selectivity index 

(SI) was computed as follows:  

SI of FA(x) = (% of FA (x) in total FA of PL) / (% of FA (x) in total FA of NL). 

The interpretation of the SI is straightforward if we make the following assumptions: a) 

PL are phospholipids; b) NL are triacylglycerols with a small amount of cholesterol 

esters; c) the FA incorporation in both lipid fractions is under active metabolic control. 

Thus, if for a given FA value the SI = 1, no selective deposition in PL and NL is present; 

if SI > 1, FA is selectively deposited in PL; if SI < 1, FA is selectively deposited in NL.  

 

3.2.4 Statistical analysis 

The effect of diets on FA composition of PL, NL and SI was analyzed using the GLM 

procedure of SAS. Least squares means and SEM are presented in tables. 

 

3.3 RESULTS  

3.3.1 Composition of C18 fatty acids in polar and neutral lipid fractions  

The concentration of total FA (mg/g muscle DM) and the detailed composition of C18 FA 

(mg/100 g of total FA) in PL and NL fractions are presented in Table 3.1 and Table 3.2, 

respectively. Concentration of total C18 FA in PL and NL were not affected by the dietary 

replacement of SO with LO, and averaged 59% of total FA in PL fraction and 70% of 

total FA in NL fraction.  
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Table 3. 1 Polar fatty acid concentration (mg/g muscle dry matter) and composition 

(mg/100 g of total polar fatty acids) of longissimus muscle from lambs fed graded levels 

of sunflower and linseed oils. 

 Diets
1
 

SEM P values 
 S 2SL S2L L 

Total fatty acids 17.4 17.3 16.4 17.0 1.70 0.971 
       

18:0 10205 10223 10391 10373 212.7 0.981 
 

18:1 isomers 

trans-6 + trans-7 + trans-8 145 149 150 153 8.4 0.920 

trans-9 187 193 182 180 9.4 0.772 

trans-10 293c 249bc 216ab 161a 18.6 <0.001 

trans-11 2802b 2770b 2915b 2263a 150.8 0.030 

trans-12 452a 483ab 520b 531b 19.9 0.036 

trans-13 + trans-14 585a 656a 749b 781b 29.5 <0.001 

cis-9  12129a 15747b 14405b 18038c 666.4 <0.001 
trans-15 142a 152ab 183b 267c 12.5 <0.001 

cis-11 1525b 1404b 1434b 1196a 46.9 <0.001 

cis-12 2101c 2024c 1663b 1164a 113.9 <0.001 

cis-13 107ab 77a 118b 119b 10.7 0.034 

cis-14 + trans-16 145a 153a 174a 214b 12.1 0.003 

cis-15 121 132 122 133 10.4 0.793 

cis-16 248b 272b 238b 173a 18.7 0.008 

Total  20983a 24461bc 23070b 25374c 354 <0.001 
 

18:2 non-conjugated isomers 
      

trans-11, trans-15 45a 118b 171c 120b 13.4 <0.001 

cis-9, trans-13 + trans-8, cis-122  233a 266ab 310b 406c 20.1 <0.001 

trans-8, cis-13 + cis-9, trans-12
3
 155a 194a 165a 263b 17.2 <0.001 

trans-9, cis-12 268c 202b 168b 103a 14.5 <0.001 

trans-11, cis-15 112a 266b 538c 714d 43.0 <0.001 

cis-9, cis-12  23859d 19648c 17806b 13531a 581.6 <0.001 
cis-9, cis-15 0a 0a 57ab 146b 20.2 <0.001 

cis-12, cis-15 0a 153b 255c 448d 36.5 <0.001 

Total 24671c 20847b 19464b 15731ª 574.5 <0.001 
       

18:2 conjugated isomers 
trans-12, trans-14 3a 11b 20c 32d 1.2 <0.001 

trans-11, trans-13 13a 34b 53c 71d 3.0 <0.001 

trans-10, trans-12 4a 4a 7b 7b 0.8 0.008 

trans-9, trans-11 20a 27ab 35c 34bc 2.6 0.001 

trans-8, trans-10 3a 3a 5b 4ab 0.6 0.021 

trans-7, trans-9 4 6 6 6 0.7 0.095 

cis/trans-12, 14 5a 5a 9b 17c 1.0 <0.001 

trans-11, cis-13 35a 126b 309c 441d 23.6 <0.001 

cis-11, trans-13 15a 14a 15a 21b 1.5 0.011 

cis-9, trans-11 1082 1186 1092 1000 48.5 0.094 

trans-7, cis-9 27a 35b 32ab 46c 2.4 <0.001 

Total 1224a 1470b 1627bc 1758c 72.8 <0.001 
Total 18:2 isomers  25895c 22317b 21091b 17489a 562.1 <0.001 

       

18:3 isomers        

cis-9, cis-12, cis-15  1287a 2550b 4730c 5925d 225 <0.001 

 partially conjugated unidentified 4  0a 52b 101c 125c 11.9 <0.001 
 cis-9, trans-11, cis-15 0a 66b 221c 405d 15.8 <0.001 

Total 1287a 2668b 5052c 6456d 227.7 <0.001 
       

Total C18 58478 59667 59578 59700 487.4 0.252 
1 S - pelleted dehydrated lucerne with 6% of sunflower oil; 2SL - pelleted dehydrated lucerne with 4% of sunflower oil 

and 2% of linseed oil; S2L - pelleted dehydrated lucerne with 2% of sunflower oil 4% of linseed oil; L - pelleted 
dehydrated lucerne with 6% of linseed oil; 2 peak includes 18:2 cis-9, trans-13 + 18:2 trans-8, cis-12 + 17-cyclo 
(methyl 11-cyclohexylundecanoate); 

3
 peak includes 18:2 trans-8, cis-13 + 18:2 cis-9, trans-12; 4 Peak 5 of Figure 3.3. 
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Table 3. 2 Neutral fatty acid concentration (mg/g muscle dry matter) and composition 

(mg/100 g of total neutral fatty acids) of longissimus muscle from lambs fed graded levels 

of sunflower and linseed oils. 

 Diets1 
SEM P values 

 S 2SL S2L L 

Total fatty acids 71.3 74.7 78.5 74.9 6.15 0.878 
       

18:0 16650 16341 15947 16644 533.8 0.769 
 

18:1 isomers 

trans-6 + trans-7 + trans-8 517 466 441 489 22.7 0.134 

trans-9 497b 451a 411a 442a 15.0 0.003 

trans-10 1228c 846b 677ab 571a 69.6 <0.001 

trans-11 7084 6348 5990 5416 404.2 0.054 

trans-12 804b 694a 634a 721ab 29.8 0.004 

trans-13 + trans-14 1094b 1054ab 953a 1798c 36.3 <0.001 

cis-9  30625 31389 30489 29426 843.1 0.473 

trans-15 377a 350a 375a 572b 21.5 <0.001 

cis-11 912c 823b 725b 695a 20.5 <0.001 
cis-12 1207b 1097b 854a 731a 60.2 <0.001 

cis-13 218c 190b 195b 146a 6.4 <0.001 

cis-14 + trans-16 270
a
 279

a
 320

a
 498

b
 20.5 <0.001 

cis-15 103 93 98 150 21.6 0.273 

cis-16 137 134 100 111 11.7 0.094 

Total  45074b 44214b 42302a 41766a 483.6 <0.001 
       

18:2 non-conjugated isomers 
      

trans-11, trans-15 51a 129b 302c 419d 21.2 <0.001 

cis-9, trans-13 + trans-8, cis-12 2  373a 453a 572b 711c 34.6 <0.001 

trans-8, cis-13 + cis-9, trans-12 3 289a 317a 305a 388b 15.2 <0.001 

trans-9, cis-12 98a 100a 125b 166c 6.8 <0.001 

trans-11, cis-15 278a 914b 1881c 2611d 107.1 <0.001 

cis-9, cis-12  4555d 3543c 2992b 2262a 125.8 <0.001 

cis-9, cis-15 26a 59b 107c 178d 8.4 <0.001 

cis-12, cis-15 0a 95b 176c 356d 20.0 <0.001 

Total 5671a 5611a 6462b 7092b 242.2 <0.001 
       

18:2 conjugated isomers 

trans-12, trans-14 7a 17b 32c 51d 2.3 <0.001 

trans-11, trans-13 18a 43b 70c 109d 5.9 <0.001 

trans-10, trans-12 22c 15b 11a 11a 0.9 <0.001 

trans-9, trans-11 42 45 46 47 2.0 0.338 

trans-8, trans-10 7c 5b 4b 3a 0.3 <0.001 
trans-7, trans-9 5b 5b 5b 4a 0.2 0.023 

cis/trans-12, 14 10a 19b 24b 46c 2.8 <0.001 

trans-11, cis-13 53a 204b 459c 734d 46.7 <0.001 

cis-11, trans-13 0a 0.9ab 1b 3c 0.38 <0.001 

trans-10, cis-12 25c 6b 6b 0.2a 1.37 <0.001 

cis-9, trans-11 2290c 2165bc 1932b 1559a 84 <0.001 

trans-7, cis-9 109 104 98 101 3.4 0.113 

Total 2591 2629 2688 2668 126.7 0.951 

Total 18:2 isomers  8262a 8240a 9149ab 9760b 330.5 0.008 
       

18:3 isomers        

cis-9, cis-12, cis-15  699a 1083b 1772c 1874c 101.5 <0.001 

 partially conjugated unidentified 4   0a 76b 155c 208d 6.8 <0.001 
 cis-9, trans-11, cis-15 0a 152b 351c 572d 24.9 <0.001 

Total 699a 1311b 2278c 2654d 120.1 <0.001 
       

Total C18 70701 70106 69676 70825 497.5 0.355 
1 S - pelleted dehydrated lucerne with 6% of sunflower oil; 2SL - pelleted dehydrated lucerne with 4% of sunflower oil 
and 2% of linseed oil; S2L - pelleted dehydrated lucerne with 2% of sunflower oil 4% of linseed oil; L - pelleted 

dehydrated lucerne with 6% of linseed oil; 2 peak includes 18:2 cis-9, trans-13 + 18:2 trans-8, cis-12 + 17-cyclo 
(methyl 11-cyclohexylundecanoate); 

3
 peak includes 18:2 trans-8, cis-13 + 18:2 cis-9, trans-12; 4 Peak 5 of Figure 3.3.



Chapter 3 

 

90 

 

Independently of the diet, C18 FA were mainly present in the NL fraction that contained 

87, 90 and 64% of total muscle 18:0, 18:1 cis-9 and 18:3n-3, respectively. The 18:2n-6 

was mainly present in PL which contained 66% of total muscle 18:2n-6. 

The proportion of 18:0 was not affected by diets in both lipid fractions, and averaged 10% 

and 16% of total FA in PL and NL fractions, respectively. Most of 18:1, 18:2 and 18:3 

isomers were affected by the diet in both lipid fractions, although some differential effects 

were present. The 18:1 cis-9 was the predominant 18:1 isomer in both lipid fractions for 

all diets, averaging 70% of total 18:1 isomers in the NL fraction (P = 0.219) and ranging 

from 58 to 71% of total 18:1 isomer in the S and L diets, respectively (P < 0.001) in the 

PL fraction. Considering the other 18:1 isomers, the dietary replacement of SO with LO 

increased the 18:1 trans-15 and 18:1 cis-14 + trans-16 and decreased the 18:1 trans-10, 

18:1 cis-11 and 18:1 cis-12 in both lipid fractions. Whereas, 18:1 trans-12, 18:1 trans-13 

+ trans-14 increased and 18:1 trans-11 and 18:1 cis-16 decreased with the replacement of 

SO with LO in PL but not in NL. The 18:1 trans-9 and 18:1 cis-13 decreased with 

replacement of SO with LO in NL but not in PL.  

The dietary replacement of SO with LO increased all non-conjugated 18:2 isomers in 

both lipid fractions, except for 18:2 trans-9, cis-12 in PL and 18:2n-6 in PL and NL 

which decreased. In PL fraction the 18:2n-6 was the major non-conjugated 18:2 isomer 

for all diets, ranging from 97 to 86% of total non-conjugated 18:2 isomers in the S and L 

diets, respectively (P < 0.001). However, in NL fraction the 18:2n-6 was only the major 

non-conjugated 18:2 isomer in lambs fed S, 2SL and S2L whereas in lambs fed L diet 

18:2 trans-11, cis-15 was the predominant non-conjugated 18:2 isomer. Linoleic acid 

ranged from 80% of total non-conjugated 18:2 isomer in the S diet to 32% in the L diet (P 

< 0.001) and 18:2 trans-11, cis-15 ranged from 5% of total non conjugated 18:2 isomers 

in the S diet to 37% in the L diet (P < 0.001). In both lipid fractions, 18:2 cis-12, cis-15 
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was only detected in lambs fed LO, and in PL fraction the 18:2 cis-9, cis-15 was only 

detected in lambs fed S2L and L diets. 

In PL fraction, the dietary replacement of SO with LO increased all the CLA isomers 

except 18:2 trans-7, trans-9 and 18:2 cis-9, trans-11 that remained unchanged. In NL 

fraction, 5 CLA isomers increased (18:2 trans-12, trans-14, 18:2 trans-11, trans-13, 18:2 

cis/trans-12, 14, 18:2 trans-11, cis-13 and 18:2 cis-11, trans-13) and 5 CLA isomers 

decreased (18:2 trans-10, trans-12, 18:2 trans-8, trans-10, 18:2 trans-7, trans-9, 18:2 

trans-10, trans-12 and 18:2 cis-9, trans-11) with dietary replacement of SO with LO. The  

18:2 cis-9, trans-11 was the predominant CLA isomer in both lipid fractions for all diets, 

ranging from 88% of total CLA in the S diet to 57% in the L diet in PL fraction (P < 

0.001) and from 88% of total CLA in the S diet to 59% in the L diet in NL fraction (P < 

0.001). The 18:2 trans-10, cis-12 isomer was only detected in NL fraction.  

The 18:3 isomers increased with the replacement of SO with LO in both lipid fractions. 

The two partially conjugated 18:3 isomers were only detected in lambs fed LO. 

 

3.3.2 Selective deposition of C18 fatty acids between polar and neutral lipid fractions  

The selectivity indices of the C18 FA are presented in Table 3.3. In general, there was a 

discrimination against the deposition of most trans C18 FA in PL, with an apparent 

selectivity in NL (SI < 1). The 18:1 cis-11, 18:1 cis-12, 18:1 cis-15, 18:1 cis-16, 18:2n-6, 

18:2 cis-12, cis-15, 18:2 cis-11, trans-13 and 18:3n-3 showed a selective deposition in PL 

in all diets (SI > 1). SI of some C18 FA were affected by the diet.  Selectivity index of 

18:1 trans-12, 18:1 cis-9, 18:1 cis-13, 18:2 trans-10, trans-12, 18:2 trans-9, trans-11, 

18:2 cis- 9, trans-11, 18:2 trans-7, cis-9 and the 18:3 cis-9, trans-11, cis-15 increased 

with dietary replacement of SO with LO, although they remained below 1. 
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Table 3. 3 Selectivity indices of C18 fatty acids between polar and neutral lipid fractions 

in longissimus muscle from lambs fed graded levels of sunflower and linseed oils. 

 Diets
1
 

SEM P values 
 S 2SL S2L L 

18:0 0.61 0.63 0.66 0.63 0.020 0.557 

 18:1 isomers 

trans-6 + trans-7 + trans-8 0.28 0.32 0.35 0.32 0.020 0.155 

trans-9 0.38 0.43    0.45 0.41 0.021 0.136 

trans-10 0.25 0.30 0.32 0.29 0.024 0.185 

trans-11 0.40a 0.44ab 0.50b 0.43a 0.022 0.022 

trans-12 0.56a 0.70b 0.84c 0.75bc 0.037 <0.001 

trans-13 + trans-14 0.54b 0.63c 0.80d 0.44a 0.032 <0.001 

cis-9  0.40a 0.51b 0.49b 0.62c 0.027 <0.001 

trans-15 0.38 0.44 0.50 0.47 0.033 0.069 

cis-11 1.68a 1.70a 1.88b 1.72a 0.050 0.037 

cis-12 1.78 1.88 2.02 1.59 0.133 0.183 

cis-13 0.49
ab 

0.41
a 

0.60
b 

0.82
c 

0.054 <0.001 

cis-14 + trans-16 0.54 0.55 0.55 0.43 0.032 0.058 

cis-15 1.19 1.44 1.26 1.18 0.126 0.465 

cis-16 1.88 2.21 2.49 1.59 0.232 0.066 
       

18:2 non-conjugated isomers 

trans-11, trans-15 0.99 0.96 0.60 0.30 0.241 0.174 

cis-9, trans-13 + trans-8, cis-12 2   0.97 0.69 0.54 0.58 0.226 0.533 

trans-8, cis-13 + cis-9, trans-12 3 0.54 0.64 0.54 0.69 0.061 0.266 

trans-9, cis-12 2.75d 2.04c 1.36b 0.64a 0.133 <0.001 

trans-11, cis-15 0.40b 0.29a 0.31a 0.28a 0.030 0.036 

cis-9, cis-12  5.28 5.59 6.01 5.98 0.217 0.078 

cis-9, cis-15 NL5 NL5
 0.58 0.85 0.490 0.731 

cis-12, cis-15 -6 1.64 1.63 1.25 0.190 0.306 
       

18:2 conjugated isomers 

trans-12, trans-14 0.50 0.61 0.65 0.62 0.046 0.121 

trans-11, trans-13 0.75 0.80 0.77 0.67 0.059 0.494 

trans-10, trans-12 0.19a 0.29a 0.63b 0.73b 0.073 <0.001 

trans-9, trans-11 0.47a 0.62ab 0.75b 0.72b 0.062 0.017 

trans-8, trans-10 0.38a 0.73a    1.29b 1.50b 0.178 <0.001 

trans-7, trans-9 0.88 1.36 1.28 1.43 0.168 0.125 

cis/trans-12, 14 0.60b 0.25a 0.42ab 0.37a 0.065 0.007 

trans-11, cis-13 0.64 0.61 0.68 0.61 0.034 0.485 

cis-11, trans-13 PL
7
 13.8 9.51 7.10 3.758 0.379 

trans-10, cis-12 NL5 NL5 NL5 NL5   

cis-9, trans-11 0.48a 0.55b 0.56b 0.65c 0.020 <0.001 

trans-7, cis-9 0.25a 0.33b 0.32b 0.45c 0.026 <0.001 
       

18:3 isomers       

cis-9, cis-12, cis-15  1.86a 2.40b 2.78bc 3.20c 0.154 <0.001 

partially conjugated unidentified 4    -6 0.65 0.64 0.60 0.120 0.955 

 cis-9, trans-11, cis-15 -6 0.44a 0.63b 0.72b 0.034 <0.001 
1 S - pelleted dehydrated lucerne with 6% of sunflower oil; 2SL - pelleted dehydrated lucerne with 4% of sunflower oil 
and 2% of linseed oil; S2L - pelleted dehydrated lucerne with 2% of sunflower oil 4% of linseed oil; L - pelleted 
dehydrated lucerne with 6% of linseed oil; 2 peak includes 18:2 cis-9, trans-13 + 18:2 trans-8, cis-12 + 17-cyclo 
(methyl 11-cyclohexylundecanoate); 

3
 peak includes 18:2 trans-8, cis-13 + 18:2 cis-9, trans-12; 4 Peak 5 of Figure 3.3; 5 

Fatty acid only detected in neutral lipids; 6 Fatty acid not detected in polar and neutral lipid fractions; 
7 Fatty acid only 

detected in polar lipids. 
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Selectivity index for 18:3n-3 also increased with dietary replacement of SO with LO, but 

remained above 1. Otherwise, SI of 18:2 trans-11, cis-15 and 18:2 cis-12, trans-14 

decreased with dietary replacement of SO with LO, although they also remained below 1. 

Few 18:1 isomers (18:1 trans-11, 18:1 cis-11 and 18:1 trans-13 + trans-14) showed 

higher SI in the S2L diet than in S and L diets. The SI for 18:2 trans-9, cis-12 was lower 

than 1 only in the L diet, and for 18:2 trans-8, trans-10 and 18:2 trans-7, trans-9 it 

increased from values below 1 in the S diet to values above 1 in the L diet.  

 

3.4 DISCUSSION  

3.4.1 Effect of graded levels of sunflower and linseed oils on rumen biohydrogenation 

derived FA (BI)  

Several studies report the effect of diet on intramuscular FA composition of PL and NL 

(Cooper et al., 2004, Demirel et al., 2004, Nuernberg et al., 2005), as well as the C18 FA 

composition in total lipids (Nuernberg et al., 2005, Bessa et al., 2007) of lamb muscles, 

but data on the detailed composition of C18 FA BI in PL and NL are scarce. Although the 

FA composition in PL is less influenced by dietary factors than in NL (Wood et al., 

2008), we observed that the dietary replacement of SO with LO induced changes in PL 

C18 FA composition that followed the same general pattern observed in NL. This pattern 

is mostly determined by dietary availability of both 18:2n-6 (high in sunflower oil) and 

18:3n-3 (high in linseed oil) and by their ruminal metabolism, as thoroughly discussed by 

Bessa et al. (2007). Briefly, the dietary replacement of SO with LO increased 18:3n-3, 

most of its BI, and decreased 18:2n-6 and some of its BI. The BI pattern changes with the 

replacement of SO with LO include a diversification of CLA isomers with a decrease in 

the relative proportion of 18:2 cis-9, trans-11 and an increase in several conjugated 
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isomers, particularly the 18:2 trans-11, cis-13 (from 3% to 25% of total CLA isomers in 

PL and 2% to 27% of total CLA isomers in NL, in the S and L diets respectively) and 

18:2 trans-11, trans-13 (from 1% to 4% of total CLA isomers in PL and 0.7% to 4% of 

total CLA isomers in NL, in the S and L diets respectively), as previously reported (Kraft 

et al., 2003, Collomb et al., 2004, Loor et al., 2004, Bessa et al., 2007). Rumen BH 

pathways generate a complex pattern of BI that can be related to dietary oil intake. 

Nevertheless, the association of most individual BI exclusively to BH pathways of either 

18:3n-3 or 18:2n-6 is not easy and needs further clarification. However, some BI seems to 

be exclusively derived from 18:3n-3 BH pathways because their concentrations highly 

increase with the replacement of SO by LO, as the 18:2 cis-9, cis-15, 18:2 cis-12, cis-15, 

18:2 trans-11, trans-15, and the two partially conjugated 18:3 isomers  that were only 

detected in lambs fed LO. The 18:3 cis-9, trans-11, cis-15 is well known as an 

intermediate of 18:3n-3 BH (Harfoot and Hazelwood, 1997), and the 18:2 cis-9, cis-15 

was described as a minor intermediate of the 18:3n-3 BH by Kemp et al. (1975). 

Recently, the 18:2 cis-12, cis-15 was proposed as intermediate of 18:3n-3 BH (Bessa et 

al., 2007). Present data confirm the previous data that reported the presence of 18:2 trans-

11, trans-15 only in meat from lambs fed linseed oil (Jerónimo et al., 2010a, chapter 4), 

suggesting that 18:2 trans-11, trans-15 is an intermediate of 18:3n-3 BH. Several 18:3 

isomers, other than the established intermediate of 18:3n-3 BH, 18:3 cis-9, trans-11, cis-

15, has been reported in milk fat (Destaillats et al., 2005), beef (Plourde et al., 2007) and 

duodenal flow of cows (Loor et al., 2004) and associated to 18:3n-3 BH.  
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3.4.2 Deposition of C18 fatty acids in lipid fractions  

The FA profile of a given tissue is expected to reflect the balance between FA 

incorporation (from either de novo synthesis or intestinal absorption) and mobilization. 

The extent of incorporation of individual positional cis and trans isomers into tissue lipids 

varies according to specific tissues and between the neutral and phospholipids in the same 

tissues (Wahle and James, 1993). So, the difference of isomeric FA level between tissues 

may reflect the preferential incorporation in particular lipid classes (Kinsella et al., 1981). 

Also, different PL classes present distinct patterns of FA incorporation (Kramer et al., 

1998, Pérez-Palacios et al., 2007). Moreover, it is well established that there is 

differential incorporation for different sn- positions within molecules like triacylglycerols 

and phospholipids (Wahle and James, 1993). Although data did not allow us to explore all 

the complexity involved, selectivity indices as defined here can be useful to give a crude 

indication of the preferential deposition of BI (mostly exogenous FA) in NL and PL in 

muscle. The preferential incorporation of PUFA, such as 18:2n-6, 18:3n-3 and LC-PUFA 

in PL has been widely described (Wood et al., 2008), although detailed information on 

the distribution of most of the minor BI in NL and PL has not been reported. However, 

this information is expected to be important because it has been proposed that deleterious 

effects of some trans PUFA, and other isomeric FA, are due to their incorporation in 

membrane lipids, thus allowing possible competition with essential FA to FA elongation 

and desaturation systems (Wahle and James, 1993, Chardigny et al., 2007). However, it 

no clear if the general pattern of distribution of these BI reported here will apply to 

monogastric species, including humans, and to other tissues.  

Membrane fluidity and thus membrane function and cellular metabolism are mostly 

regulated by esterified FA of membranary phospholipids (Wahle, 1983, Spector and 
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Yorek, 1985). In the present experiment, the dietary replacement of SO with LO 

decreased the proportion of 18:2n-6 (-103 mg/g of total FA) and increased 18:3n-3 (+46 

mg/g of total FA) and 18:1 cis-9 (+59 mg/g of total FA) in PL fraction, resulting in a 

fairly constant degree of unsaturation of C18 FA in membrane PL. Moreover, the 

proportion of cis PUFA with more than 3 double bonds in PL remained fairly constant 

(about 10%, data not shown) in spite of the marked substitution of n-6 by n-3 PUFA, 

induced by the dietary replacement of SO with LO, as discussed in the companion paper 

(Jerónimo et al., 2009, chapter 2). This suggests that the homeoviscous adaptation 

mechanism of ovine muscle membrane is mainly regulated by selective deposition of C18 

FA.  

As expected, selectivity indices for 18:2n-6 and 18:3n-3 are well above 1 which indicates 

that both FA are preferentially incorporated in PL, although this is more pronounced for 

18:2n-6 than for 18:3n-3 as previously pointed out by De Smet et al. (2004). 

Nevertheless, SI for 18:2n-6 (averaging 5.7) was well below those computed for ARA 

and EPA using data published in the companion paper (Jerónimo et al., 2009, chapter 2) 

averaging 45.8 and 34.4, respectively. Moreover, selectivity indices for 18:0 and 18:1 cis-

9 indicate that they are preferentially found in NL, which is consistent with the 

established knowledge. In contrast to 18:1 cis-9, all the other cis 18:1 FA, except the 18:1 

cis-13, presented SI indicating preferential deposition in PL. The selective incorporation 

of 18:1 cis-12 into phospholipids (on sn-2 position) was already reported (Wahle and 

James, 1993). Calculations on the published data of PL and NL concentration of 18:1 cis-

11 allow us to suggest that selective incorporation of 18:1 cis-11 in PL (SI > 1) is present 

in the skeletal muscle of lambs (Demirel et al., 2004) and cattle (Choi et al., 2000, 

Scollan et al., 2003, Noci et al., 2005, Costa et al., 2006, Noci et al., 2007a, Costa et al., 
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2008, Warren et al., 2008). The biological role or consequences of the selective 

incorporation of cis isomers of oleic acid in PL are not clear.  

The two non-conjugated cis-cis 18:2 isomers of linoleic acid present in lamb muscle, 

particularly in lambs fed linseed oil, had distinct SI. The 18:2 cis-9, cis-15 was 

preferentially deposited in NL, but 18:2 cis-12, cis-15 was selectively deposited in PL. 

This BI is a methylene interrupted cis-cis FA (18:2n-3) and might be sensed as an 

essential FA by the mechanisms regulating PUFA selective incorporation in PL. The 

biological effects of this FA are unexplored. Almost all trans octadeca -enoic, -dienoic 

and -trienoic FA presented SI equal or lower than one, which indicates that they are not 

selectively incorporated in PL. When computing SI on data obtained by other authors, we 

also observed that trans 18:1 isomers (trans 18:1 total, 18:1 trans-9 and 18:1 trans-11) 

and the major CLA isomer (18:2 cis-9, trans-11) are selectively deposited in NL (SI < 1) 

of lamb muscle (Cooper et al., 2004, Nuernberg et al., 2005, Aurousseau et al., 2007b) 

and beef (Scollan et al., 2003, Noci et al., 2005, Noci et al., 2007a, Noci et al., 2007b, 

Costa et al., 2008, Warren et al., 2008). The preferential incorporation of 18:1 trans-11 

(Reichwald-Hacker et al., 1979, Banni et al., 2001, Kraft et al., 2006)  and 18:1 trans-12 

(Kraft et al., 2006) in NL had already been reported in rat studies. Moreover, tissue 

specific incorporation patterns of several trans 18:1 were reported in rats (Reichwald-

Hacker et al., 1979, Kraft et al., 2006), where 18:1 trans-11 was preferentially 

incorporated in adipose tissue and ovaries, whereas isomers between 18:1 trans-12 and 

18:1 trans-16 were preferentially incorporated in the lipids of the liver, heart and serum.      

The preferential incorporation of 18:2 cis-9, trans-11 in NL fraction, as well as the tissue-

specific incorporation patterns of CLA isomers in NL and PL fractions have been 

reported in the liver of rats (Yang et al., 2002) or in the liver and heart (Warren et al., 
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2008) of pigs (Kramer et al., 1998). However, information on the distribution between 

NL and PL for most of the BI reported here is new. Overall, it seems that trans non-

conjugated, and conjugated dienes and trienes are preferentially deposited in muscle NL. 

The most notable exception to preferential incorporation of trans-FA in NL was 18:2 cis-

11, trans-13, that presented very high SI (≈ 10). This finding is consistent with the earlier 

report of  Kramer et al. (1998) that observed greater deposition of 18:2 cis-11, trans-13 in 

the phospholipid diphosphatidylglycerol in cardiac muscle of pigs fed a synthetic CLA 

mixture containing this isomer (20% of total CLA). The reason for this exception is not 

clear. It can be hypothesized that 18:2 cis-11, trans-13 could mimic the 18:1 cis-11 

pattern that is preferentially incorporated in PL. However, this does not explain the fact 

that SI for 18:2 cis-11, trans-13 (≈ 10) were much higher than the SI of 18:1 cis-11 (≈ 

1.8).   

The SI of 22 C18 FA were affected by the dietary replacement of SO with LO. However, 

for most of these FA, the magnitude of changes did not modify the biological 

interpretation of the preferential incorporation of these FA in NL or PL. SI of 18:2 trans-

9, cis-12, 18:2 trans-8, trans-10 and 18:2 trans-7, trans-9 were highly modified by the 

diet, resulting in changes in its preferential deposition in lipid classes. The 18:2 trans-9, 

cis-12 eluted in a highly complex chromatogram region (Alves and Bessa, 2009), so we 

could not exclude a co-elution with other unidentified FA eventually related to 18:3n-3 

BH pathways, resulting in modifications of computed SI. In fact, in a previous study 

Bessa et al. (2007) showed that 18:2 trans-9, cis-12 in intramuscular fat decreased with 

the dietary replacement of SO with LO as observed here in PL fraction but not in NL. The 

18:2 trans-8, trans-10 and 18:2 trans-7, trans-9 are present in very small concentrations 

both in PL and NL, so differences observed in SI, although significant, are probably not 

biologically relevant.  
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Overall, the present data suggest that most of trans BI are preferentially deposited in the 

NL fraction of lamb intramuscular lipids which indicates that its potential for competitive 

interactions with elongation and desaturation metabolic pathways of essential FA is low.       
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ABSTRACT 

The effect of dietary sodium bentonite and a blend of sunflower and linseed oils at 1:2 

(v/v) on growth, carcass and meat quality and FA composition of longissimus dorsi 

muscle of lambs was studied. Thirty-two Merino Branco lambs with initial live weights of 

16.2 ± 2.93 kg were divided according to a completely randomized experimental design 

within a 2 × 2 factorial arrangement of treatments in order to evaluate effects of the 

vegetable oil blend supplementation (0 vs. 60 g/kg DM) and sodium bentonite inclusion 

in diets (0 vs. 20 g/kg DM). The basal diet consisted of pellets with 750 g dehydrated 

lucerne/kg DM and 250 g manioc/kg DM. The experimental period was 6 weeks. 

Bentonite affected neither daily live weight gain, DMI, nor carcass composition. 

However, bentonite decreased the a* meat colour parameter (redness; P = 0.004). Oil 

supplementation affected neither daily live weight gain, nor DM intake. However, it 

increased fat proportion in chump and shoulder cuts (P < 0.001), as well as KKCF fat (P 

< 0.001) while it decreased muscle proportion in the dissected cuts (P < 0.001). Oil 

supplementation increased intramuscular fat (P < 0.001) and most meat FA. 

Polyunsaturated FA increased 23% with oil supplementation (P = 0.007), mostly by 

increasing proportions of n-3 PUFA and biohydrogenation derived PUFA. Oil 

supplementation decreased n-6 LC-PUFA (P < 0.001). The proportion of n-3 LC-PUFA 

was not affected by oil supplementation, so the increase in n-3 PUFA from 1.99 g/100 g 

of total FA to 4.23 g/100 g of total FA (P < 0.001) was mainly due to the increase of 

18:3n-3 (P < 0.001). However, when expressed in mg/100g of meat, oil supplementation 

increased n-3 LC-PUFA concentration from 20 to 31 mg (P < 0.001). All BI increased 

with oil supplementation, except for 18:1 cis-11 which decreased, and 18:1 cis-13 and 

18:2 trans-8, cis-10 which were unchanged. Conjugated linoleic acid increased with oil 

supplementation from 0.50 to 1.72 g/100g of total FA (P < 0.001). Bentonite did not 

affect most meat FA, although effects occurred on some BI. Bentonite increased 18:1 

trans-11, but prevented the increase of 18:1 trans-10 in meat from oil supplemented 

lambs (P < 0.001). The 18:2 trans-11, cis-15, 18:2 cis-9, cis-15 and 18:3 cis-9, trans-11, 

cis-15 increased with dietary bentonite inclusion. 

Keywords: lamb; carcass composition; fatty acids; sodium bentonite; linseed oil; 

sunflower oil 
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4.1 INTRODUCTION 

In recent years, CLA and n-3 PUFA have received much attention due to their potential 

benefits for human health. Ruminant edible fat is highly saturated and strategies are 

needed to improve the FA profile. Supplementing ruminant diets with polyunsaturated 

lipids is an effective approach to decrease SFA in meats and increase meat CLA and n–3 

PUFA (Sinclair, 2007).  

Conjugated linoleic acid refer to the geometrical and positional isomers of 18:2n-6 with 

conjugated double bonds, and many studies suggest that specific CLA isomers exhibit 

anticarcinogenic, anti-adipogenic, anti-diabetogenic, anti-atherogenic and anti-

inflammatory effects (Wahle et al., 2004). Fat depots in ruminants are a rich source of 

CLA and, in particular, rumenic acid (18:2 cis-9, trans-11) (Schimd et al., 2006). 

Rumenic acid is formed by ruminal BH of 18:2n-6 (Harfoot and Hazelwood, 1997) and 

by endogenous conversion of 18:1 trans-11 by stearoyl-CoA desaturase in tissues 

(Griinari et al., 2000). Supplementation of lamb diets with lipid sources rich in 18:2n-6 or 

in 18:3n-3 increased CLA content in lamb muscle (Mir et al., 2000, Wachira et al., 2002, 

Cooper et al., 2004, Szumacher-Strabel et al., 2004, Bessa et al., 2005). However, lipid 

sources rich in 18:2n-6 (i.e. sunflower oil) seem to be more effective in increasing 18:2 

cis-9, trans-11 in lamb meat than lipid sources rich in 18:3n-3 (i.e. linseed oil) (Bessa et 

al., 2007, Jerónimo et al., 2009). Nevertheless, supplementation with lipid sources rich in 

18:2n-6 systematically decreased n-3 PUFA content, thus increasing the n-6/n-3 ratio. N-

3 PUFA, mainly n-3 LC-PUFA, as EPA and DHA are associated with anti-atherogenic, 

anti-thrombotic and anti-inflammatory effects (Givens et al., 2006). Although the 

efficiency of 18:3n-3 conversion into n-3 LC-PUFA is low in lambs, supplementation of 

diets with lipids rich in 18:3n-3, as linseed or linseed oil, allows an increased n-3 LC-

PUFA content in lamb muscle (Wachira et al., 2002, Cooper et al., 2004, Demirel et al., 
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2004, Bessa et al., 2007, Jerónimo et al., 2009). Thus, blending sunflower and linseed oil 

is a good approach to simultaneously obtain higher levels of both n-3 LC-PUFA and CLA 

in lamb meat, as previously reported (Bessa et al., 2007, Jerónimo et al., 2009). 

Dietary PUFA are extensively biohydrogenated in the rumen, thus resulting in a high 

level of SFA in meat, as well as in several unsaturated C18 FA, hereafter designated as BI. 

Protection of dietary PUFA from rumen metabolism can improve the nutritional quality 

of ruminant meat (Cooper et al., 2004). Rumen protection technologies that have emerged 

over the years were recently reviewed (Jenkins and Bridges Jr., 2007). The use of clays to 

adsorb oil in feed in order  to decrease the interaction between oil and the rumen 

ecosystem has been attempted (Tamminga and Doreau, 1991), although without clear 

results on ruminal digestion (Van der Honning et al., 1983). More recently, Sinclair et al. 

(2005) used vermiculite as adsorbant of linseed oil and achieved partial protection of 

linseed oil FA in wethers.  

We hypothesized that incorporation of clay in diets supplemented with PUFA rich oils 

might modify the pattern of rumen BH products by increasing escape of dietary PUFA 

from the rumen and change the profile of BI. Therefore, the present experiment was 

designed to explore effects of sodium bentonite and oil supplementation, and their 

interactions, on growth, carcass composition, meat colour and FA composition of the 

longissimus dorsi muscle, with emphasis on BI of Merino Branco lambs.  
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4.2 MATERIALS AND METHODS 

4.2.1 Animal management and sampling procedures 

Animal handling followed EU directive 86/609/EEC concerning animal care. Merino 

Branco ram lambs, thirty-two, were reared on pasture with dams until weaning, which 

occurred at about 60 days. At weaning, lambs were transported to UIPA-INRB where the 

study was completed. The initial live weight of lambs was 16.2 ± 2.93 kg (mean ± SD), 

and they were randomly distributed to eight pens which were randomly allocated to an 

experimental diet according to a completely randomized experimental design within a 2 × 

2 factorial arrangement of treatments. The aim of this procedure was to evaluate effects of 

vegetable oil blend supplementation (i.e., 0 g/kg DM vs. 60 g/kg DM) and sodium 

bentonite inclusion (i.e., 0 g/kg DM vs. 20 g/kg DM) in diets. Two pens containing four 

lambs each were fed the same diet. The basal diet consisted of pellets containing 750 g 

dehydrated lucerne/kg DM and 250 g manioc/kg DM. The vegetable oil blend was 

sunflower and linseed oils in the proportion 1:2 (v/v). The target for oil inclusion was 60 

g/kg on a DM basis, resulting in pellets with ether extract ranging between 67 and 73 g/kg 

DM. Diets were prepared in an industrial unit and oil was sprayed over the basal diet 

pellets in a 1000 kg capacity mixer. The chemical composition of diets is in Table 4.1. 

During the study, lambs were housed and kept on a slatted floor. After an adaptation 

period of 7 days to experimental conditions, they were subjected to the study for 6 weeks. 

Feed was fed each morning at 1.10 of ad libitum intake calculated by a daily refusal 

weighing. Lambs were weighed weekly just before feeding.  
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Table 4. 1 Chemical composition of experimental diets. 

 
Diets

1 

 
C CO SB SBO 

g/kg DM 

Crude protein
 

117 112 116 108 

Ether extract
 

21 67 20 73 

Starch 221 210 215 206 

NDF
2 

458 440 458 438 

Ash
 

148 141 161 143 

Gross energy (MJ/kg DM) 16.9 17.9 16.9 18.0 
 

Fatty acid composition
 
(g/100g total fatty acids)  

16:0  15.7 7.4 15.8 7.2 

18:0  2.1 2.2 2.1 2.3 

18:1 cis-9  19.4 19.5 19.2 19.4 

18:2n-6  49.5 38.8 47.8 37.6 

18:3n-3  10.0 31.5 9.4 32.7 
1 C – 750 g dehydrated lucerne/kg DM and 250 manioc/kg DM; CO – C with 60 g oil blend (sunflower oil and linseed 
oil - 1:2 v/v)/kg DM; SB – C with 20 g sodium bentonite/kg DM; SBO – C with 20 g sodium bentonite/kg DM and 60 g 
oil blend (sunflower oil and linseed oil - 1:2 v/v)/kg DM; 2 Neutral detergent fibre not assayed with a heat stable 
amylase and expressed inclusive of residual ash. 

 

At the end of the study, lambs were transported to the experimental abattoir of the UIPA-

INRB. After determining live weight, lambs were stunned and then exsanguinated. 

Carcasses were immediately weighed to obtain hot carcass weight, which was used to 

assess the dressing-out proportion. Carcasses were kept at 10 ºC for 24 h, and then chilled 

at 2 ºC until the third day after slaughter, when carcass traits were evaluated and meat 

samples collected. Kidney knob channel fat and kidneys were removed. Carcasses were 

split along the spine and left sides were separated into eight joints (Santos-Silva et al., 

2002b). Chumps and shoulders were dissected into muscle, subcutaneous and 

intermuscular fat and bone.  

Samples of longissimus dorsi muscle were collected at the level of the 13
th

 thoracic 

vertebra. The colour of the longissimus muscle was measured using a Minolta CR-300 

chromometer (Konica Minolta, Portugal) in the L* (lightness), a* (redness) and b* 
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(yellowness) system one hour after air exposure to allow blooming. After removing the 

epimysium, the longissimus dorsi was minced, vacuum packed, freeze-dried and stored at 

-80 ºC until lipid analysis.  

 

4.2.2 Analytical procedures and calculation of variables 

4.2.2.1 Feed analysis 

Feed distributed to the lambs was sampled weekly (1 kg/wk/diet) and pooled. Ground 

samples (1 mm) were analyzed for ash (AOAC, 1990; #942.05), Kjeldahl N (AOAC, 

1990; #954.01) and starch (Clegg, 1956). Neutral detergent fibre (NDF) was determined 

by the procedure of Van Soest et al. (1991). Neither sodium sulfite, nor α-amylase were 

added during NDF extraction, and NDF is expressed inclusive of residual ash. Diet gross 

energy content was measured using an adiabatic bomb calorimeter (Parr 1261, Parr 

Instrument Company, USA). The ether extract was determined by extracting the sample 

with petroleum ether using an automatic soxhlet extractor (Gerhardt Analytical Systems, 

Königswinter, Germany). Fatty acid methyl esters of feed lipids were prepared using one-

step extraction transesterification with toluene and 17:0 as internal standard, according to 

the procedure of Sukhija and Palmquist (1988). 

 

4.2.2.2 Lipid analysis 

Intramuscular lipids were extracted by the Folch et al. (1957) method, using 

dichloromethane and methanol (2:1 v/v) instead of chloroform and methanol (2:1 v/v), as 

described by Carlson (Carlson, 1985). Fatty acids were transesterified using sodium 

methoxide in methanol followed by hydrochloric acid in methanol (1:1 v/v) as described 
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by Raes et al. (2001). Quantification of FAME used 19:0 as the internal standard. Fatty 

acid methyl esters were analysed using a HP6890A chromatograph (Hewlett–Packard, 

Avondale, PA, USA), equipped with a flame-ionization detector (GC–FID) and fused 

silica capillary column (CP-Sil 88; 100 m × 0.25 mm i.d. × 0.20 µm of film thickness; 

Chrompack, Varian Inc., Walnut Creek, CA, USA). Helium was the carrier gas and the 

injector split ratio was 1:50. The initial column temperature of 100 ºC was held for 15 

min, increased to 150 ºC at 10 ºC/min and held for 5 min. Temperature was later 

increased to 158 ºC at 1 ºC/min and held for 30 min. Finally, it was increased to 200 ºC at 

a rate of 1ºC/min and maintained for 60 min. Injector and detector temperatures were 250 

and 280 ºC, respectively. Fatty acids were identified by comparison with commercial 

FAME standard mixtures (Sigma and Supelco, St. Louis, MO, USA). When no 

commercial standards were available, elution profiles were compared with published 

chromatograms obtained with similar analytic conditions (Alves and Bessa, 2009). 

Moreover, identifications were also confirmed by gas chromatography-mass spectrometry 

(GC-MS) using a Varian Saturn 2200 system (Varian Inc., Walnut Creek, CA, USA) 

equipped with a CP-Sil 88 capillary column. For resolution and quantification of 18:1 cis-

9, and both 18:1 trans-13 and 18:1 trans-14  that co-eluted in our GC–FID conditions, we 

proceeded as described by Jerónimo el al. (2009, chapter 2). The 20:3n–9 FA also co-

eluted with the 18:3 cis-9, trans-11, cis-15 in our GC-FID conditions and its 

quantification and identification was conducted as described by Bessa et al. (2007). 

Methyl esters of CLA isomers were individually analysed by triple column silver-ion in 

series (ChromSpher 5 Lipids, 250 mm  4.6 mm i.d.  5 m particle size, Chrompack, 

Bridgewater, NJ, USA), using a HPLC system (Agilent 1100 Series, Agilent 

Technologies Inc., Palo Alto, CA, USA), as described by Bessa et al. (2007). 
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4.2.3 Statistical analysis 

This study was conducted as a 2 × 2 factorial design, where oil blend supplementation 

(O) and sodium bentonite (SB) were considered as main factors. The interaction between 

O and SB was also evaluated (O × SB). The experimental unit used for evaluation of DMI 

was the pen containing four lambs, whereas individual animals were considered as 

experimental units for other variables. The Shapiro-Wilk test was used in order to 

evaluate whether data followed a normal distribution. When not normally distributed (P < 

0.05), data was Box-Cox transformed before further analysis. The SEM for transformed 

variables is in tables, although means are back-transformed. Data from intake and feed 

conversion ratio was analysed using GLM procedure of SAS with a model that included 

the main effects and their interaction. Other data was analysed using the MIXED 

procedure of SAS, considering oil and bentonite and their interaction as fixed effects and 

the pen as random effect. The covariance of measurements from lambs within each pen 

was considered in the model. Lambs were treated as repeated measure within pen and a 

compound symmetry covariance matrix was assumed.  

 

4.3 RESULTS  

4.3.1 Growth performance, carcass composition and meat colour 

Treatment did not influence weight gain, DMI, feed conversion ratio, live slaughter 

weight, hot carcass weight or dressing proportion (Table 4.2). Inclusion of sodium 

bentonite in diets did not affect the tissue composition of chumps and shoulders, although 

oil supplementation decreased muscle proportion (P < 0.001) and muscle/bone ratio (P = 

0.008) and increased fat (subcutaneous and intermuscular fat; P < 0.001). Bone 

proportion in chumps and shoulders was not affected by treatments, but KKCF increased 
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with oil supplementation (P < 0.001). The meat of lambs fed oil supplemented diets was 

lighter (L*) and less red (a*) than that of unsupplemented lambs. Bentonite reduced the 

a* meat colour parameter.   

 

Table 4. 2 Effect of sodium bentonite and oil supplementation on Merino Branco lambs 

growth, carcass composition and meat quality. 

 
Diets

1 

SEM 
P values

2 

 
C CO SB SBO O SB O×SB 

Initial live weight (kg) 18.5 15.4 15.9 15.0 2.93
3
    

Dry matter intake (g/d) 1317 1268 1283 1200 52.8 0.276 0.380 0.747 

Average daily gain (g) 178 213 176 196 26.9 0.302 0.716 0.792 

Feed conversion ratio 7.8 6.5 7.0 6.9 0.82 0.337 0.841 0.479 

Live slaughter weight (kg)
 

24.6 24.7 24.1 22.4 0.77 0.314 0.080 0.221 

Hot carcass weight (kg)
 

11.0 11.0 10.6 10.5 0.46 0.748 0.375 0.946 

Dressing proportion 
4
 0.45

 
0.44

 
0.44

 
0.47

 
0.108 0.364 0.457 0.137 

Muscle proportion
5 

0.62 0.59 0.63 0.59 0.054 <0.001 0.446 0.160 

Bone proportion
5
 0.20 0.21 0.21 0.21 0.062 0.476 0.908 0.299 

Muscle/Bone ratio
5 

2.86 2.51 2.76 2.54 0.010 0.008 0.669 0.500 

Total fat proportion
5, 6 

0.16 0.18 0.14 0.19 0.081 <0.001 0.585 0.106 

KKCF proportion
7 

0.013 0.025 0.014 0.026 0.0159 <0.001 0.601 0.850 
         

Colour
8 

        

    L* 40.8 43.7 41.0 44.1 1.14 0.015 0.771 0.893 

    a* 13.8 13.3 13.5 12.1 0.29 0.002 0.004 0.096 

    b* 4.2 4.9 4.7 4.1 0.40 0.884 0.669 0.132 
1 C – 750 g dehydrated lucerne/kg DM and 250 manioc/kg DM; CO – C with 60 g oil blend (sunflower oil and linseed oil - 

1:2 v/v)/kg DM; SB – C with 20 g sodium bentonite/kg DM; SBO – C with 20 g sodium bentonite/kg DM and 60 g oil blend 
(sunflower oil and linseed oil - 1:2 v/v)/kg DM; 2 O - Oil supplementation, SB – Sodium bentonite inclusion in diets; 3 
Standard deviation; 4 Dressing proportion = (hot carcass weight / live slaughter weight); 5 Average of chump and shoulder; 6 

Sum of subcutaneous and intermuscular fat; 7 kidney and knob channel fat; 8 L* - lightness; a* - redness; b* - yellowness.     
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4.3.2 Intramuscular fat and total fatty acids  

Intramuscular fat concentration increased with oil supplementation (P < 0.001) from 87.1 

mg/g muscle DM in lambs fed diets with no oil to 119.5 mg/g muscle DM in oil 

supplemented lambs (Table 4.3). The same response occurred for IMFA concentration (P 

< 0.001) that increased from 68.2 mg/g muscle DM in lambs fed diets with no oil to 92.3 

mg/g muscle DM in oil supplemented lambs. 

 

4.3.2.1 General fatty acid composition  

Dietary oil supplementation and bentonite inclusion in diets affected meat FA 

composition (Table 4.3 and 4.4), although betonite only affected some BI. Oil 

supplementation decreased the proportion of saturated FA 17:0, the branched-chain FA 

iso-16:0, iso-18:0, monounsaturated FA 17:1 cis-8, 17:1 cis-9, 18:1 cis-9 and 20:1 cis-11 

and increased the anteiso-17:0. Oil supplementation decreased (P < 0.001) 20:3n-6, ARA 

and 22:4n-6, while 18:2n-6 and 20:2n-6 were not affected. The muscle of lambs fed oil 

had 17% less (P = 0.008) total n-6 PUFA and 42% less (P < 0.001) n-6 LC-PUFA that 

unsupplemented lambs. Oil supplementation increased (P < 0.001) 18:3n-3, EPA, and 

total n-3 PUFA by 288%, 62% and 113%, respectively. However, DPA, DHA and total n-

3 LC-PUFA were unaffected by oil supplementation. Total SFA and MUFA were not 

affected by treatments, although total PUFA increased 18% (P = 0.007) with oil 

supplementation. The n-6/n-3 ratio was higher in lambs fed basal diet with 20 g/kg DM of 

sodium bentonite than lambs fed the basal diet, and decreased with oil supplementation 

regardless of the basal diet (2.45). 
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Table 4. 3 Effect of sodium bentonite and oil supplementation on total fatty acid 

concentration (mg/g of fresh muscle) and composition (g/100 g total fatty acids) of 

longissimus dorsi from Merino Branco lambs. 

 Diets1 

SEM 
P values2 

 C CO SB SBO O SB O×SB 

Intramuscular fat3 20.0 23.3 17.2 25.1 <0.01 <0.001 0.237 0.220 

Total fatty acids3 16.1 19.0 14.0 20.2 <0.01 <0.001 0.395 0.065 
         

12:0 0.15 0.12 0.15 0.12 0.026 0.208 0.846 0.980 

14:0 2.12 2.05 1.90 2.22 0.220 0.574 0.924 0.382 

iso-15:03 0.07 0.07 0.14 0.07 0.084 0.362 0.444 0.441 

anteiso-15:03 0.08 0.07 0.09 0.08 0.119 0.365 0.887 0.909 
14:1 cis-93 0.07 0.07 0.09 0.06 1.711 0.122 0.601 0.225 

15:0 0.26 0.25 0.26 0.24 0.020 0.302 0.670 0.950 

iso-16:0 0.11 0.09 0.12 0.09 0.011 0.030 0.534 0.910 

16:0 19.6 18.9 19.8 19.6 0.44 0.263 0.306 0.528 

iso-17:0 0.33 0.30 0.33 0.31 0.028 0.395 0.904 0.707 

16:1 cis-93 1.41 1.16 1.37 1.20 0.088 0.050 0.962 0.703 

anteiso-17:03 0.06 0.11 0.07 0.10 0.439 <0.001 0.437 0.146 

17:0 0.91 0.73 0.88 0.65 0.045 <0.001 0.214 0.672 

iso-18:0 0.14 0.09 0.13 0.09 0.007 <0.001 0.401 0.744 

17:1 cis-83 0.51 0.40 0.49 0.40 0.084 0.001 0.703 0.796 

17:1 cis-9 0.61 0.46 0.63 0.48 0.036 <0.001 0.621 0.921 
18:0 14.7 13.7 14.7 13.5 0.70 0.139 0.901 0.894 

18:1 cis-9 33.7 26.4 32.5 25.6 1.28 <0.001 0.446 0.880 

18:2n-63 8.30 8.49 8.67 7.83 75.331 0.531 0.814 0.311 

20:0 0.13 0.13 0.13 0.12 0.005 0.050 0.503 0.486 

18:3n-3 0.70 2.72 0.65 2.56 0.295 <0.001 0.728 0.860 

20:1 cis-113 0.11 0.09 0.11 0.09 0.671 <0.001 0.256 0.676 

20:3n-9 0.42 0.19 0.50 0.17 0.034 <0.001 0.392 0.145 

20:2n-6 0.10 0.09 0.11 0.07 0.012 0.077 0.744 0.336 

20:3n-6 0.27 0.19 0.30 0.18 0.025 <0.001 0.829 0.448 

20:3n-3 0.04 0.06 0.07 0.06 0.008 0.840 0.282 0.291 

20:4n-6 3.51 2.09 3.65 1.96 0.243 <0.001 0.990 0.581 

20:5n-3 0.38 0.59 0.32 0.56 0.053 <0.001 0.361 0.714 
22:4n-63 0.25 0.14 0.34 0.12 0.109 <0.001 0.644 0.018 

22:5n-3 0.70 0.73 0.69 0.73 0.070 0.577 0.974 0.967 

22:6n-3 0.24 0.23 0.23 0.21 0.021 0.483 0.377 0.811 

Other4 13.5 21.7 14.5 23.0 1.03 <0.001 0.286 0.888 
         

n-6 PUFA3, 5 12.5 11.1 13.2 10.3 30.34 0.008 0.913 0.317 

n-6 LC-PUFA6 4.14 2.57 4.43 2.39 0.311 <0.001 0.862 0.466 

n-3 PUFA7 2.03 4.33 1.95 4.12 0.399 <0.001 0.717 0.878 

n-3 LC-PUFA8 1.33 1.61 1.30 1.56 0.140 0.062 0.763 0.946 
         

SFA 38.2 36.1 38.1 36.7 0.91 0.064 0.754 0.716 

MUFA 40.8 39.5 40.0 39.5 1.00 0.365 0.678 0.708 

PUFA3 16.0 20.1 16.3 19.4 0.08 0.007 0.966 0.662 

n-6/n-3 6.18b 2.54a 6.72c 2.35a 0.156 <0.001 0.268 0.029 
SFA - sum of saturated fatty acids; MUFA - sum of monounsaturated fatty acids; PUFA - sum of polyunsaturated fatty 
acids; 1 C – 750 g dehydrated lucerne/kg DM and 250 manioc/kg DM; CO – C with 60 g oil blend (sunflower oil and 
linseed oil - 1:2 v/v)/kg DM; SB – C with 20 g sodium bentonite/kg DM; SBO – C with 20 g sodium bentonite/kg DM 
and 60 g oil blend (sunflower oil and linseed oil - 1:2 v/v)/kg DM; 2 O - Oil supplementation, SB – Sodium bentonite 
inclusion in diets; 3 variables submitted to Box-Cox transformation; means presented are back-transformed values, 
although SEM is expressed in transformed scale; 4 For lambs fed diets with no oil, the sum of remaining areas (others) 

includes: dimethylacetals (about 3.5 g/100 g total FA), biohydrogenation intermediates (5.7 g/100 g total FA) and 
unidentified peaks (4.5 g/100 g total FA). For lambs fed diets with oil, the sum of remaining areas (others) includes: 
dimethylacetals (2.3 g/100 g total FA), biohydrogenation intermediates (16.1 g/100 g total FA) and unidentified peaks 
(3.5 g/100 g total FA); 5 n-6 PUFA = (18:2n-6 + 20:2n-6 + 20:3n-6 + 20:4n-6 + 22:4n-6);  6 n-6 LC-PUFA = (20:2n-6 + 
20:3n-6 + 20:4n-6 + 22:4n-6); 7 n-3 PUFA =(18:3n-3 + 20:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3); 8 n-3 LC-PUFA = 
(20:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3). 
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Table 4. 4 Effect of sodium bentonite and oil supplementation on biohydrogenation 

intermediates (mg/100 g total fatty acids) of longissimus dorsi from Merino Branco lambs 

 Diets1 

SEM 
P values2 

 C CO SB SBO O SB O×SB 

18:1 isomers         

trans-6 + trans-7 + trans-8 198 348 228 369 13.7 <0.001 0.075 0.745 

trans-9 203 357 221 363 13.0 <0.001 0.365 0.630 

trans-103 337a 802c 454b 554b <0.1 <0.001 0.473 <0.001 

trans-113 747 2669 844 3831 0.1 <0.001 0.044 0.296 

trans-12 283 764 355 744 28.2 <0.001 0.362 0.118 

trans-13 + trans-14 366 1321 327 1304 87.6 <0.001 0.751 0.903 

trans-15 118 359 120 341 8.3 <0.001 0.354 0.213 

cis-11 1313 954 1321 885 26.6 <0.001 0.258 0.164 

cis-12 365 1593 405 1672 104.5 <0.001 0.572 0.852 

cis-133 111 131 125 136 0.1 0.139 0.318 0.597 

cis-14 + trans-16 185 394 210 394 22.1 <0.001 0.603 0.578 

cis-15 53 263 65 283 21.8 <0.001 0.459 0.857 

cis-16 75 172 96 171 19.0 <0.001 0.259 0.237 

Total 4367 10936 4802 11644 570.7 <0.001 0.327 0.813 
         

18:2 non-conjugated isomers 

trans-11, trans-153 0a 102b 0a 129c <0.1 <0.001 0.004 0.004 

  cis-9, trans-13 + trans-8, cis-124 249 562 229 522 22.8 <0.001 0.201 0.682 

trans-8, cis-13 + cis-9, trans-125 172 312 171 295 15.0 <0.001 0.565 0.630 

trans-9, cis-12 73 138 97 137 11.4 <0.001 0.326 0.283 

trans-11, cis-15 87 1263 86 1506 61.1 <0.001 0.060 0.058 

cis-9, cis-153 76 119 93 145 0.1 <0.001 0.036 0.963 

cis-12, cis-15 0 372 0 368 51.1 <0.001 0.965 0.965 

Total 662 2957 667 3169 80.2 <0.001 0.189 0.209 
         

18:2 conjugated isomers         

trans-12, trans-14 4 27 3 27 0.5 <0.001 0.436 0.415 

trans-11, trans-13 7a 43b 6a 52c 1.3 <0.001 0.008 0.001 

trans-10, trans-123 4 8 4 9 <0.1 <0.001 0.032 0.979 

trans-9, trans-11 10 28 10 31 0.6 <0.001 0.032 0.082 

trans-8, trans-103 4 4 3 6 <0.1 0.048 0.502 0.085 

trans-7, trans-93 3 4 3 5 <0.1 <0.001 0.061 0.588 

cis/trans-12,143, 6 4 32 4 26 0.2 <0.001 0.296 0.843 

trans-11, cis-133, 7 8 85 8 175 0.2 <0.001 0.116 0.060 

cis-9, trans-113 370 956 370 1308 0.1 <0.001 0.163 0.156 

trans-8, cis-10 39 70 42 95 24.6 0.100 0.576 0.661 

trans-7, cis-93 36 69 38 62 <0.1 <0.001 0.710 0.197 

Total 499 1543 497 1904 112.6 <0.001 0.124 0.120 
         

Total 18:2 isomers  1161a 4500b 1164a 5073c 127.6 <0.001 0.034 0.035 
         

18:3 isomers          

 cis-9, trans-11, cis-15 0a 361b 0a 477c 5.7 <0.001 <0.001 <0.001 
1 C – 750 g dehydrated lucerne/kg DM and 250 manioc/kg DM; CO – C with 60 g oil blend (sunflower oil and linseed oil - 
1:2 v/v)/kg DM; SB – C with 20 g sodium bentonite/kg DM; SBO – C with 20 g sodium bentonite/kg DM and 60 g oil blend 
(sunflower oil and linseed oil - 1:2 v/v)/kg DM; 2 O - Oil supplementation, SB – Sodium bentonite inclusion in diets; 3 
variables submitted to Box-Cox transformation; means presented are back-transformed values, although SEM is expressed in 
transformed scale; 4 peak includes 18:2 cis-9, trans-13 + 18:2 trans-8, cis-12 + 17-cyclo (methyl 11-cyclohexylundecanoate); 
5 peak includes 18:2 trans-8, cis-13 + 18:2 cis-9, trans-12; 6 peak includes 18:2 cis-12, trans-14 and 18:2 trans-12, cis-14; 7 

peak includes a predominant 18:2 trans-11, cis-13 and a minor 18:2 cis-11, trans-13. 
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4.3.2.2 Biohydrogenation intermediates 

The total of BI increased from 5.7 to 16.1 g/100g total FA with oil supplementation (P < 

0.001). Oil supplementation increased (P < 0.001) all oleic acid isomers, except 18:1 cis-

11 and 18:1 cis-13 (Table 4.4). The major oleic acid isomer in lambs fed diets with no oil 

was 18:1 cis-11 (decreasing (P < 0.001) from 23.2 g/100 g of total BI in oil 

unsupplemented lambs to 6.0 g/100 g in lambs fed oil), whereas in lambs fed oil, the 

major oleic acid isomer was 18:1 trans-11 (increasing (P < 0.001) from 14.1 g/100 g to 

21.7 g/100 g total BI with oil supplementation). Bentonite inclusion in diets increased 

18:1 trans-11 in meat (P = 0.044). An oil × sodium bentonite interaction occurred for 

18:1 trans-10, in which bentonite increased (P < 0.001) 18:1 trans-10 in oil 

unsupplemented lambs, but prevented the increase induced by oil supplementation.  

Oil supplementation increased (P < 0.001) all non-conjugated 18:2 BI, particularly 18:2 

trans-11, cis-15. The 18:2 trans-11, trans-15 and 18:2 cis-12, cis-15 only occurred in 

lambs fed oil. Lambs fed the basal diet with sodium bentonite and oil (SBO diet) had a 

higher proportion of 18:2 trans-11, trans-15 than lambs fed the basal diet with oil (CO 

diet). Bentonite inclusion in diets increased 18:2 cis-9, cis-15 (P = 0.036).   

In all diets, 18:2 cis-9, trans-11 was the predominant CLA isomer in muscle, ranging 

from 75 g/100 g total CLA in oil unsupplemented lambs to 70 g/100 g in lambs fed oil 

supplemented diets, and increasing 216% with oil supplementation (P < 0.001). In diets 

with no oil, the second and third major CLA isomers were 18:2 trans-8, cis-10 and 18:2 

trans-7, cis-9, comprising 8.1 and 7.5 g/100 g total CLA, respectively. When oil was 

added to the diet, the second major CLA isomer in muscle was 18:2 trans-11, cis-13 with 

9.1 g/100 g total CLA, followed by the 18:2 trans-8, cis-10 and 18:2 trans-7, cis-9, with 

5.3 and 4.4 g/100 g total CLA, respectively. Inclusion of bentonite in diets increased (P = 
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0.032) 18:2 trans-10, trans-12 and 18:2 trans-9, trans-11 isomers. Lambs fed SBO had a 

higher proportion of 18:2 trans-11, trans-13 than lambs fed CO (O × SB, P = 0.001). 

The conjugated triene 18:3 cis-9, trans-11, cis-15 was only detected in lambs fed oil, 

while lambs fed SBO showed a higher proportion of this BI than lambs fed CO (O × SB, 

P < 0.001). 

 

4.4 DISCUSSION 

4.4.1 Growth performance, carcass composition and meat colour 

Overall, results indicate that the live weight gain of lambs was not affected by treatments, 

although oil supplementation changed the composition of the weight gain, slightly 

increasing fat deposition to the detriment of muscle. Reports on effects of bentonite on 

DMI and average daily live weight gain in lambs are inconsistent (Martin et al., 1969, 

Ivan et al., 1992, Walz et al., 1998) and may vary according to initial live weight, basal 

diet and level of bentonite inclusion. An apparent decrease of muscle deposition (muscle 

proportion) is expected after fat accretion in dissected cuts. However, a decrease in 

muscle/bone ratio (computed as muscle weight/bone weight) indicates that muscle 

deposition was depressed in oil supplementation lambs. The increase in fat deposition 

with oil supplementation has been previously reported in lambs of the same breed fed 

similar diets (Santos-Silva et al., 2004). However, the decrease of the muscle/bone ratio 

with oil supplementation in our experiment was not observed in previous ones. Feed 

crude protein was much lower than in the previous studies, and thus lamb diets might 

have been protein deficient. Thus, the dilution of diet crude protein due to oil inclusion 

might accentuate protein scarcity, and hence decrease muscle growth. Moreover, 

increased energy intake in oil supplemented diets might increase fat deposition.  
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In our study, the effect of oil supplementation on meat colour contrasts with previous 

reports (Santos-Silva et al., 2004, Bessa et al., 2005), where supplementation of 

dehydrated lucerne with soybean oil did not modify L* and a* meat colour parameters. 

Manso et al. (2009) also reported that supplementation of concentrate based diets with 

hydrogenated vegetable fat or sunflower oil did not induce changes in meat colour. The 

increase of L* and decrease of a* parameter with oil supplementation in our study may be 

due to higher intramuscular fat content in this meat (Priolo et al., 2001). It is not clear 

why bentonite reduced the a* colour parameter, but it may be linked to mineral 

availability in muscle (Mancini and Hunt, 2005). The effect of sodium bentonite on 

retention of several minerals was reported to increase retentions of  magnesium and 

phosphorus and decrease retentions of calcium (Martin et al., 1969, Huntington et al., 

1977).  

 

4.4.2 Intramuscular fat and general fatty acid composition 

Higher intramuscular fat and FA concentration in the muscle of lambs fed oil was 

consistent with carcass composition results indicating greater lipid deposition. The 

increase in intramuscular fat and FA concentration with lipid supplementation of forage 

based diets has been reported (Bessa et al., 2005, Bessa et al., 2007) although not always 

observed (Santos-Silva et al., 2004).  

The FA composition was greatly modified by dietary oil supplementation, but generally 

remained unaffected by bentonite inclusion in the diet. The exception was in some BI. 

The oil supplementation effect on meat FA composition is most likely due to differences 

in the amount and profile of FA intake. However, the increase of IMFA (+47%) induced 

by oil supplementation must be considered in interpretation. The increase in IMFA is due 
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to an increase in triacylglicerols, and membranary polar lipid remains fairly constant 

(Wood et al., 2008). Incorporation of FA into polar lipids is under regulatory control in 

order to maintain proper membrane fluidity and function (Wahle, 1983, Spector and 

Yorek, 1985). The ratio of SFA to unsaturated FA is fairly constant, although differences 

within these FA have been observed (Raes et al., 2004, Jerónimo et al., 2009). Some FA, 

such as 18:2n-6, 18:3n-3, and n-6 and n-3 LC-PUFA are selectively incorporated into 

polar lipids, whereas triacylglicerols incorporate more SFA and 18:1 cis-9 (Raes et al., 

2004). Therefore, the increase of IMFA is expected to dilute LC-PUFA and 18:2n-6 and 

concentrate saturated FA, especially 16:0. 

As expected, dietary oil supplementation increased total C18 FA, but did not decrease 

16:0, the major hypercholesterolalemic FA, as has been frequently referred to in other 

reports (Bas et al., 2007, Bessa et al., 2007). In ruminants fed lipid supplemented diets, 

the decrease of 16:0 is generally explained by an inhibition of de novo synthesis by 

affluent exogenous FA, particularly PUFA (Chilliard, 1993). As explained above, the 

increase in IMFA for oil supplemented lambs would likely have resulted in increased 

16:0 concentration. Moreover, in our experiment, the control level of 16:0 already seems 

to be depressed (below 20 g/100 g of total FA), suggesting that de novo FA synthesis 

might probably have been reduced because of a dietary energy deficiency. 

The decrease of 18:1 cis-9 and 18:0 in muscle has been associated to dietary PUFA 

supplementation (Santos-Silva et al., 2004, Boles et al., 2005, Bessa et al., 2007). The 

depression of 18:1 cis-9 might be due to a lack of 18:0 (substrate of ∆9-desaturase) 

resulting from incomplete BH (Bessa et al., 2007) or ∆9-desaturase inhibition due to high 

dietary levels of 18:3n-3 (Sinclair, 2007).  
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Oil supplementation increased total PUFA, mostly by increasing proportions of n-3 

PUFA and biohydrogenation derived PUFA. This reflects both the low content of 18:3n-3 

in the basal diet and the high content of 18:3n-3 in the oil blend. While the 18:2n-6 in 

meat would have been expected to increase with oil supplementation, it did not change. 

The 18:2n-6 shows a higher preferential deposition on phospholipids than 18:3n-3 (De 

Smet et al., 2004). As stated above, oil supplementation increased IMFA, hence the 

neutral lipid fraction. However, membrane phospholipids levels remain fairly constant 

(Wood et al., 2008). Therefore, the expected increase in 18:2n-6, due to oil 

supplementation was probably neutralized by dilution caused by increased IMFA. 

Total n-3 PUFA increased, although total n-3 LC-PUFA were not affected by treatments. 

Since n-3 LC-PUFA are almost exclusively incorporated in PL, a dilution could be 

expected when IMFA increased. Thus, the concentration of n-3 LC-PUFA in PL must 

have increased in order to maintain the proportion in total FA profile. In fact, when 

expressed per 100 g of meat, the content of n-3 LC-PUFA increased (P < 0.001) from 20 

mg in lambs fed diets with no oil to 31 mg n-3 LC-PUFA in lambs fed oil.   

 

4.4.2.1 Biohydrogenation intermediates 

Oil supplementation induced a major increase in all BI groups and the pattern in meat is 

consistent with responses observed in the sunflower/linseed oil blend supplementation of 

the lucerne based diet previously reported by our team and discussed by Bessa et al. 

(2007). Oil supplementation decreased 18:1 cis-11 and kept 18:1 cis-13 and 18:2 trans-8, 

trans-10 unchanged, reinforcing the suggestion that these FA may not be related to 

ruminal BH of PUFA (Bessa et al., 2007). 
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In our study, the concentration of 18:1 trans-11 and 18:2 cis-9, trans-11  in meat from 

lambs fed unsupplemented diets was particularly low (≤ 0.84 and 0.37 g/100 g of total 

FA, respectively), particularly when compared to previous experiments where dehydrated 

lucerne basal diets were fed (Bessa et al., 2005, Bessa et al., 2007). This might be due to 

the low 18:3n-3 content in the basal diet and/or to its relatively high starch content, as 

high starch diets promote changes in rumen BH pathways that favour production of 18:1 

trans-10 instead of 18:1 trans-11 (Griinari and Bauman, 1999). Decreasing 18:1 trans-11 

rumen outflow will result in lower 18:2 cis-9, trans-11 deposition in tissues, because most 

of it is derived from endogenous 9-desaturation (Palmquist et al., 2004). 

The 18:2 trans-11, trans-15 and 18:2 cis-12, cis-15, as well as 18:3 cis-9, trans-11, cis-15 

were only detected in muscle of oil fed lambs. The 18:2 cis-12, cis-15 and 18:3 cis-9, 

trans-11, cis-15 were identified in lamb meat by Alves and Bessa (2007). While 18:3 cis-

9, trans-11, cis-15 is well known as an intermediate of 18:3n-3 BH (Harfoot and 

Hazelwood, 1997), 18:2 cis-12, cis-15 has also recently been proposed as an intermediate 

of 18:3n-3 BH (Bessa et al., 2007). The 18:2 trans-11, trans-15 has been previously 

reported in milk (Shingfield et al., 2006), omasal digesta (Shingfield et al., 2008) and 

rumen fluid (Vlaeminck et al., 2008) of cows.  As far as we know, this is the first report 

of its occurrence in lamb meat.  

Use of clays as absorbing carriers of lipid supplements was proposed in order to allow an 

increase in FA intake without interfering with ruminal function (Tamminga and Doreau, 

1991). As far as we know, the only report about the effect of this approach on ruminal BH 

of PUFA was that of Sinclair et al. (2005), who used vermiculite and observed partial 

protection of linseed oil FA, with a reduction of BI flowing to the duodenum of sheep. 

Our results suggest that an opposite effect of bentonite, with an increase of both 18:1 
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trans-10 and 18:1 trans-11 isomers occurred in meat. Moreover, some intermediates of 

18:3n-3 BH were increased.  Levels of bentonite incorporation were similar to those of 

vermiculite used by Sinclair et al. (2005). However, while they previously adsorbed oil 

into vermiculite, we pelleted the basal diet with bentonite and then oil was sprayed over 

the pellets. Therefore, differences between studies might be due to the technological 

processes of clay and oil incorporation, and/or to differences in oil adsorbent capacity 

between bentonite and vermiculite. 

The TFA are potentially deleterious to human health and present recommendations point 

out an intake that is  under 1 g/100 g of total energy intake (WHO, 2003). This increase 

may limit the usefulness of vegetable oil supplementation to increase the nutritional value 

of ruminant meat. Additional research is needed to increase 18:1 trans-11 and CLA 

content without major increases in other trans BI. Meat of ruminants fed concentrate diets 

contained a higher concentration of 18:1 trans-10 than ruminants fed forage (Sackmann et 

al., 2003, Dannenberger et al., 2004, Bessa et al., 2005, Bessa et al., 2008). Oil 

supplementation of diets containing high starch levels generally led to a drastic increase 

in meat 18:1 trans-10 to the detriment of 18:1 trans-11 and subsequent failure to increase 

18:2 cis-9, trans-11  (Bessa et al., 2005, Bessa et al., 2008). The 18:1 trans-10 has been 

associated with detrimental effects on plasmatic lipid metabolism, whereas 18:1 trans-11 

appears to be neutral (Bauchart et al., 2007, Roy et al., 2007). The effect of bentonite on 

preventing the increase of 18:1 trans-10 in oil supplemented diets suggests that it might 

mitigate the trans-10 shift of rumen BH pathways. Thus, it can be a promising approach 

to optimize the response to high concentrate diets supplemented with oils for meat FA 

pattern improvement. 
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4.5 CONCLUSIONS 

Although oil supplementation did not affect growth performance, it induced a higher fat 

deposition and lower carcass muscle proportion. Oil supplementation increased 

intramuscular fat and greatly affected its FA composition, increasing n-3 PUFA and CLA 

contents. Bentonite effects were restricted to meat colour and to the content of some BI in 

meat. This clay increased 18:1 trans-11 and prevented the increase of 18:1 trans-10 in 

meat from oil supplemented lambs.   
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ABSTRACT 

Thirty-six lambs were used in a 6 week experiment to evaluate the effect of vegetable oil 

blend supplementation (0 vs. 60 g/kg DM) and two dietary condensed tannin (CT) 

sources: grape seed extract (0 vs. 25 g/kg DM) and Cistus ladanifer L. (0 vs. 250 g/kg 

DM) on FA composition of abomasal digesta and intramuscular PL and NL. Grape seed 

extract did not affect FA profile of abomasal digesta nor muscle lipid fractions. C. 

ladanifer had a minor effect in lambs fed diets with no oil, but greatly changed the 

abomasal and muscle FA profiles in oil supplemented lambs. It decreased 18:0 and 

increased 18:1 trans-11 in abomasal digesta and increased 18:1 trans-11 and 18:2 cis-9, 

trans-11 (P = 0.062) in muscle NL, resulting in an important enrichment of meat 18:2 cis-

9, trans-11 when compared to other oil supplemented diets (19.2 vs. 41.7 mg/100 g 

muscle). 

 

Keywords: lamb, abomasal digesta; meat; fatty acids; biohydrogenation intermediates; 

condensed tannins; oil supplementation 
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5.1 INTRODUCTION  

The supplementation of ruminant diets with lipid sources rich in PUFA is an effective 

approach to improve the nutritional value of meat fat, through the decreasing of SFA and 

the enrichment in PUFA, including the health promoters CLA and n-3 PUFA (Scollan et 

al., 2006, Sinclair, 2007). Supplementary C18 PUFA will be extensively metabolized by 

the rumen ecosystem, producing a complex pattern of isomeric C18 FA, mostly TFA, here 

after named BI. Trans FA have been associated with detrimental effects on human health 

(Hunter, 2006), although 18:1 trans-11, the precursor of 18:2 cis-9, trans-11 in tissues 

might be considered as a neutral or beneficial TFA (Field et al., 2009). 

Several factors modulate rumen BH of PUFA, including the amount and type of lipid 

supplements (Jenkins et al., 2008) and basal diet (Bessa et al., 2005). More recently, it 

has been suggested that condensed tannins (CT) might modulate rumen BH of PUFA 

(Khiaosa-Ard et al., 2009, Vasta et al., 2009a, Vasta et al., 2009b, Vasta et al., 2010b). 

Condensed tannins are plant secondary metabolites with astringency properties. In vitro 

(Khiaosa-Ard et al., 2009, Vasta et al., 2009a) and in vivo (Vasta et al., 2009b, Vasta et 

al., 2010b) studies showed that some CT sources are effective in the reduction of dietary 

PUFA ruminal BH, particularly in its last step, resulting in accumulation of 18:1 trans-11. 

Thus, CT supplementation could be a useful strategy to improve the nutritional value of 

ruminant fat. Cistus ladanifer L. was chosen due to its high tannin content and its 

abundance in  marginal fields of Mediterranean countries (Dentinho et al., 2005). Grape 

seed extract was a commercial available source of purified CT. Interactions between CT 

and vegetable oil supplementation are fairly unexploited. Therefore, the aim of the 

present study was to explore the effect of dietary CT sources (grape seed extract and 

leaves and soft stems of Cistus ladanifer L.), and oil supplementation, and their 



Chapter 5 

 

130 

 

interactions on lamb growth performance, carcass composition, ruminal 

biohydrogenation, as evaluated by FA composition of abomasal digesta and intramuscular 

fat of lambs. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Animals, treatments and sample collection 

Animal handling followed the EU directive 86/609/EEC concerning animal care. Thirty-

six Merino Branco ram lambs were reared on pasture with dams until weaning 

approximately at 60 days. At weaning day, lambs were transported to the UIPA-INRB, 

where the trial was held. The average initial weight for lambs was 24.8 ± 1.55 kg (mean ± 

SD). Lambs (n=36) were randomly assigned to 12 pens; 3 lambs per pen and 2 pens per 

treatment, according to a completely randomized experimental design with a 3 × 2 

factorial arrangement of treatments. The first factor was CT sources (with 3 levels; 1) no 

added CT source – control, 2) 25 g grape seed extract/kg DM, 3) 250 g C. ladanifer 

leaves and soft stems/kg DM) and the second factor was oil supplementation (with 2 

levels: 0 g and 60 g oil blend/kg DM). This 3 × 2 factorial arrangement results in 6 diets: 

C, basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg 

DM; CO, basal diet with 60 g oil blend/kg DM; GS, basal diet with 25 g grape seed 

extract/kg DM; GSO, basal diet with 25 g grape seed extract/kg DM and 60 g oil blend/kg 

DM; CL, basal diet with 250 g C. ladanifer/kg DM and CLO, basal diet with 250g C. 

ladanifer/kg DM and 60 g oil blend/kg DM. Grape seed (Vitis vinifera L.) extract 

contained 95% proanthocyanidines in DM (AHD international LLC, Atlanta, GA, USA). 

Leaves and soft stems of C. ladanifer shrubs were harvested in Portugal (39º30´36´´N/8º 

19´00´´W) in March 2008, dried at room temperature, cut in small particles and milled to 
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a final particle size of 3 mm. The oil blend was composed of a mixture of sunflower and 

linseed oils in a proportion of 1:2 (v/v). Diets were prepared in an industrial unit and oil 

was sprayed over the pellets in a 1000 kg capacity mixer. The chemical composition of 

diets is present in Table 5.1. 

 

Table 5. 1 Chemical composition of the experimental diets. 

1 Diet C - basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; 2 Diet CO - basal diet 
with 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 3 Diet GS - basal diet with 25 g  grape seed extract/kg 
DM; 4 Diet GSO - basal diet with 25 g grape seed extract/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 
v/v)/kg DM; 5 Diet CL - basal diet with 250 g Cistus ladanifer/kg DM; 6 Diet CLO - basal diet with 250 g Cistus 
ladanifer/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 7 Neutral detergent fibre; 8 Condensed 
tannins (CT) quantified using purified grape seed CT as standard; 8 Condensed tannins (CT) quantified using purified 
Cistus ladanifer CT as standard. 

 

 

During the trial, lambs were housed and kept on a slatted floor. The trial started after an 

adaptation period of 7 days to experimental conditions and lasted for 6 weeks. Feed was 

offered every morning at the rate of 110% of ad libitum intake, a calculation based on 

daily refusal weighing. Animals were weighed weekly, just before feeding. At the end of 

the trial, lambs were transported to the experimental abattoir of the UIPA-INRB. After 

 Control GSE C. ladanifer 

 0%
1 

6%
2 

0%
3 

6%
4 

0%
5 

6%
6 

g/kg dry matter       

Crude Protein
 

149 143 138 132 150 128 

Ether extract 18.6 68.7 20.7 67.8 34.1 87.9 

Total fatty acids
 

14.2 66.0 14.5 66.7 24.4 78.4 

NDF
7 

535 516 532 519 399 416 

Total phenols
 

9.1 7.5 17.6 16.2 17.5 16.5 

Grape seed condensed tannins
8 

0.95 0.70 14.9 13.3 - - 

Cistus ladanifer condensed tannins
9 

8.48 8.17 - - 21.0 20.7 
       

Fatty acid composition (g/100 g of total fatty acids) 

16:0 16.0 7.84 17.6 8.08 13.1 7.73 

 18:0 1.63 2.76 2.03 2.79 2.07 2.77 

18:1 cis-9 16.0 19.1 15.7 18.8 17.6 18.6 

18:2n-6 29.6 31.0 33.1 31.3 36.8 32.8 

18:3n-3 11.0 29.9 14.0 29.9 8.52 29.4 



Chapter 5 

 

132 

 

determining live slaughter weight, lambs were stunned and slaughtered by 

exsanguination. Samples of abomasal digesta were collected immediately post-mortem, 

freeze-dried and stored at -80 ºC until lipid analysis. After preparation, carcasses were 

weighed to obtain hot carcass weight, which was used to determine dressing percentage. 

Carcasses were kept at 10 ºC for 24 h, and then chilled at 2 ºC until the third day after 

slaughter, at which time carcass traits were evaluated and meat samples collected. Kidney 

knob channel fat and kidneys were removed. Carcasses were split along the spine and left 

sides of the carcasses were separated into eight joints (Santos-Silva et al., 2002b). 

Chumps and shoulders were dissected into muscle, subcutaneous and intermuscular fat 

and bone. Samples of longissimus dorsi muscle were collected at the level of the 13
th

 

thoracic vertebra. After removing the epimysium, muscle samples were minced with a 

food processor (3 × 5s), vacuum packed, freeze-dried and stored at -80 ºC until lipid 

analysis. 

 

5.2.2 Lipid analysis of intramuscular fat and abomasal digesta 

Intramuscular lipids were extracted using dichloromethane and methanol (2:1 v/v) and 

separated in PL and NL, by using a solid-phase extraction as previously described 

(Jerónimo et al., 2009, chapter 2). The NL and PL fractions were transesterified with 

sodium methoxide in methanol, followed by hydrochloric acid in methanol (1:1 v/v) as 

described by Raes et al. (2001). Fatty acid methyl esters of abomasal digesta lipids were 

prepared using one-step extraction transesterification with toluene, according to the 

procedure reported by Sukhija and Palmquist (1988).  

The quantification of muscle and abomasal lipid FAME was performed using 19:0 as 

internal standard. Fatty acid methyl esters were analyzed using HP6890A chromatograph 
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(Hewlett- Packard, Avondale, PA, USA), equipped with a flame-ionization detector (GC-

FID) and fused silica capillary column (CP-Sil 88; 100 m × 0.25 mm i.d. × 0.20 µm film 

thickness; Chrompack, Varian Inc., Walnut Creek, CA). Helium was the carrier gas and 

the injector split ratio was 1:50. The initial column temperature of 100 ºC was held for 15 

min, increased to 150 ºC at 10 ºC/min and held for 5 min, then increased to 158 ºC at 1 

ºC/min and held for 15 min. Temperature was later increased to 175 ºC at 1 ºC/min and 

held for 10 min, and finally increased to 200 ºC at a rate of 1 ºC/min and maintained for 

40 min. Injector and detector temperatures were 250 ºC and 280 ºC, respectively.  

For the resolution of 18:1 cis-9 from both 18:1 trans-13 and 18:1 trans-14 (that co-eluted 

in our GC-FID conditions) a second temperature program was used. The initial 

temperature column of 70 ºC was held for 4 min, increased to 110 ºC at 8 ºC/min and then 

increased to 170 ºC at 5 ºC/min, held 10 min, and finally increased to 220 ºC at a rate of 4 

ºC/min, and maintained for 25 min. Thus, the relative amounts of 18:1 cis-9 and 18:1 

trans-13/14 were calculated from the second temperature program and applied to the area 

of the common peak identified in initial temperature program. Fatty acids were identified 

by comparison with commercial FAME standard mixtures (Sigma and Supelco, St. Louis, 

MO, USA). When no commercial standards were available, elution profiles were 

compared with published chromatograms obtained with similar analytic conditions (Alves 

and Bessa, 2009). Moreover, identifications were also confirmed by gas chromatography-

mass spectrometry (GC-MS) using a Varian Saturn 2200 system (Varian Inc., Walnut 

Creek, CA, USA) equipped with a CP-Sil 88 capillary column.  

The methyl esters of CLA isomers were individually analyzed by triple column silver-ion 

in series (ChromSpher 5 Lipids, 250 mm  4.6 mm i.d.  5 m particle size, Chrompack, 

Bridgewater, NJ, USA), using an HPLC system (Agilent 1100 Series, Agilent 



Chapter 5 

 

134 

 

Technologies Inc., Palo Alto, CA, USA) equipped with autosampler and a diode array 

detector (DAD) adjusted at 233 nm. The mobile phase was 0.1% acetonitrile in n-hexane 

maintained at a flow rate of 1 mL/min, and injection volumes of 20 μl were used. The 

identification of the individual CLA isomers was achieved by comparison of their 

retention times with commercial and prepared standards, as well as with data published in 

the literature (Fritsche et al., 2000). In GC analysis the main peak of 18:2 cis-9, trans-11 

co-eluted with both 18:2 trans-7, cis-9 and 18:2 trans-8, cis-10. As proposed by Kraft et 

al. (2003), the he HPLC areas of 18:2 cis-9, trans-11, 18:2 trans-7, cis-9 and 18:2 trans-

8, cis-10 were added and used to calculate three isomers peaks from GC chromatograms. 

The amounts of the other CLA isomers were calculated from their HPLC areas relative to 

the area of the main isomer 18:2 cis-9, trans-11 identified by GC.  

 

5.2.3 Statistical analysis 

This trial was conducted using a 3 × 2 factorial design, where the 2 factors were CT 

sources (CT, with 3 levels: control, grape seed extract and C. ladanifer) and vegetable oil 

blend supplementation (O, with 2 levels: 0 g and 60 g/kg DM). The interaction between 

CT sources and O was also evaluated (CT × O). The experimental unit used to evaluate 

DMI and FA intake was the pen (3 lambs), whereas individual animals were considered 

as experimental units for all other variables. The Shapiro-Wilk test was used to evaluate 

whether data followed a normal distribution. When not normally distributed (P < 0.05), 

data was Box-Cox transformed before further analysis. Data from intake and feed 

conversion ratio were analyzed using GLM procedure of SAS with a model that included 

the main effects and their interaction. Other data were analyzed using the MIXED 

procedure of SAS, considering oil and CT sources and their interaction as fixed effects 

and the pen as random effect. The covariance of measurements from lambs within each 
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pen was considered in the model. Lambs were treated as repeated measurements within 

the pen and a compound symmetry covariance matrix was assumed. Least squares means 

and SEM are presented in tables. For Box-Cox transformed variables the SEM is 

presented in tables, although means are back-transformed. Data presented in tables are the 

least square means obtained for each combination of factors levels (diets). Because, some 

variables did not present significant CT × O interactions, the least square means for main 

effects are presented in the text when needed. When only one level of CT source factor 

differs from the other two and these two are not significantly different, we only present 

the least square mean of the level that was different and the average of least square mean 

for other factor levels. 

  

5.3 RESULTS 

5.3.1 Feed intake  

Dry matter intake was not affected by treatments, which averaged 1616 g DM/day (Table 

5.2). Dietary oil supplementation resulted in a significant increase of FA intake for lambs 

receiving the oil supplemented diets. Diets containing C. ladanifer increased (P = 0.032) 

total FA intake when compared to other diets. In spite of the great difference in grape 

seed extract and C. ladanifer dietary inclusions (25 vs. 250 g/kg DM), the enrichment of 

CT into diets was similar. The enrichment in grape seed CT, computed by the difference 

of CT concentration in grape seed diets and control diets (i.e. GS minus C and GSO 

minus CO) was 13.9 g/kg DM and 12.6 g/kg DM for GS and GSO diets, respectively. The 

enrichment in C. ladanifer CT, computed by the difference of CT concentration in C. 

ladanifer diets and control diets (i.e. CL minus C and CLO minus CO) were 12.5 g/kg for 

both CL and CLO diets. 



Chapter 5 

 

136 

 

Table 5. 2 Effect of dietary condensed tannin sources (Control, Grape Seed Extract-GSE 

and C. ladanifer) and oil supplementation (0% and 6% of added oil in dry matter) on dry 

matter (DMI) and fatty acid intake (g/day) of lambs 

 Control  GSE  C. ladanifer
 

SEM 
P values

8 

 0%
1 

6%
2 

 0%
3 

6%
4 

 0%
5 

6%
6 

CT O CT×O 

DMI  1704 1642  1701 1659  1467 1524 89.3 0.143 0.833 0.787 
             

Fatty acid intake 

16:0 5.23 9.39  5.28 9.83  6.01 10.1 0.380 0.211 <0.001 0.814 

18:0 0.53 3.30  0.61 3.39  0.95 3.62 0.107 0.032 <0.001 0.861 

18:1 cis-9 5.24 22.9  4.70 22.9  8.11 24.3 0.740 0.033 <0.001 0.424 

18:2n-6 9.68 37.1  9.91 38.1  16.8 42.9 1.319 0.005 <0.001 0.738 

18:3n-3 3.61 35.8  4.20 36.4  3.89 38.5 1.114 0.437 <0.001 0.489 

Total FA  24.5 108.8  24.9 111.1  36.6 120.5 3.64 0.032 <0.001 0.948 
1 Diet C - basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; 2 Diet CO - basal diet with 60 g 
oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 3 Diet GS - basal diet with 25 g  grape seed extract/kg DM; 4 Diet GSO - 

basal diet with 25 g grape seed extract/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 5 Diet CL - basal 
diet with 250 g Cistus ladanifer/kg DM; 6 Diet CLO - basal diet with 250 g Cistus ladanifer/kg DM and 60 g oil blend (sunflower 
and linseed oils, 1:2 v/v)/kg DM; 7 CT - Condensed tannin sources inclusion in diets, O - Oil supplementation. 

 

5.3.2 Growth performance and carcass composition  

Treatment did not influence (P > 0.05) average daily weight gain (279 g/d), Gain:Feed 

intake ratio (0.17) and live slaughter weight (36.2 kg) (Table 5.3). Oil supplementation 

increased (P < 0.05) hot carcass weight (15.2 vs. 16.6 kg), dressing percentage (41.4 vs. 

43.9%) and accumulation of KKCF in carcass (1.80 vs. 2.48%). Dressing percentage was 

higher in lambs fed C. ladanifer diets (P = 0.003) than in lambs fed two other diets, which 

did not differ between each other (44.9 vs. 41.5%). When compared to other diets, 

feeding C. ladanifer resulted in a higher (P = 0.020) subcutaneous fat percentage (11.3 vs. 

9.24 %) and lower (P = 0.003) muscle percentage (56.5 vs. 60.9%) in chump and shoulder 

cuts. Kidney and knob channel fat percentage also increased significantly with the 

inclusion of C. ladanifer in the diet (P = 0.013) when compared to other diets (2.58 vs. 

1.92 %). 



 

 

Table 5. 3 Effect of dietary condensed tannin sources (Control, Grape Seed Extract-GSE, and C. ladanifer) and oil supplementation (0% and 6% 

of added oil in dry matter) on growth and carcass composition of lambs 

 Control  GSE  C. ladanifer
 

SEM 
P values

7 

 0%
1 

6%
2 

 0%
3 

6%
4 

 0%
5 

6%
6 

CT O CT×O 

Initial live weight (kg) 24.6 24.9  24.4 24.3  24.3 26.4   

Average daily gain (g/d)
 

290 308  245 286  257 286 19.7 0.215 0.083 0.835 

Gain:Feed intake ratio 0.17 0.19  0.14 0.17  0.17 0.19 0.012 0.192 0.106 0.785 

Live slaughter weight (kg)
 

36.5 37.5  34.4 36.0  34.8 38.1 1.60 0.523 0.145 0.773 

Hot carcass weight (kg) 15.5 16.6  14.5 15.5  15.6 17.8 0.82 0.127 0.044 0.739 

Dressing percentage (%)
8 

41.1 43.1  40.2 41.7  42.9 47.0 1.08 0.003 0.009 0.470 

Muscle (%)
9 

61.6 67.9  59.0 66.7  59.1 53.9 1.39 0.003 0.352 0.050 

Bone (%)
9 

19.3 17.8  19.7 18.5  19.2 22.4 1.62 0.359 0.890 0.276 

Muscle:Bone ratio
9 

3.25 3.54  3.03 3.35  3.11 2.75 0.219 0.134 0.642 0.227 

Subcutaneous fat (%)
9 

9.20 8.60  9.28 9.83  10.0 12.5 0.808 0.020 0.235 0.183 

Intermuscular fat (%)
9 

8.64 10.2  10.2 9.60  10.1 9.73 0.678 0.697 0.732 0.256 

KKCF (%)
10

 1.61 2.12  1.63 2.32  2.17 2.99 0.237 0.013 0.002 0.799 
1 Diet C - basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; 2 Diet CO - basal diet with 60 g oil blend (sunflower 
and linseed oils, 1:2 v/v)/kg DM; 3 Diet GS - basal diet with 25 g  grape seed extract/kg DM; 4 Diet GSO - basal diet with 25 g grape seed extract/kg DM 
and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 5 Diet CL - basal diet with 250 g Cistus ladanifer/kg DM; 6 Diet CLO - basal diet with 
250 g Cistus ladanifer/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 7 CT - Condensed tannin sources inclusion in diets, O - Oil 
supplementation; 8 Dressing percentage (hot carcass weight x 100/live slaughter weight); 9 Average of chump and shoulder; 10 Kidney and knob channel 
fat.  

1
3
7
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5.3.3 Abomasal digesta fatty acids 

Oil supplementation increased (P < 0.001) abomasal FA concentration from 33.4 to 119.2 

mg/g DM (Table 5.4). Lambs fed C. ladanifer diets had a higher (P < 0.001) abomasal 

FA concentration than lambs fed control or grape seed diets (89.9 vs. 69.5 mg/g DM). 

Individual FA concentration (mg/g DM) of abomasal digesta was affected by oil 

supplementation and by the inclusion of CT sources in diets, mainly C. ladanifer (Table 

5.4). Oil supplementation increased the concentrations of 15:0, 16:0, 17:0 and iso-16:0. 

The 16:0 also increased with C. ladanifer diets (P < 0.001). The 15:0 was higher (P < 

0.001) in lambs fed control diets than in lambs fed C. ladanifer diets and was 

intermediate in grape seed diets. There was an interaction between oil and CT sources for 

iso-15:0 (P = 0.045), anteiso-15:0 (P = 0.015) and iso-17:0 (P = 0.036). Grape seed 

extract depressed iso-15:0, anteiso-15:0 and iso-17:0, but these responses were 

neutralized when oil was added. Oil supplementation did not affect the proportion of 

these FA in lambs fed C. ladanifer and the depressive effect of C. ladanifer was only 

present for iso-15:0, which was much lower in lambs fed CL diet than in lambs fed C 

diet. Oil supplementation of control diet decreased the concentration of iso-15:0, but did 

not affect anteiso-15:0 and iso-17:0. 

Total C18 FA increased (P < 0.001) from 22.8 to 102 mg/g DM with oil supplementation 

(Table 5.4). Feeding C. ladanifer diets also resulted in a higher content of total C18 FA (P 

= 0.002) when compared to lambs fed control and grape seed diets (72.4 vs. 56.4 mg/g 

DM). Concentration of all C18 FA (expressed in mg/g DM) increased (P < 0.01) in 

abomasal digesta with oil supplementation, with the exception of 3 CLA isomers (18:2 

trans-7, trans-9, 18:2 trans-8, cis-10 and 18:2 trans-7, cis-9) which remained unchanged 

with oil (data not shown). 



 

 

Table 5. 4 Effect of dietary condensed tannin sources (Control, Grape Seed Extract-GSE, and C. ladanifer) and oil supplementation (0% and 

6% of added oil in dry matter) on fatty acid concentration (mg/g dry matter) of abomasal digesta from lambs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Diet C - basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; 2 Diet CO - basal diet with 60 g oil blend (sunflower and 

linseed oils, 1:2 v/v)/kg DM; 3 Diet GS - basal diet with 25 g  grape seed extract/kg DM; 4 Diet GSO - basal diet with 25 g grape seed extract/kg DM and 60 
g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 5 Diet CL - basal diet with 250 g Cistus ladanifer/kg DM; 6 Diet CLO - basal diet with 250 g Cistus 
ladanifer/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 7 CT - Condensed tannin sources inclusion in diets, O - Oil 
supplementation; 8 Variables submitted to Box-Cox transformation; means presented are back-transformed values, although SEM is expressed in 
transformed scale. λ for iso 17:0 is 0.161; 9 The sum of the remaining area (others) includes unidentified peaks. 

 Control  GSE  C. ladanifer 
SEM 

P values
7
 

 0%
1
 6%

2
  0%

3
 6%

4
  0%

5
 6%

6
 CT O CT×O 

Total fatty acids 29.8 108.2  26.0 113.8  44.2 135.6 5.31 <0.001 <0.001 0.460 
             

16:0 4.54 8.76  4.41 9.44  6.10 10.8 0.400 <0.001 <0.001 0.611 
             

Odd- and branched-chain fatty acids  

iso-15:0  0.26
c
 0.20

ab
  0.20

ab
 0.23

bc
  0.15

a
 0.17

a
 0.020 0.008 0.704 0.045 

anteiso-15:0  0.39
b
 0.42

b
  0.28

a
 0.40

b
  0.40

b
 0.40

b
 0.020 0.009 0.007 0.015 

15:0 0.37 0.46  0.29 0.42  0.24 0.33 0.041 0.015 0.005 0.886 

iso-16:0 
 

0.13 0.14  0.10 0.17  0.09 0.11 0.018 0.078 0.020 0.245 

iso-17:0
8 

0.10
b
 0.09

ab
  0.07

a
 0.10

b
  0.09

ab
 0.09

ab
 0.041 0.781 0.224 0.036 

anteiso-17:0 
 

0.07 0.08  0.06 0.07  0.07 0.08 0.012 0.524 0.500 0.999 

17:0 0.24 0.31  0.19 0.30  0.21 0.28 0.021 0.260 <0.001 0.501 
             

C18 fatty acids  

18:0 11.4 47.6  8.37 48.2  17.3 41.1 4.080 0.953 <0.001 0.140 

18:1 trans-11
 

1.02 6.69  0.91 7.59  1.30 13.5 0.002 0.024 <0.001 0.448 

18:1 cis-9 1.83 7.02  1.83 7.04  2.57 8.53 0.493 0.049 <0.001 0.683 

18:2n-6 2.00 6.12  2.26 6.14  3.19 9.51 0.796 0.013 <0.001 0.259 

18:2 cis-9, trans-11 0.03 0.61  0.02 0.46  0.07 0.40 0.060 0.346 <0.001 0.136 

18:3n-3 0.80 4.57  0.90 4.68  0.90 7.67 0.832 0.121 <0.001 0.138 

Total  19.4 92.5  16.5 97.2  29.5 115.3 4.48 0.002 <0.001 0.372 
             

Others
9
 4.37 6.20  3.96 6.37  7.54 9.50 0.515 <0.001 <0.001 0.835 

1
3
9

 



 

 

 

Table 5. 5 Effect of dietary condensed tannin sources (Control, Grape Seed Extract-GSE, and C. ladanifer) and oil supplementation (0% and 6% 

of added oil in dry matter) on C18 fatty acid profile (g/100g of total C18 fatty acids) of abomasal digesta from lambs 

 Control  GSE  C. ladanifer 

SEM 
P values7 

 0%1 6%2  0%3 6%4  0%5 6%6 CT O CT×O 

18:0 58.3b 50.6b  49.3b 49.4b  57.6b 36.7a 3.38 0.105 0.002 0.016 
             

18:1 isomers  

      trans-6 + trans-7 + trans-8 0.64 0.77  0.69 0.81  0.77 1.05 0.063 0.009 0.002 0.329 

trans-98 0.47 0.57  0.52 0.60  0.54 0.69 0.692 0.083 0.003 0.763 

trans-108 0.93 0.95  1.19 0.87  1.19 0.96 0.181 0.796 0.285 0.632 

trans-11 5.43a 8.06a  5.96a 8.44a  4.88a 17.4b 1.866 0.051 <0.001 0.018 

trans-12 0.94 1.86  1.08 2.05  1.52 2.16 0.126 0.007 <0.001 0.397 

trans-13 + trans-14 2.05 4.48  2.44 4.74  2.52 4.23 0.467 0.778 <0.001 0.717 

trans-15 0.86a 2.17c  0.86a 2.30c  1.17a 1.72b 0.151 0.671 <0.001 0.014 

cis-9 9.56 7.71  11.4 7.31  9.01 7.41 0.671 0.237 <0.001 0.141 

cis-11 2.00c 0.74a  2.35
d
 0.78a  1.27b 0.82a 0.107 <0.001 <0.001 <0.001 

cis-12 0.55 1.39  0.65 1.81  0.95 2.44 0.248 0.024 <0.001 0.427 

cis-13 0.07 0.13  0.10 0.14  0.09 0.18 0.021 0.289 <0.001 0.496 

cis-14 + trans-16 1.05a 2.03c  1.09a 2.02c  1.32b 1.42b 0.076 0.038 <0.001 <0.001 

cis-158 0.16 0.60  0.19 0.82  0.16 0.53 0.183 0.139 <0.001 0.777 

cis-16 0.18
a
 0.34

d
  0.22

ab
 0.38

d
  0.23

bc
 0.27

c
 0.018 0.041 <0.001 0.002 

Total  25.0a 37.9bc  28.8abc 33.1c  25.7ab 42.5d 2.123 0.044 <0.001 0.018 
 

18:2 non-conjugated isomers 

trans-11, trans-15 0.21 0.58  0.28 0.69  0.08 0.72 0.073 0.402 <0.001 0.151 

cis-9, trans-13 + trans-8, cis-129 0.44 0.35  0.64 0.41  0.69 0.44 0.142 0.472 0.107 0.842 

trans-8, cis-13 + cis-9, trans-1210 0.09 0.09  0.13 0.09  0.10 0.07 0.012 0.088 0.072 0.415 

trans-9, cis-12 0.13ab 0.18c  0.16bc 0.22d  0.12a 0.26e 0.012 0.005 <0.001 0.001 

trans-11, cis-15 0.34a 1.56b  0.36a 1.93d  0.29a 1.73c 0.042 <0.001 <0.001 0.001 

cis-9, cis-12 10.6 6.75  14.1 6.43  11.3 8.28 1.281 0.443 <0.001 0.172 

cis-9, cis-158 0.05 0.20  0.07 0.33  0.06 0.24 0.217 0.116 <0.001 0.806 

1
4
0

 



 

 

 

cis-12, cis-15 8 0.07 0.25  0.08 0.47  0.05 0.32 0.329 0.067 <0.001 0.361 

Total  11.9 9.98  15.9 10.6  12.7 12.3 1.358 0.245 0.033 0.207 
  

18:2 conjugated isomers   

trans-12, trans-148 0.04 0.12  0.04 0.11  0.04 0.16 0.542 0.533 <0.001 0.898 

trans-11, trans-138 0.03 0.19  0.03 0.17  0.06 0.18 0.171 0.034 <0.001 0.053 

trans-10, trans-12 0.006 0.12  0.004 0.10  0.02 0.11 0.012 0.518 <0.001 0.648 

trans-9, trans-11 0.05 0.12  0.05 0.10  0.09 0.12 0.013 0.088 <0.001 0.202 

trans-8, trans-10 0.04 0.02  0.04 0.02  0.04 0.02 0.004 0.867 <0.001 0.926 

trans-7, trans-9 0.02 0.004  0.02 0.005  0.02 0.004 0.097 0.862 <0.001 0.642 

cis/trans-12,148, 11 0.02ab 0.04b  0.01a 0.05b  0.04b 0.03b 0.903 0.289 0.005 0.017 

cis/trans-11,1312 0.05 0.33  0.02 0.36  0.02 0.28 0.048 0.666 <0.001 0.717 

trans-10, c12 0.04 0.09  0.04 0.06  0.05 0.09 0.019 0.541 0.018 0.750 

cis-9, trans-118 0.12a 0.65d  0.12a 0.47cd  0.22ab 0.30bc 0.212 0.787 <0.001 0.034 

trans-8, cis-108 0.02 0.004  0.02 0.006  0.02 0.004 0.130 0.360 <0.001 0.930 

trans-7, cis-9 0a 0.002b  0a 0a  0.005c 0.002b 0.0006 <0.001 0.435 0.002 

Total  0.45 1.71  0.72 1.46  0.68 1.59 0.123 0.275 <0.001 0.359 
             

Total 18:2 isomers  12.4 11.7  16.3 12.1  13.4 13.9 1.388 0.290 0.217 0.227 
 

18:3 isomers 

cis-9, cis-12, cis-15 4.20 5.07  5.55 4.91  3.16 6.69 0.854 0.786 0.085 0.066 

cis-9, cis-11, cis-15 0.08
a
 0.74

c
  0.06

a
 0.47

b
  0.16

a
 0.23

a
 0.077 0.025 <0.001 0.003 

Total  4.28 5.81  5.61 5.38  3.31 6.91 0.818 0.841 0.022 0.084 
             

Total BI13 13.3a 24.6b  14.8a 26.4b  15.1a 35.9c 1.89 0.005 <0.001 0.031 
1 Diet C - basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; 2 Diet CO - basal diet with 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 3 Diet 
GS - basal diet with 25 g  grape seed extract/kg DM; 4 Diet GSO - basal diet with 25 g grape seed extract/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 5 Diet CL - 
basal diet with 250 g Cistus ladanifer/kg DM; 6 Diet CLO - basal diet with 250 g Cistus ladanifer/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 7 CT - Condensed 
tannin sources inclusion in diets, O - Oil supplementation; 8 Variables submitted to Box-Cox transformation; means presented are back-transformed values, although SEM is expressed in 
transformed scale. Values of λ – 18:1 trans-9 = 0.057, 18:1 trans-10 = -0.697, 18:1 cis-15 = -0.254, 18:2 cis-9, cis-15 = -0.093, 18:2 cis-12, cis-15 = -0.295, 18:2 trans-12, trans-14 = -0.302, 

18:2 trans-11, trans-13 = -0.004, 18:2 cis/trans-12,14 = -0.351, 18:2 cis-9, trans-11 = 0.116, 18:2 trans-8, cis-10 = 0.101; 9 Peak includes 18:2 cis-9, trans-13, 18:2 trans-8, cis-12 and 17-cyclo 
(methyl 11-cyclohexylundecanoate); 10 Peak includes 18:2 trans-8, cis-13 and 18:2 cis-9, trans-12; 11 Peak includes 18:2 cis-12, trans-14 and 18:2 trans-12, cis-14; 12 Peak includes 18:2 cis11, 
trans-13 and 18:2 trans-11, cis-13; 13 Total C18 biohydrogenation intermediates - total C18 fatty acids minus 18:0, 18:1 cis-9, 18:1 cis-11, 18:2n-6 and 18:3n-3. 

1
4
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For selected C18 FA displayed in Table 5.4 no significant interactions between oil and CT 

sources were found (P > 0.05).  However, C. ladanifer diets increased the concentration 

of 18:1 trans-11, 18:1 cis-9 and 18:2n-6, whereas grape seed diets had no effect. 

The detailed profile of C18 FA (g/100 g of total C18 FA) in abomasal digesta is presented 

in Table 5.5. Stearic acid was the main C18 FA in abomasal digesta for all diets. In lambs 

fed diets with no oil, 14.4% of total C18 FA were BI, and oil supplementation increased 

this proportion to 25.5% in lambs fed control and grape seed diets and to 35.9% in lambs 

fed C. ladanifer diet (P = 0.031). For all diets, the major BI was 18:1 trans-11, which 

represented an average of 36.2% total BI. 

Independently from the CT inclusion, oil supplementation increased the proportion of 

most of the C18 FA and decreased only six C18 FA (18:1 cis-9, 18:1 cis-11, 18:2n-6, 18:2 

trans-8, trans-10, 18:2 trans-7, trans-9 and 18:2 trans-8, cis-10). Condensed tannin 

source per se had a minor effect on C18 FA profile, affecting only four FA (18:1 trans-6 – 

8, 18:1 trans-12, 18:1 cis-12 and 18:2 trans-11, trans-13), although numerous interactions 

with oil supplementation were observed (12 FA). Adding oil to control and grape seed 

diets did not affect the proportions of 18:0 and 18:1 trans-11. However, when oil was 

added to C. ladanifer diet, 18:0 decreased 20.4% (P = 0.016) and 18:1 trans-11 increased 

12.5% (P = 0.018). In contrast, oil supplementation increased 18:1 cis-16, 18:2 cis-9, 

trans-11 and 18:3 cis-9, trans-11, cis-15 and the unresolved 18:1cis-14 plus 18:1 trans-16 

in lambs fed control and grape seed diets, but did not affect these FA when added to C. 

ladanifer diet. 
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5.3.4 Intramuscular fatty acids  

In PL, lambs fed C. ladanifer diets had a higher (P = 0.006) FA concentration (5.27 mg/g 

fresh muscle; Table 5.6) than lambs fed control and grape seed diets (4.52 mg/g fresh 

muscle). Fatty acid concentration in NL fraction (Table 5.8) was higher (P = 0.048) in 

lambs fed CLO (25.6 mg/g fresh muscle) than in lambs fed other diets (15.8 mg/g fresh 

muscle). The general FA profile (g/100 g total FA) of PL and NL are presented in Table 

5.6 and 5.8, respectively, whereas detailed C18 FA profile (mg/g total FA) of PL and NL 

are presented in Table 5.7 and 5.9, respectively. 

 

5.3.4.1 Polar lipids 

In lambs fed diets with no oil, the major FA in PL was 18:1 cis-9 followed by 18:2n-6 

and 16:0. However, in lambs fed oil supplemented diets, the major FA in PL was 18:2n-6, 

followed by 18:1 cis-9 and 16:0. Oil supplementation decreased 16:0, 17:0, 14:1 cis-9, 

16:1 cis-9, 17:1 cis-9, 20:1 cis-11, 20:3n-9, 20:3n-6, ARA, 22:4n-6, branched-chain FA, 

total MUFA and total n-6 LC-PUFA, while it increased 18:2n-6 and 18:3n-3, 20:3n-3, 

total PUFA and n-3 PUFA. Inclusion of C. ladanifer in diets increased 20:0, but 

decreased total SFA from 21.5 to 20.4% total FA. Significant interactions between oil 

supplementation and inclusion of CT sources in diets were found for minor FA and for n-

6 PUFA sum (P = 0.036). Feeding the CL diet resulted in a higher accumulation of n-6 

PUFA in PL fraction when compared to C diets. However, lambs fed GS diet had an 

intermediate value and differed neither from CL, nor C fed lambs. Oil supplementation 

increased n-6 PUFA in lambs fed control and grape seed diets, but had no effect in lambs 

fed C. ladanifer diet. 



 

 

 

Table 5. 6 Effect of dietary condensed tannin sources (Control, Grape Seed Extract-GSE, and C. ladanifer) and oil supplementation (0% and 

6% of added oil in dry matter) on total fatty acid concentration (mg/g fresh muscle) and composition (g/100g of total fatty acids) of polar 

lipids in longissimus dorsi muscle from lambs 

 Control  GSE  C. ladanifer
 

SEM 
P values

7 

 0%
1 

6%
2 

 0%
3 

6%
4 

 0%
5 

6%
6 

CT O CT×O 

Total fatty acids 4.67 4.02  4.63 4.75  5.46 5.09 0.259 0.006 0.170 0.344 
             

12:0 0.06 0.02  0.07 0.06  0.09 0.10 0.024 0.096 0.506 0.612 

14:0 0.50 0.38  0.46 0.38  0.64 0.55 0.128 0.362 0.369 0.985 

iso-15:0  0.05 0.01  0.03 0.02  0.03 0.02 0.008 0.650 0.004 0.115 

anteiso-15:0  0.05
b
 0.02

a
  0.05

b
 0.04

ab
  0.05

b
 0.06

b
 0.007 0.117 0.054 0.012 

14:1 cis-9 0.12 0.11  0.13 0.11  0.13 0.12 0.005 0.343 0.007 0.106 

15:0 0.18
b
 0.17

a
  0.18

b
 0.13

a
  0.16

b
 0.16

b
 0.008 0.118 0.006 0.016 

iso-16:0
8
 0.09 0.07  0.08 0.06  0.07 0.07 0.093 0.121 <0.001 0.381 

16:0 12.9 11.0  13.4 10.1  12.8 10.5 0.36 0.809 <0.001 0.170 

iso-17:0  0.28 0.23  0.28 0.22  0.29 0.22 0.016 0.854 <0.001 0.985 

anteiso-17:0
8 

0.13 0.08  0.12 0.07  0.12 0.30 0.030 0.380 <0.001 0.625 

16:1 cis-9 0.69 0.26  0.62 0.28  0.67 0.35 0.042 0.403 <0.001 0.358 

17:0 0.73
c
 0.57

b
  0.74

c
 0.43

a
  0.66

c
 0.44

a
 0.027 0.003 <0.001 0.020 

17:1 cis-9 0.49 0.16  0.45 0.17  0.44 0.18 0.031 0.741 <0.001 0.520 

Total C18  56.2 60.4  54.7 59.5  55.4 60.1 0.40 0.021 <0.001 0.774 

20:0 0.11 0.11  0.13 0.12  0.16 0.13 0.007 <0.001 0.033 0.493 

20:1 cis-11 0.18 0.12  0.21 0.14  0.19 0.14 0.014 0.155 <0.001 0.869 

20:2n-6
8
 0.12

a
 0.15

bc
  0.14

ab
 0.14

ab
  0.18

c
 0.14

ab
 0.280 0.079 0.956 0.013 

20:3n-9 0.84 0.44  0.78 0.60  0.87 0.44 0.088 0.868 <0.001 0.348 

22:0 0.03 0.05  0.05 0.05  0.05 0.06 0.008 0.109 0.087 0.204 

1
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20:3n-6
8
 0.67 0.58  0.74 0.60  0.76 0.56 0.045 0.400 <0.001 0.154 

20:3n-3
8
 0.05 0.10  0.05 0.10  0.05 0.10 0.347 0.941 <0.001 0.836 

20:4n-6 5.60 4.59  5.91 5.10  6.19 4.80 0.212 0.108 <0.001 0.391 

20:5n-3
8
 1.67 2.08  1.79 2.19  1.58 2.10 0.328 0.854 0.055 0.970 

22:4n-6
8
 0.39

c
 0.22

a
  0.39

c
 0.30

b
  0.45

d
 0.24

a
 0.041 0.045 <0.001 0.006 

22:5n-3
8
 2.51 2.22  2.47 2.61  2.27 2.18 0.062 0.121 0.486 0.367 

22:6n-3 0.59 0.54  0.59 0.64  0.54 0.56 0.048 0.379 0.827 0.642 

Others
9 

15.0 15.4  15.5 16.1  15.2 15.9 0.399 0.338 0.095 0.963 
             

SFA 21.2 22.0  21.0 21.7  20.8 20.1 0.38 0.011 0.365 0.114 

MUFA 30.0 20.0  27.7 20.2  26.8 22.9 1.29 0.708 <0.001 0.080 

PUFA 30.5 40.9  31.8 41.5  33.6 40.2 1.42 0.679 <0.001 0.372 

n-6 PUFA
8, 10

 21.6
a
 28.5

d
  22.9

ab
 27.9

cd
  25.1

bc
 27.0

cd
 0.039 0.446 <0.001 0.036 

n-6 LC-PUFA
11 

6.77 5.55  7.18 6.14  7.60 5.74 0.247 0.084 <0.001 0.238 

n-3 PUFA
12 

7.03 10.0  7.04 10.8  6.30 10.3 0.537 0.486 <0.001 0.645 

n-3 LC-PUFA
8, 13

 4.79 4.89  4.86 5.35  4.38 4.93 0.090 0.539 0.289 0.852 

SFA, sum of saturated fatty acids; MUFA, sum of monounsaturated fatty acids; PUFA, sum of polyunsaturated fatty acids; 1 Diet C - basal diet composed 

of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; 2 Diet CO - basal diet with 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 
3 Diet GS - basal diet with 25 g  grape seed extract/kg DM; 4 Diet GSO - basal diet with 25 g grape seed extract/kg DM and 60 g oil blend (sunflower 
and linseed oils, 1:2 v/v)/kg DM; 5 Diet CL - basal diet with 250 g Cistus ladanifer/kg DM; 6 Diet CLO - basal diet with 250 g Cistus ladanifer/kg DM 
and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 7 CT - Condensed tannin sources inclusion in diets, O - Oil supplementation; 8 Variables 
submitted to Box-Cox transformation; means presented are back-transformed values, although SEM is expressed in transformed scale. Values of λ – iso 
16:0 = -0.132, anteiso 17:0 = 0.506, 20:2n-6 = -0.748, 20:3n-6 = 0.207, 20:3n-3 = -0.539, 20:5n-3 = 1.320, 22:4n-6 = 0.236, 22:5n-3 and total n-6 PUFA 
= 0.010; 9 The sum of the remaining area (others) include about 11.6% of dimethylacetals and 3.87% unidentified peaks; 10 n-6 PUFA = (18:2n-6 + 
20:2n-6 + 20:3n-6 + 20:4n-6 + 22:4n-6); 11 n-6 LC-PUFA = (20:2n-6 + 20:3n-6 + 20:4n- 6 + 22:4n- 6); 12 n-3 PUFA = (18:3n-3 + 20:3n-3 + 20:5n-3 + 
22:5n-3 + 22:6n-3);13 n-3 LC-PUFA = (20:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3). 
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Table 5. 7 Effect of dietary condensed tannin sources (Control, Grape Seed Extract-GSE, and C. ladanifer) and oil supplementation (0% and 

6% of added oil in dry matter) on C18 fatty acid composition (mg/g total fatty acids) of polar lipids in longissimus dorsi muscle from lambs 

 Control  GSE  C. ladanifer 

SEM 
  P values7 

 0%1 6%2  0%3 6%4  0%5 6%6 CT O CT×O 

18:08 101a 116b  98a 111b  98a 97a 0.02 <0.001 <0.001 0.001 
             

18:1 isomers              

      trans-6 + trans-7 + trans-88 1.01 1.08  0.96 1.09  1.00 1.19 0.073 0.672 0.059 0.778 

      trans-9 1.02 1.26  0.87 1.29  1.07 1.56 0.133 0.201 0.002 0.623 

trans-108 1.10 1.58  0.86 1.46  1.48 1.71 0.153 0.138 0.021 0.458 

trans-118 4.91 10.4  4.92 12.9  5.01 24.9 0.082 0.235 <0.001 0.283 

trans-12 2.24 4.54  1.86 4.39  2.64 5.15 0.247 0.015 <0.001 0.871 

trans-13 + trans-14 2.47 8.36  2.57 8.06  3.20 6.75 0.053 0.689 <0.001 0.081 

cis-9 239 116  206 123  221 119 12.2 0.584 <0.001 0.274 

cis-11 22.3 19.4  20.2 17.2  18.9 16.0 0.758 <0.001 <0.001 0.998 

cis-12 2.53 16.3  1.82 19.1  5.80 18.9 1.471 0.156 <0.001 0.336 

cis-13 0.75 0.83  0.62 0.75  0.73 0.75 0.029 0.005 0.003 0.137 

cis-14 +  trans-16 1.63 2.86  1.56 2.98  1.81 2.85 0.100 0.710 <0.001 0.184 

cis-158 0.55ab 1.20c  0.46a 1.53c  0.66b 1.46b 0.083 0.078 <0.001 0.025 

cis-16 0.51ab 0.62b  0.61b 0.45a  0.40a 0.53ab 0.059 0.236 0.564 0.037 

Total  280 187  243 195  264 206 13.9 0.457 <0.001 0.258 
   

18:2 non-conjugated isomers 

    cis-9, trans-13 + trans-8, cis-129 1.86 2.18  1.96 2.71  2.70 3.28 0.179 <0.001 <0.001 0.467 

trans-8, cis-13 + cis-9, trans-1210 1.91a 2.60b  1.83a 3.05b  2.69b 2.86b 0.189 0.034 <0.001 0.036 

trans-9, cis-12 1.09 1.22  1.12 1.15  1.33 1.32 0.078 0.036 0.441 0.658 

trans-11, cis-158 0.52 1.55  0.58 2.40  0.65 2.65 0.180 0.119 <0.001 0.569 

cis-9, cis-128 148 230  158 218  174 212 0.051 0.644 <0.001 0.059 

cis-9, cis-15
8
 0.77 1.03  0.88 1.16  1.01 1.30 0.076 0.010 <0.001 0.914 

cis-12, cis-158 0 1.65  0 2.77  0 1.89 0.150 0.214 <0.001 0.214 

Total8 154 240  164 231  182 226 0.05 0.470 <0.001 0.058 
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18:2 conjugated isomers   

trans-12, trans-14 0.03a 0.13b  0.02a 0.17b  0.03a 0.25c  0.020 0.015 <0.001 0.024 

trans-11, trans-138 0.07 0.29  0.05 0.32  0.05 0.23 0.246 0.523 <0.001 0.554 

trans-10, trans-12 0.01 0.02  0.01 0.02  0.01 0.02 0.003 0.687 0.036 0.951 

trans-9, trans-11 0.11 0.16  0.10 0.17  0.11 0.21 0.018 0.314 <0.001 0.368 

trans-8, trans-10 0.03 0.03  0.02 0.02  0.02 0.02 0.004 0.212 0.921 0.632 

trans-7, trans-9 0.04b 0.02a  0.03ab 0.02a  0.03ab 0.03b 0.004 0.276 0.405 0.049 

cis-/trans-12,148, 11 0.03 0.05  0.02 0.08  0.02 0.05 0.464 0.941 <0.001 0.299 

cis-/trans-11,1312 0.18 0.76  0.15 1.23  0.16 1.02 0.105 0.142 <0.001 0.075 

trans-10, cis-12 0.02 0.04  0.01 0.05  0.02 0.08 0.010 0.218 <0.001 0.336 

cis-9, trans-11 3.86 5.14  3.59 5.87  3.71 7.94 0.799 0.228 <0.001 0.192 

trans-8, cis-10 0.04 0.06  0.05 0.06  0.05 0.11 0.013 0.058 0.008 0.112 

trans-7, cis-9 0.12 0.09  0.10 0.12  0.14 0.15 0.021 0.200 0.840 0.642 

Total  4.55 6.81  4.15 8.14  4.36 10.2 0.948 0.249 <0.001 0.195 
             

Total 18:2 isomers 159 249  168 240  188 236 8.4 0.529 <0.001 0.061 
 

18:3 isomers 

cis-9, cis-12, cis-15 22.1 50.7  21.5 53.5  18.7 53.1 2.23 0.761 <0.001 0.434 

cis-9, trans-11, cis-15 0 1.73  0 1.67  0 1.43 0.162 0.612 <0.001 0.612 

Total8 21.8 52.3  21.0 55.7  18.1 54.7 0.09 0.558 <0.001 0.408 
             

Total BI13 2.97 7.08  2.78 7.76  3.73 9.64 0.462 0.003 <0.001 0.173 
1 Diet C - basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; 2 Diet CO - basal diet with 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 3 
Diet GS - basal diet with 25 g  grape seed extract/kg DM; 4 Diet GSO - basal diet with 25 g grape seed extract/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 5 Diet 
CL - basal diet with 250 g Cistus ladanifer/kg DM; 6 Diet CLO - basal diet with 250 g Cistus ladanifer/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 7 CT - 
Condensed tannin sources inclusion in diets, O - Oil supplementation; 8 Variables submitted to Box-Cox transformation; means presented are back-transformed values, although SEM is 
expressed in transformed scale. Values of λ – 18:0, 18:1 trans-6 to 8, 18:2 trans-11, cis-15, 18:2 cis-9, cis-12, 18:2 cis-12, cis-15, total 18:2 non-conjugated isomers and total 18:3 isomers 
= 0.010, 18:1 trans-10 = -0.549, 18:1 trans-11 = -0.425, 18:1 cis-15 = -0.073, 18:2 cis-9, cis-15 = -0.369, 18:2 trans-11, trans-13 = -0.033, 18:2 cis/trans-12,14 = -0.157; 9 Peak includes 

18:2 cis-9, trans-13, 18:2 trans-8, cis-12 and 17-cyclo (methyl 11-cyclohexylundecanoate); 10 Peak includes 18:2 trans-8, cis-13 and 18:2 cis-9, trans-12; 11 Peak includes 18:2 cis-12, 
trans-14 and 18:2 trans-12, cis-14; 12 Peak includes 18:2 cis11, trans-13 and 18:2 trans-11, cis-13; 13 Total C18 biohydrogenation intermediates - total C18 fatty acids minus 18:0, 18:1 cis-9, 
18:1 cis-11, 18:2n-6 and 18:3n-3. 

1
4
7

7
 



Chapter 5 

 

148 

 

The total of C18 FA (Table 5.7) increased with oil supplementation (P < 0.001). Grape 

seed diets resulted in lower total C18 FA than control diets, whereas C. ladanifer diets 

presented an intermediate value (P = 0.021). Total BI increased with oil supplementation 

(P < 0.001), ranging from 5.7% total C18 FA in lambs fed diets with no oil to 13.6% in oil 

supplemented lambs. Lambs fed C. ladanifer diets also showed higher (P = 0.003) BI 

content in PL than lambs fed other diets (11.4 vs. 8.76% of total C18). For all diets, 18:2 

cis-9, trans-11 was the predominant CLA isomer, ranging from 86% total CLA in lambs 

fed diets with no oil to 74% in oil supplemented lambs. 

Oil supplementation increased the proportion of most C18 FA, whereas it decreased only 

two (18:1 cis-9 and 18:1 cis-11). Condensed tannin source per se modified only six FA 

(18:1 trans-12, 18:1 cis-11, 18:1 cis-13, 18:2 trans-9, cis-12 and 18:2 cis-9, cis-15 and 

unresolved 18:2 cis-9, trans-13 plus 18:2 trans-8, cis-12). Some interactions between oil 

supplementation and CT sources were observed for C18 FA. The proportions of 18:0, 18:1 

cis-15 and unresolved 18:2 trans-8, cis-13 plus 18:2 cis-9, trans-12 were not affected 

when oil was added to C. ladanifer diet, although an increase was observed when oil was 

added to control and grape seed diets. Oil supplementation resulted in a greater increase 

of 18:2 trans-12, trans-14 in lambs fed C. ladanifer than in lambs fed other diets. The 

18:2 cis-12, cis-15 was only detected in lambs fed oil. 

 

5.3.4.2 Neutral lipids 

The major FA in NL were 18:1 cis-9, 16:0 and 18:0. Oil supplementation decreased 14:0, 

16:0, 17:0, 20:0, iso-15:0, iso-16:0, iso-17:0, anteiso-17:0, 14:1 cis-9, 16:1 cis-9, 17:1 cis-

9, ARA and total SFA, but increased 18:2n-6 and 18:3n-3,  20:3n-9, 20:3n-3, EPA, total 

PUFA, n-6 PUFA and n-3 PUFA. Lambs fed C. ladanifer diets had the lowest 
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concentration of iso-15:0 and iso-16:0, but the highest concentration of 16:1 cis-9 and 

20:0. Inclusion of CT sources in diets decreased (P = 0.002) the iso-17:0 proportion. 

Total C18 FA (Table 5.8) increased with oil supplementation in all diets.  For diets with 

no oil, CT sources inclusion decreased total C18 FA when compared to control (P = 

0.036). Total BI increased with oil supplementation (P < 0.001), representing 10% of 

total C18 FA in lambs fed diets with no oil and 21.6% in oil supplemented lambs. 

Most C18 FA increased with oil supplementation (Table 5.9), while only 18:1 cis-9 

decreased. Condensed tannin source per se had minor effects on C18 FA profile in NL 

fraction, affecting only three FA (18:1 cis-9, 18:2 trans-11, trans-13 and unresolved 18:2 

cis-9, trans-13 plus 18:2 trans-8, cis-12).  However, numerous interactions with oil 

supplementation were observed (14 FA). Oil supplementation decreased 18:1 cis-11 and 

increased 18:1 trans-10, 18:1 cis-16, 18:2 trans-10, cis-12 and unresolved 18:2 trans-8, 

cis-13 plus 18:2 cis-9, trans-12 when added to control and grape seed diets, although it 

did not affect these FA when added to C. ladanifer diets. Oil supplementation increased 

18:1 trans-11 in all diets, but there was a greater increase in lambs fed C. ladanifer diet 

(P = 0.003). Conversely, supplementation of C. ladanifer diet with oil resulted in a 

smaller increase of 18:1 trans-12, 18:1 trans-15 and 18:1 cis-14 plus trans-16 than 

supplementation with oil in other diets. For all diets, 18:2 cis-9, trans-11 was the 

predominant CLA isomer, ranging from 81% total CLA in lambs fed diets with no oil to 

75% in oil supplemented lambs. Oil supplementation resulted in an important increase (P 

< 0.001) of this CLA isomer in NL for all diets, although there was a tendency (CT × O, 

P = 0.062) for a greater increase in lambs fed CLO diet. The 18:2 cis-12, cis-15 and 18:3 

cis-9, trans-11, cis-15 were only detected in lambs fed oil, although lambs fed GSO 

showed a higher proportion of 18:2 cis-12, cis-15 than lambs fed other diets with oil. 



 

 

 

Table 5. 8 Effect of dietary condensed tannin sources (Control, Grape Seed Extract-GSE, and C. ladanifer) and oil supplementation (0% and 6% 

of added oil in dry matter) on total fatty acid concentration (mg/g fresh muscle) and composition (g/100g of total fatty acids) of neutral lipids in 

longissimus dorsi muscle from lambs 

 Control  GSE  C. ladanifer
 

SEM 
P values

7 

 0%
1 

6%
2 

 0%
3 

6%
4 

 0%
5 

6%
6 

CT O CT×O 

Total fatty acids 15.8
a
 16.2

a
  15.5

a
 17.0

a
  14.9

a
 25.6

b
 1.80 0.048 0.009 0.016 

             

12:0
8 

0.33 0.39  0.48 0.31  0.34 0.30 0.098 0.398 0.235 0.085 

14:0 3.91 3.69  4.29 3.54  4.63 3.47 0.198 0.456 <0.001 0.078 

iso-15:0  0.12 0.10  0.11 0.10  0.09 0.08 0.005 <0.001 <0.001 0.724 

anteiso-15:0  0.17 0.19  0.19 0.16  0.16 0.14 0.018 0.292 0.527 0.359 

14:1 cis-9 0.10 0.09  0.11 0.08  0.13 0.09 0.007 0.319 <0.001 0.254 

15:0 0.43 0.48  0.47 0.41  0.44 0.38 0.038 0.586 0.424 0.245 

iso-16:0  0.16 0.16  0.17 0.14  0.14 0.11 0.008 <0.001 0.002 0.146 

16:0
8 

21.2 20.6  25.9 20.5  27.0 22.0 0.029 0.059 <0.001 0.843 

iso-17:0
8 

0.34 0.30  0.31 0.28  0.31 0.25 0.001 0.002 <0.001 0.680 

anteiso-17:0  0.54 0.42  0.52 0.37  0.50 0.38 0.030 0.383 <0.001 0.838 

16:1 cis-9 1.15 0.86  1.21 0.85  1.39 0.93 0.040 0.001 <0.001 0.109 

17:0 1.07 0.90  1.05 0.86  1.00 0.83 0.049 0.328 <0.001 0.967 

17:1 cis-9 0.43 0.32  0.43 0.29  0.45 0.29 0.017 0.527 <0.001 0.472 

Total C18 63.7
b
 68.8

c
  61.3

a
 68.7

c
  60.4

a
 68.0

c
 0.50 0.002 <0.001 0.036 

20:0 0.14 0.12  0.17 0.14  0.28 0.18 0.023 <0.001 0.012 0.159 

20:1 cis-11 0.12
bc

 0.09
a
  0.12

bc
 0.11

ab
  0.12

bc
 0.13

c
 0.006 0.018 0.275 0.016 

20:2n-6
8
 0.05 0.05  0.05 0.04  0.05 0.05 0.204 0.321 0.078 0.246 

20:3n-9
8
 0.05

a
 0.21

c
  0.05

a
 0.23

c
  0.05

a
 0.10

b
 0.084 <0.001 <0.001 <0.001 
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22:0 0.01 0.01  0.03 0.03  0.02 0.02 0.010 0.239 0.888 0.930 

20:3n-6 0.05 0.03  0.06 0.04  0.04 0.05 0.011 0.644 0.425 0.520 

20:3n-3 0.05 0.06  0.04 0.06  0.05 0.06 0.005 0.445 0.001 0.691 

20:4n-6 0.18 0.16  0.19 0.16  0.17 0.15 0.014 0.405 0.039 0.812 

20:5n-3 0.06 0.10  0.07 0.08  0.05 0.09 0.014 0.732 0.023 0.650 

22:4n-6 0.03 0.07  0.01 0.01  0.02 0.01 0.031 0.349 0.663 0.649 

22:5n-3 0.19 0.19  0.22 0.20  0.15 0.20 0.026 0.477 0.678 0.464 

22:6n-3 0.06 0.07  0.06 0.07  0.05 0.06 0.015 0.728 0.416 0.969 

Others
9 

1.49 2.06  2.54 2.54  2.08 2.16 0.330 0.088 0.436 0.655 
             

SFA 48.8 43.0  49.0 43.3  49.8 42.5 1.08 0.961 <0.001 0.674 

MUFA 42.7 42.4  41.3 41.7  41.0 43.6 0.66 0.295 0.096 0.257 

PUFA 6.35 12.5  6.69 12.4  6.65 11.5 0.450 0.589 <0.001 0.414 

n-6 PUFA
10 

2.75 4.52  2.93 4.11  3.13 3.78 0.236 0.743 <0.001 0.071 

n-6 LC-PUFA
8, 11

 0.30 0.28  0.29 0.24  0.26 0.24 0.338 0.281 0.137 0.338 

n-3 PUFA
12 

1.47 3.40  1.51 3.11  1.28 2.94 0.242 0.406 <0.001 0.773 

n-3 LC-PUFA
8, 13

 0.36 0.42  0.18 0.40  0.39 0.36 0.077 0.524 0.138 0.682 

SFA, sum of saturated fatty acids; MUFA, sum of monounsaturated fatty acids; PUFA, sum of polyunsaturated fatty acids; 1 Diet C - basal diet composed 
of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; 2 Diet CO - basal diet with 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 
3 Diet GS - basal diet with 25 g  grape seed extract/kg DM; 4 Diet GSO - basal diet with 25 g grape seed extract/kg DM and 60 g oil blend (sunflower 
and linseed oils, 1:2 v/v)/kg DM; 5 Diet CL - basal diet with 250 g Cistus ladanifer/kg DM; 6 Diet CLO - basal diet with 250 g Cistus ladanifer/kg DM 
and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 7 CT - Condensed tannin sources inclusion in diets, O - Oil supplementation; 8 Variables 
submitted to Box-Cox transformation; means presented are back-transformed values, although SEM is expressed in transformed scale. Values of λ – 12:0 
= 0.292, 16:0 = 0.010, iso 17:0 = 2.786, 20:2n-6 = -0.225, 20:3n-9 = -0.363, total n-6 LC-PUFA = -1.003, n-3 LC-PUFA = 0.564; 9 The sum of the 

remaining area (others) includes unidentified peaks; 10 n-6 PUFA = (18:2n-6 + 20:2n-6 + 20:3n-6 + 20:4n-6 + 22:4n-6); 11 n-6 LC-PUFA = (20:2n-6 + 
20:3n-6 + 20:4n- 6 + 22:4n- 6); 12 n-3 PUFA = (18:3n-3 + 20:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3);13 n-3 LC-PUFA = (20:3n-3 + 20:5n-3 + 22:5n-3 + 
22:6n-3). 

1
5
1

 



 

 

 

Table 5. 9 Effect of dietary condensed tannin sources (Control, Grape Seed Extract-GSE, and C. ladanifer) and oil supplementation (0% and 6% 

of added oil in dry matter) on C18 fatty acid composition (mg/g total fatty acids) of neutral lipids in longissimus dorsi muscle from lambs 

 Control  GSE  C. ladanifer 

SEM 
P values7 

 0%1 6%2  0%3 6%4  0%5 6%6 CT O CT×O 

18:0 176 166  164 172  159 152 6.48 0.063 0.549 0.352 
             

18:1 isomers              

      trans-6 + trans-7 + trans-88 2.09 3.79  2.06 3.85  2.16 3.97 0.057 0.999 <0.001 0.715 

trans-9 2.71 4.19  2.63 4.32  2.70 4.07 0.087 0.566 <0.001 0.177 

trans-108 3.18a 6.96c  3.07a 5.27bc  4.32b 5.01bc 0.045 0.308 <0.001 0.042 

trans-11 18.0a 39.7b  20.1a 43.5b  18.6a 69.8c 4.30 0.004 <0.001 0.003 

trans-12 3.31a 8.62c  2.96a 8.70c  3.76a 6.61b 0.434 0.192 <0.001 0.006 

trans-13 + trans-14 5.63b 16.7d  4.82a 17.9e  5.59b 12.2c 0.265 <0.001 <0.001 <0.001 

trans-158 2.32a 6.36c  2.47a 7.02c  2.39a 3.95b 0.028 0.002 <0.001 0.004 

cis-9 346 228  332 272  326 284 5.8 0.032 <0.001 0.264 

cis-11 9.60c 6.54a  8.86c 6.84ab  7.67b 7.24ab 0.366 0.251 <0.001 0.005 

cis-12 3.13ab 9.72c  2.35a 13.2c  3.96b 10.2c 0.406 0.011 <0.001 <0.001 

cis-13 1.14 1.17  1.00 1.42  1.01 0.99 0.101 0.122 0.095 0.079 

cis-14 + trans-168 4.17a 7.78c  3.96a 7.80c  3.92a 5.69b 0.045 <0.001 <0.001 0.005 

cis-15 1.78a 3.50c  1.70a 4.44d  1.52 a 2.95b 0.165 <0.001 <0.001 0.001 

cis-16 0.67a 1.18c  0.60a 1.24c  0.69ab 0.87b 0.064 0.054 <0.001 0.005 

Total 404bc 404bc  388ab 398ab  384a 418c 6.5 0.249 0.012 0.048 
   

18:2 non-conjugated isomers 

trans-11, trans-15 0.58 1.48  0.73 2.10  0.66 1.98 0.185 0.125 <0.001 0.393 

cis-9, trans-13 + trans-8, cis- 129 4.36 7.10  4.37 7.96  4.10 6.35 0.326 0.027 <0.001 0.139 

trans-8, cis-13 + cis-9, trans-128, 10 2.34a 4.20c  2.39a 4.38c  2.99ab 3.28bc 0.045 0.939 <0.001 0.017 

trans-9, cis-12 0.61 1.10  0.61 1.31  0.64 1.15 0.065 0.252 <0.001 0.204 

trans-11, c15 2.74 8.72  2.67 10.7  2.78 8.78 0.624 0.259 <0.001 0.204 

cis-9, cis-12 24.4 42.0  26.4 38.6  28.7 35.3 2.12 0.843 <0.001 0.053 

cis-9, cis-158 0.79 1.44  0.59 1.82  0.58 1.23 0.147 0.239 <0.001 0.215 
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cis-12, cis-158 0a 1.90b  0a 3.09c  0a 1.66b 0.126 0.049 <0.001 0.049 

Total  36.0a 68.2c  37.8a 70.3c  41.4a 60.1b 2.35 0.378 <0.001 0.010 
   

18:2 conjugated isomers   

trans-12, trans-14 0.17 0.48  0.16 0.52  0.15 0.50 0.015 0.497 <0.001 0.166 

trans-11, trans-138 0.28 0.68  0.23 0.68  0.21 0.42 0.130 0.040 <0.001 0.355 

trans-10, trans-128 0.03 0.08  0.03 0.07  0.04 0.06 0.094 0.645 <0.001 0.144 

trans-9, trans-118 0.21 0.40  0.23 0.37  0.21 0.50 0.081 0.185 <0.001 0.065 

trans-8, trans-10 0.03 0.04  0.03 0.04  0.03 0.03 0.005 0.327 0.062 0.596 

trans-7, trans-9 0.05 0.05  0.05 0.04  0.05 0.06 0.005 0.450 0.375 0.136 

cis-/trans-12,148, 11 0.09a 0.34c  0.07a 0.42c  0.07a 0.19b 0.186 0.012 <0.001 0.023 

cis-/trans-11,1312 0.38 1.70  0.34 2.07  0.30 1.63 0.177 0.395 <0.001 0.435 

trans-10, cis-128 0.02a 0.10c  0.02a 0.06bc  0.03b 0.05b 0.857 0.397 <0.001 0.018 

cis-9, trans-11 7.49 13.5  8.78 13.7  7.47 18.5 1.319 0.178 <0.001 0.062 

trans-8, cis-0 0.23 0.28  0.20 0.32  0.16 0.33 0.044 0.958 0.004 0.378 

trans-7, cis-98 0.36 0.70  0.43 0.76  0.44 0.84 0.057 0.149 <0.001 0.793 

Total8 9.27 18.1  10.4 18.9  8.59 22.3 0.125 0.775 <0.001 0.310 
             

Total 18:2 isomers  45.3 86.6  48.4 89.3  50.6 83.3  2.51 0.504 <0.001 0.174 
   

18:3 isomers 

cis-9, cis-12, cis-15 11.1 29.8  11.3 27.1  9.82 25.4 2.051 0.392 <0.001 0.697 

cis-9, ttrans-11, cis-15 0.94 2.62  1.10 1.77  0.86 1.99 0.267 0.327 <0.001 0.182 

Total  12.2 33.2  12.7 29.7  11.0 28.2 1.804 0.247 <0.001 0.481 
             

Total BI13 6.07 13.8  6.05 15.3  6.46 15.7 0.523 0.188 <0.001 0.371 
1 Diet C - basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; 2 Diet CO - basal diet with 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 3 Diet 
GS - basal diet with 25 g  grape seed extract/kg DM; 4 Diet GSO - basal diet with 25 g grape seed extract/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 5 Diet CL - 
basal diet with 250 g Cistus ladanifer/kg DM; 6 Diet CLO - basal diet with 250 g Cistus ladanifer/kg DM and 60 g oil blend (sunflower and linseed oils, 1:2 v/v)/kg DM; 7 CT - Condensed 
tannin sources inclusion in diets, O - Oil supplementation; 8 Variables submitted to Box-Cox transformation; means presented are back-transformed values, although SEM is expressed in 

transformed scale. Values of λ – 18:1 trans-6 to 8, 18:1 cis-14 + trans-16, 18:2 cis-12, cis-15, total 18:2 conjugated isomers = 0.010, 18:1 trans-10 = -0.594, 18:1 trans-15 = -0.650, 18:2 trans-
8, cis-13 + cis-9, trans-12 = 0.626, 18:2 trans-11, trans-13 = 0.134, 18:2 trans-10, trans-12 = 0.072, 18:2 trans-9, trans-11 = -0.066, 18:2 cis/trans-12,14 = -0.195, 18:2 trans-10, cis-12 = -
0.523, 18:2 trans-7, cis-9 = 0.944; 9 Peak includes 18:2 cis-9, trans-13, 18:2 trans-8, cis-12 and 17-cyclo (methyl 11-cyclohexylundecanoate); 10 Peak includes 18:2 trans-8, cis-13 and 18:2 cis-
9, trans-12; 11 Peak includes 18:2 cis-12, trans-14 and 18:2 trans-12, cis-14; 12 Peak includes 18:2 cis11, trans-13 and 18:2 trans-11, cis-13; 13 Total C18 biohydrogenation intermediates - total 
C18 fatty acids minus 18:0, 18:1 cis-9, 18:1 cis-11, 18:2n-6 and 18:3n-3. 
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5.4 DISCUSSION  

5.4.1 Growth performance and carcass composition 

Lipid supplements are the richest energy containing feedstuffs, and thus their use in 

ruminant diets should theoretically increase growth performance. The effects of lipid 

supplementation on the growth performance of ruminants are inconsistent. Differences 

have been attributed to negative interactions of lipids with ruminal digestion of structural 

carbohydrates and to depressions in feed intake (Hess et al., 2008). Previous works 

reported reductions of feed intake in lambs fed lipid supplemented diets coupled with no 

effect (Bessa et al., 2005, Manso et al., 2009) or reduction (Santos-Silva et al., 2004) on 

lamb growth. In the present trial, DMI was not affected by oil supplementation, which 

might explain the tendency of average daily gain to increase (P = 0.083) and the 

significant enhancement in hot carcass weight. Higher fat deposition in carcass has been 

found in lambs fed diets supplemented with fat (Santos-Silva et al., 2004). However, 

tissue composition of dissected cuts was not affected by oil supplementation, and only the 

percentage of KKCF in carcass increased. 

Condensed tannins might have both adverse and beneficial effects in ruminants, 

depending on their chemical structure and concentration in diets (Waghorn, 2008). Thus, 

the reports on the effects of dietary CT on growth performance of lambs are inconsistent 

(Priolo et al., 2005, Vasta et al., 2009c, Vasta et al., 2010b). Our results show that the 

inclusion of 25 g/kg DM of grape seed extract or 250 g/kg DM of C. ladanifer in diets did 

not affect growth performance. This is the first report on the effects of dietary inclusion of 

C. ladanifer on lamb growth performance. As far as we know, the effect of grape seed 

extract on lamb growth seems to be restricted to one trial (Schreurs et al., 2007). These 

authors found that 33 g/day of grape seed extract, supplied as liquid supplement, reduced 
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weight gain but not carcass gain when basal diet was white clover, and had no effect 

when basal diet was perennial ryegrass. As the average daily intake of grape seed CT in 

our trial was approximately 24 g/day, no depression of growth performance was expected. 

Cistus ladanifer is a very abundant shrub in marginal fields of Mediterranean countries, 

but practically it is not used in direct grazing. This fact is probably due to its high content 

in anti-nutritional compounds, arising from the secondary metabolism of plants, such as 

CT and essential oils which are very abundant in a characteristic gum resin exuded by the 

plant, also known as labdanum (Dentinho et al., 2005, Gomes et al., 2005). Thus, we 

expected that the high incorporation of C. ladanifer in diets (250 g/kg DM) would result 

in greater depression in lamb growth performance. However, our results show that C. 

ladanifer may be successfully incorporated in lambs‘ diets without compromising animal 

performance, reinforcing the interest of its use in small ruminant nutrition. Cistus 

ladanifer affected the composition of the weight gain, increasing fat deposition probably 

due to the highest fat content in these diets. 

 

5.4.2 Ruminal biohydrogenation 

We did not obtain quantitative information on rumen outflow of C18 FA, thus definite 

conclusions on rumen biohydrogenation balance are not possible. Nevertheless, as lambs 

had similar feed intake and lipid supplements generally do not affect rumen fluid and 

particle passage ratio (Doreau et al., 1993), large differences in digesta flow to abomasum 

are not expected. However, some caution is still needed because there is no information 

on the effects of grape seed extract and C. ladanifer on rumen outflow. The profile of C18 

FA in abomasal digesta provides an insight on ruminal biohydrogenation pattern (i.e. 

relative distribution of substrates and products) allowing an evaluation of the effects of oil 
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supplementation and CT on modulation BH process. Modification of the BH pattern 

would reflect the metabolic pathways in use and microbial equilibriums in the rumen. 

Dietary supplementation with oil rich in PUFA, by increasing the substrate availability 

for BH, is the most effective approach to increase BI outflow of rumen (Hess et al., 2008) 

and their transfer to milk and deposition in tissues. As expected, oil supplementation 

increased the concentration (mg/g DM) of substrates (18:3n-3, 18:2n-6 and 18:1 cis-9), 

most BI and the main end product (18:0). Dramatic changes in BH pattern due to oil 

supplementation, with strong accumulation of 18:1 trans-11 and low concentrations of 

18:0, have been reported in vitro (Fievez et al., 2007).  However,  these changes are 

usually much less expressive in vivo, except when fish oil is used (Kim et al., 2008). The 

changes in BH pattern, with increasing dietary PUFA concentration, have been explained 

by a putative toxic effect of PUFA on rumen bacteria, particularly on those catalyzing the 

last reductive step (Jenkins et al., 2008). However, present data of BH pattern show that, 

although oil supplementation increased most BI, no effects of oil supplementation were 

observed for 18:0 and 18:1 trans-11, except in lambs fed CLO diet. This is due to a large 

variability of those FA proportions within each diet. Nevertheless, despite the type (rich 

in 18:3n-3) and amount (60 g/kg DM) of oil used, no dramatic changes in 18:0 were 

observed, which is not consistent with a toxic effect of PUFA on BH bacteria. The 

branched-chain FA have been proposed as markers for the rumen microbial ecosystem 

(Vlaeminck et al., 2006). Only slight effects of oil supplementation were detected on 

branched-chain FA concentration in abomasal digesta, which is consistent with no general 

toxicity to rumen bacteria. Moreover, when rumen FA concentration is high, rumen 

bacteria tend to incorporate exogenous FA, decreasing the de novo FA synthesis 

(Vlaeminck et al., 2006). Therefore, the lack of depression on branched-chain FA 
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concentration in the abomasal digesta might be indicative of higher microbial matter 

yield. 

Our major objective was to test the ability of CT sources to differentially modulate the 

BH pattern in control and oil supplemented lambs. Grape seed CT extract (25 g/kg DM) 

had no effect on BH pattern, except for slight changes in minor non-conjugated 18:2 and 

conjugated 18:3. As far as we know, this is the first report on the effects of grape seed CT 

extract on ruminal BH. At the present stage, it is not clear whether a higher dose of grape 

seed CT could modify the BH pattern. Vasta et al. (2009b, 2010b) obtained significant 

responses for BH pattern with much higher doses of quebracho CT (ranging from 40 to 

65 g/kg DM of CT supplied by circa de 100 g/kg DM quebracho powder). Even if no 

anti-nutritive effects of CT would manifest in such high doses, the dilution of nutrient 

content of diet and consequent low growth performance would be a major restriction for 

its practical application. In fact, the use of these high doses of quebracho in lamb diets 

resulted in decreased growth performance (Vasta et al., 2009c, Vasta et al., 2010b). 

Cistus ladanifer had no major effects on BH pattern in lambs fed no oil, but greatly 

changed the BH pattern in oil supplementation lambs, with a depression of 18:0 and 

accumulation of 18:1 trans-11, without changing the 18:2 cis-9, trans-11. This indicates 

an inhibition of the last reductive step of BH, and is thus consistent with previous reports 

that used other CT sources (Khiaosa-Ard et al., 2009, Vasta et al., 2009a, Vasta et al., 

2009b, Vasta et al., 2010b). Diets with C. ladanifer had higher C18 FA content, leading to 

a higher C18 FA intake and concentration in abomasal digesta. However, this fact should 

not explain the BH pattern modifications observed because, as discussed above, the 

increase of FA intake did not induce major changes in BH pattern. 
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The supply of CT through C. ladanifer diets was similar to that of grape seed diets. 

However, CT are heterogeneous compounds with quite variable structure and size, which 

is reflected by their reactivity and impact on digestion (Waghorn, 2008), as well on 

microbial ecosystem. It was been reported that the effect of tannins on microorganisms is 

species and tannin type dependent (Biolonska et al., 2009, Selma et al., 2009).  Therefore, 

differential responses between grape seed extract and C. ladanifer on BH may be due to a 

different CT composition. Moreover, other secondary compounds in leaves and soft stems 

of C. ladanifer may be responsible for changes in the BI pattern. The C. ladanifer is an 

aromatic shrub that secretes abundant amounts of gum resin containing several flavonoids 

other than proanthocyanidins and terpenoids (Gomes et al., 2005, Sosa et al., 2005). 

Some of those compounds might be responsible for rumen BH effects and further studies 

using C. ladanifer extracts must be conducted in order to clarify. 

The branched-chain FA concentration in abomasal digesta did not differ between lambs 

fed CL and CLO diets, suggesting that no general depression in bacterial biomass flow 

had occurred. Accumulation of trans octadecenoates in the rumen could be an adaptative 

response of rumen ecosystem to environmental stress stimuli, as suggested by Bessa et al. 

(2000), probably without involving major microbial community changes. Nevertheless, 

the mechanism responsible for oil × C. ladanifer interaction is not clear and further 

studies are needed. 

 

5.4.3 Intramuscular lipid fractions 

The total intramuscular FA content is determined mostly by the amount of FA in the NL 

fraction, while the level of FA in the PL fraction is considered to be fairly constant or 

slightly increased with degree of muscle fatness (Wood et al., 2008). In general, lipid 
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supplementation in lamb diets had no effect or slightly increased intramuscular FA 

(Santos-Silva et al., 2004, Bessa et al., 2005, Boles et al., 2005, Bessa et al., 2007, Manso 

et al., 2009, Jerónimo et al., 2010a). In the present trial, oil supplementation did not 

change the intramuscular FA content, except in lambs fed C. ladanifer. Although CLO 

lambs had a higher FA intake than others, this does not seem to enough to explain the 

60% increase in intramuscular NL. Once again, the reason is unclear as to what may be 

the explanation for the higher muscle lipogenic activity in CLO lambs. Nevertheless, the 

higher FA intramuscular deposition in these lambs could be related to changes in rumen 

BH pattern (less 18:0 and higher 18:1 trans-11). In fact, exogenous 18:0 inhibits the 

acetate incorporation into FA ovine adipose tissue in vitro as reported long ago by Vernon 

(1977). Therefore, a reduction in 18:0 availability, as suggested by our data, might 

contribute to stimulate de novo FA synthesis. It was recently reported that the 

supplementation of diets with 18:1 trans-11 reduced the relative abundance of hepatic FA 

synthesis enzymes in obese rats (Wang et al., 2009). However, as far as we know, there 

are no studies regarding the effect of increased 18:1 trans-11 availability on muscular 

lipogenic regulation in ruminants. Vasta et al. (2009c) reported increased expression 

levels of 
9
-desaturase protein in muscle of lambs fed fresh vetch supplemented with 

quebracho. Moreover, this dietary treatment also reduced 18:0 and increased 18:1 trans-

11 levels in intramuscular fat. 

As expected (Scollan et al., 2006), the FA pattern of NL fraction was characterized by a 

high proportion of SFA and MUFA, whereas the PL fraction showed a high proportion of 

PUFA. The 18:2n-6, 18:3n-3 and LC-PUFA were preferentially deposited in PL fraction, 

but the 18:3n-3 was distributed more equally between NL and PL fractions, as previously 

reported (De Smet et al., 2004). In opposition, 18:0, 18:1 cis-9 and most trans C18 FA, 
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including CLA isomers, were preferentially incorporated in NL. The PL are membrane 

components, so its FA composition is under regulatory control in order to maintain proper 

membrane fluidity and function. Therefore FA composition in PL is less influenced by 

dietary factors than NL (Scollan et al., 2006). However, diet manipulation changed 

similarly the FA composition of both lipid fractions, reflecting the BH pattern observed in 

abomasal digesta although modulated by endogenous syntheses. 

As suggested by FA concentration in abomasal digesta, oil supplementation increased 

18:1 trans-11, 18:2 cis-9, trans-11 and most of the other BI in both PL and NL. The 

accumulation of CLA in intramuscular fat, as a response to the supplementation of diets 

with oil rich in 18:2n-6 and 18:3n-3, has previously been reported (Santos-Silva et al., 

2004, Bessa et al., 2005, Boles et al., 2005, Bessa et al., 2007). However, oil 

supplementation of C. ladanifer diet resulted in a higher accumulation of 18:1 trans-11 in 

NL fraction than in lambs fed other diets. The 18:2 cis-9, trans-11 also tended (P = 0.062) 

to be highest in lambs fed CLO diet, mainly due to the increase of 18:1 trans-11 

availability for endogenous desaturation, because its concentration in abomasal digesta 

was not superior than in other oil supplemented diets. This is fully consistent with the fact 

that 18:2 cis-9, trans-11 in tissues results mostly from the conversion of 18:1 trans-11 by 

endogenous 9-desaturase (Scollan et al., 2006). The preferential deposition of 18:1 

trans-11 and 18:2 cis-9, trans-11 into NL have been previously reported (Wood et al., 

2008). Lambs fed CLO diet had more NL in the muscle and higher concentration of 18:1  

trans-11 and 18:2 cis-9, trans-11 in NL, resulting in a relevant enrichment of these FA in 

muscle compared to other oil supplemented diets (189.5 vs. 70.6 and 41.7 vs. 19.2 mg/100 

g muscle for 18:1 trans-11 and 18:2 cis-9, trans-11, respectively). About 19% of dietary 

18:1 trans-11 may be converted into 18:2 cis-9, trans-11 by 9-desaturase in humans 

(Turpeinen et al., 2002). Therefore, when considering the 18:1 trans-11 content of CLO 
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lamb meat, the potential 18:2 cis-9, trans-11 supply would increase by 36 mg/100 g 

muscle, summing a total of 77.8 mg/100 g of muscle.  

The dietary inclusion of lipid sources rich in 18:2n-6 and 18:3n-3 increased n-6 and n-3 

PUFA content in PL and reduced SFA in NL. However, PUFA increase in muscle PL was 

caused exclusively by increased 18:2n-6 and 18:3n-3 deposition, because n-3 LC-PUFA 

were unchanged and the n-6 LC-PUFA decreased. This can be explained either by an 

inhibitory effect of n-6 PUFA and n-3 PUFA on 6- and 5-desaturase expression 

(Nakamura and Nara, 2002) or by competition between 18:2n-6 and 18:3n-3 for 

desaturation and elongation enzymes due to the preference of those enzymes for 18:3n-3 

(Brenner, 1989). Recently, also was reported that supplementation of diet with linseed oil 

decreases the 6-desaturase protein level in cattle muscle (Herdmann et al., 2010). These, 

or other, mechanisms regulating the incorporation of these highly FA unsaturated in 

membranes are probably linked to the homeostasis of membrane fluidity, but may 

constitute a limitation to dietary strategies designed for LC-PUFA enrichment of 

ruminant meat.  

The increase of CLA content in lamb meat in response to supplementation of diets rich in 

forage with vegetable oils has been extensively shown (Santos-Silva et al., 2004, Bessa et 

al., 2005, Bessa et al., 2007, Jerónimo et al., 2010a). However, in the present study we 

found that inclusion of C. ladanifer in oil supplemented diets, but not of grape seed 

tannins, resulted in higher health benefiting FA content in lamb meat than only with oil 

supplementation. Cistus ladanifer did not compromise animal performance, which 

reinforces the interest of its use in association with vegetable oils in nutritional strategies 

in order to improve the nutritional value of lamb meat. 
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ABSTRACT 

Thirty-six lambs were used in a 6 weeks experiment for evaluating the effect of two 

dietary CT sources: grape seed extract (0 vs. 2.5% DM) and Cistus ladanifer L. (0 vs. 

25% DM) on lipid and colour stability of meat from lambs fed diets with or with no 

vegetable oil blend supplementation (0 vs. 6% DM). The effect of dietary CT sources on 

meat sensory properties was also evaluated. Meat antioxidant potential, determined after 

oxidation induction by a ferrous/hydrogen peroxide system, decreased with oil 

supplementation (P < 0.001), but inclusion of CT sources in diets protected the meat 

against lipids oxidation (P = 0.036). Meat colour was not affected by diets. Dietary CT 

sources did not change the sensory properties of meat. Thus, incorporation of these CT 

sources in diets seems to be a good approach to increase the antioxidant potential of meat 

without compromising its sensorial traits.   

 

Keywords: lamb meat; grape seed extract; Cistus ladanifer L; oil supplementation; colour 

stability; lipid oxidation  
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6.1 INTRODUCTION 

Ruminant meat is characterized by high contents of SFA and low levels of PUFA, which 

has been linked with an high cardiovascular diseases risk in humans (Givens, 2005). The 

supplementation of ruminant diets with lipid sources rich in PUFA is an effective means 

to improve the nutritional value of meat fat, decreasing the SFA and promoting the 

enrichment in PUFA, including the health enhancing FA,  such as CLA and n-3 PUFA 

(Sinclair, 2007). However, the high content of PUFA in meat is associated with its 

increased susceptibility to oxidation (Morrissey et al., 1998) and, thus meat quality 

deterioration. 

The synthetic antioxidants are largely used in animal nutrition and food industry in order 

to improve the oxidative stability of foods. However, for satisfying the consumers on 

concern over food safety and toxicity of synthetic antioxidant, the interest in natural 

antioxidants in substitution of the synthetic ones has increased in recent years. 

Proanthocyanidins, also known as CT, are oligomers and polymers of flavanoid units 

linked by carbon-carbon bonds (Hagerman, 1998), arising from the secondary metabolism 

of plants. The effective antioxidant activity of CT sources, such as grape seed extract, has 

been reported when added to minced meat, including beef (Ahn et al., 2002), pork 

(Carpenter et al., 2007) and turkey (Lau and King, 2003). Feeding studies conducted with 

poultry also showed that dietary supplementation with grape seed and green tea extracts 

(Smet et al., 2008), grape pomace concentrate (Brenes et al., 2008) and high-tannin 

sorghum (Du et al., 2002) limits lipid oxidation in meat. The inclusion of grape seed and 

peel extract directly in rumen of sheep was shown to be effective in reducing the 

susceptibility to lipid oxidation in plasma (Gladine et al., 2007c). Although the effect of 

dietary CT sources on lipid oxidation in ruminant meat has been little explored, Luciano 

et al. (2009a) have reported that the inclusion of quebracho tannins in concentrate fed to 
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lambs did not affect lipid oxidation in semimembranosus muscle, although reduced the 

meat discoulouration.  

Cistus ladanifer L. is a very abundant shrub in marginal fields of Mediterranean 

countries, with high contents of CT (Dentinho et al., 2005). The antioxidant activity of C. 

ladanifer phenolic extract in vitro was reported recently (Andrade et al., 2009), although 

the effect of dietary C. ladanifer on meat quality has yet not been explored. In addition, as 

far as we know the effect of dietary grape seed extract on lipid oxidation of ruminant 

meat has not been investigated. Thus, the main objective of the present study was to 

evaluate the effect of dietary grape seed extract or C. ladanifer on lipid oxidative and 

colour stability during storage of PUFA enriched lamb meat. We also investigated if these 

CT sources affected the sensorial properties of cooked meat.  

 

6.2 MATERIALS AND METHODS 

6.2.1. Animal and management  

Details on diets and animal handling procedures have been reported elsewhere (Jerónimo 

et al., 2010b, chapter 5; Vasta et al., 2010a). Briefly, twenty-six Merino Branco ram 

lambs with 24.8 ± 1.55 kg (mean ± SD) of initial weight were randomly distributed to 12 

pens which were allocated to one experimental diet according to a completely randomized 

experimental design with a 3 × 2 factorial arrangement of treatments. The first factor was 

the CT sources (with 3 levels; 1- no added CT source – control, 2- 2.5% DM of grape 

seed extract, 3- 25% DM of C. ladanifer leaves and soft stems) and the second factor was 

the oil supplementation (with 2 levels: 0% and 6% DM of oil blend supplementation). 

This 3 × 2 factorial arrangement results in 6 diets: C, basal diet composed of 900 g 

dehydrated lucerne/kg DM and 100 g wheat bran/kg DM; CO, basal diet with 6% DM of 
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oil blend; GS, basal diet with 2.5% DM of grape seed extract; GSO, basal diet with 2.5% 

DM of grape seed extract and 6% DM of oil blend; CL, basal diet with 25% DM of C. 

ladanifer and CLO, basal diet with 25% DM of  C. ladanifer and 6% DM of oil blend. 

The oil blend was composed by a mixture of sunflower and linseed oils in a proportion of 

1:2 (v/v). After 6 weeks of trial, the lambs were slaughtered in the experimental abattoir. 

Carcasses were kept at 10 ºC for 24 h, and then chilled at 2 ºC until the third day after 

slaughter.  

 

6.2.2. Sample collection 

Seventy-four hours after slaughter four samples of longissimus dorsi muscle of carcass 

left halves were collected. One sub-sample of muscle, after removing the epimysium, was 

minced, vacuum packed, freeze-dried and stored at -80 ºC until lipid analysis. Three sub-

samples (1.5 cm thickness) were used to evaluate the lipid and colour stability during 0, 3 

and 7 days of storage at 2 ºC in an illuminated cooler. At 0 day of storage the colour 

parameters were determined after 1 h of blooming and samples were vacuum packed. The 

other samples were individually placed on Styrofoam, over-wrapped with oxygen 

permeable film and displayed for 3 and 7 days. At the end of storage time, these samples 

were vacuum packed after determination the colour parameters. All samples were stored 

at -80 ºC until analysis. Seventy-four hours after slaughter loins and ribs of carcass right 

halves were collected and frozen at -20 ºC, until being used for sensorial analysis. 

  

6.2.3. Lipid analysis 

Intramuscular lipid extraction and FAME preparation are fully described by Jerónimo et 

al. (2010a, chapter 4). Briefly, intramuscular lipids were extracted using dichloromethane 
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and methanol (2:1 v/v) and FA were transesterified with sodium methoxide in methanol 

followed by hydrochloric acid in methanol (1:1 v/v). Quantification of muscle lipid 

FAME was done using 19:0 as internal standard. Fatty acid methyl esters were analysed 

using a HP6890A chromatograph (Hewlett–Packard, Avondale, PA, USA), equipped with 

a flame-ionization detector (GC–FID) and fused silica capillary column (CP-Sil 88; 100 

m × 0.25 mm i.d. × 0.20 µm of film thickness; Chrompack, Varian Inc., Walnut Creek, 

CA, USA). Gas chromatography conditions and FA identification were the same as 

described in Jerónimo et al. (2010b, chapter 5).  

 

6.2.4. Measurement of meat lipid oxidation after induction of oxidation in vitro  

For the evaluation the meat lipid stability (antioxidant potential) it was followed the 

general procedure described by Mercier et al. (2004), which involves the induction of 

oxidation in meat homogenate by ferrous iron and hydrogen peroxide, followed by the 

measurement of oxidized lipids. Meat homogenates were prepared by homogenising 1 g 

tissue in 10 ml of sodium phosphate 100 mM (pH 7.0) using an Ultra-Turrax T25 

homogenizer (IKA Werke GmbH & Co. KG, Staufen, Germany) for 1 min at 20 000 rpm. 

These homogenates were incubated with 100 µl of mixture of ferrous sulphate (0.5 mM) 

and hydrogen peroxide (1 mM) at 37 ºC water bath for 30 min. After incubation time, 2 

mg of butylated hydroxytoluene (BHT) was added to homogenate for stopping the 

oxidation. Aliquots of 2 ml of homogenate were immediately frozen at -80 ºC until lipid 

oxidation measurement by thiobarbituric acid reactive substances (TBARS) as described 

by Lynch & Frei (1993). Briefly, homogenate samples (0.5 ml) were incubated with 0.25 

ml of 1% (wt/v) 2-thiobarbituric acid in 50 mM of NaOH and 0.25 ml of 2.8% (wt/v) 

tricloroacetic acid in boiling water bath for 10 min. The pink chromogen was extracted 

with 2 ml of n-butanol and its absorbance measured at 535 nm in a UV/VIS 
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Spectrophotometer (Ultrospec III, Pharmacia LKB Biochrom Ltd., Cambridge, England). 

The 1,1,3,3 tetraethoxypropane standard curve was used for calculating the TBARS 

concentration and the results were expressed as mg of malonaldehyde (MDA)/kg of meat. 

 

6.2.5. Meat colour measurement 

Minolta CR-300 chromometer (Konica Minolta, Lisboa, Portugal) was used to measure 

meat colour coordinates, L* (lightness), a* (redness) and b* (yellowness). Measurements 

were made using the C illuminant and 2 º standard observers. Hue angle (H*) was 

calculated as tan
-1

(b*/a*) x (180/π) and colour saturation (chroma, C*) as (a*
2
 + b*

2
)

1/2
. 

Overall colour variation between each day of storage and the day 0 of measurements was 

calculated as 
1/2

. Where ,  and  

are the differences between L*, a* and b* measured at a day n of storage and their values 

at day 0. 

 

6.2.6. Sensory analysis 

For sensory analysis a panel of 30 regular consumers of lamb meat was used. A triangular 

test was conducted to evaluate if consumers could detect the inclusion of grape seed 

extract and C. ladanifer in lamb diets with or with no oil blend and if so, what their 

preference was. Therefore, the comparisons were performed on meat samples of lambs 

fed diets with no oil (i.e. C vs. GS and C vs. CL) and with oil (i.e. CO vs. GSO and CO vs. 

CLO). Frozen right joints (loins and ribs) were cut transversally to vertebral column in 

chops with about 2.5 cm of thickness. Twenty-four hours before sensory analysis 

sessions, chops were thawed at 0 ºC, cooked in an industrial grill, and served warm to the 
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consumer panel. Each panelist was offered simultaneously three chops, two 

corresponding to the same diet and one to the other. They were asked to identify the 

sample that was different from the other two (question 1) and to indicate the chop that 

tasted better (question 2). When analyzing the results, the answers to question 2 were 

considered only when the panelists answered correctly question 1. 

 

6.2.7. Statistical analysis 

This trial was conducted using a 3 × 2 factorial design, where the 2 factors were the CT 

sources (CT, with 3 levels: control, grape seed extract and C. ladanifer) and the vegetable 

oil blend supplementation (O, with 2 levels: 0% and 6%). The interaction between CT 

sources and O was also evaluated (CT × O). The individual animals were considered as 

experimental units. The Shapiro-Wilk test was used in order to evaluate whether data 

followed a normal distribution. When not normally distributed (P < 0.05) data was Box-

Cox transformed before further analysis. Data of intramuscular FA composition were 

analysed using the MIXED procedure of SAS, considering the oil and CT sources and 

their interaction as fixed effects and the pen as random effect. The covariance of 

measurements from lambs within each pen was considered in the model. The colour and 

lipid oxidation were studied by repeated measure analysis of variance with the MIXED 

procedure of SAS with day of sampling as the repeated measurement. Last squares means 

and SEM are presented in tables. For Box-Cox transformed variables the SEM is 

presented in tables, although means are back-transformed. For sensory analysis results, a 

significance table for triangle tests was used to analyse the answers to question 1, and a 

significance table for pair tests to analyse the answers to question 2 (Roessler et al., 

1978). The level of statistical significance was set at P < 0.05 for main effects and at P < 

0.10 for interactions.  



Dietary condensed tannin sources on lamb meat oxidative stability   

 

173 

 

6.3 RESULTS AND DISCUSSION 

Intramuscular FA content and composition are presented in Table 6.1. Intramuscular FA 

content was higher (P = 0.017) in lambs fed CLO diet (30.7 mg/g of fresh muscle) than in 

meat from lambs fed other diets (20.6 mg/g of fresh muscle). As expected, 

supplementation of lamb diets with oils rich in 18:2n-6 and 18:3n-3 decreased SFA and 

increased PUFA, 18:1 trans-11 and CLA contents in meat (Bolte et al., 2002, Bessa et al., 

2005, Bessa et al., 2007, Jerónimo et al., 2010a). An interaction between CT sources and 

oil was observed for several individual PUFA (18:2n-6, CLA, ARA and 22:6n-3) and for 

total PUFA and n-6 PUFA partial sums, in which meat from lambs fed CLO diet had 

lower PUFA content (17.1 % of total FA) than meat from other oil supplemented lambs 

(19.8 % of total FA). This is likely explained by higher intramuscular FA content in 

lambs fed CLO diet than in lambs fed other diets. This increase in intramuscular FA is 

due to higher level in triacylglicerols, while membranary PL remains fairly constant 

(Wood et al., 2008). Polyunsaturated FA are mainly incorporated in PL, whereas 

triacylglicerols incorporate more SFA and MUFA (Raes et al., 2004). Thus, the lower 

content of PUFA in meat from lambs fed CLO diet than meat from lambs fed other diets 

with oil resulted probably by the dilution effect caused by the increase in IMFA. 

Moreover, meat from lambs fed CLO diet showed a higher 18:1 trans-11 and CLA than 

that from other oil supplemented lambs. The interaction of C. ladanifer with oil 

supplementation and its implications on ruminal BH and tissue lipid metabolism was 

thoroughly discussed in a companion paper, where detailed FA composition of both 

intramuscular polar and neutral lipid fractions were presented (Jerónimo et al., 2010b, 

chapter 5). 

 



 

 

 

Table 6. 1 Effect of dietary condensed tannin sources (control, grape seed extract-GSE and C. ladanifer) and oil supplementation (0% and 6% of 

added oil in dry matter) on fatty acid concentration (mg/g fresh muscle) and composition (g/100g total fatty acids) of longissimus dorsi muscle 

from Merino Branco lambs. 

 

 

 

 

 

 

 

 

 

 

 
 

SFA - sum of saturated fatty acids; PUFA - sum of polyunsaturated fatty acids; 1 Diet C, basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg 
DM; 2 Diet CO, basal diet with 6% DM of oil blend (sunflower and linseed oils, 1:2 v/v); 3 Diet GS, basal diet with 2.5% DM of grape seed extract; 4 Diet GSO, basal diet 
with 2.5% DM of grape seed extract and 6% DM of oil blend (sunflower and linseed oils, 1:2 v/v); 5 Diet CL, basal diet with 25% DM of Cistus ladanifer; 6 Diet CLO, basal 
diet with 25% DM of  Cistus ladanifer and 6% DM of oil blend (sunflower and linseed oils, 1:2 v/v); 7 CT, condensed tannin sources inclusion in diets; O, oil 
supplementation; 8 variables submitted to Box-Cox transformation; means presented are back-transformed values but SEM is expressed in transformed scale; λ for 18:1cis-9, 
18:2n-6 and n – 6 PUFA is 0.01; 9 Include 18:2 cis-9, trans-11, 18:2 trans-8, cis-10 and 18:2 trans-7, cis-9 isomers; 10 n-6 PUFA = (18:2n-6 + 20:2n-6 + 20:3n-6 + 20:4n-6 

+ 22:4n-6); 11 n-6 LC-PUFA = (20:2n-6 + 20:3n-6 + 20:4n- 6 + 22:4n- 6); 12 n-3 PUFA = (18:3n-3 + 20:3n-3 + 20:5n-3 + 22:5n-3 + 22:6n-3);13 n-3 LC-PUFA = (20:3n-3 + 
20:5n-3 + 22:5n-3 + 22:6n-3). 

 Control  GSE  C. ladanifer 
SEM 

P values7 

 0%1 6%2  0%3 6%4  0%5 6%6 CT O CT×O 

Total FA 20.5a 20.2a  20.2a 21.8a  20.3a 30.7b 1.82 0.018 0.015 0.017 
             

14:0 2.96 2.69  3.25 2.63  3.54 3.02 0.183 0.064 0.012 0.793 

16:0 22.4 18.2  23.3 18.7  24.1 20.4 0.77 0.056 <0.001 0.828 

16:1 cis-9 1.11 0.76  1.16 0.77  1.30 0.90 0.035 <0.001 <0.001 0.806 

18:0 15.5 15.3  14.4 14.9  14.2 13.5 0.54 0.026 0.761 0.496 

18:1 trans-11 1.43a 3.35b  1.55a 3.42b  1.55a 6.24c 0.383 <0.001 <0.001 0.001 

18:1 cis-98 32.3 24.8  30.3 23.5  29.6 25.1 0.03 0.084 <0.001 0.116 

18:2n-68 5.49a 8.68c  6.25ab 8.32c  6.72b 6.81b 0.065 0.595 <0.001 0.007 

CLA9 0.68a 1.24b  0.76a 1.23b  0.69a 1.73c 0.114 0.081 <0.001 0.046 

18:3n-3 1.34 3.52  1.33 3.50  1.18 3.17 0.188 0.344 <0.001 0.858 

20:4n-6 1.45b 1.28b  1.77c 1.32b  1.76c 0.98a 0.097 0.137 <0.001 0.015 

20:5n-3 0.47 0.62  0.56 0.72  0.49 0.49 0.047 0.013 0.012 0.165 

22:5n-3 0.74 0.73  0.83 0.78  0.72 0.57 0.056 0.028 0.137 0.464 

22:6n-3 0.17b 0.20c  0.21c 0.20c  0.17b 0.13a 0.009 <0.001 0.486 0.003 
             

SFA 43.1 38.2  43.3 38.4  44.2 38.9 1.14 0.694 <0.001 0.979 

PUFA 12.0a 19.6c  13.7a 20.0c  13.6a 17.1b 0.79 0.188 <0.001 0.043 

n-6 PUFA8, 10 7.27a 10.3c  8.43ab 9.90c  8.89bc 8.00ab 0.065 0.442 0.017 0.007 

n-6 LC-PUFA11 1.78b 1.58a  2.25c 1.62ab  2.20c 1.21a 0.134 0.122 <0.001 0.024 

n-3 PUFA12 2.75 5.14  2.97 5.26  2.61 4.42 0.273 0.097 <0.001 0.546 

n-3 LC-PUFA13 1.41 1.62  1.65 1.76  1.42 1.25 0.109 0.009 0.572 0.202 

1
7
4
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6.3.1. Meat lipid oxidation 

As intended, meat from oil supplemented lambs had higher PUFA concentration than 

meat from oil unsupplemented lambs and, thus, can be expected to be more prone to lipid 

oxidation (Morrissey et al., 1998). It is well established that lipid oxidation decreases 

meat quality and acceptability by the consumers because it leads to colour deterioration 

and development of off-odours and off-flavours (Morrissey et al., 1998). Therefore, the 

susceptibility of PUFA to rapid oxidation might limit the nutritional strategies which aim 

at increasing PUFA concentration in meat. In present trial the lipid oxidation was 

measured after chemical oxidation by ferrous iron and hydrogen peroxide, allowing to 

determine the meat resistance against lipid oxidation in pro-oxidative conditions (Mercier 

et al., 2004). 

As expected, lipid oxidation increased (P < 0.001) with storage time and dietary lipid 

supplementation (Table 6.2), reflecting both the reduction of meat capacity for resist 

against lipid oxidation during storage and the tendency of PUFA to oxidize. An 

interaction between oil supplementation and storage time (P = 0.056) was observed for 

lipid oxidation, in which at day 3 of storage the meat from oil supplemented lambs 

showed similar TBARS values to that from lambs fed diets with no oil stored after 7 days 

(Figure 6.1).  
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Table 6. 2 Effect of storage time, oil supplementation and inclusion of a condensed 

tannin sources on lipid oxidation (mg MDA/kg muscle) and surface colour parameters in 

raw longissimus dorsi muscle from Merino Branco lambs 

1 Lightness; 2 Redness; 3 Yellowness; 4 Hue angle; 5 Chroma; 6 Colour variation between each day of storage and the day 
0; 7 Oil blend composed of sunflower and linseed oils in a 1:2 (v/v) proportion. 

 
 

 Lipid oxidation L*
1 

a*
2 

b*
3 

H*
4 

C*
5 

E
6 

Effect Storage Time (T)    

  0 days 2.01
a 

38.2
a 

14.5
b 

4.59
a 

17.4
a 

15.2
a 

 

  3 days 5.72
b 

39.9
b 

14.6
b 

8.68
b 

31.0
b 

17.0
c 

5.43 

  7 days 8.44
c 

39.7
b 

13.3
a 

9.06
c 

34.4
c 

16.1
b 

5.92 

  SEM 0.216 0.471 0.276 0.146 0.437 0.287 0.239 

  P values <0.001 <0.001 0.003 <0.001 <0.001 <0.001 0.003 
  

Effect of oil supplementation (O)  

  0% 4.45
 

39.4 14.5 7.36 27.1 16.5 6.09 

  6%
7 

6.29
 

39.1 13.7 7.52 28.1 15.7 5.25 

  SEM 0.225 0.597 0.289 0.156 0.421 0.299 0.321 

  P values <0.001 0.750 0.052 0.470 0.101 0.070 0.070 
  

Effect of dietary condensed tannin sources (CT)  

  Control 6.00
b 

39.7 14.6 7.70 27.6 16.5 5.64 

  Grape seed extract 5.07
a 

39.0 13.7 7.24 27.7 16.7 5.89 

  Cistus ladanifer 5.10
a 

39.1 14.1 7.38 27.4 16.1 5.49 

  SEM 0.281 0.731 0.354 0.191 0.515 0.367 0.393 

  P values 0.036 0.802 0.214 0.223 0.932 0.202 0.765 
  

Interactions P values  

  CT×O 0.461 0.928 0.736 0.749 0.796 0.675 0.222 

  O×T 0.056 0.154 0.401 0.561 0.729 0.445 0.272 

  CT×T 0.078 0.132 0.289 0.102 0.040 0.229 0.090 

  CT×O×T 0.476 0.202 0.385 0.744 0.915 0.441 0.857 
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Figure 6. 1 Effect of oil supplementation and time of storage on TBARS values 

determined after oxidation induction in longissimus dorsi muscle. 

Values are means, with SD represented by vertical bars. Values with different superscripts are significantly 

different (P < 0.10). 

 

The inclusion of a CT sources in lamb‘s diets improved (P < 0.036) the meat resistance 

against induced lipid oxidation (Table 6.2). However, this protective effect only occurred 

after 3 days of storage (P = 0.078, Figure 6.2).  
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Figure 6. 2 Effect of inclusion the grape seed extract and Cistus ladanifer in diets and 

time of storage on TBARS values determined after oxidation induction in longissimus 

dorsi muscle. 

Values are means, with SD represented by vertical bars. Values with different superscripts are significantly 

different (P < 0.10). 
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At day 3 of storage, the meat from lambs fed grape seed diets showed lower TBARS 

values than that from lambs fed control diets. Feeding C. ladanifer diets resulted in 

intermediate TBARS values between grape seed and control diets. Nevertheless, at day 7 

of storage the grape seed extract and C. ladanifer were equally effective in protection 

against lipid oxidation. The antioxidant effect of dietary CT have been shown in poultry 

(Du et al., 2002, Brenes et al., 2008, Smet et al., 2008) and rodents (Gladine et al., 2007a, 

Gladine et al., 2007b). However, information on potential antioxidant effect of dietary CT 

in ruminants seems to be restricted to a few studies. Gladine et al. (2007c) reported that 

inclusion of 10% DM of grape seed and peel extract directly into the rumen of sheep 

improved the antioxidant status and reduced the susceptibility to lipid oxidation of plasma 

measured by an oxidation induced assay. Luciano et al. (2009a) reported that inclusion of 

8.9% DM of quebracho in the diet did not improve the lipid oxidative stability in lamb 

meat, measured as TBARS without oxidative induction in meat. Differences observed 

between methods using or not oxidative induction might be explained by the fact that 

although dietary CT increase the meat antioxidant capacity, this might be evident only 

when oxidative pressure exceeds the antioxidant capacity of control meats which might 

not be attained in normal meat storage conditions.  

Despite the several studies that show that dietary CT sources have beneficial effects on 

oxidative stability of meat, their mechanisms of action remain to be established. The 

direct antioxidant activity of dietary CT would imply their absorption through the 

gastrointestinal tract and their transfer in tissues (Luciano et al., 2009a). However, the 

polymeric nature and high molecular weight of CT should limit their absorption and it is 

unlikely that oligomers larger than trimers could be absorbed in the small intestine in their 

native form (Manach et al., 2004). Hydrolysis of CT polymers into compounds with low 

degree of polymerization or monomers would allow their absorption. Gladine et al. 
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(2007c) reported the presence of five different phenolic compounds in plasma, including 

epicatechin and unknown phenolic compounds in sheep that received grape seed and peel 

extract directly in the rumen. Considering the minor proportion of monomeric compounds 

presents in grape extract, these authors suggested that high level of epicatechin in sheep 

plasma resulted from the biodegradation of polymeric CT by rumen microorganisms. In 

fact, Terrill et al. (1994) showed that polymeric CT are poorly recovered after their transit 

though the rumen. However, Makkar et al. (1995) demonstrated that rumen 

microorganisms do not hydrolyse CT. Conversely, studies in rats and humans indicated 

that CT are not inert within the gut, but undergo structural modifications operated by the 

intestinal microflora (Déprez et al., 2000, Abia and Fry, 2001). Nevertheless, the effect of 

dietary CT on meat oxidative stability may be indirect, through the interaction between 

CT with other antioxidants compounds or with pro-oxidants compounds present in meat. 

Gladine et al. (2007b) reported that rosemary and grape extract inclusion in rat diets 

increased significantly the vitamin E content in liver. Previous works showed that plant 

extracts, such as Gymnema montanum, grape and marigold extracts, increased the activity 

of antioxidant enzymes in kidney and liver of rats (Ananthan et al., 2004, Gladine et al., 

2007b). However, in the present trial, nor vitamin E content neither, enzyme with 

antioxidant activity were determined. 

In the present experiment we used the extract of grape seed that is composed mainly by 

proanthocyanidins (95%) and leaves and soft stems of C. ladanifer that contained 

secondary compounds, including several flavonoids other than proanthocyanidins and 

terpenoids (Gomes et al., 2005, Sosa et al., 2005). Several flavonoid and terpenoid 

compounds have been shown to have antioxidant properties (Harborne and Williams, 

2000, Matkowski, 2008). Thus, the flavonoid and terpenoid compounds present in C. 

ladanifer also may also be responsible for the higher antioxidant capacity in the meat of 
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the lambs fed C. ladanifer. Further studies should be conducted to identify the 

compounds that contribute to C. ladanifer antioxidant activity. 

 

6.3.2. Meat colour  

Dietary oil supplementation and inclusion of a CT sources in diets did not affect the meat 

colour coordinates (L*, a* and b*) but, as expected these parameters were affected by 

storage time (Table 6.2). Lightness (L*) values increased during firsts 3 days of storage, 

but between day 3 and 7 of storage remained unchanged (P < 0.001). The yellowness (b*) 

values increased over the 7 days of storage (P < 0.001). The redness (a*) value is strongly 

correlate with myoglobin concentration (Pérez-Alvarez and Ferández-López, 2009) and 

its decrease has been used extensively as index the myoglobin oxidation. In the present 

trial, the redness (a*) values were stable during firsts 3 days of storage, however 

decreased between day 3 and 7 of storage (P = 0.003), suggesting the occurrence of 

myoglobin oxidation after 3 days of storage. Meat from lambs fed oil tended to display 

lower a* values (P = 0.052) than meat from oil unsupplemented lambs, suggesting a 

higher myoglobin oxidation in PUFA enriched meats. The changes in meat colour 

coordinates values during storage observed in present trial might affect negatively the 

sensory appreciation of meat by consumers (Insausti et al., 2008). 

The ΔE parameter is calculated by the combination of L*, a*, and b* coordinates 

measured during different days of storage. Therefore, ΔE measures the overall variation 

of meat colour during storage (Mancini and Hunt, 2005). The E values were 5.43 at day 

3 and 5.92 at day 7 of storage, showing that meat colour variation occurred mainly 

between day 0 and 3 of storage. Nevertheless, the E was higher at day 7 than at day 3 (P 

= 0.003). An increase of E values is associated to meat discoloration. Abril et al. (2001) 



Dietary condensed tannin sources on lamb meat oxidative stability   

 

181 

 

reported that differences in E values < 0.9 are not appreciable by visual assessment and 

therefore the overall change in colour, calculated as ΔE, occurred between day 3 and 7 of 

storage might not be perceived by consumers.  

The intensity of the red colour (chroma, C*) increased during firsts 3 days of storage, and 

decreased between day 3 and 7 of storage, indicating that at day 3 of storage the meat 

showed a more vivid colour (greater C* values) than meat stored 0 and 7 days. 

Hue angle (H*) allows more realistic perspective on meat browning than single colour 

coordinates (Luciano et al., 2009b). Independently from dietary treatment, H* values 

increased (ranged from red to yellow) over the 7 days of storage, resulting from the 

decrease in a* and the increase of b*. We found an interaction between inclusion of a CT 

sources in diets and storage time (P = 0.040), which at 0 day (1 h of blooming) the H* 

value was lower in meat of lambs fed grape seed extract diets than meat of lambs fed 

control diets, while meat of lambs fed C. ladanifer diets showed intermediate values 

(Figure 6.3), suggesting that dietary CT, especially grape seed extract has interfered with 

blooming development. However, after 3 and 7 days of storage this effect of the dietary 

CT sources on H* values was not observed, which did not differ between dietary 

treatments. This response is contrasting with results reported by Luciano et al. (2009a), 

who found lower H* values in minced meat from lambs fed diet supplemented with 

quebracho tannins after 7 and 11 days of storage as compared to meat from lambs fed diet 

without tannin supplementation.  
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Figure 6. 3 Effect of inclusion the grape seed extract and Cistus ladanifer in diets on Hue 

angle (H*) of longissimus dorsi muscle during storage time. 

Values are means, with SD represented by vertical bars. Values with different superscripts are significantly 

different (P < 0.10). 

 

It is widely accepted that lipid and myoglobin oxidation in meat are associated and, 

generally, both processes increase concurrently (Luciano et al., 2009b). Previous works 

showed that colour and lipid stability of meat was not affected by PUFA enrichment in 

meat (Vastasever et al., 2000, Ponnampalam et al., 2001, Daly et al., 2007) or by dietary 

CT sources (O‘Gardy et al., 2008). In contrast, Luciano et al. (2009a) showed that the 

inclusion of quebracho tannins in sheep diets improved meat colour stability during 

refrigerated storage, but did not affect the lipid stability. In the present study, the absence 

of effect of the dietary treatments on meat colour stability may suggest that in normal 

conditions (without induction of the oxidation) and in period of storage used in 

experiment (7 days) the oxidative pressure was not enough to causing the negative effects 

of oil supplementation and positive effects of inclusion of CT sources in diets on meat 

oxidative stability. 
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6.3.3. Sensory analysis  

In a companion paper (Vasta et al., 2010a), it was showed that C. ladanifer inclusion in 

lamb diets strongly affected meat volatile compounds profile, while grape seed extract 

inclusion had only minor effect on this profile. However, the consumers panel did not 

detect the effect of the grape seed extract and C. ladanifer L inclusion in diets on meat 

sensory proprieties (Table 6.3). 

 

Table 6. 3 Results of sensory analysis by a consumer panel. 

D, number of panellists that were able to distinguish the meats; ns, not significant effect (P < 

0.05); Diet C, basal diet composed of 900 g dehydrated lucerne/kg DM and 100 g wheat bran/kg 

DM; Diet CO, basal diet with 6% DM of oil blend (sunflower and linseed oils, 1:2 v/v); Diet GS, 

basal diet with 2.5% DM of grape seed extract; Diet GSO, basal diet with 2.5% DM of grape 

seed extract and 6% DM of oil blend (sunflower and linseed oils, 1:2 v/v); Diet CL, basal diet 

with 25% DM of Cistus ladanifer; Diet CLO, basal diet with 25% DM of Cistus ladanifer and 

6% DM of oil blend (sunflower and linseed oils, 1:2 v/v).  

 

This result is in agreement with Priolo et al. (1998), who reported that trained panelist 

were unable to distinguish between meats from lambs fed diet with carob pulp (rich in 

CT) from meat of lambs fed control diet. In contrasts with these results, Priolo et al. 

(2009) and Schreurs et al. (2007) reported that lamb meat flavour and odour is affected by 

CT, when supplementing the diets with 10% of quebracho or supplied 33g/d of grape 

seed extract as liquid supplement, respectively. In these works, the dietary CT reduced the 

typical sheep meat odour and flavour. Our results showed that, at the levels of inclusion 

used, grape seed extract and C. ladanifer may be successfully used as supplements in 

lambs‘ diets without compromising the characteristic lamb meat sensory properties. 

 Number of Panelists D 

C vs. GS 30  11(ns) 

CO vs. GSO 30 13 (ns) 
   

C vs. CL 30 13 (ns) 

CO vs. CLO 30 14 (ns) 
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6.4 CONCLUSION 

Dietary oil supplementation resulted in a beneficial effect on the FA composition of lamb 

meat but reduced the meat antioxidant potential. The increase of the lipid oxidation with 

oil supplementation was not reflected in meat colour stability during storage. Dietary 

grape seed extract and C. ladanifer did not improve the meat colour stability but protected 

the meat lipids against oxidation in lambs fed both diets with or with no oil. The sensory 

properties of lamb meat were not affected by the inclusion of grape seed extract and C. 

ladanifer in diets. Thus, the use of these CT sources in order to reduce the meat 

deterioration induced by lipid oxidation in ruminant meat enriched in PUFA, might be a 

good approach. Finally, further studies should be undertaken in order to elucidate the 

underlying mechanisms responsible for the oxidative stability of meat by CT.     
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In recent years, consumer concern with health has leaded to an increasing interest on 

nutritional value of foods, especially in its FA composition. Consumption of ruminant 

products, by its FA composition has been associated with negative effects on human 

health. To meet the nutritional recommendations there is a large interest to improve the 

FA composition of ruminant fat. Thus, lipid metabolism in ruminants and factors 

influencing the FA composition of their products, particularly nutritional factors has been 

extensively studied. Dietary manipulation has shown to be effective means of improving 

the FA composition of ruminant meat, increasing its content in PUFA, such as n-3 PUFA 

and CLA and decreasing SFA (Scollan et al., 2006, Sinclair, 2007). The studies reported 

in this thesis aimed to explore some nutritional approach to improve the nutritional value 

of lipid fraction from lamb meat.  

In accordance with previous results obtained by our team (Bessa et al., 2007), blend of 

sunflower oil and linseed oil showed to be a good approach to obtain simultaneously lamb 

meat enriched in CLA and n-3 LC-PUFA (chapter 2). Highest value of 18:2 cis-9, trans-

11 was observed in meat of lambs fed diets with only sunflower oil, decreasing linearly 

by replacement of sunflower oil with linseed oil, while n-3 LC-PUFA increased only until 

66% of oils replacement. The maximum concentration of both CLA and n-3 LC-PUFA in 

muscle (sum CLA and n-3 LC-PUFA) were estimated to be reached at 52% of 

replacement of sunflower oil with linseed oil. However, comparing the four experimental 

diets used in this trial the highest proportion of CLA and n-3 LC-PUFA (quadratic 

response, P = 0.025) was observed in lambs fed diets with blend of sunflower oil and 

linseed oil in proportion of 1:2 (v/v) (i.e. 66% of oils replacement). Facing this result, the 

blend of sunflower oil and linseed oil in proportion of 1:2 (v/v) was used in subsequent 

studies (chapter 4 to 6); showing to be an effective means to improving the nutritional 

value of lamb meat, increasing its content in PUFA, CLA and n-3 LC-PUFA.  
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However, supplementation of diets with this oil blend result in a small improvement in 

muscle n-3 LC-PUFA content, being generally limited to increase the EPA. The limited 

synthesis of n-3 LC-PUFA from dietary 18:3n-3 observed in this nutritional conditions 

can be explained either by an inhibitory effect of n-6 PUFA and n-3 PUFA on 6- 5-

desatutase expression (Cho et al., 1999a, Cho et al., 1999b) or by competition between 

18:2n-6 and 18:3n-3 for desaturation and elongation enzymes (Brenner, 1989). Moreover, 

increase of n-3 LC-PUFA in muscle lipids only until 66% of replacement of sunflower oil 

with linseed oil, and linear decrease the n-6 LC-PUFA with oils replacement observed in 

first study (chapter 2) suggests that 18:3n-3 might be more powerful in the down-

regulation of the desaturases and elongases enzymes involved in the conversion to LC-

PUFA, than 18:2n-6. The comparison of the effects of 18:3n-3 and 18:2n-6 on gene and 

protein expression, as well as activity of these enzymes has been little explored. Only 

recently, was reported that supplementation of cattle diet with 18:3n-3 (linseed oil) 

decreases the 6-desaturase protein abundance in cattle muscle (Herdmann et al., 2010) 

when compared to control diet with higher proportion of 18:2n-6. This inhibition by 

dietary 18:3n-3 may contribute to lower synthesis of n-3 LC-PUFA, limiting thus the 

nutritional strategies to enrichment of n-3 LC-PUFA by 18:3n-3 dietary supply. Thus, it is 

need to known better the effect of dietary PUFA on these enzymes in ruminants, in order 

to increase the endogenous syntheses of health benefit FA, as well to optimize the levels 

of PUFA incorporation in diets. So, it would be important test in vitro, as preliminary 

study, the effect of graded increase of the 18:2n-6 and the 18:3n-3 on desaturases and 

elongases enzymes involved in the conversion to LC-PUFA (RNAm abundance, protein 

expression and activity) and FA profile. This could help to determine the levels of 18:2n-

6 and 18:3n-3 from which the LC-PUFA synthesis is inhibited. Comparison between 
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effect of 18:2n-6 and 18:3n-3 on enzymes also could clarified if 18:3n-3 is more powerful 

in the down-regulation of enzymes involved in the conversion to LC-PUFA than 18:2n-6.  

Additionally, the effect of dietary replacement of sunflower oil with linseed oil on FA 

composition of PL reported in chapter 2 suggest that there is a homeoviscous adaptation 

mechanisms that control the FA incorporation in membrane phospholipids. The dietary 

replacement of sunflower oil with linseed oil led to a substitution of 18:2n-6 (2 double 

bonds) by a pondered mixture of 18:3n-3 (3 double bonds) and 18:1 cis-9 (1 double bond) 

in polar lipids maintained fairly constant the degree of instauration of C18 FA in 

membrane polar lipids, probably in order to maintain proper membrane fluidity and 

function (Wahle, 1983, Spector and Yorek, 1985). As, PUFA are mainly deposited in PL, 

this metabolic regulatory mechanisms may constitute a limitation to dietary strategies 

designed for enrichment of ruminant meat in PUFA. Would be important to known the 

ceiling of PUFA incorporation in polar lipids.   

Dietary replacement of sunflower oil with linseed oil changed the pattern of BI in 

intramuscular PL and NL fractions (chapter 3), inducing to strong diversification of BI, 

with decrease in relative proportion of 18:1 trans-11 and 18:2 cis-9, trans-11 and an 

increase in several BI related with 18:3n-3 BH pathway, such as 18:2 trans-11, trans-15 

that was first time reported in lamb meat in this work (chapter 3, 4 and 5). Inclusion of oil 

blend in diets increased the most BI in abomasal digesta (chapter 5), and its deposition in 

muscle (chapter 4 and 5), including benefic 18:1 trans-11 and 18:2 cis-9, trans-11 and 

several others TFA. It is proposed that deleterious effects of TFA are due to their 

incorporation in PL, competing with essential FA to desaturation and elgongation 

metabolic pathways (Wahle and James, 1993, Chardigny et al., 2007). Thus, the 

distribution of C18 FA, with special attention on BI, between intramuscular PL and NL 

fractions, as well the effect of dietary replacement of sunflower oil with linseed oil on FA 
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distribution was evaluated (chapter 4). Selectivity index (SI), that was proposed for the 

fist time in this work to evaluate the selective deposition of C18 FA between lipid 

fractions, indicate that C18 FA are differentially incorporated in PL and NL. As expected 

the SI for 18:2n-6, 18:3n-3 and 18:1 cis-9 showed that both PUFA are preferentially 

incorporate in PL and 18:1 cis-9 in NL. Moreover, results also suggest that BI are 

differentially deposited between intramuscular lipid fractions, being trans C18 FA, 

including CLA preferentially deposited in NL and some cis isomers preferentially 

incorporate in PL. The preferentially deposition of trans BI in NL suggest that its 

potential for competitive interactions with elongation and desaturation metabolic 

pathways of essential FA might be low. However, this trial was initially not designed to 

evaluate the C18 FA deposition in PL and NL and further studies, possibly in vitro should 

be conducted to confirm the selective deposition of BI between PL and NL fractions 

reported here.  

The TFA increase in meat with inclusion of vegetable oil rich in PUFA in diets may limit 

the strategies to improve the nutritional value of ruminant meat by supplementation of 

diets with these oils. Thus, research is need to increase the 18:1 trans-11 and CLA 

without major increase in other trans BI. In this context, the ability of sodium betonite 

and two condensed tannin sources (grape seed extract and leaves and soft stems of Cistus 

ladanifer L.) to modulate the ruminal BH in lambs fed control (with no oil) or oil blend 

supplemented diets was tested in present thesis (chapter 4 and 5). The effect of sodium 

bentonite inclusion in diets on lamb meat FA composition was limited to some BI 

(chapter 4). However, these effects are very promising; because sodium bentonite 

increased the 18:1 trans-11 and prevented the increase of 18:1 trans-10 in meat from 

lambs fed oil supplemented diets, suggesting that sodium bentonite limits the shift of 

ruminal BH pathways that favours the production 18:1trans-10 instead 18:1 trans-11 
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typically observed in high concentrate diets. Thus, sodium bentonite may be an effective 

approach to optimize the response of vegetable oil supplementation in concentrated based 

diets. Other levels of sodium bentonite inclusion in diets, as well the effect of sodium 

bentonite inclusion in concentrate based diets on ruminal BH and FA composition of 

ruminant meat would be interesting explore.  

The two dietary condensed tannin sources tested, had a distinct effect on ruminal BH and 

FA composition of lamb meat, although the CT supply had been similar (Chapter 5). 

Grape seed extract inclusion of both diets with or with no oil had a minor effect on FA 

profile of abomasal digesta and muscle lipid fractions. Cistus ladanifer also no had major 

effects on BH pattern in lambs fed diets with no oil, but show to be able to inhibits the 

last step of BH in oil supplemented lambs, improving nutritional value of their meat. 

Inclusion of Cistus ladaniner in oil supplemented diets induced to accumulation of 18:1 

trans-11 and depression of 18:0 in abomasal digesta and higher 18:1 trans-11 availability 

in tissues for endogenous synthesis resulted in higher deposition of 18:2 cis-9, trans-11 in 

muscle than other oil supplemented diets. This result suggests that inclusion of Cistus 

ladanifer in oil supplemented diets induced to changes in ruminal ecology, reducing the 

stearate producers‘ bacteria. Cistus ladanifer is composed by several secondary 

compounds in addition the condensed tannins, and is not clear that the effect of Cistus 

ladanifer in ruminal BH is caused by condensed tannins. Thus, in order to clarify this 

question further study using Cistus ladanifer extracts must be conducted.  

Both sodium bentonite and Cistus ladanifer seem to change the ruminal population. 

However, the effect of sodium bentonite and Cistus ladanifer on microorganism involved 

in BH is not known and further work should be conducted to evaluate this. It would be 

important determine the eventual changes in rumen microbial communities from animals 

fed diets with sodium bentonite and Cistus ladanifer that could be related to changes in 
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BH. Moreover, also is important explored why sodium bentonite and Cistus ladanifer 

only changes the BH pattern in oil supplemented diets. So, the effect of the inclusion of 

sodium bentonite and Cistus ladanifer in oil supplemented diets on rumen microbial 

population also should be evaluated.    

Globally, data reported here showed that oil blend supplementation; as well as inclusion 

of sodium bentonite and Cistus ladanifer in oil supplemented diets may be successfully 

used to improve the lamb meat nutritional value without compromising the animal 

performance. Oil blend supplementation increased the deposition of KKCF in carcass of 

lambs, but the effect on other carcass traits and tissue composition chumps and shoulders 

was inconsistent between studies (chapter 4 and 5). In contrast to sodium bentonite and 

grape seed extract, inclusion of Cistus ladanifer in diets affects the carcass and dissected 

cuts composition, increasing the its content in fat.  

Although lamb meat enrichment in PUFA is considered benefit to human health, high 

content of PUFA in meat reduces its antioxidant potential (chapter 6), limiting the 

strategies to improve the nutritional value of meat.  Results reported in chapter 6 showed 

that dietary grape seed extract and Cistus ladanifer are effective to improve the lamb meat 

resistance against lipid oxidation, suggesting that inclusion of these two condensed tannin 

sources in diets might be a good approach to prevent the lipid oxidation in meat, 

including meat enriched in PUFA. In addition, our results also showed that this approach 

not changes the characteristic lamb meat sensory properties. Nevertheless, in present 

work the lipid oxidation was measured after chemical oxidation, which allows evaluate 

the meat resistant against lipid oxidation in pro-oxidative conditions but not the real lipid 

oxidation. Thus, further work is required to evaluate the effect of these two dietary 

condensed tannin sources on meat lipid oxidative stability in real conditions. 

Additionally, the mechanisms responsible for increase the meat antioxidant capacity by 
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dietary condensed tannins sources is not known. The polymeric nature and high 

molecular weight of condensed tannins should limit their absorption, and the hydrolysis 

of polymeric condensed tannins in rumen, and absorption and deposition of their 

bioactive derivatives might be a possible explanation for higher oxidative stability 

observed in meat of lambs fed condensed tannin sources. Although some studies suggest 

that condensed tannins are hydrolysis in rumen its occurrence is not established. For 

elucidate if the condensed tannins are hydrolyse in rumen more studies are need. The 

occurrence of dietary condensed tannins and/or its derivatives in digesta, faeces, urine, 

plasma and in tissues, as muscle from ruminants fed condensed tannin sources also should 

be explored for elucidate the fate of the of dietary tannins in the organism. Some studies 

suggest that the effect of condensed tannins also might result the interaction between 

condensed tannins with other antioxidants compounds or with antioxidant enzymes 

present in meat. This possible interaction was not evaluated in present work, and further 

work should be conducted for determine the effect of grape seed extract and Cistus 

ladanifer inclusion in diets on activity of antioxidant enzymes and content of antioxidant 

compounds, as vitamin E. 
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