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Abstract

In this thesis several problems are addressed. The problems considered vary

from second order problems up to high order problems where generaliza-

tions to nth order are studied. Such problems range from problems without

functional dependence up to problems where the functional dependence is

featured both in the equation and on the boundary conditions.

Functional boundary conditions include most of the classical conditions

as multipoint cases, conditions with delay and/or advances, nonlocal or in-

tegral, with maximum or minimum arguments,... Existence, nonexistence,

multiplicity and localization results are then discussed in accordance with

these conditions.

The method used is the lower and upper solutions combined with di¤erent

techniques (degree theory, Nagumo condition, iterative technique, Green�s

function) to obtain such results.

Several applications are studied such as the periodic oscillations of the

axis of a satellite and conjugate boundary value problems, to emphasize the

applicability of the method used.

Keywords

Lower and upper solutions, degree theory, bilateral and one-sided Nagumo

conditions, extremal solutions, high order functional boundary value prob-
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lems, periodic problems, Green function, �- Laplacian equation, impulsive

problems.
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Resumo

Resultados de existência, localização e multiplicidade para prob-

lemas não lineares e funcionais de ordem superior com valores

na fronteira

Nesta tese, intitulada em português, �Resultados de existência, localiza-

ção e multiplicidade para problemas não lineares e funcionais de ordem su-

perior com valores na fronteira �, diferentes problemas são abordados. Estes

problemas variam desde problemas de segunda ordem até problemas de or-

dem superior, onde generalizações de ordem n são feitas e onde os problemas

apresentados variam desde o caso em que não existe dependência funcional

até aos em que esta dependência funcional está presente tanto na equação

como nas condições de fronteira.

Sobre estas condições, que incluem a maioria das condições clássicas, re-

sultados de existência, não existência, multiplicidade e localização de solução

são discutidos de acordo com estas condições.

O método utilizado é o método da sub e sobre-solução combinado com

diferentes técnicas.

Várias aplicações são estudadas, nomeadamente as oscilações periódicas

do eixo de um satélite e problemas conjugados, de forma a dar ênfase à

aplicabilidade do método utilizado.

Palavras chave

xi



Sub e sobre-solução, teoria do grau, condição de Nagumo bilateral e uni-

lateral, soluções extremais, problemas funcionais de ordem superior, proble-

mas periódicos, função de Green, equação �- Laplaciano, problemas impul-

sivos.

xii



Notations

kykp � norm of y in Lp and given by

jjyjjp =

8

<

:
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R 1

0
jy(t)jpdt

�1=p

; 1 � p <1;

supfjy(t)j : t 2 Ig; p =1:

Ck (I;R) or Ck (I)� space of real valued functions with continuous

k � derivative in I; k 2 N0;where C
0 (I) = C (I)

jjyjj = max
t2I

jy (t)j

Wm;p (I) :=
n
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wf exist for j�j � m;

with kfkWm;p(I) :=

 

P

j�j�m

kD�
wfk

p
Lp(I)

!1=p

for 1 � p <1 and

for p =1, kfkWm;1(I) := max
j�j�m

kD�
wfkL1(I)

d (f;
; p)� Leray-Schauder topological degree of f relative to 
 at p 2 


dL (f;
; p)� Coincidence degree relatively to L in 
 at p 2 


(for details see [70])

xiii
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u
�
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�
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u (xk) and u
�

x�k
�

= lim
x!x�

k
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Introduction

This monograph is dedicated to higher order boundary value problems. The

�rst part studies su¢cient conditions to obtain existence and multiplicity

results for nonlinear boundary value problems and the second part considers

functional boundary value problems.

The main results of each chapter are original and they were presented in

international events, published in international reviewed journals or submit-

ted for publication.

The �rst chapter is dedicated to the study of higher order periodic prob-

lems. These problems have been studied by several authors, with di¤erent

techniques and tools according the several types of goals and contexts. The

method applied makes use of the lower and upper solutions technique and

it was chosen by the following features: it provides an uni�cation for the

higher order problems, as up to now, these problems were studied, in the

existent literature, in separate for the odd and the even case; it allows more

general nonlinearities and full di¤erential equations, generalizing the range of

possible applications to real life phenomena, as beam theory, epidemiology,

human scoliosis amongst others; it emphasizes some qualitative properties of

the solution, such as sign, variation, type, ..., reason why the high order re-

sults obtained are illustrated with examples, in order to stress some of these

particularities.
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The same method is applied to Ambrosetti-Prodi type equations with

Lidstone boundary conditions, in Chapter 2. The research made allows to

show the role of lower and upper de�nition in the main results, namely in

the type of assumptions to consider on the nonlinearity. These Lidstone

problems are well known in the literature due to their applicability in beam

theory. The ability to combine information about not only the existence and

location results but also with nonexistence results are key points to ensure

the usefulness of this method in applications.

Ambrosetti-Prodi type equations are responsible for leading to a new re-

search trail still open: what are the su¢cient conditions to obtain multiplicity

results for Lidstone boundary conditions?

Multiplicity results analyzed in Chapter 3, via lower and upper solution

method, are obtained for some two point separated boundary value problems.

This study was motivated by a phenomena that occured in the London Mil-

lenium bridge in its openning day, for which it is given a physical meanning

to the parameter s and positive force p (x) : From the research developped in

this matter we stress two points about the multiplicity part of the so called

Ambrosetti-Prodi equations:

� the generalization for higher order problems requires an assumption to

de�ne that the "speed growth" on some variables are greater than in

other ones. This can be done by perturbation (see condition (3.3.11))

or by adequate assymptotic behaviour as in [36].

� the "a priori" upper bound on the second derivatives of every solution

(see condition (3.3.9)) is, in our point of view, the weakness of these

type of problems and moreover it constraints this method�s application

to real problems. How to replace such bound assumptions will require

further research.
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In Chapter 4, fourth order periodic problems with two types of impulsive

e¤ects are studied. The key tool in both cases is an iterative technique, not

necessarily monotone, combined with lower and upper solutions. Remark

that, due to the discontinuities caused by the instantaneous changes at some

moments (impulses) the auxiliary functions used to de�ne lower and upper

solutions in Chapter 1, are not needed now, allowing di¤erent de�nitions,

even for periodic cases.

The study of functional boundary value problems comprises the whole

second part.

In the �fth chapter we start by combining the second order Ambrosetti-

Prodi type equations with some functional boundary conditions. These con-

ditions are extremely general and they include most of the classical cases as

multipoint, conditions with delay and/or advances, nonlocal or integral, with

maximum or minimum arguments... As this �eld of study is still in its early

days, apart from the results presented, several thoughts and open problems

remain, that still crave attention for future research.

Chapter 6 introduces the study of higher order problems with functional

boundary conditions. This study was motivated by the attempt to formulate

a result that would combine the works of several authors and also by the high

potential in applications that this type of conditions can unleash. As such,

an application to a theoretical result (conjugate boundary value problems) is

presented. The problem considered can in fact be covered by the more general

functional boundary conditions. As to that it is tackled as an application of

the results presented in this chapter. In fact for this case, lower and upper

solution method allow not only a sharper estimate then the ones existent in

the literature, but it also unveils results for some unexplored parameters.

In Chapter 7 a more general equation is considered: a generalization of

3



the �� Laplacian equation. Combining this equation with the type of general

boundary data as functional boundary conditions was the guideline for this

chapter. The generalization of these results to higher order led to interesting

conclusions, as for instance, the need to de�ne di¤erent lower and upper

solutions, depending on n odd or n even.

Chapter 8 introduces new functional boundary value problems. These

problems are characterized by the fact that both the equation and the bound-

ary conditions have functional dependence. As such, integro-di¤erential

equations, eventually with delay and/or advances, nonlocal maximum or min-

imum arguments can now be considered. Generalizing these results to higher

order is one of the key aspects of this chapter. The other one is emphasizing

the applicability and adaptability of such problems and methods. For that,

one considers two applications: a theoretical one - the Lidstone problem -

and an application to satellites. In this last case a problem that models the

periodic oscillations of the axis of a satellite in the plane of the elliptic orbit

around its centre of mass, is approached using lower and upper solutions. By

this technique the solutions obtained for certain value of the parameters are

di¤erent from the ones existent in the literature.

Through the combination of a di¤erent technique that included Green

functions and a sharper version of Bolzano Theorem one was able to obtain

extremal solutions to a fourth order problem with functional boundary con-

ditions, in Chapter 9. By extremal solutions, we mean the existence of a

maximal solution and a minimal solution. As in the previous chapters, the

high potential of this tool not only to provide information and to be used in

applications, but also to deal with so general boundary conditions. In fact,

to the best of our knowledge is the �rst time where su¢cient conditions for

the existence of extremal solutions are given, to fourth order problems with

4



functional dependence in every boundary function.

As �nal remark we mention that with this thesis we expect to illustrate

that, through lower and upper solution method, one can study higher order

problems as general as in the functional case and, moreover that, through this

method, not only information about the existence of solution is obtained, but

also location information on its derivatives, which can in fact be of extreme

use in some applications and add value to this method.

5
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Part I

Nonlinear boundary value

problems: Existence and

multiplicity results
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Chapter 1

High order periodic problems

1.1 Introduction

High order periodic boundary value problems have been studied by several

authors in the last decades. This type of problems arises several questions

when approached and its usage has become widely spread due to its applica-

bility, namely in beam theory, epidemiology and human scoliosis, amongst

others.

In this chapter we consider the higher order periodic boundary value

problem composed by the fully di¤erential equation

u(n) (x) = f
�
x; u (x) ; u0 (x) ; :::; u(n�1) (x)

�
(1.1.1)

for n � 3, x 2 I := [a; b]; and f : I �Rn ! R a continuous function and the

periodic boundary conditions

u(i) (a) = u(i) (b) ; i = 0; 1; :::; n� 1: (1.1.2)

For �rst and second order these periodic problems are already well docu-

mented in the literature. In the study of periodic problems several di¤erent

types of arguments and techniques were considered:

9



10 Chapter 1. High order periodic problems

In [46, 47, 92] variational methods and the mountain pass theorem are

used to derive homoclinic and periodic solutions for second and sixth-order

ordinary di¤erential equations;

Mawhin�s continuation theorem and inequality techniques are used in [85]

to approach third order periodic problems and in [4, 28], authors use the same

method to approach a fourth order problem;

Monotone methods, such as the lower and upper solutions method, were

considered in [93] to obtain extremal solutions to the second order periodic

problem. These same methods were also considered in [82], to obtain exis-

tence results for the third order problem;

Fourth order periodic problems, approached via the lower and upper so-

lution method, can be observed in [1, 97]. In this line, equation (1.1.1)

generalizes these results to a higher order problem. Also remark that not

only (1.1.1) is a fully di¤erential equation but also f is a non-linear function,

which generalizes [34, 59, 79] where a linear or quasi-linear nth order periodic

problem is discussed.

A nonlinear fully di¤erential equation of higher order as in (1.1.1) was

studied in [56], for f a bounded and periodic function verifying di¤erent

assumptions for n even or odd. Moreover, in [61], the nonlinear part f of

(1.1.1) must verify the following assumptions:

(A1) There are continuous functions e(x) and gi(x; y); i = 0; :::; n� 1; such

that

jf (x; y0; :::; yn�1)j � e(x) +

n�1X
i=0

gi(x; yi)

with

lim
jyj!1

sup
x2[0;1]

jgi(x; y)j
jyj = ri � 0; i = 0; 1; :::; n� 1:
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(A2) There is a constant M such that, for x 2 [0; 1];

f (x; y0; 0; :::; 0) > 0; for y0 > M;

and

f (x; y0; 0; :::; 0) < 0; for y0 < �M:

(A3) There are real numbers L � 0; � > 0 and ai � 0; i = 1; :::; n� 1; such

that

jf (x; y0; :::; yn�1)j � � jy0j �
n�1X
i=1

ai jyij � L;

for every x 2 [0; 1] and (y0; :::; yn�1) 2 Rn:

The arguments used in this chapter allow more general nonlinearities,

namely, f does not need a sublinear growth in y0; :::; yn�1 (as in (A1)) nor

to change sign (as in (A2)). In fact, condition (1.3.2) in the main result (see

Theorem 1.3.1) refers an, eventually, opposite monotony to (A2) and improve

the existent results in the literature for periodic higher order boundary value

problems.

In short, the technique used is based on lower and upper solutions not

necessarily ordered, in the topological degree theory, like it was suggested in

[29, 43], and has the following key points:

� A Nagumo-type condition on the nonlinearity, useful to obtain an a

priori estimation for the (n� 1)th, derivative and to de�ne an open

and bounded set where the topological degree is well de�ned.

� A new kind of de�nition for lower and upper solutions, required to deal

with the absence of a de�nite order for lower and upper functions and

their derivatives up to the (n� 3)th order. We remark that with such

functions it is only required boundary data for the derivatives of order
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n�2 and n�1: Therefore the set of admissible functions for lower and

upper solutions is more general.

� An adequate auxiliary and perturbed problem, where the truncations

and the homotopy are extended to some mixed boundary conditions,

allowing a invertible linear operator and the evaluation of the Leray-

Schauder degree.

This chapter contains an example where both existence and location of

solution are shown as well as some emphasis is put on the fact that the lower

and upper solutions are not well ordered.

Even though some new results are presented in this chapter there are still

some open problems to be addressed in future investigations, for instance:

� relaxing the continuity condition on the f function

� introducing some functional dependence on the f function

� relaxing or removing condition (1.3.2) in Theorem 1.3.1

1.2 De�nitions and a priori bounds

In this section it is introduced a Nagumo-type growth condition, initially

presented in [80], and now useful to obtain an a priori estimate for the

(n� 1)th derivative:

De�nition 1.2.1 A continuous function f : I �Rn ! R is said to satisfy a

Nagumo type condition in

E =

8<: (x; y0; :::; yn�1) 2 I � Rn : i (x) � yi � �i (x) ;

i = 0; :::; n� 2

9=; ; (1.2.1)
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with i (x) and �i (x) continuous functions such that,

i (x) � �i (x) ; for i = 0; 1; :::; n� 2 and every x 2 I; (1.2.2)

if there exists a real continuous function hE : [0;+1[! ]0;+1[ such that

jf (x; y0; :::; yn�1)j � hE (jyn�1j) ; for every (x; y0; :::; yn�1) 2 E; (1.2.3)

with Z +1

0

s

hE (s)
ds = +1: (1.2.4)

The a priori bound is given by next lemma:

Lemma 1.2.2 Consider i; �i 2 C (I;R) ; for i = 0; :::; n � 2; such that

(1.2.2) holds and E is de�ned by (1.2.1). Assume there is hE 2 C
�
R+0 ;R+

�
;

such that Z +1

�

s

hE (s)
ds > max

x2I
�n�2 (x)�min

x2I
n�2 (x) ; (1.2.5)

where � � 0 is given by

� := max

�
�n�2 (b)� n�2 (a)

b� a
;
�n�2 (a)� n�2 (b)

b� a

�
:

Then there exists R > 0 (depending on n�2;�n�2 and hE) such that for

every continuous function f : E ! R verifying (1.2.3) and for every u (x)

solution of (1.1.1) such that

i (x) � u(i) (x) � �i (x) ; i = 0; 1; :::; n� 2 (1.2.6)

for every x 2 I; we have u(n�1)1 < R:

Proof. Let u be a solution of (1.1.1) and such that (1.2.6) is veri�ed.

If for every solution u of (1.1.1), verifying (1.2.6), there is � � 0 such that��u(n�1) (x)�� � �;
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for every x 2 [a; b], then considering � := R will conclude the proof.

Assume by contradiction that
��u(n�1) (x)�� > �; for every x 2 [a; b] : If

u(n�1) (x) > �, for every x 2 [a; b], then the following contradiction is ob-

tained

�n�2 (b)� n�2 (a) � u(n�2) (b)� u(n�2) (a)

=

Z b

a

u(n�1) (�) d�

>

Z b

a

�d� = � (b� a)

� �n�2 (b)� n�2 (a) :

The case u(n�1) (x) < �; for every x 2 [a; b] ; leads to a similar contradic-

tion. So there is x 2 [a; b] such that

��u(n�1) (x)�� � �:

Suppose that there is x1 2 [a; b] such that u(n�1) (x1) > � and consider

J := [x0; x1] or [x1; x0] such that

u(n�1) (x0) = � and u(n�1) (x) > �;

for every x 2 Jn fx0g : Since � � 0; then u(n�1) (x) � 0 ; for every x 2 J:

For J = [x0; x1] (if J = [x1; x0] the arguments are similar), applying a

convenient change of variable, by (1.1.1), (1.2.5) and (1.2.3), we haveZ u(n�1)(x1)

u(n�1)(x0)

s

hE (s)
ds =

Z x1

x0

u(n�1) (x)

hE (u(n�1) (x))
u(n) (x) dx

=

Z x1

x0

f
�
x; u (x) ; u0 (x) ; :::; u(n�1) (x)

�
hE (u(n�1) (x))

u(n�1) (x) dx

�
Z x1

x0

u(n�1) (x) dx = u(n�2) (x1)� u(n�2) (x0)

� max
x2[a;b]

�n�2 (x)� min
x2[a;b]

n�2 (x) <

Z R

�

s

hE (s)
ds:
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Figure 1.2.1: Example of non-ordered upper and lower solutions

Then u(n�1) (x1) � R: Since x1 was taken arbitrarily in [a; b] as long

as u(n�1) (x) > �; we can conclude that, for every x 2 [a; b] ; such that

u(n�1) (x) > �;

u(n�1) (x) � R:

In a similar way it can be proved that u(n�1) (x) � �R; for every x 2 [a; b] ;

such that u(n�1) (x) < ��: Therefore,

��u(n�1) (x)�� � �; 8x 2 [a; b] :

In this Chapter it is used non-ordered lower and upper solutions, � and

�, respectively. That is there exist x1; x2 2 [a; b] such that � (x1) > � (x1)

and � (x2) < � (x2) : Therefore the set of admissible functions that can be

considered as lower and upper solutions for the problem (1.1.1)-(1.1.2) is

generalized. To recover some order needed to de�ne the branches where
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the solution and its derivatives are localized, one must consider adequate

auxiliary functions, as it can be seen in the next de�nition.

De�nition 1.2.3 For n � 3; the function � 2 Cn (I) is a lower solution of

problem (1.1.1)-(1.1.2) if:

(i) �(n) (x) � f
�
x; �0 (x) ; �1 (x) ; :::; �n�3 (x) ; �

(n�2) (x) ; �(n�1) (x)
�

with

�i (x) := �(i) (x)�
n�3X
j=i

�(j)1 (x� a)j�i ; i = 0; :::; n� 3: (1.2.7)

(ii) �(n�1) (a) � �(n�1) (b) ; �(n�2) (a) = �(n�2) (b) :

The function � 2 Cn (I) is an upper solution of problem (1.1.1)-(1.1.2)

if:

(iii) �(n) (x) � f
�
x; �0 (x) ; �1 (x) ; :::; �n�3 (x) ; �

(n�2) (x) ; �(n�1) (x)
�

where

�i (x) := �(i) (x) +
n�3X
j=i

�(j)
1
(x� a)j�i ; i = 0; :::; n� 3: (1.2.8)

(iv) �(n�1) (a) � �(n�1) (b) ; �(n�2) (a) = �(n�2) (b) :

Remark that the functions �; � are not necessarily ordered, but the aux-

iliary functions �i and �i are well ordered for i = 0; :::; n� 3.

Moreover, there is no need of data on the values of the lower solution � or

the upper solution � and their derivatives until order (n�3) in the boundary.

In fact, this is a key point to have more general sets of admissible functions

as lower or upper solutions of problem (1.1.1)-(1.1.2).
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1.3 Existence of periodic solutions

The main theorem provides an existence and location result for problem

(1.1.1)-(1.1.2) in presence of lower and upper solutions, not necessarily or-

dered.

Theorem 1.3.1 Assume that �; � 2 Cn (I) are lower and upper solutions

of (1.1.1)-(1.1.2) such that

�(n�2) (x) � �(n�2) (x) ; 8x 2 I: (1.3.1)

Let f : I � Rn ! R be a continuous function verifying a Nagumo-type con-

dition in

E� =

8<: (x; y0; :::; yn�1) 2 I � Rn : �i � yi � �i; i = 0; 1; :::; n� 3;

�(n�2) � yn�2 � �(n�2)

9=;
and

f (x; �0; :::; �n�3; yn�2; yn�1) � f (x; y0; :::; yn�3; yn�2; yn�1) (1.3.2)

� f
�
x; �0; :::; �n�3; yn�2; yn�1

�
for �xed (x; yn�2; yn�1) 2 I � R2 and �i � yi � �i; i = 0; 1; :::; n� 3:

Then problem (1.1.1)-(1.1.2) has at least a periodic solution Cn (I) such

that

�i (x) � u(i) (x) � �i (x) ; i = 0; 1; :::; n� 3;

and

�(n�2) (x) � u(n�2) (x) � �(n�2) (x) ;

for x 2 I:
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Proof. Consider the homotopic and truncated auxiliary equation

u(n) (x) = �f

0@ x; �0 (x; u (x)) ; :::; �n�2
�
x; u(n�2) (x)

�
;

u(n�1) (x)

1A (1.3.3)

+u(n�2) (x)� ��n�2
�
x; u(n�2) (x)

�
where the continuous functions �i; �n�2 : R2 ! R; i = 0; :::; n � 3; are given

by

�i (x; yi) =

8>>><>>>:
�i (x) ; yi > �i (x)

yi ; �i (x) � yi � �i (x)

�i (x) ; yi < �i (x)

with �i and �i de�ned in (1.2.7) and (1.2.8), respectively,

�n�2 (x; yn�2) =

8>>><>>>:
�(n�2) (x) ; yn�2 > �(n�2) (x)

yn�2 ; �(n�2) (x) � yn�2 � �(n�2) (x)

�(n�2) (x) ; yn�2 < �(n�2) (x)

coupled with the boundary conditions

u(k) (a) = � �k
�
u(k) (b)

�
; k = 0; :::; n� 3

u(n�2) (a) = u(n�2) (b)

u(n�1) (a) = u(n�1) (b)

(1.3.4)

where the functions �k : R! R; k = 0; :::; n� 3; are de�ned by

�k
�
u(k) (b)

�
=

8>>><>>>:
�k (a) ; u(k) (b) > �k (a)

u(k) (b) ; �k (a) � u(k) (b) � �k (a)

�k (a) ; u(k) (b) < �k (a) :

(1.3.5)

Take rn�2 > 0 such that, for every x 2 I

�rn�2 < �(n�2) (x) � �(n�2) (x) < rn�2; (1.3.6)

f
�
x; �0 (x) ; :::; �n�3 (x) ; �

(n�2) (x) ; 0
�
� �(n�2) (x)� rn�2 < 0; (1.3.7)
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f
�
x; �0 (x) ; :::; �n�3 (x) ; �

(n�2) (x) ; 0
�
� �(n�2) (x) + rn�2 > 0: (1.3.8)

Step 1: Every solution of the problem (1.3.3)-(1.3.4) satis�es in I

��u(i) (x)�� < ri; i = 0; :::; n� 2;

independently of � 2 [0; 1], with rn�2 given as above and for k = 0; :::; n� 3;

rk = �k + rn�2 (b� a)n�2�k ; (1.3.9)

where

�k := max

(
n�3X
j=k

�j (a) (b� a)j�k ; �
n�3X
j=k

�j (a) (b� a)j�k
)
: (1.3.10)

Let u be a solution of (1.3.3)-(1.3.4).

Assume, by contradiction, that there exists x 2 I such that
��u(n�2) (x)�� �

rn�2: Consider the case u(n�2) (x) � rn�2 and de�ne

max
x2I

u(n�2) (x) := u(n�2) (x0) (� rn�2 > 0) :

If x0 2 ]a; b[ ; then u(n�1) (x0) = 0 and u(n) (x0) � 0: By (1.3.2),(1.3.6)

and (1.3.8), for � 2 [0; 1] the following contradiction holds

0 � u(n) (x0)

= �f
�
x0; �0 (x0; u (x0)) ; :::; �n�2

�
x0; u

(n�2) (x0)
�
; u(n�1) (x0)

�
+ u(n�2) (x0)� ��n�2

�
x0; u

(n�2) (x0)
�

� �
h
f
�
x0; �0 (x0) ; :::; �

(n�2) (x0) ; 0
�
� �(n�2) (x0) + rn�2

i
+ u(n�2) (x0)� rn�2

> 0

If x0 = a then

max
x2I

u(n�2) (x) := u(n�2) (a) :
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By (1.3.4),

0 � u(n�1) (a) = u(n�1) (b) � 0;

therefore u(n�1) (a) = 0 and u(n) (a) � 0: Applying the same technique as

above, replacing x0 by a, a similar contradiction is achieved.

The case x0 = b is analogous and so u(n�2) (x) < rn�2; for every x 2 I:

As the inequality u(n�2) (x) > �rn�2; for every x 2 I; can be proved by the

same arguments, then ��u(n�2) (x)�� < rn�2; 8x 2 I:

By integration in [a; x], (1.3.4) and (1.3.5),

u(n�3) (x) < u(n�3) (a) + rn�2 (x� a)

= ��n�3
�
u(n�3) (b)

�
+ rn�2 (x� a)

� ��n�3 (a) + rn�2 (b� a)

� �(n�3) (a) + rn�2 (b� a) :

and

u(n�3) (x) > u(n�3) (a)� rn�2 (x� a)

� ��n�3 (a)� rn�2 (b� a)

� �(n�3) (a)� rn�2 (b� a) :

Applying similar arguments it can be proved that, for k = 0; :::; n� 3;
n�3X
j=k

�j (a) (b� a)j�k � rn�2 (b� a)n�2�k

� u(i) (x) �
n�3X
j=k

�j (a) (b� a)j�k + rn�2 (b� a)n�2�k :

De�ning

�k := max

(
n�3X
j=k

�j (a) (b� a)j�k ; �
n�3X
j=k

�j (a) (b� a)j�k
)
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and

rk = �k + rn�2 (b� a)n�2�k ;

than ��u(i) (x)�� < ri; i = 0; :::; n� 2:

with rk given by (1.3.9), for k = 0; :::; n� 3:

Step 2: There exists R > 0 such that every solution u of problem (1.3.3)-

(1.3.4) satis�es ��u(n�1) (x)�� < R; 8x 2 I;

independently of � 2 [0; 1] :

For ri, i = 0; :::; n� 2, given in the previous step, consider the set

E1 = f(x; y0; :::; yn�1) 2 I � Rn : �ri � yi � ri; i = 0; 1; :::; n� 2g

and the function F� : E1 ! R given by

F� (x; y0; :::; yn�1) = �f (x; �0 (x; y0) ; :::; �n�2 (x; yn�2) ; yn�1)(1.3.11)

+yn�2 � ��n�2 (x; yn�2) :

Considering �i := �ri and �i := ri, then f satis�es a Nagumo-type condi-

tion in E1; consider the function hE1 2 C
�
R+0 ; [k;+1[

�
for some k > 0; such

that (1.2.3) and (1.2.4) hold by E replaced by E1. Thus, for (x; y0; :::; yn�1) 2

E1; we have, by (1.3.3) and (1.3.6),

F� (x; y0; :::; yn�1) � hE1 (jyn�1j) + 2 rn�2:

For this function F� de�ne hE1 (w) := hE� (jwj) + 2 rn�2; therefore

+1Z
0

s

hE1 (s)
ds =

+1Z
0

s

hE� (jsj) + 2 rn�2
ds � 1

1 + 2 rn�2
k

+1Z
0

s

hE� (jsj)
ds;
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and so hE1 (w) veri�es (1.2.4), that is, F� satis�es the Nagumo condition in

E1 with hE� (w) replaced by hE1 (w) ; independently of �:

De�ning

i (x) := �ri; �i (x) := ri; i = 0; :::; n� 2

the assumptions of Lemma 1.2.2 are satis�ed with E replaced with E1: So

there exists R > 0, depending only on ri; i = 0; :::; n� 2, and '; such that��u(n�1) (x)�� < R; 8x 2 I:

Step 3: For � = 1 the problem (1.3.3)-(1.3.4) has a solution u1 (x) :

Consider the operators

L : Cn (I)� Rn � Cn�1 (I)! C (I)� Rn

and, for � 2 [0; 1] ;

N� : C
n�1 (I)! C (I)� Rn

where

Lu =
�
u(n) � u(n�2); u (a) ; :::; u(n�1) (a)

�
and

N�u =

0BBB@
�f
�
x; �0 (x; u (x)) ; :::; �n�2

�
x; u(n�2) (x)

�
; u(n�1) (x)

�
+u(n�2) (x)� ��n�2

�
x; u(n�2) (x)

�
;

��0 (u (b)) ; :::; ��n�3
�
u(n�3) (b)

�
; u(n�2) (b) ; u(n�1) (b)

1CCCA :

As L has a compact inverse it can be considered the completely continuous

operator

T� :
�
Cn�1 (I) ;R

�
!
�
Cn�1 (I) ;R

�
de�ned by

T� (u) = L�1N� (u) :
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For R given by Step 2, consider the set


 =
�
y 2 Cn�1 (I) :

y(i)1 < ri; i = 0; :::; n� 2;
y(n�1)1 < R

	
:

By Steps 1 and 2, for every u solution of (1.3.3)-(1.3.4), u =2 @
 and so the

degree d (I � T�;
; 0) is well de�ned for every � 2 [0; 1] : By the invariance

under homotopy

�1 = d (I � T0;
; 0) = d (I � T1;
; 0) :

Thus the equation T1 (x) = x, equivalent to the problem given by the

equation

u(n) (x) = f
�
x; �0 (x; u (x)) ; :::; �n�2

�
x; u(n�2) (x)

�
; u(n�1) (x)

�
+ u(n�2) (x)

��n�2
�
x; u(n�2) (x)

�
;

coupled with the boundary conditions

u(k) (a) = �k
�
u(k) (b)

�
; k = 0; 1:::; n� 3;

u(n�2) (a) = u(n�2) (b)

u(n�1) (a) = u(n�1) (b) ;

has at least a solution u1 (x) in 
:

Step 4: u1 (x) is a solution of (1.1.1)-(1.1.2).

This solution u1 (x) is a solution of (1.1.1)-(1.1.2) if it veri�es

�(n�2) (x) � u
(n�2)
1 (x) � �(n�2) (x) ; (1.3.12)

�i (x) � u
(i)
1 (x) � �i (x) ; i = 0; 1:::; n� 3;8x 2 I:

Suppose, by contradiction, that there is x 2 I such that

�(n�2) (x) > u
(n�2)
1 (x)
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and de�ne

min
x2I

h
u
(n�2)
1 (x)� �(n�2) (x)

i
:= u

(n�2)
1 (x1)� �(n�2) (x1) < 0:

If x1 2 ]a; b[, then u(n�1)1 (x1)��(n�1) (x1) = 0 and u(n)1 (x1)��(n) (x1) � 0:

Therefore, by (1.3.2) and De�nition 1.2.3, we obtain the following contradic-

tion

0 � u
(n)
1 (x1)� �(n) (x1) (1.3.13)

� f
�
x1; �0 (x1; u1 (x1)) ; :::; �n�3

�
x1; u

(n�3)
1 (x1)

�
; �(n�2) (x1) ; �

(n�1) (x1)
�

+u(n�2) (x1)� �(n�2) (x1)

�f
�
x1; �0 (x1) ; :::; �n�3 (x1) ; �

(n�2) (x1) ; �
(n�1) (x1)

�
� u(n�2) (x1)� �(n�2) (x1) < 0:

If x1 = a then

min
x2I

h
u
(n�2)
1 (x)� �(n�2) (x)

i
:= u

(n�2)
1 (a)� �(n�2) (a) < 0:

By De�nition 1.2.3

0 � u
(n�1)
1 (a)� �(n�1) (a) � u

(n�1)
1 (b)� �(n�1) (b) � 0

and, therefore,

u
(n�1)
1 (a) = �(n�1) (a) ; u

(n)
1 (a) � �(n) (a) :

The case where x1 = b the proof is identical and so

�(n�2) (x) � u
(n�2)
1 (x) ; 8x 2 I:

Applying the same arguments, one can verify that u(n�2)1 (x) � �(n�2) (x) ;

for every x 2 I; and (1.3.12) holds.
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Integrating (1.3.12) in [a; x] ; by (1.3.5) and (1.2.7)

u
(n�3)
1 (x) � u

(n�3)
1 (a) + �(n�3) (x)� �(n�3) (a)

� �n�3 (a) + �(n�3) (x)� �(n�3) (a)

= �(n�3) (x) � �(n�3) (x)�
�(n�3)1 = �n�3 (x) :

Analogously, by (1.3.5) and (1.2.8),

u
(n�3)
1 (x) � u

(n�3)
1 (a) + �(n�3) (x)� �(n�3) (a)

� �n�3 (a) + �(n�3) (x)� �(n�3) (a)

= �(n�3) (x) � �(n�3) (x) +
�(n�3)

1
= �n�3 (x) ;

and, therefore,

�n�3 (x) � u
(n�3)
1 (x) � �n�3 (x) ; 8x 2 I:

By integration and using the same technique it can be proved that

�i (x) � u
(i)
1 (x) � �i (x) ;

for i = 0; 1; :::; n� 3 and x 2 I:

1.4 Examples

In the literature nth order periodic boundary value problems with fully dif-

ferential equations are often considered only for n even or n odd, like it can

be seen in [56]. So, we introduce two examples, including the odd and even

cases.

Example 1.4.1 Consider the �fth order fully di¤erential equation

u(v) (x) = � arctan (u (x))� (u
0 (x))

7

3

� (u
00 (x))5

8
+
(u000 (x))

12

6

(1.4.1)

+
�
u(iv) (x) + 12

� 2
3 � 500;
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for x 2 [0; 1] ; with the boundary conditions

u(i) (0) = u(i) (1) ; i = 0; 1; 2; 3; 4: (1.4.2)

The functions �; � : [0; 1]! R given by

� (x) = �x
5

5
+
x4

2
+
x3

6
+
5

2
x2 + x+ 1;

� (x) =
x5

5
� x4

2
+ 6x3 + 12x� 1

are non-ordered lower and upper solutions, respectively, of problem (1.4.1)-

(1.4.2) verifying (1.3.1) for n = 5; with the following auxiliary functions

�0 (x) = �
x5

5
+
x4

2
+
x3

6
� 11
2
x2 � 13

2
x� 119

30
;

�1 (x) = �x4 + 2x3 +
x2

2
� 3x� 13

2
;

�2 (x) = �4x3 + 6x2 + x� 3;

and

�0 (x) =
x5

5
� x4

2
+ 6x3 + 34x2 + 41x+

157

10
;

�1 (x) = x4 � 2x3 + 18x2 + 34x+ 41;

�2 (x) = 4x
3 � 6x2 + 36x+ 34:

Figures 1.4.1 and 1.4.2 illustrate lower and upper solutions and the aux-

iliary functions.

The function

f (x; y0; y1; y2; y3; y4) = � arctan y0�
(y1)

3

7
� (y2)

5

8
+
(y3)

6

12
+(y4 + 12)

2
3 �500

is continuous, veri�es conditions (1.2.3) and (1.2.4) in

E =

8<: (x; y0; y1; y2; y3; y4) 2 I � R5 : �i � yi � �i; i = 0; 1; 2;

�000 � y3 � �000

9=; ;
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Figure 1.4.1: Functions � (x) and � (x) are non-ordered.

Figure 1.4.2: Functions �0 (x) and �0 (x) are well ordered.
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with

hE (jy4j) = 4:6� 107 +
�

2
+ (y4 + 12)

2
3

and it satis�es (1.3.2).

By Theorem 1.3.1 there is a non trivial periodic solution u (x) of problem

(1.4.1)-(1.4.2), such that

�i (x) � u(i) (x) � �i (x) ; for i = 0; 1; 2;

�12x2 + 12x+ 1 � u000 (x) � 12x2 � 12x+ 36; for x 2 [0; 1] :

Remark that this solution is a non trivial periodic one because a constant

function cannot be a solution of (1.4.1). Moreover, despite � and � are

non-ordered, as shown in Figure 1.4.1, the solution u (x) for the problem

(1.1.1)-(1.1.2) exists within the area delimited by the well ordered functions,

�0 and �0:

Example 1.4.2 For x 2 [0; 1] consider the sixth order di¤erential equation

u(vi) (x) = � (u (x))3 � arctan (u0 (x))� (u00 (x))3 (1.4.3)

� exp (u000 (x)) + 50
�
u(iv) (x)

�5
+
��u(v) (x) + 1��� + 2;

with 0 < � � 2, along with the boundary conditions

u(i) (0) = u(i) (1) ; i = 0; 1; :::; 5: (1.4.4)

The functions �; � : R! R given by

� (x) = �x4

4
+ 1

� (x) = x4

4
� 1

are lower and upper solutions, respectively, of problem (1.4.3)-(1.4.4) verify-
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ing (1.3.1) for n = 6 with the auxiliary functions given by De�nition 1.2.3

�0 (x) = �x4

4
� 6x3 � 3x2 � x;

�1 (x) = �x3 � 6x2 � 3x� 1;

�2 (x) = �3x2 � 6x� 3;

�3 (x) = �6x� 6

and
�0 (x) =

x4

4
+ 6x3 + 3x2 + x;

�1 (x) = x3 + 6x2 + 3x+ 1;

�2 (x) = 3x
2 + 6x+ 3;

�3 (x) = 6x+ 6:

The function

f (x; y0; y1; y2; y3; y4; y5) = �y30 � arctan (y1)� (y2)
3 � exp(y3) + 50 (y4)5

+ jy5 + 1j� + 2

is continuous, veri�es conditions (1.2.3) and (1.2.4) in

E =

8<: (x; y0; y1; y2; y3; y4; y5) 2 [a; b]� R5 : �i � yi � �i; i = 0; 1; 2; 3;

�(iv) � y4 � �(iv)

9=; ;

with

hE (jy5j) = 41 +
�

2
+ e2 + jy5 + 1j�

and satis�es (1.3.2).

By Theorem 1.3.1 there is a solution u (x) of problem (1.4.3)-(1.4.4), such

that
�x4

4
� 6x3 � 3x2 � x � u (x) � x4

4
+ 6x3 + 3x2 + x

�x3 � 6x2 � 3x� 1 � u0 (x) � x3 + 6x2 + 3x+ 1

�3x2 � 6x� 3 � u00 (x) � 3x2 + 6x+ 3

�6x� 6 � u000 (x) � 6x+ 6

�6 � u(iv) (x) � 6
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As seen in the previous example, the functions �i; �i for i = 0; 1; 2; 3

are well ordered despite the functions � (x) and � (x) are not ordered, for

x 2 [0; 1] :

Moreover this solution is non trivial because the unique constant function

solution of (1.4.3), u = 3
p
3; is not in the set [�0; �0] :



Chapter 2

New trends on Lidstone

problems

2.1 Introduction

Fourth order di¤erential equations are often said as beam equations due to

their relevance in beam theory, namely in the study of the bending of an

elastic beam. In this chapter it is considered the nonlinear fully equation

u(iv) (x) + f (x; u (x) ; u0 (x) ; u00 (x) ; u000 (x)) = sp (x) (2.1.1)

for x 2 [0; 1] ; where f : [0; 1] � R4 ! R and p : [0; 1] ! R+ are continuous

functions and s a real parameter. Problems involving these types of equa-

tions are known as Ambrosetti-Prodi problems, as they were introduced in

[2]. In fact they provide the discussion of existence, nonexistence and mul-

tiplicity results on the parameter s: More precisely, su¢ cient conditions, for

the existence of s0 and s1, are obtained, such that:

� if s < s0; the problem has no solution.

� if s = s0; the problem has a solution.

31
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� if s 2 ]s0; s1] ; the problem has at least two solutions.

As boundary conditions it is considered

u(0) = u(1) = u00(0) = u00(1) = 0; (2.1.2)

known as Lidstone boundary conditions. They appear in several physic and

engineering situations such as simply supported beams, ([48, 49]), and sus-

pension bridges, ([24, 57]). Di¤erent boundary conditions, meaning di¤erent

types of support at the endpoints, are considered in the literature. As exam-

ple one can refer [48, 69, 78, 90].

Related problems have been studied by many authors, either from a vari-

ational approach, ([45, 50]), or with topological techniques, ([5, 10, 66, 88]),

or both [21]. Recently, some papers applied the lower and upper solutions

method to more general boundary conditions such as nonlinear, ([14, 25, 33,

78]), and functional cases, ([15, 19, 27]), some of them including the Lidstone

case.

The bilateral Nagumo condition, used in some of the above papers, plays

an important role to control the growth of the third derivative. In this

work it is applied a more general Nagumo-type assumption: an unilateral

condition. From this point of view, the results existing in the literature for

problem (2.1.1)-(2.1.2), ([76, 77]), are improved, because the nonlinearity can

be unbounded from above or from below, following arguments suggested by

[42, 43].

It is pointed out that, for Lidstone problems, where there is no infor-

mation about the third derivative on the boundary, the replacement of the

bilateral condition by an unilateral one is not trivial. It requires a new a

priori lemma and a new auxiliary problem in the proof of the main result.
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In this Chapter a re�exive section about the role of lower and upper

solution in the main results is included. In this section it is discussed how

conditions in the lower and upper solutions de�nition in�uence the main

Theorem and vice-versa. This "power shift" between the De�nition and

Theorem makes it possible to present some new results. Perpetuating this

line of thought it will be then possible to extend some results to a functional

version of (2.1.1)-(2.1.2). This functional version, and subsequent results,

will later be presented in Chapter 8 as an application.

As in the previous Chapter there are still several open problems in respect

of (2.1.1)-(2.1.2), namely the relaxation of the continuity condition on f ,

on condition (2.4.3) in Theorem 2.4.2 and generalization of these results to

a nth order problem. Moreover the discussion for the multiplicity part on

Ambrosetti-Prodi is still open for the Lidstone problem.

2.2 De�nitions and auxiliary results

In this section some auxiliar results and de�nitions, essential to the proof of

the main result, are presented.

In Chapter 1 a generalization of a Nagumo-type condition was presented.

Now it is considered an one-sided Nagumo-type condition, meaning that the

function f is only limited either from above (illustrated by condition (2.2.1))

or from below (see 2.2.2). Therefore two di¤erent Lemmas can be obtained,

depending on the condition assumed on the nonlinearity f .

The one-sided Nagumo-type condition to be used and the consequent a

priori estimation are precise as it follows:

De�nition 2.2.1 Given a subset E � [0; 1] � R4, a continuos function f :

E ! R is said to satisfy the one-sided Nagumo-type condition in E if there
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exists a real continuous function hE : R+0 ! [k;+1[, for some k > 0, such

that

f (x; y0; y1; y2; y3) � hE (jy3j) ; 8 (x; y0; y1; y2; y3) 2 E (2.2.1)

or

f (x; y0; y1; y2; y3) � �hE (jy3j) ; 8 (x; y0; y1; y2; y3) 2 E; (2.2.2)

with Z +1

0

t

hE (t)
dt = +1: (2.2.3)

Lemma 2.2.2 Let f : [0; 1] � R4 ! R be a continuous function, verifying

Nagumo-type conditions (2.2.1) and (2.2.3) in

E =
�
(x; y0; y1; y2; y3) 2 [0; 1]� R4 : i (x) � yi � �i (x) ; i = 0; 1; 2

	
(2.2.4)

where i (x) and �i (x) are continuous functions such that, for i = 0; 1; 2;

i (x) � �i (x) ; for every x 2 [0; 1] :

Then for every � > 0 there is R > 0 such that every solution u (x) of

equation (2.1.1) verifying

u000(0) � �� , u000(1) � � (2.2.5)

and

i (x) � u(i) (x) � �i (x) ; 8x 2 [0; 1] ; (2.2.6)

for i = 0; 1; 2; satis�es

ku000k1 < R:

Proof. Consider u a solution of the equation (2.1.1) that satis�es (2.2.5)

and (2.2.6) and de�ne the non-negative real number

r := max f�2(1)� 2(0);�2(0)� 2(1)g :



2.2. De�nitions and auxiliary results 35

Suppose � > 0 large enough such that for every u solution of (2.1.1) we

have ju000(x)j � �; for every x 2 [0; 1] ; and � � r: If � = R then the proof is

complete.

Consider now that there is u solution of (2.1.1) and x0 2 [0; 1] such that

ju000(x0)j > �: If ju000(x)j > �; for every x 2 [0; 1] then, for u000(x) > �, it is

obtained the following contradiction

�2(1)� 2(0) � u00(1)� u00(0) =

Z 1

0

u000(�) d�

>

Z 1

0

� d� �
Z 1

0

r d� � �2(1)� 2(0):

The case u000(x) � ��; for every x 2 [0; 1] ; follows similar arguments. So

there is x 2 [0; 1] such that ju000(x)j � �:

As the integrals

Z +1

0

t

hE (t)
dt and

Z +1

0

�

hE(�) + jsj kpk
d�

are of the same type, as long as s belongs to a bounded set, by (2.2.3), take

R1 > � such that

Z R1

�

�

hE(�) + jsj kpk
d� > max

x2[0;1]
�2(x)� min

x2[0;1]
2(x): (2.2.7)

Consider x1 2 [0; 1[ such that u000(x1) < �� or x1 2 ]0; 1] such that

u000(x1) > �: In the �rst case let x̂1 be such that 0 � x̂1 < x1 and, for every

x 2 [x̂1; x1[ ;

u000(x̂1) = �� and u000(x) < ��: (2.2.8)
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By an adequate change of variable and (2.2.7),we obtain

�u000(x1)Z
�u000(bx1)

�

hE(�) + jsj kpk
d� =

x1Z
bx1

�u000(x)
hE(�u000(x)) + jsj kpk

:
�
�u(iv)(x)

�
dx

=

x1Z
bx1

f (x; u; u0; u00; u000)� sp (x)

hE(�u000(x)) + jsj kpk
(�u000(x)) dx

�
Z x1

bx1 �u
000(x)dx = u00(bx1)� u00(x1)

� max
x2[0;1]

�2(x)� min
x2[0;1]

2(x)

<

Z R1

�

�

hE(�) + jsj kpk
d�

and therefore that u000(x1) > �R1: By the arbitrariness of x1, for every x 2

[0; 1[ such that u000 (x) < �� the inequality u000 (x) > �R1 holds. In a similar

way it can be proved that u000(x1) < R1 and so ju000(x)j � R1; for every

x 2 [0; 1] :

Consider now � < r and take R2 > r such thatZ R2

r

�

hE(�) + jsj kpk
d� > max

x2[0;1]
�2(x)� min

x2[0;1]
2(x): (2.2.9)

By (2.2.5), there is x 2 [0; 1] such that ju000(x)j � r: If ju000(x)j � r; holds

for every x 2 [0; 1] then the proof is concluded. Otherwise, it can be taken

x2 2 [0; 1[ such that u000 (x2) < �r or x2 2 ]0; 1] such that u000(x2) > r. In the

�rst case consider 0 � x̂2 � x2 with

u000(x̂2) = �r and u000(x) < �r; 8x 2 [x̂2; x2[

Applying a similar method as in (2.2.8) it is obtainedZ �u000(x2)

�u000(bx2)
�

hE(�) + jsj kpk
d� <

Z R2

r

�

hE(�) + jsj kpk
d�

and so u000(x2) > �R2: Arguing as above it can be shown that when u000(x2) >

r the inequality u000(x2) < R2 still holds. Therefore ju000(x)j � R2; for every

x 2 [0; 1] :
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Taking R = max fR1; R2g then ju000(x)j � R; for every x 2 [0; 1] :

If the function f veri�es (2.2.2) the following Lemma is obtained:

Lemma 2.2.3 Let f : [0; 1] � R4 ! R be a continuous function, verifying

Nagumo-type conditions (2.2.2) and (2.2.3) in E given by (2.2.4).

Then for every � > 0 there is R > 0 such that every solution u (x) of

equation (2.1.1) verifying

u000(0) � � , u000(1) � ��: (2.2.10)

and

i (x) � u(i) (x) � �i (x) ; 8x 2 [0; 1] ; (2.2.11)

for i = 0; 1; 2; satis�es

ku000k < R:

Proof. The proof follows similar arguments as in the proof of Lemma 2.2.2

with the adequate changes.

Remark 2.2.4 Observe that R depends only on the functions hE; 2 and �2

and not on the boundary conditions. Moreover if s belongs to a bounded set,

then R can be considered the same, independently of s.

The functions used as lower and upper solutions are de�ned as a pair:

De�nition 2.2.5 The functions �; � 2 C4 (]0; 1[) \ C2 ([0; 1]) verifying

�(i) (x) � �(i) (x) ; i = 0; 1; 2; 8x 2 [0; 1] ; (2.2.12)

de�ne a pair of lower and upper solutions of problem (2.1.1)-(2.1.2) if the

following conditions are satis�ed:
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(i) �(iv) (x) + f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)) � sp (x) ;

�(iv) (x) + f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)) � sp (x) ;

(ii) � (0) � 0; �00 (0) � 0; �00 (1) � 0;

� (0) � 0; �00 (0) � 0; �00 (1) � 0;

(iii) �0 (0)� �0 (0) � min f� (0)� � (1) ; � (1)� � (0)g.

As it was shown in [77], condition (iii) can not be removed for this type of

de�nition. However if the minimum in (iii) is non-positive then assumption

(2.2.12) can be replaced by �00 (x) � �00 (x) ; for every x 2 [0; 1] ; as the other

inequalities are obtained from integration.

2.3 Existence and location result

For values of the parameter s such that there are lower and upper solutions of

(2.1.1)-(2.1.2) it can be obtained the following existence and location result,

where the nonlinear part can be unbounded from above or from below.

Theorem 2.3.1 Suppose that there is a pair of lower and upper solutions

of the problem (2.1.1)-(2.1.2), � (x) and � (x), respectively. Let f : [0; 1] �

R4 ! R be a continuous function satisfying the one-sided Nagumo conditions

(2.2.1) and (2.2.3) in

E� =
n
(x; y0; y1; y2; y3) 2 [0; 1]� R4 : �(i) (x) � yi � �(i) (x) ; i = 0; 1; 2

o
and

f (x; �; �0; y2; y3) � f (x; y0; y1; y2; y3) � f (x; �; �0; y2; y3) ; (2.3.1)
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for � (x) � y0 � � (x) ; �0 (x) � y1 � �0 (x) and for �xed (x; y2; y3) 2

[0; 1] � R2. Then the problem (2.1.1)-(2.1.2) has at least a solution u (x) 2

C4 ([0; 1]), satisfying

�(i) (x) � u(i) (x) � �(i) (x) ; for i = 0; 1; 2; 8x 2 [0; 1] :

Proof. Consider the continuous truncations �i given by

�i (x; yi) =

8>>><>>>:
�(i) (x) if yi < �(i) (x)

yi if �(i) (x) � yi � �(i) (x)

�(i) (x) if yi > �(i) (x)

; (2.3.2)

for i = 0; 1; 2:

For � 2 [0; 1], consider the homotopic equation

u(iv) (x) = � [sp(x)� f (x; �0 (x; u) ; �1 (x; u
0) ; �2 (x; u

00) ; u000)] (2.3.3)

+u00 (x)� ��2 (x; u
00) ;

and the boundary conditions

u (0) = u (1) = 0;

(1� �)u000 (0) = � ju00(0)j ;

(1� �)u000 (1) = �� ju00(1)j :

(2.3.4)

Let r2 > 0 large enough, such that, for every x 2 [0; 1] ;

�r2 < �00 (x) � �00 (x) < r2; (2.3.5)

sp(x)� f (x; � (x) ; �0 (x) ; �00 (x) ; 0) + r2 � �00 (x) > 0; (2.3.6)

sp(x)� f (x; � (x) ; �0 (x) ; �00 (x) ; 0)� r2 � �00 (x) < 0: (2.3.7)

The proof follows similar steps to the proof of the main result in the previ-

ous Chapter (Theorem 1.3.1), therefore only the key points of the arguments

are presented:
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� Every solution u (x) of the problem (2.3.3)-(2.3.4) veri�es

ju00 (x)j < r2; ju0 (x)j < r1; ju (x)j < r1; 8x 2 [0; 1] ;

with r1 := r2 + u0 (0) independently of � 2 [0; 1] :

As for interior points the technique is identical, assuming, by contradic-

tion, that

max
x2[0;1]

u00 (x) := u00 (0) � r2 > 0:

Then for � 2 ]0; 1] ; it is obtained

0 � (1� �)u000(0) = �u00(0) � �r2 > 0:

For � = 0; u000(0) = 0: Therefore u(iv) (0) � 0 and the case is identically

to the interior points:

If

max
x2[0;1]

u00 (x) := u00 (1) � r2;

for � 2 ]0; 1], the contradiction is similar

0 � (1� �)u000(1) = �� ju00(1)j � ��r2 < 0:

The case � = 0; implies u000(1) = 0 and u(iv) (1) � 0 and the contradiction

is obtained by the same technique as in the interior points.

The case u00 (x) � �r2 is analogous and so

ju00 (x)j < r2; 8x 2 [0; 1] ;8� 2 [0; 1] :

Integrating in [0; x] ; u0(x)� u0 (0) =
R x
0
u00(s)ds < r2; and

ju0(x)j < r2 + u0 (0) ; 8x 2 [0; 1] ;8� 2 [0; 1] :

By integration, u(x)� u (0) =
R x
0
u0(s)ds �

R x
0
r1ds � r1:

With the same arguments it can be proved that u(x) > �r1 and

ju(x)j < r1;8x 2 [0; 1] :
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� There is R > 0 such that, every solution u (x) of the problem (2.3.3)-

(2.3.4) veri�es

ju000 (x)j < R; 8x 2 [0; 1] ;

independently of � 2 [0; 1] :

� Problem (2.3.3)-(2.3.4) has at least a solution u1 (x) for � = 1:

The existence of at least a solution u1 (x) for problem (2.3.3)-(2.3.4) is

obtained with the operators L : C4 ([0; 1]) � C3 ([0; 1]) ! C ([0; 1]) � R4

given by

Lu =
�
u(iv) � u00; u (0) ; u (1) ; u000 (0) ; u000 (1)

�
;

N� : C
3 ([0; 1])! C ([0; 1])� R4 by

N� =

0@ � [sp(x)� f (x; �0 (x; u) ; �1 (x; u
0) ; �2 (x; u

00) ; u000 (x))]� ��2 (x; u
00) ;

0; 0; � [u000 (0) + ju00(0)j] ; � [u000 (1)� ju00(1)j]

1A
and T� : (C4 ([0; 1]) ;R)! (C4 ([0; 1]) ;R) by

T� (u) = L�1N� (u) :

The function u1 (x) will be a solution of the initial problem (2.1.1)-(2.1.2)

if it veri�es �(i) (x) � u
(i)
1 (x) � �(i) (x), i = 0; 1; 2, 8x 2 [0; 1] :

Suppose, by contradiction, that there is x 2 [0; 1] such that �00 (x) >

u001 (x) and de�ne

min
x2[0;1]

[u001 (x)� �00 (x)] := u001 (x1)� �00 (x1) < 0:

If x1 2 ]0; 1[, then u0001 (x1) = �000 (x1) and u(iv) (x1) � �(iv) (x1) :
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By De�nition 2.2.5 and (2.3.1) it is obtained the contradiction:

�(iv) (x1) � u
(iv)
1 (x1)

= sp(x1)� f (x1; �0 (x1; u) ; �1 (x1; u
0) ; �00 (x1) ; �

000 (x1))

+u00 (x1)� �00 (x1)

< sp (x1)� f (x1; � (x1) ; �
0 (x1) ; �

00 (x1) ; �
000 (x1)) � �(iv) (x1) :

If x1 = 0 or x1 = 1 the contradiction is trivial, by De�nition 2.2.5 (ii).

Therefore �00 (x) � u001 (x), for every x 2 [0; 1] : In a similar way it can be

proved that u001 (x) � �00 (x), and so

�00 (x) � u001 (x) � �00 (x) ; for every x 2 [0; 1] : (2.3.8)

As, by (2.1.2),

0 =

Z 1

0

u01 (x) dx =

Z 1

0

�
u01 (0) +

Z x

0

u001 (s) ds

�
dx

= u01 (0) +

Z 1

0

Z x

0

u001 (s) ds dx

then

u01 (0) = �
Z 1

0

Z x

0

u001 (s) dsdx: (2.3.9)

By this techniqueZ 1

0

Z x

0

�00 (s) ds dx = �(1)� �(0)� �0(0)

and, by De�nition 2.2.5 (iii), (2.3.8) and (2.3.9)

��0(0) � �(1)� �(0)� �0(0) =

Z 1

0

Z x

0

�00 (s) ds dx

�
Z 1

0

Z x

0

u001 (s) ds dx = �u01 (0) :

Therefore u01 (0) � �0(0) and, by integration of (2.3.5), one obtains

u01 (x)� u01 (0) =

Z x

0

u001 (s) ds �
Z x

0

�00 (s) ds = �0(x)� �0(0)
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and

u01 (x) � �0(x)� �0(0) + u01 (0) � �0(x);8x 2 [0; 1]:

The relation �0 (x) � u01 (x) ; for every x 2 [0; 1]; can be proved by similar

arguments. Then �0 (x) � u01 (x) � �0 (x) ; for every x 2 [0; 1] : By De�nition

2.2.5 (ii)

� (x) �
Z x

0

�0 (s) ds �
Z x

0

u01 (s) ds = u1 (x)

�
Z x

0

�0 (s) ds = �(x)� �(0) � �(x):

Therefore u1 (x) is a solution for problem (2.1.1)-(2.1.2).

Remark 2.3.2 Theorem 2.3.1 still holds if condition (2.2.1) is replaced by

(2.2.2) and conditions (2.3.4) are replaced by

u (0) = u (1) = 0;

(1� �)u000 (0) = �� ju00(0)j ;

(1� �)u000 (1) = � ju00(1)j :

2.4 Generalized lower and upper solutions

When looking at the de�nition of lower and upper solution one can won-

der about its impact and importance in the existence and location results

presented in these previous chapters and throughout all the thesis.

It is immediate that they provide a very graphical information about

some qualitative properties of the solution, but one can ask how deep is their

in�uence in the �nal results, for instance, in De�nition 2.2.5 is it possible to

relax condition (2.2.12) and condition iii)? How does this change a¤ects the

�nal result?

With this thought in mind we consider the following de�nitions for lower

and upper solutions:
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De�nition 2.4.1 Functions �; � 2 C4 (]0; 1[)\C2 ([0; 1]) are a pair of lower

and upper solutions of (2.1.1)-(2.1.2) if the following conditions are satis�ed:

(i) �(iv) (x) + f (x; �0 (x) ; �1 (x) ; �
00 (x) ; �000 (x)) � sp (x) ;

where
�0 (x) =

R x
0
�1 (s) ds;

�1 (x) = �0 (x)� �0 (0)�
R 1
0

R x
0
j�00 (s)j dsdx;

(2.4.1)

(ii) �00 (0) � 0; �00 (1) � 0;

(iii) �(iv) (x) + f (x; �0 (x) ; �1 (x) ; �
00 (x) ; �000 (x)) � sp (x) ;

where
�0 (x) =

R x
0
�1 (s) ds;

�1 (x) = �0 (x)� �0 (0) +
R 1
0

R x
0
j�00 (s)j dsdx;

(2.4.2)

(iv) �00 (0) � 0; �00 (1) � 0:

Now, the main existence and location result becomes:

Theorem 2.4.2 Suppose that there is a pair of lower and upper solutions of

the problem (2.1.1)-(2.1.2), � (x) and � (x), respectively verifying

�00 (x) � �00 (x) ; 8x 2 [0; 1] : (2.4.3)

Let f : [0; 1] � R4 ! R be a continuous function satisfying the one-sided

Nagumo conditions (2.2.1), or (2.2.2), and (2.2.3) in

E� =

8<: (x; y0; y1; y2; y3) 2 [0; 1]� R4 : �0 (x) � y0 � �0 (x) ;

�1 (x) � y1 � �1 (x) ; �
00 (x) � y2 � �00 (x)

9=;
and

f (x; �0; �1; y2; y3) � f (x; y0; y1; y2; y3) � f (x; �0; �1; y2; y3) ; (2.4.4)
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for �0 (x) � y0 � �0 (x) ; �1 (x) � y1 � �1 (x) and for �xed (x; y2; y3) 2

[0; 1] � R2. Then the problem (2.1.1)-(2.1.2) has at least a solution u (x) 2

C4 ([0; 1]), satisfying

�i (x) � u(i) (x) � �i (x) ; for i = 0; 1; 8x 2 [0; 1] ;

and

�00 (x) � u00 (x) � �00 (x) ; 8x 2 [0; 1] :

Proof. The arguments are similar to the proof of Theorem 2.3.1. So we only

prove that the solution u1 (x) of the modi�ed problem will be a solution of

the initial problem (2.1.1)-(2.1.2): For that it is su¢ cient to show that

�00 (x) � u00 (x) � �00 (x) (2.4.5)

and

�i (x) � u(i) (x) � �i (x) ; for i = 0; 1; (2.4.6)

for every x 2 [0; 1] :

The inequalities (2.4.5) and (2.4.6) can be proved as in Theorem 2.3.1.

By integration,

u0 (x)� u0 (0) =

Z x

0

u00 (s) ds �
Z x

0

�00 (s) ds = �0 (x)� �0 (0)

and it is obtained

u0 (x) � �0 (x)� �0 (0) + u0 (0) : (2.4.7)

Furthermore by (2.1.2)

0 =

Z 1

0

u0 (x) dx � u0 (0) +

Z 1

0

Z x

0

�00 (s) dsdx:

Hence it is obtained

u0 (0) � �
Z 1

0

Z x

0

�00 (s) dsdx
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and in a similar way u0 (0) � �
R 1
0

R x
0
�00 (s) dsdx: Applying this in (2.4.7)

u0 (x) � �0 (x)� �0 (0)�
Z 1

0

Z x

0

�00 (s) dsdx

� �0 (x)� �0 (0) +

Z 1

0

Z x

0

j�00 (s)j dsdx = �1 (x) :

Using the same arguments it is proved that

�1 (x) � u0 (x) � �1 (x) ; 8x 2 [0; 1] :

Integrating the previous inequality one obtains

�0 (x) =

Z x

0

�1 (s) � u (x) �
Z x

0

�1 (s) ds = �0 (x) ; 8x 2 [0; 1] :

As one can notice the inclusion of the auxiliary functions �0; �0 and �1; �1

allows not only the usage of non-ordered lower and upper solutions, increasing

the range of admissible lower and upper solutions for the problem (2.1.1)-

(2.1.2), but also to overcome the order relation between the �rst derivatives,

where there is no information.

Next example illustrates a set of lower and upper solutions that were not

covered by De�nition 2.2.5 and Theorem 2.3.1 but are now included in De-

�nition 2.4.1 and Theorem 2.4.2. In this example lower and upper solutions

are not ordered and condition (iii) from De�nition 2.2.5 is eliminated, case

that was not possible by De�nition 2.2.5 and Theorem 2.3.1.

Example 2.4.3 For x 2 [0; 1] consider the di¤erential equation

u(iv) (x) + eu(x) + arctan (u0 (x))� (u00 (x))3 � ju000 (x)jk = sp (x) ; (2.4.8)

with p : [0; 1] ! R+ a continuous function and k 2 [0; 2] ; along with the

boundary conditions (2.1.2).
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The functions �; � : R! R given by

� (x) = �x2 + 1
2

� (x) = x2 � 1
2

are lower and upper solutions, respectively, of problem (2.4.8),(2.1.2) verify-

ing (2.4.3) with the auxiliary functions given by De�nition 2.4.1

�0 (x) = �x2 � x;

�1 (x) = �2x� 1;

and
�0 (x) = x2 + x;

�1 (x) = 2x+ 1;

for
e2 + arctan (3)� 8

max
x2[0;1]

p (x)
� s � e�2 � arctan (3) + 8

max
x2[0;1]

p (x)

The function

f (x; y0; y1; y2; y3) = ey0 + arctan (y1)� (y2)3 � jy3jk (2.4.9)

is continuous, veri�es conditions (2.2.1)and (2.2.3) in

E =

8<: (x; y0; y1; y2; y3) 2 [a; b]� R5 : �i � yi � �i; i = 0; 1

�00 � y2 � �00

9=; :

and satis�es (2.4.4).

By Theorem 2.4.2 there is a solution u (x) of problem (2.4.8),(2.1.2), such

that
�x2 � x � u (x) � x2 + x

�2x� 1 � u0 (x) � 2x+ 1

�2 � u00 (x) � 2

Notice that the nonlinearity f given by (2.4.9) does not verify the two-

sided Nagumo type conditions and, therefore, [77] can not be applied to
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(2.4.8)-(2.1.2). In fact, suppose by contradiction that there are a set E and

a positive function ' such that jf (x; y0; y1; y2; y3)j � ' (jy3j) in E andZ +1

0

s

' (s)
= +1:

Consider, in particular, that

f (x; y0; y1; y2; y3) � ' (jy3j) ; 8 (x; y0; y1; y2; y3) 2 E

and (0; 0; 0; y3) 2 E: So, for x 2 [0; 1] ; y0 = 0; y1 = 0; y2 = 0 and y3 2 R+,

f (x; 0; 0; 0; y3) = 1 + jy3jk � ' (jy3j) :

As
R +1
0

s
1+sk

ds, is �nite, then the following contradiction is obtained:

+1 >

Z +1

0

s

1 + sk
ds �

Z +1

0

s

' (s)
ds = +1:



Chapter 3

Multiplicity of solutions

3.1 Introduction

In this Chapter two di¤erent sets of boundary conditions are considered.

Firstly it is considered the problem composed by

u(iv) (x) + f (x; u (x) ; u0 (x) ; u00 (x) ; u000 (x)) = sp (x) ; (3.1.1)

and

u (1) = u0 (1) = u00 (0) = u000 (1) = 0;

with a bilateral Nagumo type condition and secondly with

u(a) = A; u0(a) = B; u000(a) = C; u000(b) = D;

with A;B;C;D 2 R assuming an one-sided Nagumo type condition. In both

cases existence, nonexistence and multiplicity results will be presented.

The arguments used were suggested by several papers namely [30], ap-

plied to second order periodic problems, [73, 89], to third order separated

boundary value problems, [21] for incomplete fourth order equations with

two-point boundary conditions. In short, the method makes use of Nagumo-

type growth conditions, lower and upper solutions technique for higher order

49
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boundary value problems, suggestete, for example in ([33, 44, 78]), and degree

theory, [70].

Last section contains an application of the beam theory to the London

Millennium footbridge. During the opening day some unexpected lateral

movements occurred as pedestrians crossed the bridge. This lateral move-

ment was then found to be related with the lateral loads and the num-

ber of pedestrians [23]. Lower and upper solutions method used to obtain

Ambrosetti-Prodi results is particularly well adapted for these applications.

In fact it provides not only lower and upper bounds for the beam displace-

ment under transverse and axial loads, but also it gives information on the

range for the values of s where it can be obtained the existence, nonexistence

or the multiplicity of solutions. Designating s the number of pedestrians,

this number can then be easily bounded, making this method a sharp tool

for some applications where bounds on the solution or its derivatives are

important.

Several Ambrosetti-Prodi type problems remain open, for example, in the

case of multiplicity of solutions, the Lidstone problems. Some experiments

trying to overcome these issues were made with new types of lower and upper

solutions and more general assumptions on f and can be seen in Section 8.5,

dedicated to the Lidstone case. In our point of view, obtaining multiple

solutions by this method has two weak points:

� to know a priori some bounds for the second derivative of all solutions

(assumed in condition (3.3.9))

� the assumption of a "speed growth" condition on f , such as (3.3.11) or

an equivalent assymptotic condition used in [36], that is, consider that

the perturbation of some variables are stronger than other ones.
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How to overcome them is an open issue.

3.2 Existence and nonexistence results

In this section we consider the nonlinear fully equation (3.1.1) with the

boundary conditions

u(1) = u0(1) = u00(0) = u000(1) = 0; (3.2.1)

which can be seen as a clamped beam at the right endpoint.

A Nagumo-type growth condition is assumed on the nonlinear part of the

di¤erential equation. The Nagumo-type condition used in this section is a

particular case of the one presented in Chapter 1, for n = 4: As in before, this

will be an essential tool to prove an a priori bound for the third derivative

of the corresponding solutions.

De�nition 3.2.1 Given a subset E � [0; 1] � R4, a continuous function

g : E ! R is said to satisfy the Nagumo-type condition in E if there exists a

real continuous function hE : R+0 ! [a;+1[, for some a > 0, such that

jg (x; y0; y1; y2; y3)j � hE (jy3j) ; 8 (x; y0; y1; y2; y3) 2 E (3.2.2)

with Z +1

0

t

hE (t)
dt = +1: (3.2.3)

Lemma 3.2.2 Let g : [0; 1] � R4 ! R be a continuous function, verifying

Nagumo-type conditions (3.2.2) and (3.2.3) in

E =
�
(x; y0; y1; y2; y3) 2 [0; 1]� R4 : i (x) � yi � �i (x) ; i = 0; 1; 2

	
where i (x) and �i (x) are continuous functions such that, for i = 0; 1; 2;

i (x) � �i (x) ; 8x 2 [0; 1] :
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Then there exists r > 0; such that every solution u (x) of equation (3.1.1)

verifying

i (x) � u(i) (x) � �i (x) ; 8x 2 [0; 1] ;

for i = 0; 1; 2; satis�es ku000k < r:

Proof. The arguments for this proof are a particular case of Lemma 1.2.2,

for n = 4 considering

g (x; y0; y1; y2; y3) = s p(x)� f (x; y0; y1; y2; y3) (3.2.4)

and hE (jy3j) := jsj kpk+ hE (jy3j) ; as the integralsZ +1

0

t

hE (t)
dt and

Z +1

0

t

hE (t) + jsj kpk
dt

are of the same kind.

In the forward the useful functions to de�ne such set E will be the ade-

quate lower and upper solutions.

De�nition 3.2.3 A function � 2 C4([0; 1]) is a lower solution of problem

(3.1.1),(3.2.1) if it veri�es

�(iv) (x) + f(x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)) � sp (x) (3.2.5)

and

�(1) � 0;

�0(1) � 0;

�00(0) � 0;

�000(1) � 0:

(3.2.6)

A function � 2 C4([0; 1]) is an upper solution of problem (3.1.1),(3.2.1) if

the reversed inequalities hold.
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Next Theorem is not a trivial consideration of Theorem 1.3.1 for n = 4:

In fact lower and upper solutions are not well ordered for every derivative

of the corresponding solution. This is a "natural" fact as di¤erent types of

support at the endpoints will cause di¤erent interactions on the complete

beam structure.

For values of the parameter s such that there are lower and upper solu-

tions of problem (3.1.1),(3.2.1) it can be obtained the following existence and

location result.

Theorem 3.2.4 Suppose that there are lower and upper solutions of (3.1.1),

(3.2.1), �(x) and �(x); respectively, such that

�00(x) � �00(x);8x 2 [0; 1]: (3.2.7)

Let f : [0; 1] � R4 ! R be a continuous function verifying Nagumo-type

conditions (3.2.2) and (3.2.3) in

E� =

8<: (x; y0; y1; y2; y3) 2 [0; 1]� R4 :

�(i)(x) � yi � �(i)(x); i = 0; 2; �0(x) � y1 � �0(x)

9=; :

satisfying

f(x; �(x); �0(x); y2; y3) � f(x; y0; y1; y2; y3) (3.2.8)

� f(x; �(x); �0(x); y2; y3);

for �xed (x; y2; y3) 2 [0; 1]� R2 and �(x) � y0 � �(x); �0(x) � y1 � �0(x).

Then problem (3.1.1),(3.2.1) has at least a solution u(x) 2 C4([0; 1]) and

there is N > 0 such that

�(i)(x) � u(i)(x) � �(i)(x), i = 0; 2;

�0(x) � u0(x) � �0(x),

ju000(x)j < N; 8x 2 [0; 1]:



54 Chapter 3. Multiplicity of solutions

Remark 3.2.5 If there are � (x) and � (x) lower and upper solutions of the

problem (3.1.1),(3.2.1) for some values of s, then s belongs to a bounded set,

as

�(iv) (x) + f(x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)) � sp (x)

� �(iv) (x) + f(x; � (x) ; �0 (x) ; �00 (x) ; �000 (x));

for every x 2 [0; 1] :

Proof. By integration of (3.2.7) in [x; 1] and (3.2.6) it is obtained that

�0(x) � �0(x);8x 2 [0; 1]:

Therefore we cand de�ne the truncations given by (2.3.2) for i = 0; 2 and

��1(x; y1) =

8>>><>>>:
�0(x) if y1 > �0(x)

y1 if �0(x) � y1 � �0(x)

�0(x) if y1 < �0(x)

: (3.2.9)

Consider for � 2 [0; 1] the auxiliary problem composed by (2.3.3) with �1

replaced by ��1;with the boundary conditions (3.2.1).

Taking r2 > 0 verifying (2.3.5)-(2.3.7) the proof is analogous to Theorem

2.3.1. As such, only some of the modi�cations are remarked:

� Every solution u (x) of the problem (2.3.3),(3.2.1) veri�es��u(i) (x)�� < r2; i = 0; 1; 2; 8x 2 [0; 1] :

� The operators L : C4 ([0; 1]) � C3 ([0; 1]) ! C ([0; 1]) � R4 and N� :

C3 ([0; 1])! C ([0; 1])� R4 are de�ned as

Lu =
�
u(iv) � u00; u (1) ; u0 (1) ; u 00 (0) ; u000 (1)

�
N� =

0@ �
�
sp(x)� f

�
x; �0 (x; u) ; ��1 (x; u

0) ; �2 (x; u
00) ; u000 (x)

��
� ��2 (x; u

00) ;

0; 0; 0; 0

1A



3.2. Existence and nonexistence results 55

� The location of u0 in the set [�0; �0] with �0 and �0 in reversed order is

obtained by integration of

�00(x) � u00 (x) � �00(x);

in [x; 1] :

The existence and nonexistence of solutions for problem (3.1.1),(3.2.1)

will be discussed for some values of the parameter s.

Theorem 3.2.6 Let f : [0; 1] � R4 ! R be a continuous function verifying

Nagumo-type conditions, (3.2.2) and (3.2.3). If

(H1) f (x; y0; y1; y2; y3) is nondecreasing on y0 and nonincreasing on y1 and

y2;

(H2) there exist s1 2 R and r > 0 such that, for x 2 [0; 1 ] ; y0 � �r and

y1 � r ,

f (x; 0; 0; 0; 0)

p (x)
< s1 <

f (x; y0; y1;�r; 0)
p (x)

; (3.2.10)

then there is s0 < s1 (with the possibility of s0 = �1) such that:

1) for s < s0, (3.1.1),(3.2.1) has no solution;

2) for s0 < s � s1; (3.1.1),(3.2.1) has, at least, a solution.

Proof. De�ne

s� = max
x2[0;1]

f (x; 0; 0; 0; 0)

p (x)
:

By (3.2.10), there is x� 2 [0; 1] such that

f (x; 0; 0; 0; 0)

p (x)
� s� =

f (x�; 0; 0; 0; 0)

p (x�)
< s1; 8x 2 [0; 1] :
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For r given by (3.2.10), �(x) � 0 is an upper solution of (3.1.1),(3.2.1) for

s = s� and, as by (H1) and (3.2.10),

0 > s1p (x)� f (x;�r; r;�r; 0) (3.2.11)

� sp(x)� f

�
x;�r

�
x2

2
� x+

1

2

�
;�rx+ r;�r; 0

�
therefore �(x) = �r(x2

2
�x+ 1

2
) is a lower solution of (3.1.1),(3.2.1) for every

s � s1. So by Theorem 3.2.4 there exists a solution for problem (3.1.1),(3.2.1)

for s = s�:

Suppose that problem (3.1.1),(3.2.1) has a solution u� (x) for s = � � s1:

So u� (x) is an upper solution of (3.1.1),(3.2.1) for � � s � s1:

Let R > 0 su¢ ciently large such that, for r given by (3.2.10),

r � R; max
x2[0;1]

u0� (x) � R and u00�(1) � �R: (3.2.12)

As in (3.2.11), � (x) = �R(x2
2
�x+ 1

2
) is a lower solution of (3.1.1),(3.2.1),

for s such that s � s1: In order to apply Theorem 3.2.4 it must be proved

that �00 (x) � u00�(x), in [0; 1]. Suppose, by contradiction, that there exists

x 2]0; 1[; such that �00(x) > u00�(x) and de�ne

min
x2[0;1]

u00�(x) := u00�(x0) (< �R):

Therefore u000� (x0) = 0; u
(iv)
� (x0) � 0 and, by (H1)

0 � u(iv)� (x0) = �p (x0)� f(x0; u�(x0); u
0
�(x0); u

00
�(x0); 0)

� �p(x0)� f(x0; u�(x0); R;�R; 0):

By integration on [x; 1] and (3.2.12),

u�(x) = �
Z 1

x

u0�(s) ds � �
Z 1

x

R ds = (x� 1)R � �R
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and the following contradiction is obtained, by (H1) and (3.2.10),

0 � �p(x0)� f(x0; u�(x0); R;�R; 0)

� �p(x0)� f(x0;�R;R;�R; 0) < 0:

Therefore, by Theorem 3.2.4, there is a solution to problem (3.1.1),(3.2.1)

for � � s � s1:

Consider the set

S = fs 2 R : (3.1.1),(3.2.1) has a solutiong :

As, s� 2 S then S is a non-empty set: Let s0 = inf S: Therefore, for s < s0;

problem (3.1.1),(3.2.1) has no solution. By the de�nition of s0 and s�, s0 �

s� < s1; (3.1.1),(3.2.1) has a solution for s 2 ]s0; s1] :

It is pointed out that if s0 = �1 then, problem (3.1.1),(3.2.1) has a

solution for every s � s1:

Another version of Theorem 3.2.6 can be formulated, with similar proof:

Theorem 3.2.7 Let f : [0; 1] � R4 ! R be a continuous function verifying

Nagumo-type conditions, (3.2.2) and (3.2.3). If

( �H1) f (x; y0; y1; y2; y3) is nonincreasing on y0 and nondecreasing on y1 and

y2;

( �H2) there exist s1 2 R and r > 0 such that, for x 2 [0; 1 ] ; y0 � �r and

y1 � r ,

f (x; 0; 0; 0; 0)

p (x)
> s1 >

f (x; y0; y1;�r; 0)
p (x)

; (3.2.13)

then there is s0 > s1 (with the possibility of s0 = +1) such that:

1) for s > s0, (3.1.1),(3.2.1) has no solution;

2) for s0 > s � s1; (3.1.1),(3.2.1) has, at least, a solution.
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3.3 Multiple solutions to fully di¤erential

equations

To obtain multiplicity results using the lower and upper solution method,

some additional tools are required. A stronger de�nition for lower and upper

solutions is introduced with strict functions, as well as an extra assumption

on f , a "speed growth" condition.

De�nition 3.3.1 A function � 2 C4(]0; 1[) \ C3 ([0; 1]) is a strict lower

solution of problem (3.1.1),(3.2.1) if

�(iv) (x) + f(x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)) > sp(x) (3.3.1)

and
�(1) � 0;

�0(1) � 0;

�00(0) < 0;

�000(1) � 0:

(3.3.2)

A function � 2 C4(]0; 1[) \ C3 ([0; 1]) is a strict upper solution of problem

(3.1.1),(3.2.1) if the reversed inequalities hold.

De�ne the set

X =
�
u 2 C3 ([0; 1]) : u(1) = u0(1) = u00(0) = u000(1) = 0

	
and the linear operator

L : dom L! C ([0; 1]) with dom L = C4 ([0; 1]) \X

given by Lu = u(iv):

For s 2 R consider the nonlinear operator

Ns : C
3 ([0; 1]) \X ! C ([0; 1])
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given by

Nsu = f (x; u (x) ; u0 (x) ; u00 (x) ; u000 (x))� sp (x) : (3.3.3)

For 
 � X an open and bounded set, the operator L+Ns is L-compact in


: Remark that in dom L; problem (3.1.1),(3.2.1) is equivalent to equation

Lu+Nsu = 0:

Next lemma is useful to evaluate the topological degree of L + Ns in 


relatively to L at p 2 
; noted by dL (L+Ns;
; p) :

Lemma 3.3.2 Let f : [0; 1] � R4 ! R be a continuous function satisfying

Nagumo-type conditions and (3.2.8). If there are strict lower and upper solu-

tions of (3.1.1),(3.2.1), � (x) and � (x), respectively, then there exists �3 > 0

such that for


 =

8<: u 2 dom L : �(i) (x) < u(i) (x) < �(i) (x) ; i = 0; 2;

�0(x) < u0(x) < �0(x); jju000jj < �3

9=;
we have dL (L+Ns;
; 0) = �1.

Proof. Consider the continuous functions given by (2.3.2) and (3.2.9), along

with the auxiliary problem8<: u(iv) (x) + F (x; u (x) ; u0 (x) ; u00 (x) ; u000 (x)) = sp (x)

u (1) = u0 (1) = u00 (0) = u000(1) = 0
(3.3.4)

with F : [0; 1]� R4 ! R a continuous function given by

F (x; y0; y1; y2; y3) = f
�
x; �0 (x; y0) ; ��1 (x; y1) ; �2 (x; y2) ; y3

�
� y2 + �2 (x; y2) :

De�ne the operator Fs : C3 ([0; 1]) \ X ! C ([0; 1]) given by Fsu =

F (x; u; u0; u00; u000)� sp (x) .
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In dom L problem (3.3.4) is equivalent to the equation Lu+Fsu = 0. For

� 2 [0; 1] and u 2 dom L consider the homotopy

H�u := Lu� (1� �)u00 + �Fsu: (3.3.5)

Take �2 > 0 large enough such that, for x 2 [0; 1] ;

��2 � �00 (x) < �00 (x) � �2 (3.3.6)

sp (x)� f (x; � (x) ; �0 (x) ; �00(x); 0)� �2 � �00 (x) < 0

and

sp (x)� f (x; � (x) ; �0 (x) ; �00(x); 0) + �2 � �00 (x) > 0

Applying the technique suggested in the proof of Theorem 3.2.4, with obvious

modi�cations, there is �3 > 0 such that every solution u of H�u = 0 veri�es

ku00k < �2 and ku000k < �3 (3.3.7)

independently from � 2 [0; 1]. Consider


1 = fy 2 dom L : ky00k < �2, ky000k < �3g :

The inclusion 
1 � 
 is obtained from (3.3.6). By (3.3.7), every solution u

of H�u = 0 is in 
1 for every � 2 [0; 1] :

Since u =2 @
1 then dL (H�;
1; 0) is well de�ned for every � 2 [0; 1] : On

the other hand, the linear part of equation H0u = 0, i.e., Lu � u00 = 0 has

only the trivial solution and, by degree theory, dL (H0;
1; 0) = �1: By the

invariance under homotopy

�1 = dL (H0;
1; 0) = dL (H1;
1; 0) = dL (L+ Fs;
1; 0) : (3.3.8)

Then, there is u1 solution of H1u = 0, i.e., solution of Lu+ Fsu = 0:
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Applying the arguments referred in the proof of Theorem 3.2.4 it can be

proved that

�(i) (x) < u
(i)
1 (x) < �(i) (x) ; i = 0; 2; �0(x) < u01(x) < �0(x) 8x 2 [0; 1];

and ku0001 k < �3: Therefore u1 (x) 2 
:

The degree dL (L+ Fs;
; 0) is well de�ned and by (3.3.8) and the excision

property of the degree,

dL (L+ Fs;
1; 0) = dL (L+ Fs;
; 0) = dL (L+Ns;
; 0) = �1;

since equations Lu+ Fsu = 0 and Lu+Nsu = 0 are equivalent in dom L.

To obtain the multiplicity result for problem (3.1.1),(3.2.1) it must be as-

sumed some bound from below and a "speed growth" on f . Such assumption

on f models the fact that the variation of some variables, will have di¤erent

in�uences on the global monotony of f; that is, the perturbation of some

variables are stronger than other ones.

Theorem 3.3.3 Let f : [0; 1] � R4 ! R be a continuous function verifying

the assumptions of Theorem 3.2.6. Suppose that there are M > �r; with r

given by (3.2.10), such that every solution u of (3.1.1),(3.2.1), with s � s1;

satis�es

u00 (x) < M; 8x 2 [0; 1] ; (3.3.9)

and m 2 R such that

f (x; y0; y1; y2; y3) � m p (x) ; (3.3.10)

for every (x; y0; y1; y2; y3) 2 [0; 1]� [�M1;M1]
2 � [�r;M ]� R, where M1 :=

max fr; jM jg.

Then s0 given by Theorem 3.2.6 is �nite and:
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1) for s < s0, (3.1.1),(3.2.1) has no solution;

2) for s = s0, (3.1.1),(3.2.1) has at least a solution.

Moreover, if there is � > 0; such that

f (x; y0 + ��0; y1 � ��1; y2 + �; y3) � f (x; y0; y1; y2; y3) ; (3.3.11)

for every (x; y0; y1; y2; y3) 2 [0; 1]� [�M1;M1]
3�R and 0 � �i � 1; i = 0; 1;

then

3) for s 2 ]s0; s1], (3.1.1),(3.2.1) has at least two solutions.

Proof. Step 1 - Every solution u (x) of problem (3.1.1),(3.2.1) for s 2

]s0; s1] satis�es

�r < u00 (x) < M and
��u(i)(x)�� < M1; i = 0; 1; 8x 2 [0; 1] :

For the �rst case, by (3.3.9), it will be enough to prove that �r < u00 (x) ; for

every x 2 [0; 1] :

Suppose, by contradiction, that there are u solution of (3.1.1),(3.2.1), for

some s 2 ]s0; s1], and x0 2]0; 1] such that

min
x2[0;1]

u00 (x) := u00 (x0) (� �r):

Therefore u000 (x0) = 0 and u(iv) (x0) � 0: By (H1),

0 � u(iv) (x0) � s1p (x0)� f (x0; u (x0) ; u
0 (x0) ;�r; 0) : (3.3.12)

If u (x0) � �r and u0 (x0) � r; by (3.2.10) and (3.3.12), we get the contra-

diction

0 � s1p (x0)� f (x0; u (x0) ; u
0 (x0) ;�r; 0) < 0:

If u (x0) � �r and u0 (x0) � r (the other cases are analogous) a similar

contradiction is obtained by (H1) and (3.2.10):

0 � s1p (x0)� f (x0; u (x0) ; u
0 (x0) ;�r; 0)

� s1p (x0)� f (x0;�r; u0 (x0) ;�r; 0) < 0:
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So, every solution u of (3.1.1),(3.2.1) with s 2 ]s0; s1] ; veri�es �r < u00 (x) <

M; 8x 2 [0; 1]. Integrating on [x; 1] we have

�r � �r(1� x) <

Z 1

x

u00 (s) ds = �u0(x) < M(1� x) � jM j:

Therefore ju0(x)j < M1 and similarly ju(x)j < M1.

Step 2 - The number s0 is �nite.

Suppose that s0 = �1. By Theorem 3.2.6, problem (3.1.1),(3.2.1) has a

solution for every s such that s � s1: Let u (x) be a solution of (3.1.1),(3.2.1),

for s � s1: Then by (3.3.10),

u(iv) (x) � sp (x)�mp (x) = (s�m) p (x) :

De�ne

p1 := min
x2[0;1]

p (x) > 0

and consider s small enough such that

m� s > 0 and
(m� s) p1

16
> M:

By boundary conditions (3.2.1),

u000 (x) = �
Z 1

x

u(iv) (�) d� �
Z 1

x

(m� s) p (�) d�

�
Z 1

x

(m� s) p1 d� = (m� s) (1� x) p1 > 0:

De�ning I =
�
0; 1

4

�
, then j1� xj � 1

4
, for x 2 I ,

u000 (x) � (m� s) p1
4

; 8x 2 I;

and this contradiction with (3.3.9) is attained

u00
�
1

4

�
=

Z 1
4

0

u000 (x) dx �
Z 1

4

0

(m� s) p1
4

dx =
1

16
(m� s) p1 > M:
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Therefore s0 is �nite.

Step 3 - For s 2 ]s0; s1] ; there is a second solution for (3.1.1),(3.2.1).

By Step 2, there is s�1 < s0 such that problem (3.1.1),(3.2.1), with s =

s�1; has no solution. By Lemma 3.3.2, there exists ��3 > 0 such that ku000k <

��3; for every solution u of (3.1.1),(3.2.1), with s 2 ]s�1; s1] : De�ning the set


2 = fy 2 domL : ky00k < M1; ky000k < ��3g (3.3.13)

we have

dL
�
L+Ns�1 ;
2; 0

�
= 0: (3.3.14)

By Step 1, every solution u of (3.1.1),(3.2.1), with s 2 ]s�1; s1] ; satis�es

u =2 @
2 and for the homotopy on the parameter s;

H (�) = (1� �) s�1 + �s1;

the degree dL
�
L+NH(�);
2; 0

�
is well de�ned for every � 2 [0; 1] and s 2

]s�1; s1] : As the degree is invariant under homotopy and by (3.3.14) it results

0 = dL
�
L+Ns�1 ;
2; 0

�
= dL (L+Ns;
2; 0) ; (3.3.15)

for s 2 ]s�1; s1] :

For some � 2 ]s0; s1] � ]s�1; s1] ; by Theorem 3.2.6, there is u� (x), solu-

tion of (3.1.1),(3.2.1) with s = �. Let " > 0 small enough such that

ju00�(x) + "j < M1; 8x 2 [0; 1]: (3.3.16)

Following the arguments used in the proof of Theorem 3.2.6, for r given by

(3.2.10),

�(x) = �r
�
x2

2
� x+

1

2

�
is a strict lower solution of (3.1.1),(3.2.1) for s � s1 and, applying (3.3.11)

with

� = "; �0 =
(x� 1)2
2
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and �1 = 1� x; the function

eu(x) = u�(x) + "
(x� 1)2
2

is a strict upper solution of (3.1.1),(3.2.1) for � < s � s1. As, by (3.3.16),

�00(x) = �r � eu00(x) then, by Lemma 3.3.2, there is �3 > 0; independent of
s; such that for


" =

8<: y 2 dom L : �(i) (x) < y(i) (x) < ~u(i) (x) ; i = 0; 2;

�00(x) � y0 � �0(x); ky000k < �3

9=; ;

the degree for L+Ns in 
" veri�es

dL (L+Ns;
"; 0) = �1; for s 2 [�; s1] : (3.3.17)

Take, in (3.3.13); ��3 large enough such that 
" � 
2: Therefore, by (3.3.15),

(3.3.17) and the additivity of the degree, we obtain

dL
�
L+Ns;
2 � 
"; 0

�
= �1; for s 2 ]�; s1] : (3.3.18)

Then problem (3.1.1),(3.2.1) has, at least, two solutions u1 and u2 such

that u1 2 
" and u2 2 
2 � 
"; for s 2 ]�; s1] and, as � is arbitrary, for

s 2 ]s0; s1] :

Step 4 - For s = s0, problem (3.1.1),(3.2.1) has one solution.

Consider the sequence (sm), with sm 2 ]s0; s1] and lim sm = s0: By The-

orem 3.2.6, for every sm; problem (3.1.1),(3.2.1), with s = sm, has a solution

um: By Step 1,
u(i)m  < M1; for i = 0; 1; 2, independently of m: So there is

L; large enough, such that ku000mk < L; that is, the sequence
�
u
(iv)
m

�
; m 2 N,

is bounded in C ([0; 1]) : By the Arzéla-Ascoli Theorem, there is a subse-

quence, (um) ; convergent in C3 ([0; 1]) to a solution u0 (x) of (3.1.1),(3.2.1),

with s = s0:
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3.4 Existence and nonexistence results with

unbounded nonlinearities

Let us consider the problem given by the equation (3.1.1) in [a; b] ; where

f : [a; b] � R4 ! R and p : [a; b] ! R+ are continuous functions and the

boundary conditions

u(a) = A; u0(a) = B; u000(a) = C; u000(b) = D; (3.4.1)

with A;B;C;D 2 R:

The results presented in this section improve the existing results in the

literature, as far as we know, by using a more general Nagumo-type condition,

which allows the nonlinear part to be unbounded. This type of results, can

be applied to beam equations, where the nonlinear part has some asymmetric

growth.

In this section it is de�ned the one-sided Nagumo-type growth condition

assumed on the nonlinear part of the di¤erential equation which will be

an important tool to obtain the a priori bound for the third derivative of

the corresponding solutions, even with unbounded functions. The one-sided

Nagumo type condition used in this section is given by De�nition 2.2.1.

Lower and upper solutions will be de�ned as follows:

De�nition 3.4.1 Consider A;B;C;D 2 R: The function � 2 C4 ([a; b]) is

a lower solution of the problem (3.1.1),(3.4.1) if

�(iv) (x) � sp(x)� f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)) ;

and

� (a) � A; �0 (a) � B; �000 (a) � C; �000 (b) � D: (3.4.2)
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The function � 2 C4 ([a; b]) is an upper solution of the problem (3.1.1),(3.4.1)

if the reversed inequalities hold.

The following theorem provides a general existence and location result

similar to Theorem 2.3.1.

Theorem 3.4.2 Suppose that there are lower and upper solutions of the pro-

blem (3.1.1),(3.4.1) � (x) and � (x), such that,

�00 (x) � �00 (x) ; for every x 2 [a; b] :

Let f : [a; b] � R4 ! R be a continuous function satisfying the one-sided

Nagumo conditions (2.2.1) (or (2.2.2)) and (2.2.3) in

E� =
n
(x; y0; y1; y2; y3) 2 [a; b]� R4 : �(i) (x) � yi � �(i) (x) ; i = 0; 1; 2

o
:

If f veri�es

f (x; �; �0; y2; y3) � f (x; y0; y1; y2; y3) � f (x; �; �0; y2; y3) ; (3.4.3)

for � (x) � y0 � � (x) and �0 (x) � y1 � �0 (x), in [a; b] and for �xed

(x; y2; y3) 2 [a; b] � R2; then problem (3.1.1),(3.4.1) has at least a solution

u (x) 2 C4 ([a; b]), satisfying

�(i) (x) � u(i) (x) � �(i) (x) , for i = 0; 1; 2 and every x 2 [a; b] :

Proof. The proof is analogous to Theorem 2.3.1, with the following parti-

cularities:

� The auxiliar problem is composed by equation (2.3.3) and the boundary

conditions,

u (a) = �A

u0 (a) = �B

u000 (a) = � [C + u00(a)� �2 (a; u
00 (a))]

u000 (b) = � [D � u00(b) + �2 (b; u
00 (b))] ;

(3.4.4)

with � 2 [0; 1] :
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� The number r2 > 0 will be considered large enough, such that, for every

x 2 [a; b] ; it satis�es conditions (2.3.5)-(2.3.7) and

C � �00 (a) > �r2; C � �00 (a) < r2

D + �00(b) > �r2; D + �00(b) < r2
(3.4.5)

� Every solution u (x) of the problem (2.3.3),(3.4.4) satis�es

��u(i) (x)�� < ri, 8x 2 [a; b] ; i = 0; 1; 2;

with r1 := r2 (b� a) + jBj and r0 := r2 (b� a)2 + jBj (b� a) + jAj,

independently of � 2 [0; 1] :

� If, by contradiction,

max
x2[0;1]

u00 (x) := u00 (a) � r2 > 0;

and u000 (a+) = u000 (a) � 0; then for � 2 ]0; 1] ; by (3.4.4) and (3.4.5)

the following contradiction is obtained

0 � u000 (a) =

= � [C + u00(a)� �00 (a)] � � [C + r2 � �00 (a)] > 0

If � = 0, by (3.4.4), u(iv) (a) � 0, and the contradiction is

0 � u(iv)(a) = u00(a) � r2 > 0:

The arguments for x0 = b; are similar and therefore u00 (x) < r2; 8x 2

[a; b] ; 8� 2 [0; 1] :

The case u00 (x) � �r1 is analogous and so

ju00 (x)j < r2; 8x 2 [a; b] ;8� 2 [0; 1] :
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� By integration in [a; x] ;

u0(x)� �B =

Z x

a

u00(s)ds < r2(x� a) < r2(b� a);

and so

ju0(x)j < r2(b� a) + jBj ; 8x 2 [a; b] ;8� 2 [0; 1] :

With similar procedure

u(x)� �A =

Z x

a

u0(s)ds <

Z x

a

(r2(b� a) + jBj) ds

= r2(b� a)2 + jBj (x� a) < r2(b� a)2 + jBj (b� a):

Therefore

ju(x)j < r2(b� a)2 + jBj (b� a) + jAj

� Lemma 2.2.3 can be applied in [a; b] de�ning � := 2r2, then by (3.4.4)

and (3.4.5)

u000 (a) � � [C + u00(a)� �00 (a)] � 2r2 := �

and

u000 (b) � � [D � u00(b) + �00 (b)] � [�u00(b)� r2] > �2r2 := ��:

To apply Lemma 2.2.2 in [a; b] the technique is similar.

� The operators

L : C4 ([a; b])! C ([a; b])� R4

given by

Lu =
�
u(iv) � u00; u (a) ; u0 (a) ; u000 (a) ; u000 (b)

�
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and, N� : C
3 ([a; b])! C ([a; b])� R4, by

N� =

0BBB@
� [sp(x)� f (x; �0 (x; u) ; �1 (x; u

0) ; �2 (x; u
00) ; u000)]

���2 (x; u00) ; �A; �B;

� [C + u00(a)� �2 (a; u
00 (a))] ; � [D � u00(b) + �2 (b; u

00 (b))]

1CCCA :

� To prove that a solution u1 (x) of the problem (2.3.3),(3.4.4) for � = 1,

is also a solution of the initial problem, at the boundary points, assume

by contradiction that

max
x2[0;1]

[�00 (x)� u001 (x)] := �00 (a)� u001 (a) > 0:

Therefore u0001 (a) � �000 (a) = u0001 (a
+) � �000 (a+) � 0 and the following

contradiction is obtained with (3.4.2)

�000(a) = C + u00(a)� �00 (a) < C:

For the other endpoint the arguments are similar.

For clearness, the dependence of the solution on s will be discussed in

[0; 1] and for the particular case A = B = C = D = 0: Therefore the

boundary conditions become

u(0) = 0; u0(0) = 0; u000(0) = 0; u000(1) = 0; (3.4.6)

and the corresponding de�nitions of lower and upper solutions will verify

these restrictions.

Next Theorem follows the same method as in Theorem 3.2.6.

Theorem 3.4.3 Let f : [0; 1]�R4 ! R be a continuous function that veri�es

the one-sided Nagumo conditions (2.2.1) (or (2.2.2)) and (2.2.3). If:
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(H�1) f (x; y0; y1; y2; y3) is nondecreasing on y0 and y1 and nonincreasing on

y2;

(H�2) there are s1 2 R and r > 0 such that for every x 2 [0; 1] and y0; y1 � �r;

f (x; 0; 0; 0; 0)

p (x)
< s1 <

f (x; y0; y1;�r; 0)
p (x)

; (3.4.7)

then there is s0 < s1 (eventually s0 = �1) such that:

1) for s < s0; (3.1.1),(3.4.6) has no solution.

2) for s0 < s � s1; (3.1.1),(3.4.6) has at least one solution.

Proof. As the proof follows the technique referred in Theorem 3.2.6 it is

pointed out only the adequate modi�cations of this case:

� � (x) = �r x2
2
and � (x) � 0 are lower and upper solutions, respectively,

for the problem (3.1.1),(3.4.6), for s = s�: So, by Theorem 3.2.4 there

is a solution of (3.1.1),(3.4.6) for s = s�:

� Assuming that problem (3.1.1),(3.4.6) has for s = � � s1, a solution

u� (x) ; this function u� (x) is an upper solution of (3.1.1),(3.4.6), for

� � s � s1:

� For � > 0 large enough such that

� � r; u00�(0) � ��; u00�(1) � ��; min
x2[0;1]

u0� (x) � �� , (3.4.8)

the function

�� (x) = ��x
2

2

is a lower solution of (3.1.1),(3.4.6) for s � s1:

As it can be proved that,

�� = ��00 (x) � u00�(x); 8x 2 ]0; 1[ ;
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then by Theorem 3.2.4, there is a solution of (3.1.1),(3.4.6) for � � s �

s1:

As in the previous section, a dual version of last theorem can be enunci-

ated, with similar proof:

Theorem 3.4.4 Let f : [0; 1]�R4 ! R be a continuous function that veri�es

the one-sided Nagumo conditions ((2.2.1) or (2.2.2)) and (2.2.3).

(H̄�1) f (x; y0; y1; y2; y3) is nonincreasing on y0 and y1and nondecreasing on

y2;

(H̄�2) there ares1 2 R and r > 0 such that, for every x 2 [0; 1] and y0; y1 � r;

f (x; 0; 0; 0; 0)

p (x)
> s1 >

f (x; y0; y1;�r; 0)
p (x)

;

then there is s0 > s1 (with the possibility that s0 = +1) such that:

1) for s > s0; (3.1.1),(3.4.6) has no solution.

2) for s0 > s � s1; (3.1.1),(3.4.6) has at least one solution.

3.5 Multiplicity results for unbounded f

As in before, to prove the existence of at least a second solution it is necessary

to introduce strict lower and upper solutions

De�nition 3.5.1 The function � (x) 2 C4 ([0; 1]) is a strict lower solution

of the problem (3.1.1),(3.4.6) if the following conditions are ful�lled:

�(iv) (x) + f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)) > sp (x)
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and

� (0) < 0; �0 (0) < 0; �000 (0) � 0; �000 (1) � 0

The function � (x) 2 C4 ([0; 1]) is called a strict upper solution of problem

(3.1.1),(3.4.6) if the reversed inequalities hold

Let us consider the set

Y =
�
y 2 C3 ([0; 1]) : y (0) = y0 (0) = y000 (0) = y000 (1) = 0

	
and the operator L : dom L ! C ([0; 1]) in which dom L = C4 ([0; 1]) \ Y

given by Lu = u(iv): For s 2 R consider Ns : C3 ([0; 1]) \ Y ! C ([0; 1])

de�ned by (3.3.3).

In this case the tool to evaluate the degree will be given by the next

lemma.

Lemma 3.5.2 Let f : [0; 1] � R4 ! R be a continuous function verifying

Nagumo conditions, ((2.2.1) or (2.2.2)) and (2.2.3), and the condition (H�1).

Let us suppose that there are strict lower and upper solutions of the problem

(3.1.1),(3.4.6), � (x) and � (x) respectively, such that �00 (x) < �00 (x) ; 8x 2

[0; 1] : Thus there is �� > 0 such that for


� =
n
u 2 dom L : �(i) (x) < u(i) (x) < �(i) (x) ; i = 0; 1; 2; ku000 (x)k1 < �

o
the degree L+Ns; relatively to L is well de�ned and given by dL (L+Ns;
�; 0) =

�1:

Proof. The proof is analogous to Lemma 3.3.2, with obvious changes to

prove the key points:

� There is an open bounded set 
1 � 
 such that dL (L+ Fs;
1; 0) is

well de�ned and dL (L+ Fs;
1; 0) = �1:
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� If u is a solution of H1u = 0 then u 2 
�:

Similar to Theorem 3.3.3, for the multiplicity result it will be needed a

"speed growth condition".

Theorem 3.5.3 Let f : [0; 1]� R4 ! R be a continuous function satisfying

the assumptions of Theorem 3.4.3. Suppose that there is M > �r; with r

given by (3.4.7), such that for every u solution of the problem (3.1.1),(3.4.6),

with s � s1, veri�es u00 (x) < M; 8x 2 [0; 1] ; and there is m 2 R such that

f (x; y0; y1; y2; y3) � mp (x) ; (3.5.1)

for (x; y0; y1; y2; y3) 2 [0; 1]� [�r � jM j ; r + jM j]2 � [�r; jM j] �R.

Then s0 given by Theorem 3.4.3 is �nite and:

1) for s < s0, (3.1.1),(3.4.6) has no solution;

2) for s = s0, (3.1.1),(3.4.6) has, at least, one solution.

Moreover, let M1 := max fr; jM jg and suppose that there is � > 0 such

that for (x; y0; y1; y2; y3) 2 [0; 1]� [�M1;M1]
3 � R and 0 � �0; �1 � 1,

f (x; y0 + �0�; y1 + �1�; y2 + �; y3) � f (x; y0; y1; y2; y3) : (3.5.2)

Then

3) for s 2 ]s0; s1], (3.1.1),(3.4.6) has, at least, two solutions.

Proof. An analogous method to the proof of Theorem 3.3.3 can be applied.

So it is referred only the main changes:

� Every solution u (x) of problem (3.1.1),(3.4.6), for s 2 ]s0; s1] ; satis�es

�r < u00 (x) < M , � r < u(i) (x) < jM j ; 8x 2 [0; 1] ; i = 0; 1:
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� s0 is �nite results from the contradiction between

u(iv) (x) � (s�m) p (x) ; 8x 2 [0; 1] ;

for s small enough and, by (3.4.6), there is c 2 ]0; 1[, such that u(iv) (c) =

0:

� To prove the existence of a second solution of (3.1.1),(3.4.6), for s 2

]s0; s1] ; assuming that there is a solution u� (x) for � 2 ]s0; s1] �

[s�1; s1] ; consider " > 0, small enough, such that

ju00� (x) + "j < M1;

"2
�
x2

2
+ x+ 1

�
< 1;

"2 (x+ 1) ; 8x 2 [0; 1] :

Therefore the auxiliary function

~u (x) := u� (x) + "
x2

2
+ "x+ "

is a strict upper solution of problem (3.1.1),(3.4.6) for � < s � s1:

In fact, applying (3.5.2) with � := 1
"
, �0 := "2

�
x2

2
+ x+ 1

�
and �1 :=

"2 (x+ 1) ; it is obtained

~u(iv) (x)

= u(iv)� (x) = �p (x)� f (x; u� (x) ; u
0
� (x) ; u

00
� (x) ; u

000
� (x))

< sp (x)� f (x; u� (x) ; u
0
� (x) ; u

00
� (x) ; ~u

000 (x))

� sp (x)

�f
�
x; u� (x) + "

�
x2

2
+ x+ 1

�
; u0� (x) + " (x+ 1) ; u00� (x) + "; ~u000 (x)

�
= sp (x)� f (x; ~u (x) ; ~u0 (x) ; ~u00 (x) ; ~u000 (x))
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and the boundary conditions

~u (0) = u� (0) + " > 0

~u0 (0) = u0� (0) + " > 0

~u000 (0) = ~u000 (1) = 0

:

The function

� (x) = �r
5

�
x2

2
+ 2x+ 3

�
is a strict lower solution of the problem (3.1.1),(3.4.6) for s � s1.

As, �r < u00� (x) ; for every x 2 [0; 1] ; then,

�00 (x) < ~u00 (x) ; 8x 2 [0; 1] : (3.5.3)

By integrating in [0; x] and (3.5.1) it is easily obtained

� (x) < ~u� (x)

�0 (x) < ~u0� (x) ; 8x 2 [0; 1] :

The arguments follow in analogous way applying Lemma 3.5.2, to be

sure that there is ��3 > 0, independently of s, such that for


" =

8>>>>>><>>>>>>:
x 2 dom L :

� r
5

�
x2

2
+ 2x+ 3

�
< y (x) < u� (x) + "x

2

2
+ "x+ ";

� r
5
(x+ 1) < y0 (x) < u� (x) + "x+ ";

� r
5
< y00 (x) < u� (x) + ";

ky000k1 < ��3

9>>>>>>=>>>>>>;
:

3.6 The London Millennium Bridge applica-

tion

There is a huge potential for this multiplicity tool in terms of applications.

The London Millennium bridge phenomenon is a clear example.
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Figure 3.6.1: Walking, in addition to our weight, we create a repeating pat-

tern of forces as our mass rises and falls. This creates a vertical �uctuating

force of around 250 N which repeats with each step.

In the opening day this bridge revealed lateral movements, while pedes-

trians were crossing it. These lateral movements were related with the lateral

load caused by the number os pedestrians crossing it.

To discover the causes of the lateral displacements, the number of pedes-

trians walking on the bridge was increased in groups. From a certain number,

the excitation due to the lateral movement was greater then the damping,

causing the lateral oscillations in the bridge.

If, in equation (3.1.1), the parameter s represents the number of pedes-

trians walking on the bridge at a given moment, then the lower and upper

solution method applied to Ambrosetti-Prodi problems can be a very sharp

tool to give some bounds on s:

In fact, if s0 represents the number of pedestrians corresponding to the

damping factor inherent to the bridge, then from Theorem 3.3.3 we obtain
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Figure 3.6.2: When the number of people increases, the excitation force is

greater than the damping of the structure then Synchronous Lateral Excita-

tion occurs and the sideways movements increase.

that:

� s0 = 166;

� for s � s0 there is no displacement because the excitation would be less

than the damping;

� for s 2 ]s0; s1] the bridge presents lateral oscillations as the load force

is greater than the damping capacity.
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Figure 3.6.3: Relation between the number of pedestrians in the bridge at a

given time and the lateral oscillations.
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Chapter 4

Periodic impulsive fourth order

problems

4.1 Introduction

The theory of impulsive problems is experiencing a rapid development in the

last few years. Mainly because they have been used to describe some phe-

nomena, arising from di¤erent disciplines like physics or biology, subject to

instantaneous change at some time instants called moments. Second order

periodic impulsive problems were studied to some extent, ([11, 64, 86]), how-

ever very few papers were dedicated to the study of third and higher order

impulsive problems. One can refer for instance [63, 95] and the references

therein.

Two types of fourth order impulsive problems will be considered in this

chapter. Both are composed by the fully nonlinear equation

u(iv) (x) = f (x; u (x) ; u0 (x) ; u00 (x) ; u000 (x)) (4.1.1)

for a. e. x 2 I := [0; 1] n fx1; :::; xmg where f : [0; 1] � R4 ! R is L1-

81
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Carathéodory function, along with the periodic boundary conditions

u(i) (0) = u(i) (1) ; i = 0; 1; 2; 3: (4.1.2)

The impulsive conditions are of two types. First problem contain the

impulse assumptions

u
�
x+j
�
= gj (u (xj)) ;

u0
�
x+j
�
= hj (u

0 (xj)) ;

u00
�
x+j
�
= kj (u

00 (xj)) ;

u000
�
x+j
�
= lj (u

000 (xj)) ;

(4.1.3)

and the second problem the mixed impulsive conditions

u
�
x+j
�
= gj (u (xj)) ;

u0
�
x+j
�
= hj (u

0 (xj)) ;

u00
�
x+j
�
= kj (u

00 (xj)) ;

u00
�
x+j
�
= u00 (xj+1) ;

(4.1.4)

where gj; hj; kj and lj; for j = 1; :::;m; are given real valued functions

satisfying some adequate conditions, and xj 2 (0; 1) ; such that 0 = x0 <

x1 < ::: < xm < xm+1 = 1:

The arguments applied in this chapter make use of the lower and up-

per solution method with an iterative technique (suggested in [9]) which is

not necessarily monotone, together with classical results such as Lebesgue

Dominated Convergence Theorem, Ascoli-Arzela Theorem and �xed point

theory.

The su¢ cient conditions for the existence of solution for both problems

are slightly di¤erent. In the problem (4.1.1)-(4.1.3) it is assumed that the

third derivatives of the lower and upper solutions are well ordered. This is

an "unusual" assumption in fourth order problems and it is "too strong".

This condition can be weakened for problem (4.1.1), (4.1.2), (4.1.4), where
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it is assumed that the second derivative of the lower and upper solution are

well ordered, or in reverse order. In addition to this more usual condition,

two more features are required:

� a Nagumo-type condition to control the third derivative

� a "Dirichlet type" boundary condition in each subinterval de�ned by

the impulsive moments.

For each problem it is presented an example to illustrate the existence

and location parts of lower and upper solution method.

In both problems it is remarked that the de�nition of lower and upper

solutions have di¤erent di¤erential inequalities, as well as a di¤erent type of

variation on the nonlinearity. As such it is reasonable to raise the question,

for which more research is still required:

Is there a relation between the type of the di¤erential inequality used

in lower and upper solution and the "monotone" type assumption on the

nonlinearity?

4.2 De�nitions and auxiliary results

In this section some notations, de�nitions and auxiliary results, needed for

the main existence result, are presented. For m 2 N; let 0 = x0 < x1 <

::: < xm < xm+1 = 1 and D = fx1; :::; xmg and de�ne x�j := lim
x!x�j

x; for

j = 1; :::;m.

Consider PC(l) (I) ; l = 1; 2; 3 as the space of the real-valued functions

u; such that u(l) 2 PC (I) ; u(l)
�
x+k
�
and u(l)

�
x�k
�
exist with u(l)

�
x�k
�
=
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u(l) (xk) ; for k = 1; 2; :::;m: Therefore u 2 PC3 (I) ; it can be written as

u (x) =

8>>>>>><>>>>>>:

u0 (x) if x 2 [0; x1] ;

u1 (x) if x 2 (x1; x2] ;
...

um (x) if x 2 (xm; 1] ;

where um (x) 2 C3 ((xi; xi+1)) for i = 1; :::;m:

Denote

PC3D (I) =
�
u 2 PC3 (I) : u000 2 AC (xi; xi+1) ; i = 0; 1; :::;m

	
and for each u 2 PC3D (I) we set the norm

kukD = kuk+ ku0k+ ku00k+ ku000k

:

Throughout this Chapter the following hypothesis will be assumed :

(I1) f : [0; 1]�R4 ! R is a L1-Carathéodory function, that is, f (x; �; �; �; �)

is a continuous function for a:e: x 2 I; f (�; y0; y1; y2; y3) is measurable

for (y0; y1; y2; y3) 2 R4; and for every M > 0 there is a real-valued

function  M 2 L1 ([0; 1]) such that

jf (x; y0; y1; y2; y3)j �  M (x) ; for a. e. x 2 [0; 1]

and for every (y0; y1; y2; y3) 2 R4 with jyij �M , for i = 0; 1; 2; 3:

(I2) the real valued functions gj; hj; kj and lj are nondecreasing, for j =

1; :::;m:

De�nition 4.2.1 A function u 2 PC3D (I) is a solution of (4.1.1)-(4.1.3) if

it satis�es (4.1.1) almost everywhere in I n D, the periodic conditions (4.1.2)

and the impulse conditions (4.1.3).
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Next Lemma is a key tool to obtain the main result .

Lemma 4.2.2 Let p : [0; 1] ! R be a L1�Carathéodory function. Then for

each aj; bj; cj; dj 2 R; j = 1; 2:::;m; the initial value problem composed by

the equation

u(iv) (x) = p (x) for a. e. x 2 (0; 1) (4.2.1)

and the boundary conditions

u
�
x+j
�
= aj; u0

�
x+j
�
= bj; u00

�
x+j
�
= cj; u000

�
x+j
�
= dj; (4.2.2)

has a unique solution u 2 PC3D (I) such that kukD � �; for � = jajj+2 jbjj+
5
2
jcjj+ 4N:

Proof. De�ne the operators T : PC3D (I)! PC3D (I) given by

T u : = aj + bj
�
x� x+j

�
+ cj

�
x� x+j

�2
2

(4.2.3)

+dj

�
x� x+j

�3
3!

+

xZ
x+j

(x� r)3

3!
u(iv) (r) dr:

As p (x) is an L1�Carathéodory function, then the operator T is contin-

uous. As p (x) is bounded in I; we can de�ne N = kp (x)k1 : Therefore the

following estimates can be obtained for x 2 (xj; xj+1)

ju (x)j � jajj+ jbjj+
jcjj
2
+
jdjj
3!
+N;

ju0 (x)j � jbjj+ jcjj+
jdjj
2
+N;

ju00 (x)j � jcjj+ jdjj+N;

ju000 (x)j � jdjj+N:

Hence, for � := jajj+ 2 jbjj+ 5
2
jcjj+ 8

3
jdjj+ 4N; it is obtained that

kukD = kuk+ ku0k+ ku00k+ ku000k � �: (4.2.4)
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Let u 2 PC3D (I) such that kukD � �, then by (4.2.4),

kT unkD = kT unk+
(T un)0+ (T un)00+ (T un)000 �

� jajj+ jbjj+
jcjj
2
+
jdjj
3!
+N +

jbjj+ jcjj+
jdjj
2
+N + jcjj+ jdjj+N + jdjj+N

� �

As the operator T is uniformly bounded and equicontinuous by Ascoli-

Arzela Theorem T is a compact operator. Moreover the set of solutions of

the equation, u = T u, is bounded. By Schauder �xed point Theorem this

implies that T has a �xed point u 2 PC3D (I) given by

u (x) =

2664 aj + bj
�
x� x+j

�
+ cj

(x�x+j )
2

2
+ dj

(x�x+j )
3

3!

+
xR
x+j

(x�r)3
3!

p (r) dr

3775 :
As

u0 (x) =

2664 bj + cj
�
x� x+j

�
+ dj

(x�x+j )
2

2

+
xR
x+j

(x�r)2
2!

p (r) dr

3775 ;

u00 (x) =

2664cj + dj
�
x� x+j

�
+

xZ
x+j

(x� r) p (r) dr

3775 ;

u000 (x) =

2664dj +
xZ

x+j

p (r) dr

3775 ;
then this �xed point satis�es u

�
x+j
�
= aj; u

0 �x+j � = bj; u
00 �x+j � = cj and

u000
�
x+j
�
= dj:

Assuming that the problem (4.1.1)-(4.1.3), has two solutions, u1 and u2;

the uniqueness is easily obtained by the integration of (4.2.1) in (xj; xj+1) :
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Lower and upper functions will be given by the next de�nition:

De�nition 4.2.3 A function � 2 PC3D (I) is said to be a lower solution of

the problem (4.1.1)-(4.1.3) if:

(i) �(iv) (x) � f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)), for a.e. x 2 (0; 1) :

(ii) � (0) � � (1) ; �0 (0) � �0 (1) ; �00 (0) � �00 (1) ; �000 (0) � �000 (1) ;

(iii) �
�
x+j
�
� gj (� (xj)) ; �0

�
x+j
�
� hj (�

0 (xj)) ; �00
�
x+j
�
� kj (�

00 (xj)) ;

�000
�
x+j
�
� lj (�

000 (xj)) ;

A function � 2 PC3D (I) is said to be a upper solution of the problem

(4.1.1)-(4.1.3) if the reversed inequalities hold.

4.3 Existence of solutions

In this section the main existence and location result is presented.

Theorem 4.3.1 Let �; � be, respectively, lower and upper solutions of (4.1.1)-

(4.1.3) such that

�000 (x) � �000 (x) on In D; (4.3.1)

and

�(i) (0) � �(i) (0) ; i = 0; 1; 2: (4.3.2)

Assume that conditions (I1) and (I2) hold and

f (x; �; �0; �00; y3) � f (x; y0; y1; y2; y3) � f (x; �; �0; �00; y3) ; (4.3.3)

for �xed (x; y3) 2 I � R and �(i) (x) � yi � �(i) (x) ; for i = 0; 1; 2:
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Then the problem (4.1.1)-(4.1.3) has a solution u (x) 2 PC3D (I), such

that

�(i) (x) � u(i) (x) � �(i) (x) ; for i = 0; 1; 2; 3

for x 2 InD:

Remark 4.3.2 As one can notice by (4.3.2) the inequalities �(i) (x) � �(i) (x)

hold for i = 0; 1; 2 and every x 2 I:

Proof. Consider the following modi�ed problem composed by the equation

u(iv) (x) = f (x; �0 (x; u (x)) ; �1 (x; u
0 (x)) ; �2 (x; u

00 (x)) ; �3 (x; u
000 (x)))

�u000 (x) + �3 (x; u
000 (x)) ;

(4.3.4)

for x 2 (0; 1) and x 6= xj where the continuous functions �i : R2 ! R; for

i = 0; 1; 2; 3; are given by

�i (x; yi) =

8>>><>>>:
�(i) (x) ; yi > �(i) (x)

yi ; �(i) (x) � yi � �(i) (x)

�(i) (x) ; yi < �(i) (x) ;

(4.3.5)

with the boundary conditions (4.1.2) and the impulsive assumptions (4.1.3).

To prove the existence of solution for the problem (4.3.4),(4.1.2),(4.1.3)

it is used an iterative, not monotone, technique. Let (un)n2N be the sequence

of function in PC3D (I) de�ned as follows

u0 = � (4.3.6)

and for n = 1; 2; :::

u
(iv)
n (x) = f

�
x; �0 (x; un�1 (x)) ; �1

�
x; u0n�1 (x)

�
; �2
�
x; u00n�1 (x)

�
; �3 (x; u

000
n (x))

�
+u000n (x)� �3 (x; u

000
n (x)) ;

(4.3.7)
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for a.e. x 2 (0; 1) with the boundary conditions

un (0) = un�1 (1) ; u0n (0) = u0n�1 (1) ; (4.3.8)

u00n (0) = u00n�1 (1) ; u000n (0) = u000n�1 (1) ;

and the impulsive conditions; for j = 1; :::;m;

un
�
x+j
�
= gj (un�1 (xj)) ; u0n

�
x+j
�
= hj

�
u0n�1 (xj)

�
u00n
�
x+j
�
= kj

�
u00n�1 (xj)

�
; u000n

�
x+j
�
= lj

�
u000n�1 (xj)

� (4.3.9)

By Lemma 4.2.2 the sequence (un)n2N is well de�ned.

Step 1 - Every solution of (4.3.7)-(4.3.9) veri�es

�(i) (x) � u(i)n (x) � �(i) (x) ; for i = 0; 1; 2; 3; (4.3.10)

for all n 2 N and every x 2 I:

Let u be a solution of the problem (4.3.7)-(4.3.9). The proof of the in-

equalities (4.3.10) will be done by mathematical induction.

For n = 0 ; by (4.3.6)

�000 (x) = u0000 (x) � �000 (x) ; for x 2 InD;

and by Remark 4.3.2

�(i) (x) = u
(i)
0 (x) � �(i) (x) ; for i = 0; 1; 2:

Suppose that for k = 1; :::; n� 1; for x 2 I

�000 (x) � u000k (x) � �000 (x) : (4.3.11)

For x = 0; by (4.3.8), (4.3.11) and De�nition 4.2.3,

u000n (0) = u000n�1 (1) � �000 (1) � �000 (0) :
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If x = x+j ; j = 1; :::;m; from (4.3.9), (I2), (4.3.11) and De�nition 4.2.3,

u000n
�
x+j
�
= lj

�
u000n�1 (xj)

�
� lj (�

000 (xj)) � �000
�
x+j
�
:

For x 2 ]xj; xj+1] ; j = 1; 2; :::;m; suppose, by contradiction, that there

exists x� 2 ]xj; xj+1] such that �000 (x�) > u000n (x
�) and de�ne

min
x2]xj ;xj+1]

u000n (x)� �000 (x) := u000n (x
�)� �000 (x�) < 0:

As by (4.3.9), u000n
�
x+j
�
� �000

�
x+j
�
; then there is an interval (x; x) � (xj; x�)

such that

u000n (x) < �000 (x) and u(iv)n (x) � �(iv) (x) ; 8x 2 (x; x) :

From (4.3.4) and (4.3.3) the following contradiction is obtained for x 2 (x; x)

0 � u(iv)n (x)� �(iv) (x)

= f
�
x; �0 (x; un�1 (x)) ; �1

�
x; u0n�1 (x)

�
; �2
�
x; u00n�1 (x)

�
; �000 (x)

�
�u000 (x) + �000 (x)� �(iv) (x)

� f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x))� u000 (x) + �000 (x)

�f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x))

� �000 (x)� u000 (x) > 0:

Therefore u000n (x) � �000 (x) ; for all n 2 N and every x 2 I: In the same

way it can be shown that u000n (x) � �000 (x) ; 8x 2 I; 8n 2 N; and so (4.3.10)

is proved for i = 3:

Consider now the inequality �00 (x) � u00n (x) � �00 (x) ; for all n 2 N and

every x 2 I:

To justify (4.3.10) for i = 2; notice that for n = 0; the proof is obtained

in a similar way as in above.
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Assuming that for k = 1; :::; n� 1 and every x 2 I,

�00 (x) � u00k (x) � �00 (x) : (4.3.12)

then for x 2 [0; x1], by integration of the inequality u000n (x) � �000 (x) in

[0; x] we have

u00n (x)� u00n (0) � �00 (x)� �00 (0) :

By (4.3.8) and (4.3.12),

u00n (x) � �00 (x)� �00 (0) + u00n�1 (1)

� �00 (x)� �00 (0) + �00 (1) � �00 (x)

hence u00n (x) � �00 (x) ; for all x 2 [0; x1] :

For x 2 ]xj; xj+1] ; j = 1; 2; :::;m; by integration of the inequality u000n (x) �

�000 (x) in x 2 ]xj; xj+1],

u00n (x) � �00 (x)� �00
�
x+j
�
+ u00n

�
x+j
�
;

and by (4.3.9) and De�nition 4.2.3

u00n (x) � �00 (x)� �00
�
x+j
�
+ kj

�
u00n�1 (xj)

�
� �00 (x) :

obtaining that u00n (x) � �00 (x) ; for all n 2 N and every x 2 I: Using similar

arguments it can be proved that u00n (x) � �00 (x) and therefore

�00 (x) � u00n (x) � �00 (x) ; 8x 2 I; 8n 2 N: (4.3.13)

For the inequality �0 (x) � u0n (x) � �0 (x) ;for all n 2 N and every x 2 I:

For n = 0; the proof is obtained analogously to the previous cases:

Suppose that for k = 1; :::; n� 1 and every x 2 I we have

�0 (x) � u0k (x) � �0 (x) : (4.3.14)
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For x 2 [0; x1], integrating (4.3.13) we have

u0n (x)� u0n (0) � �0 (x)� �0 (0) :

By (4.3.8) and (4.3.14) it is obtained that

u0n (x) � �0 (x)� �0 (0) + u0n�1 (1)

� �0 (x)� �0 (0) + �0 (1) � �0 (x) ;

hence u0n (x) � �0 (x) ; for all x 2 [0; x1] :

For x 2 ]xj; xj+1] ; j = 1; 2; :::;m: Integrating the same inequality in

]xj; xj+1] ; then

u0n (x) � �0 (x)� �0
�
x+j
�
+ u0n

�
x+j
�
:

By (4.3.9), (I2) and De�nition 4.2.3

u0n (x) � �0 (x)� �0
�
x+j
�
+ u0n

�
x+j
�

� �0 (x)� �0
�
x+j
�
+ h

�
u0n�1

�
x+j
��
� �0 (x) ;

obtaining that u0n (x) � �0 (x) ; for all n 2 N and every x 2 I: Using similar

arguments it can be proved that u0n (x) � �0 (x) :

Moreover, through the same process, the inequality � (x) � un (x) �

� (x) ; is obtained for all n 2 N and every x 2 I:

Step 2 - The sequence (un)n2N is convergent to u solution of (4.3.7)-

(4.3.9).

Let Ci = max
n�(i) ;�(i)o, for i = 0; 1; 2; 3; so there exists M > 0,

with M :=
P3

i=0Ci; and for all n 2 N;

kunkD �M: (4.3.15)

Let 
 be a compact subset of R4 given by


 =
�
(w0; w1; w2; w3) 2 R4 : kwik � Ci; i = 0; 1; 2; 3

	
:
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As f is a L1-Carathéodory function in 
, then there exists a real-valued

function  M (x) 2 L1 (I), such that

jf (x;w0; w1; w2; w3)j �  M (x) ; for every (w0; w1; w2; w3) 2 
: (4.3.16)

By Step1 and (4.3.15), (un; u0n; u
00
n; u

000
n ) 2 
, for all n 2 N: From (4.3.7)

and (4.3.16) we obtain��u(iv)n (x)
�� �  M (x) + 2C3; for a.e. x 2 I;

hence u(iv)n (x) 2 L1 (I) :

By integration in I we obtain that

u000n (x) = u000n (0) +

Z x

0

u(iv)n (s) ds+
X

0<xj�x
lj
�
u000n�1 (xj)

�
;

therefore u000n 2 AC (xj; xj+1) and un 2 PC3D (I) : By Ascoli-Arzela The-

orem there exists a subsequence denoted by (un)n2N ; which converges to

u 2 PC3D (I) : Then (u; u0; u00; u000) 2 
:

Using the Lebesgue dominated convergence theorem, for x 2 (xj; xj+1) ;Z x

xj

24 f
�
s; �0 (s; un�1 (s)) ; �1

�
s; u0n�1 (s)

�
; �2
�
s; u00n�1 (s)

�
; �3 (s; u

000
n (s))

�
�u000n (s) + �3 (x; u

000
n (s))

35 ds
is convergent toZ x

xj

24 f (s; �0 (s; u (s)) ; �1 (s; u
0 (s)) ; �2 (s; u

00 (s)) ; �3 (s; u
000 (s)))

�u000 (s) + �3 (x; u
000 (s))

35 ds
as n!1:

Therefore as n!1

u000n (x) = u000n (xj)+Z x

xj

24 f
�
s; �0 (s; un�1 (s)) ; �1

�
s; u0n�1 (s)

�
; �2
�
s; u00n�1 (s)

�
; �3 (s; u

000
n (s))

�
�u000n (s) + �3 (x; u

000
n (s))

35 ds
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is convergent to

u000 (x) = u000 (xj)+Z x

xj

24 f (s; �0 (s; u (s)) ; �1 (s; u
0 (s)) ; �2 (s; u

00 (s)) ; �3 (s; u
000 (s)))

�u000 (s) + �3 (x; u
000 (s))

35 ds:
As the function f is L1-Carathéodory function in (xj; xj+1), then u000 (x) 2

AC (xj; xj+1) : Therefore u 2 PC3D (I) and u is a solution of (4.3.7)-(4.3.9).

To prove that u is a solution of the initial problem (4.1.1)-(4.1.3) we note

that taking the limit in (4.3.8) and (4.3.9), as n!1; by the convergence of

un then u veri�es (4.1.2) and, by the continuity of the impulsive functions, u

veri�es (4.1.3). By (4.3.5), Step 1 and the convergence of un, u veri�es (4.1.1).

Then problem (4.1.1)-(4.1.3) has a solution u (x) 2 PC3D (I), such that

�(i) (x) � u(i) (x) � �(i) (x) ; for i = 0; 1; 2; 3;

for x 2 I:

Example 4.3.3 Let us consider the following nonlinear impulsive boundary

value problem, composed by the equation

u(iv) (x) = (u (x))3 + arctan (u0 (x) + 1) + 0:01 (u00 (x))
5
+ k ju000 (x)j� ;

(4.3.17)

where 0 < � � 2 and k � �677; for all x 2 [0; 1] n
�
1
2

	
along with the

boundary conditions (4.1.2) and for x = 1
2
the impulse conditions

u
�
1
2

+
�
= �1

�
u
�
1
2

��3
u0
�
1
2

+
�
= �2

�
u0
�
1
2

��
u00
�
1
2

+
�
= �3

3

q�
u00
�
1
2

��
u000
�
1
2

+
�
= �4

�
u000
�
1
2

��5
;

(4.3.18)
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with �i 2 R+; i = 1; 2; 3; 4:

Obviously this problem is a particular case of (4.1.1)-(4.1.3) with

f (x; y0; y1; y2; y3) = (y0)
3 + arctan (y1 + 1) + 0:01 (y2)

5 + k jy3j� ;

for all x 2 [0; 1] n
�
1
2

	
; m = 1, x1 = 1

2
and the nondecreasing functions

gj; hj; kj and lj given by g (x) = �1x
3; h (x) = �2x, k (x) = �3

3
p
x; l (x) =

�4x
5:

One can verify that the functions � (x) = 0 and

� (x) =

8<: x3 + 3x2 + 4x+ 3
2

; x 2
�
0; 1

2

�
x3 ; x 2

�
1
2
; 1
�

are PC3D (I) for D =
�
1
2

	
and considering

�0 (x) =

8<: 3x2 + 6x+ 4 ; x 2
�
0; 1

2

�
3x2 ; x 2

�
1
2
; 1
�

and

�00 (x) =

8<: 6x+ 6 ; x 2
�
0; 1

2

�
6x ; x 2

�
1
2
; 1
�
:

Moreover, they are lower and upper solutions, respectivelly, for the pro-

blem (4.3.17), (4.1.2), (4.3.18), with

�1 �
64

42875
; �2 �

3

31
; �3 �

3
p
3; �4 �

1

64
:

As f veri�es (4.3.3), therefore by Theorem 4.3.1 there is a solution u (x) 2

PC3D (I), such that

�(i) (x) � u(i) (x) � �(i) (x) ; for i = 0; 1; 2; 3:

Remark that this solution can not be a trivial periodic solution, as the

only constant solution of (4.3.17) is u (x) = � 3
p

�
4
which is not in region

displayed in Figure 4.3.1.
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Figure 4.3.1: Region where solution u lies

Figure 4.3.2: Region where solution u0 lies
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4.4 Mixed impulsive boundary conditions

In this section we deal with the impulsive problem composed by the fourth

order fully nonlinear equation (4.1.1) with the periodic boundary conditions

(4.1.2) and the mixed impulsive conditions of "Dirichlet type" (4.1.4).

The arguments of the proof require the following lemma:

Lemma 4.4.1 [93, Lemma 2] For z; w 2 C(I) such that z(x) � w(x), for

every x 2 I, de�ne

q(x; u) = maxfz (x) ;minfu;w (x)gg: (4.4.1)

Then, for each u 2 C1(I) the next two properties hold:

(a)
d

dx
[q(x; u(x))] exists for a.e. x 2 I.

(b) If u; um 2 C1(I) and um ! u in C1(I) then

d

dx
[q(x; um(x))]!

d

dx
[q(x; u(x))] for a.e. x 2 I:

Next lemma will provide uniqueness of solution:

Lemma 4.4.2 Let p : [0; 1]! R be a L1�Carathéodory function verifying a

Nagumo type condition in

E =
�
(x; y0; y1; y2; y3) 2 I � R4 : i (x) � yi � �i (x) ; i = 0; 1; 2

	
;

for some continuous functions i, �i; i = 0; 1; 2 such that i (x) � �i (x) ;

8x 2 [0; 1]. Then for each aj; bj; cj 2 R; j = 1; 2:::;m; the boundary value

problem composed by the equation

u(iv) (x) = p (x) for a. e. x 2 (0; 1) (4.4.2)

u
�
x+j
�
= aj; u0

�
x+j
�
= bj; u00

�
x+j
�
= cj; u00 (xj+1) = u00

�
x+j
�
; (4.4.3)

has a unique solution u 2 PC3D (I) :
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Proof. From condition u00 (xj+1) = u00
�
x+j
�
there is � 2 (xj; xj+1) such that

u000 (�) = 0: De�ne the operators V : PC3D (I)! PC3D (I) given by

Vu := aj + bj
�
x� x+j

�
+ cj

�
x� x+j

�2
2

+

xZ
x+j

(x� r)2

2
u000 (r) dr (4.4.4)

As p (x) is a L1�Carathéodory function, then the operator V is contin-

uous. Since p (x) is bounded in I; we can de�ne N = max fjp (x)j : x 2 Ig :

Therefore the following estimates can be obtained

0 := � jajj � jbjj �
jcj j
2
�N � ju (x)j � jajj+ jbjj+ jcj j

2
+N := �0

1 := � jbjj � jcjj �N � ju0 (x)j � jbjj+ jcjj+N := �1

2 := � jcjj �N � ju00 (x)j � jcjj+N := �2

�N � ju000 (x)j � N:

:

Then by Lemma 1.2.2 there R > 0, such that ju000 (x)j < R; for x 2 [0; 1] :

Then de�ning �� := jajj+ 2 jbjj+ 5
2
jcjj+ 4N it is obtained that

kukD = kuk+ ku0k+ ku00k+ ku000k � ��: (4.4.5)

Let u 2 PC3D (I) such that kukD � �; then by (4.4.5),

kVunkD = kVunk+
(Vun)0+ (Vun)00+ (Vun)000

� jajj+ jbjj+
jcjj
2
+ jbjj+ jcjj+ jcjj+ 4N � ��:

As the operator V is uniformly bounded and equicontinuous by Ascoli-

Arzela�s theorem V is a compact operator. Moreover the set of solutions of

the equation u = Vu; is bounded. By Schauder �xed point Theorem this

implies that V has a �xed point u 2 PC3D (I) given by

u (x) =

2664aj + bj
�
x� x+j

�
+ cj

�
x� x+j

�2
2

+

xZ
x+j

(x� r)2

2
u000 (r) dr

3775 :
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Suppose that the problem (4.4.2)-(4.4.3), has two solutions, u1 and u2:

For x 2 (xj; xj+1)

u
(iv)
1 (x) = p (x) and u(iv)2 (x) = p (x) ;

then

u
(iv)
1 (x) = u

(iv)
2 (x) :

By integration for x 2 (xj; xj+1),
xj+1Z
x+j

xZ
x+j

u
(iv)
1 (s) dsdx =

xj+1Z
x+j

xZ
x+j

u
(iv)
2 (s) dsdx;

xj+1Z
x+j

�
u0001 (x)� u0001

�
x+j
��
dx =

xj+1Z
x+j

�
u0002 (x)� u0002

�
x+j
��
dx;

and

u001 (xj+1)� u001
�
x+j
�
� u0001

�
x+j
� �
xj+1 � x+j

�
= u002 (xj+1)� u002

�
x+j
�
� u0002

�
x+j
� �
xj+1 � x+j

�
:

As

u0001 (x)� u0001
�
x+j
�
=

xZ
x+j

u
(iv)
1 (s) ds =

xZ
x+j

u
(iv)
2 (s) ds = u0002 (x)� u0001

�
x+j
�
;

(4.4.6)

then, u0001 (x) = u0002 (x) : Again by integration in (xj; xj+1) and (4.4.3) it is

obtained that

u001 (x) = u002 (x) ; u
0
1 (x) = u02 (x) ; u1 (x) = u2 (x) :

for every x 2 I:

De�nition 4.4.3 A function � 2 PC3D (I) is said to be a lower solution of

the problem (4.1.1), (4.1.2), (4.1.4) if:
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(i) �(iv) (x) � f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)), for a.e. x 2 (0; 1) :

(ii) � (0) � � (1) ; �0 (0) � �0 (1) ; �00 (0) � �00 (1) ;

(iii) �
�
x+j
�
� gj (� (xj)) ; �0

�
x+j
�
� hj (�

0 (xj)) ; �00
�
x+j
�
� kj (�

00 (xj)) ;

�00
�
x+j
�
� �00 (xj+1) :

A function � 2 PC3D (I) is an upper solution of the problem (4.1.1),

(4.1.2), (4.1.4) if the reversed inequalities hold.

In this section the main existence and location result is presented.

Theorem 4.4.4 Let �; � be, respectively, lower and upper solutions of (4.1.1)-

(4.1.4) such that

�00 (x) � �00 (x) on In D (4.4.7)

and

�(i) (0) � �(i) (0) ; i = 0; 1: (4.4.8)

If f veri�es a Nagumo-type condition in

E =
n
(x; y0; y1; y2; y3) 2 I � R4 : �(i) (x) � yi � �(i) (x) ; i = 0; 1

o
;

and conditions (I1) and (I2) hold,

f (x; �; �0; y2; y3) � f (x; y0; y1; y2; y3) � f (x; �; �0; y2; y3) ; (4.4.9)

for �xed (x; y2; y3) 2 I � R2 and �(i) (x) � yi � �(i) (x) ; for i = 0; 1; 2; then

the problem 4.1.1), (4.1.2), (4.1.4) has a solution u (x) 2 PC3D (I), such that

�(i) (x) � u(i) (x) � �(i) (x) ; for i = 0; 1; 2; for x 2 InD:
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Proof. Consider the following modi�ed problem composed by the equation

u(iv) (x) = f
�
x; �0 (x; u (x)) ; �1 (x; u

0 (x)) ; �2 (x; u
00 (x)) ; q

�
d
dx
(�2 (x; u

00 (x)))
��

+u00 (x)� �2 (x; u
00 (x)) ;

(4.4.10)

for x 2 (0; 1) and x 6= xj where the continuous functions �i : R2 ! R; for

i = 0; 1; are given by (4.3.5) and q by (4.4.1), the boundary conditions (4.1.2)

and the impulsive conditions (4.1.4).

To prove the existence of solution for the problem (4.4.10),(4.1.2),(4.1.4) it

is applied a non monotone iterative technique similar to the previous section.

Let (un)n2N be a sequence of functions in PC
3
D (I) de�ned by, u0 = � and

for n = 1; 2; :::

u
(iv)
n (x) = f

0@ x; �0 (x; un�1 (x)) ; �1
�
x; u0n�1 (x)

�
; �2
�
x; u00n�1 (x)

�
;

q
�
d
dx
(�2 (x; u

00
n (x)))

�
1A

+u00n (x)� �2 (x; u
00
n (x)) ;

(4.4.11)

for a.e. x 2 (0; 1) ;

un (0) = un�1 (1) ; u0n (0) = u0n�1 (1) ; (4.4.12)

u00n (0) = u00n�1 (1) ; u000n (0) = u000n�1 (1) ;

and the impulsive conditions,

un
�
x+j
�
= gj (un�1 (xj)) ; u0n

�
x+j
�
= hj

�
u0n�1 (xj)

�
u00n
�
x+j
�
= kj

�
u00n�1 (xj)

�
; u00n

�
x+j
�
= u00n�1 (xj+1) ;

(4.4.13)

for j = 1; :::;m:

By Lemma 4.4.2 the sequence (un)n2N is well de�ned.

Step 1 - For every solution un (x) of (4.4.11), (4.4.12), (4.4.13) we have

for all n 2 N

�(i) (x) � u(i)n (x) � �(i) (x) ; for i = 0; 1; 2;
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for every x 2 InD:

Let un (x) be a sequence of solutions of (4.4.11), (4.4.12), (4.4.13). By

mathematical induction, for n = 0 , by (4.4.8) the inequalities

�(i) (x) � u0 (x) � �(i) (x) ; for i = 0; 1; 2;

hold for x 2 InD:

Suppose that for k = 1; :::; n� 1 and every x 2 InD we have

�00 (x) � u00k (x) � �00 (x) : (4.4.14)

For x = 0; from (4.4.12), (4.4.14) and De�nition 4.4.3 it is obtained that

u00n (0) = u00n�1 (1) � �00 (1) � �00 (0) :

For x = x+j ; with j = 1; :::;m; from (4.4.13), (I2), (4.4.14) and De�nition

4.4.3 we obtain

u00n
�
x+j
�
= kj

�
u00n�1 (xj)

�
� kj (�

00 (xj)) � �00
�
x+j
�
:

For x 2 ]xj; xj+1[ ; j = 1; 2; :::;m; suppose that there exists x 2 ]xj; xj+1[

such that �00 (x) > u00n (x) and de�ne

min
x2]xj ;xj+1[

u00n (x)� �00 (x) := u00n (x
�)� �00 (x�) < 0:

As u00n
�
x+j
�
� �00

�
x+j
�
then there is an interval (x; x) � (xj; xj+1) such

that x� 2 (x; x) and

u00n (x) < �00 (x) ; 8x 2 (x; x) :
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Then u000n (x
�)� �000 (x�) = 0 and, from (4.4.9), for x 2 (x; x)

0 � u(iv)n (x)� �(iv) (x)

= f
�
x; �0 (x; un�1 (x)) ; �1

�
x; u0n�1 (x)

�
; �00 (x) ; �000 (x)

�
+u00 (x)� �00 (x)� �(iv) (x)

� f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)) + u000 (x)� �000 (x)

�f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x))

� �00 (x)� u00 (x) � 0:

Therefore (u000n � �000) (x) is decreasing in (x; x) and (u000n � �000) (x) < 0 in

(x; x) ; which is a contradiction with the de�nition of x�:

For x = xj+1; with j = 1; :::;m; from (4.4.13), (4.4.14) and De�nition

4.4.3 we obtain

u00n (xj+1) = u00n�1
�
x+j
�
� �00

�
x+j
�
� �00 (xj+1) :

Therefore u00n (x) � �00 (x) ; for all n 2 N and every x 2 InD: In the same

way it can be shown that u00n (x) � �00 (x) and so

�00 (x) � u00n (x) � �00 (x) ; 8x 2 I; 8n 2 N: (4.4.15)

To prove the inequalities �0 (x) � u0n (x) � �0 (x) ; for all n 2 N and every

x 2 I; suppose that for k = 1; :::; n� 1 and every x 2 I we have

�0 (x) � u0k (x) � �0 (x) : (4.4.16)

Integrating the �rst inequality of (4.4.15) for x 2 [0; x1]

u0n (x)� u0n (0) � �0 (x)� �0 (0) :

By (4.4.12) and (4.4.16) it is obtained that

u0n (x) � �0 (x)� �0 (0) + u0n�1 (1)

� �0 (x)� �0 (0) + �0 (1) � �0 (x) :
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For x 2 ]xj; xj+1] ; j = 1; 2; :::;m; again by integration (4.4.13) and De�-

nition 4.4.3

u0n (x) � �0 (x)� �0
�
x�j
�
+ u0n

�
x�j
�

= �0 (x)� �0
�
x�j
�
+ hj

�
u0n�1 (xj)

�
� �0 (x) ;

obtaining that u0n (x) � �0 (x) ; for all n 2 N and every x 2 I: Using similar

arguments it can be proved that u0n (x) � �0 (x) and so

�0 (x) � u0k (x) � �0 (x) ; 8x 2 I; 8n 2 N: (4.4.17)

For last inequalities � (x) � un (x) � � (x) ; for all n 2 N and every x 2 I;

for n = 0; the proof is obtained analogously to the previous cases:

Assume that for k = 1; :::; n� 1 and every x 2 I we have

� (x) � uk (x) � � (x) : (4.4.18)

By integration, De�nition 4.4.3, (4.4.13) and (4.4.18), for x 2 [0; x1], it is

obtained that

un (x) � � (x)� � (0) + un�1 (1)

� � (x)� � (0) + � (1) � � (x) ;

hence un (x) � � (x) ; for all x 2 [0; x1] and every n 2 N:

For x 2 ]xj; xj+1] ; j = 1; 2; :::;m; integrating the same inequality, by

(4.4.13), (I2) and De�nition 4.4.3

un (x) � � (x)� �
�
x+j
�
+ un

�
x+j
�
�

� (x)� �
�
x+j
�
+ g

�
un�1

�
x+j
��

� � (x) ;

holds; for all n 2 N and every x 2 I: Using similar arguments it can be

proved that un (x) � � (x) ; 8n 2 N and every x 2 I:
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Step 2 - The sequence (un)n2N is convergent to u solution of (4.1.1),

(4.1.2), (4.1.4).

As f veri�es a Nagumo type condition in

�E =
n
(x; y0; y1; y2; y3) 2 I � R4 : �(i) (x) � yi � �(i) (x) ; i = 0; 1; 2

o
;

then by Lemma 1.2.2, with n = 4 and applied to �E we may de�ne Ci =

max
n�(i) ;�(i)o, for i = 0; 1; 2 and C3 := R; with R given by Nagumo

condition: Then we can conclude that existsM > 0, such thatM :=
P3

i=0Ci

and for all n 2 N

kunkD �M: (4.4.19)

Let 
 be a compact subset of R4 given by


 =
�
(w0; w1; w2; w3) 2 R4 : kwik � Ci; i = 0; 1; 2; 3

	
;

as f is a L1-Carathéodory function in 
, then there exists a real-valued

function  M (x) 2 L1 (I), such that

jf (x;w0; w1; w2; w3)j �  M (x) ; for every (w0; w1; w2; w3) 2 
I : (4.4.20)

By (4.4.19), (un; u0n; u
00
n; u

000
n ) 2 
I , for all n 2 N: From (4.4.11) and

(4.4.20) we obtain ��u(iv)n (x)
�� �  M (x) ; for a.e. x 2 I;

and so u(iv)n (x) 2 L1 (I) :

By integration in I,

u000n (x) = u000n (0) +

Z x

0

u(iv)n (s) ds+
X

0<xj�x
lj
�
u000n�1 (xj)

�
;

therefore u000n 2 AC (xj; xj+1) and un 2 PC3D (I) : By Ascoli-Arzela Theorem

there exists a subsequence denoted also by (un)n2N ; which converges to u 2

PC3D (I) : Then (u; u
0; u00; u000) 2 
:
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Using the Lebesgue dominated convergence theorem we have that, for all

x 2 (xj; xj+1) ;

Z x

xj

26664 f

0@ s; �0 (s; un�1 (s)) ; �1
�
s; u0n�1 (s)

�
; �2
�
s; u00n�1 (s)

�
;

q
�
d
dx
(�2 (x; u

00
n (x)))

�
1A

+u00n (s)� �2 (x; u
00
n (s))

37775 ds
is convergent to

Z x

xj

24 f
�
s; �0 (s; u (s)) ; �1 (s; u

0 (s)) ; �2 (s; u
00 (s)) ; q

�
d
dx
(�2 (x; u

00 (x)))
��

+u00 (s)� �2 (x; u
00 (s))

35 ds
as n!1:

Therefore as n!1

u000n (x) = u000n (xj) +

Z x

xj

26664 f

0@ s; �0 (s; un�1 (s)) ; �1
�
s; u0n�1 (s)

�
; �2
�
s; u00n�1 (s)

�
;

q
�
d
dx
(�2 (x; u

00
n (x)))

�
1A

+u00n (s)� �2 (x; u
00
n (s))

37775 ds
is convergent to

u000 (x) = u000 (xj) +

Z x

xj

26664 f

0@ s; �0 (s; u (s)) ; �1 (s; u
0 (s)) ; �2 (s; u

00 (s)) ;

q
�
d
dx
(�2 (x; u

00 (x)))
�

1A
+u00 (s)� �2 (x; u

00 (s))

37775 ds:
As the function f is L1-Carathéodory function in (xj; xj+1), then u(iv) (x) 2

AC (xj; xj+1) and u is a solution of (4.4.11)-(4.4.13):

The proof that u is a solution of of the initial problem (4.1.1), (4.1.2),

(4.1.4) can be done as in Theorem 4.3.1.
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Example 4.4.5 Let us consider the following nonlinear impulsive boundary

value problem, composed by the equation

u(iv) (x) = � arctan(u (x))� (u0 (x))3 + (u00 (x))5 � k ju000 (x) + 1j
1
3 ; (4.4.21)

for all x 2 [0; 1] n
�
1
2

	
and 0 < k � ��

2
+ 5 along with the boundary

conditions (4.1.2) and the impulsive conditions

u
�
1
2

+
�
= �1

�
u
�
1
2

�� 1
3

u0
�
1
2

+
�
= �2

�
u0
�
1
2

�� 1
5

u00
�
1
2

+
�
= �3

�
u00
�
1
2

��3
u00
�
1
2

+
�
= u00 (1) ;

(4.4.22)

with �i 2 R+; i = 1; 2; 3:

The above problem is a particular case of (4.1.1), (4.1.2), (4.1.4), de�ning

f (x; y0; y1; y2; y3) = � arctan(y0)� (y1)3 + (y2)5 � k jy3 + 1j
1
3 ;

m = 1; x1 =
1
2
and the nondecreasing functions gj; hj and kj are given by,

for all x 2 [0; 1] n
�
1
2

	
; g (x) = �1

3
p
x; h (x) = �2

5
p
x and k (x) = �3x

3:

It can be checked that functions � (x) = 0 and

� (x) =

8<: x2 + 2x+ 1 ; x 2
�
0; 1

2

�
x2 ; x 2

�
1
2
; 1
�

are PC3D (I) for D =
�
1
2

	
; obtaining

�0 (x) =

8<: 2x+ 2 ; x 2
�
0; 1

2

�
2x ; x 2

�
1
2
; 1
�
;

and lower and upper solutions, respectivelly, for the problem (4.4.21), (4.1.2),

(4.4.22), for

�1 �
1

2 3
p
18
; �2 �

1
5
p
3
; �3 �

1

4
:
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Figure 4.4.1: Region for the localization of solution u

As f veri�es (4.4.9), therefore by Theorem 4.4.4 there is a solution u (x) 2

PC3D (I), such that

�(i) (x) � u(i) (x) � �(i) (x) ; for i = 0; 1; 2;

for x 2 I: Moreover, from the location part for u (x) ; this solution is non

negative (see Figure 4.4.1) and from (4.4.21) u (x) is a non trivial solution

as k is positive.
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Figure 4.4.2: Location for u0
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Part II

Functional Boundary Value

Problems

111





Chapter 5

Existence and nonexistence

results for problems with

functional boundary conditions

5.1 Introduction

In this chapter it is considered the problem composed by the second order

Ambrosetti-Prodi equation

u00 (x) + f (x; u (x) ; u0 (x)) = sp (x) (5.1.1)

with x 2 [a; b] ; where f : [a; b] � R2 ! R a Carathéodory function, p :

[a; b]! R+ a continuous functions and s a real parameter, with the functional

boundary conditions given by

L0 (u; u (a) ; u
0 (a)) = 0;

L1 (u; u (b) ; u
0 (b)) = 0;

(5.1.2)

where L0; L1 : C([a; b])� R2 ! R satisfy some adequate conditions.

113
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For this problem it will be done a partial discussion of the solution on

the parameter s, i. e., only the existence and nonexistence will be studied.

The relation between s and the multiplicity of solutions is, still, an open

problem.

The technique used combines the methods suggested in Chapter 3 with

the arguments applied in functional boundary value problems, as it can be

seen, for instance, in ([15, 16, 19]). Functional boundary conditions as (5.1.2)

are extremely general and they include most of the classical conditions as

multipoint cases, conditions with delay and/or advances, nonlocal or integral,

with maximum or minimum arguments,...

These type of Ambrosetti-Prodi results were never obtained for functional

boundary value problems. In fact the functional dependence in the boundary

conditions make the relation between the parameter s, the existence and

multiplicity of solutions very delicate.The aim of this section is to initiate

this study. Other than the results presented there are yet many open issues:

� Is it possible to obtain the standard multiplicity discussion with this

kind of functional boundary data?

� If yes, what are the su¢ cient conditions for it on the nonlinearity? And

on the boundary functions?

� Can these conditions be generalized for higher order functional prob-

lems? Under which terms?

5.2 General existence and location result

Throughout this Chapter the following hypotheses will be assumed:
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(J1) L0 : C([a; b]) � R2 ! R is a continuous function nondecreasing in the

�rst and third variable.

(J2) L1 : C([a; b]) � R2 ! R is a continuous function nondecreasing in the

�rst and nonincreasing in the third variable.

A Nagumo-type growth condition, as presented in the previous Chapters,

is an important tool to obtain the main result. Therefore in this section it is

used a particular case of De�nition 1.2.1, for n = 2; together with a similar

version of Lemma 3.2.2 applied to

g (x; y; z) = s p(x)� f (x; y; z)

The lower and upper solution used are given by the de�nition:

De�nition 5.2.1 The function � 2 C2 ([a; b]) is a lower solution of the

problem (5.1.1)-(5.1.2) if it veri�es:

�00 (x) � sp(x)� f (x; � (x) ; �0 (x)) ; (5.2.1)

and
L0 (�; � (a) ; �

0 (a)) � 0;

L1 (�; � (b) ; �
0 (b)) � 0:

(5.2.2)

The function � 2 C2 ([a; b]) is an upper solution of the problem (5.1.1)-

(5.1.2) for the reversed inequalities.

The existence result is the following:

Theorem 5.2.2 Let f : [a; b]�R4 ! R be a Carathéodory function. Suppose

that there are lower and upper solutions of the problem (5.1.1)-(5.1.2), � (x)

and � (x), respectively, such that,

� (x) � � (x) ;8x 2 [a; b] ;
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f satis�es a Nagumo condition in

E� =
�
(x; y0; y1) 2 [a; b]� R2 : � (x) � y0 � � (x)

	
:

If conditions (J1) and (J2) hold then the problem (5.1.1)-(5.1.2) has at

least a solution u (x) 2 C2 ([a; b]), satisfying

� (x) � u (x) � � (x) ; 8 x 2 [a; b] :

Remark 5.2.3 If there are � (x) and � (x) lower and upper solutions of the

problem (5.1.1)-(5.1.2) for some values of s, then s belongs to a bounded set,

as

�00 (x) + f (x; � (x) ; �0 (x)) � sp (x) � �00 (x) + f (x; � (x) ; �0 (x)) ;

for every x 2 [a; b] :

Proof. De�ne the continuous functions

� (x; y) = max f� (x) ;min fy; � (x)gg (5.2.3)

and, for some K > 0;

q (v (x)) = max

�
�K;min

�
d

dx
(v (x)) ; K

��
; for a:e: x 2 R:

Consider the modi�ed problem composed by the equation

u00 (x) = sp (x)� f

�
x; � (x; u (x)) ; q

�
d

dx
(� (x; u (x)))

��
(5.2.4)

and the Dirichlet boundary conditions,

u (a) = � (a; u (a) + L0 (� (�; u) ; � (a; u (a)) ; u0 (a))) ;

u (b) = � (b; u (b) + L1 (� (�; u) ; � (b; u (b)) ; u0 (b))) ;
(5.2.5)

The proof follows standard arguments of lower and upper solutions method,

which were developed with detail in Part I. As such, only the points related

with the functional boundary conditions are presented:
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� Every solution u of problem (5.2.4)-(5.2.5), satis�es

� (x) � u (x) � � (x) and ju0 (x)j < K;

for every x 2 [a; b], with K > 0 given by Nagumo condition.

For u solution of the modi�ed problem (5.2.4)-(5.2.5), assume, by contra-

diction, that there exists x 2 [a; b] such that � (x) > u (x) :

De�ning

min
x2I

(u� �) (x) := (u� �) (x0) < 0; (5.2.6)

as, by (5.2.5), u (a) � � (a) and u (b) � � (b), then x0 2 (a; b) : So, there is

(x1; x2) � (a; b) such that x0 2 (x1; x2) ;

u (x) < � (x) ;8x 2 (x1; x2); (u� �) (x1) = (u� �) (x2) = 0: (5.2.7)

Therefore, for all x 2 (x1; x2) it is satis�ed that � (x; u) = � (x) and d
dx
(� (x; u)) =

�0 (x) : Therefore we deduce that

u00 (x) = sp (x)� f

�
x; � (x; u (x)) ; q

�
d

dx
(� (x; u (x)))

��
= sp (x)� f (x; � (x) ; �0 (x))

� �00 (x) for a. e. x 2 (x1; x2):

So (u� �)0 (x) is nonincreasing on the interval (x1; x2).

As (u � �)0(x0) = 0, then (u � �) is nonincreasing on (x0; x2), which

contradicts (5.2.6) and (5.2.7).

The inequality u(x) � �(x); in [a; b] ; can be proved in same way and, so,

� (x) � u (x) � � (x) ; 8 x 2 [a; b] : (5.2.8)

� Problem (5.2.4)-(5.2.5) has at least one solution.
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For � 2 [0; 1] let us consider the homotopic problem given by

u00 (x) = �

�
sp (x)� f

�
x; � (x; u (x)) ; q

�
d

dx
(� (x; u (x)))

���
(5.2.9)

and the boundary conditions

u (a) = ��

0@ a; u (a)+

L0 (� (�; u) ; � (a; u (a)) ; u0 (a))

1A := �LA;

u (b) = ��

0@ b; u (b)+

L1 (� (�; u) ; � (b; u (b)) ; u0 (b))

1A := �LB:

(5.2.10)

De�ning the operators L : C ([a; b])! C ([a; b])� R2 by

Lu = (u00; u (a) ; u (b))

and N� : C ([a; b])! C ([a; b])� R2 by

N�u =

�
�

�
sp (x)� f

�
x; � (x; u (x)) ; q

�
d

dx
(� (x; u (x)))

���
; �LA; �LB;

�
It can be proved by degree theory (as in Part I) that (5.2.4)-(5.2.5) has a

solution u1 (x) ; for � = 1:

� This function u1 (x) is a solution of (5.1.1) �(5.1.2).

As u1 (x) ful�lls equation (5.1.1), it will be enough to prove that:

� (a) � u1 (a) + L0 (� (�; u1) ; � (a; u1 (a)) ; u01 (a)) � � (a) ;

� (b) � u1 (b) + L1 (� (�; u1) ; � (b; u1 (b)) ; u01 (b)) � � (b) :

So, assume that

u1 (a) + +L0 (� (�; u1) ; � (a; u1 (a)) ; u01 (a)) > � (a) : (5.2.11)

Then, by (5.2.5), u (a) = � (a). By (5.2.2) and previous steps, it is obtained

the following contradiction with (5.2.11):

u1 (a) + +L0 (� (�; u1) ; � (a; u1 (a)) ; u01 (a)) � � (a) :
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Applying similar arguments it can be proved that

�(a) � u1 (a) + +L0 (� (�; u1) ; � (a; u1 (a)) ; u01 (a)) :

and

� (b) � u1 (b) + L1 (� (�; u1) ; � (b; u1 (b)) ; u01 (b)) � � (b) :

5.3 Existence and nonexistence results

The dependence of solution on s will be discussed in [0; 1] ; only for clearness

of arguments and without loss of generality. In the corresponding de�ni-

tions of lower and upper solutions the corresponding modi�cations must be

considered. Some extra hypotheses on the continuous functions L0; L1 are

required to obtain the existence and nonexistence result:

Theorem 5.3.1 Let f : [0; 1] � R2 ! R be a Carathéodory function that

veri�es the assumptions on Theorem 5.2.2. Moreover if :

(i) f (x; y; z) is nonincreasing on y;

(ii) there is s1 2 R and r > 0 such that

f (x; 0; 0)

p (x)
< s1 <

f (x;�r; 0)
p (x)

; (5.3.1)

for every x 2 [0; 1] ;

(iii) L0 and L1 verify (J1), (J2) and

(J3) Li (x; x; 0) � 0; for every x � �r and Li (0; 0; 0) � 0; for i = 0; 1;

then there is s0 < s1 (with the possibility that s0 = �1) such that:
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1) for s < s0; (5.1.1)-(5.1.2) has no solution.

2) for s0 < s � s1; (5.1.1)-(5.1.2) has at least one solution.

Proof. The technique is similar to the one used, for example, in Theorem

3.2.6.

We underline only some features:

� For

s� = max
x2[0;1]

f (x; 0; 0)

p (x)
; (5.3.2)

�(x) � 0 and �(x) = �r; with r given by (5.3.1), are, respectively,

lower and upper solutions of (5.1.1)-(5.1.2) with s = s�: Therefore this

problem has a solution for s = s�:

� Assuming that (5.1.1)-(5.1.2) has a solution u� (x) for s = � � s1;

consider R > 0 su¢ ciently large such that,

r � R; max
x2[0;1]

u� (x) � �R. (5.3.3)

Then u� (x) and � (x) = �R are, respectively, lower and upper solu-

tions of (5.1.1)-(5.1.2), for s 2 ]s0; s1] :

5.4 Examples

In this section we will consider two examples that illustrate conditions (J1),

(J2) and (J3) and how do they relate with Theorem 5.2.2 and Theorem 5.3.1.
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Example 5.4.1 Let us consider, for x 2 [0; 1] ; the problem given by the

equation

u00 (x) + arctan
�
u (x)2

�
+ (u0 (x))

2
3 = sp (x) ; (5.4.1)

with p : [0; 1]! R+ a continuous function, along with the functional boundary

conditions
max
x2[0;1]

u (x) + k1u (0) = 0

max
x2[0;1]

R x
0
u (s) ds+ k2u (1) = 0:

(5.4.2)

The functions

� (x) = �x� 1

and

� (x) = x+ 1

are, respectively, lower and upper solutions to the problem (5.4.1)-(5.4.2),

for k1 � �2 and k2 � �3
4
; and for

1 + arctan 1

max
x2[0;1]

p (x)
� s � 1 + arctan 1

min
x2[0;1]

p (x)
:

This problem is a particular case of (5.1.1)-(5.1.2), de�ning

f (x; y; z) = arctan (y2) + (z)
2
3

L0 (y0; y1; y2) = max
x2[0;1]

y0 (x) + k1y1

L1 (y0; y1; y2) = max
x2[0;1]

R x
0
y0 (s) ds+ k2y1:

As function f veri�es a Nagumo condition in

E =
�
(x; y0; y1) 2 [0; 1]� R2 : �x� 1 � y0 � x+ 1

	
; (5.4.3)

therefore by Theorem 5.2.2 there is at least a solution u (x) of the problem

(5.4.1)-(5.4.2), satisfying

�x� 1 � u (x) � x+ 1; 8x 2 [0; 1] :
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We remark that in the previous example there is no information about

non existence of solutions for problem (5.4.1)-(5.4.2). In fact Theorem 5.3.1

is not applicable as function f is not increasing in u (x) and the boundary

condition L1, given in (5.4.2) does not verify (J3) for k2 � �3
4
: A new example,

with a suitable function f and boundary conditions is presented, verifying

assumptions of Theorem 5.3.1.

Example 5.4.2 Let us consider, for x 2 [0; 1] ; the problem given by the

equation

u00 (x)� u (x)3 + (u0 (x) + 1)
2
3 = sp (x) ; (5.4.4)

where p : [0; 1] ! R+ is a continuous function, along with the functional

boundary conditions

u0 (0)� u (0)3 = 0

�u (1)� u0 (1) = 0;
(5.4.5)

with � � 0:

The functions

� (x) = �x� 1

and

� (x) = x+ 1

are, respectively, lower and upper solutions to the problem (5.4.4)-(5.4.5),

for
�1 + 2 23
max
x2[0;1]

p (x)
� s � 8

min
x2[0;1]

p (x)
:

Considering

f (x; y; z) = �y3 + (z + 1)
2
3 ;

L0 (y0; y1; y2) = � (y1)3 + y2;

L1 (y0; y1; y2) = �y1 � y2;
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it can be seen easily that problem (5.4.4)-(5.4.5) is a particular case of

(5.1.1)-(5.1.2) and f veri�es Nagumo conditions in E given by (5.4.3).

For r > 0 and s1 such that

1

max
x2[0;1]

p (x)
< s1 <

r3 + 1

min
x2[0;1]

p (x)
;

boundary conditions (5.4.5) satisfy condition (J3), therefore by Theorem

5.3.1 there is s0 < s1 where:

� for s < s0; (5.4.4)-(5.4.5) has no solution;

� for s0 < s � s1; (5.4.4)-(5.4.5) has at least one solution.
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Chapter 6

High order problems with

functional boundary conditions

6.1 Introduction

In this chapter we consider initially the problem composed of the fully non-

linear fourth order equation

u(iv) (x) = f (x; u (x) ; u0 (x) ; u00 (x) ; u000 (x)) (6.1.1)

with x 2 [0; 1] ; where f : [0; 1] � R4 ! R is a continuous function, coupled

with the functional boundary conditions

L0(u; u
0; u00; u(0)) = 0;

L1(u; u
0; u00; u0(0)) = 0;

L2(u; u
0; u00; u00(0); u000(0)) = 0;

L3(u; u
0; u00; u00(1); u000(1)) = 0;

(6.1.2)

where L0; L1 : C([0; 1])3�R! R and L2; L3 : C(I)3�R2 ! R are continuous

functions satisfying some adequate monotonicity assumptions.

125
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This problem is generalized later on to a nth order fully nonlinear equation

u(n) (x) = f
�
x; u (x) ; u0 (x) ; :::; u(n�1) (x)

�
(6.1.3)

with x 2 [0; 1] ; where f : [0; 1] � Rn ! R is a continuous function along

with the functional boundary conditions

Li(u; u
0; :::; u(n�2); u(n�3)(0)) = 0; for i = 0; :::; n� 3

Ln�2(u; u
0; :::; u(n�2); u(n�2)(0); u(n�1)(0)) = 0;

Ln�1(u; u
0; :::; u(n�2); u(n�2)(1); u(n�1)(1)) = 0;

(6.1.4)

where Li : C([0; 1])n�1 � R! R and Ln�2; Ln�1 : C([0; 1])n�1 � R2 ! R are

continuous functions satisfying some monotone conditions to be de�ned.

Functional boundary conditions are very general in nature. They not only

generalize most of the classical boundary conditions as they also cover the

separated and multipoint cases, with delay and/or advances, with maximum

or minimum arguments, nonlocal or integral conditions,...

The fourth order problems were studied by several authors with di¤erent

boundary conditions and di¤erent methods, see for example [33, 35, 67, 77,

78]. The method used here was suggested by [15, 16, 19]. In [15] the boundary

conditions considered are

u (b) = A; u0 (b) = B, A;B 2 R

L1(u; u
0; u00; u00(a); u000(a)) = 0

L2(u; u
0; u00; u00(b); u000(b)) = 0

;

for x 2 [a; b] and L1; L2 some continuous functions. In [19] the boundary

conditions used are

B1(u; u
0; u00; u(a)) = 0

B2(u; u
0; u00; u0(a)) = 0

B3(u; u
0; u00; u00(a); u00 (b) ; u000(a)) = 0

L2(u
00(a); u00(b)) = 0;
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where Bi; i = 1; 2; 3 and L2 are suitable functions. As it can be seen eas-

ily, boundary conditions (6.1.2) generalize the above results. In spite such a

general formulation, problem (6.1.1)-(6.1.2) can be studied by similar tech-

niques and analogous methods as the separated boundary value problems

studied in the �rst part.

In short, the key points of the arguments are: a priori estimates on the

third derivative provided by a Nagumo-type condition, [77, 80]; an auxiliary

and truncated problem, where the corresponding linear and homogeneous

problem has only the trivial solution; an open and bounded set where the

Leray-Schauder degree is well de�ned, [70].

Lower and upper solutions technique allows us to obtain not only the

existence but also to locate the solution and its (n� 2) derivatives. In the

�nal section two examples are presented. An example will illustrate how

these features can be applied. In fact, de�ning lower and upper solutions

well ordered, with a nonnegative lower function, implies that the solution is

nonnegative. Moreover, if the second derivatives of lower and upper solutions

have the same sign, the solution is not trivial and it can not be a straight

line.

The location part provided by lower and upper solutions method can also

be useful to some "theoretical" problems. In this sense, last section contains

an application of problem (6.1.3)-(6.1.4) to the (n� 1; 1) conjugate boundary

value problem. The key idea was suggested in [98], where some estimates for

the solution of the problem

u(n) (x) + g (x) f (u (x)) = 0

u(i) (0) = u (1) = 0; i = 0; :::; n� 2;

were obtained.
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As it can be seen, the localization of the solution by lower and upper

solutions allow more precise estimates than the ones existing in the literature.

6.2 Existence and location result in fourth

order case

Consider a Nagumo-type growth condition on the nonlinear part of the dif-

ferential equation (6.1.1). As in the previous chapters this will be useful to

prove an a priori bound for the third derivative of the corresponding solu-

tions. (See Lemma 1.2.2 for n = 4).

Throughout this section the boundary functions verify the following as-

sumptions:

(M1) L0; L1 : C([0; 1])3 � R ! R are nondecreasing in all variables except

the fourth one.

(M2) L2 : C([0; 1])3 � R2 ! R is nondecreasing in all variables, except the

fourth one.

(M3) L3 : C([0; 1])3�R2 ! R is nondecreasing in the �rst, second and third

variables and nonincreasing in the �fth one.

Lower and upper functions are given by next de�nition:

De�nition 6.2.1 A function � 2 C4 ([0; 1]) is a lower solution of problem

(6.1.1)-(6.1.2) if:

�(iv) (x) � f (x; � (x) ; �0 (x) ; �00 (x) ; �000 (x)) ; (6.2.1)
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and
L0 (�; �

0; �00; � (0)) � 0;

L1 (�; �
0; �00; �0 (0)) � 0;

L2 (�; �
0; �00; �00 (0) ; �000 (0)) � 0;

L3 (�; �
0; �00; �00 (1) ; �000 (1)) � 0:

(6.2.2)

The function � 2 C4 ([0; 1]) is an upper solution of the problem (6.1.1)-

(6.1.2) if the reversed inequalities hold.

The main theorem can be said to be an existence and location result as it

provides the existence of a solution but also some strips where the solution

and its �rst and second derivatives are located.

Theorem 6.2.2 Let f : [0; 1] � R4 ! R be a continuous function. Suppose

that there are lower and upper solutions of the problem (6.1.1)-(6.1.2), � (x)

and � (x), respectively, such that,

� (0) � � (0) ; �0 (0) � �0 (0) ; �00 (x) � �00 (x) ; 8x 2 [0; 1] ; (6.2.3)

f satis�es Nagumo conditions in

E� =
n
(x; y0; y1; y2; y3) 2 [0; 1]� R4 : �(i) (x) � yi � �(i) (x) ; i = 0; 1; 2

o
and

f (x; �; �0; y2; y3) � f (x; y0; y1; y2; y3) � f (x; �; �0; y2; y3) ; (6.2.4)

for � (x) � y0 � � (x), �0 (x) � y1 � �0 (x), in [0; 1] ; and �xed (x; y2; y3) 2

[0; 1]� R2.

If conditions (M1)� (M3) hold, then problem (6.1.1)-(6.1.2) has at least

one solution u (x) 2 C4 ([0; 1]), such that

�(i) (x) � u(i) (x) � �(i) (x) ; 8x 2 [0; 1] ; for i = 0; 1; 2:
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Proof. Let us consider the usual continuous truncations �i given by (2.3.2)

and for � 2 [0; 1], a similar homotopic and perturbed equation to (2.3.3),

with the boundary conditions

u (0) = ��0 (0; u (0) + L0 (u; u
0; u00; u (0))) ;

u0 (0) = ��1 (0; u
0 (0) + L1 (u; u

0; u00; u0 (0))) ;

u00 (0) = ��2 (0; u
00 (0) + L2 (u; u

0; u00; u00 (0) ; u000 (0))) ;

u00 (1) = ��2 (1; u
00 (1) + L3 (u; u

0; u00; u00 (1) ; u000 (1))) :

(6.2.5)

For r2 > 0 large enough, such that, for every x 2 [0; 1] ;

�r2 < �00 (x) � �00 (x) < r2;

f (x; � (x) ; �0 (x) ; �00 (x) ; 0) + r2 � �00 (x) > 0;

f (x; � (x) ; �0 (x) ; �00 (x) ; 0)� r2 � �00 (x) < 0;

(6.2.6)

the proof carries on with the standard steps of lower and upper solutions

method. Therefore we present only the steps related to the boundary condi-

tions:

� Every solution u (x) of the problem (2.3.3)-(6.2.5) we have

ju00 (x)j < r2 ju0 (x)j < r1 ju (x)j < r0, 8x 2 [0; 1] ;

with r1 := r2+max fj�0 (0)j ; j�0 (0)jg and r0 := r1+max fj� (0)j ; j� (0)jg,

independently of � 2 [0; 1] :

If, by contradiction,

min
x2[0;1]

u00 (x) := u00 (0) � �r2 < 0;

then by (6.2.5) and (2.3.2), the following contradiction is obtained, for � 2

]0; 1]

�r2 � u00 (0) = ��2 (0; u
00 (0) + L2(u; u

0; u00; u00(0); u000(0)))

� ��00 (0) > �r2:
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The arguments for x0 = 1; are similar.

Proved that

ju00 (x)j < r2; 8x 2 [0; 1] ;8� 2 [0; 1] ;

then, integrating in [0; x] ;

u0(x) =

Z x

0

u00(s)ds+ u0 (0)

=

Z x

0

u00(s)ds+ ��1 (0; u
0 (0) + L1 (u; u

0; u00; u0(0))) :

Therefore,

ju0(x)j �
Z x

0

ju00(s)j ds+ j��1 (0; u0 (0) + L1 (u; u
0; u00; u0(0)))j

< r2 +max fj�0 (0)j ; j�0 (0)jg := r1

Similarly, it can be proved that

ju(x)j < r1 +max fj� (0)j ; j� (0)jg ;8x 2 [0; 1] :

� The operators used to prove that problem (2.3.3)-(6.2.5) has at least a

solution u1 (x) for � = 1 are L : C4 ([0; 1])! C ([0; 1])� R4 given by

Lu =
�
u(iv) � u00; u (0) ; u0 (0) ; u00 (0) ; u00 (1)

�
;

and N� : C
3 ([0; 1])! C ([0; 1])� R4, given by

N� =

0@ �f (x; �0 (x; u (x)) ; �1 (x; u
0 (x)) ; �2 (x; u

00 (x)) ; u000 (x))

���2 (x; u00 (x)) ; A0�; A1�; A2�; A3�

1A ;
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where

A0� := ��0 (0; u (0) + L0 (u; u
0; u00; u (0))) ;

A1� := ��1 (0; u
0 (0) + L1 (u; u

0; u00; u0 (0))) ;

A2� := ��2 (0; u
00 (0) + L2 (u; u

0; u00; u00 (0) ; u000 (0))) ;

A3� := ��2 (1; u
00 (1) + L3 (u; u

0; u00; u00 (1) ; u000 (1))) :

� This function u1 (x) will be a solution of the original problem (6.1.1)-

(6.1.2) if

�(i) (x) � u
(i)
1 (x) � �(i) (x) ; i = 0; 1; 2; 8x 2 [0; 1] ; (6.2.7)

and

� (0) � u1 (0) + L0 (u1; u
0
1; u

00
1; u1 (0)) � � (0)

�0 (0) � u01 (0) + L1 (u1; u
0
1; u

00
1; u

0
1 (0)) � �0 (0)

�00 (0) � u001 (0) + L2 (u1; u
0
1; u

00
1; u

00
1 (0) ; u

000
1 (0)) � �00 (0)

�00 (1) � u001 (1) + L3 (u1; u
0
1; u

00
1; u

00
1 (1) ; u

000
1 (1)) � �00 (1)

hold.

The inequalities (6.2.7) can be proved as in Theorem 1.3.1 and applying

(6.2.5).

As the boundary conditions, assume that

u1 (0) + L0 (u1; u
0
1; u

00
1; u1 (0)) < � (0) : (6.2.8)

By (2.3.2) and (6.2.5)

u1(0) = �0(0; u1(0) + L0(u1; u
0
1; u

00
1; u1(0))) = �(0)

and, by (6.2.3), u01(0) � �0(0) and u001(0) � �00(0): Therefore, by (H1) and

(6.2.2) this contradiction with (6.2.8) is achieved:

u1 (0) + L0 (u1; u
0
1; u

00
1; u1 (0)) = � (0) + L0 (u1; u

0
1; u

00
1; � (0))

� � (0) + L0 (�; �
0; �00; � (0)) � � (0) :
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Analogously it is shown that u1 (0) + L0 (u1; u
0
1; u

00
1; u1 (0)) � � (0) :

Remaining inequalities can be proved by a similar technique.

Example 6.2.3 Consider the fourth order multipoint problem8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

u(iv) (x) = �0:1(u(x))3 � 0:1 ju00 (x)� 2j e0:01u0(x) + 20 3
p
ju000(x)j

+1P
n=1

a0nu (xn) +
+1P
n=1

b0nu
0 (xn) +

+1P
n=1

c0nu
00 (xn)� ku (0) = 0

+1P
n=1

a1nu (bxn) + +1P
n=1

b1nu
0 (bxn) + +1P

n=1

c1nu
00 (bxn)� �u0 (0) = 0

u00 (0) + 2u000 (0) = 0

u00 (1) = 2;

(6.2.9)

where
P+1

n=1 a
i
n;
P+1

n=1 b
i
n;
P+1

n=1 c
i
n; for i = 0; 1; are positive convergent series

to ai; bi and ci, respectively, xn; bxn 2 [0; 1], k � 7a0 + 8b0 + 8c0 and � �
1
3
(7a1 + 8b1 + 8c1):

The functions �; � 2 [0; 1]! R given by

� (x) = x2 and � (x) = �x3 + 4x2 + 3x+ 1

are, respectively, lower and upper solutions of (6.2.9) with

f (x; y0; y1; y2; y3) = �0:1(y0)3 � 0:1jy2 � 2je0:01y1 + 20 3
p
jy3j

L0(z1; z2; z3; z4) =

+1X
n=1

a0nz1(xn) +

+1X
n=1

b0nz2(xn) +

+1X
n=1

c0nz3(xn)� kz4

L1(z1; z2; z3; z4) =
+1X
n=1

a1nz1(bxn) + +1X
n=1

b1nz2(bxn) + +1X
n=1

c1nz3(bxn)� �z4

L2(z1; z2; z3; z4; z5) = z4 + 2z5

L3(z1; z2; z3; z4; z5) = z4 � 2:
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As the continuous function f veri�es the Nagumo condition for

hE� (y3) = 34:3 + 0:6 e
0:08 + 20 3

p
jy3j

in

E� =

8>>><>>>:(x; y0; y1; y2; y3) 2 [0; 1]� R
4 :

x2 � y0 � �x3 + 4x2 + 3x+ 1

2x � y1 � �3x2 + 8x+ 3

2 � y2 � �6x+ 8

9>>>=>>>;
then, by Theorem 6.2.2, there is a solution u (x) of problem (6.2.9) such that,

for every x 2 [0; 1],

x2 � u (x) � �x3 + 4x2 + 3x+ 1; (6.2.10)

2x � u0 (x) � �3x2 + 8x+ 3

2 � u00(x) � �6x+ 8: (6.2.11)

Remark that this solution u is nonnegative, by (6.2.10) and illustrated by

Figure 6.2.1. Moreover, by (6.2.11), u can not be a straight line.

6.3 Higher order problem

In this section the previous results are generalized to the nth order problem

(6.1.3)-(6.1.4), where Li : C([0; 1])n�1 � R ! R, for i = 0; :::; n � 3 and

Ln�2; Ln�1 : C([0; 1])
n�1 � R2 ! R are continuous functions satisfying the

monotonicity assumptions:

(M0
1) Li : C([0; 1])

n�1 � R! R, for i = 0; :::; n� 3; are nondecreasing in all

variables except the last one.

(M0
2) Ln�2 : C([0; 1])

n�1 � R2 ! R is nondecreasing in all variables, except

the last one.
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Figure 6.2.1: Both upper (�) and lower solution (�) are nonnegative

(M0
3) Ln�1 : C([0; 1])

n�1 � R2 ! R is nondecreasing from the �rst up to the

(n� 1) variable and nonincreasing in the last one.

De�nitions of lower and upper solutions follow the same type:

De�nition 6.3.1 A function � 2 Cn ([0; 1]) is a lower solution of problem

(6.1.3)-(6.1.4) if:

�(n) (x) � f
�
x; � (x) ; �0 (x) ; :::; �(n�1) (x)

�
; (6.3.1)

and
Li
�
�; �0; :::; �(n�2); �(i) (0)

�
� 0; i = 0; :::; n� 3

Ln�2
�
�; �0; :::; �(n�2); �(n�2) (0) ; �(n�1) (0)

�
� 0;

Ln�1
�
�; �0; :::; �(n�2); �(n�2) (1) ; �(n�1) (1)

�
� 0:

(6.3.2)

The function � 2 Cn ([0; 1]) is an upper solution of the problem (6.1.3)-

(6.1.4) if the reversed inequalities hold.
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The main theorem generalizes the existence and location result obtained

in the previous section, to a nth order problem.

Theorem 6.3.2 Let f : [0; 1]� Rn ! R be a continuous function. Suppose

that there are lower and upper solutions of the problem (6.1.3)-(6.1.4), � (x)

and � (x), respectively, such that,

�(i) (0) � �(i) (0) ; i = 0; :::; n� 3

�(n�2) (x) � �(n�2) (x) ; 8x 2 [0; 1] ;
(6.3.3)

f satis�es Nagumo conditions

E� =

8<: (x; y0; :::; yn�1) 2 [0; 1]� Rn : �(i) (x) � yi � �(i) (x) ;

i = 0; :::; n� 2

9=;
and

f
�
x; �; :::; �(n�3); yn�2; yn�1

�
� f (x; y0; :::; yn�3; yn�2; yn�1) (6.3.4)

� f
�
x; �; :::; �(n�3); yn�2; yn�1

�
;

for �(i) (x) � yi � �(i) (x), i = 0; :::; n�3, in [0; 1] ; and �xed (x; yn�2; yn�1) 2

[0; 1]� R2.

If conditions (M 0
1)� (M 0

3) hold, then problem (6.1.3)-(6.1.4) has at least

one solution u (x) 2 Cn ([0; 1]), such that

�(i) (x) � u(i) (x) � �(i) (x) ; 8x 2 [0; 1] ; for i = 0; :::; n� 2:

Proof. The same type of arguments as in the fourth order case can be

applied.

For the readers convenience we point out only some speci�c steps.

Considering now the truncations �i; i = 0; :::; n� 2

�i (x; yi) =

8>>><>>>:
�(i) (x) if y(i) < �(i) (x)

y(i) if �(i) (x) � y(i) � �(i) (x)

�(i) (x) if y(i) > �(i) (x) ;

(6.3.5)
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for � 2 [0; 1], the nth order homotopic equation

u(n) (x) = (6.3.6)

�
�
f
�
x; �0 (x; u (x)) ; :::; �n�2

�
x; u(n�2) (x)

�
; u(n�1) (x)

��
+u(n�2) (x)� ��n�2

�
x; u(n�2) (x)

�
;

with the boundary conditions

u(i) (0) = ��i
�
0; u(i) (0) + Li

�
u; :::; u(n�2); u(i) (0)

��
; i = 0; :::; n� 3;

u(n�2) (0) = ��n�2

0@ 0; u(n�2) (0)+

Ln�2
�
u; :::; u(n�2); u(n�2) (0) ; u(n�1) (0)

�
1A ;

u(n�2) (1) = ��n�2

0@ 1; u(n�2) (1)+

Ln�1
�
u; :::; u(n�2); u(n�2) (1) ; u(n�1) (1)

�
1A ;

(6.3.7)

and for rn�2 > 0 large enough, such that, for every x 2 [0; 1] ;

�rn�2 < �(n�2) (x) � �(n�2) (x) < rn�2;

f
�
x; � (x) ; :::; �(n�2) (x) ; 0

�
+ rn�2 � �(n�2) (x) > 0;

f
�
x; � (x) ; :::; �(n�2) (x) ; 0

�
� rn�2 � �(n�2) (x) < 0:

(6.3.8)

� For every solution u (x) of the problem (6.3.6)-(6.3.7) we have

��u(i) (x)�� < ri, 8x 2 [0; 1] ; i = 0; :::; n� 2;

where rn�2 is given as above and

rj := rn�2 +
n�3X
k=j

max
n���(k) (0)�� ; ����(k) (0)���o ;

j = 0; :::; n� 3 independently of � 2 [0; 1] :

� The non null Leray-Schauder degree is evaluate in the open set


 =
�
y 2 Cn�1 ([0; 1]) :

y(i) < ri; i = 0; :::; n� 2;
y(n�1) < R

	
;
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where R > 0 is obtained from the Nagumo condition, for the operator

T� : (Cn ([0; 1]) ;R)! (Cn ([0; 1]) ;R)

de�ned by

T� (u) = L�1N� (u) ;

with

L : Cn ([0; 1])! C ([0; 1])� Rn:

given by

Lu =
�
u(n) � u(n�2); u (0) ; :::; u(n�2) (0) ; u(n�2) (1)

�
;

and N� : C
n ([0; 1])! C ([0; 1])� Rn, � 2 [0; 1] by

N� =

0@ �f
�
x; �0 (x; u (x)) ; :::; �n�2

�
x; u(n�2) (x)

�
; u(n�1) (x)

�
���n�2

�
x; u(n�2) (x)

�
; A0;�; :::; A(n�1);�

1A ;

where

Ai;� :=��i
�
0; u(i) (0) + Li

�
u; :::; u(n�2); u(i) (0)

��
; i = 0; :::; n� 3

A(n�2);� :=��n�2

0@ 0; u(n�2) (0)+

Ln�2
�
u; :::; u(n�2); u(n�2) (0) ; u(n�1) (0)

�
1A ;

A(n�1);� :=��n�2

0@ 1; u(n�2) (1)+

Ln�1
�
u; :::; u(n�2); u(n�2) (1) ; u(n�1) (1)

�
1A :

Therefore the auxiliary problem (6.3.6)-(6.3.7) has at least one solution

u1 (x) for � = 1:

� This solution u1 (x) is also a solution of the original problem (6.1.3)-

(6.1.4) because it can be proved, arguing as in Theorem 6.2.2, that

�(i) (x) � u
(i)
1 (x) � �(i) (x) ; i = 0; :::; n� 2; 8x 2 [0; 1] ;
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and, for i = 0; :::; n� 3;

�(i) (0) � u
(i)
1 (0) + Li

�
u1; :::; u

(n�2)
1 ; u

(i)
1 (0)

�
� �(i) (0) ;

�(n�2) (0) � u
(n�2)
1 (0) + Ln�2

�
u1; :::; u

(n�2)
1 ; u

(n�2)
1 (0) ; u

(n�1)
1 (0)

�
� �(n�2) (0)

�(n�2) (1) � u
(n�2)
1 (1) + Ln�1

�
u1; :::; u

(n�2)
1 ; u

(n�2)
1 (1) ; u

(n�1)
1 (1)

�
� �(n�2) (1) :

6.4 Conjugate boundary value problems

In this section it is considered a (n� 1; 1) conjugate boundary value pro-

blem. These higher order problems are so called due to the way that the

information in the boundary conditions is provided. In this case meaning

that information about the solution and up to the (n� 1) derivatives is pro-

vided at the startpoint and, at the endpoint, only the information about

the solution is given. So, consider the (n� 1; 1) conjugate boundary value

problem, for n � 2;

u(n) (x) + g (x) f (u (x)) = 0

u(i) (0) = u (1) = 0; i = 0; :::; n� 2;
(6.4.1)

where x 2 [0; 1] ; f : [0;1) ! [0;1) and g : [0; 1] ! [0;1) are continuous

functions.

These boundary value problems have been studied by many authors, ei-

ther from a theoretical point of view either with several kinds of real applica-

tions. For instance in the second order case they describe several phenomena

such as nonlinear di¤usion generated by nonlinear sources, thermal ignition

of gases and concentration in chemical or biological problems where only

positive solutions are meaningful.
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The (n� 1; 1) conjugate boundary value problem was �rst introduced, as

far aas we know, in [26], with the problem

u(n) (x) + a (x) f (u (x)) = 0

u(i) (0) = u (1) = 0; i = 0; :::; n� 2;

where x 2 (0; 1) ; f : [0;1)! [0;1), a : [0; 1]! [0;1) are continuous func-

tions, a does not vanish identically on any subinterval and f is either sublinear

or superlinear. Existence results are obtained using cones and Krasnosel�skii

�xed point theorems of cone compressions and cone expansions.

In [96], the nonlocal problem, for n � 2

u(n) (x) + g (x) f (u (x)) = 0

u(i) (0) = 0; i = 0; :::; n� 2; u (1) = � [u] ;

where x 2 (0; 1) ; f : [0;1) ! [0;1), a : [0; 1] ! [0;1) are continuous

functions and � [u] =
R 1
0
u (s) dA (s), is studied by �xed point index.

The key idea developed in all the above papers is to �nd lower and upper

estimates for the solutions. Moreover for problem (6.4.1) some su¢ cient

conditions for the existence and nonexistence of solution are obtained.

Lower and upper solutions can be of extremely useful in this quest as

they can in fact provide the lower and upper bounds needed for these results.

Throughout this section one will expose an alternative way of obtaining the

bounds mentioned in [98], where some lower and upper bounds to the solution

are developed to obtain the main result.

For clearness we refer the functions used to obtain the estimations:

Consider w1; w2 : [0; 1]! [0;1) given by

w1 (t) =

8>>><>>>:
(n� 1)n�1 (n� 2)2�n (tn�2 � tn�1) ; if t � p;

tn�1 if t � p;
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and

w2 (t) =

8>>><>>>:
(n� 1)n�1 (n� 2)2�n (tn�2 � tn�1) ; if t � q;

1 if t � q;

for the constants

p =
(n� 1)n�1

(n� 1)n�1 + (n� 2)n�2
; q =

n� 2
n� 1 ;

The main result is given by the theorem:

Theorem 6.4.1 [98, Theorem 2.10] If u 2 Cn ([0; 1]) satis�es the boundary

conditions from (6.4.1), u(n) (t) � 0 and u (t) > 0 for 0 < t < 1; then

w2 (t) kuk � u (t) � w1 (t) kuk ; 0 � t � 1; (6.4.2)

and

u (t) � u (p)
w2 (t)

w1 (p)
; 0 � t � 1: (6.4.3)

In particular, if u 2 Cn ([0; 1]) is a positive solution of (6.4.1), then u (t)

satis�es (6.4.2) and (6.4.3).

The proof of this Theorem applies analytical and numerical methods.

However lower and upper solutions are another tool very useful for these

cases and it allows to obtain, eventually, sharper estimates.

To illustrate the role of lower and upper solutions in this �eld let us

consider Example 3.6 from [98].

The (3; 1) conjugate boundary value problem is given by

u(iv) (x) + �g (x)u (x) = 0; x 2 (0; 1)

with the boundary conditions

u(i) (0) = u (1) = 0; i = 0; 1; 2: (6.4.4)
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In particular, for g (x) � 1 and � > 0 the equation becomes

u(iv) (x) = ��u (x) ; x 2 (0; 1) : (6.4.5)

Then by Theorem 6.4.1, for

w1 (x) =

8>>><>>>:
27
4
(x2 � x3) ; if x � 27

31
;

x3 if x � 27
31
;

and

w2 (x) =

8>>><>>>:
27
4
(x2 � x3) ; if x � 2

3
;

1 if x � 2
3
;

there is a solution u (x), such that

1 � w2 (x) � u (x) � w1 (x) � 0;

for x 2 [0; 1] : This area is shown in Figure 6.4.1, meaning that the solution

u (x), lies inside the grey area.

It is easy to see that (6.4.5),(6.4.4) is a particular case of problem (6.1.3)-

(6.1.4), with n = 4 and

f (x; y0; y1; y2; y3) = ��y0;

L0(z1; z2; z3; z4) = z4;

L1(z1; z2; z3; z4) = z4;

L2(z1; z2; z3; z4; z5) = z4;

L3(z1; z2; z3; z4; z5) = z1 (1) :

Functions �; � 2 [0; 1]! R given by

� (x) = 0 and � (x) = �x
4

8
+
x3

4
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Figure 6.4.1: Functions w1 (x) and w2 (x) bound the solution

are, respectively, lower and upper solutions for (6.4.5),(6.4.4), for � � 24;

according De�nition 6.3.1.

As the continuous function f veri�es Nagumo condition with

hE� (y3) =
�

4
� 6;

in

E =

�
(x; y0) 2 [0; 1]� R4 : 0 � y0 � �

x4

8
+
x3

4

�
;

then, by Theorem 6.2.2, there is a solution u (x) for problem (6.4.5),(6.4.4)

such that

0 � u (x) � �x
4

8
+
x3

4
; 8x 2 [0; 1] : (6.4.6)

Moreover this solution, by (6.4.6) is a non negative solution for the problem

(6.4.5),(6.4.4).

Comparing both Figure 6.4.1 and Figure 6.4.2 one can conclude that for

� 2 (0; 24] the solution given Theorem 6.4.1 and (6.4.6) is not the same
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Figure 6.4.2: The non negative solution for problem (6.4.5),(6.4.4) is delimi-

ted by � and �

solution. However, in some sense, the estimation given by (6.4.6) is sharper

than the bounds given by Theorem 6.4.1.

Furthermore lower and upper solutions method provide information for a

di¤erent set of � than the one shown in [98]: here the results are obtained

for � > 0, and in our example the solution is generalized for � � 24:



Chapter 7

Generalized ��Laplacian

equation with functional

boundary conditions

7.1 Introduction

This chapter is devoted to the study of a generalized nth order � - Lapla-

cian type di¤erential equation

�
�
�
�
u(n�1)(x)

��0
= f(x; u(x); :::; u(n�1)(x)); (7.1.1)

for x 2 I := [0; 1]; where � : R ! R is an increasing homeomorphism such

that �(0) = 0, n � 2; and f : [0; 1]�Rn ! R is a L1-Carathéodory function,

with the boundary conditions

gi
�
u; u0; :::; u(n�2); u(i)(1)

�
= 0; i = 0; :::; n� 3;

gn�2
�
u; u0; :::; u(n�2); u(n�2)(0); u(n�1)(0)

�
= 0;

gn�1
�
u; u0; :::; u(n�2); u(n�2)(1); u(n�1)(1)

�
= 0;

(7.1.2)

145
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where gi : (C(I))
n�1�R! R; i = 0; :::; n�3; gn�2; gn�1 : (C(I))n�1�R2 !

R are continuous functions verifying adequate monotone assumptions.

Boundary conditions (7.1.2) cover many of the classical boundary condi-

tions, such as various two-point and multipoint, integral with delay and/or

advances boundary conditions, nonlocal, with maximum and/or minimum

arguments,... One can refer ([39, 43, 61, 73]) for higher order separated

problems, ([36, 37, 38, 54, 55, 60, 83, 100]), for the multipoint cases, and

([15, 16, 19, 74]), for higher order functional problems.

In these papers a variety of techniques and tools is used, with the lower

and upper solution method. The same method was used in [40] to study the

problem composed by (7.1.1) for n = 2 and the boundary conditions

g (u (0) ; u0 (0) ; u0 (1)) = 0

u (1) = h (u (0)) ;

and obtain su¢ cient conditions for the existence of solution.

The main existence and location result, here presented is based on [41]

and it seems interesting to us, not only by the improvement on the existing

related literature but also by some of its consequences and conclusions:

� for n � 3 the order between lower and upper solutions, and their deri-

vatives until order (n� 3); is not relevant. In fact, these orders depend

whether n is odd or even and on the relation between the (n � 2) de-

rivatives of lower and upper solutions, as it can be seen in Remark

7.3.2;

� the behavior of the nonlinearity f , given by (7.3.4), depends on several

factors: from the parity of n, from the relation between the (n� 2)

derivatives of lower and upper solution and subsequent orders;
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� the assumptions on the monotone behavior of the functions on the

boundary data, depend on the parity of n (see assumptions (N1) and

(N2)).

The above items were just "guessed" from the existent results in higher

order boundary value problems of di¤erent orders, where lower and upper

solutions are applied in the well ordered or reversed order cases. However,

as far as we know, they were proved in [41] for the �rst time.

The arguments here applied follow the standard lower and upper solutions

technique, together with a Nagumo-type condition, to control the growth of

u(n�1); and a �xed-point result. Remark, also, that, due to a truncation tool,

it is not considered the usual assumption on �; that is, � (R) = R:

7.2 Preliminary results and de�nitions

This section will provide some de�nitions and results to be used forward.

Let Lp (I) ; 1 � p � 1; be the usual Lebesgue spaces of functions with

the standard norms.

The Nagumo-type condition for this case needs an adjustment on the

integral assumption:

De�nition 7.2.1 Given a subset E � I � Rn, a function f : I � Rn ! R

veri�es a Nagumo-type condition in the set

E := f(x; y0; : : : ; yn�1) 2 I � Rn : mj(x) � yj �Mj(x); j = 0; : : : ; n� 2g ;

with mj;Mj 2 C (I;R) such that

mj(x) �Mj(x); 8x 2 I; j = 0; : : : ; n� 2;
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if there is hE 2 C
�
R+0 ; ]0;+1[

�
, verifying

jf(x; y0; :::; yn�1)j � hE(jyn�1j); 8(x; y0; :::; yn�1) 2 E; (7.2.1)

with Z +1

�(r)

����1(s)��
hE(
����1(s)��) ds > maxx2I

Mn�2(x)�min
x2I

mn�2(x), (7.2.2)

for r � 0 such that

r := max fMn�2(1)�mn�2(0);Mn�2(0)�mn�2(1)g : (7.2.3)

The a priori estimation for the (n�1) derivative is given by Lemma 1.2.2

now adapted to condition (7.2.2)

Next Lemma proves the existence and uniqueness of solution for a related

problem of (7.1.1) �(7.1.2).

Lemma 7.2.2 Consider ' : R! R an increasing homeomorphism such that

'(0) = 0 and '(R) = R; p : I ! R such that p 2 L1 (I), Ai; B; C 2 R; i =

0; :::; n� 3: Then the problem8>>>>>><>>>>>>:

�
�
'
�
u(n�1)(x)

��0
= p(x), for a. e. x 2 I,

u(i)(1) = Ai; i = 0; :::; n� 3;

u(n�2)(0) = B

u(n�2)(1) = C

(7.2.4)

has a unique solution given by

u(x) = B +

Z x

0

'�1
�
� v �

Z s

0

p (r) dr

�
ds

if n = 2; and

u(x) =
n�3X
k=0

(�1)k Ak
(1� x)k

k!
+ (�1)n

Z 1

x

(s� x)n�3

(n� 3)! v (s) ds; (7.2.5)
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if n � 3; with

v (x) := B +

Z x

0

'�1
�
� v �

Z s

0

p (r) dr

�
ds

and � v 2 R is the unique solution of the equation

C �B =

Z 1

0

'�1
�
� v �

Z s

0

p (r) dr

�
ds: (7.2.6)

Proof. De�ning v (x) := u(n�2) (x) ; from (7.2.4) we obtain the Dirichlet

problem

� (' (v0 (x)))0 = p (x) ; for a:e: x 2 I (7.2.7)

v (0) = B; v (1) = C: (7.2.8)

Therefore, for some � 2 R,

v0 (x) = '�1
�
� �

Z x

0

p (r) dr

�
and

v (x) = B +

Z x

0

'�1
�
� �

Z x

0

p (r) dr

�
ds: (7.2.9)

Since '�1 is increasing, we have

v� (�) : = B + '�1 (� � kpk1) � v (1)

� B + '�1 (� + kpk1) := v� (�)

for each � 2 R: Now '�1 (R) = R and the functions v� and v� are continuous

and increasing, so v� (R) = v� (R) = R. Thus there is a unique � v satisfying

(7.2.6).

If n = 2 the proof is concluded. For n � 3, then repeatedly integrating

(7.2.9) and applying the boundary conditions, we obtain (7.2.5).

In the sequel, it will be assumed that the continuous functions gi :

(C(I))n�1 � R ! R; i = 0; :::; n � 3; and gn�2; gn�1 : (C(I))n�1 � R2 ! R

have a di¤erent behavior as n is even or odd. More precisely:
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(i) for n even it is said that the boundary functions verify assumption (N1)

if the following conditions hold:

� gj (y0; y1; :::; yn�1) ; are nondecreasing on y0; y2; :::; yn�2; and non-

increasing on y1; y3; :::; yn�3; for j even such that 0 � j � n� 4;

� gk (y0; y1; :::; yn�1) ; are nonincreasing on y0; y2; :::; yn�2; and non-

decreasing on y1; y3; :::; yn�3; for k odd such that 1 � k � n� 3;

� gn�2 (y0; y1; :::; yn�1; yn) is nondecreasing on y0; y2; :::; yn�2 and yn;

and nonincreasing on y1; y3; :::; yn�3;

� gn�1 (y0; y1; :::; yn�1; yn) is nondecreasing on y0; y2; :::; yn�2; and non-

increasing on y1; y3; :::; yn�3 and yn;

(ii) for n odd the boundary functions verify (N2) if the following conditions

hold:

� gj (y0; y1; :::; yn�1) ; are nondecreasing on y0; y2; :::; yn�3; and non-

increasing on y1; y3; :::; yn�2; for j even such that 0 � j � n� 3;

� gk (y0; y1; :::; yn�1) ; are nonincreasing on y0; y2; :::; yn�3; and non-

decreasing on y1; y3; :::; yn�2; for k odd such that 1 � k � n� 4;

� gn�2 (y0; y1; :::; yn�1; yn) is nonincreasing on y0; y2; :::; yn�3; and non-

decreasing on y1; y3; :::; yn�2 and yn;

� gn�1 (y0; y1; :::; yn�1; yn) is nonincreasing on y0; y2; :::; yn�3 and yn;

and nondecreasing on y1; y3; :::; yn�2.

Noting by AC(I); the set of absolutely continuous function on I; the

functions used as lower and upper solutions are de�ned as it follows:
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De�nition 7.2.3 Let n � 2: A function � 2 Cn�1 (I) such that �
�
�(n�1)(x)

�
2

AC(I) is a lower solution of problem (7.1.1)-(7.1.2) if

�
�
�
�
�(n�1)(x)

��0 � f(x; �(x); �0(x); : : : ; �(n�1)(x)); (7.2.10)

for x 2]0; 1[,

(i) for n even

gj
�
�; �0; :::; �(n�2); �(j)(1)

�
� 0; for j even such that 0 � j � n� 4;

gk
�
�; �0; :::; �(n�2); �(k)(1)

�
� 0; for k odd such that 1 � k � n� 3;

(7.2.11)

(ii) for n odd

gj
�
�; �0; :::; �(n�2); �(j)(1)

�
� 0; for j even such that 0 � j � n� 3;

gk
�
�; �0; :::; �(n�2); �(k)(1)

�
� 0; for k odd such that 1 � k � n� 4;

(7.2.12)

and

(iii) in both cases

gn�2
�
�; �0; :::; �(n�2); �(n�2)(0); �(n�1)(0)

�
� 0;

gn�1
�
�; �0; :::; �(n�2); �(n�2)(1); �(n�1)(1)

�
� 0:

A function � 2 Cn�1 (I) such that �
�
�(n�1)(x)

�
2 AC(I) is an upper

solution of problem (7.1.1)-(7.1.2), if the reversed inequalities hold in

each case.

The following version of the Schauder �xed point theorem will also be

considered:

Theorem 7.2.4 [87, Theorem 5.11]Let X be a normed vector space, and let

K � X be a non-empty, compact, and convex set. Then given any continuous

mapping f : K ! K there exists x 2 K such that f(x) = x.
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7.3 Existence and location theorem

The main result is an existence and location theorem, as it is usual in

lower and upper solutions technique. However, in this case, the strips are

bounded by well ordered lower and upper solutions and the corresponding de-

rivatives, and in reversed order, as well. Therefore, for a more clear notation,

it is de�ned the following functions:

i(x) = min
x2I

n
�(i)(x); �(i)(x)

o
, �i(x) = max

x2I

n
�(i)(x); �(i)(x)

o
; (7.3.1)

for each i = 0; : : : ; n� 2:

Theorem 7.3.1 Let f : I � Rn ! R be a L1-Carathéodory function.

Assume that � and � are lower and upper solutions of problem (7.1.1)-

(7.1.2), respectively, such that

�(n�2)(x) � �(n�2)(x), 8x 2 [0; 1]; (7.3.2)

(�1)m �(n�2�m)(1) � (�1)m �(n�2�m)(1), m = 1; : : : ; n� 2; (7.3.3)

f satis�es Nagumo-type condition (7.2.1) in the set

E� = f(x; y0; : : : ; yn�1) 2 I � Rn : i(x) � yi � �i(x); i = 0; : : : ; n� 2g ;

and

f(x; �(x); : : : ; �(n�3)(x); yn�2; yn�1) � f(x; y0; : : : ; yn�1) (7.3.4)

� f(x; �(x); : : : ; �(n�3)(x); yn�2; yn�1),

for �xed x, yn�2, yn�1 and k(x) � yk � �k(x); k = 0; :::; n� 3; 8x 2 I:

Moreover, if n is even and the boundary functions verify (N1); or n is odd,

and the boundary functions satisfy (N2); then problem (7.1.1)-(7.1.2) has at

least a solution u such that

i(x) � u(i)(x) � �i(x);
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for i = 0; : : : ; n� 2; and

�R � u(n�1) (x) � R;

for every x 2 I, with

R > max

8<: �(n�2)(1)� �(n�2)(0); �(n�2)(0)� �(n�2)(1);

k�(n�1)k1; k�(n�1)k1

9=; : (7.3.5)

Remark 7.3.2 From the integration of (7.3.2) in [x; 1] and conditions (7.3.3),

the derivatives of lower and upper solutions will change order, that is, for

every x 2 I;

�(n�3)(x) � �(n�3)(x),

�(n�4)(x) � �(n�4)(x),
...

�(x) � �(x);

if n is even or, for n odd, the iteration will end with

�(x) � �(x); in I:

As the relation between the lower and upper solutions depends on n, and their

derivatives can be well ordered or in reversed order, therefore this issue has

not, for n � 3; the same relevance as it has for �rst and second order. As a

consequence, the same can be said for the variation of the nonlinearity f; as

it can be seen in (7.3.4).

Proof. For i = 0; :::; n� 2, consider the continuous truncations, ;

�i (x;w) =

8>>><>>>:
�i(x) , w > �i(x);

w , i(x) � w � �i(x);

i(x) , w < i(x);

(7.3.6)
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where i(x) and �i(x) are given by (7.3.1), and, for R given by (7.3.5), the

functions

�(z) = max f�R;min fz; Rgg (7.3.7)

and ' : R! R given by

' (y) =

8>>><>>>:
� (y) if jyj � R;

�(R)��(�R)
2R

y + �(R)+�(�R)
2

if jyj > R:

(7.3.8)

De�ne the modi�ed problem composed by the di¤erential equation

�
�
'
�
u(n�1)(x)

��0
(7.3.9)

= f

�
x; �0 (x; u) ; :::; �n�2

�
x; u(n�2)

�
; �

�
d

d x
�n�2

�
x; u(n�2)

���
� Fu(x)

and the boundary conditions, for i = 0; :::; n� 3;

u(i)(1) = �i
�
1; u(i)(1) + gi

�
u; :::; u(n�2); u(i)(1)

��
;

u(n�2)(0) = �n�2

0@ 0; u(n�2)(0)+

gn�2
�
u; :::; u(n�2); u(n�2)(0); u(n�1)(0)

�
1A(7.3.10)

u(n�2)(1) = �n�2

0@ 1; u(n�2)(1)+

gn�1
�
u; :::; u(n�2); u(n�2)(1); u(n�1)(1)

�
1A :

A function u 2 Cn�1(I]) such that
�
� � u(n�1)

�
2 AC(I) is a solution of

problem (7.3.9)-(7.3.10) if it satis�es the above equalities.

Step 1- Every solution of problem (7.3.9)-(7.3.10) veri�es in I

i(x) � u(i)(x) � �i(x); for i = 0; : : : ; n� 2, (7.3.11)

�R � u(n�1) (x) � R: (7.3.12)

Let u be a solution of (7.3.9)-(7.3.10).

For i = n� 2 we have n�2(x) = �(n�2)(x) and �n�2(x) = �(n�2)(x):
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Assume, by contradiction, that the second inequality in (7.3.11) does not

hold and de�ne

max
x2I

(u� �)(n�2) (x) := (u� �)(n�2) (x0) > 0:

By (7.3.10), u(n�2)(0) � �(n�2)(0) and u(n�2)(1) � �(n�2)(1): So, x0 2 (0; 1),

u(n�1)(x0) = �(n�1)(x0) and there is " > 0 such that

u(n�2)(x0 + ") = �(n�2)(x0 + ")

and u(n�2)(x) > �(n�2)(x) on [x0; x0 + "):

On (x0; x0 + "); by De�nition 7.2.3, (7.3.4), (7.3.6), (7.3.7) and (7.3.5),

the following inequality is achieved

�
�
'
�
u(n�1)(x)

��0
= f

�
x; �0 (x; u) ; :::; �n�2

�
x; u(n�2)

�
; �

�
d

dx
�n�2

�
x; u(n�2)

���
= f

�
x; �0 (x; u) ; :::; �n�3

�
x; u(n�3)

�
; �(n�2) (x) ; �(n�1) (x)

�
� f

�
x; � (x) ; :::; �(n�3); �(n�2) (x) ; �(n�1) (x)

�
� �

�
�
�
�(n�1)(x)

��0
= �

�
'
�
�(n�1)(x)

��0
;

therefore u(n�1)(x) � �(n�1)(x) on (x0; x0 + "), which is a contradiction with

the de�nition of [x0; x0 + ").

So u(n�2) (x) � �(n�2) (x) for every x 2 I: By analogous arguments it can

be shown that �(n�2) (x) � u(n�2) (x) in I:

Integrating the inequalities

�(n�2) (x) � u(n�2) (x) � �(n�2) (x) ;

in [x; 1]; by (7.3.3) and (7.3.10), we obtain

�(n�3) (x) � u(n�3) (x) � �(n�3) (x) :
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Iterating this integration it can be proved that, for n even,

�(j) (x) � u(j) (x) � �(j) (x) ; for j even such that 0 � j � n� 2;

and

�(k) (x) � u(k) (x) � �(k) (x) ; for k odd such that 1 � k � n� 3:

For n odd

�(k) (x) � u(k) (x) � �(k) (x) ; for k odd such that 1 � k � n� 2;

and

�(j) (x) � u(j) (x) � �(j) (x) ; for j even such that 0 � j � n� 3:

Therefore condition (7.3.11) holds for i = 0; :::; n� 2.

From Lemma 4.4.1 and the de�nition of �, the right hand side of the

equation (7.3.9) is a L1 �function. Therefore, Lemma 1.2.2 can be applied,

with the integral condition (7.2.2) and mj(x) = j(x) and Mj(x) = �j(x);

for j = 0; :::; n� 2; that is, condition (7.3.12) holds.

Step 2 - Problem (7.3.9)-(7.3.10) has a solution u1(x):

Let u 2 Cn�1(I) be �xed. By Lemma 7.2.2, solutions of problem (7.3.9)-

(7.3.10) are the �xed points of the operator

T u(x) =

n�3X
k=0

(�1)k �k
�
1; u(k)(1) + gk

�
u; :::; u(n�2); u(k)(1)

�� (1� x)k

k!

+ (�1)n
Z 1

x

(s� x)n�3

(n� 3)! vu (s) ds;

with

vu (x) : = gn�2
�
u; u0; :::; u(n�2); u(n�2)(0); u(n�1)(0)

�
+

Z x

0

'�1
�
�u �

Z s

0

Fu (r) dr

�
ds
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and �u 2 R is the unique solution of the equation

gn�1
�
u; :::; u(n�2); u(n�2)(1); u(n�1)(1)

�
�gn�2

�
u; :::; u(n�2); u(n�2)(0); u(n�1)(0)

�
=

Z 1

0

'�1
�
�u �

Z s

0

Fu (r) dr

�
ds: (7.3.13)

By (7.3.9), there is a function ! 2 L1 (I) such that

j Fu(s) j� !(s) for a. e. s 2 [0; 1] and for all u 2 Cn�1([0; 1]);

and, by (7.3.13), there exists L > 0 such that

j �u j� L for all u 2 Cn�1([0; 1]):

So, we conclude that operator T (Cn�1(I)) is bounded in Cn�1(I) and,

by Theorem 7.2.4, operator T has a �xed point u1.

Step 3 - u1(x) is a solution of problem (7.1.1)-(7.1.2).

To show that this function u1(x) is a solution of the initial problem (7.1.1)-

(7.1.2) by Step 1, it will be enough to prove that

i (1) � u
(i)
1 (1) + gi

�
u1; u

0
1; :::; u

(n�2)
1 ; u

(i)
1 (1)

�
(7.3.14)

� �i (1) ; i = 0; :::; n� 3;

�(n�2) (0) � u
(n�2)
1 (0) + (7.3.15)

gn�2

�
u1; u

0
1; :::; u

(n�2)
1 ; u

(n�2)
1 (0); u

(n�1)
1 (0)

�
� �(n�2) (0) ;

�(n�2) (1) � u
(n�2)
1 (1) +

gn�1

�
u1; u

0
1; :::; u

(n�2)
1 ; u

(n�2)
1 (1); u

(n�1)
1 (1)

�
� �(n�2) (1) :
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Suppose that n is even.

Consider the case i = 0: Then, by (7.3.3), 0 (1) = �(1) and �0 (1) = �(1):

Assume, by contradiction, that

u1(1) + g0

�
u1; u

0
1; :::; u

(n�2)
1 ; u1(1)

�
> �(1):

By (7.3.10), u1(1) = � (1) ; and, by (N1) and De�nition 7.2.3; the following

contradiction is obtained

0 < g0

�
u1; u

0
1; :::; u

(n�2)
1 ; u1(1)

�
= g0

�
u1; u

0
1; :::; u

(n�2)
1 ; �(1)

�
� g0

�
�; �0; :::; �(n�2); �(1)

�
� 0:

Then

u1(1) + g0

�
u1; u

0
1; :::; u

(n�2)
1 ; u1(1)

�
� �(1)

and, with the same technique, it can be proved that

�(1) � u1(1) + g0

�
u1; u

0
1; :::; u

(n�2)
1 ; u1(1)

�
and the remaining inequalities in (7.3.14).

Considering that the �rst inequality of (7.3.15) does not hold, then; by

(7.3.10), u(n�2)1 (0) = �(n�2) (0) ; and, by (7.3.11), u(n�1)1 (0) � �(n�1) (0). By

monotone assumptions on gn�2, it is obtained, by (7.2.11), this contradiction

0 > gn�2

�
u1; u

0
1; :::; u

(n�2)
1 ; u

(n�2)
1 (0); u

(n�1)
1 (0)

�
= gn�2

�
u1; u

0
1; :::; u

(n�2)
1 ; �(n�2)(0); u

(n�1)
1 (0)

�
� gn�2

�
�; �0; :::; �(n�2); �(n�2)(0); �(n�1)(0)

�
� 0:

So, �(n�2) (0) � u
(n�2)
1 (0) + g

�
u1; u

0
1; :::; u

(n�2)
1 ; u

(n�2)
1 (0); u

(n�1)
1 (0)

�
and,

by a similar technique, it can be proved that

u(n�2)(0) + gn�2

�
u1; u

0
1; :::; u

(n�2)
1 ; u

(n�2)
1 (0); u

(n�1)
1 (0)

�
� �(n�2) (0) :
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Assuming that

�(n�2) (1) > u
(n�2)
1 (1) + gn�1

�
u1; u

0
1; :::; u

(n�2)
1 ; u

(n�2)
1 (1); u

(n�1)
1 (1)

�
;

by the same arguments we have

u
(n�2)
1 (1) = �(n�2) (1) and u(n�1)1 (1) � �(n�1) (1) :

Therefore, by the properties of gn�1, it is achieved the contradiction

0 > gn�1

�
u1; u

0
1; :::; u

(n�2)
1 ; u

(n�2)
1 (1); u

(n�1)
1 (1)

�
= gn�1

�
u1; u

0
1; :::; u

(n�2)
1 ; �(n�2)(1); u

(n�1)
1 (1)

�
� gn�1

�
�; �0; :::; �(n�2); �(n�2)(1); �(n�1)(1)

�
� 0:

The remained inequality can also be proved by the above technique.

For n odd the arguments are analogous, applying the monotone assump-

tions in (N2) and the corresponding boundary conditions.

7.4 Examples

In this section three examples are presented to cover the cases where �

is not surjective, n is odd and n even. The boundary conditions are chosen

not to get some physical meaning but only to emphasize the potentialities

given by the functional dependence.

The existing results in the literature always assume that � (R) = R. In

fact, due to the introduction of a truncation tool given by (7.3.8), this usual

assumption is no longer assumed.

The following example illustrates this situation.
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Example 7.4.1 Let

� (y) =

8>>><>>>:
arctan (y + 5)� 125 y < �5

y3 �5 � y � 5

arctan (y � 5) + 125 y > 5;

the problem composed by the equation

(� (u000 (x)))
0
= u

1
3 (x)� 2u00 (x) ; x 2 (0; 1) (7.4.1)

and the boundary conditions

u0
�
1
2

�
� 2u (0) = 0

u (0)� 2u0 (0)� 1 = 0

u000
�
1
2

�
� 3u00 (0) = 0R 1

0
u (s) ds+ u000

�
1
4

�
+ u000

�
3
4

�
� 10u00 (1) = 0:

(7.4.2)

The functions � (x) = � (x2 + x+ 1) and � (x) = x2 + x + 1 are lower

and upper solutions, respectively of (7.4.1)-(7.4.2).

It can be easily checked that this problem is a particular case of (7.1.1)-

(7.1.2), with n = 4

f (x; y0; y1; y2; y3) = �y
1
3
0 + 2y2

and

g0 (y0; y1; y2; y3; y4) = y1
�
1
2

�
� 2y4

g1 (y0; y1; y2; y3; y4) = y0 (0)� 2y4 � 1

g2 (y0; y1; y2; y3; y4) = y3
�
1
2

�
� 3y4

g3 (y0; y1; y2; y3; y4) =
R 1
0
y0 (s) ds+ y3

�
1
4

�
+ y3

�
3
4

�
� 10y4:

Then by Theorem 7.3.1 the problem (7.4.1)-(7.4.2) has at least one non-

trivial solution such that

�x2 � x� 1 � u (x) � x2 + x+ 1

�2x� 1 � u0 (x) � 2x+ 1

�2 � u00 (x) � 2; for x 2 (0; 1) :

(7.4.3)
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Example 7.4.2 For n = 3 consider the problem composed by the equation

u000(x)

1 + (u00(x))2
= (u(x))3 + k (u0(x))

5 � 3
p
u00(x) + 1 (7.4.4)

and the boundary conditions

A u(1) =

+1X
j=1

aj u
�
�j
�
�

+1X
j=1

bj u
0 ��j� ;

B u0(0) = max
x2[0;1]

u0(x)�
Z x

0

u(t)dt+ (u00(0))
2p+1

; (7.4.5)

C u0(1) = min
x2[0;1]

u0(x)� max
x2[0;1]

u(x)� (u00(1))2q+1 ;

with k;A;B;C 2 R; 0 � �j; �j � 1; 8j 2 N; p; q 2 N and
P+1

j=1 aj;
P+1

j=1 bj

are nonnegative and convergent series with sum a and b, respectively.

This problem is a particular case of (7.1.1), (7.1.2), where �(z) = arctan z

(remark that �(R) 6= R),

f (x; y0; y1; y2) = �y30 � k y51 +
3
p
y2 + 1;

g0 (z1; z2; z3) =
+1X
j=1

aj z1
�
�j
�
�

+1X
j=1

bj z2
�
�j
�
� Az3;

g1 (z1; z2; z3; z4) = max
x2[0;1]

z2 �
Z x

0

z1(t)dt+ z2p+14 �Bz3;

g2 (z1; z2; z3; z4) = min
x2[0;1]

z2 � max
x2[0;1]

z1 � z2q+14 � Cz3:

The straight lines �(x) = 2� x and �(x) = x� 2 are, respectively, lower

and upper solutions of the problem (7.4.4), (7.4.5) for k � 9; A � 2a + b;

B � 3 and C � 3: Therefore, by Theorem 7.3.1, there is a nontrivial solution,

u(x); of problem (7.4.4), (7.4.5), such that

�(x) = x� 2 � u(x) � 2� x = �(x)

and

�0(x) = �1 � u0(x) � 1 = �0(x); 8x 2 [0; 1]:
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Example 7.4.3 In the case n = 4 it is considered the functional boundary

value problem

�
u000(x)2p+1

�0
= � arctan(u(x)) + (u0(x))3 � k (u00(x))5 � ju000(x) + 1j�;

A u(1) = max
x2[0;1]

u0(x)�
Z x

0

u(t)dt;

B u0(1) =

+1X
j=1

aj u
00 ��j� (7.4.6)

C (u00(0))
3
= �max

x2[0;1]
u(x� �); (0 < � � x � 1) ;

D u00(1) = u0 (maxf0; x� "g) ; (" > 0) ;

where p 2 N, � 2 [0; 2]; k; A;B;C;D 2 R; 0 � �j � 1; and
P+1

j=1 aj (aj � 0)

is convergent with sum a.

The above problem veri�es the assumptions of Theorem 7.3.1, with �(z) =

z2p+1; ( in this case �(R) = R),

f (x; y0; y1; y2; y3) = arctan y0 � y31 + k y52 + jy3 + 1j�;

g0 (z1; z2; z3; z4) = A z4 � max
x2[0;1]

z2 +

Z x

0

z1(t)dt;

g1 (z1; z2; z3; z4) = B z4 �
+1X
j=1

aj z3
�
�j
�
;

g2 (z1; z2; z3; z4; z5) = C z35 + max
x2[0;1]

z1(x� �);

g3 (z1; z2; z3; z4; z5) = D z4 � z2 (maxf0; x� "g) :

The functions �(x) = � (2� x)2 and �(x) = (2� x)2 are, respectively,

lower and upper solutions of the problem (7.4.6) for

k � ��
4
� 65
2
; A � �19

3
;

B � a; C � �1
8
; D � �2:

So, by Theorem 7.3.1, there is a nontrivial solution, u(x); of problem (7.4.6),
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such that

�(x) = �(2� x)2 � u(x) � (2� x)2 = �(x);

�0(x) = 2x� 4 � u0(x) � 4� 2x = �0(x)

and

�00(x) = �2 � u00(x) � 2 = �00(x); 8x 2 [0; 1]:
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Chapter 8

Functional boundary value

problems

8.1 Introduction

Until now we have dealt with problems with functional boundary condi-

tions. Next chapters will consider functional boundary value problems, that

is, problems where the functional dependence is allowed in the di¤erential

equation as well.

The �rst existence and location result will be discussed for the problem

composed by the functional equation

u(iv) (x) = f (x; u; u0; u00 (x) ; u000 (x)) (8.1.1)

with x 2 [a; b] ; f : [a; b]�(C([a; b]))2�R2 ! R a L1� Carathéodory function

165
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and the nonlinear functional boundary conditions

L0 (u; u
0; u00; u (a)) = 0;

L1 (u; u
0; u00; u0 (a)) = 0;

L2 (u; u
0; u00; u00 (a) ; u000 (a)) = 0;

L3 (u; u
0; u00; u00 (b) ; u000 (b)) = 0;

(8.1.2)

where Li, i = 0; 1; 2; 3, are continuous functions to be de�ned later.

This type of functional boundary value problems has been studied in se-

veral works such as [15] for third order, [19] for fourth order and [16, 17] for

higher order. As the functional dependence on the unknown function and its

�rst derivative is allowed in the nonlinearity f these results not only improve

the existing in the literature related to fourth order functional problems but

they also generalize the results obtained in previous chapters. Moreover, the

above problem cover several types of di¤erential equations, such as, delay

equations, integro-di¤erential or equations with maxima or minima argu-

ments, and many di¤erent boundary conditions, like Lidstone, separated,

multipoint or non local conditions, among others.

The method used in this Chapter follows standard arguments in lower

and upper solutions technique, combined with a stronger de�nition, which

allows two features, not covered by the existing results:

� lower and upper functions can be considered with second order deriva-

tives well ordered, or in reverse order, but eventually, with non-ordered

�rst derivative and/or the unknown function (see De�nition 8.2.1). If

lower and upper solutions, and the corresponding derivatives, are "well

ordered", the main theorem (Theorem 8.2.2), coincides with the clas-

sical theory.

In the case of non-ordered lower and upper solutions the strips are

de�ned by a pair of functions that are obtained by a perturbation of
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the initial lower and upper solutions. Therefore the set of admissible

functions to be considered as lower and upper is hugely generalized.

� no monotone-type conditions are assumed on the nonlinearity f:

The second problem studied is composed by equation (8.1.1), with the

nonlinear functional boundary conditions

L�0 (u; u
0; u00; u000; u (a)) = 0

L�1 (u; u
0; u00; u000; u0 (a)) = 0

L�2 (u; u
0; u00; u000; u00 (a) ; u000 (a)) = 0

L�3 (u; u
0; u00; u000; u00 (b) ; u000 (b)) = 0;

(8.1.3)

where each L�i ; i = 0; ::; 3; allows a functional dependence on u
000, too.

As far as we know, it is the �rst time where such dependence is consi-

dered together with a functional di¤erential equation. In this way, problem

(8.1.1),(8.1.3) is more ionteresting, not only from a theoretical point of view,

but also because it can be applied to di¤erent real phenomena, such as peri-

odic models that were not covered by the previous problems.

This problem is approached using similar techniques, as the boundary

conditions are a generalization of (8.1.2), however the de�nition of the lower

and upper solutions is considered as maximum/minimum in some adequate

sets.

Section 8.5 contains, as example, a problem with Lidstone-type bound-

ary conditions that could not be solved by the existing theory. In fact it

includes an integro-di¤erential equation and the existence and location re-

sults is obtained in presence of non-ordered lower and upper solutions and

the corresponding �rst derivatives.

This last case is generalized for functional nth order boundary value pro-
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blem composed by the equation

u(n) (x) = f(x; u; :::; u(n�3); u(n�2) (x) ; u(n�1) (x))

for x 2 [a; b] ; where f : [a; b]�(C ([a; b]))(n�2)�R2 ! R is a L1�Carathéodory

function, and the boundary conditions

�L�i (u; u
0; :::; u(n�1); u(i) (a)) = 0; i = 0; :::; n� 2

�L�n�1(u; u
0; :::; u(n�1); u(n�2) (b)) = 0;

where �L�i ; i = 0; ::; n� 1; are continuous functions verifying some conditions

to be de�ned next.

Special emphasis should be put on the fact that the existence and location

result obtained not only generalizes the previous problems studied on this

chapter as it is also eliminates the monotone conditions assumed on the Li;

i = 0; 1; 2; 3; functions, given by (8.1.2), which were a usual condition for the

known literature.

Last section includes an example where a periodic model is recreated due

to the fact that boundary conditions (8.1.3) cover the periodic case, which

was not the case of (8.1.2).

8.2 Fourth order functional problems

In this section it will be introduced the de�nitions and auxiliary results

needed forward to construct some ordered functions on the basis of the not

necessarily ordered lower and upper solutions of the problem (8.1.1)-(8.1.2).

Let it be considered a Nagumo-type growth condition, as de�ned in De-

�nition 1.2.1 and Lemma 1.2.2, for n = 4 to set an a priori bound for the

third derivative of the corresponding solutions.

The nonlinear part f will be a L1�Carathéodory function and the func-

tions Li; i = 0; 1; 2; 3; in (8.1.2) verify the following monotonicity properties:
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(P0) L0; L1 : (C([a; b]))
3 � R ! R are continuous functions, nondecreasing

in �rst, second and third variables;

(P1) L2 : (C([a; b]))
3 � R2 ! R is a continuous function, nondecreasing in

�rst, second, third and �fth variables;

(P2) L3 : (C([a; b]))
3 � R2 ! R is a continuous function, nondecreasing in

�rst, second and third variables and nonincreasing in the �fth one.

The main tool to obtain the location part is the lower and upper solutions

method. However, in this case, they must be de�ned as a pair, which means

that it is not possible to de�ne them independently from each other. More-

over, it is pointed out that lower and upper functions, and the correspondent

�rst derivatives, are not necessarily ordered.

To introduce "some order", it must be de�ned some auxiliary functions:

For any �; � 2 W 2;1 ([a; b]) de�ne functions �i; �i : [a; b] ! R; i = 0; 1;

as it follows:

�1(x) = min f�0 (a) ; �0 (a)g+
Z x

a

�00 (s) ds; (8.2.1)

�1(x) = max f�0 (a) ; �0 (a)g+
Z x

a

�00 (s) ds; (8.2.2)

�0(x) = min f� (a) ; � (a)g+
Z x

a

�1 (s) ds (8.2.3)

�0(x) = max f� (a) ; � (a)g+
Z x

a

�1 (s) ds: (8.2.4)

De�nition 8.2.1 The functions �; � 2 W 4;1 ([a; b]) are a pair of lower and

upper solutions for problem (8.1.1)-(8.1.2) if �00 (x) � �00 (x) ; on [a; b] ; and
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for all (v; w) 2 A := [�0; �0]� [�1; �1] ; the following inequalities hold:

�(iv) (x) � f (x; v; w; �00 (x) ; �000 (x)) ; for a. e. x 2 [a; b]; (8.2.5)

�(iv) (x) � f (x; v; w; �00 (x) ; �000 (x)) ; for a. e. x 2 [a; b]; (8.2.6)

L0 (�0; �1; �
00; �0 (a)) � 0 � L0 (�0; �1; �

00; �0 (a))

L1 (�0; �1; �
00; �1 (a)) � 0 � L1 (�0; �1; �

00; �1 (a))

L2 (�0; �1; �
00; �00 (a) ; �000 (a)) � 0 � L2 (�0; �1; �

00; �00 (a) ; �000 (a))

L3 (�0; �1; �
00; �00 (b) ; �000 (b)) � 0 � L3 (�0; �1; �

00; �00 (b) ; �000 (b)) :

(8.2.7)

Next existence and location theorem states su¢ cient conditions for, not

only the existence of a solution u, but also to have information about the

location of u; u0; u00 and u000:

Theorem 8.2.2 Assume that there exists a pair (�; �) of lower and upper

solutions of problem (8.1.1)-(8.1.2), respectively, such that conditions (P0),

(P1) and (P2) hold.

If f : [a; b]� (C([a; b]))2�R2 ! R is a L1�Carathéodory function, satisfying

a Nagumo-type condition in

E� =

8<: (x; y0; y1; y2; y3) 2 [a; b]� R4 : �0 (x) � y0 � �0 (x) ;

�1 (x) � y1 � �1 (x) ; �
00(x) � y2 � �00(x)

9=; ; (8.2.8)

then problem (8.1.1)-(8.1.2) has at least one solution u such that

�0 (x) � u (x) � �0 (x) ; �1 (x) � u0 (x) � �1 (x) ; �00 (x) � u00 (x) � �00 (x) ;

for every x 2 [a; b] ; and ju000 (x)j � K; 8 x 2 [a; b] ; where

K = max fR; j�000 (x)j ; j�000 (x)jg (8.2.9)

and R > 0 is given by Lemma 1.2.2 referred to the set E�.
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Proof. De�ne the continuous functions

�i (x; yi) = max f�i (x) ;min fyi; �i (x)gg ; for i = 0; 1; (8.2.10)

�2 (x; y2) = max f�00 (x) ;min fy2; �00 (x)gg

and

q (z) = max f�K;min fz;Kgg for a.e. z 2 R: (8.2.11)

Consider the modi�ed problem composed by the equation

u(iv) (x) = f

�
x; �0 (�; u (�)) ; �1 (�; u0 (�)) ; �2 (x; u00 (x)) ; q

�
d

dx
(�2 (x; u

00))

��
(8.2.12)

and the boundary conditions

u (a) = �0 (a; u (a) + L0 (u; u
0; u00; u (a))) ;

u0 (a) = �1 (a; u
0 (a) + L1 (u; u

0; u00; u0 (a))) ;

u00 (a) = �2 (a; u
00 (a) + L2 (u; u

0; u00; u00 (a) ; u000 (a))) ;

u00 (b) = �2 (b; u
00 (b) + L3 (u; u

0; u00; u00 (b) ; u000 (b))) :

(8.2.13)

The proof applies typical steps of truncated problems by lower and upper

solutions, as shown in previous chapters:

Step 1 - Every solution u of problem (8.2.12)-(8.2.13), satis�es

�00 (x) � u00 (x) � �00 (x) ; �1 (x) � u0 (x) � �1 (x) ; �0 (x) � u (x) � �0 (x)

and ju000 (x)j < K; for every x 2 [a; b], with K > 0 given in (8.2.9).

Let u be a solution of the modi�ed problem (8.2.12) �(8.2.13). Assume,

by contradiction, that there exists x 2 [a; b] such that �00 (x) > u00 (x) and let

x0 2 [a; b] be such that

min
x2[a;b]

(u� �)00 (x) = (u� �)00 (x0) < 0:
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As, by (8.2.13), u00 (a) � �00 (a) and u00 (b) � �00 (b), then x0 2 (a; b) : So,

there is (x1; x2) � (a; b) such that

u00 (x) < �00 (x) ;8x 2 (x1; x2); (u� �)00 (x1) = (u� �)00 (x2) = 0: (8.2.14)

Therefore, for all x 2 (x1; x2) it is satis�ed that �2 (x; u00) = �00 (x) and
d
dx
�2 (x; u

00) = �000 (x) : Now, since for all u 2 C1([a; b]) it is satis�ed that

(�0 (�; u) ; �1 (�; u0)) 2 A, we deduce that

u(iv) (x) = f

�
x; �0 (�; u (�)) ; �1 (�; u0 (�)) ; �2 (x; u00) ; q

�
d

dx
(�2 (x; u

00))

��
= f (x; �0 (�; u (�)) ; �1 (�; u0 (�)) ; �00 (x) ; �000 (x))

� �(iv) (x) for a. e. x 2 (x1; x2):

In consequence we deduce that function (u��)000 is monotone nonincreas-

ing on the interval (x1; x2). From the fact that (u � �)000(x0) = 0, we know

that (u � �)00 is monotone nonincreasing too on (x0; x2), which contradicts

the de�nitions of x0 and x2.

The inequality u00(x) � �00(x); in [a; b] ; can be proved in same way and,

so,

�00 (x) � u00 (x) � �00 (x) ; 8 x 2 [a; b] : (8.2.15)

By (8.2.13) and (8.2.1), the following inequalities hold for every x 2 [a; b] ;

u0 (x) = u0 (a) +

Z x

a

u00 (s) ds

� �1 (a) +

Z x

a

�00 (s) ds = min f�0 (a) ; �0 (a)g+
Z x

a

�00 (s) ds

= �1 (x) :

Analogously, it can be obtained u0 (x) � �1 (x) ; for x 2 [a; b] :

On the other hand, by using (8.2.13), (8.2.3) and (8.2.4), the following
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inequalities are ful�lled:

u (x) = u (a) +

Z x

a

u0 (s) ds

� �0 (a) +

Z x

a

�1 (s) ds = min f� (a) ; � (a)g+
Z x

a

�1 (s) ds

= �0 (x) :

The inequality u (x) � �0 (x) for every x 2 [a; b] is deduced in the same

way. The inequality for the third derivative is obtained from Lemma 1.2.2.

Step 2 - Problem (8.2.12)-(8.2.13) has at least one solution.

For � 2 [0; 1] let us consider the homotopic problem given by

u(iv) (x) = �f

�
x; �0 (�; u (�)) ; �1 (�; u0 (�)) ; �2 (x; u00 (x)) ; q

�
d

dx
(�2 (x; u

00 (x)))

��
(8.2.16)

and the boundary conditions

u (a) = ��0 (a; u (a) + L0 (u; u
0; u00; u (a))) � �LA;

u0 (a) = ��1 (a; u
0 (a) + L1 (u; u

0; u00; u0 (a))) � �LB;

u00 (a) = ��2 (a; u
00 (a) + L2 (u; u

0; u00; u00 (a) ; u000 (a))) � �LC ;

u00 (b) = ��2 (b; u
00 (b) + L3 (u; u

0; u00; u00 (b) ; u000 (b))) � �LD:

(8.2.17)

Let us consider the norms in C3 ([a; b]) and in L1 ([a; b])�R4; respectively,

kvkC3 := max fkvk1 ; kv0k1 ; kv00k1 ; kv000k1g

and

j(h; h1; h2; h3; h4)j := max fkhkL1 ;max fjh1j ; jh2j ; jh3j ; jh4jgg :

De�ne the operators L : W 4;1 ([a; b]) � C3 ([a; b]) ! L1 ([a; b]) � R4 by

Lu =
�
u(iv); u (a) ; u0 (a) ; u00 (a) ; u00 (b)

�
and, for � 2 [0; 1] ; N� : C

3 ([a; b])!

L1 ([a; b])� R4 by

N�u =

0@ �f
�
x; �0 (�; u (�)) ; �1 (�; u0 (�)) ; �2 (x; u00 (x)) ; q

�
d
dx
(�2 (x; u

00 (x)))
��
;

LA; LB; LC ; LD

1A
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Since L0; L1; L2 and L3 are continuous and f is a L1� Carathéodory func-

tion, then, from Lemma 4.4.1, N� is continuous. Moreover, as L�1 is com-

pact, it can be de�ned the completely continuous operator T� : C3 ([a; b])!

C3 ([a; b]) by T�u = L�1N� (u) .

AsN�u is bounded in L1 ([a; b])�R4 and uniformly bounded in C3 ([a; b]),

we have that any solution of the problem (8.2.16)-(8.2.17), veri�es kukC3 �

kL�1k jN� (u)j � �K, for some �K > 0 independent of �.

In the set
 =
�
u 2 C3 ([a; b]) : kukC3 < �K + 1

	
the degree d (I � T�;
; 0)

is well de�ned for every � 2 [0; 1] and, by the invariance under homotopy,

d (I � T1;
; 0) = d (I � T0;
; 0) = �1:

So by degree theory, the equation x = T 1 (x) has at least one solution,

that is, the problem (8.2.12)-(8.2.13) has at least one solution in 
:

Step 3 - Every solution u of problem (8.2.12)-(8.2.13) is a solution of

(8.1.1)-(8.1.2).

Let u be a solution of the modi�ed problem (8.2.12)-(8.2.13). By previous

steps, function u ful�lls equation (8.1.1). So, it will be enough to prove the

inequalities:

�0 (a) � u (a) + L0 (u; u
0; u00; u (a)) � �0 (a) ;

�1 (a) � u0 (a) + L1 (u; u
0; u00; u0 (a)) � �1 (a) ;

�00 (a) � u00 (a) + L2 (u; u
0; u00; u00 (a) ; u000 (a)) � �00 (a) ;

�00 (b) � u00 (b) + L3 (u; u
0; u00; u00 (b) ; u000 (b)) � �00 (b) ;

applying the arguments suggested in, for instance, Step 3 of Theorem 7.3.1,

with n = 4:

As a corollary the following result for multipoint boundary value problems

holds:
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Corollary 8.2.3 Assume that there exist �; � 2 W 4;1([a; b]) satisfying the

following inequalities:

�00(x) � �00(x); for all x 2 [a; b];

�(iv) (x)� f (x; v; w; �00 (x) ; �000 (x)) � 0 � �(iv) (x)� f (x; v; w; �00 (x) ; �000 (x))

for a. e. x 2 [a; b] and all (v; w) 2 A:

If f is a L1�Carathéodory function, satisfying a Nagumo-type condition

in E�, then problem

u(iv) (x) = f (x; u; u0; u00 (x) ; u000 (x)) for a. e. t 2 [a; b];

u (a) =

m0
1X

i=1

a0i u(�
0
i ) +

m0
2X

i=1

b0i u
0(�0i ) +

m0
3X

i=1

c0i u
00(�0i );

u0 (a) =

m1
1X

i=1

a1i u(�
1
i ) +

m1
2X

i=1

b1i u
0(�1i ) +

m1
3X

i=1

c1i u
00(�1i );

u00 (a) =

m2
1X

i=1

a2i u(�
2
i ) +

m2
2X

i=1

b2i u
0(�2i ) +

m2
3X

i=1

c2i u
00(�2i ) + c u000(a);

u00 (b) =

m3
1X

i=1

a3i u(�
3
i ) +

m3
2X

i=1

b3i u
0(�3i ) +

m3
3X

i=1

c3i u
00(�3i )� d u000(b);

with mj
k 2 N for k = 1; 2; 3 and j = 0; 1; 2; 3; a � �j1 < �j2 < ::: < �j

mj
k

� b;

a � �j1 < �j2 < ::: < �j
mj
k

� b; a � �j1 < �j2 < ::: < �j
mj
k

� b; and c, d, aji ; b
j
i

and cji non-negative constants, has at least one solution u such that �0 (x) �

u (x) � �0 (x), �1 (x) � u0 (x) � �1 (x), �
00 (x) � u00 (x) � �00 (x), for every

x 2 [a; b].

Proof. The proof is a direct consequence of Theorem 8.2.2. In this case it
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is enough to de�ne the following functions:

L0(u; v; w; z) = �z +
m0
1X

i=1

a0i u(�
0
i ) +

m0
2X

i=1

b0i v(�
0
i ) +

m0
3X

i=1

c0i w(�
0
i );

L1(u; v; w; z) = �z +
m1
1X

i=1

a1i u(�
1
i ) +

m1
2X

i=1

b1i v(�
1
i ) +

m1
3X

i=1

c1i w(�
1
i );

L2(u; v; w; z; p) = �z +
m2
1X

i=1

a2i u(�
2
i ) +

m2
2X

i=1

b2i v(�
2
i ) +

m2
3X

i=1

c2i w(�
2
i ) + c p;

L3(u; v; w; z; p) = �z +
m3
1X

i=1

a3i u(�
3
i ) +

m3
2X

i=1

b3i v(�
3
i ) +

m3
3X

i=1

c3i w(�
3
i )� d p:

8.3 Functional problems including the peri-

odic case

It is easy to check that functions (8.1.2) do not cover the periodic bound-

ary conditions. To overcome this "gap" it is considered in this section the

functions (8.1.3), where L�i ; i = 0; ::; 3; verify the following monotonicity

properties:

(P�0) L
�
0; L

�
1 : (C([a; b]))

3 � R ! R are continuous functions, nondecreasing

in �rst, second and third variables;

(P�1) L
�
2 : (C([a; b]))

3 � R2 ! R is a continuous function, nondecreasing in

�rst, second, third and sixth variables;

(P�2) L
�
3 : (C([a; b]))

3 � R2 ! R is a continuous function, nondecreasing in

�rst, second and third variables and nonincreasing in the sixth one.

In this case the de�nition of lower and upper solution is as it follows:
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De�nition 8.3.1 The functions �; � 2 W 4;1 ([a; b]) are a pair of lower and

upper solutions for problem (8.1.1),(8.1.3), respectively, if �00 (x) � �00 (x) ;

on [a; b] ; and for all (v; w) 2 A := [�0; �0] � [�1; �1] ; where �i; �i, i = 0; 1;

are given by (8.2.1)-(8.2.4), the following inequalities hold:

�(iv) (x) � f (x; v; w; �00 (x) ; �000 (x)) ; for a. e. x 2 [a; b]; (8.3.1)

�(iv) (x) � f (x; v; w; �00 (x) ; �000 (x)) ; for a. e. x 2 [a; b]; (8.3.2)

min
kzk�K

L�0 (�0; �1; �
00; z; �0 (a)) � 0 � max

kzk�K
L�0 (�0; �1; �

00; z; �0 (a))

min
kzk�K

L�1 (�0; �1; �
00; z; �1 (a)) � 0 � max

kzk�K
L�1 (�0; �1; �

00; z; �1 (a))

min
kzk�K

L�2 (�0; �1; �
00; z; �00 (a) ; �000 (a)) � 0

� max
kzk�K

L�2 (�0; �1; �
00; z; �00 (a) ; �000 (a))

min
kzk�K

L�3 (�0; �1; �
00; z; �00 (b) ; �000 (b)) � 0

� max
kzk�K

L�3 (�0; �1; �
00; z; �00 (b) ; �000 (b)) :

(8.3.3)

with K given by (8.2.9).

The existence and location result is as follows.

Theorem 8.3.2 Assume that there exists a pair (�; �) of lower and upper

solutions of problem (8.1.1),(8.1.3), such that conditions (P �0 ), (P
�
1 ) and (P

�
2 )

hold.

If f : [a; b]�(C([a; b]))2�R2 ! R is a L1�Carathéodory function, satisfying a

Nagumo-type condition in E� de�ned in (8.2.8), then problem (8.1.1),(8.1.3)

has at least one solution u such that

�0 (x) � u (x) � �0 (x) ; �1 (x) � u0 (x) � �1 (x) ; �00 (x) � u00 (x) � �00 (x) ;

for every x 2 [a; b] ; and ju000 (x)j � K; 8 x 2 [a; b] ; with K as in (8.2.9).
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Proof. With the truncations de�ned in (8.2.10) and (8.2.8) consider the

modi�ed problem composed by (8.2.12) and the boundary conditions

u (a) = �0 (a; u (a) + L�0 (u; u
0; u00; u000; u (a))) ;

u0 (a) = �1 (a; u
0 (a) + L�1 (u; u

0; u00; u000; u0 (a))) ;

u00 (a) = �2 (a; u
00 (a) + L�2 (u; u

0; u00; u000; u00 (a) ; u000 (a))) ;

u00 (b) = �2 (b; u
00 (b) + L�3 (u; u

0; u00; u000; u00 (b) ; u000 (b))) :

(8.3.4)

The proof will follow the same process as in Theorem 8.2.2, in the �rst

two Steps and this part is omitted.

As to the boundary conditions it will be enough to prove that:

�0 (a) � u (a) + L�0 (u; u
0; u00; u000; u (a)) � �0 (a) ;

�1 (a) � u0 (a) + L�1 (u; u
0; u00; u000; u0 (a)) � �1 (a) ;

�00 (a) � u00 (a) + L�2 (u; u
0; u00; u000; u00 (a) ; u000 (a)) � �00 (a) ;

�00 (b) � u00 (b) + L�3 (u; u
0; u00; u000; u00 (b) ; u000 (b)) � �00 (b) :

Assume

u (a) + L�0 (u; u
0; u00; u (a)) > �0 (a) : (8.3.5)

Then, by (8.3.4), u (a) = �0 (a) and, by (P
�
0 ) and previous steps, it is obtained

the following contradiction with (8.3.5):

u (a) + L0 (u; u
0; u00; u000; u (a)) � �0 (a) + L�0 (�0; �1; �

00; u000; �0 (a))

� �0 (a) + max
kzk1<K

L�0 (�0; �1; �
00; z; �0 (a))

� �0 (a) :

Applying similar arguments it can be proved that

�0(a) � u (a) + L�0 (u; u
0; u00; u000; u (a))

and therefore

�1 (a) � u0 (a) + L�1 (u; u
0; u00; u000; u0 (a)) � �1 (a) :
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For the third case assume, again by contradiction, that

u00 (a) + L�2 (u; u
0; u00; u00 (a) ; u000 (a)) > �00 (a) : (8.3.6)

By (8.3.4), u00 (a) = �00 (a) and, as u00 (x) � �00 (x) in [a; b] ; then u000 (a) �

�000 (a) and, by (P �1 ) and (8.3.1); it is achieved this contradiction with (8.3.6):

u00 (a) + L2 (u; u
0; u00; u000; u00 (a) ; u000 (a))

� �00 (a) + L�2 (�0; �1; �
00; u000; �00 (a) ; �000 (a))

� �00 (a) + max
kzk1<K

L�2 (�0; �1; �
00; z; �00 (a) ; �000 (a))

� �00 (a) :

The same technique yields the two last inequalities.

To generalize the previous technique to any order n � 2, it is considered

the equation

u(n) (x) = f(x; u; :::; u(n�3); u(n�2) (x) ; u(n�1) (x)) (8.3.7)

for a.e. x 2 [a; b] ; where f : [a; b]�(C ([a; b]))(n�2)�R2 ! R is a L1�Carathéodory

function, and the boundary conditions

�L�i (u; u
0; :::; u(n�1); u(i) (a)) = 0; i = 0; :::; n� 2

�L�n�1(u; u
0; :::; u(n�1); u(n�2) (b)) = 0;

(8.3.8)

where �L�i ; i = 0; ::; n� 1; are continuous functions to be precise.

As before, it is pointed out that lower and upper functions, and the

correspondent �rst derivatives, do not need to be ordered.

The "order required" is given by the auxiliary functions:



180 Chapter 8. Functional boundary value problems

For any �; � 2 W n�2;1 ([a; b]) let �i; �i : [a; b] ! R; i = 0; :::; n � 3;

de�ned as it follows:

�n�3(x) = min
n
�(n�3) (a) ; �(n�3) (a)

o
+
R x
a
�(n�2) (s) ds;

�n�3(x) = max
n
�(n�3) (a) ; �(n�3) (a)

o
+
R x
a
�(n�2) (s) ds;

�i(x) = min
n
�(i) (a) ; �(i) (a)

o
+
R x
a
�i+1 (s) ds;

�i(x) = max
n
�(i) (a) ; �(i) (a)

o
+
R x
a
�i+1 (s) ds;

;

(8.3.9)

for i = 0; :::; n� 4:

De�nition 8.3.3 The functions �; � 2 W n�2;1 ([a; b]) are a pair of lower

and upper solutions for problem (8.3.7)-(8.3.8) if �(n�2) (x) � �(n�2) (x) ; on

[a; b] ; and for all (v0; :::; vn�3) 2 A� := [�0; �0] � ::: �
�
�n�3; �n�3

�
; and all

(w1; w2) 2 B :=
h
�(n�2); �(n�2)

i
� [�K;K] ; with K given by (8.2.9), the

following inequalities hold,for a. e. x 2 [a; b];

�(n) (x) � f
�
x; v0; :::; vn�3; �

(n�2) (x) ; �(n�1) (x)
�
; (8.3.10)

�(n) (x) � f
�
x; v0; :::; vn�3; �

(n�2) (x) ; �(n�1) (x)
�
; (8.3.11)

and

�L�i (v0; :::; vn�3; w1; w2; �i (a)) � 0 (8.3.12)

�L�i (v0; :::; vn�3; w1; w2; �i (a)) � 0; for i = 0; :::; n� 2;

�L�n�1
�
v0; :::; vn�3; w1; w2; �

(n�2) (b)
�
� 0

�L�n�1

�
v0; :::; vn�3; w1; w2; �

(n�2) (b)
�
� 0

The main result is given by next theorem:

Theorem 8.3.4 Assume that there exists a pair of lower and upper solu-

tions, (�; �) of problem (8.3.7)-(8.3.8).
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If f : [a; b] � (C ([a; b]))(n�2) � R2 ! R is a L1�Carathéodory function,

satisfying a Nagumo-type condition in

E� =

8<: (x; y0; :::; yn�1) 2 [a; b]� Rn�1 : �i (x) � yi � �i (x) ; i = 0; :::; n� 3

�(n�2)(x) � yn�2 � �(n�2)(x)

9=; ;

then problem (8.3.7)-(8.3.8) has at least a solution u such that

�i (x) � u(i) (x) � �i (x) ; i = 0; :::; n� 3;

�(n�2) (x) � u(n�2) (x) � �(n�2) (x) ;

and
��u(n�1) (x)�� � K; 8x 2 [a; b] ; where K is de�ned by (8.2.9).

The proof is similar to Theorem 8.3.2 with the obvious modi�cations for

order n:

8.4 Examples

Example 8.4.1 This example shows a problem composed by an integro dif-

ferential equation with separated boundary conditions, which solvability is

proved in presence of non-ordered lower and upper solutions, which was not

possible in the current literature. This example does not model any particular

problem arising in real phenomena, but the aim is to emphasize the strength

of the developed theory in this chapter, by showing what kind of problems it

can deal with.

Consider, for x 2 [0; 1], the fourth order equation

u(iv) (x) =

Z x

0

u (s) ds+ max
x2[0;1]

fu0 (x)g+ 2u00 (x)� (u000 (x) + 1)
2
3 (8.4.1)

with the boundary conditions

u (0) = u00 (0) = u00 (1) = 0; u (1) = � u0 (1) ; (8.4.2)
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where � � 9=2. The functions

� (x) = �x2 + x

2
+
3

4
and � (x) = x2 � x

2
� 3
4

are, respectively, lower and upper solutions for the problem (8.4.1)�(8.4.2),

according De�nition 8.2.1, with

�1 (x) = �2x� 1
2
; �0 (x) = �x2 � x

2
� 3
4
;

�1 (x) = 2x+
1

2
; �0 (x) = x2 +

x

2
+
3

4
:

It can easily be checked that problem (8.4.1)�(8.4.2) is a particular case

of (8.1.1)-(8.1.2) for

f (x; y0; y1; y2; y3) =

Z x

0

y0(s)ds+ max
x2[0;1]

fy1(x)g+ 2 y2(x)� (y3(x) + 1)
2
3 ;

L0 (z1; z2; z3; z4) = �z4; L1 (z1; z2; z3; z4) = z1(1)� � z4;

L2 (z1; z2; z3; z4; z5) = �z4; L3 (z1; z2; z3; z4; z5) = �z4:

As the continuous function f veri�es Nagumo conditions in

E� =

8>>><>>>:(x; y0; y1; y2; y3) 2 [0; 1]� R
4 :

�x2 � x
2
� 3

4
� y0 � x2 + x

2
+ 3

4

�2x� 1
2
� y1 � 2x+ 1

2

�2 � y2 � 2

9>>>=>>>; ;

for hE� (y3) =
47
6
+ (y3 + 1)

2
3 ; then, by Theorem 8.2.2, there is a nontrivial

solution u for problem (8.4.1)�(8.4.2) such that

�x2 � x

2
� 3
4
� u (x) � x2 +

x

2
+
3

4
;

� 2x� 1
2
� u0 (x) � 2x+ 1

2
;

�2 � u00 (x) � 2;

for all x 2 [0; 1] :
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Example 8.4.2 This example emphsizes the di¤erence between De�nition

8.2.1 and De�nition 8.3.3. In fact a periodic problem is considered for an

equation, where f has a functional dependence on the second derivative, which

was not covered by De�nition 8.2.1 and Theorem 8.2.2. To study the exis-

tence of periodic solutions for these functional fourth order fully di¤erential

equations we have to consider lower and upper solutions de�ned as in De�-

nition 8.3.3.

Consider

u(iv) (x) =

Z x

0

u (s) ds+ max
x2[0;1]

fu0 (x)g+ min
x2[0;1]

u00 (x)� ju000 (x) + 1j� ; (8.4.3)

for � 2 [0; 2] with the periodic boundary conditions

u(i) (0) = u(i) (1) ; i = 0; 1; 2; 3: (8.4.4)

The functions

� (x) = �x
6

3

� 12x2 + 20x� 1 and � (x) = x3

3
+ 12x2 + 1

are a pair of lower and upper solutions, respectively, for the problem (8.4.3)�

(8.4.4), according De�nition 8.3.3, where

�1 (x) = �x
2
2 � 24x; �0 (x) = �x3

6
� 12x2 � 1;

�1 (x) = x2 + 24x+ 20; �0 (x) = x3

3
+ 12x2 + 20x+ 1:

The above problem is a particular case of problem (8.1.1),(8.1.3) de�ning

f (x; y0; y1; y2; y3) =

Z x

0

y0(s)ds+ max
x2[0;1]

fy1(x)g+ min
x2[0;1]

y2(x)� jy3(x) + 1j� ;

and

�L�0 (z1; z2; z3; z4; z5) = z1 � z5;

�L�1 (z1; z2; z3; z4; z5) = z2 � z5;

�L�2 (z1; z2; z3; z4; z5; z6) = z3 � z5;

�L�3 (z1; z2; z3; z4; z5; z6) = z4 � z6:
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As the continuous function f veri�es Nagumo conditions in

E� =

8>>>>>><>>>>>>:

(x; y0; y1; y2; y3) 2 [0; 1]� R4 :

�x3

6
� 12x2 � 1 � y0 � x3

3
+ 12x2 + 20x+ 1

�x
2
2 � 24x � y1 � x2 + 24x+ 20

�x� 24 � y2 � 2x+ 24

9>>>>>>=>>>>>>;
;

for hE� (y3) =
1847
12
+ jy3 + 1j� ; then, by Theorem 8.3.4, there is a nontrivial

periodic solution u for problem (8.4.3) �(8.4.4) such that

�x
3

6
� 12x2 � 1 � u (x) � x3

3
+ 12x2 + 20x+ 1;

� x

2

2

� 24x � u0 (x) � x2 + 24x+ 20;

� x� 24 � u00 (x) � 2x+ 24;

for all x 2 [0; 1] :

Remark that despite � and � are not ordered, the auxiliary functions �0;

�0 are well ordered. (see Figure 8.4.1)

8.5 The Lidstone case

In this section it is presented a technique to functional boundary value prob-

lems, which allows more generalized results in Lidstone problems, overcoming

condition (2.3.1).

Consider now the problem given by the equation

u(iv) (x) + f (x; u; u0; u00 (x) ; u000 (x)) = sp (x) (8.5.1)

along with the boundary conditions (2.1.2). Next De�nition and Theorem

allow the introduction of some functional depends in the equation.

Let it now be considered the following de�nition for lower and upper

solutions:
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Figure 8.4.1: The auxiliary functions �0; �0 are well ordered.

De�nition 8.5.1 Functions �; � 2 C4 (]0; 1[)\C2 ([0; 1]) are a pair of lower

and upper solutions of the problem (8.5.1),(2.1.2), respectively, if the follow-

ing conditions are satis�ed:

(i) �(iv) (x)+f (x; v; w; �00 (x) ; �000 (x)) � sp (x) ; for every (v; w) 2 [�0; �0]�

[�1; �1] and every x 2 [0; 1]

where
�0 (x) =

R x
0
�1 (s) ds

�1 (x) = �0 (x)� �0 (0)�
R 1
0

R x
0
j�00 (s)j dsdx

;

(ii) �00 (0) � 0; �00 (1) � 0;

(iii) �(iv) (x)+f (x; v; w; �00 (x) ; �000 (x)) � sp (x) ; for every (v; w) 2 [�0; �0]�

[�1; �1] and every x 2 [0; 1]
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where
�0 (x) =

R x
0
�1 (s) ds

�1 (x) = �0 (x)� �0 (0) +
R 1
0

R x
0
j�00 (s)j dsdx

;

(iv) �00 (0) � 0; �00 (1) � 0:

The existence and location result does not include the monotonicity type

conditions (2.3.1) or (2.4.4) on f .

Theorem 8.5.2 Suppose that there is a pair of lower and upper solutions of

the problem (8.5.1),(2.1.2), � (x) and � (x), respectively verifying

�00 (x) � �00 (x) ; 8x 2 [0; 1] :

Let f : [0; 1] � R4 ! R be a continuous function satisfying the one-sided

Nagumo conditions (2.2.1), or (2.2.2), and (2.2.3) in

E� =

8<: (x; y0; y1; y2; y3) 2 [0; 1]� R4 : �0 (x) � y0 � �0 (x) ;

�1 (x) � y1 � �1 (x) ; �
00 (x) � y2 � �00 (x)

9=; :

Then the problem (8.5.1),(2.1.2) has at least a solution u (x) 2 C4 ([0; 1]),

satisfying

�i (x) � u(i) (x) � �i (x) ; for i = 0; 1; 8x 2 [0; 1] ;

and

�00 (x) � u00 (x) � �00 (x) ; 8x 2 [0; 1] :

Proof. The proof is similar to Theorem 2.4.2. The only change occurs in

the following consideration:

Suppose, by contradiction, that there is x 2 [0; 1] such that �00 (x) >

u001 (x) and de�ne

min
x2[0;1]

[u001 (x)� �00 (x)] := u001 (x1)� �00 (x1) < 0:
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If x1 2 ]0; 1[, then u0001 (x1) = �000 (x1) and u(iv) (x1) � �(iv) (x1) :

By De�nition 8.5.1 it is obtained the contradiction:

�(iv) (x1) � u
(iv)
1 (x1)

= sp(x1)� f (x1; �0 (x1; u) ; �1 (x1; u
0) ; �00 (x1) ; �

000 (x1))

+u00 (x1)� �00 (x1)

< sp (x1)� f (x1; v; w; �
00 (x1) ; �

000 (x1)) � �(iv) (x1) ;

for every (v; w) 2 [�0; �0]� [�1; �1].

In this case condition (i) in De�nition 8.5.1 allows the elimination of the

monotonicity type condition on f;(2.4.4), and introduces some functional

dependence.

Next example illustrates the case of a function f that was not covered by

Theorem 2.3.1, but can now be approached using De�nition 8.5.1 and The-

orem 8.5.2, generalizing the range of admissible lower and upper solutions.

Example 8.5.3 For x 2 [0; 1] consider the functional di¤erential equation

u(iv) (x)+

Z x

0

u (s) ds�max
x2[0;1]

u0 (x)�(u00 (x))3�ju000 (x) + 1jk = sp (x) (8.5.2)

with k 2 [0; 2] ; along with the boundary conditions (2.1.2)

The functions �; � : R! R given by

� (x) = �x2 + 1
2

� (x) = x2 � 1
2

are lower and upper solutions, respectively, of problem (8.5.1),(2.1.2) verify-

ing (2.4.3) with the auxiliary functions given by De�nition 8.5.1

�0 (x) = �x2 � x;

�1 (x) = �2x� 1;
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and
�0 (x) = x2 + x;

�1 (x) = 2x+ 1;

for
�9

min
x2[0;1]

p (x)
� s � 5

max
x2[0;1]

p (x)

The function

f (x; y0; y1; y2; y3) =

Z x

0

y0 (s) ds� max
x2[0;1]

(y1)� (y2)3 � jy3 + 1jk

is continuous, veri�es conditions (2.2.3) and (2.2.1) in

E =

8<: (x; y0; y1; y2; y3) 2 [a; b]� R5 : �i � yi � �i; i = 0; 1

�00 � y2 � �00

9=; :

By Theorem 8.5.2 there is a non trivial solution u (x) of problem (8.5.2)-

(2.1.2), such that

�x2 � x � u (x) � x2 + x

�2x� 1 � u0 (x) � 2x+ 1

�2 � u00 (x) � 2

8.6 Periodic oscillations of the axis of a satel-

lite

In [7] it is considered the boundary value problem8>>><>>>:
(1 + � cosx)u00 (x)� 2� sin (x) :u0 (x) + � sin (u (x)) = 4� sin (x)

u (0) = u (2�)

u0 (0) = u0 (2�) ;

(8.6.1)

for x 2 [0; 2�] :

This problem models the periodic oscillations of the axis of a satellite

in the plane of the elliptic orbit around its centre of mass. In this model
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� represents the ecentricity of the ellipse (0 � � < 1) and � is a parameter

related with the inertia of the satellite.

Figure 8.6.1: Oscillation of the axis of a satellite

From the mathematical point of view it is interesting to study for which

values of the parameters in the (�; �) plane the problem (8.6.1) has a solution.

Several authors, such as, [51, 71] have studied this problem and obtained

di¤erent results for di¤erent combinations of these parameters. Beletskii, [8],

has formulated this problem for j�j � 3: In [13] existence results are obtained

for the values of the parameter, � � �4:

Using the lower and upper solution method and applying this example

as a particular case of problem (8.3.7)-(8.3.8) for n = 2; with the suitable

adaptations, we obtain di¤erent values of the parameters.

The functions

� (x) =
�

2
and � (x) =

3�

2
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are lower and upper solutions for the problem (8.6.1), according De�nition

8.3.3, for � � 4 and 0 � � < 1

f (x; y0; y1) =
4� sin (x) + 2� sin (x) y1 � � sin (y0)

1 + � cosx

and

�L�0 (z1; z2; z3) = z1 (2�)� z3 (0) ;

�L�1 (z1; z2; z3) = z3 (2�)� z3 (0) :

As the continuous function f veri�es Nagumo conditions in

E� =

�
(x; y0; y1) 2 [0; 2�]� R2 :

�

2
� y0 �

3�

2

�
;

then, by Theorem 8.3.4, with n = 2; there is a nontrivial solution u for

problem (8.6.1) such that

�

2
� u (x) � 3�

2
;

for � � 4 and for all x 2 [0; 2�] ; 0 � � < 1:

These are in fact di¤erent values of the parameter than the ones formu-

lated in [7, 8] for the same problem.
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Extremal solutions to fourth

order problems

9.1 Introduction

The aim of this chapter is to present su¢ cient conditions to the existence of

extremal solutions for the functional fourth order boundary value problem

composed by the equation

u(iv) (x) = f (x; u; u00 (x) ; u000 (x)) (9.1.1)

for a.e. x 2 [a; b] ; where f : [a; b]�C ([a; b])�R2 ! R is a L1�Carathéodory

function, and the boundary conditions

L0 (u; u
00; u (a)) = 0

L1 (u; u
00; u (b)) = 0

L2 (u; u
00; u00 (a) ; u000 (a)) = 0

L3 (u; u
00 (b) ; u000 (b)) = 0

(9.1.2)

where Li; i = 0; ::; 3; satisfy some adequate conditions and are allowed to be

discontinuous on some of their variables.

191
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By extremal solutions we mean the existence of a maximal solution, that

is, a solution which is greater or equal than any other solution, and a minimal

solution with a similar sense. The existence of extremal solutions has been

studied for several types of problems and in di¤erent �elds, as it can be seen,

for instance, in [3, 12, 16, 18, 20, 22, 52, 72, 81, 91, 99, 102]. Functional

boundary value problems include a large number of di¤erential equations

and many types of boundary conditions, as discussed previously. However,

on this Chapter, it is the �rst time where the existence of extremal solutions

is obtained to fourth order problems with functional dependence in every

boundary conditions. Moreover, it is remarked that boundary conditions

(9.1.2) include the Lidstone case. As such these results provide extremal

solutions for Lidstone boundary value problems as well.

A key point in this work is a second order auxiliary problem, obtained

from (9.1.1), (9.1.2) by a reduction of order, where it is applied a standard

Nagumo condition and a previous result, from [17], to have the existence of

extremal solutions.

The fourth order problem is studied by adding to the previous problem

two algebraic equations, to which it applies a sharp version of the Bolzano�s

theorem, given in [32]. Combining this technique with the non-ordered lower

and upper solutions technique developed in the previous chapters, allows

to de�ne a convenient integral operator, which has a least and a greatest

�xed points, as it is given in [53]. Through this technique it is obtained an

existence and location result for the extremal solutions.

There are still issues that worthy further research in these type of prob-

lems, such as:

� A generalization of these results to higher order problems

� Conditions for the inclusion of functional dependence in the second and
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third derivative on the di¤erential equation (9.1.1)

� Inclusion of functional dependence of the �rst derivative on the bound-

ary conditions (9.1.2)

9.2 De�nitions and auxiliary results

Throughout this chapter it will be assumed the following hypothesis :

(S1) f : [a; b]� C ([a; b])� R2 ! R is such that for every u 2 C ([a; b]) ; the

function fu : [a; b] � R2 ! R de�ned as fu (x; y; z) := f (x; u; y; z) is a

L1-Carathéodory function, that is, fu (x; �; �) is a continuous function

for a.e. x 2 [a; b]; fu (�; y; z) is measurable for (y; z) 2 R2; and for every

M > 0 there is a real-valued function  M 2 L1 ([a; b]) such that

jfu (x; y; z)j �  M (x) ; for a:e: x 2 [a; b]

and for every (y; z) 2 R2 with jyj �M , jzj �M:

(S2) L0; L1 : (C ([a; b]))
2�R! R are nonincreasing in the �rst variable and

nondecreasing in the second one.

(S3) L2 : (C ([a; b]))
2 � R2 ! R is nonincreasing in the �rst variable and

nondecreasing in the second and fourth variables. Moreover, for every

u 2 C(I) given, L2(u; vn; xn; yn)! L2(u; v; x; y) whenever fvng ! v in

C(I) and f(xn; yn)g ! (x; y) in R2.

(S4) L3 : C ([a; b]) � R2 ! R is nondecreasing in the �rst and third vari-

ables. Moreover, for every u 2 C(I) given, L3(u; xn; yn) ! L3(u; x; y)

whenever f(xn; yn)g ! (x; y) in R2.
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Remark 9.2.1 Notice that some continuities are allowed in the two �rst

variables of function f , in the �rst variable of functions L2 and L3 and in

all the variables of L0 and L1.

The preliminary results are related to some second order boundary value

problems for which it will be assumed that conditions (S1) and (S2) hold.

Let v 2 W 4;1 ([a; b]) be a �xed function and denote by (Pv) the problem

composed by the equation

y00 (x) = f (x; v; y (x) ; y0 (x)) (9.2.1)

and the boundary conditions

L2 (v; y; y (a) ; y
0 (a)) = 0

L3 (v; y (b) ; y
0 (b)) = 0:

(9.2.2)

De�nition 9.2.2 A function y 2 W 2;1 ([a; b]) is a solution of (Pv) if it sa-

tis�es conditions (9.2.1) and (9.2.2).

For this second-order auxiliary problem we de�ne as lower and upper

solutions the functions that verify the following conditions:

De�nition 9.2.3 A function � : [a; b]! R; � 2 W 2;1 ([a; b]) ; is said to be a

lower solution of problem (Pv) if:

(i) � 00 (x) � f (x; v; � (x) ; � 0 (x)) ;

(ii) L2 (v; �; � (a) ; �
0 (a)) � 0 and L3 (v; � (b) ; � 0 (b)) � 0:

A function � 2 W 2;1 ([a; b]) is said to be an upper solution to the problem

(Pv) if the reversed inequalities hold.

A Nagumo-type growth condition, assumed on the nonlinear part, will

be an important tool to set a priori bounds for solutions of some di¤erential

equations.
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De�nition 9.2.4 Consider �i; i 2 L1 ([a; b]) ; i = 0; 1, such that, �i (x) �

i (x) ; 8x 2 [a; b] ; and the set

F =
�
(x; y0; y1) 2 [a; b]� R3 :  (x) � y0 � � (x)

	
:

A function f : [a; b]� R4 ! R is said to verify a Nagumo-type condition

in F if there exists ' 2 C ([0;+1) ; (0;+1)) such that

jf (x; y0; y1)j � ' (jy1j) ;

for every (x; y0; y1) 2 F; andZ +1

r

s

' (s)
ds > max

x2[a;b]
� (x)� min

x2[a;b]
 (x)

where r is given by

r := max

�
� (b)�  (a)

b� a
;
� (a)�  (b)

b� a

�
:

Standard arguments, as the ones followed in Lemma 1.2.2, allow to obtain

an a priori bound for the solutions of the di¤erential equation (9.2.1).

Lemma 9.2.5 There exists R > 0, depending only on ',  and �, such that

for every L1�Carathéodory function f : I � C([a; b]) � R2 ! R satisfying a

Nagumo-type condition in E, and every solution yv of (9.2.1) such that

 (x) � yv (x) � �1 (x) ; 8 x 2 I;

we have that ky0vk < R:

Remark that problem (Pv) can be considered as a particular case of the

following second order problem presented in [17]:

� (�(u0(t))0 = g(t; v; u(t); u0(t)); for a:e:t 2 [a; b];

l1 (v; u; u (a) ; u (b) ; u
0 (a)) = 0; (P)

l2 (v; u (a) ; u (b) ; u
0 (b)) = 0;

which has the corresponding lower and upper solutions:
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De�nition 9.2.6 A function  2 W 2;1 ([a; b]) is a lower solution of (P) if:

(i) � (�(0(t))0 � g (t; v;  (t) ; 0 (t)) ;

(ii) l1 (v; ;  (a) ;  (b) ; 0 (a)) � 0 and l2 (v;  (a) ;  (b) ; 0 (b)) � 0:

A function � 2 W 2;1 ([a; b]) is an upper solution of (P) for the reversed

inequalities.

For the above problem and de�nitions it is obtained the following result,

from [17]

Theorem 9.2.7 [17, Theorem 3.2] Assume that � : R! R is an increasing

and continuous function and assumptions (S1);(S3) and (S4) hold.

If there are lower and upper solutions of (P) ; ; � respectively, such that  � �

and f satis�es a Nagumo-type growth condition in

E� =
�
(x; y0; y1; y2) 2 [a; b]� R3 :  (x) � y1 � � (x)

	
then (P) has extremal solutions in [; �] :

In the proof of the main result it is applied the following version of the

Bolzano Theorem:

Lemma 9.2.8 [32, Lemma 2.3] Let a; b 2 R; a � b; and h : R! R be such

that either h (a) � 0 � h (b) and

lim
z!x�

sup h (z) � h (x) � lim
z!x+

inf h (z) ; for all x 2 [a; b] ;

or h (a) � 0 � h (b) and

lim
z!x�

inf h (z) � h (x) � lim
z!x+

sup h (z) ; for all x 2 [a; b] :

Then there exists c1; c2 2 [a; b] such that h (c1) = 0 = h (c2) and if h (c) =

0 for some c 2 [a; b] then c1 � c � c2, i.e., c1 and c2 are, respectively, the

least and the greatest of the zeros of h in [a; b] :
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Su¢ cient conditions for the existence of extremal �xed points of some

operator, will be given by the following result:

Lemma 9.2.9 [53, Theorem 1.2.2] Let Y be a subset of an ordered metric

space (X;�) ; [a; b] a non empty ordered interval in Y , and T : [a; b] !

[a; b] a nondecreasing mapping. If fTxng converges in Y whenever fxng is a

monotone sequence in [a; b] ; then there exists x� the least �xed point of T in

[a; b] and x� is the greatest one. Moreover

x� = min fy j Ty � yg and x� = max fy j Ty � yg :

9.3 Extremal solutions to fourth-order prob-

lems

Lower and upper solutions technique used in this work allows the non-ordered

case, that is, lower and upper solution do not need to be ordered. In fact,

we apply some auxiliary functions "to get some order".

For �; � 2 W 2;1 ([a; b]), with �00 � �00 a:e: on [a; b], we de�ne the functions

�0; �0 : [a; b]! R by

�0 (x) = A0
b� x

b� a
+ A1

x� a

b� a
+

Z b

a

G (x; s) �00 (x) ds; (9.3.1)

and

�0 (x) = B0
b� x

b� a
+B1

x� a

b� a
+

Z b

a

G (x; s)�00 (x) ds;

where A1; A2; B1; B2 2 R are given by

A0 = min f�(a); �(a)g ; B0 = max f�(a); �(a)g ;

A1 = min f�(b); �(b)g ; B1 = max f�(b); �(b)g ;

and G is the Green�s function associated to the Dirichlet problem
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y00 (x) = 0; a. a. x 2 [a; b]; y (a) = y (b) = 0:

By standard computations, it is well known that such function is de�ned

by

G (x; s) =
1

b� a

8>>><>>>:
(a� s) (b� x) ; if a � x � s � b;

(a� x) (b� s) ; if a � s � x � b:

In particular it is non-positive on [a; b] � [a; b] and, as a consequence,

�0 � �0 in [a; b].

Lower and upper solutions for the fourth order problem (9.1.1)-(9.1.2) are

based on the previous auxiliary functions and so they must be de�ned as a

pair:

De�nition 9.3.1 The functions �; � 2 W 4;1 ([a; b]) are a pair of lower and

upper solutions of the problem (9.1.1)-(9.1.2) if the following conditions hold:

�(iv) (x) � f (x; �0; �
00 (x) ; �000 (x)) ; a. e. x 2 [a; b];

0 � L0 (�0; �
00; �0 (a)) ;

0 � L1 (�0; �
00; �0 (b)) ;

0 � L2 (�0; �
00; �00 (a) ; �000 (a)) ;

0 � L3 (�0; �
00 (b) ; �000 (b)) :

and

�(iv) (x) � f (x; �0; �
00 (x) ; �000 (x)) ; a. e. x 2 [a; b];

0 � L0 (�0; �
00; �0 (a)) ;

0 � L1 (�0; �
00; �0 (b)) ;

0 � L2 (�0; �
00; �00 (a) ; �000 (a)) ;

0 � L3 (�0; �
00 (b) ; �000 (b)) :
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To obtain the main result one needs the following hypothesis on the func-

tions L0 and L1:

(S5) For every (v; u; x) 2 [�0; �0]� [�00; �00]� [Ai; Bi], i = 0; 1, the following

property holds:

lim sup
z!x+

Li (v; u; z) � Li (v; u; x) � lim inf
z!x�

Li (v; u; z) :

The main result is given by the following theorem:

Theorem 9.3.2 Assume that conditions (S1)-(S5) hold and f (x; :; y0; y1) is

nondecreasing for a:e: x 2 [a; b] and all (y0; y1) 2 R2:

If there is a pair of lower and upper solutions of (9.1.1)-(9.1.2 ), � and

�; respectively, such that

�00 (x) � �00 (x) for every x 2 [a; b] ;

and f satis�es a Nagumo type growth condition in the set

E�;� :=
�
(x; y0; y1) 2 [a; b]� R2 : �00 (x) � y0 � �00 (x)

	
;

then problem (9.1.1) �(9.1.2) has extremal solutions in the set

S �
�
u 2 C2([a; b]) : u 2 [�0; �0] and u00 2 [�00; �00]

	
:

Proof. Let v 2 [�0; �0] be �xed.

Consider the second-order problem (Pv) : As � and � are, respectively,

lower and upper solutions of problem (9.1.1) �(9.1.2), then the monotonicity

assumptions on function f with respect to its second variable implies that

�00 and �00 are lower and upper solutions of (Pv), respectively, according

to De�nition 9.2.3. In consequence problem (Pv) has extremal solutions in

[�00; �00] for all v 2 [�0; �0] :
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Denote by yv the minimal solution of (Pv) in [�00; �
00] :

By (S2) and De�nition 9.3.1, we have for i = 0; 1.

Li (v; yv; Bi) � Li (�0; �
00; Bi) � 0; (9.3.2)

and

Li (v; yv; Ai) � Li (�0; �
00; Ai) � 0: (9.3.3)

From condition (S5) one can apply Lemma 9.2.8 to obtain that equations

Li (v; yv; z) = 0; i = 0; 1;

have greatest zeros in [Ai; Bi], denoted by wv if i = 0 and zv when i = 1:

De�ne, for each x 2 [a; b] ; the operator T by

Tv (x) =

Z b

a

G (x; s) yv (s) ds+ wv
b� x

b� a
+ zv

x� a

b� a
:

It follows from the de�nition of T; �0 and �0 that T ([�0; �0]) � [�0; �0] :

To analyze the monotonicity of T , consider v1; v2 2 [�0; �0] such that

v1 � v2 and let yv1 and yv2 be the corresponding minimal solutions of (Pv1)

and (Pv2) in [�
00; �00], respectively. Therefore, by the assumptions on f ,

y00v1(x) = f
�
x; v1; yv1 (x) ; y

0
v1
(x)
�
� f

�
x; v2; yv1 (x) ; y

0
v1
(x)
�

and, by (S3) and (S4),

0 = L2
�
v1; yv1 ; yv1 (a) ; y

0
v1
(a)
�
� L2

�
v2; yv1 ; yv1 (a) ; y

0
v1
(a)
�
;

0 = L3
�
v1; yv1 (b) ; y

0
v1
(b)
�
� L3

�
v2; yv1 (b) ; y

0
v1
(b)
�
:

So, yv1 is an upper solution of (Pv2). As �
00 � yv1 � �00; then, by Theo-

rem 9.2.7, there are extremal solutions for the problem (Pv2) in [�
00; yv1 ]. In

particular the least solution yv2 of (Pv2) in [�
00; yv1 ] is the least solution of

(Pv2) in [�
00; �00] :



9.3. Extremal solutions to fourth-order problems 201

Therefore, yv1 � yv2 and, by (S2);

Li (v2; yv2 ; w) � Li (v1; yv2 ; w) � Li (v1; yv1 ; w) ; 8w 2 R; i = 0; 1: (9.3.4)

In consequence wv1 � wv2 and zv1 � zv2 .

Therefore Tv1 � Tv2; that is, the operator T is nondecreasing in [�0; �0].

Consider now a monotone sequence fvngn in [�0; �0] : Therefore the se-

quence fTvngn is monotone too and, since

(Tvn)
00 (x) = yvn (x) 2 [�00(x); �00(x)]; x 2 [a; b];

one can easily verify that it is bounded in C2 ([a; b]). So, applying Ascoli-

Arzelá theorem, fTvngn is convergent in C ([a; b]) :

Therefore T sends monotone sequences into convergent ones and, by

Lemma 9.2.9, T has a greatest �xed point in [�0; �0] ; denoted by v
�; sa-

tisfying

v� = max fv 2 [�0; �0] : v � Tvg : (9.3.5)

It is immediate to verify that v� 2 S and it is a solution of problem

(9.1.1)-(9.1.2).

Let us see that v� is actually the maximal solution of problem (9.1.1)-

(9.1.2) in the set S.

Consider v an arbitrary solution of problem (9.1.1)-(9.1.2) in [�0; �0], with

v00 2 [�00; �00]. From Theorem 9.2.7 we have that v(a) � wv in [�0 (a) ; �0 (a)]

and v(b) � zv in [�0 (b) ; �0 (b)] :

Since v00 = y; with y a solution of (Pv) in [�00; �
00], and yv is the minimal

solution of (Pv) in [�00; �
00], then v00 � yv and we deduce that v � T v. Thus,

by (9.3.5), v � v� and so v� is the greatest solution of (9.1.1)-(9.1.2) in S.

The existence of the least solution can be proved using analogous argu-

ments and obvious changes in the operator T:
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9.4 Example

Consider, for x 2 [0; 1] ; the fourth order equation

u(iv) (x) = max
x2[0;1]

�Z x

0

u (s) ds

�
+ � (u00 (x))

3 � (u000 (x) + 1)
2
3 (9.4.1)

along with the functional boundary conditions

� max
x2[0;1]

u (x) + u (0) = 0

min
x2[0;1]

u00 (x) + �u (1) = 0

u00 (0) = 0

u00 (1) = 0:

(9.4.2)

This problem is a particular case of (9.1.1)-(9.1.2) with

f (x; y0; y1; y2) = max
x2[0;1]

�Z x

0

y0 (s) ds

�
+ �y31 � (y2 + 1)

2
3 ;

L0 (z1; z2; z3) = � max
x2[0;1]

z1 + z3;

L1 (z1; z2; z3) = min
x2[0;1]

z2 + �z3;

L2 (z1; z2; z3; z4) = �z3;

L3 (z1; z2; z3) = z2:

The functions

� (x) = �x
2

2
� x+ 1 and � (x) =

x2

2
+ x� 1

are a pair of lower and upper solutions, respectively, of problem (9.4.1)-

(9.4.2), with

A0 = �1; B0 = 1; A1 = �
1

2
; B1 =

1

2
;

�0 (x) = 1�
x2

2
and �0 (x) =

x2

2
� 1
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Figure 9.4.1: Despite � and � are non ordered there are extremal solutions

in the set
�
�0;�0

�
:

for 1� � <1 and � � 2:

As the continuous function f veri�es a Nagumo type growth condition,

according De�nition 9.2.4, in

E = f(x; y1; y2) : �1 � y1 � 1g

with ' (y1) = 1+ j�j+ jy1 + 1j
2
3 ; then, by Theorem 9.3.2 the problem (9.4.1)-

(9.4.2) has extremal solutions in [�0; �0] :

As one can see by Figure 9.4.1, despite the fact that the lower and upper

solutions � and � are not ordered, the auxiliar functions �0 and �0 are

ordered, but in the "reversed" way.
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