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Existence of minimizers for
n-dimensional nonconvex integrals

Abstract

First it is proved the existence of minimizers for the multiple integral∫
Ω

ℓ∗∗ (u (x) , ρ1 (x, u(x))∇u (x) ) ρ2 (x, u(x)) d x on W
1,1

u
∂
(Ω) ,

where Ω ⊂ Rd is open bounded, u : Ω → R is in the Sobolev space
u

∂
(·) + W

1,1

0 (Ω), with boundary data u
∂
(·) ∈ W

1,1
(Ω) ∩ C0

(
Ω
)
; and

ℓ : R×Rd → [0,∞] is superlinear L⊗B −measurable with ρ1(·, ·), ρ2(·, ·) ∈
C0 (Ω×R) both > 0 and ℓ∗∗(·, ·) only has to be lsc at (·, 0). The case∫
Ω
L∗∗ (x, u(x),∇u(x) ) is also treated, though with less natural hypotheses,

but still allowing L(x, ·, ξ) non− lsc for ξ ̸= 0;

Lastly it is proved the existence of uniformly continuous radially
symmetric minimizers uA(x) = UA ( |x| ) for the multiple integral∫

BR

L∗∗ (u(x), |Du(x) | ) d x

on a ball BR ⊂ Rd, among the vector Sobolev functions u(·) in A +
W

1,1

0 (BR, Rm ), using a convex lsc L∗∗ : Rm×R → [0,∞] with L∗∗ (S, · )
even and superlinear; but while in the scalar m = 1 case we only need
one more hypothesis : ∃ min L∗∗ (R, 0 ), in the vectorial m > 1 case L∗∗ (·, ·)
also has to satisfy a geometric constraint, which we call quasi− scalar; the
simplest example being the biradial case L∗∗ ( | u(x) | , |Du(x) | ).
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Existência de minimizantes para
integrais n-dimensionais não-convexos

Resumo

Primeiro demonstra-se a existência de minimizantes para o integral múltiplo∫
Ω

ℓ∗∗ (u (x) , ρ1 (x, u(x))∇u (x) ) ρ2 (x, u(x)) d x on W
1,1

u
∂
(Ω) ,

onde Ω ⊂ Rd é aberto e limitado, u : Ω → R pertence ao espaço de Sobolev
u

∂
(·) +W

1,1

0 (Ω), u
∂
(·) ∈ W

1,1
(Ω) ∩ C0

(
Ω
)
; ℓ : R×Rd → [0,∞] é superli-

near L⊗B−mensurável, ρ1(·, ·), ρ2(·, ·) ∈ C0 (Ω×R) ambos > 0 e ℓ∗∗(·, ·)
é apenas sci em (·, 0). Também se considera o caso

∫
Ω
L∗∗ (x, u(x),∇u(x) ),

embora com hipóteses mais complexas, mas é igualmente possível ter L(x, ·, ξ)
não-sci para ξ ̸= 0;

Por último demonstra-se a existência de minimizantes radialmente
simétricos, i.e. uA(x) = UA ( |x| ), uniformemente contínous para o integral
múltiplo ∫

BR

L∗∗ (u(x), |Du(x) | ) d x

na bola BR ⊂ Rd, u : Ω → Rm pertence ao espaço de Sobolev A +
W

1,1

0 (BR, Rm ), L∗∗ : Rm×R → [0,∞] é convexa, sci e superlinear, L∗∗ (S, · )
é par; note-se também que enquanto no caso escalar, m = 1, apenas
necessitamos de mais uma hipótese : ∃ min L∗∗ (R, 0 ), no caso vectorial,
m > 1, L∗∗ (·, ·) também tem de satisfazer uma restrição geométrica, a qual
chamamos quasi − escalar; sendo o exemplo mais simples de uma função
quasi− escalar o caso biradial L∗∗ ( |u(x) | , |Du(x) | ).
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1.1 Main notations

∇u(x) := gradient vector of u(·) at point x ;

⟨ (x1, ..., xd ), ( y1, ..., yd ) ⟩ :=
∑d

i=1 xiyi ;

(xn)⇀ x means that the sequence (xn) converges weakly to x ;

(xn) ↗ x means that the sequence (xn) converges to x and increases ;

αd := Hausdorff measure, in dimension d−1, of the unit sphere of Rd ;

∂ BR := {x ∈ Rd : |x| = R } ;

∂ f(ξ) := classic subdifferential of f(·) at point ξ ;

∂ 0 L (S, 0 ) := the minimal norm element of ∂ L(·, 0) at S ;

Ω := open and bounded subset of Rd ;

AC := absolutely continuous ;

ACloc := locally absolutely continuous ;

BR := {x ∈ Rd : |x| ≤ R } ;

B−measurable := Borel measurable ;

C := smallest closed set that contains C ;

C
0
(Ω) := the set of all continuous functions u : Ω → R ;

C
0

b (Ω) := the set of all continuous bounded functions u : Ω → R ;
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C
1

c (Ω) := set of all functions u : Ω → R with continuous derivative
and compact support ;

coC := smallest convex set that contains C ;

div (f1, ..., fd)(x1, ..., xd) :=
∂ f1
∂ x1

(x1, ..., xd) + ...+ ∂ fd
∂ xd

(x1, ..., xd) ;

Du(x) := Jacobian matrix of u(·) at point x ;

epi f(·) := epigraph of f(·) ;

extC := set of all extreme points of the convex set C ( an extreme
point of a convex set C in a real vector space is a point in C which does
not lie in any open line segment joining two points of C ) ;

f ∗∗(·) := the greatest convex function less than or equal to f(·) ;

intC := interior of the set C ;

L
p
and L

p

loc , 1 ≤ p ≤ ∞, represent the usual Lebesgue spaces ;

lsc := lower semicontinuous ;

L−measurable := Lebesgue measurable ;

Sd := {x ∈ Rd : |x| = 1 } ;

U ⊂⊂ V , means that the set U is compactly contained in the set V , i.e.
U ⊂ V and U is a compact set ;

usc := upper semicontinuous ;

w − lsc := weak lower semicontinuous ;
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W
1,p
, W

1,p

loc and W
1,p

0 , 1 ≤ p ≤ ∞, represent the usual Sobolev spaces ;

W
1,p

u
∂
:= u

∂
(·) +W

1,p

0 ;

W
1,p

A
:= A+W

1,p

0 .
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1.2 Introduction

Here the main purpose is to study the existence of minimizers for the
integral functional :

F (u(·) ) :=
∫
Ω

L (x, u (x) , D u (x)) d x on W
1,p

u
∂
( Ω, Rm ) , (1.1)

where Ω ⊂ Rd is an open bounded set; the boundary condition

u
∂
(·) ∈ W

1,p

( Ω, Rm ) and W
1,p

u
∂
( Ω, Rm ) = u

∂
(·) +W

1,p

0 ( Ω, Rm ) ,

with W
1,p

( Ω, Rm ) and W
1,p

0 ( Ω, Rm ) the usual Sobolev spaces ,
L : Ω×Rm×Rm×d → [0,∞] and Du (x) represents the Jacobian matrix
of u(·) at point x.

Convex Case First we will considerer L (x, s, · ) convex.

De�nition 1.2.1. Let X be a vectorial space, a function f : X → R ∪ {∞}
is said convex if

f (λx+ ( 1− λ ) y ) ≤ λ f(x) + ( 1− λ ) f(y)

∀λ ∈ (0, 1) and ∀ x, y such that f(x), f(y) <∞ .

In this case the two main ingredients are the coercivity and the
lower semicontinuity of the functional F (·).

De�nition 1.2.2. Let X be a vectorial space and f : X → R ∪ {∞} a
function.

a) f(·) is said sequentially coercive if for each t ∈ R ∃Kt ⊆ X closed and
sequentially compact such that

{x ∈ X : f(x) ≤ t } ⊆ Kt;

b) f(·) is said sequentially lower semicontinuous ( lsc ) if

f(x) ≤ lim inf
n→∞

f (xn ) ∀ (xn) → x;
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c) f(·) is said weak sequentially lower semicontinuous (w − lsc ) if

f(x) ≤ lim inf
n→∞

f ( xn ) ∀ (xn)⇀ x.

A direct consequence of the de�nitions is that whenever the function f(·)
is coercive and lsc then ∃umin ∈ X such that

f (umin ) = min
x∈X

f(x).

In particular to ensure that our functional F (·) is coercive, when p = 1,
due to e.g. [Ces, 10.3.i], it is only necessary to impose to the lagrangian
L(·, ·, ·) a superlinear growth, i.e.,

∃ θ : (0,∞) → [0,∞) :


L(x, s, ξ) ≥ θ ( |ξ| ) ∀x, s, ξ

θ(r)
r

→ ∞ as r → ∞,

(1.2)

or equivalently

inf L (Ω,Rm, ∂Br)

r
→ ∞ as r → ∞ , (1.3)

where ∂Br :=
{
ξ ∈ Rm×d : |ξ| = r

}
, while for p > 1 we need to impose to

L(·, ·, ·) a polynomial growth, i.e.,

L(x, s, ξ) ≥ c1 |ξ|p + c2 ( c1 > 0, c2 ∈ R ) . (1.4)

On the other hand to obtain the lsc of F (·) we need to appeal, e.g., to results
like the next one :

Proposition 1.2.1. ( See [Iof]. )

Let L : Ω×Rm×Rm×d → [0,∞] be L⊗B⊗B−mensurable with

a) L (x, s, · ) convex, ∀ s and for a.e. ( almost every ) x ∈ Ω ,

b) L (x, ·, · ) lsc, for a.e. x ∈ Ω .

Then the functional F (·) is w − lsc on W
1,p

u
∂
( Ω, Rm ) .
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Similar results had been proved by many authors, an example being the
following proposition :

Proposition 1.2.2. ( See [Amb, th. 4.14]. )

Let L : Ω×R×Rd → [0,∞] satis�es :

i) L(·, ·, ·) is B⊗L⊗B−measurable ;

ii) L(x, s, ·) is convex ∀ x, s ;

iii) L(·, ·, 0) is Borel , L(x, s, 0) < ∞ ∀ x, s, and L(x, ·, 0) is lsc for a.e.
x ∈ Ω ;

iv) L(·, s, ·)− L(·, s, 0) is lsc ∀ s ;

v) ∃m : Ω×R → Rd such that

v) a) m(·, s) is continuous ∀ s, m(x, ·) is measurable ∀ x and

m(x, s) ∈ ∂ L(x, s, 0) ∀ x, s ;

v) b) for each open Ω ′ ⊂⊂ Ω, the function

MΩ ′
(s) := sup {|m(x, s)| : x ∈ Ω ′} ∈ L

1

loc (R) ;

v) c) for each V ⊂⊂ R, the family

{m(·, s) : s ∈ V} is equicontinuous in C
0 (

Ω ′,Rd
)
.

Then F (·) is w − lsc on W
1,1

(Ω) .

Clearly if L(·, ·, ·) satis�es the coercivity condition (1.2) plus, e.g., the
conditions of proposition 1.2.2, then ∃umin(·) ∈ W

1,1

u
∂
(Ω) such that

F (umin(·) ) = min
u(·)∈W 1,1

u
∂
(Ω)

F (u(·) ) .
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Nonconvex Case Here we drop the condition L ( x, s, · ) convex.

Due to the lack of convexity of L (x, s, · ), in general, the functional F (·)
will be non w−lsc onW 1,p

u
∂
. The general framework in this case is to consider

the relaxed functional of F (·) :

F (·) := sup {G(·) : G(·) ≤ F (·) and G(·) is w − lsc on W
1,p

u
∂
} ;

an important property of F (·) is that when F (·) is coercive then

inf F (·) = min F (·).

A relevant question related to F (·) is to know when it admits an inte-
gral representation, the answer to this question is found, e.g., on the next
proposition :

Proposition 1.2.3. ( See [Mcl, th. 2.3]. )

Let L : Ω×R×Rd → [0,∞] be a Carathéodory function satisfying the
growth condition (1.4), for some p > 1, plus

L(x, s, ξ) ≤ g ( x, |s| , |ξ| ) ,

with g(·, ·, ·) increasing with respect to |s| and |ξ| and locally integrable with
respect to x.

then

F (u(·) ) =
∫
Ω

L∗∗ (x, u(x),∇u(x) ) d x ∀u(·) ∈ W
1,∞

( Ω ) ,

where L∗∗(x, s, ξ) is the greatest function less than or equal to L(x, s, ξ) and
convex with respect to ξ .

A consequence of last proposition is that in some cases we may apply the
results of the convex case to the relaxed functional F (·), obtaining this way
more information about the original functional F (·).

In this thesis we study various issues of the problem of minimizing the
integral in (1.1), a more detailed presentation of those issues is made on each
chapter.
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2.1 Introduction

Here is considered the problem of existence of minimizers for integrals of
the type ∫

Ω

L (x, u (x) ,∇u (x)) d x on W
1,p

u
∂
(Ω) , (2.1)

namely on the Sobolev space

W
1,p

u
∂
(Ω) :=

{
u(·) ∈ W

1,p

(Ω) : (u− u
∂
) (·) ∈ W

1,p

0 (Ω)
}
,

where the boundary data u
∂
(·) is any given function in W

1,p
(Ω) ∩ C0 (

Ω
)
,

p ≥ 1, Ω ⊂ Rd open bounded.

Our main result deals with existence in the convex case : we denote in
this way the case where L(·, ·, ·) equals its bipolar L∗∗(·, ·, ·) de�ned as usual,
e.g. convexify − close the epigraphs :

epi L∗∗(x, s, ·) := co epi L(x, s, ·). (2.2)

It proves existence, in this case, under quite general hypotheses, allowing
namely L∗∗(x, · , ξ) non− lsc for ξ ̸= 0. In the special �factor� case

L∗∗(x, s, ξ) = ℓ∗∗ (s, ρ1(x, s) ξ ) ρ2(x, s) , (2.3)

our hypotheses are simpler and may look more natural.

Notice that L∗∗(x, s, ξ ) = ∞ or L(x, s, ξ ) = ∞ are freely allowed
here, while where L∗∗(x, s, ξ ) is finite one may even have an empty
subdifferential of L∗∗(x, s, · ) at ξ ( even at ξ = 0 ); in particular, (2.1) may
be the variational reformulation of general state & gradient constrained
optimal control problems involving multiple integrals and implicit first−
order nonsmooth scalar partial differential inclusions. ( Following the
modern but classical tradition of [Roc & Wet], we use here the symbol ∞
where some authors use +∞ . )
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Indeed, L(·, ·, ·) is only assumed to satisfy the following extremely weak

Basic Hypotheses for the general case convexi�ed of (2.1) :

(H1) L : Ω×R×Rd → [0,∞] has (where B = Borel, L = Lebesgue and
lsc = lower semicontinuous ) :

L(·, ·, ·) B⊗L⊗B −measurable and L(x, s, ·) lsc ∀x, s;

(H2) L(·, ·, ·) has at least superlinear growth, namely

inf L (Ω,R, ∂Br)

r
→ ∞ as r → ∞ , (2.4)

where ∂Br :=
{
ξ ∈ Rd : |ξ| = r

}
; while for p > 1 we need to impose

L(x, s, ξ) ≥ c1 |ξ|p + c2 ( c1 > 0, c2 ∈ R ) ; (2.5)

(H3) the bipolar L∗∗(·, ·, ·) of L(·, ·, ·) is

approximable by equi− integrable slopes at zero gradient. (2.6)

The precise de�nition of (H3), named so after [Orn] due to (2.40)+(2.43)+
(2.47), being rather technical, is postponed to the section 2.4; however, in
the autonomous case it is simply the hypothesis (2.7)+(2.8)+(2.9) of [Orn],
where the autonomous d = 1 case is treated : for each i ∈ N ,

∃ mi(·) ∈ L
1

loc

(
R,Rd

)
&

∃ (φi(s)) ↗ L∗∗(s, 0) ∀ s with φi : R → [0, i] lsc,
(2.7)

for which
L∗∗(s, ξ) ≥ φi(s) + ⟨mi(s), ξ ⟩ ∀s, ξ, i . (2.8)
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Another situation in which (H3) may be expressed very simply is the gen-
eral nonautonomous case (2.1) whenever 0 ∈ ∂L∗∗(x, s, 0) ( e.g. L∗∗(x, s, ·)
even ∀ x, s ) ; or, more generally, whenever

∃m(·) ∈ L
1

loc

(
R,Rd

)
: m(s) ∈ ∂L∗∗(x, s, 0) ∀ x, s . (2.9)

In such case, (H3) reduces ( trivially ) to :

L∗∗(·, ·, 0) Borel with

L∗∗(x, ·, 0) & L∗∗(·, s, ·)− L∗∗(·, s, 0) lsc ∀x, s .
(2.10)

(Notice that, above and elsewhere, our subdifferential symbol ∂ always
refers to the gradient variable. )

The hypothesis (H3) also takes a very simple form in the nonautonomous
special factorized case (2.3), namely our basic hypotheses (H1), (H2) and
(H3) are satis�ed by L(·, ·, ·) whenever (2.2) and (2.3) hold true for some
ℓ(·, ·) satisfying the next more natural hypotheses.

Basic Hypotheses for the special convex factorized case (2.3) :(
H

′
1

)
ℓ : R×Rd → [0,∞] is L⊗B −measurable with ℓ(s, ·) lsc ∀ s ,


ρ1(·, ·), ρ2(·, ·) ∈ C0

b (Ω×R) (cont. bounded functions )

inf ρ1(Ω×R) > 0, inf ρ2(Ω×R) > 0 ;
(2.11)

(
H

′
2

)
superlinear growth :

inf ℓ (R, ∂Br)

r
→ ∞ as r → ∞ , (2.12)

where ∂Br :=
{
v ∈ Rd : |v| = r

}
; while for p > 1 we need to impose

ℓ(s, v) ≥ c1 |v|p + c2 ( c1 > 0, c2 ∈ R ) ; (2.13)(
H

′

3

)
ℓ∗∗(·, ·) is lsc at zero gradient ( i.e. at (s, 0) ∀ s ) . (2.14)
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In the convex case, our proof uses Ambrosio's lower semicontinuity re-
sult [Amb, th. 4.14], a generalization of a result obtained by DeGiorgi, But-
tazzo & Dal Maso ( [DG & But & DM] ). While the last paper dealt with
finite values of L∗∗(s, ξ) only, [Amb] generalized it to allow nonautonomous
lagrangians and∞ values for L∗∗(x, s, ξ) where ξ ̸= 0. However, while [Amb]
imposed L∗∗(x, s, 0) < ∞ and ∂L∗∗(x, s, 0) ̸= ∅, we avoid such hypotheses.
Moreover

(
H

′
3

)
appears here for the �rst time.

We wish to underline properly this novelty : while usually one assumes
ℓ∗∗(·, ·) lsc at (s, v) ∀s, v ; here we need it only at v = 0, in

(
H

′
3

)
. On the other

hand, in the weaker hypothesis (H3) ( see (2.6) and (2.40) to (2.47) ) there
are no joint lower semicontinuity conditions imposed on the lagrangian.
We even allow L∗∗(x, ·, ξ) to be neither lsc nor Borel, for ξ ̸= 0.

After treating the convex case, we also prove existence of minimizers
for the general (nonconvex ) case, in which we have to assume the existence
of a well−behaved relaxed minimizer, i.e. a minimizer of the convexified
integral, associated to L∗∗(·, ·, ·). But in some cases the boundary data u

∂
(·)

itself may satisfy this trivially. Moreover, we have to assume a strong extra
hypothesis. Indeed, the �nonconvexity points� ξ should all lie in d − dim
�faces�, as expressed formally in (2.24) + (2.26) + (2.29) + (2.31) + (2.32);
each such face being allowed to move continuously with (x, s) provided it
remains inside a hyperplane; and each such hyperplane, in turn, may move,
with x only, its intersection with the vertical axis, and it may move, with
s only, the �signed − length� of its slope, as is expressed formally in the
equality (2.32) below. Moreover, there should exist, roughly speaking, some
function in W

1,1

u
∂
∩ C0 having gradients in the interior of those faces, i.e.

the set U v int

i in (2.28) should be nonempty; so that we can guarantee that
the nonconvexity set U v ext

i in (2.34) is nonempty also, as (2.38) ensures.
(See the precise hypotheses in (2.22) to (2.32). )

Nevertheless, in the nonconvex calculus of variations involving
multiple integrals and highly discontinuous lagrangians L(·, ·, ·), na-
mely having L(x, ·, ξ) just L − measurable for ξ ̸= 0, assuming ∞ values
freely, our existence result for (2.1) is new.

For a historical review of initial motivations, problems and results of
the Nonconvex Calculus of V ariations see [Mcl], while for a more recent
overview consult [Dac & Mcl].
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Several previous results in the nonconvex case may be seen now
as proving existence of minimizers in special cases, as compared with
our own theorem 2.3.1 below: [Mas & Sch 1], [Mas & Sch 2], [Cell 1],
[Cell 2], [Fri], [Cela & Pe 1], [Cela & Pe 2], [Fon & Fus & Mcl], [Zag 1],
[Cela & Cup & Gui], [Zag 2], . . . . The paper [Mcl], but specially the papers
[Cell 1] and [Cell 2], show the need of imposing affinity to L∗∗(x, s, ·) on
nonconvexity regions, even when x, s are absent. Most of these existence
results do not consider general dependence L(x, s, ξ) as we do here in (H1)+
(2.6), or in (H

′
1) + (2.14). Indeed, [Cell 1], [Cell 2], [Fri] treat the case L(ξ);

[Cela & Pe 1] treats the sum case L(s, ξ) = f(s) + g(ξ) and [Cela & Pe 2]
treats the product case L(s, ξ) = f(s) g(ξ); while [Cela & Cup & Gui] deals
with L(s, ξ), [Fon & Fus & Mcl] and [Zag 1] with L(x, ξ).

Our general case L(x, s, ξ) is considered only ( to my knownledge ) in
[Mas & Sch 1], [Mas & Sch 2] and [Zag 2], under much heavier hypothe-
ses. Indeed, in the best of these results, [Zag 2], L(·, ·, ·) and L∗∗(·, ·, ·) are
continuous and, at each point where L∗∗(x0, s0, ξ0) < L(x0, s0, ξ0), the fol-
lowing must hold : there exists a ball Br0(ξ0), a neighborhood U of (x0, s0), a
function q(·) ∈ C0(Ω); and a function m(·) ∈ C0

(
Ω, Rd

)
having divergence

div m(·) a positive Radon measure ( possibly after multiplying it by −1 )
satisfying :

L∗∗(x, s, ξ) ≥ q(x) + ⟨m(x), ξ ⟩, ∀ (x, s) ∈ U, ∀ ξ ∈ Rd,

L∗∗(x, s, ξ) = q(x) + ⟨m(x), ξ ⟩, ∀ (x, s, ξ) ∈ U×Br0(ξ0).

Moreover, [Zag 2] assumes the set M of relaxed minimizers to be non −
empty and, specially, the following heavy hypotheses, completely a-
voided in our (H1) + (2.6) : M must be sequentially strongly compact
in L1(Ω) and must consist entirely of continuous a.e. differentiable
functions. In contrast, we only assume, in our (2.22) below, existence
of one well − behaved relaxed minimizer. Notice also that, more gene-
rally, continuity of L(·, ·, ·), L∗∗(·, ·, ·), with finite values, is a common as-
sumption to all of these papers, while we here allow ∞ values freely.

Theorems 2.2.1 and 2.2.2 below ( existence in the convex case ) are the
main results of this chapter; while theorem 2.3.1 ( the nonconvex case ) is
just a simple application of [DBla & Pian 1], based on Baire category, a



30 CHAPTER 2. EXISTENCE OF SCALAR MINIMIZERS

method pioneered, for existence of solutions of differential inclusions, 3
decades ago in [Cell 3]; and blossoming namely in [Mar & Orn], [Gon & Orn];
and later in the much more complete and well-known book [Dac & Mcl],
which deals in particular also with scalar problems which could be dealt with
via our theorem 2.3.1 below, under weaker assumptions than [Dac & Mcl],
namely in what regards regularity of L(·, ·, ξ) in our (H1) + (2.6) or even
in our (2.10). Notice also that the scalar dependence on the state s of the
affinity slope in (2.32) seems to be new.
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2.2 Existence of relaxed minimizers

Consider the Basic Hypotheses for the general case convexi�ed of (2.1), (H1)+
(H2) + (H3), with (2.6) more precisely de�ned in (2.40) to (2.47), due to its
technically heavy machinery.

Theorem 2.2.1. Let L : Ω×R×Rd → [0,∞] be a function satisfying the
basic hypotheses (H1) + (H2) + (H3), see (2.4) to (2.6).

Then there exist minimizers for the convexi�ed integral∫
Ω

L∗∗ (x, u (x) ,∇u (x)) d x on W
1,p

u
∂
(Ω) , (2.15)

for any u
∂
(·) as in (2.1).

Remark 2.2.1. Existence of minimizers for (2.15) also holds true provided
one imposes (H1)+(H2)+(H3) on L

∗∗(·, ·, ·) instead ; or provided one replaces
(H1) + (H3) by the following hypothesis :

(H ′′
1 ) L(·, ·, ·) is L⊗B⊗B −measurable & L(x, ·, ·) is lsc ∀x.

Indeed ( see [Iof] ) this is true even in the vectorial case, when
L : Ω×Rm×Rm×d → [0,∞].

Theorem 2.2.2. Let ℓ : R×Rd → [0,∞] be a function satisfying the special
basic hypotheses

(
H

′
1

)
+

(
H

′
2

)
+

(
H

′
3

)
, see (2.11) to (2.14); also su�cing(

H
′
1

)
+
(
H

′
2

)
+
(
H

′
3

)
to hold true for ℓ∗∗(·, ·) itself instead.

Then there exist minimizers for the convexi�ed integral∫
Ω

ℓ∗∗ (u (x) , ρ1(x, u(x))∇u (x)) ρ2(x, u(x)) d x on W
1,p

u
∂
(Ω) , (2.16)

for any u
∂
(·) as in (2.1).
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We prove �rst theorem 2.2.1, using the de�nition of (H3) presented in
(2.40) to (2.47). Then we prove theorem 2.2.2 by showing, namely, that(
H

′
3

)
⇒ (H3) in case (2.3).

Proof of theorem 2.2.1. a) Assuming (H3), i.e. the hypotheses (2.40) to
(2.47), de�ne, for each i ∈ N,

fi(x, s, ξ) :=


L∗∗(x, s, ξ) for ξ ̸= 0

φi(x, s) for ξ = 0
(2.17)

and f ∗∗
i (·, ·, ·) by epi f ∗∗

i (x, s, ·) := co epi fi(x, s, ·) ∀x, s.

Let us �x i ∈ N and use the next

Proposition 2.2.1. (This is [Amb, th. 4.14] adapted to our notation. )

Consider the integral∫
Ω

f ∗∗
i (x, u (x) ,∇u (x)) d x on W

1,1

u
∂
(Ω) , (2.18)

where f ∗∗
i : Ω×R×Rd → [0,∞] satis�es :

i) f ∗∗
i (·, ·, ·) is B⊗L⊗B-measurable;

ii) f ∗∗
i (x, s, ·) is convex ∀ x, s;

iii) f ∗∗
i (·, ·, 0) is Borel , f ∗∗

i (x, s, 0) < ∞ ∀ x, s, and f ∗∗
i (x, ·, 0) is lsc

for a.e. x ∈ Ω ;

iv) f ∗∗
i (·, s, ·)− f ∗∗

i (·, s, 0) is lsc ∀ s;

v) ∃mi : Ω×R → Rd such that

v) a) mi(·, s) is continuous ∀ s, mi(x, ·) is measurable ∀x and

mi(x, s) ∈ ∂f ∗∗
i (x, s, 0) ∀x, s ;
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v) b) see (2.47);

v) c) see (2.46).

Then
the integral (2.18) is w − lsc on W

1,1

(Ω) . (2.19)

Let us check the validity of the hypotheses of proposition 2.2.1 for our
f ∗∗
i (·, ·, ·) in (2.17). Indeed ,

i) is satis�ed due to (H1)+(2.4) + (2.41);

ii) holds by de�nition of f ∗∗
i (·, ·, ·);

iii) holds true, due to (2.41) + (2.42);

iv) is satis�ed by fi(·, ·, ·), using (2.42); hence, by (2.4), it is also
satis�ed by f ∗∗

i (·, ·, ·);
v) a) is satis�ed, due to (2.17)+(2.40)+(2.44)+(2.45), for fi(·, ·, ·),

so, by (2.4), it is valid also for f ∗∗
i (·, ·, ·);

v) b) is satis�ed, due to (2.47);

v) c) is satis�ed, using (2.46).

Therefore (2.19) holds true. Take a minimizing sequence
(
uki (·)

)
k
for

(2.18); then, by superlinearity, one may pass to a sublimit ui(·) ∈
W

1,p

u
∂
(Ω) of this sequence, i.e. ui(·) is the limit of a subsequence of(

uki (·)
)
k
, necessarily a minimizer of (2.18).

b) Claim 1 The following pointwise increasing convergence holds true :

( f ∗∗
i (x, s, ξ) ) ↗ L∗∗(x, s, ξ) ∀x, s, ξ . (2.20)

Indeed, as in the proof of [Orn], one easily checks that f ∗∗
i (·, ·, ·) satis�es

the same growth condition (2.4) as L∗∗(·, ·, ·) does, hence
∞∩
i=1

epi f ∗∗
i (x, s, ·) ⊆ epi L∗∗(x, s, ·)
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i.e. (2.20) holds true.

Again, by the equi − superlinearity condition (2.4), satis�ed by
the whole sequence ( f ∗∗

i (·, ·, ·) ), the sequence (ui(·)) (where ui(·)
minimizes (2.18) ) has itself a weak W

1,1
(Ω) convergent subsequence.

Denote by v(·) ∈ W
1,1

u
∂
(Ω) its weak limit.

Claim 2 v(·) minimizes the integral (2.15).

Indeed, for each k ≤ i and each u(·) ∈ W
1,1

u
∂
(Ω),∫

Ω

f ∗∗
k (x, v (x) ,∇v (x)) d x

≤ lim inf
i→∞

∫
Ω

f ∗∗
k (x, ui (x) ,∇ui (x)) d x

≤ lim inf
i→∞

∫
Ω

f ∗∗
i (x, ui (x) ,∇ui (x)) d x

≤ lim inf
i→∞

∫
Ω

f ∗∗
i (x, u (x) ,∇u (x)) d x

≤
∫
Ω

L∗∗ (x, u (x) ,∇u (x)) d x ,

(2.21)

by (2.19) + (2.20). Hence, by the Fatou lemma and (2.21),∫
Ω

L∗∗ (x, v (x) ,∇v (x)) d x

≤ lim inf
k→∞

∫
Ω

f ∗∗
k (x, v (x) ,∇v (x)) d x

≤
∫
Ω

L∗∗ (x, u (x) ,∇u (x)) d x ,

thus proving claim 2 and theorem 2.2.1, for p = 1.

c) In case p > 1 the reasoning is similar .
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Proof of theorem 2.2.2. To prove this theorem (with L∗∗(·, ·, ·) de�ned by
(2.3) ), one easily checks that

(
H

′
1

)
⇒ (H1) and

(
H

′
2

)
⇒ (H2). Finally,

using lemma 2.4.1 (with proof beginning in (2.48) ), also
(
H

′
3

)
⇒ (H3), thus

proving theorem 2.2.2.
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2.3 Existence of true minimizers

For our nonconvex result, and besides the basic hypotheses already used in
the convex case − namely either (H1) + (H2) + (H3) or else

(
H

′
1

)
+
(
H

′
2

)
+(

H
′
3

)
in the special factorized case (2.3) − we need to impose the following

extra hypothesis, whose intuitive meaning has already been roughly explained
above ( see the beginning of page 25 ) :

Extra Nonconvexity Hypothesis for the general case (2.1) :

(H4)


∃ minimizer v(·) for the convexified integral (2.15)

which is well − behaved, in the sense that the

following hypotheses (2.23) to (2.32) are satis�ed.

(2.22)

Namely :

∃ open sets Ωi ⊂ Ω, pairwise disjoint, such that (2.23)

L∗∗ (·, v(·),∇v(·)) = L (·, v(·),∇v(·)) a.e. on Ω \
∞∪
i=1

Ωi , (2.24)

i.e. outside of the open sets Ωi where ∇ v(·) is inside the �faces� Fi(·, ·),
with v(·) the well − behaved relaxed minimizer assumed to exist in (2.22)
for which we have, at each i ∈ N :


∃ Fi : Ω×R → Rd, a continuous bounded multifunction

with compact values Fi(x, s) ̸= ∅ ∀x, s ;
(2.25)

∇v(x) ∈ co Fi(x, v(x)) for a.e. x ∈ Ωi ; (2.26)

the set U v int

i de�ned in (2.28) is nonempty : (2.27)
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U v int

i := {u(·) ∈ Σv
i : ∇u(·) ∈ int co Fi(·, u(·)) a.e. on Ωi} (2.28)

where Σv
i := C

0 (
Ωi

)
∩W 1,1

v (Ωi);

L∗∗(x, s, ξ) = L(x, s, ξ) ∀ ξ ∈ ext co Fi(x, s) ∀x, s ; (2.29)

∃ qi(·) ∈ L
1

(Ωi) , ∃mi ∈ Rd and ∃αi(·) ∈ L
∞

loc (R) : (2.30)

L∗∗(x, s, ξ) ≥ qi(x) + ⟨αi(s)mi , ξ ⟩ ∀ s, ξ for a.e. x ∈ Ωi, (2.31)


L∗∗(x, s, ξ) = qi(x) + ⟨αi(s)mi , ξ ⟩

∀ξ ∈ Fi(x, s) ∀ s and for a.e. x ∈ Ωi .
(2.32)

De�ne also

Uv
i :=

{
u(·) ∈ W

1,1

v (Ωi) : ∇u(·) ∈ co Fi(·, u(·)) a.e. on Ωi

}
, (2.33)

and

U v ext

i := {w(·) ∈ Uv
i : ∇w(·) ∈ ext co Fi(·, w(·)) a.e. on Ωi} . (2.34)

We recall that int co Fi(x, u(x)) is the interior, in Rd, of the convex hull
co of Fi(x, u(x)); while ext co Fi(x,w(x)) means the set of extreme points of
this compact convex set.

Remark 2.3.1. Given the weakness of our hypotheses on L(·, s, ξ) namely
possible Borel dependence at ξ ̸= 0 in (H1), and (2.42) or (2.10), one might
consider the possibility of weakening the continuity of Fi(·, s) in (2.25); how-
ever [DBla & Pian 2, section 4] presents a counterexample to proposition
2.3.1 below, using a Fi(·, s) usc but not lsc.
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Recall again the Basic Hypotheses for the general case (2.1), (H1)+(H2)+
(H3), with (2.6) more precisely de�ned in (2.40) to (2.47), due to its techni-
cally heavy machinery, together with this new extra nonconvexity hypothesis
(H4) in (2.22).

Theorem 2.3.1. Let L : Ω×R×Rd → [0,∞] satisfy the basic hypotheses
(H1) + (H2) + (H3) plus the extra hypothesis (H4) ( see (2.22) to (2.32) ).

Then the nonconvex integral (2.1) has minimizers, for p = 1.

Proof of theorem 2.3.1. a) Fix i ∈ N and de�ne, using (2.30),

Qi :=

∫
Ωi

qi(x) d x

and

βi(s) :=

∫ s

0

αi(σ) d σ.

For u(·) ∈ Uv
i , we have ( see [DCic & Leo] and the references therein )

βi(u(·)) ∈ W
1,1

βi(v)
(Ωi) &

∇βi(u(x)) = αi(u(x))∇u(x) a.e. on Ωi ;

(2.35)

hence, by (2.32)+(2.35),

L∗∗(x, u(x),∇u(x)) = qi(x) + ⟨mi,∇βi(u(x))⟩ a.e. on Ωi ,

and, for each u(·) ∈ Uv
i ,∫

Ωi

L∗∗(x, u(x),∇u(x)) d x = Qi +

∫
Ωi

⟨mi,∇βi(u(x))⟩ d x. (2.36)

But, on the other hand,

( βi(u(·))− βi(v(·)) ) ∈ W
1,1

0 (Ωi)



2.3. EXISTENCE OF TRUE MINIMIZERS 39

yields, by the divergence theorem,∫
Ωi

⟨mi,∇βi(u(x))⟩ d x =

∫
Ωi

⟨mi,∇βi(v(x))⟩ d x ∀u(·) ∈ Uv
i . (2.37)

Therefore applying (2.27) and, using the sets de�ned in (2.28) and
(2.34),

Proposition 2.3.1. ( See [DBla & Pian 1, th. 4.2] together with (2.28)
and (2.34). )

Let Fi : Ωi×R → Rd be a continuous bounded multifunction with com-
pact values and let Ωi be an open set in Rd, with Ωi ̸= Rd. Assume
(2.22) to (2.32).

Then
U v int

i ̸= ∅ ⇒ U v ext

i ̸= ∅ . (2.38)

we obtain some wi(·) ∈ U v ext

i ; and since v(·), wi(·) ∈ Uv
i , by (2.29) +

(2.36) + (2.37),

∫
Ωi

L(x,wi(x),∇wi(x)) d x =

∫
Ωi

L∗∗(x, v(x),∇v(x)) d x. (2.39)

b) Finally de�ning

w(x) :=


wi(x) for x ∈ Ωi, i = 1, 2, ...

v(x) for x ∈ Ω \
∪∞
i=1 Ωi ,

we get w(·) ∈ W
1,1

u
∂
(Ω) and, by (2.24) + (2.39),∫

Ω

L(x,w(x),∇w(x)) d x =

∫
Ω

L∗∗(x, v(x),∇v(x)) d x.
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2.4 Approximation by equi-integrable slopes at

zero gradient

Let us start by de�ning precisely the hypothesis (H3), mentioned in (2.6),
namely :

(H3) L∗∗(x, s, ξ) ≥ φi(x, s) + ⟨mi(x, s), ξ ⟩ ∀x, s, ξ, i ; (2.40)

where :

(H3.1) for each i ∈ N, φi : Ω×R → [0, i] satis�es :

φi(·, ·) is a Borel function, (2.41)

φi(x, ·) for a.e. x & L∗∗(·, s, ·)− φi(·, s) ∀ s are lsc ; (2.42)

and this sequence increases and converges pointwise :

(φi(x, s)) ↗ L∗∗(x, s, 0) ∀x, s ; (2.43)

(H3.2) for each i ∈ N, mi : Ω×R → Rd satis�es :

mi(x, ·) is L −measurable for a.e. x , (2.44)

mi(·, s) ∈ C
0 (

Ω,Rd
)

∀s , (2.45)

and considering, for each V ⊂⊂ R and each open Ω ′ ⊂⊂ Ω, the family
{mi(·, s) : s ∈ V} and its sup, i.e.

MΩ ′

i (s) := sup {|mi(x, s)| : x ∈ Ω ′} ,

then

{mi(·, s) : s ∈ V} is equicontinuous in C
0 (

Ω ′,Rd
)

(2.46)

and

MΩ ′

i (·) ∈ L
1

loc (R) . (2.47)
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As stated after (2.16), we wish to prove now that whenever the lagran−
gian L∗∗(·, ·, ·) in (2.15) assumes the special form (2.3), for some ℓ(·, ·) satis-
fying

(
H

′
1

)
+
(
H

′
2

)
+
(
H

′
3

)
( see (2.11) to (2.14) ), then (H1)+(H2)+(H3) ( see

(2.4) to (2.6) ) are also satis�ed, hence the result of theorem 2.2.1 is applica-
ble. Indeed, since

(
H

′
1

)
⇒ (H1) and

(
H

′
2

)
⇒ (H2) are straightforward, we

only need to prove that ℓ∗∗(·, ·) lsc at (·, 0) implies L∗∗(·, ·, ·) approximable
by equi− integrable slopes at zero gradient, namely the next

Lemma 2.4.1.
(
H

′
3

)
⇒ (H3), under (2.3).

Proof of lemma 2.4.1. Using (2.3), by
(
H

′
3

)
+(2.12) one may show, as in the

proof of [Orn], that

 ∃µi(·) ∈ L
1

loc

(
R,Rd

)
( namely |µi(·)| ≤ i ) ,

∃ψi : R → [0, i] lsc for which (ψi(s)) ↗ ℓ∗∗(s, 0)
(2.48)

satisfying

ℓ∗∗(s, v) ≥ ψi(s) + ⟨µi(s), v⟩ ∀s, v, i . (2.49)

Then, setting
φi(x, s) := ρ2(x, s)ψi(s)

and
mi(x, s) := ρ1(x, s) ρ2(x, s)µi(s),

we get, using (2.49),

L∗∗(x, s, ξ)

= ℓ∗∗(s, ρ1(x, s) ξ ) ρ2(x, s)

≥ ρ2(x, s)ψi(s) + ⟨ ρ1(x, s) ρ2(x, s)µi(s), ξ ⟩
=φi(x, s) + ⟨mi(x, s), ξ ⟩,

i.e. (2.40). By (2.48) + (2.11), φi(·) is Borel, φi(x, ·) = ρ2(x, ·)ψi(·) is lsc,

L∗∗(x, s, ξ)− φi(x, s) = ρ2(x, s) [ ℓ
∗∗(s, ρ1(x, s) ξ)− ψi(s) ] ,
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hence

L∗∗(·, s, ·)− φi(·, s) = ρ2(·, s) [ ℓ∗∗(s, ρ1(·, s) · )− ψi(s) ] is lsc ∀s ;

and since we also have

(φi(x, s)) = ρ2(x, s) (ψi(s)) ↗ ρ2(x, s) ℓ
∗∗(s, 0) = L∗∗(x, s, 0) ∀x, s,

(H3.1) holds true.

On the other hand, for each (x, s) ∈ (Ω ′×R),

|mi(x, s)|
= ρ1(x, s) ρ2(x, s) |µi(s)|
≤ i sup (ρ1ρ2) (Ω

′×R) ,

hence MΩ ′
i (·) ∈ L

1

loc (R); while

mi(·, s) = µi(s) ρ1(·, s) ρ2(·, s) ∈ C
0 (

Ω,Rd
)

and, since |µi(s)| ≤ i ∀ s, i and (ρ1ρ2)(·, ·) is uniformly continuous on
(Ω ′×V), the family of functions

{mi(·, s) : s ∈ V } = {µi(s)ρ1(·, s)ρ2(·, s) : s ∈ V }

is equicontinuous in C
0 (

Ω ′,Rd
)
.

Therefore also (H3.2) holds true, and lemma 2.4.1 is proved.
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Radial symmetry in convex case :

regularity of scalar minimizers
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3.1 Introduction

Recall that in several di�erent areas of physics and engineering
( namely nonlinear elasticity, fluid dynamics, syntectic materials, shape
optimization, liquid crystals, . . . , see e.g. [Bau & Phi], [Cell & Orn],
[Goo & Koh & Rey], [Koh & Str], [Kro & Kie], [Mcl], [Orn & Ped], [Tah])
often physical or geometrical problems are reduced to adequate
mathematical models involving the minimization of an integral of the
calculus of variations. Since in general this problems are typically vectorial,
as a �rst step we consider, in this chapter, only the scalar case; namely the
problem of minimization of the integral :∫

BR

L∗∗ ( |x| , u(x), |∇ u(x) | ) d x on W
1,1

A (BR ) , (3.1)

( |∇ u(x) | = euclidian norm of the gradient vector ) with lagrangian
L∗∗ : [ 0, R ]×R×R → [0,∞] having at least L∗∗(r, ·, ·) convex lsc ( lower
semicontinuous ); and where the class of functions in competition is the
Sobolev space W

1,1

A := A + W
1,1

0 (BR ) of those u(·) de�ned on the ball
BR :=

{
x ∈ Rd : |x| < R

}
and taking constant value A ∈ R along its

boundary ∂ BR.
In these problems, (beyond existence ) simplicity of the solution is often

a highly desirable goal; in particular often the aim is to prove existence of
a radial ( or radially symmetric ) minimizer uA(·), i.e. one whose values
uA(x) are constant along each spherical layer of BR, namely

uA(x) = UA ( |x| ) on BR, (3.2)

for an adequate �profile� UA : [ 0, R ] → R as simple as possible.
In the literature one �nds several theoretical results in which radial

minimizers have been obtained, under increasingly weaker hypotheses, see
e.g. [Cell & Per], [Cra 1], [Cra 2], [Cra & Mal 1], [Cra & Mal 2], [Kro],
[Kro & Kie]. In general, (3.2) is reached via a symmetric rearrangement
( i.e. averaging over each spherical layer of BR, see (3.36) & (3.35) ), applied
to some minimizer u(·) of (3.1) in order to obtain a new radial minimizer
uA(·).

However, while all of the above papers assume separation of state &
gradient variables,

L∗∗ ( r, s, |v| ) = g (r, s) + h∗∗ ( r, |v| ) , (3.3)
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here we avoid it, under joint convexity ; namely we consider any lagrangian
L∗∗(·) of the special form

L∗∗ ( r, s, |v| ) = ℓ∗∗ ( s, |v| ρ1(r) ) . ρ2(r), (3.4)

i.e. we want to minimize the integral∫
BR

ℓ∗∗(u(x), |∇u(x) | ρ1( |x| ) ) . ρ2( |x| ) d x on W
1,1

A (BR ) , (3.5)

where ℓ∗∗ : R×R → [0,∞] is any convex lsc superlinear function, namely :

inf ℓ∗∗ (R, λ )
λ

→ ∞ as λ→ ∞ , (3.6)

but we need no growth in case the above integral is known to haveminimum.
Notice also that our minimizers are, unlike those of previous papers,

bounded & uniformly continuous near the center 0 of the ball BR, under a
very weak extra hypothesis (3.16).

Remarkably, (3.5) may also be seen as the calculus of variations refor-
mulation of a distributed parameter scalar optimal control problem. In-
deed, state & gradient pointwise constraints are, in a sense, built-in, since
ℓ∗∗(s, v) = ∞ is freely allowed ( see e.g. [Ces] ).

It is admissible any A ∈ R for the constant boundary value assumed
by the competing functions u(·) along ∂ BR, in contrast with the above
papers, which set A ≡ 0; notice that our minimizing profile UA(·) depends
on the position of the point A relative to graph ℓ∗∗(·, 0). Indeed, e.g.
if ℓ∗∗ (A, 0 ) ≤ ℓ∗∗ (s, 0) ∀ s then obviously the constant function ≡ A
minimizes the integral (3.5).

Useful properties of regularity of minimizers are here obtained in case
∃ min ℓ∗∗ (R, 0 ) : UA(·) has to be monotone & AC ( absolutely continuous )
with ℓ∗∗ (UA(·), 0 ) increasing along [ 0, R ], so that again the choice of A
determines the behaviour of minimizers :

sign U ′
A(·) = sign ∂ ℓ∗∗ (A, 0 ) .
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3.2 Radial minimizing surfaces and deforma-

tions

Here is our existence result :

Theorem 3.2.1. (Existence of radial minimizers )
Let

ℓ∗∗ : Rm×R → [0,∞] be convex lsc with ℓ∗∗ (S, ·) even ∀S, (3.7)

and let

ρ1, ρ2 : [ 0, R ] → [c0, c∞] ⊂ (0,∞) be Borel measurable. (3.8)

Then :
∃ radial minimizer uA(x) = UA( |x| ) (3.9)

for the multiple integral∫
BR

ℓ∗∗(u(x), |Du(x) | ρ1( |x| ) ) . ρ2( |x| ) d x on W
1,1

A (BR, Rm )

(3.10)
if and only if

the integral (3.10) has minimum; (3.11)

if and only if
∃ minimizer zA(·) (3.12)

for its associated single integral ( using (3.30) & (3.31) )∫ a

0

ℓ∗∗( z(t), | z ′(t) | ρ(t) ) d t on Z0,a
A , (3.13)

where a > 0 & ρ(·) & γ(·) are adequately chosen and de�ne the new space

Z0,a
A :=

 z(·) ∈ W
1,1

loc ( (0, a], Rm ) :

z(a) = A &

|z ′(·)| γ(·)d−1 ∈ L
1
(0, a)

 . (3.14)

Moreover

ℓ∗∗(·) superlinear ( as in (3.6) ) ⇒ (3.9) & (3.12). (3.15)
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Here is the main result of this section, about regularity of minimizers
in the scalar m = 1 case :

Theorem 3.2.2. (Regularity in scalar m = 1 case under extra hypothesis )
Assume (3.7) & (3.8) & ( either (3.11) or (3.6) ) plus the extra hypothesis

m = 1 & ∃ min ℓ∗∗ (R, 0 ) . (3.16)

Then
uA(·) in (3.9) is uniformly continuous (3.17)

while

UA(·) & zA(·) in (3.9) & (3.12) are AC monotone with (3.18)

ℓ∗∗ (UA(·), 0 ) & ℓ∗∗ ( zA(·), 0 ) both increasing. (3.19)

Finally we present a quite trivial regularity result for the vectorial m ≥ 1
case. De�ne :

ΣA := {S ∈ Rm : ℓ∗∗ (S, 0 ) ≤ ℓ∗∗ (A, 0 ) } , (3.20)

q
A
:=

1

c0
sup

{
|ξ|

c1 + c2 |S |
: S ∈ ΣA & ℓ∗∗ (S, ξ ) <∞

}
, (3.21)

and

q :=
1

c0
sup

{
|ξ|

c1 + c2 |S |
: ℓ∗∗ (S, ξ ) <∞

}
. (3.22)

(Here c1 & c2 are any constants > 0, while c0 appears in (3.8). )
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Theorem 3.2.3. (Lipschitz regularity in vector m ≥ 1 case of optimal
control or design, under extra hypothesis )

Assume (3.7) & (3.8) & ( either (3.11) or (3.6) ) plus the extra hypothesis

q <∞ ( see (3.22) ). (3.23)

Then
uA(·) & UA(·) in (3.9) are Lipschitz continuous (3.24)

while

zA(·) in (3.12) is AC on [0, a] & locally Lipschitz on (0, a].
(3.25)

Moreover,

m = 1 & qA <∞ ( see (3.21) & (3.20) ) ⇒ (3.24) & (3.25). (3.26)

Remark 3.2.1. More precisely, we prove below that, under the hypotheses of
th. 3.2.2 or 3.2.3,

UA ( [ 0, RA ] ) = {B } = zA ( [0, b] ) ( possibly RA = 0 = b ) (3.27)

where

b := max { t ∈ [0, a] : ℓ∗∗ ( zA(t), 0 ) = min ℓ∗∗ ( zA ( [0, a] ) , 0 ) } , (3.28)

B := zA(b), RA := γ(b), zA(t) = UA ◦ γ(t) ∀ t ; (3.29)

and, in (3.13) & (3.14),

ρ(t) := ρ1 ( γ(t) ) ρ2 ( γ(t) ) γ(t)
d−1 ∀ t , (3.30)

using

γ : [0, a] → [ 0, R ] , r = γ(t), the inverse function of (3.31)

r 7→ t = γ−1(r) :=

∫ r

0

ρ2(τ) τ d−1 d τ ∈ [0, a] , (3.32)

with

a :=

∫ R

0

ρ2(r) rd−1 d r . (3.33)



50 CHAPTER 3. REGULARITY OF SCALAR MINIMIZERS

Proof.

(a) Let us assume that

the integral (3.10) is finite at some u(·) ∈ W
1,1

A (BR, Rm ) . (3.34)

To each such competing u(·), as in (3.34), associate the corresponding :

�radial symmetrization� u(x) := U ( |x| ) , (3.35)

using the

�radial plane cut mean profile� U(r) :=
1

αd

∫
Sd

u (ω r ) dω, (3.36)

where αd is the Hausdorff measure, in dimension d− 1, of the unit sphere
Sd :=

{
x ∈ Rd : |x| = 1

}
.

Claim 1 ∫
BR

|Du(x) | d x ≤
∫
BR

|Du(x) | d x. (3.37)

Indeed ( e.g. as in [Cell & Per] )

∇ui(x) =
1

αd

x

|x|

∫
Sd

⟨∇ui(ω |x| ), ω ⟩ dω ; (3.38)

and since

U ′
i (r) =

1

αd

∫
Sd

⟨∇ui(ω r ), ω ⟩ dω,

hence

U ′(r) =
1

αd

∫
Sd

Du(ω r ) ω dω , (3.39)

one gets |∇ui(x) | = |U ′
i ( |x| ) | hence

|Du(x) | = |U ′( |x| ) | ≤ 1

αd

∫
Sd

|Du(ω |x| ) | dω. (3.40)
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Therefore∫
BR

|Du(x) | d x =

∫
BR

|U ′( |x| ) | d x = αd

∫ R

0

|U ′(r) | rd−1 d r ≤

≤
∫ R

0

∫
Sd

|Du(ω r ) | dω rd−1 d r =

∫
BR

|Du(x) | d x,

through a radial − spherical change of variables ( see e.g. [Yeh, th. 26.19,
26.20] ), thus proving (3.37), i.e. claim 1.

Claim 2

Radial symmetrization lowers the value of the integral (3.41)

Iψ (u(·) ) :=
∫
BR

ψ ( |x| , u(x), |Du(x) | ) d x on W
1,1

A (BR, Rm ) (3.42)

i.e., with u(·) obtained from u(·) via (3.35) & (3.36),

Iψ (u(·) ) ≤ Iψ (u(·) ) ∀u(·) ∈ W
1,1

A (BR, Rm ) , (3.43)

for any general lagrangian

ψ : [ 0, R ]×Rm×R → [0,∞] L⊗B⊗B −measurable (3.44)

having ψ (t, ·, ·) convex lsc and ψ (t, S, ·) even. (3.45)

Indeed, we have ( generalizing arguments from [Cell & Per] ), by (3.40),

Iψ (u(·) ) =
∫
BR

ψ ( |x| , u(x), |Du(x) | ) d x

=

∫
BR

ψ

(
|x| , 1

αd

∫
Sd

u (ω |x| ) dω, |Du(x) |
)
d x

≤
∫
BR

ψ

(
|x| , 1

αd

∫
Sd

(u (ω |x| ) , |Du (ω |x| ) | ) dω
)
d x

≤
∫
BR

1

αd

∫
Sd

ψ ( |x| , (u (ω |x| ) , |Du (ω |x| ) | )) dω d x ,
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by (3.45) & Jensen inequality ( valid also for convex lsc functions assuming
the ∞ value, see e.g. [Dac] ); so that, again by radial − spherical changes
of variables and setting

ϕu(x) := ψ ( |x| , u(x), |Du(x) | ) , ϕu(r) :=
1

αd

∫
Sd

ϕu(ω r ) dω , (3.46)

Iψ (u(·) ) ≤
∫
BR

1

αd

∫
Sd

ϕu (ω |x| ) dω d x =:

∫
BR

ϕu ( |x| ) d x

=αd

∫ R

0

ϕu (r) rd−1 d r := αd

∫ R

0

1

αd

∫
Sd

ϕu(ω r) dω rd−1 d r

=

∫ R

0

∫
Sd

ϕu(ω r) dω rd−1 d r =

∫
BR

ϕu(x) d x

:=

∫
BR

ψ ( |x| , u(x), |Du(x) | ) d x =: Iψ (u(·) )

by (3.42) & (3.46); thus proving (3.43), i.e. claim 2.

Naturally, in particular with

ψ ( t, S, r ) := ℓ∗∗ (S, r ρ1(t) ) . ρ2(t) , (3.47)

one gets, from (3.41) & (3.43),

radial symmetrization lowers the value of the integral (3.10), i.e.
(3.48)∫

BR

ℓ∗∗(u(x), |∇ u(x) | ρ1( |x| ) ) . ρ2( |x| ) d x ≤

≤
∫
BR

ℓ∗∗(u(x), |∇ u(x) | ρ1( |x| ) ) . ρ2( |x| ) d x,

(3.49)

with u(·) the radial symmetrization of u(·), as in (3.35) & (3.36).
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Claim 3 The problem of minimizing the general integral (3.42) is equiv-
alent to the problem of minimizing the general integral∫ R

0

ψ ( r, U(r), |U ′(r) | ) rd−1 d r on U0,R
A , (3.50)

U0,R
A :=

U(·) ∈ W
1,1

loc ( ( 0, R ] , Rm ) :

U(R ) = A &

r → rd−1 |U ′(r) | ∈ L
1
( 0, R )

 .

(3.51)

Indeed, de�ning by (3.36) the profile U(·) associated to each given
u(·) ∈ W

1,1

A (BR, Rm ), one gets U(·) ∈ U0,R
A ( as seen above, after (3.40) );

while conversely, de�ning by (3.35) the mean u(·) associated to each given
profile U(·) ∈ U0,R

A , one gets u(·) ∈ W
1,1

A (BR, Rm ) ( again as after (3.40) ).
Therefore :

u(·) ∈ W
1,1

A (BR, Rm ) ⇒ u(·) ∈ W
1,1

A (BR, Rm ) ⇔ U(·) ∈ U0,R
A .
(3.52)

Moreover, by (3.35) & (3.40),∫
BR

ψ ( |x| , u(x), |Du(x) | ) d x

=

∫
BR

ψ( |x| , U( |x| ), |U ′( |x| ) | ) d x

= αd

∫ R

0

ψ( r, U(r), |U ′(r) | ) rd−1 d r,

so that (3.42) & (3.50) are, by (3.43), equivalent. This proves claim 3.

A special case of the equivalence proved in claim 3 is, naturally, again
using ψ(·) as in (3.47), equivalence between the problems of minimizing the
integral (3.10) and of minimizing the integral∫ R

0

ℓ∗∗ (U(r), |U ′(r) | ρ1(r) ) . ρ2(r) r
d−1 d r on U0,R

A . (3.53)
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Our next step consists in changing this integral (3.53) into another equivalent
and still more convenient form.

Claim 4 There exists a bijective change of variable γ : [0, a] → [ 0, R ]
( de�ned in (3.31) ) such that, setting z(t) := U ( γ(t) ) for each U(·) ∈ U0,R

A

as in (3.51), and de�ning ρ(t) as in (3.30), then the problem of minimizing
the integral (3.10) ( or (3.53) ) is equivalent to the problem of minimizing the
associated single integral (3.13).

Indeed, to begin with, since, by (3.8),

ρ2 : [ 0, R ] → [ c0, c∞ ] ⊂ (0,∞) is Borel measurable, (3.54)

0 < c0 τ d−1 ≤ ρ2(τ) τ d−1 ≤ c∞ R d−1 <∞ ∀ τ ∈ ( 0, R ) , (3.55)

in particular

τ 7→ ρ2(τ) τ d−1 is Lebesgue integrable, (3.56)

de�ning the new function

γ−1 : [ 0, R ] → [0, a] , γ−1(r) :=

∫ r

0

ρ2(τ) τ d−1 d τ (3.57)

we get, by [Leo, 3.31] or [Yeh, 13.17 & 13.15],

γ−1(·) is AC & γ−1 ′(r) = ρ2(r) rd−1 ∈
(
0, c∞ R d−1

]
⊂ (0,∞) (3.58)

for a.e. r ∈ [ 0, R ]; γ−1(·) is even Lipschitz, by (3.58). Since γ−1(·) also
increases strictly and has, by (3.33), γ−1 ( [ 0, R ] ) = [ 0, a ], its inverse
function

γ : [0, a] → [ 0, R ] is continuous strictly increasing onto (3.59)

& γ (N ) is a null set for each null set N in [0, a]. (3.60)

In fact, if E0 := γ (N0 ) had positive measure, for some null set N0, then
γ−1 (E0 ) = N0 would be a null set hence γ−1 ′(r) = ρ2(r) rd−1 would,
by [Leo, 3.45], be zero a.e. on E0, absurd ( see (3.58) ). Such absurd
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proves Lusin's condition (3.60); which, together with (3.59), shows that, by
[Yeh, th. 13.8] ( see also [Spa] ),

γ : [0, a] → [ 0, R ] is AC strictly increasing. (3.61)

Moreover, γ(·) is locally Lipschitz on (0, a] : for each ε ∈ ( 0, R ),

γ−1 ′(r) = ρ2(r) rd−1 ∈
[
c0 ε

d−1, c∞ R d−1
]
⊂ (0,∞) a.e. on [ ε,R ],

so that, a.e. on [ γ−1(ε), a ],

γ ′(t) =
1

ρ2 ( γ(t) ) γ(t)d−1
∈
[
R 1−d

c∞
,
ε1−d

c0

]
⊂ (0,∞). (3.62)

De�ning, for each U(·) ∈ U0,R
A ( recall (3.53) & (3.51) ),

z : [0, a] → Rm, z(t) := U ( γ(t) ) , (3.63)

then, since U(·) is locally AC on ( 0, R ] and (3.61) & (3.62) hold true, by
[Leo, 3.50 & 3.51],

z(·) is locally AC &

z ′(t) = U ′ ( γ(t) )
1

ρ2 ( γ(t) ) γ(t)d−1
a.e. on (0, a] ;

(3.64)

hence changing the variable of integration we obtain, by (3.62) & (3.64),
due to (3.61) & [Leo, 3.57],∫ R

0

|U ′(r) | rd−1 d r =

=

∫ a

0

|U ′ ( γ(t) ) |
ρ2 ( γ(t) )

dt =

∫ a

0

| z ′(t) | γ(t)d−1 d t ,

(3.65)

so that, by (3.51) & (3.54) & (3.14), z(·) ∈ Z0,a
A :

U(·) ∈ U0,R
A ⇒ |U ′ ( γ(·) ) | ∈ L

1

(0, a) ⇒ | z ′(·) | γ(·)d−1 ∈ L
1

(0, a).



56 CHAPTER 3. REGULARITY OF SCALAR MINIMIZERS

Conversely, for any z(·) ∈ Z0,a
A , setting U(r) := z ( γ−1(r) ), one similarly

gets, again by [Leo, 3.50 & 3.51], that the �rst integral in (3.65) is finite
and

U(·) ∈ W
1,1

loc ( (0, R], Rm ) , i.e. U(·) ∈ U0,R
A . (3.66)

Moreover, the above change of variables also gives, by (3.63) & (3.64) &
(3.62) & (3.47) & (3.30),∫ R

0

ψ ( r, U(r), |U ′(r) | ) rd−1 d r

=

∫ a

0

ψ
(
γ(t), z(t), | z ′(t) | ρ2(γ(t) ) γ(t)

d−1
)

.
1

ρ2 ( γ(t) )
d t

=

∫ a

0

ℓ∗∗( z(t), | z ′(t) | ρ(t) ) d t,

i.e. the integral (3.13). Thus the proof of claim 4 is complete, since this

integral
∫ R
0
ψ ( r, U(r), |U ′(r) | ) rd−1 d r, with ψ(·) as in (3.47), is ( as

proved above, just before (3.53) ) equivalent to the integral (3.10).

(b) Thus the trivial th. 3.2.1 is proved; and we prove now the regularity
properties for minimizers stated in theorems 3.2.2 & 3.2.3.

Let

zA(·) ∈ Z0,a
A minimize the integral (3.13). (3.67)

Claim 5 Recalling (3.67) & ΣA de�ned in (3.20),

ΣA ∩ zA ( (0, a] ) bounded ⇒ b is well de�ned in (3.28) (3.68)

since

∃ ia := min ℓ∗∗ ( zA ( [0, a ] , 0 ) . (3.69)



3.2. RADIAL MINIMIZING SURFACES AND DEFORMATIONS 57

Indeed, clearly there exists a minimizing sequence (Sk) ⊂
ΣA ∩ zA ( (0, a] ), i.e. ( ℓ∗∗ (Sk, 0 ) ) ↘ ia ; and one may assume that

(Sk ) converges to some Ba ∈ ΣA ∩ zA ( (0, a] ) , (3.70)

since this set is compact. Thus (de�ning, if needed, the value of zA(·) at
t = 0 ) one may also assume that

∃ ba ∈ [0, a] : Ba = zA(ba) & ℓ∗∗ ( zA(ba), 0 ) = ia . (3.71)

Indeed, this is the same as saying that whenever

ℓ∗∗ ( zA(t), 0 ) > inf ℓ∗∗ ( zA ( (0, a] ) , 0 ) ∀ t ∈ (0, a] (3.72)

one may de�ne ( or change ) zA(·) at t = 0 so as to become

ℓ∗∗ ( zA(·), 0 ) lsc on [0, a] & (3.73)

ℓ∗∗ ( zA(0), 0 ) = ia & ba = 0 ; (3.74)

so that (3.69) & (3.71) become true ( even if zA(·) is/becomes discontinuous
at t = 0 ). This proves (3.69) hence (3.68) & claim 5.

Claim 6 Recalling q
A
& q de�ned respectively in (3.21) & (3.22)

q <∞ or ΣA bounded ⇒ b is well de�ned in (3.28), (3.75)

m = 1 & q
A
<∞ ⇒ b is well de�ned in (3.28). (3.76)

Indeed, due to (3.68), the implication (3.75) is obvious in case ΣA is
bounded. Let us prove now (3.75) in case q < ∞ : since, by (3.67) & (3.34)
& claim 4, UA(r) := zA ( γ

−1(r) ) satis�es∫ R

0

ℓ∗∗ (UA(r), |U ′
A(r) | ρ1(r) ) . ρ2(r) r

d−1 d r <∞,

so that

ℓ∗∗ (UA(r), |U ′
A(r) | ρ1(r) ) <∞ for a.e. r ∈ [ 0, R ] ;
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and since, by the de�nition (3.22) of q <∞, this implies

|U ′
A(r) | ≤ q ( c1 + c2 |UA(r) | ) ≤ ( 1 + c2 ) q |UA(r) |

a.e. where |UA(r) | ≥ c1 ,
(3.77)

setting α(r) := log ( |UA(r) | ) we have |α ′(r) | ≤ (1 + c2 ) q where α(r) ≥
log(c1); and since α(r) = α (R ) +

∫ r
R
α ′(τ) d τ , then certainly α(r) ≤

log ( 1 + c1 )+ log ( 1 + |A | )+ (1+ c2 ) q R, so that UA ( ( 0, R ] ) = zA ( (0, a] )
must be bounded and (3.75) follows from (3.68).

Such arguments also prove (3.76), since

m = 1 ⇒ zA ( (0, a] ) ⊂ ΣA ( see (3.20) & (3.21) & (3.22) ). (3.78)

In fact, the open set

O := { t ∈ (0, a) : zA(t) ∈ R\ΣA } is empty, (3.79)

because : if (t1, t2) is one of its maximal open intervals, and one de�nes a
new function z̃A(·) ∈ Z0,a

A by

z̃A(t) :=


zA(t) for t /∈ [t1, t2]

A for t ∈ [t1, t2],

then ∫ t2

t1

ℓ∗∗ ( z̃A(t), | z̃ ′
A(t) | ρ(t) ) d t =

∫ t2

t1

ℓ∗∗ (A, 0 ) d t <

<

∫ t2

t1

ℓ∗∗ ( zA(t), 0 ) d t ≤
∫ t2

t1

ℓ∗∗ ( zA(t), | z ′
A(t) | ρ(t) ) d t,

in contradiction with (3.67). Such contradiction proves (3.79), hence (3.78)
& claim 6.

Claim 7 One may assume that

b ≥ 0 well de�ned in (3.28) ⇒ zA(·) ≡ B := zA(b) on [0, b] (3.80)
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and
ℓ∗∗ (B, 0 ) < ℓ∗∗ ( zA(·), 0 ) on (b, a] . (3.81)

Indeed, one may set

z̃A(t) :=


B := zA(b) for t ∈ [0, b]

zA(t) for t ∈ [b, a],
(3.82)

obtaining, by (3.67) & (3.14), z̃A(·) ∈ Z0,a
A and ( by (3.7) & (3.28) & (3.29) )∫ b

0

ℓ∗∗ ( z̃A(t), | z̃ ′
A(t) | ρ(t) ) d t =

∫ b

0

ℓ∗∗ (B, 0 ) d t ≤

≤
∫ b

0

ℓ∗∗ ( zA(t), 0 ) d t <

∫ b

0

ℓ∗∗ ( zA(t), | z ′
A(t) | ρ(t) ) d t

( thus contradicting (3.67) ) unless

ℓ∗∗ ( zA(·), | z ′
A(·) | ρ(·) ) ≡ ℓ∗∗ (B, 0 ) on [0, b] . (3.83)

Thus (3.83) holds true and z̃A(·) also minimizes the integral (3.13). More-
over, z̃A(·) satis�es (3.80).

On the other hand, (3.28)⇒ (3.81); so that (3.80) & (3.81) & claim 7 are
proved.

Claim 8

m = 1 & ∃ min ℓ∗∗ (R, 0 ) ⇒ b is well de�ned in (3.28). (3.84)

Indeed, setting, by (3.16),

Σmin := { s ∈ R : ℓ∗∗ (s, 0) = min ℓ∗∗ (R, 0 ) } (3.85)

and
C := the point of Σmin closer to A, (3.86)
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one may assume

zA ( (0, a] ) ⊂ co {C,A } bounded. (3.87)

In fact, unless ℓ∗∗ (C, 0 ) = ℓ∗∗ (A, 0 ) ( in which case b = a ), since ℓ∗∗(·, 0)
increases strictly near A & outside of co {C,A }, as the distance from C
increases, then, by (3.78), zA(t) cannot go out of co {C,A } through A;
while, by the same reasoning used to prove (3.80), going out of co {C,A }
through C brings no advantage to zA(t), since ℓ

∗∗(·, 0), hence ℓ∗∗(·, ·), will
not decrease further ( see (3.80) ).

Thus we may assume (3.87); hence (3.84) follows from (3.68).

Claim 9 One may assume

(3.16) ⇒ b is well de�ned in (3.28) ⇒ zA ( [0, a] ) ⊂ co {B,A } . (3.88)

Indeed, by (3.84), b is well de�ned in (3.28); and, by (3.80) & (3.87) &
(3.28) & (3.29), zA(·) will not go out of co {B,A }.

Claim 10

(3.16) ⇒ zA(·) is monotone and in W
1,1

( [0, a] ), (3.89)

ℓ∗∗ ( zA(·), 0 ) is minimal on [0, b] & increases on [b, a] . (3.90)

Let us prove this in case, say, B < A, since the case B = A is obvious.
Whenever one �nds amaximal interval [ s−, s+ ] for which B ≤ s− ≤ s+ ≤ A
( recall (3.88) ) and

T (s) := { t ∈ [b, a] : wA(t) = s } has more than one point ∀ s ∈
[
s−, s+

]
(3.91)

then, setting

t− := min T
(
s−

)
& t+ := max T

(
s−

)
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and

z̃A(t) :=


zA(t) on [ 0, t− ]

s− on [ t−, t+ ]

zA(t) on [ t+, a ] ,

one gets z̃A(·) ∈ Z0,a
A and ( unless z̃A(·) = zA(·) )∫ t+

t−
ℓ∗∗( zA(t), | z ′

A(t) | ρ(t) ) d t ≥
∫ t+

t−
ℓ∗∗( zA(t), 0) d t >

>

∫ t+

t−
ℓ∗∗(s−, 0) d t =

∫ t+

t−
ℓ∗∗( z̃A(t), | z̃ ′

A(t) | ρ(t) ) d t ,

since ℓ∗∗(·, 0) ( being convex ) increases strictly on [B,A ] .
But since this inequality > contradicts (3.67), one must have z̃A(·) =

zA(·), i.e.

(3.91) ⇒ zA(·) ≡ s− = s+ on
[
t−, t+

]
; (3.92)

which ( applied to each such interval [ s−, s+ ] ) means that zA(·) must satisfy
the monotonicity property

zA(t) = min zA ( [t, a] ) ∀ t ∈ [0, a] , (3.93)

in particular, by (3.72) & (3.74), we will have

zA(·) monotone and in C0 ( [0, a] ); (3.94)

and since the Lusin property (3.60) with γ(·) replaced by zA(·) holds true
(by (3.14) ), also (3.89) must hold, due to [Yeh, th. 13.8].

As to (3.90), it follows from (3.28) & (3.89) & (3.80) & (3.81) & (3.7).
This completes the proof of (3.89) & (3.90) & claim 10 & (3.17) & (3.18)
& (3.19), since uA(x) = UA( |x| ) = zA ( γ

−1 ( |x| ) ) & γ−1(·) is Lipschitz
increasing : by (3.64) & (3.62) & [Leo, 3.57],∫ a

0

| z ′
A(t) | d t =

∫ a

0

|U ′
A ( γ(t) ) | γ ′(t) d t =

∫ R

0

|U ′
A(r) | d r <∞. (3.95)
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Claim 11

q <∞ in (3.22) ⇒ UA(·) is Lipschitz and, a.e. on [ 0, R ] ,

|U ′
A(r) | ≤ ( 1 + c1 ) ( 1 + c2 ) ( 1 + |A | ) q exp [ ( 1 + c2 ) q R ] .

(3.96)

Indeed, by (3.67) & claim 4, UA(·) := zA ( γ
−1(·) ) ∈ U0,R

A ( recall (3.51) );
while, on the other hand, by the computations above performed ( after (3.77) )
we have : |U ′

A(r) | ≤ ( 1 + c2 ) q c1 where |UA(r) | ≤ c1; and, elsewhere,
|U ′

A(r) | ≤ (1 + c2 ) q |UA (r) | hence (3.96). This proves (3.24) & (3.25),
since zA(t) = UA ( γ(t) ) and (3.61) & (3.62) & (3.95) hold true.

Similarly, (3.26) holds true, due to (3.90); and also th. 3.2.3 is proved.
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4.1 Introduction

In last chapter we have proved existence of a radial ( or radially symmetric )
minimizer u0A(x) = U0

A ( |x| ) for the convex vectorial multiple integral∫
BR

L∗∗ (u(x), |Du(x) | ρ1 ( |x| ) ) . ρ2 ( |x| ) d x onW
1,1

A (BR ,Rm) ,

(4.1)
where the lagrangian

L∗∗ : Rm×R → [0,∞] is convex lsc with L∗∗ (S, · ) even (4.2)

and ρ1& ρ2 : [ 0, R ] → [ c0, c∞ ] ⊂ (0,∞) are Borel measurable , (4.3)

e.g. ρ1(·) ≡ 1 ≡ ρ2(·); while the class of functions in competition is the
usual Sobolev space

W
1,1

A := A+W
1,1

0 (BR, Rm ) (4.4)

of those u(·) taking the constant value A ∈ Rm along the boundary ∂ BR

of the ball BR :=
{
x ∈ Rd : |x| < R

}
; and |Du(x) | is the euclidian norm

of the m×d− gradient matrix.
It is quite helpful, e.g. for engineering design, to guarantee nice

regularity properties which these minimizers must necessarily satisfy,
besides belonging to W

1,1

A and being radial; namely to grant some spe-
ci�c geometrical behaviour of the optimal radial �profile� curve UA :
[ 0, R ] → Rm; but even reinforcing superlinearity into e.g. p − growth
with p = 7/6, generic radial functions u(x) = U ( |x| ) in W

1,p

A (BR, Rm )

are Hölder continuous ( essentially in C
0,1/7

loc (BR \ {0}, Rm ) ) but may turn
wildly discontinuous as |x| → 0, to the point of mapping arbitrarily small
balls B ( 0, ε ) onto the whole of Rm! A simple and striking example is

u(x) := |x|−1/4
∣∣∣ sin( |x|−1/4

) ∣∣∣ ( cos
(
|x|−1/4

)
, sin

(
|x|−1/4

))
, (4.5)

in which U ( ( 0, 1/i ) ) = R2 ∀ i ∈ N . (Clearly |U(r) | ∼ r−1/4 &
|U ′(r) |p rd−1 ∼ r−3/4 rd−2 both belong to L

1
( 0, R ), while |U ′(r) | ∼ r−3/2

does not. )

In contrast with (4.5), our minimizer uA(·) ( in both cases : m = 1,
i.e. scalar uA(·), in th. 3.2.2; and m > 1, i.e. vectorial uA(·), in th. 4.3.1
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below ) is uniformly continuous and has tame profile UA(·) ( namely : with
increasing level L∗∗(UA(·), 0 ) and each coordinate UA i(·)mapping null sets
to null sets ).

We need no growth hypotheses on L∗∗ (S, · ), su�cing the knowledge
of existence of minimum for the integral (4.1); which is automatic for
superlinear L∗∗ (·, ·) :

inf L∗∗ (Rm, λ )

λ
→ ∞ as λ→ ∞. (4.6)

We freely allow L∗∗ (S, v ) = ∞, so that implicity included is the possibil-
ity of imposing state and gradient pointwise constraints at will, e.g. under
the form of partial differential equations or inclusions ( in explicit or im-
plicit form ), so that e.g. optimal control problems are also ( theoretically )
included in our optimization problem for the integral (4.1). Provided, of
course, their variational reformulation has the form (4.1).

Recall that the general hypothesis (4.2) is anyway needed, in order to
apply Jensen inequality so as to reach radial minimizers; while the generic
hypothesis

∃ minL∗∗ (Rm, 0 ) (4.7)

holds true not only whenever L∗∗ (·, 0) has bounded sublevel sets

ΣA := {S ∈ Rm : L∗∗ (S, 0 ) ≤ L∗∗ (A, 0 ) } , (4.8)

but also in case its set of minimizers is unbounded, e.g. an half − space.

Since in the scalar m = 1 case, or in optimal control problems with
allowed gradients constrained to grow at most linearly with states, the
possibility of wild behaviour of minimizers ( as displayed in example (4.5) )
is excluded ( see theorems 3.2.2 & 3.2.3 respectively ), our aim here is to
expand the scope of applicability of such nice regularity of minimizers
into the vectorial m > 1 case. Indeed, while in optimal control it may
be reasonable to impose q < ∞ in th. 3.2.3 when m > 1, for calculus
of variations problems this seems rather arti�cial. On the other hand, to
impose q < ∞, instead of qA < ∞, in the vector case, seemed to make not
much sense, intuitively.

We have succeeded in proving such extension into the vectorial m > 1
case by adding only three mild extra hypotheses. First, we ask that

the subdifferential of L∗∗(·, 0) at A be nonempty. (4.9)
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Second, and de�ning

∂ 0 L∗∗ (S, 0 ) :=


the minimal norm element of the

subdi�erential of L∗∗(·, 0) at S,
(4.10)

we ask that ∃µL > 0 for which, at any S ∈ Rm having ∂ L∗∗ (S, 0 ) ̸= ∅,

∂ 0 L∗∗ (S, 0 ) ̸= 0 ⇒
∣∣ ∂ 0 L∗∗ (S, 0 )

∣∣ ≥ µL > 0. (4.11)

(While (4.9) holds quite generally true in real-life applications, we feel, clearly
the e�ect of (4.11) is to reinforce (4.7), due to (4.2), by imposing a mild
geometrical restriction on approaching min points : the slope of L∗∗(·, 0)
cannot approach smoothly zero, on the contrary it must jump nonsmoothly
to zero. )

Third, an hypothesis which (by being trivially true in the scalar or radial
case ) was hidden : for any S&S ′ in Rm,

inf L∗∗ (Rm, 0 ) < L∗∗ (S, 0 ) = L∗∗ (S ′, 0 ) ≤ L∗∗ (A, 0 ) ⇒

⇒ |∂ 0 L∗∗ (S, 0)| = |∂ 0 L∗∗ (S ′, 0)| & L∗∗ (S, v) = L∗∗ (S ′, v) ∀ v.
(4.12)

De�nition 4.1.1. Under (4.2) & (4.10), we call

L∗∗(·, ·) quasi− scalar whenever (4.12) is satis�ed. (4.13)

While the last equality in (4.12) trivially holds true whenever L∗∗ (S, v ) =
ℓ∗∗ (L∗∗ (S, 0 ) , v ) for some ℓ∗∗(· , ·) having ℓ∗∗ ( p, 0 ) = p ∀ p , on the con-
trary the preceding one imposes a more serious intrinsic geometric constraint
on graph L∗∗ ( ·, 0 ), namely on its level sets (which seemingly should be C1,
as happens in case L∗∗ (S, 0 ) = distC (S ) ).

Reciprocally, for any such quasi − scalar L∗∗(· , ·) one may �nd a
corresponding ℓ∗∗(· , ·) as above, namely satisfying L∗∗ (S, v ) =
ℓ∗∗ (L∗∗ (S, 0 ) , v ) for any v, and for any S having inf L∗∗ (Rm, 0 ) <
L∗∗ (S, 0 ) ≤ L∗∗ (A, 0 ). Indeed, just set ℓ∗∗ (p, v) := L∗∗ (S, v ), at any
p ∈ ( inf L∗∗ (Rm, 0 ) , L∗∗ (A, 0 ) ], picking any point S on the level set
L∗∗ (·, 0)−1 (p).
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Notice that the property expressed in (4.12), of graph L∗∗ ( ·, 0 ) having
constant slope along each level set, is satis�ed e.g. in case

L∗∗ (S, 0 ) := ( signed ) distance from S to a set C;

in particular whenever L∗∗ (S, 0 ) = |S | or L∗∗ ( ·, 0 ) is affine; or when-
ever m = 1 ( using L∗∗ (s, 0) = s and the set (−∞, 0) ). Another example :
given any open convex set Ω, the cube of the ( signed ) distance to ∂ Ω.
(The signed distance to ∂ Ω becomes negative inside Ω, equal to minus the
distance to its boundary. )

Besides the nonautonomous vectorial multiple integral (4.1), we
also deal here with the problems of minimizing three other auxiliary
nonautonomous scalar and vectorial single integrals, for which we prove
both existence of minimizers (which was not known before, we feel ) and
regularity as well.
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4.2 Statement of the integrals to be minimized

and their spaces of functions in competition

Starting from a given

u0A(·) minimizer of the integral (4.1), (4.14)

we construct below, under the basic hypotheses (4.2) & (4.3) & (4.7) &
(4.9) & (4.11) & (4.12), and recalling the notation W

1,1

A in (4.4), a radial
minimizer uA(·) for the vectorial convex multiple integral∫

BR

L∗∗ (u(x), |Du(x) | ρ1 ( |x| ) ) . ρ2 ( |x| ) d x on W
1,1

A↗ , (4.15)

W
1,1

A↗ :=

u(·) ∈ W
1,1

A ∩ C0
(
BR, Rm

)
:

∃U(·) ∈ U0,R
A↗ with

u(x) = U ( |x| ) ∀ x

 , (4.16)

U0,R
A↗ :=

U(·) ∈ W
1,1

( [ 0, R ] , Rm ) :
L∗∗ (U(·), 0 ) increases

& U(R ) = A

 . (4.17)

However, besides this main pair of vectorial convex multiple integrals
(4.1) & (4.15), we also consider below the problems ofminimizing the follow-
ing three pairs of auxiliary single integrals ( the second in each pair being,
again, the same integral but de�ned over a more regular class of functions
in competition ). First such pair :

αd

∫ a

0

L∗∗( z(t), | z ′(t) | ρ(t) ) d t on Z0,a
A (4.18)

αd

∫ a

0

L∗∗( z(t), | z ′(t) | ρ(t) ) d t on Z0,a
A↗ ; (4.19)

where αd is the Hausdorff measure in dimension d− 1 of the unit sphere
Sd :=

{
x ∈ Rd : |x| = 1

}
,

a :=

∫ R

0

ρ2(r) rd−1 d r & ρ(t) := ρ1 ( γ(t) ) ρ2 ( γ(t) ) γ(t)
d−1, (4.20)
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γ : [0, a] → [ 0, R ] , r = γ(t), being the inverse function of (4.21)

γ−1(·) : r 7→ t = γ−1(r) :=

∫ r

0

ρ2(α) αd−1 dα ; (4.22)

and where

Z0,a
A :=

 z(·) ∈ W
1,1

loc ( (0, a], Rm ) :
| z ′(·) | γ(·)d−1 ∈ L

1
(0, a)

& z(a) = A

 , (4.23)

Z0,a
A↗ :=

 z(·) ∈ W
1,1

( [0, a], Rm ) :
L∗∗ ( z(·), 0 ) increases

& z(a) = A

 . (4.24)

Second such pair of auxiliary single integrals :

αd

∫ a

0

ℓ∗∗A (w(t), gA (w(t) ) |w ′(t) | ρ(t) ) d t on W0,a
A (4.25)

αd

∫ a

0

ℓ∗∗A (w(t), gA (w(t) ) |w ′(t) | ρ(t) ) d t on W0,a
A↗ , (4.26)

with adequately de�ned gA(·) and ℓ∗∗A (·, ·) (which the reader may already
peep-in at (4.82) & (4.87) ) and

W0,a
A :=

w(·) ∈ W
1,1

loc ( (0, a] ) :
∃ z(·) ∈ Z0,a

A : w(·) = L∗∗ ( z(·), 0 )

& w ′(·) γ(·)d−1 ∈ L
1
(0, a)

 ,

(4.27)

W0,a
A↗ :=

w(·) ∈ W
1,1

( [0, a] ) :
w(·) increases

& w(a) = L∗∗ (A, 0 )

 . (4.28)

Third such pair of auxiliary single integrals :

αd

∫ R

0

L∗∗ (U(r), |U ′(r) | ρ1(r) ) . ρ2(r) r
d−1 d r on U0,R

A (4.29)

αd

∫ R

0

L∗∗ (U(r), |U ′(r) | ρ1(r) ) . ρ2(r) r
d−1 d r on U0,R

A↗ ; (4.30)
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where U0,R
A↗ has been de�ned in (4.17), while

U0,R
A :=

U(·) ∈ W
1,1

loc ( ( 0, R ] , Rm ) :
r → |U ′(r) | rd−1 ∈ L

1
(0, R)

& U(R ) = A

 .

(4.31)
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4.3 Radially monotone minimizing deforma-

tions for vectorial quasi-scalar convex in-

tegrals

Here is the existence and regularity result of this section :

Theorem 4.3.1. Assume (4.2) & (4.3) & (4.7) & (4.9) & (4.11) & (4.12)
together with

either (4.6) or ∃ minimum for (4.1) or

(4.18) or (4.29)
(4.32)

or else ∃ minimum for (4.25). (4.33)

Then

∃ radial uA(x) = UA ( |x| ) minimizing both (4.1) & (4.15) (4.34)

& ∃ UA(r) minimizing both (4.29) & (4.30) (4.35)

& ∃ zA(t) minimizing both (4.18) & (4.19) (4.36)

& ∃ wA(t) minimizing both (4.25) & (4.26). (4.37)

Moreover : the minimum value for all these integrals is the same; the
following equivalences hold true

(4.32) ⇔ (4.33) ⇔ (4.34) ⇔ (4.35) ⇔ (4.36) ⇔ (4.37);
(4.38)

and the minimizers in (4.34) to (4.37) are related by the equalities

uA(x) = UA ( |x| ) = zA
(
γ−1 ( |x| )

)
& wA(t) = L∗∗ ( zA(t), 0 ) (4.39)

zA(t) = QA (wA(t) ) & UA(r) = QA

(
wA

(
γ−1(r)

) )
(4.40)

(with γ−1(·) & QA (·) de�ned in (4.22) & (4.86) ); and ( recall (3.21), with
L∗∗ instead of ℓ∗∗, & (4.8) )

m ≥ 1 & qA <∞ ⇒ UA(·) & uA(·) are Lipschitz. (4.41)
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Proof. Under (4.2) & (4.3) th. 3.2.1 implies the following :

Proposition 4.3.1.

∃ a radial minimizer u0A(x) = U0
A ( |x| ) for (4.1) (4.42)

if and only if (4.43)

the integral (4.1) has minimum (4.44)

if and only if (4.45)

∃ a minimizer U0
A(r) for (4.29) (4.46)

if and only if (4.47)

∃ a minimizer z0A(t) for (4.18). (4.48)

Moreover the minimum value for these integrals is the same and

U0
A(·) = z0A

(
γ−1(·)

)
with γ−1(·) Lipschitz increasing (4.49)

( see (4.22) & (4.3) ), in the sense that : by picking a minimizer U0
A(·) for

(4.29) ( resp. z0A(·) for (4.18) ) and applying the formula (4.49) one gets a
minimizer z0A(·) for (4.18) ( resp. U0

A(·) for (4.29) ).

Thus, by (4.43) & (4.45) & (4.47), all of the implications

(4.42) ⇔ (4.32) ⇔ (4.46) ⇔ (4.48) ⇒ (4.36) (4.50)

are proved, except for (4.48) ⇒ (4.36); the proof of which will be our �rst
and crucial step, accomplished in (4.115), after due preliminaries. As to our
second step, it will ( in (4.120) & (4.132) & (4.137) & (4.143) respectively )
consist in establishing the further implications

(4.36) ⇔ (4.37) (4.51)

(4.33) ⇒ (4.37) (4.52)

(4.36) ⇒ (4.35) ⇒ (4.34) ⇒ (4.32) (4.53)

hence the equivalences in (4.38), thus proving th. 4.3.1.
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First step : So, to start such �rst and crucial step, take (4.48), namely a

z0A(·) ∈ Z0,a
A minimizer of (4.18), (4.54)

de�ne its �lsc optimal level�

w0
A(0) := inf L∗∗ ( z0A ( (0, a] ) , 0 ) &

w0
A(t) := L∗∗ ( z0A (t) , 0 ) for t ∈ (0, a]

(4.55)

and its �increasing continuous optimal level�

wA(t) := min w0
A ( [t, a] ) ∀ t ∈ [0, a]. (4.56)

Then clearly
0 ≤ wA(·) ≤ w0

A(·) ∈ W 1,1
loc ( (0, a] ) , (4.57)

by (4.55) & (4.56) & (4.23) & (4.2), since L∗∗(·, 0) is convex hence locally
Lipschitz there; while since wA(·) ∈ C0 ( [0, a] ) & wA(·) increases & also
wA(·) ∈ W 1,1

loc ( (0, a] ) ( due to remaining constant where it differs from
w0
A(·) ), by [Yeh, th. 13.8] we have :

wA(·) ∈ W 1,1 ( [0, a] ) & wA(·) increases ; (4.58)

and setting

pmin
A := wA(0) & pmax

A := wA(a) (4.59)

we have

0 ≤ wA(0) = pmin
A = min wA ( [0, a] ) =

= min w0
A ( [0, a] ) = inf L∗∗ ( z0A ( (0, a] ) , 0 ) ≤ wA(·) &

(4.60)

wA(·) ≤ wA(a) = pmax
A = L∗∗ (A, 0 ) = max wA ( [0, a] ) . (4.61)

De�ne

b := max { t ∈ [0, a] : wA(t) = wA(0) } ( b ∈ [0, a] ) (4.62)

a′ := min { t ∈ [0, a] : wA(t) = wA(a) } ( b < a′ ∈ [0, a] ). (4.63)
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Indeed, b < a′ because, excluding the trivial case pmin
A = pmax

A , we assume, in
this proof,

pmin
A < pmax

A ; (4.64)

and clearly

wA(·) ≡ pmin
A on [0, b] & wA ( ( b, a

′ ) ) =
(
pmin
A , pmax

A

)
&

wA(·) ≡ pmax
A on [ a′, a ] .

(4.65)

Set
Σ<
A :=

{
S ∈ Rm : pmin

A ≤ L∗∗ (S, 0 ) < pmax
A

}
(4.66)

and, using the notation (4.10), de�ne the vector orthogonal to the level sets
and pointing downwards :

VA : Σ<
A → Rm, VA (S ) := − ∂ 0 L∗∗ (S, 0 ) . (4.67)

Since we are assuming (4.9),

∂ 0 L∗∗ (A, 0 ) exists and is ̸= 0 ( see (4.10) & (4.64) & (4.61) ).
(4.68)

Then, by (4.2) & (4.68) & [Cell & Vor] , there exists a unique solution, in
W 1,2 ( (0,∞), Rm ), to the ordinary differential equation

σ ′
A(τ) = VA (σA(τ) ) for a.e. τ ∈

[
0, τ 0A

]
& σA(0) = A, (4.69)

with
τ 0A := min

{
τ ∈ (0,∞) : L∗∗ ( σA(τ), 0 ) = pmin

A

}
; (4.70)

so that, setting

pA :
[
0, τ 0A

]
→

[
pmin
A , pmax

A

]
, pA(τ) := L∗∗ (σA(τ), 0 ) , (4.71)

we get

− p ′
A(τ) =

∣∣ ∂ 0 L∗∗ (σA(τ), 0 )
∣∣2 = |VA ( σA(τ) ) |2 > 0 a.e. on

[
0, τ 0A

]
(4.72)

pA(·) is decreasing convex ( since p ′
A(·) increases ) (4.73)

pA(0) = pmax
A & pA

(
τ 0A

)
= pmin

A (4.74)

L∗∗ ( σA ( τ 0A ) , 0 ) = pmin
A = wA(0) = w0

A(0) ( see also (4.60) ). (4.75)
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In particular, by (4.69) & (4.72), |σ ′
A(·) | =|VA ( σA(·) ) | = | p ′

A(·) |
1/2

decreases, hence

|σ ′
A(·) | ≤ | p ′

A(0) |
1/2

=
∣∣ ∂ 0 L∗∗ (A, 0 )

∣∣ <∞ & σA(·) is Lipschitz.
(4.76)

On the other hand, to check that

τ 0A(·) ∈ (0,∞) is well-de�ned by (4.70), (4.77)

recall (4.64) and notice that since, by (4.72) & (4.11), p ′
A(τ) ≤ −µ2

L on
( 0, τ 0A ), we would have pA(τ) ≤ 0 ≤ pmin

A whenever τ ≥ pmax
A µ−2

L <∞.
Clearly pA(·) has, due to (4.77) & (4.71) & (4.72), continuous inverse

τA :
[
pmin
A , pmax

A

]
⊂ [0,∞) → [ 0, τ 0A ] ⊂ [0,∞),

τ = τA(p) ⇔ p = pA(τ),
(4.78)

− 1

µ2
L

≤ τ ′
A(p) =

1

p ′
A ( τA(p) )

=
−1

| ∂ 0 L∗∗ (σA ( τA(p) ) , 0 ) |2
< 0 (4.79)

τ ′
A(·) increases & τA(·) is Lipschitz convex decreasing (4.80)

τA
(
pmin
A

)
= τ 0A & τA ( p

max
A ) = 0. (4.81)

We are �nally in position to de�ne the gA(·) appearing in (4.25) & (4.26) :

gA :
[
pmin
A , pmax

A

]
→ ( 0,∞ ) , gA(p) :=

1

| ∂ 0 L∗∗ (σA ( τA(p) ) , 0 ) |
(4.82)

for p > pmin
A , with gA

(
pmin
A

)
:= 1/µL , so that

gA(p)
2 = − τ ′

A(p) & gA(·) decreases &

0 <
1

| ∂ 0 L∗∗ (A, 0 ) |
≤ gA(p) = | τ ′

A(p) |
1/2 ≤ 1

µL
<∞ ( due to (4.11) )

(4.83)

& gA(·) is bounded away from 0 & ∞ (4.84)

& τA(·) and pA(·) are both Lipschitz ; (4.85)
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to de�ne the other functions also needed for (4.25) & (4.26) ( see (4.69) &
(4.78) ),

QA :
[
pmin
A , pmax

A

]
→ Rm, QA(p) := σA ( τA(p) ) (4.86)

ℓ∗∗A :
[
pmin
A , pmax

A

]
×R → [0,∞], ℓ∗∗A (p, v) := L∗∗ (QA(p), v ) ; (4.87)

and to de�ne our new minimizer of (4.18) ( recall (4.54) & see (4.116) ) by :

zA(t) := QA (wA(t) ) ( using (4.56) & (4.86) ). (4.88)

Clearly

QA (·) is Lipschitz & zA (·) ∈ W 1,1 ( [0, a], Rm ) , (4.89)

by (4.86) & (4.76) & (4.85) & (4.88) & (4.58); while by (4.88) & (4.86) &
(4.71) & (4.78),

L∗∗ ( zA(t), 0 ) = L∗∗ ( σA ( τA (wA(t) ) ) , 0 ) = pA ( τA (wA(t) ) ) = wA(t)
(4.90)

so that, by (4.90) & (4.57) & (4.55) & (4.2),

L∗∗ ( zA(·), 0 ) = wA(·) ≤ w0
A(·) = L∗∗ ( z0A(·), 0 ) ≤

≤ L∗∗ ( z0A(·), | z0 ′A (·) | ρ(·) ) on (0, a ];
(4.91)

and, by (4.88) & (4.86) & (4.69) & (4.79) & (4.82) & (4.67),

z ′
A(t) = − VA ( zA(t) )

|VA ( zA(t) ) |
gA (wA(t) ) w

′
A(t) a.e. on ( b, a′ ) (4.92)

hence

| z ′
A(t) | = gA (wA(t) ) w

′
A(t) a.e. on ( b, a′ ) . (4.93)

Moreover, by (4.87) & (4.86) & (4.71) & (4.78), for any p ∈
[
pmin
A , pmax

A

]
,

ℓ∗∗A (p, 0) := L∗∗ (QA(p), 0 ) = pA ( τA(p) ) = p. (4.94)

By (4.57) & (4.58) & (4.54) & (4.23) & (4.89) & (4.62) & (4.63) one may
de�ne the set

T+ :=
{
t ∈ ( b, a′ ) : ∃w ′

A(t) > 0 & ∃w0 ′
A (t) & ∃ z0 ′A (t) & ∃ z ′

A(t)
}
, (4.95)
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whose crucial properties are condensed in the next

Claim 1 Extending

wA(t) = w0
A(t) := pmin

A for t < 0 &

wA(t) = w0
A(t) := pmax

A for t > a,
(4.96)

then :

L∗∗ ( z0A(t), 0 ) = w0
A(t) = wA(t) = L∗∗ ( zA(t), 0 ) ∀ t ∈ T+ (4.97)

w0
A(t) < w0

A(t+ h) ∀ t ∈ T+ ∀h > 0 (4.98)

wA(t) < wA(t+ h) ∀ t ∈ T+ ∀h > 0 (4.99)

∀ t ∈ T+ ∃ (hk ) ↘ 0 : wA(t+ hk) = w0
A(t+ hk) (4.100)

0 < w ′
A(t) = w0 ′

A (t) =
| z ′
A(t) |

gA (wA(t) )
∀ t ∈ T+ (4.101)

∀ t ∈ T+ ∃ δ > 0 : w0
A(t− h) < w0

A(t) ∀h ∈ (0, δ) (4.102)

wA(t− h) < wA(t) ∀ t ∈ T+ ∀h > 0 (4.103)

t ∈ T+ ⇒ 0 < w ′
A(t) = w0 ′

A (t) = | z ′
A(t) | / gA (wA(t) ) ≤

≤ | z0 ′A (t) | . | ∂ 0 L∗∗ ( zA(t), 0 ) | ≤ | z0 ′A (t) | . | ∂ 0 L∗∗ (A, 0 ) |
(4.104)

0 < | z ′
A(t) | ≤

∣∣ z0 ′A (t)
∣∣ ∀ t ∈ T+ (4.105)

L∗∗ ( zA(t), | z ′
A(t) | ρ(t) ) ≤ L∗∗ ( z0A(t), ∣∣ z0 ′A (t)

∣∣ ρ(t)
)

∀ t ∈ T+ (4.106)

0 = w ′
A(t) = | z ′

A(t) | ≤
∣∣ z0 ′

A (t)
∣∣ a.e. on [ 0, a ] \ T+ (4.107)

L∗∗ ( z0A(t), 0 ) = w0
A(t) = wA(t) = L∗∗ ( zA(t), 0 ) ∀ t ∈ [0, a] (4.108)

L∗∗ ( z0A(t), | z0 ′A (t) | ρ(t) ) =

= L∗∗ ( zA(t), | z ′
A(t) | ρ(t) ) a.e. on [ 0, a ]

(4.109)

L∗∗ ( z0A(t), ∣∣ z0 ′A (t)
∣∣ ρ(t)

)
= L∗∗ ( z0A(t), 0 ) a.e. on [ 0, a ] \ T+ (4.110)

L∗∗ (S, v ) > L∗∗ (S, 0 ) ∀S ∈ Σ<
A ∀ v > 0 ⇒

⇒ | z0 ′A (·) | = 0 a.e. on [ 0, a ] \ T+ .
(4.111)
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Indeed, by (4.91), the denial of (4.97), i.e. w0
A(t) > wA(t), would imply,

by (4.56) & (4.57),

∃ δ > 0 : wA(t) = wA(t+h) = wA(t+δ) = w0
A(t+δ) ∀h ∈ (0, δ) (4.112)

hence t ̸∈ T+, by (4.95), thus proving (4.97), by (4.91). On the other hand,
denying (4.98) we would get, by (4.97) & (4.57) & (4.91),

∃ δ > 0 : wA(t) = w0
A(t) ≥ w0

A(t+ δ) ≥ wA(t+ δ) ≥ wA(t)

so that these coincide and again (4.112) holds and t ̸∈ T+ , which proves
(4.98); while (4.99) is still easier to prove. Denying (4.100) would yield, by
(4.57),

∃ δ1 > 0 : wA(t+ h) < w0
A(t+ h) ∀h ∈ (0, δ1)

so that, by (4.56), ∃ δ ≥ δ1 > 0 for which again (4.112) holds & t ̸∈ T+ . Thus
(4.100) is proved. Moreover, since, for t ∈ T+ , by (4.95) & (4.97) & (4.100),

0 < w ′
A(t) = lim

wA ( t+ hk )− wA(t)

hk
= lim

w0
A ( t+ hk )− w0

A(t)

hk
= w0 ′

A (t);

and (4.101) is proved, by (4.93). On the other hand, denial of (4.102) would
imply

∃ (hk ) ↘ 0 : w0
A(t)− w0

A ( t− hk ) ≤ 0

so that, by (4.101), we would reach an absurd proving (4.102) :

0 < w ′
A(t) = w0 ′

A (t) = lim
w0
A(t)− w0

A ( t− hk )

hk
≤ 0.

As to (4.103), it is still easier to prove.
Consider now the inequality associated to the fact of ∂ 0 L∗∗ ( z0A(t), 0 )

being in the subdifferential of L∗∗(·, 0) at z0A(t) ( recall (4.10) ), namely

L∗∗ ( z0A ( t− h ) , 0
)
≥

≥ L∗∗ ( z0A(t), 0 )+ ⟨
∂ 0 L∗∗ ( z0A(t), 0 ) , z0A ( t− h )− z0A(t)

⟩
;

together with (4.102) & (4.55), it yields some δ > 0 for which

0 < w0
A(t)− w0

A ( t− h ) ≤
⟨
∂ 0 L∗∗ ( z0A(t), 0 ) , z0A(t)− z0A ( t− h )

⟩
≤
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≤
∣∣ ∂ 0 L∗∗ ( z0A(t), 0 ) ∣∣ . ∣∣ z0A(t)− z0A ( t− h )

∣∣ ∀h ∈ (0, δ)

so that (4.95) & (4.101) implies (4.104). Moreover, by (4.97) & (4.12) &
(4.82) & (4.88),

L∗∗ ( zA(·), | z ′
A(·) | ρ(·) ) = L∗∗ ( z0A(·), | z ′

A(·) | ρ(·)
)

on T+ (4.113)

1

gA (wA(·) )
=

∣∣ ∂ 0 L∗∗ ( zA(·), 0 )
∣∣ = ∣∣ ∂ 0 L∗∗ ( z0A(·), 0 ) ∣∣ on T+ (4.114)

so that, by (4.113) & (4.104), we have proved (4.105). On the other hand, by
(4.105) & (4.113) & (4.2), we get (4.106). Finally, a.e. on [0, a] \ ( b, a′ ) we
have, by (4.65) & (4.88), w ′

A(·) = 0 = | z ′
A(·) | ; while on ( b, a′ )\T+, by (4.95)

& (4.93), ∃w ′
A(t) = 0 = | z ′

A(t) |, proving (4.107). Thus claim 1 is proved,
except for (4.108) to (4.111) which will be proved below ( in (4.118) ).

Claim 2

(4.48) ⇒ (4.36) (4.115)

namely : having assumed (4.48), by taking a z0A(·) minimizer of (4.18), in
(4.54); and having constructed from it a new zA(·) by the formula (4.88)
( using z0A(·) through (4.55) & (4.56) ), we now claim (4.36), namely that this

zA(·) minimizes both (4.18) & (4.19). (4.116)

Indeed, by (4.89) & (4.90) & (4.58) & (4.61) & (4.86) & (4.81) & (4.69)
& (4.24) & (4.23),

zA(·) ∈ Z0,a
A↗ ⊂ Z0,a

A . (4.117)

On the other hand, by (4.107) & (4.91),∫
[0,a]\T+

L∗∗ ( zA(t), | z ′
A(t) | ρ(t) ) d t =

∫
[0,a]\T+

L∗∗ ( zA(t), 0 ) d t =

=

∫
[0,a]\T+

wA(t) d t ≤
∫
[0,a]\T+

w0
A(t) d t =

∫
[0,a]\T+

L∗∗ ( z0A(t), 0 ) d t ≤

≤
∫
[0,a]\T+

L∗∗ ( z0A(t), ∣∣ z0 ′A (t)
∣∣ ρ(t)

)
d t ;
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and adding this inequality to the inequality (4.106), by (4.54) & (4.117) the
proof of (4.116), hence of (4.115) and claim 2 and (4.50), is complete.

Recalling the �nal comment before (4.115), let us return now our attention
back to the statements (4.108) to (4.111). To begin with, by (4.91) & (4.97)
the proof of (4.108) reduces to showing that

w0
A(t) ≤ wA(t) ∀ t ∈ [0, a] \ T+ ; (4.118)

but denial of (4.118) would yield wA(·) < w0
A(·) along a nonempty open

interval ⊂ (0, a] \ T+ hence the �rst inequality in the preceding paragraph
would be strict, in contradiction with (4.54) & (4.117). Exactly the same
would happen if we did not have (4.109), by (4.106) together with ( a.e. on
[0, a] \ T+ , by (4.107) & (4.108) ) :

L∗∗ (zA(t), |z ′
A(t)| ρ(t)) = L∗∗ (z0A(t), 0) ≤ L∗∗ (z0A(t), ∣∣z0 ′A (t)

∣∣ ρ(t)) .
(4.119)

But the same reasoning also proves (4.110), hence (4.111) and claim 1.

Second step : Having thus proved (4.50) ( in the paragraph before (4.118) ),
we now proceed to prove the implication

(4.36) ⇒ (4.37) (4.120)

in (4.51), by showing that our wA(·), as in (4.90), satis�es

wA(·) ∈ W0,a
A↗ ⊂ W0,a

A (4.121)

wA(·) minimizes both (4.25) & (4.26). (4.122)

Indeed, by (4.27) & (4.28) & (4.58) & (4.117) & (4.61) & (4.90), obviously
wA(·) belongs to both spaces in (4.121); while, on the other hand, picking
any generic w1(·) inW0,a

A↗ then exactly the same arguments as above (namely
in (4.88) to (4.117), with wA(·) replaced by this w1(·) ) yield a corresponding
z1(·) := QA (w1(·) ) in Z0,a

A↗ ⊂ Z0,a
A ( see (4.88) & (4.117) ), thus showing that

such generic w1(·) also belongs to W0,a
A , see (4.27), hence proving the general

inclusion in (4.121).

To complete the proof of (4.122) assume, by contradiction, the existence
of some

w0
0(·) ∈ W0,a

A for which ( recalling (4.82) & (4.87) ) (4.123)
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0
ℓ∗∗A (w0

0(t), gA (w
0
0(t) ) w0 ′

0 (t) ρ(t) ) d t <

<
∫ a
0
ℓ∗∗A (wA(t), gA (wA(t) ) w ′

A(t) ρ(t) ) d t.
(4.124)

Then, rede�ning ( recall (4.27) & (4.55) )

w0
0(0) to become := inf w0

0 ( (0, a] ) (4.125)

and setting ( recall (4.56) & (4.88) )

w0(t) := minw0
0 ( [t, a] ) for t ∈ [0, a] (4.126)

z0(t) := QA (w0(t) ) for t ∈ [0, a], (4.127)

one, by using the same arguments as above, would reach ( as in (4.117) &
(4.93) & (4.57) )

z0(·) ∈ Z0,a
A↗ ⊂ Z0,a

A (4.128)

| z ′
0(t) | = gA (w0(t) ) w ′

0(t) & w0
0(t) ≤ w0(t). (4.129)

Moreover, reasoning as after (4.117) but with zA(·) & wA(·) & w0
A(·) &

z0A(·) replaced by z0(·) & w0(·) & w0
0(·) & z00(·), one reaches, by (4.97) &

(4.101) & (4.107) & (4.94) & (4.129), the inequality :∫ a
0
ℓ∗∗A (w0(t), gA (w0(t) ) w ′

0(t) ρ(t) ) d t ≤

≤
∫ a
0
ℓ∗∗A (w0

0(t), gA (w
0
0(t) ) w0 ′

0 (t) ρ(t) ) d t.
(4.130)

Therefore, by (4.127) & (4.129) & (4.87) & (4.124),∫ a

0

L∗∗ ( z0(t), | z ′
0(t) | ρ(t) ) d t =

=

∫ a

0

L∗∗ (QA (w0(t) ) , gA (w0(t) ) w ′
0(t) ρ(t) ) d t =

=

∫ a

0

ℓ∗∗A (w0(t), gA (w0(t) ) w ′
0(t) ρ(t) ) d t ≤

≤
∫ a

0

ℓ∗∗A
(
w0

0(t), gA
(
w0

0(t)
)
w0 ′

0 (t) ρ(t)
)
d t <
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<
∫ a
0
ℓ∗∗A (wA(t), gA (wA(t) ) w ′

A(t) ρ(t) ) d t =

=
∫ a
0
L∗∗ ( zA(t), | z ′

A(t) | ρ(t) ) d t,
(4.131)

applying again (4.87) & (4.88) & (4.93), and thus contradicting (4.116), by
(4.128). Such absurd denies the possibility of existence of a w0

0(·) as in
(4.123) & (4.124) and proves (4.122), due to (4.121), hence (4.120), i.e. the
implication (4.36) ⇒ (4.37) in (4.51).

To complete the proof of (4.51) we now prove the opposite implication

(4.37) ⇒ (4.36). (4.132)

Taking a

wA(t) ∈ W0,a
A↗ minimizer to both (4.25) & (4.26) (4.133)

and setting zA(t) := QA (wA(t) ), as in (4.88), we now claim that zA(·) ∈
Z0,a
A↗ ⊂ Z0,a

A , i.e. ( see (4.23) & (4.24) )

zA(·) ∈ W 1,1 ( [0, a], Rm ) & zA(a) = A & L∗∗ ( zA(·), 0 ) increases.
(4.134)

Indeed, since wA(·) ∈ W 1,1 ( [0, a] ) & wA(·) increases & wA(a) = L∗∗ (A, 0 ),
by (4.28); and since, by (4.89), QA(·) in (4.86) is Lipschitz, we have
zA(·) ∈ W 1,1 ( [0, a], Rm ). On the other hand, by (4.59) & (4.86) & (4.81) &
(4.69), zA(a) = QA (wA(a) ) = σA ( τA ( p

max
A ) ) = σA(0) = A; and, by (4.90),

L∗∗ ( zA(·), 0 ) = L∗∗ (QA (wA(·) ) , 0 ) = wA(·) increases.
Thus (4.134) is proved; and to complete the proof of (4.116) assume, by

contradiction, that

∃ z00(·) ∈ Z0,a
A for which (4.135)∫ a

0

L∗∗ ( z00(t), ∣∣ z0 ′0 (t)
∣∣ ρ(t)

)
d t <

∫ a

0

L∗∗ ( zA(t), | z ′
A(t) | ρ(t) ) d t.

(4.136)
Then, de�ning, as in (4.55),

w0
0(t) := L∗∗ ( z00(t), 0 ) for t ∈ (0, a] & w0

0(0) := inf L∗∗ ( z00 ( (0, a] ) , 0 ) ,
obtain from w0

0(t) the new functions w0(·) & z0(·) as in (4.126) & (4.127),
hence satisfying (4.128) & (4.129); so that, by (4.87) & (4.127) & (4.129) &
(4.136), ∫ a

0

ℓ∗∗A (w0(t), gA (w0(t) ) w
′
0(t) ρ(t) ) d t =
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=

∫ a

0

L∗∗ (QA (w0(t) ) , gA (w0(t) ) w
′
0(t) ρ(t) ) d t =

=

∫ a

0

L∗∗ ( z0(t), | z ′
0(t) | ρ(t) ) d t <

∫ a

0

L∗∗ ( zA(t), | z ′
A(t) | ρ(t) ) d t =

=

∫ a

0

L∗∗ (QA (wA(t) ) , gA (wA(t) ) w
′
A(t) ρ(t) ) d t =

=

∫ a

0

ℓ∗∗A (wA(t), gA (wA(t) ) w
′
A(t) ρ(t) ) d t,

a contradiction to (4.133) showing that no such z00(·) as in (4.135) & (4.136)
can be; and proving (4.116), hence (4.132) & (4.51), due to (4.117).

To prove (4.52), i.e.

(4.33) ⇒ (4.37), (4.137)

assume (4.33), namely

∃ w0
A(·) ∈ W0,a

A minimizing (4.25). (4.138)

Since, by (4.27), ∃ z0A(·) ∈ Z0,a
A with L∗∗ ( z0A(·), 0 ) = w0

A(·), one may rede�ne
w0
A(0) as in (4.55), and de�ne wA(·) & zA(·) as in (4.56) & (4.88). We claim

that :
wA(·) ∈ W0,a

A↗ ⊂ W0,a
A (4.139)

0 ≤ wA(t) = w0
A(t) & 0 < w ′

A(t) = w0 ′
A (t), ∀ t ∈ T+ (4.140)

ℓ∗∗A (wA(t), gA (wA(t) ) w
′
A(t) ρ(t) ) ≤

≤ ℓ∗∗A (w0
A(t), gA (w

0
A(t) ) w

0 ′
A (t) ρ(t) ) for a.e. t ∈ [0, a] \ T+

(4.141)

wA(t) minimizes both (4.25) & (4.26). (4.142)

Indeed, one may prove (4.139) as in (4.121); while (4.140) follows as in
(4.97) & (4.104); and, �nally, to prove (4.141) ( and noticing that the proof
of (4.108) requires the use of (4.54), see (4.118) ) we have, a.e. on [0, a] \ T+ :
0 = w ′

A(t) ≤ |w0 ′
A (t) |, by (4.107) hence, by (4.94) & (4.57),

ℓ∗∗A (wA(t), gA (wA(t) ) w
′
A(t) ρ(t) ) = ℓ∗∗A (wA(t), 0 ) = wA(t) ≤ w0

A(t) =



4.3. MONOTONE MINIMIZING DEFORMATIONS 85

= ℓ∗∗A
(
w0
A(t), 0

)
≤ ℓ∗∗A

(
w0
A(t), gA

(
w0
A(t)

)
w0 ′
A (t) ρ(t)

)
,

so that (4.141) holds true. Since the inequality in (4.141) also holds true
( trivially ) on T+, by (4.140), we get (4.142), by (4.138) & (4.139), thus
proving (4.137), i.e. (4.52).

Finally, let us prove (4.53), i. e.

(4.36) ⇒ (4.35) ⇒ (4.34) ⇒ (4.32). (4.143)

Obviously (4.36) ⇒ (4.35) also : taking a minimizer zA(·) for both (4.18)
& (4.19), then zA(·) ∈ Z0,a

A↗ ; and setting UA(r) := zA ( γ
−1(r) ) one gets ( since

γ−1(·) is Lipschitz increasing, see (4.49) ) UA(·) ∈ U0,a
A↗ ⊂ U0,a

A ( recall (4.24)
& (4.17) & (4.31) & [Bic & Orn 3, (95)] ); while UA(·) minimizes (4.29), by
the comment after (4.49), so that it also minimizes (4.30).

Similarly (4.35) ⇒ (4.34) : taking a minimizer UA(·) for both (4.29) &
(4.30) then UA(·) ∈ U0,a

A↗ ; and setting uA(x) := UA ( |x| ) one gets uA(·) ∈
W

1,1

A↗ ( see (4.16) & (4.17) ); while, by (4.43) & (4.45), uA(·) minimizes (4.1),
so that obviously it also minimizes (4.15).

Trivially (4.34) ⇒ (4.32) : existence of a minimizer for (4.1) implies at
least existence of minimum for (4.1).

This proves (4.143), i. e. (4.53) hence, by (4.50) & (4.51) & (4.52), also
(4.38) & th. 4.3.1.
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