UNIVERSIDADE DE EVORA

GNU Prolog to Java

A study on how to connect the two programming environments

Dissertacdo de

Mestrado em Inteligéncia Artificial Aplicada
Orientador: Prof. Salvador Pinto de Abreu

Por: David José Murteira Mendes

“Esta dissertacdo ndo inclui as criticas e sugestdes feitas pelo juri”

Evora, Abril de 2004

fs;}s\ ‘5 !{)

" ,
" UNIVERSIDADE DE EVORA

ﬁ‘\:"‘

O V7,

¢ Ios

GNU Prolog to Java

A study on how to connect the two programming environments

AN+ A0

Dissertacdo de

Mestrado em Inteligéncia Artificial Aplicada
Orientador: Prof. Salvador Pinto de Abreu

Por: David José Murteira Mendes

“Esta dissertagdo ndo inclui as criticas e sugestdes feitas pelo juri”

Evora, Abril de 2004

Resumo

Neste trabalho pretende-se efectuar o estudo e a implementagdo de uma interface
bidireccional entre 0 GNU-Prolog e a linguagem Java. O objectivo desta ferramenta é
dar a possibilidade de utilizar o poder da programag&o em légica dentro de um ambiente
multi-plataforma. Pretende-se possibilitar a escrita de programas Prolog que invocam
métodos Java e programas Java que chamam predicados Prolog. Java e Prolog séo um
par ideal para disponibilizar Gteis “aplicagdes inteligentes”, com interfaces actuais,
disponibilizadas para diferentes sistemas operativos existentes. Misturada com o Java
esta “inteligéncia” beneficia das caracteristicas desta linguagem como independéncia de
plataformas, seguranga, tratamento de excepgdes e seguranca de tipos entre outras. Uma
ligagdo destas possibilita a criagdio de ferramentas tais como servidores para diagndstico
de problemas, aplicagdes robot que se deslocam automatizadamente na Internet, agentes
inteligentes méveis que atendem pedidos de outros agentes com capacidade de
raciocinio sejam humanos ou nfo. Um dos objectivos primérios, no entanto, que se
pretende atingir é a integragfio de uma implementagdo Prolog compativel ISO e open
source com todos os ambientes de desenvolvimento e ferramentas Java disponiveis
actualmente. Como tal a ligago pretendida é feita a nivel muito baixo para poder
apresentar caracteristicas de alta performance, flexibilidade e portabilidade.

Abstract

This work is intended to study and put up a bidirectional interface between GNU-
Prolog and the Java language.The purpose of this tool is the possibility to use the
power of logic programming within a cross platform environment.This meaning
to write prolog programs invoking java methods and Java programs calling pro-
log predicates. Java and Prolog are an ideal pair for delivering useful intelligent
applications with state-of-the-art user interfaces deployed over several operating
systems and media. Mixed with Java this “intelligence” benefits from all of the
design characteristics of this language like platform independence, security, type
safety, exception handling, and so on, to create such tools as servers for diagnosing
problems, spider and robot applications that transparently wander the net, mobile
intelligent agents attending requests from other reasoning agents, human or not.
One of the primary objectives, though, intended to be achieved is to integrate a full
blown, ISO Prolog compliant, open source Prolog with the many IDEs and tools in
the Java momentum.

Contents

1 Acknowledgments

2 Introduction

3 Overview of previous work

3.1

3.2

33

34

Nativeinterface i oo
31 AmMZIi e e e
312 NewPFeatures,
Object serialization interface
321 InterProlog(XSB)
322 PrologIV e e
INL-basedinterface
33.1 Jasper(Sicstus)o i

3.3.1.1 CallingJavafromProlog

3.3.1.2 Calling Prolog fromJava
332 JPL(forSWD. i
3.3.3 JIPL (K-Prolog,B-prolog)
334 K-Prolog
335 B-Prolog

3.3.5.1 Calling JavafromProlog

3.3.5.2 Calling Prolog fromJava

3.3.5.3 Data conversion between Java and B-Prolog . .
336 yaixb(XSB) e
337 BinProlog oo
PrologenginesinJava,
341 BirdLand
342 DGKSProlog,
343 Javalog . . . - - o i i i e e e e e
344 NetProlog e
345 JIPJavalnternetProlog
346 JProlog e
347 MINERVA ittt
348 JINNI it

35 Hybridsystems,
351 LLPj . .ot e et e e e e
352 PrologCafé
353 W-Prolog i
354 Kiev. e
4 Interfacing Java with GNU-Prolog
41 GNUProlog. i ittt
42 WhatisJNI e
4.3 Comparison matrix between technologies
44 Requirements and limitations
45 APIDesign i
5 Implementation
51 PrologtoJava
5.1.1 single vs. multithreading
5.1.2 Classloading
513 Methodloading
5.14 Reflection and callback tables
5.1.5 Object representationinProlog
5.1.6 Objectinstancecreation
5.1.7 Converting between Java and Prolog signatures
5.1.8 Predicatestocall Javamethods
5.1.9 Predicate building from Javamethods
52 JavatoGNUProlog v oo
521 HowtodoitwithJNI.
5.2.2 Identify native functionality
5.2.3 Describing the interface to the nativecode
524 Writingthejavacode
52.5 Writingthenativecode
52.6 Buildingthelibrary
5.2.7 Loading and invoking the native methods.
52.8 Thewholepicture
52.9 Thepresentsolution
5.2.10 Loading the library, and running a Java application . .
53 Buildingthesolution,
6 Conclusions and future work
61 Conclusions
62 Futurework
6.2.1 Exceptionhandling
6.2.2 Manipulating Java variables
6.2.3 Multiple JVM handling and Java multithreading with dif-
ferentJVMs o oo

6.2.4 Making it work with dynamic linking of the native Prolog
functionality 43
6.2.5 Making it work without having to link dynamically in the
INL .. e e 43
6.2.6 Minorarrangementso v e e e s a e 45
6.2.6.1 Setting a different CLASSPATH 45
6.2.6.2 Maintaining a Prolog signature in the methods
SEUCE . v v o e e e e e e 45
6.2.6.3 An easier way for creating Java objects in Prolog 46
6.2.64 Unneeded creation of objects when calling static
methods 46
Bibliography 47
A Reference 43
Al PrologtoJava 48
A2 GPLjava C. o ittt 49
A20.5 java CallMethod4 49
A20.6 java GetVersion/3 49
A.20.7 java_CreateJavaVM/1 49
A208 java GetlavaVM/2Z 49
A.2.09 java_DestroyfavaVM/1 50
A20.10 java GetClass/3 50
A2.0.11 java SuperClass/2 50
A20.12 java_GetMethods/1 50
A2.0.13 java_MethodID/4 51
A.2.0.14 java Create_Args/2 51
A2.0.15 java PutArg int/4 51
A.2.0.16 java_PutArg float/3 52
A2.0.17 java PutArg_String/3 52
A2.0.18 java PutArg obj/3 52
A2.0.19 java_CallMethod_Go_int/4 52
A.2.0.20 java_CallMethod_Go_float/4 53
A.2.0.21 java_CallMethod_Go_void/3 53
A.2.0.22 java_CallMethod_Go_obj/4 53
A.2.0.23 java_CallMethod_Go_String/4 53
A.2.0.24 java_CallMethod Free/1 54
A.2.0.25 java_CallStaticVoidMethod/3 54
A2026 java New/d 54
A21 GPL_java PL............. .0 54
A21.1 java Compile/5 55
A212 typel2 ... 55
A3 JavatoGNUProlog oo vt i i it et 55
A3.1 Main_Wrapper o o v 55

iv

A32 Pl Query Begin0..... 55

A33 PlQuery Callc0..... 56

A34 Pl Query Next Solution.................. 56

A35 PlQuery End 56

A3.6 PlLGet Exception 56

A3.7 PlLExec_Continuation 57

B Compiling and running 58
C Usage examples 61
C.1 Helper predicates inhelperpl 61
C.2 Various examplesintest javapl 62

List of Figures

41 APIDesign i

5.1 StepsinJNIcompiling

List of Tables

3.1

4.1
4.2
43
44

5.1
52

Data conversion tableinB-Prolog 14
Possible options in the GNU Prolog foreign API 23
Integration methods relative advantages 26
Conversion table GNU Prolog <->Java 28
Reverse mapping table GNU Prolog <->Java 28
Method calling callback table 33
Conversion table between Java and “GNU Prolog signatures” . . . 35

vii

Chapter 1

Acknowledgments

For the whole first part of this work Miguel Calejo has to be acknowledged for his
page served has a foundation for all the Internet search about Prolog and Java min-
gled systems. My whole family has to be blessed for putting up with my bad temper
for all these lengthy months. Special acknowledgment addressed to Fasoft, Lda.
for funding one entire year of absence. Thanks should also go DONALD KNUTH
and LESLIE LAMPORT, who developed the wonderful TgX and ISIEX typesetting
packages. Last but not least my Professor Salvador Pinto Abreu that showed me
the appropriate directions for the work to be done and helped a lot when a hit into
some wall appeared.

Chapter 2

Introduction

The purpose of this work is to create a link between GNU-Prolog and the Java
language. The reasons for using GNU Prolog are summarized in the following
features taken from the Free Software Foundation’s GNU-Prolog page!

e GNU Prolog is a free Prolog compiler with constraint solving over finite
domains.

e GNU Prolog accepts a Prolog+constraint program and produces a native bi-
nary (like gcc does from a C source).

e The obtained executable is then stand-alone.

o The size of this executable can be quite small since GNU Prolog can avoid
to link the code of most unused built-in predicates.

o The performances of GNU Prolog are very encouraging (comparable to com-
mercial systems).

¢ Beside the native-code compilation, GNU Prolog offers a classical interac-
tive interpreter (top-level).

o The Prolog part conforms to the ISO standard for Prolog with many exten-
sions very useful in practice (global variables, OS interface, sockets,...).

¢ GNU Prolog also includes an efficient constraint solver over Finite Domains
(FD). This opens contraint logic programming to the user combining the
power of constraint programming to the declarativity of logic programming.

Mainly aimed at prolog developers, it will allow Java method calling and field
accessing, both class and instance fields and methods from GNU-Prolog and si-
multaneously predicate calling and term accessing from Java. All the appealing
features of Java like the for instance:

¢ Object Oriented behavior
Thitp:/fwww.gnu.org/software/prolog

¢ Platform Independence
o Internet protocols friendliness
o Easy Ul development

shall be taken into account and be implemented as far as possible. The work devel-
opment has been divided in three different phases:

o State-of-the-art overview

— Presentation of the existing implementations
- Study of the different technologies involved

o Specification of the interface

— GNU-prolog APIs and the foreign interface as defined by Daniel Diaz
[2]

- Java Native Interface (JNI)

— Interface prototype with an interpreter with access to java methods

¢ Implementation

— Fully implement the prototype with both way communication
— Some toy examples to demonstrate the usability

Chapter 3

Overview of previous work

There are mainly four alternatives to the implementation of a J ava-Prolog interface:

o Native interface
e Object serialization interface
. -based interface

¢ Prolog engines in Java

The previous work will be presented here ordered by the way they are imple-
mented using one of these alternatives. Other systems are not considered as java-
prolog interfaces for they are not full prolog (Edinburgh, ISO,...) but rather some
prolog like languages or inference engines. These were not minimally studied and
they are only referenced below as hybrid systems for those really interested. The
following have different levels of approaching whether because it was somehow
not interesting or not enough interesting information was found.

3.1 Native interface

Native interfaces are obviously those showing best performance when the underly-
ing prolog machines are still good performers. Overhead from integrating different
levels in architecture is minimized. These implementations suffer, however, from a
design problem that aparts their interest from a major concerning factor that rules
the present work: openness and platform independence.

311 Amz

Built upon a technology named a Logic Server’ that allows Prolog components
to be easily integrated with other applications/environments. It is a library writ-
ten in C/C++ that can be linked to any application that can call a dynamic li-
brary. The Logic Server includes the ability to reason over databases and data

4

from clients/servers, plus it can be easily extended to provide any additional in-
terfaces or capabilities. The Java implementation includes a main 'LogicServer’
class that encapsulates a Prolog engine and its API, and an *LSException’ class
used for error handling. They are both included in a Java package, *amzi.ls’. The
LogicServer class includes all the methods that give the developer full control over
the Prolog engine. These include methods to:

¢ setup, initialize, reset and close the Prolog engine

¢ load and/or consult Prolog programs

e issue Prolog queries

e assert/retract Prolog terms

¢ convert between Java strings and Prolog terms

¢ get values into Java variables from Prolog atoms, strings and numbers
¢ build and decompose Prolog lists

¢ build and decompose Prolog structures

e return information about errors

There is the LSException class that has no methods and is simply used to signal
and catch errors. To use the LogicServer class you import the amzi.ls package into
your Java program. From there you can either instantiate a new LogicServer object
and invoke its methods, or you can define a new class that extends the LogicServer
class adding new methods and variables. The Amzi! Logic Server provides tools
that let you implement your own extended predicates. These allow you to write
Prolog code that directly accesses anything Java can access. The Java methods
that implement extended predicates, must be declared as returning type boolean,
and as public. They can be added one at a time using the API function AddPred,
which adds a single predicate at a time. If your extended predicate is in a package,
then the package name must be included in the class name, delimited by forward
slashes, to AddPred as follows:

Is.AddPred(“extpred”, 1, “javapkg/jprolog”, “extpred”, this);

3.1.2 New Features

Amzi! 6.2 is the final release so far. Some of the new release characteristics are:
¢ Robust Server Architecture
¢ Easier Development and Deployment

¢ ISO-Standard

High Performance Logic Base

Comprehensive Internet Support for .NET, ASP, JSP and Java Servlets
New Libraries and Utilities

Full Internationalization

Increased System Limits

Improved Documentation

Advanced Mathematics

With the following details:

ISO module support

Indexed and sorted storage options for dynamic clauses
New predicates for examining logic base

COM object for .NET support with samples

ASP, JSP and Java Servlet samples

Cross-reference and syntax checking utility

XML library

Date/time library

Performance probe utility

Debugging predicate ?/1 built-in

ISO stream support

New Prolog flags, many settable by directives

loadlsx/1 allows dynamic loading of LSXs
ensure_loaded and include directives
double_quote_strings, upper_case_atoms alternate syntaxes
Locale-specific multi-byte characters supported

Either slash (or
) can be used in file paths

tilt_slashes/2 adjusts path delimiters for a platform

6

copy_term/2 built-in for fast copies

load/4 allows loading .plm images from memory
Unlimited atom table

Maximum variables in a clause up to 4095

Maximum arity of a clause up to 4095

No limit on the number of clauses in a compiled predicate
Infinite precision real numbers optionally available
Mathematical tools

New internal garbage collector

Chez Ray samples, a compendium of advanced Prolog tricks

3.2 Object serialization interface

Serialization is the standard way of passing objects between different virtual ma-
chines in Java. Any class that implements the java.io.Serializable interface is a
candidate for serialization. This technique is present since the JDK 1.1 and is
very well understood and used exhaustively by Java programmers. Should there
be good ways to perform some kind of “serialization” in Prolog and this forms a
well-founded technique to achieve inter-language communication. Definite Clause
Grammars is a widely known methodology in the Prolog community and is thus a
strong candidate for the serialization technique for a grammar can parse/construct
some kind of object/method representation. With a good mechanism to pass the se-
rialized objects (marshal and unmarshaling of objects and method calling) between
both the Prolog and Java machines it appears to be an efficient way of communica-
tion between languages.

3.2.1 InterProlog (XSB)

InterProlog is implemented as a set of standard Java classes and Prolog predicates.
It provides a simple facelift to Prolog, by running it under a separate process and
redirecting its STDIO to a Java window. It also provides Prolog with the ability
to call any Java method, and for Java to invoke Prolog goals, by using standard
TCP/IP sockets to pass object/term data among both processes. All the interface
is done through the serialization and reflection libraries of java. The evolution of
Java as a dynamic language lead to the articulation of Java Serialization with Pro-
log Definite Clause Grammars. InterProlog currently has support for XSB prolog,
XSB uses an emulator written in C and integrates partial evaluation techniques for
specializing partly instantiated calls. When using InterProlog, 2 windows pop-up,
one for the normal standart output and the other for standart input from XSB run-
ning in a separate process. All Prolog built-ins continue available, such as file /O,
etc. InterProlog provides a regular mechanism to specify Java objects in Prolog.
It is based on the use of standard Serialization on the Java side, and on a Definite
Clause Grammar on the Prolog side. This grammar is able to parse a sequence of
bytes representing a serialized object into a Prolog term representing/specifying it,
and vice-versa: given an object specification term, it is able to produce a sequence
of bytes such that the standard Java Serialization process can recreate the object.
For specifying java objects in Prolog there is a template based facility implemented
through 2 alternative predicates, which are generated based on (serialized object)
examples sent from the Java side, and which should be used to specify, on the
Prolog side, objects of the respective classes. There is some special InterProlog
Java code, together with a set of “special” object specifications, for passing Java
basic type arguments back and forth to J avamessage(). Javamessage() is the main
InterProlog primitive for synchronous communication with java.

InterProlog allows a Java program to use Prolog encapsulated in a Java object,
a PrologEngine instance.

PrologEngine may be used at different levels of sophistication, by resorting
to simple textual communication or to structured objects. For simple applications
it is sufficient to communicate with Prolog using plain text. If a Java application
wishes to get some data back from Prolog in a controlled manner, and/or specific
Java code is written to support a Prolog project, then in addition to the previous
PrologEngine methods others may become relevant: teachMoreObjects, register-
JavaObject, isAvailable, deterministicGoal.

3.2.2 PrologIV

Prolog IV is the latest product from ProloglA, a company based in Marseille. All
the line of products come from the initial investigation by Alain Colemarauer in
the LIM (Laboratoire d’Informatique de Marseille) since the invention of Prolog.
It has, by far , the most appealing user interface seen in a CLP geared tool. Unfor-
tunately no information could be gathered about the way java applets/applications
are implemented nor about the communication between Java and Prolog IV. I as-
sume that it is sockets based following Miguel Calejo’s suggestion.

3.3 JNI-based interface

Most of the systems that achieved actual implementation are based in JNL As it
will become evident in the appropriate section where JNI benefits will be pre-
sented “see section 4.2 on page 23” it’s perhaps the most appropriate technology
to realize this kind of work. After the presentation of all the previous work it will
also be presented a matrix “see section 4.3 on page 24” with the relevant advan-
tages/disadvantages of the different technologies

3.3.1 Jasper (Sicstus)

Jasper is a bi-directional interface between Java and SICStus. The Java-side of the
interface consists of a Java package (se.sics.jasper) containing classes representing
the SICStus run-timesystem (SICStus, SPTerm, etc). The Prolog part is designed
as a library module (library(jasper)) and an extension to the foreign language in-
terface. The library module library(jasper) (see Jasper) provides functionality for
controlling the loading and unloading the JVM (Java Virtual Machine), meta-call
functionality (jasper_call/4), and predicates for managing global and local object
references. These are provided in order to make it easy to call Java methods on-the-
fly from Prolog without having to create a foreign resource first. The foreign lan-
guage interface extensions enables Java-methods to be called as Prolog predicates
using foreign/3 declarations, note that, all functionality of the foreign language in-
terface is available through the use of the meta call facility in library(jasper). Jasper
can be used in two modes, depending on which system acts as Parent Application.
If Java is the parent application, the SICStus runtime kernel will be loaded into the
JVM using the System.loadLibrary() method (this is done indirectly when instan-
tiating the SICStus object). In this mode, SICStus is loaded as a runtime system
(see Runtime Systems). If SICStus is the parent application, Java will be loaded as
a foreign resource using the query use_module(library(jasper)). The Java engine is
initialized using jasper_initialize/[1-2].

3.3.1.1 Calling Java from Prolog

Java methods can be called much in the same way as C functions are called, by
creating a foreign resource. When loaded, this resource installs a set of predicates
which are mapped onto Java-methods such that invoking a Java method looks like
any other Prolog predicate call. Such methods are sometimes called direct mapped.
In fact, a foreign resource is not language specific itself. The language is instead
specified in the second argument to the foreign/3 fact and it is possible to mix for-
eign C functions with foreign Java methods. Java-methods are declared similarly
to C-functions. There are two major differences. The first is how methods are
identified. It is not enough to simply use an atom as the C interface does.
Instead, a term method/3 is used:
method(+ClassName,+MethodName,+Flags)

10

Used as first argument to foreign/3 when declaring Java methods and when
calling a Java method through the meta call facility jasper_call/4. The first argu-
ment is an atom containing the Fully Qualified Classname of the class (for example,
java/lang/String) The second argument is the method name. The third argument is
a list of flags. Possible flags are instance or static, indicating whether or not the
method is static or non-static. Non-static methods must have an object-reference
as their first argument. This is a reference to the object on which the method will
be invoked.

This term is then used to identify the method in the foreign_resource/2 predicate.
So, to define a foreign resource exporting the non-static Java method getFactors
in the class PrimeNumber in the package numbers, the method/3 term would look
like

method(’numbers/PrimeNumber’,’ getFactors’,[instance])

The syntax for foreign/3 is basically the same as for C-functions:

foreign(+Methodldentifier, java, +Predicate) [Hook]

Specifies the Prolog interface to a Java method. MethodlIdentifier is method/3
term as described above. Predicate specifies the name of the Prolog predicate that
will be used to call MethodIdentifier. Predicate also specifies how the predicate
arguments are to be translated into the corresponding Java arguments.

3.3.1.2 Calling Prolog from Java

Calling Prolog from Java is done by using the Java package jasper. This package
contains a set of Java classes which can be used to create and manipulate terms,
ask queries and request one or more solutions. The functionality provided by this
set of classes is basically the same as the functionality provided by the C-Prolog
interface of Sicstus.

Before any predicates can be called, the SICStus run-time system must be ini-
tialized. This is done by instantiating the SICStus class.

NOTE: This class must only be instantiated once per Java process. Multiple
SICStus-objects are not supported.

o The next step is to load the Prolog code. This is done by the method restore.
o Now, everything is set up to start making queries.
¢ It is now time to create the arguments for the query.

The arguments are placed in an array which is passed to a suitable method to
make the query. The arguments consist of objects of the class SPTerm. there are
three ways of making a query, either to produce a single solution (SICStus.query,...),
for side-effect only (SICStus.queryCutFail,...) or to produce several solutions through
backtracking (SICStus.openQuery,...).

11

The openQuery methods returns a reference to the query, an object of the SP-
Query class. To obtain solutions, the method nextSolution is called with no argu-
ments. nextSolution returns true as long as there are more solutions.

3.3.2 JPL (for SWI)

JPL is an open source package providing a bridge between Java and Prolog. SWI
is one of the, so far, fastest prolog available with extensible built-in predicates.

3.3.3 JIPL (K-Prolog, B-prolog)

This package, named JIPL, gives interface between Java and Prolog through JNI.
With this package, you can

o call Prolog predicates from any Java application/applet.

o call Java methods, access fields of objects from Prolog programs.

There are, as far as known, two systems developed with this underlying pack-
age

3.34 K-Prolog

Being K-Prolog a commercial product, the amount of available information is far
less than that for B-Prolog, since all the interface is based on the same package
it was decided to bundle the full detailed instructions which appeared to be very
similar on a single description found next.

3.3.5 B-Prolog

B-Prolog is a system for running Prolog and CLP(FD) programs. Like most other
systems, it includes an interpreter and provides an interactive interface through
which the user can consult, list,compile, load, debug and run programs. It not
only runs ISO Prolog programs, but also supports delaying (or corouting) and
constraint solving over finite domains and Booleans. It also provides interfaces
through which external languages (currently C and Java) and Prolog can call each
other. Some functionalities including module systems and garbage collection are
not available now and are to be implemented in the future. Tabling is implemented
in B-Prolog. An application that uses the Java interface usually works as follows:
The Java part invokes a Prolog predicate and passes it a Java object together with
other arguments; the Prolog predicate performs necessary computation and invokes
the methods or directly manipulates the fields of the Java object.

12

3.3.5.1 Calling Java from Prolog

javaMethod(+ClassOrlnstance, +Method, -Return)
Invoke a Java method, where

o ClassOrInstance is either an atom that represents a Java class’s name, or a
term $addr(I1,12) that represents a Java object. Java objects are passed to
Prolog from Java. It is meaningless to construct an object term by any other
means.

e Method: is an atom or a structure in the form f(t1,...,tn) where f is the method
name, and tl,...,tn are arguments.

e Return: is a variable that will be bound to the returned object by the method.

javaMethod(+ClassOrInstance, +Method)

The same as javaMethod/3 but does not require a return value.

javaGetField(+ClassOrlnstance, +Field, -Value)

Get the value of Field of ClassOrInstance and bind it to Value. A field must be
must be an atom.

javaSetField(+ClassOrlnstance, +Field, +Value)

Set Field of ClassOrInstance to be Value.

3.3.5.2 Calling Prolog from Java

A Prolog call is an instance of the class bprolog.plc.Plc. It is convenient to import
the class first:

import bprolog.plc.Plc;

The class Plc contains the following constructor and methods:

e public Plc(String functor, Object args[]) It constructs a prolog call where
functor is the predicate name, and args is the sequence of arguments of the
call. If a call does not carry any argument, then just give the second argument
an empty array new Object[].

e public static void startPlc(String args[]) Initialize the B-Prolog emulator,
where args are parameter-value pairs given to B-Prolog. Possible parameter-
value pairs include:

“-b” TRAIL : words allocated to the trail stack

“-s” STACK : words allocated to the local and the heap
“-p” PAREA : words allocated to the program code area
“-t” TABLE : words allocated to the table area

where TRAIL, STACK, PAREA and TABLE must all be strings of integers.
After the B-Prolog emulator is initialized, it will be waiting for calls from
Java. Initialization needs to be done only once. Further calls to startPlc have
no effect at all.

13

e public static native boolean exec(String command) Execute a Prolog call as
represented by the string command. This method is static, and thus can be
executed without creating any Plc object. To call a predicate in a file, say
xxx.pl, it is necessary to first have the Prolog program loaded into the system.
To do so, just execute the method exec(“load(xxx)”) or exec(*“consult(xxx)”).

e public boolean call() Execute the Prolog call as represented by the Plc object
that owns this method. The return value is true if the Prolog call succeeds or
false if the call fails.

3.3.5.3 Data conversion between Java and B-Prolog

The following table converts data from Java to Prolog and vice versa:

Java Prolog
Integer integer
Double real

Long integer
Biginteger integer
String atom

Object array list

Object Saddr(11,12)

Table 3.1: Data conversion table in B-Prolog

Since primitive data types in Java cannot be converted into Prolog, the con-
version between arrays and lists needs further explanation. A Java array of some
type is converted into a list of elements of the corresponding converted type. For
instance, an Integer array is converted into a list of integers. In contrast, a Prolog
list, whatever type whose elements belong to, is converted into an array of Object
type. When an array element is used as a specific type, it must be casted to the

type.

3.3.6 yajxb (XSB)

Made by Stefan Decker in Stanford University, yajxb realizes a connection from
Java to XSB. In contrast to InterProlog, using Yajxb causes Java to call XSB di-
rectly via Java’s native interface mechanism. Yajxb for the moment does not sup-
port calling java from XSB. Some caveats are still pending. Java loads the XSB
system as a shared library. During initial loading, when using XSB, Java some-
times crashes nondeterministically (4-10% of loading tries).Once it is loaded, ev-
erything works fine. Being a recent development (the downloadable sources are
dated 10/03/2001) new developments are expected.

14

3.3.7 BinProlog

This very complete system ,by BinNet, has an interface through C. It is based on
the binarization of clauses, which roughly consists of making the continuations ex-
plicit. The WAM is specialized and the abstract code is emulated by an emulator
written in C. The BinProlog runtime emulator combined with the C-ified compiler
are packaged into a dynamic library (jbp.dil or libjbp.so). A stub jBinPro.c based
on BinProlog’s C interface implements a call_bp_main C function which is de-
clared as a native Java method in file JavaLog.java. A method similar to this one
appears to be the most promising way to achieve the job proposed in this work.

15

3.4 Prolog engines in Java
34.1 BirdLand

Although often referred in the internet in every page that cares about this subject,
the Web page related to this work could not be found.

34.2 DGKS Prolog

Written from the ground up in Java, basically only lacking the IO predicates usually
found in Prolog implementations.

3.4.3 Javalog

JavaLog is a Prolog interpreter written in Java designed to allow easy integration
between Java and Prolog. JavalLog was developed at the ISISTAN Research Insti-
tute ! and is currently used in several research projects related to artificial intelli-
gence supported by Object Oriented concepts for Software Development. Namely
software agents developed under the Brainstorm project that aims the building of
multi-agent systems through software architectures supporting the usage of both
the object-oriented and logic paradigms.
Javalog has the following features:

e It enables the creation and usage of Java objects in Prolog programs, mixing
Logic/OO paradigms.

o It preprocess Java methods with embedded Prolog enabling the common use
of local variables in both paradigms.

o It supports the manage of common knowledge of several instances of Java-
log’s Prolog interpreter by means of a blackboard architecture.

o It allows the physical distribution of Prolog interpreters using Java RMI and
logic module mobility.

JavaLog should run on any Java(tm) 1.1.x or 1.2.x virtual machine and has
been tested on Linux 2.0.x, Win9X, WinNT, Solaris, IRIX and OSF1.

3.4.4 NetProlog

NetProlog is a logic programming system that generates a binary code, executable
in the Java Virtual Machine (JVM). It follows almost completely the syntax tra-
ditionally used in the ISO Prolog implementations. For each logic predicate is

!http://www.exa.unicen.edu.ar/isistan/

16

generated a corresponding Java class, which can be used as a regular code gener-
ated for the JVM. It has a user graphical interface, where the programs, source and
object, can be edited, compiled, printed, etc.

The NetProlog system has been developed using the language Visual Prolog as
the working language. The code can be compiled for either Windows or Linux. The
code generated by NetProlog is CGI (Common Gateway Interface) independent.
This characteristic is very important for programs developed for the Internet, such
as intelligent agents for instance. The object code is generated for the JVM pattern,
which eliminates the necessity of the execution of the CGI programs to process
HTML forms.

3.4.5 JIP Java Internet Prolog

JIP - Java Internet Prolog is a cross-platform PureJava 100% prolog interpreter
developed in JDK 1.1 (also working in Java 2 Platform) and supporting the prolog
Edinburgh syntax. It is compatible with other famous prolog engine (such as LPA,
Quintus, SWI, etc.) and can be run by any browser supporting JDK 1.1. JIProlog
has an easy-to-use API by which, you can invoke the prolog interpreter in any Java
applet/application without dealing hard with native code (JNI or RNI/JDirect) and
without requiring signed applet (as required by other prolog interpreters written in
C/C++). By the API you can invoke the prolog interpreter in your Java classes in
a very simple way calling your prolog predicates in the same way you call a Java?
method and, vice versa, you can invoke Java classes in your prolog code as you
call predicates.

JIP allow to extend the set of built-in predicates implementing them in the same
way you write Java classes. So you can add custom features, such as custom di-
alogs or custom algorithms, and you can speed up the computation transforming
your prolog predicates (defined in your prolog code) in built-in predicates imple-
menting them in a Java classes derived from a special Built-In class exported by the
API. Besides, JIP support external database of clauses. JIProlog allow you to use
such an external database of facts as it is a predicate stored in the prolog memory.
The prolog engine is based on an ASM (Abstract Syntax Machine) implemented
using a LISP-like depth-first search. It is composed by a very complex hierarchy of
Java? Classes implementing the ASM with typical prolog heuristic (such as back-
tracking, cutting mechanisms, etc.) a manager for built-in predicates, the parser
for prolog language and so on. It also implements a mechanism to call prolog pred-
icates from any Java classes and vice versa to invoke Java classes from your prolog
code. JIProlog is a prolog interpreter to run your prolog code as a “stand-alone”
application without an external Java? applet/application. In other words you can
write your program entirely in prolog (eventually using your dialogs or classes ex-
tensions) and run it as a “stand-alone” application. Only you must define in your
prolog program the predicate main/0 that is the entry point predicate that will be
called by the interpreter when it will start.

17

3.4.6 JProlog

This was the first prolog to java translator. It is based on continuation passing style
compilation, called binarization transformation [6]. See all the subsequent work
that was based on this first breakthrough: BinProlog, JINNI, K-prolog, B-prolog,
Prolog Café

34.7 MINERVA

Compiles 1SO-13211-1 Prolog into it’s own virtual machine which is executed
in java. MINERVA is a commercial programming system geared for intelligent
client-server applications on the internet.

3.4.8 JINNI

A Prolog Interpreter in Java for Intelligent Mobile Agent Scripting and Internet
Programming. Jinni compiler integrates a high performance pure Java based Prolog
system, a GUI development library, Multiple Databases and an Object Oriented
Layer. It supports remote predicate calls and multiple network transport layers
(HTTP, TCP/IP, UDP, multicast, Corba, RMI etc.). Web pages or components of
ZIP files are handled just as if they were ordinary Prolog files. As a multi-threaded
Java program providing portable networking and Prolog style rule based reasoning,
Jinni is an ideal tool for building Intelligent Agents. It is based on the same line of
research of it’s author Paul Tarau and it complements the BinProlog commercial
product from BinNet which as stated in the corresponding section is not suitable
for applet development for it is JNI based.

18

3.5 Hybrid systems

These are systems that implement sub or supersets of prolog namely linear logic
programming languages.

3.5.1 LLPj
First implementation of the LLP -> Java. See Prolog Café below.

3.5.2 Prolog Café

Prolog Café is a Prolog-to-Java source-to-source translator system [1].Is is based
on the first prolog to java translator jProlog developed by B.Demoen and Paul Ta-
rau (see jProlog above). This system translates LLP into java via the LLPAM [5].
LLPAM is a extension of the standart WAM [7] for LLP. LLP is a superset of pro-
log. There was a so-called ’first implementation’ that was based on the original
LLPAM. The main difference from the first implementation is resource compila-
tion. Resource formulas are compiled into closures which consist of a reference
of compiled code and a set of biddings for free variables. Calling these resources
is integrated with the ordinary predicate invocation. It’s 2,2 times faster compared
with jProlog.

3.5.3 W-Prolog

Written before all the other stuff presented here, W-Prolog 1.0 was the first Prolog
interpreter written in Java. Had Initial release in October 1996 and it was followed
fairly soon by Demoen and Tarau’s compiler. W-Prolog is an interpreter for a Pro-
log like language implemented in Java. The implementation is extremely portable
and can be run as an applet under Java-capable web browsers. W-Prolog has a
nicer user interface than most Prolog systems (which typically provide a command
line interface). It provides simple tracing and has an (optional) occur check. The
W-Prolog system is small and comparatively simple. However it is not particularly
fast. The language is given by the following simple grammar:

Program ::= Rule | Rule Program
Query ::= Term ’
Rule ::= Term. | Term :- Terms.
Terms ::= Term | Term , Terms
Term ::= Number | Variable | AtomName | AtomName(Terms)
| [1! [Terms] | [Terms | Term]
| print(Term) | nl | eq(Term , Term)
| if(Term , Term , Term) | or(Term , Term) | not(Term) | call(Term) | once(Term)
Number ::= Digit | Digit Number
Digit :=01...19
AtomName ::= LowerCase NameChars
NameChars ::= NameChar | NtameChar NameChars

19

NameChar ::=al... | z| Al... | Z | Digit

W-Prolog can be run as an applet or as a standalone application. It can also
be embedded and called from another program. To run W-Prolog as an applet
construct an HTML file containing the tag:

<center>
<h1>W-Prolog</h1>
<applet code=WProlog.class width=120 height=65>
</applet>
<[center>

and use netscape (or internet explorer) to view this file.
The W-Prolog inference engine can be called from Java code. It is recommended
that W-Prolog be run as a standalone application. Earlier versions of W-Prolog
supported loading files in the applet version.
This worked flawlessly when run with Sun’s appletviewer but refused to work un-
der netscape.
Another example of undesired behavior under netscape concerns threads. Each
query in W-Prolog runs in its own thread. This means that a long running (or
non terminating) query won’t freeze the interface (although it will slow subsequent
queries down). This works, but not under netscape.

3.5.4 Kiev

Kiev is a full-featured language targeted to creation of complex applications. Kiev
is backward compatible with Java and Kiev compiler generates code for JVM. Kiev
language has an embedded Al engine that inherits many features and power from
Prolog language. Like Prolog it allows both check possible solutions for rules or
find out possible a solution (or some/all solutions) that satisfy the rule.

20

Chapter 4

Interfacing Java with
GNU-Prolog

The motivation to use GNU Prolog as well as some of it’s characteristics that mat-
ter for this work are presented.Second the JNI architecture is also presented and
explained why it’s considered to be the best choice. A comparison matrix is shown
that summarizes the different advantages and disadvantages for each technique.
Then the job requirements and the (serious) limitations encountered are explained
in order to frame and explain the work done. Finally one last section in this chapter
will present the intended API design.

4.1 GNU Prolog

GNU Prolog development was started in the of computing science department at
the university of Paris 1 by Daniel Diaz!. It is currently an open source project
with the following features, taken from it’s manual:

¢ Prolog system:

Conforms to the ISO standard for Prolog (floating point numbers, streams,
dynamic code,. . .). alot of extensions: global variables, definite clause
grammars (DCG), sockets interface, operating system interface,. . .

More than 300 Prolog built-in predicates.
Prolog debugger and a low-level WAM debugger.

Line editing facility under the interactive interpreter with completion on
atoms.

powerful bidirectional intetface between Prolog and C.

o Compiler:

"http://crinfo.univ-paris1.fr

21

Native-code compiler producing stand alone executables.

Simple command-line compiler accepting a wide variety of files: Prolog
files, C files, WAM files,. . .

Direct generation of assembly code 15 times faster than wamcc + gcc.

Most of unused built-in predicates are not linked (to reduce the size of
the executables).

Compiled predicates (native-code) as fast as wamcmcc on average.

Consulted predicates (byte-code) 5 times faster than wamcc.

It is also appealing for the use in this work the fact that it only uses standard tools
like the GNU linux linker or the assembler. It does not, however, allows for dy-
namic linking for it has to be fully statically compiled. Important also is the fact
that a very efficient Finite Domain (FD) solver is embedded in GNU Prolog and,
therefore, the presented tool opens the possibility to integrate Java OO with Con-
straint Programming. As seen before a two way communication tool is to be made
between GNU-Prolog and Java. GNU-Prolog is equipped with powerful ways for
the integration development. These tools are based in a strong API between Prolog
and the C language herein referred as the foreign interface. The foreign interface
is clearly explained in the GNU Prolog manual [2]. Provided such a proper tool to
work with it was decided to use it heavily. This interface allows a Prolog predicate
to call a C function. Both simple and complex C routines depending whether the
routine arguments are simple C types or complex structures which have to be rep-
resented in Prolog as some kind of complex structures like, for instance, compound
terms. Also made possible through the use of the foreign interface is the ability
to create non-deterministic code in C and, therefore, in Java. The naming of this
API is taken from the foreign/2 directive that declares a C function interface. The
general form is foreign (Template, Options) which defines an interface
predicate whose prototype is Template according to the options given by Op-
tions. Template is a callable term specifying the type/mode of each argument
of the associated Prolog predicate. Each argument of Template specifies the for-
eign mode and type of the corresponding argument. This information is used to
check the type of effective arguments at run-time and to perform Prolog <-> C data
conversions. Opt ions is a list of foreign options. Possible options are:

fct_name (F)

F is an atom representing the name of the C
function to call

return (boolean/none/jump

Specifies the value returned by the C function

bip_name (Name, Arity)

Initializes the error context with Name and
Arity

choice_size (N)

Specifies that the function implements a non-
deterministic code. N is an integer specify-
ing the size needed by the non-deterministic
C function

22

Table 4.1: Possible options in the GNU Prolog foreign API

In the opposite direction, the foreign interface enables the creation of fully
statically compiled C functions that can, to a great, extent, manage the GNU Prolog
environment. Has can be seen in the GNU Prolog manual there are functions to:

o Start the prolog environment

¢ Open a query

e Create terms in the heap

¢ Compute te first solution

¢ Eventually compute next solutions
o Close the query

¢ Stop the prolog environment

It is even possible to define an alternative main function to the embeded caller
of a top-level prolog in C.

4.2 Whatis JNI

First introduced in JDK 1.1, JNI is touted as the final and correct way to mesh
portable code with platform code. JNI is a portable specification by definition.
Namely:

¢ JNI is portable across JVM implementations. The same binaries should work
with any JVM on any particular platform.

¢ JNI handles data in a portable manner: Rather than passing raw Java data
structures directly to native code, access to data structures is indirect. JNI
defines native calls through which the native code can read and write class
and object members.

o JNI is friendly to garbage collection, providing new techniques for managing
dynamic objects that do not interfere with advanced garbage collection tech-
niques. It accommodates the underlying JVM garbage collection facilities
without placing any burden on the native programmer. JNI does not expase
JVM memory to the native code as anything other than object references.
Since these references provide a level of indirection between the JVM and
the native code, the native programmer is protected from garbage collection
activity.

23

Being aimed at a truly portable environment through both Operating Systems

and JVMs the natural choice for the integration architecture seems to be JNI. To
connect Java methods to native functions one has to define individual methods as
native, then there is a corresponding C/C++ entry point whose mangled name “see
section 5.2.4 on page 38” reflects the C naming convention and the corresponding
Java signature. The well documented tool that generates header files and derive the
entry point names is javah.
All native side access to Java classes, objects and members is indirect. The native
code must jump through a few hoops to touch the class contents. The JVM can be
started up from a native application through the invocation API, which launches
the JVM, provided as a shared library, through a simple sequence of C/C++ calls.

Currently for developing Java based interfaces for Prolog systems these are
probably the most portable for they are defined as a standard for Java communi-
cation natively with the underlying operating system facilities. Obviously, when
is available an interface for a Prolog system based on some relatively low-level
language like C/C++ is much easier to implement a wrapper, using Prolog, for that
interface than to develop a completely new one. However, use of native methods in
Java is of limited interest due to security concerns that avoid the creation of applets
with these kind of mechanisms. Certain “limitations” of Java must be overcome
by some native interface whether implemented directly through the Prolog system
or through another third interface invocation. The following must be included:

o Interaction with the environment

o Device control

o Interprocess interaction

o Interaction with the window manager

Of particular interest is the use of the reflection API within JNL With the capa-
bility to introspect through the class hierarchy and within a particular class through
its members it’s possible to build a representation at a highly effective C tier to be
used later mapped into the Prolog level.

4.3 Comparison matrix between technologies

In the previous chapters both advantages and disadvantages of each technology
for java-prolog integration have been mentioned. Since the different levels of ap-
proaching made to each product led to various levels of detail when considering
the benefits or weaknesses of any particular issue a detailed and thourough sum-
mary seems to be in order now. Some of the characteristics explained below are an
advantage in some technologies and a disadvantage in others.

24

¢ Performance

Apparent response speed of the integrated system relative to its underlying
systems (a JVM and a Prolog machine). It may be considered a measure of
the performance penalty in which the particular technique incurs. Normally
if the communication between both systems is maintained by a thin layer of
data structures and interlayer communication the performance penalty is not
noticeable. Obviously the native interfaces should show best results in this
particular aspect.

¢ Standards adherence
When there are standards defined in the underlying technologies the integra-
tion technique should not rely on a particular state of that standards at any
point in time. Being GNU Prolog and specially Java subject of fast evolving
standards, those should be able to develop independently and not interfere
with the integration. This integration can not be compromised by the normal
evolution o any of the standards in any of the layers.

¢ Applet development and deployment
An applet runs in a JVM integrated in an HTTP browser. The possibility
of running the integrated system in those JVMs relies normally on security
issues that are usually addressed in the Java platform but not in the Prolog
platform. Its responsability of each implementation to make these issues
addressed in their solution and it does not seem to be possible to consider
this point as an advantage or drawback of each technique.

¢ Platform independence

A serious deficiency might be considered when the interfaces depend on
some characteristics of the systems where the underlying levels are running.
One of the often stated objectives of Java is platform independence both
operating system and hardware and it would be a serious drawback if the
interface would rely on on particular aspects of some operating system for
instance. Of course the portable way of doing this kind of integration in Java,
JNI, has the strongest point in this question.

¢ Coupling level
Whether the interface implies tightly coupled systems with shared data-
structures and synchronous process communication or they can be loosely
coupled, communicating asynchronously in a local or distributed manner.
The less coupling inferred by an interface the better for as much indepen-
dence as possible is the correct way to behave in the present distributed
asynchronous world.

Sometimes, due to the underlying systems, an optimal solution attending all of
these characteristics is hard to encounter. The following matrix shows a compre-
hensive view of every of those issues that arose at any of the points mentioned in
the previous chapters.

25

| Advantages | Disadvantages

Native interface
Performance High development complexity
Applet development Standards adherence
Platform independence
Coupling level
JNI based interface
Performance Coupling level
Standards adherence Platform independence
Smooth development complexity Applet development
Prolog engines in java
Applet development High development complexity
Performance Standards adherence
Platform independence Coupling level

Table 4.2: Integration methods relative advantages

4.4 Requirements and limitations

In its current incarnation, the GNU-Prolog compiler has a drastic drawback that
inhibits the complete fulfillment of the initial objective of this work. As it will be
seen later the JNI technology relies heavily on dynamic linking of native methods.
GNU-Prolog does not currently allows dynamic linking. It generates native code
in a position dependent way so that no shared objects can be created which ref-
erence natively the GNU Prolog code. Browsing through this work an interested
reader should now wonder why then bother to show a full grown implementation
of the Java to Prolog API if it is not possible to make it work. The reason steems
from the fact that this limitation is likely to be overcomed in some point in the
future by change of at least one of the following two realities

e INI depends on shared object creation for native functionality implementa-
tion

¢ GNU-Prolog is not statically linked and it would then be possible to create
shared objects based on it

The first reality is more likely to be surpassed and even currently it remains to be
checked if some, not off-the-shelf JVMs, like the gcj compiler, imposes this kind
of limitation. Ahead “see section 6 on page 45” it will be shown the possibility
to achieve this kind of integration with this tool. This work shows a very efficient
way of achieving the intended purpose and it can always be used as a proposal
foundation. In the subsequent chapters the implementation is explained thoroughly

26

and it is completely implemented allthough the native functionality of the Java to
GNU-Prolog API was not, for the moment, possible to be done.

4.5 API Design

Using the tools presented in the two previous sections a specification for the API
structure can be drafted. A two layer API shall be used.

1. A low-level API entirely developed in C for the connection to the JNL. This
is mainly a C middle tier designed to exhibit very high performance, this
layer will be called gpl_java_C. For the gpl_java_C an interface from the
JNI invocation API to GNU-prolog through the foreign/2 primitive will
be developed.

2. Ahigher-level interface designed to be more friendly for both the Prolog and
Java programmers to use. It will be called gpl_java_PL.

The positioning is thus:

USER

gpl_java_PL

gpl_java_C
JNI
JVM

Figure 4.1: API Design

The typing granularity in GNU-Prolog foreign API is smaller than that of java
so the conversion between Java and GNU-prolog types should not be performed
based on the JNI native types but instead on the different foreign types. However,

27

since the JNI functions are appropriate for all the Java typing range it was decided
to use them as foundation for the interface development. The conversion table used
for simple types was thus the following:

[Java | JNI Native | Foreign |
boolean Jjboolean boolean

byte jbyte byte

char Jjchar char

short Jjshort integer

int Jint integer

long jlong long

Sfloat Jfloat float

double jdouble float

void void void

Table 4.3: Conversion table GNU Prolog <-> Java

The reverse table mapping from GNU-Prolog types to JNI is as follows:

| GNU-Prolog | Ctype | JNI Native | Description of the C type
boolean boolean Jjboolean unsigned 8 bits
byte byte Jbyte signed 8 bits
char char Jjchar unsigned 16 bits
short integer Jshort signed 16 bits
int integer Jjint signed 32 bits
long long jlong signed 64 bits
Sfloat float Jfloat 32 bits
double float Jdouble 64 bits
void void void NA

Table 4.4: Reverse mapping table GNU Prolog <-> Java

With these decisions in mind a complete architecture has to be devised and the
chosen implementation is presented next.

28

Chapter 5

Implementation

Several new functions, to manipulate the JVM, were developed in C and linked
with a GNU prolog interpreter. This kind of integration between GNU prolog and
the lower layers are the most effective for general availability and fast performance.
The work was divided in two different sections according to the direction of the
intended communication both are explained in the following two sub-sections.

5.1 Prologto Java

The API that allows the Java calls from an arbitrary language is the invocation C
based APL
To run prolog code in Java there has to be the possibility to:

o invoke one or several JVMs (Java Virtual Machine) from GNU Prolog.
¢ load class methods.

o traverse the class hierarchy loading methods.

e create java objects.

o call both static or instance methods with the appropriate return value.
e build prolog glue predicates from the loaded methods.

e call prolog predicates with the appropriate returned value from the underly-
ing method.

Several functions were developed in the C language, linked to a GNU Prolog

interpreter to provide new predicates for Java maniputation. Att these predicates
are named consistently in the form java_XXX to be easily distinguishable from
other Prolog predicates. The convention of using input parameters first and output
parameters last is followed. Several predicates behave non-deterministically, e.g.
java_MethodID or java_SuperClass. With an architecture that is intended to be as

29

lightweight as possible, apart from the direct access that the JNI facilitates, some
structures were added at an intermediate level (C level). These were created to
avoid repetitive JNI method calling by maintaining a certain amount of information
locally cached at the C level. The different structures will be explained attached
with their purpose.

5.1.1 single vs. multithreading

From the strict JNI point of view it should be rather simple to implement Java
multi-threading in GNU Prolog. The structure used is the following:

typedef struct {
JNIEnv *env;
JavavVM *jvm;
} Java_VM;

This structure is used to keep a link between a JNIEnv environment and a
JVM. In the implementation presented here, an array of Java_VM structures is
used. All the function calls in the JNI API use an opaque structure pointed to by
a JNIEnv* pointer. This pointer is fetched when the JVM is created by use of the
JNI_CreateJavaVM function. Originally it was meant to support multithreading by
the use of the AttachCurrentThreadfunction but for the sake of simplicity and to
avoid incurring in problems with multithreading in prolog, it was decided to use
only one JVM and a single thread of execution. The JVM initialization is done by
use of java_CreateJavaVM/1 (see section A.2.0.7 on page 49) which mimics the
behavior of INI_CreateJavaVM of the JNI APL The multithreading enabling func-
tion java_GetJavaVM/2 (see section A.2.0.8 on page 49) although implemented
was deprecated since it was chosen not to support multiple threads.

5.1.2 Class loading

Right after initializing the JVM, Java classes can be loaded through the use of
java_GetClass/3 (see section A.2.0.10 on page 50). As usually found from now on
the output parameter of the java_CreateJavaVM/1 predicate will be used as input
parameter for the different functions to provide the link to the adequate JNIEnv
pointer. One can find this unnecessary since only one such pointer is in use but
the structure is enabled for future use whenever multithread synchronization is ad-
dressed. The java_GetClass/3 uses the JNI function FindClass to load the class
named in java_GetClass second parameter. This function proceeds recursively fill-
ing a local array of classes until all the relevant parts of the class hierarchy have
been visited. The array that supports this local class information is made up of
elements with the following structure:

typedef struct {
int jvm; //index to the jvms

30

char *clazz; //class name
jclass classID;
jclass superClassID;
int superClassIndex; //index to the superClass;
//if java.lang.Object then -1
} Java_Class;

This array will allows us not to repeatedly call JNI functions to get the ClassID
pointer by using only one level of indirection to reach the class. It can be easily
understood that the first field points to a java_VM slot, the second and third is in-
formation pertaining to the visited class and the last ones are used for hierarchy
maintenance. The last parameter of java_GetClass/3 is input/output, it may be uni-
fied or not and it provides the array address where the class is located or checks if
that class is in the specified slot or not returning a boolean value. Another impor-
tant predicate to handle classes is java_SuperClass/2 (see section A.2.0.11 on page
50). It’s the first predicate presented that behaves non-deterministically. If both
arguments are ground it returns a boolean value indicating wether the second class
is superClass of the first, otherwise it provides class hierarchy traversing facilities
by providing the different available solutions.

5.1.3 Method loading

To keep the method information locally the predicate to use is java_GetMethods/1
(see section A.2.0.12 on page 50). Instead of having all the visited classes methods
loaded, only those methods brought in by java_GetMethods/1 are loaded to the
associated local structure:

typedef struct {
int jvm; //index to the jvms
int classIndex; //index to the class
char *method; //method name
char *signature; //method signature
int ctIndex; //index to the call table
int nParams; //Number of parameters
jboolean isStatic; //is static flag
jmethodID methodlID;

} Java_Method;

In relation to the loading of methods there are two types of class visibility:

1. visited classes are those whose methods are foaded through java_GetMethiods/T.

2. traversed classes that belong to the hierarchy but whose methods are not
loaded.

31

The reason to have classes with different levels of information present relates with
an intelligent resource management. All the final class direct genealogy should
have their methods loaded. All the information presented here is collected through
Java reflection at load time and kept locally for performance purposes. Reflection,
or introspection, is one of the major improvements in language design brought in
by the Object Oriented paradigm. Through it, the inners of a class are exposed.
Both its methods and its members properties can be reached. Several wrappers
to the Java refiection API are defined in the JNI and used here thoroughly. The
java_Method struct first two fields are indexes into the Java_VM and Java_Class
arrays. The third and fourth are for the method’s name and Java signature. The
ctIndex field points to the index in the callback tables referred in the appropriate
section (see section 5.1.4 on page 32). The nParams field could be used for run-
time checking of parameter accordance between definition and call. Actually no
checking is currently done for the higher level API does, in Prolog, all the predicate
building taking appropriate care of both argument number and typing. The flag
isStatic is crucial for knowing what callback table to use and, thus, the appropriate
method calling function. Finally the methodID gathers a method pointer that can
be used later to perform immediate invocation.

5.1.4 Reflection and callback tables

The invocation API is used to embed a Java virtual machine into a Prolog inter-
preter. Through this interface using the GNU prolog foreign interface [2] there is
the possibility to use the JNI to access the Java refection classes: you can pull a
Java class apart, learn the names and types of its data fields, the names and sig-
natures of its methods and its place in the inheritance hierarchy. The signatures
include enough information about the return and parameter types. An approach to
translate between Java signatures and *Prolog signatures’ is presented (see section
5.1.7 on page 34). they are more adequate for Prolog programmers. There must be
the possibility for a Java enabled Prolog to be able to invoke any method, static or
non-static that may return an arbitrary Java result and also have an arbitrary number
of Java arguments. Some JNI coding is needed to mimic the operations provided
by the reflection APL Depending on whether it is a static or non-static method,
and on its return type, there are different method invocation functions in JNI. Class
methods are invoked using Call<type>StaticMethodA and non-static methods us-
ing Call<type>MethodA. An effective solution was adapted from [3]: two tables
are set up with the addresses of the appropriate JNI call back functions. As seen in
the previous section, when calling the java_GetMethods/1 (see section A.2,0.12 on
page 50) the Java_Method array is filled with all the method information, namely
their names, signatures, the callback table index for later reference when eventually
invoking, the number of parameters for easier verification of parameter accordance
between call and signature and whether it’s a static or instance method for using
the appropriate entry in one of the callback tables:

32

| | Static Callback Table | Instance Callback Table |

0 CallStaticObjectMethodA CallObjectMethodA

1 CallStaticBooleanMethodA CallBooleanMethodA
2 CallStaticByteMethodA CallByteMethodA

3 CallStaticCharMethodA CallCharMethodA

4 CallStaticShortMethodA CaliShortMethodA

5 CallStaticIntMethodA CalllntMethodA

6 CallStaticLongMethodA CallLongMethodA

7 CallStaticFloatMethodA CallFloatMethodA

8 CallStaticDoubleMethodA CallDoubleMethodA
9 CallStaticVoidMethodA CallVoidMethodA

Table 5.1: Method calling callback table

The Call<type>MethodA and CallStatic<type>MethodA are one of the possi-
bilities of using JNI to do method calling. In this style of invocation the method
parameters are provided as a jvalue array of values as the function third parameter.
Other possibilities were Call<type>MethodV which take as its third argument a
variable argument list as defined by the ANSI C header file <stdargs.h> and Call-
TypeMethod where arguments are simply listed in the function call; These are not
used in the GPL/INI interface due to the inability to verify the correct argument
typing and numbering using these kind of argument passing.

The jvalue structure is a union with the following definition:

typedef union jvalue {

jboolean zZ;
jbyte b;
jchar c;
jshort s;
jint i;
jlong Ji
jfloat £;
jdouble d;
jobject 1;
} jvalue;

So it can hold any kind of JNI native type as a value. To perform a method
invocation, after filling it’s parameters, only the already known callback function
as to be used, as it will be shown further on section 5.1.8 (on page 36).

5.1.5 Object representation in Prolog

An object ID in JNI is represented as a long integer represented using 32 bits. A
compound term in Prolog does not have such a well known implementation. A

33

fixed structure was chosen that has an arbitrary predicate name (w for historical
reasons) and a Upper Half and Lower Half number of bits as arguments. These
are built given a jObject object ID that is divided into two halves. One shifted
16 bits right and both masked with OXFFFF. Then both sets of bits are turned into
valid prolog integers and a compound term is built as can be seen in the java_New
function.

5.1.6 Object instance creation

To create an object using JNI there are three different functions available differing
in the way how the constructor arguments are bundled to the JNI function, much in
the same way as the method calling functions that we will see in section 5.1.8 on
page 36. Currently under the gpl_java environment a three step approach has been
followed:

1. Allocate space for the object constructor arguments
2. Fill the arguments
3. Call the java_New predicate

Another approach could be the one presented in the future work section (see
section 6.2.6.3 on page 46). To allocate space in java the interface predicate
java_Create_Args/2 (see section A.2.0.14 on page 51) is used with the number of
arguments the constructor uses. The family of functions java_PutArg XXX (see
section A.2.0.15 on page 51)where XXX may be int, float, String or obj are then
used to fill in the arguments. Finally the java_New function has to be called with
the built args and the correct constructor signature. A Prolog term is returned as
seen above.

5.1.7 Converting between Java and Prolog signatures

For convenience to the prolog programmer a Prolog representation of class signa-
tures was introduced. A Java methods signature is made up of the methods pa-
rameters types indicated through a character in the case of primitive types and the
Fully Qualified Name of a class and a ; after the FQN in the case of a generic class.
A [precedes the type indication in case it is an array. The methods parameters are
enclosed in parentheses and the return type follows them. The following table has
a description of all the cases:

| Signature Encoding | |
B byte
C char
D double
F float
I int

34

J long

S short

% void
L<fully-qualified-class>; fully-qualified-class
[<sigtype> Array of <sigtype>
(<sigtype-list> j<return-sigtype> | Method signature

Table 5.2: Conversion table between Java and “GNU Prolog sig-
natures”

Summarizing a Java signature is (<sigtype-list>)<return-sigtype>. For in-
stance a method accepting as input an array of integer and a string and returning a
boolean has ([ILjava.lang.String;) Z for signature.

The method used to build a Prolog signature is based on list notation to repre-
sent argument sequences with the following self-explanatory named elements to
indicate the different types:

char

byte

int

long

short

float

double
boolean

array (<type>)
object (<path>)

where <type> is either one of the primitive types or a path of an object repre-
sentation and <path> is in the form of a list representing the hierarchy of classes
in the original signature but reversed. For instance the same signature presented
above would be represented in gpl_java as '
[array(int),object ([’'String’, lang, java])]-boolean
As you noticed the order of the terms in the Prolog signature list that represents a
FQN is inverted with relation to the Java hierarchy. This was made for it is easier,
for instance, to reach the final class name using only the list header and the rest of
the list can then be processed through the normal prolog list processing primitives
but then, this is seldom used. There could be portability problems with different in-

a companion sub-type numeral ranging from O to 5 respectively. The same tech-
nique was used to handle the different float sizes, both the float and double Java
types map to a Prolog float with a sub-type respectively 0 and 1. The predicate
type/2 (see section A.2.1.2 on page 55) converts between a Prolog signature in the

35

first argument and a Java signature in the second so it can be used after retrieving
a method’s Java signature through java_MethodID/4 and piping it through name/2
to obtain a valid Prolog signature.The predicate type/2 is implemented with a DCG
to perform the type conversions. For instance in the toy example referred in the
appendixes with the loading of the testClass class that contains among others
the sumIntegers method the java signature can be converted to the prolog sig-
nature by use of the following prolog pipeline:

j_mid(sumIntegers, JSig, M), name(JSig, Sig), type(PSig, Sig).
M =2 JSig = "(IDI’ PSig = [int,int]-int Sig = [40,73,73,41,73] ?

In the utilization examples in the file test_java.pl present in the ap-
pendixes “see section C.2 on page 62" the convertion is fully illustrated. Another
method could be to convert when calling java_GetMethods/1 and put immediately
in the Java_Method struct in a field with the Prolog signature but this was not done.

5.1.8 Predicates to call Java methods

There are 3 steps that need to be performed to do a Java method call.
1. Initialize the space needed for arguments and return value
2. Fill in an array of parameters
3. Actually call the method

For the methods space to be initialized the function java_Create_Args/2 (see
section A.2.0.14 on page 51) has to be called. This new function allocates space
to hold the methods arguments. Since all the arguments are held in a jvalue union,
in order to use the Call<type>MethodA template function, the number passed of
jvalues are malloced and they will hold later any kind of intended java value. Par-
ticular care has to be taken to adequately fill the jvalue array of parameters and
the appropriate java_PutArg_<type> has to be used. A call for each argument has
to be done and none more. Finally, according to the return type, the appropriate
java_CallMethod_Go_<type> should be used, returning the expected value as its
last argument.

5.1.9 Predicate building from Java methods

After initializing the JVM, loading one class and getting its methods, it’s possi-
ble to produce a callable clause, a Prolog predicate, for a loaded method. This is
ultimately accomplished by the Prolog written predicate java_Compile/5 (see sec-
tion A.2.1.1 on page 55). java_Compile creates a clause with the methods name
that can be asserted or pretty printed with portray_clause/1. To easily call the
java_Compile predicate, without using the helper predicates presented in section
C.1 on page 61 such as j_comp/2, the method signature have to be fetched by using

36

java_MethodID/3, converted to a Prolog signature by use of type/2 before calling
java_Compile/5, whose output parameter is the callable clause corresponding to the
method provided. j_comp/2 does all this work plus asserting the resulting clause.
The java_Compile/5 predicate can be found in the jni_compiler.pl file. It uses a
DCG to do the all the conversion between a Java prototype and a callable clause in
GNU prolog. It uses all the aspects of the Java/Prolog signature to create a clause
that accepts the correct number and type of arguments and returns the correct type
in the return value.

5.2 Java to GNU Prolog

The API is this direction is presented. First the way how it has to be done in the JNI
architecture. Then the way it was done in the present API development. Finally
some conclusions about the usability of the proposed framework.

5.2.1 How to do it with JNI

In the following subsections the steps needed to accomplish the integration of GNU
Prolog into Java are presented. A native method in Java is identified using the
nat ive keyword to modify the method declaration. No body is then defined for
that method within the Java class where that method is declared. Instead, the body
of the native method is defined in a separate C source file. All the native
methods have a corresponding C function. The javah tool takes has input a Java
Class file and generates a function prototype for each native method declara-
tion. This prototype constrains how the native function is written by defining its
input and output. A library was developed that with methods that wrap the foreign
interface.Let’s look at the steps involved in writing Java code to use our particular
native wrappers.

5.2.2 Identify native functionality

We have existing code, the GNU Prolog to C (foreign) API, which we want to
deploy to Java through some wrappers. javah assumes a C calling interface be-
tween Java and native code. All that there is to be done is to get the call stack
correct when calling the API from Java.

5.2.3 Describing the interface to the native code

The existing interface is mapped directly onto Java native method declarations.

5.2.4 Writing the java code

Declaring a native method within a Java class is as simple as the use of the
native attribute keyword. It’s method names are simply preceded with the key-

37

word and no body of the method is supplied. From a syntactical perspective, the
abstract and the native keywords are identical. They both defer the method imple-
mentation. In the case of an abstract method a subclass defines the method.
In the case of a native method the implementation has to be defined in a C
source file. The tool javac is then, as usual, used to compile the class files
for the next tool javah to process for the include files, with the function pro-
totypes, generation. Once the Java class files with native methods are created
javah takes them as input to produce a C header file with a function prototype
for each nat ive method declared in the input class file. When using javah to
produce the header files, care must be taken to use the option —jni to produce a
JNI style function prototypes as opposed to the old-style (JDK 1.0) function proto-
types. The name mangling used by the JNI 1.1 specification states that for a class
Clazz with a native method NativeMethodz a prototype with the mangled
name Java_Clazz_NativeMethodz is created. The generated header file is
then available for inclusion.

5.2.5 Writing the native code

The native code has the implementation of all the methods declared has native
in the class file. It follows strictly the C argument passing convention and, as seen
in the header files generated, for each method in the class a function is defined with
two extra arguments.

¢ a JNIEnv pointer as its first argument
¢ an object reference as its second

All the types of the input arguments and the return value are defined by the INIL
The C source files include the header files generated in the above step and proceeds
with the native implementation of the desired functionality. In our intended line of
work only the wrapping of the GNU Prolog to C API functions has to be done to
provide to Java the functionality of the foreign APL

5.2.6 Building the library

The library is built as a shared object library with the special suffix . so.
To create the gprologJava.o object file needed to build the shared library a compi-
lation made with the aid of the GNU Prolog compiler (gplc) is used, to include
the GNU Prolog machinery. In the example presented here the following line is
used:

gplc -C -O -C -D_REENTRANT -C -fpic -C \
-1$ (JAVA_HOME) /include \
-C -IS$(JAVA_HOME) /include/linux -c gprologJava.c

"Look at §ni .h in the include directory under the Java home directory

38

where JAVA_HOME is the Java home directory. For the gcc and gplc compilers
to find the required include files (jni.h and jni_md.h) when linking it is perhaps
necessary to provide a — I directive in the compilation line. In the above mentioned
example the line used was:

gcc —shared -o libgprologJava.so gprologJava.o \
$ (PROLOG_HOME) /1ib/obj_begin.o \
$ (PROLOG_HOME) /1ib/obj_end.o \
$ (PROLOG_HOME) /1ib/libbips_pl.a \
$ (PROLOG_HOME) /1ib/libengine_pl.a \
$ (PROLOG_HOME) /1ib/liblinedit.a $ (C_INCLUDES)

Where PROLOG_HOME is the GNU Prolog home directory and C_INCLUDES are
the necessary directories for Java shared object assembling. It can be checked in
the appendix Makefile that the definition of C_INCLUDES is:

C_INCLUDES= —-I$(JAVA_HOME)/include \
-I$(JAVA_HOME) /include/linux \
-I$(JAVA_HOME) /src/launcher \
-1, -L$ (JAVA_HOME) /jre/lib/i386/classic \

-L -1jvm \

-L -L$(JAVA_HOME) /jre/lib/i386/native_threads \
-L -lhpi \

-1 -LS$ (JAVA_HOME) /jre/1ib/i386 -L -lverify \
-L -L.

So, a 1ibgprologJava . so shared library is created and this is the object file
that has to be linked when using native GNU Prolog functionality in Java.

5.2.7 Loading and invoking the native methods

According to the Java Language Specification, code within a stat ic initializa-
tion block gets executed when the class is initialized. A class is initialized at its
first active use. An active use includes the invocation of a method declared in the
class. This would include a nat ive method invocation and, therefore, you can be
guaranteed that the library containing the code that implements the nat ive meth-
ods will be loaded if the loading is done within the class declaring the native
methods. The class method System.loadLibrary must then be invoked. A
way to do this is by placing a static initializer block within the class that de-
clares the native methods. This is the way it was used in the attached example
gprologdJava. java.

5.2.8 The whole picture

Summarizing, there are a number of steps that need to be accomplished to use na-
tive functionality within Java:

39

Java

File 7
Dynamic
Java | Library
Ll source
File 6
3 (javah) (Lmk I:dlt)
CiC++ Binary
Header Object
File File
4 CiC++ 8 .
Source (" Compiler
File

Figure 5.1: Steps in JNI compiling

1. Write Java source file
. Run javac to produce a class file
. Run javah with the previous class file to produce the function prototypes
. Write C source to functions prototypes generated by javah

2

3

4

5. Compile C file to produce object files

6. Run linker to produce a dynamically loadable library
7

. Run java on class file produced before

5.2.9 The present solution

Since there was a very well defined API for C connection to GNU Prolog why
not to emulate the C API with wrappers written in Java that accomplish the same
functionality. These wrappers were defined in a library that is to be called with

40

the System.loadLibrary class method. A library 1ibgprologJava.so
provides the JNI functions. It can be located in both the client and server and has to
be accessible to the java environment. The Java methods were named with the exact
same names of the wrapped functions in the GNU Prolog API. So, for instance,
we have P1_Query_Begin as a method name to wrap the P1_Query_Begin
function in the GNU Prolog foreign APL.

5.2.10 Loading the library, and running a Java application

As seen above in the invoking methods section (see 5.2.7 on page 39) the library
gprologJava can be referenced in a static block initializer. Then when invoking one
of the native methods it is actually loaded. The library gprologJava.so must then be
present in the defined path for shared objects inclusion, normally defined through
the LD_LIBRARY _PATH environment variable.

5.3 Building the solution

The creation of the executables with the aid of the make utility has been mentioned
in the respective sections. Appart from the creation, it is also necessary to define
the appropriate environment for execution, specially for the dynamic linking nec-
essary in Java. The most confortable way of gathering the correct directories for
library finding is by use of the 1dconfig utility. Since several libraries of Java
are needed (Libjvm. so, 1ibhpi . so, ...) their locations should be included in
the configuration file 1d.so.conf and the 1dconfig utility invoked. The lo-
cations of these libraries are the JAVA_HOME directory itself as well as both the
$JAVA_HOME/classic and $JAVA_HOME/native_threads subdirecto-
ries.

41

Chapter 6

Conclusions and future work

6.1 Conclusions

As devised from the previous two chapters this implementation was made to be
a thin, efficient way of communication between the two environments. Some fa-
cilities can now be built upon the proposed ones to embellish the usage mainly
from the Prolog programmers point of view. This is due to options taken explicitly
at start and also due to the time for completion depletion that the time taken to
accomplish this work was incurring.

6.2 Future work

6.2.1 Exception handling

One aspect that assumes great importance in the modern languages is a structured,
uniform way to handle unexpected behaviors from a program. This has been han-
dled thoroughly in GNU Prolog but mostly in Java where a very complete and
standartized exception handling is defined. The integration of both methods of
handling exceptions with passing of signals from one environment to the other has
not been addressed. The development level of the work at this stage has much more
important TODOs than this.

6.2.2 Manipulating Java variables

JNI includes in its definition inumerable methods to manipulate Java variables.
These methods differ about the type. For setting an instance field the methods
Set<type>Field are used being <type> the usual names for every of the distinct
JNI types similar to the functions for method invocation (see 5.1.4 on page 32).
For static (class) fields the equivalent SetStatic<type>Field are used. This methods
should be facilitated to the native environment to enable GNU Prolog to handle
variables in Java.

42

6.2.3 Multiple JVM handling and Java multithreading with different
JVMs

It sounds a good idea to make use of the multithreading capabilities of Java in
which JNI has a friendly architecture. However multithreading synchronizing in
Prolog is still a pioneering subject and so it is left as a probable development using
this proposed framework.

6.2.4 Making it work with dynamic linking of the native Prolog func-
tionality

This is a development where it is particularly difficult to measure the possibility

to be achieved. Currently GNU Prolog is an open source project developed under

GNU (who could imagine) that maintains a maillist users-prolog@gnu.org.

This list is intended to serve as a communication tool for developers involved.

However, a low activity is present in this list currently. No answers are given to

questions about future development so short term developments will probably not
be held.

6.2.5 Making it work without having to link dynamically in the JNI

In this work, at first, not aware of the dinamic linking nature of JNI and the fact that
GNU Prolog is compiled in non-PIC mode the method picked to implement was the
one-to-one mapping sugested in [4]. The advantage of one-to-one mapping is that it
is typically more efficient in converting the data types that are transferred between
the Java virtual machine and native code. This one-to-one mapping is used since
top performance is intended and portability matters. This, although possible is not
very simple to acomplish in a short term. It was searched mainly if different Java
VMs could allow directly the use of JNI without dinamic loading. Generally this is
not possible and all the JVMs checked always use the same standardized method of
providing the native functionality to Java (the System. loadLybrary method
that issues a d1open). When searching mainly the gcj implementation ! a possi-
bility was found. First some clarifications about terms should be introduced?:

¢ Static library

Is simply a collection of ordinary object files. These object files are
linked into the executable at compile time.In theory, code in static ELF li-
braries that is linked into an executable should run slightly faster (by 1-5

¢ Shared library

Shared libraries are libraries that are loaded by programs when they
start. They have to be found by the program so, normally, they reside in a

hitp://gce.gnu.orgfjava/
Zhttp://www.dwheeler.com/program-library/Program-Library-HOWTO/index .html

43

directory that figures in a list of searchable directories by the programs in
a specific environment. They are built by compiling the source in position
independent mode (-fpic or -fPIC so that the references are relocateble and
linked into libraries with special names (.so in UNIX-like systems or .DLL in
Windows systems). For performance reasons the library placement usually
uses a cacheing system that involves the “installation” of libraries prior to
use. All these different steps have to be taken in order to install the shared
libraries needed for Java to issue a System. loadLibrary method call.

e Dinamically Loaded library

Dynamically loaded (DL) libraries are libraries that are loaded at times
other than during the startup of a program. DL libraries aren’t really a dif-
ferent kind of library format (both static and shared libraries can be used
as DL libraries); instead, the difference is in how DL libraries are used by
programmers[8], there is an API for opening a library, looking up symbols,
handling errors, and closing the library. Since this API is rather different for
many flavors of Operating Systems a wrapper library should be used when
trying to achieve greater portability. This is, of course, one of the reasons
why it was not addressed in this work.

How does a static library fills the need for the invocation of System.loadLibrary
? The answer lies on the standard class loader itself. Native libraries are located
by class loaders. Class loaders have many uses in the Java virtual machine in-
cluding, for example, loading class files, defining classes and interfaces, provid-
ing namespace separation among software components, resolving symbolic refer-
ences among different classes and interfaces, and finally, locating native libraries.
Class loaders provide the namespace separation needed to run multiple compo-
nents (such as the applets downloaded from different web sites) inside an instance
of the same virtual machine. A class loader maintains a separate namespace by
mapping class or interface names to actual class or interface types represented
as objects in the Java virtual machine. Each class or interface type is associated
with its defining loader, the loader that initially reads the class file and defines
the class or interface object. Two class or interface types are the same only when
they have the same name and the same defining loader.The virtual machine does
not allow a given JNI native library to be loaded by more than one class loader.
Attempting to load the same native library by multiple class loaders causes an
UnsatisfiedLinkError to be thrown. The purpose of this restriction is to
make sure that namespace separation based on class loaders is preserved in native
libraries. Without this restriction, it becomes much easier to mistakenly intermix
classes and interfaces from different class loaders through native methods. The
virtual machine unloads a native library after it garbage collects the class loader
associated with the native library. Because classes refer to their defining loaders,
this implies that the virtual machine has also unloaded the class whose static ini-
tializer called System. loadLibrary and loaded the native library. The virtual

44

machine attempts to link each native method before invoking it for the first time. It
is possible to call the JNI function RegisterNatives to register the native methods
associated with a class, this is the way how it has to be done when using statically
linked functions. The programmer has to manually link native methods by register-
ing a function pointer with a class reference, method name, and method descriptor.
With these points clear is evident that what is needed is a DL library no matter
wether it is Static or Shared library. The point now is how to produce static linking
of JNI code. With the gcj JVM it seems possible to be done and the main issues
are:

o All the application shall be built with the -static option. This option normally
is not recommended for it has some unsolved issues in several architectures.

o The above has to be done in a system with a gcc-toolchain well parameter-
ized. It has to be configured from the ground up with —disable-shared. This
is not a feasible thing in a regular development system since it compromises
the shared architecture in which most of the applications are based currently
so it can only, normally, be done in a special purpose system. This point
merely states that what is needed is a static libgcj.

e A thorough check has to be done if the resulting executable is not linking to
any other DSO apart from the system libraries (libc, libm and libpthread).
And this stretches the interest of our system since it means that it can’t
be linked with most of the interesting libraries that exist nowadays (AWT,
SWING, GTK2, ...). There are, nonetheless, very interesting statically linked
libraries that, due to their interest, were ported to static libraries like the SWT
library that forms the basis of eclise IDE for instance.

Having all this setup the only thing left is to pack all the JNI archives into a
whole archive wrapper. The linker cannot know how any method in the archive is
going to be used and that the methods regarding to JNI are registered native so they
will all have to be wrapped up.

6.2.6 Minor arrangements

6.2.6.1 Setting a different CLASSPATH

So far there is no support for class loading from different locations. The class files
have to be in the directory where both gpl_java and gprologjava are. By simple
handling of the proper environment variables (CLASSPATH of course) it is easy to
include classes from different locations.

6.2.6.2 Maintaining a Prolog signature in the methods struct

Although a simple feature to implement it could lead to a considerable optimization
since by its use, the build a rebuild of Prolog signatures back and forth dont have
to be done.

45

6.2.6.3 An easier way for creating Java objects in Prolog

The multi step manner of creating an Object that is currently implemented does not
benefit of the Prolog like signature that was invented to pick the intended construc-
tor. A Prolog like way of building an object could be provided in the same way
that jni_compile/4 is provided. With this facility it should be easier for the Prolog
programmer to call a sole predicate that given a Prolog signature of the constructor
and a compound term with the arguments would pick the correct constructor and
build the object. Such predicate can be easily implemented now in gpl_java using
Prolog. This new predicate would convert the Prolog signature using type. Scan
the arguments provided in the compound term to build the correct structure for
the NewObjectX function and call it. It could use whatever of the three NewOb-
jectX INI functions available depending on how it was easier to convert between
the compound term and a Java list of values, an array of jvalues or an arbitrary list
of arguments. This new predicate would make all the process transparent to the
Prolog programmer.

6.2.6.4 Unneeded creation of objects when calling static methods

As can be seen by the usage of gpl_java, there is some incongruency in compul-
sively creating objects which are really not needed since the only purpose is to call
a static (class) method. Actually the objects parameters don’t even need to be filled
since when calling the method through the associated predicate the methods argu-
ments are provided at that moment. A better way for the interface to be presented
would be to let the java_Compile predicate to decide whether it it is needed to ac-
cept an object as parameter in case it is an instance method or not. This slightly
different approach would avoid the unnecessary creation of objects just for argu-
ment accordance in the predicate calling.

46

Bibliography

[1] Mutsunori Banbara and Naoyuki Tamura. Translating a linear logic program-
ming language into java. In Proceedings of ICLP’99 Workshop on Paral-
lelism and Implementation Technology for (Constraint) Logic Programming
Languages, pages 19-39, 1999,

[2] Daniel Diaz. GNU PROLOG A Native Prolog Compiler with Constraint Solver
over Finite Domains. INRIA, 1.6 edition, Jun 2001. for GNU Prolog version
1.2.14.

[3] Rob Gordon. Essential JNI. Prentice Hall, Inc., 1998.

[4] Sheng Liang. Java Native Interface: Programmer’s Guide and Specification,
The. Addison Wesley, June 1999.

[5] N. Tamura and Y. Kaneda. Extension of WAM for a linear logic programming
language. In A. Ohori T. Ida and M. Takeichi, editors, Second Fuji Interna-
tional Workshop on Functional and Logic Programming, Nov 1996.

[6] Paul Tarau and M. Boyer. Elementary logic programms. Number 456 in Lec-
ture notes in computer science. Springer, procedings of programming language
implementation and logic programming edition, Aug 1990.

[7] David Warren. An abstract prolog instruction set. Technical Report 309, SRI
International, Oct 1983.

[8] David A. Wheeler. Program library howto. Technical report, The Linux Doc-
umentation Project, April 2003. Revision 1.2.

47

Appendix A

Reference

Below is the reference for all the API functions. First the low-level (GPL_java_C)
API and then the higher level API (GPL_java_PL) predicates are introduced. Pre-
sentation is based on the GNU Prolog manual way with a templates and description
sections for each API function. Later on the interface from Java to Prolog (gpro-
logJava) is presented. The class is presented using the Javadoc usual way

Al

Prolog to Java

The interface when considered this way allows the calling of Java from GNU-
Prolog. The usual way of doing it is by:

Create a JVM using java_CreateJavaVM

Load a class using java_GetClass

Load the classes methods using java_GetMethods

Pick a method using java_MethodID

Build an object using java_New

Create space for arguments with java_Create_Args

Load the different parameters with java_PutArg XXX

Convert the method’s signature between Java and GNU-Prolog using type
Call the method with the appropriate java_CallMethod_Go_XXX
Compile the method into Prolog using Java_Compile

Assert the resulting clause to the Prolog database

Call the method in Prolog

Deallocate the space with java_CallMethod_Free

48

A2 GPL_java_C

In this API functions that are deterministic always return a boolean with the success
or failure values. Non deterministic functions return a choice point.

A.2.0.5 java_CallMethod/4

Templates

java_CallMethod(+object_term, +methods_index, +args_list, -result_term), [return(boolean)]
Description

Calls an instance method belonging to the object named in the first arg. The method

called is loaded in the methods array in the position given in the second arg. The
arguments are provided as a list in the third arg. The result is positioned as an

object compound term in the final arg.

Notes

Deprecated manner of calling a method without allocating memory explicitly. It

lacks the precise definition of the result as it is returned as a compound term.

A2.0.6 java_GetVersion/3

Templates

java_GetVersion(+JVM_index, -VersionMajor, -VersionMinor), [return(boolean)]
Description

Given the first argument with the JVM serial number (beginning with 0), returns
the major digit on the second argument (always 1) and the minor digit on the third
argument (1 or 2) of the JVM version number

Notes

It should work properly with different JVMs loaded/created allthough currently
only one JVM can be loaded with java_CreateJavaVM.

A2.0.7 java_CreateJavaVM/1

Templates

java_CreateJavaVM(-JVM_index), [return(boolean)]

Description

Creates a JVM, loads it into the JVMs array and returns its index in the array.
Notes

Currently only one JVM can be loaded/created so it always goes into position 0.

A.2.0.8 java_GetJavaVM/2

Templates

java_GetJlavaVM(+JVM_index, -JVM), [return(none)]

Description

Returns a JVM (pointer) of the index mentioned in the first argument. Notes

49

Unused since the helper classes table provides this information locally and depre-
cated since it was chosen not to multithread.

A2.0.9 java_DestroyJavavM/1

Templates

java_DestroyJavaVM(+JVM_index), [return(none)]

Description

Destroys the JVM in the named index and deallocates the corresponding memory
Notes

A.2.0.10 java_GetClass/3

Templates

java_GetClass(+JVM_index, +Class, ?ClassIndex), [return(none)]

Description

It functions according to the third argument. If it is an output argument it loads
in the JVM named in the first argument the class whose fully qualified name is
the second argument. If it is an input argument it checks if the class loaded in the
position named is that mentioned in the second argument.

Notes

It may be called recursively until the top class java.lang.Object is reached and so it
may be used, with the aid of the following java_SuperClass/2 function, cleanly for
a class browser implementation.

A.2.0.11 java_SuperClass/2

Templates

java_SuperClass(?ClassIndex, ?SuperClassIndex), [choice_size(1)]

Description

Fully qualified names on both arguments of a class, in the first, and its relative
superclass, in the second.

Notes

Non-deterministic if at least one of the two arguments is variable.

A2.0.12 java_GetMethods/1

Templates

java_GetMethods(+ClassIndex), [return(none)]

Description

Given a class index in the argument loads its methods into the methods helper table.
Notes

Does not load any method in the class hierarchy but the named class methods.

50

A.2.0.13 java_MethodID/4

Templates

java_MethodID(+ClassIndex, ?MethodName, -MethodSIG, -MethodID), [choice_size(1)]
Description

Given the class index in the first argument it functions non-deterministically ac-
cording to the second argument. In the third argument the Java signature of the
method is always returned. In the fourth argument the index of the method in the
methods helper table is returned. If the second argument is variable the name of the
methods in the helper table are successively returned. If it is unified the signature

and position of the named method are returned deterministically.

Notes

A.2.0.14 java_Create_Args/2

Templates

java_Create_Args(+NoArgs, -ArgsArray), [return(boolean)]

Description

Allocates space and returns a pointer where to insert ulterior arguments. The first
argument being the number of arguments to allocate space for and the second a
pointer to the space created.

Notes

The function allocates a number of jvalue (see section 5.1.4 on page 33) slots where
different sizes of arguments from the GNU-Prolog point of view can surely be
stored.

A.2.0.15 java_PutArg int/4

Templates

java_PutArg_int(+ArgsArray, +ArgNo, +ArgValue, +SubType), [return(boolean)]
Description

Insert into the arguments array, previously allocated with java_Create_Args (see
section A.2.0.14 on page 51), into the position named in the second argument the
value given in the third. The particular kind of integer has to be referred in the last
argument and it has to be: 0 for char, 1 for byte, 2 for int, 3 for long, 4 for boolean
and 5 for a short.

Notes

All the java_PutArg_XXX functions named from now on are used to fill arguments
and have to be called prior to method calling with the appropriate java_CallMethod_Go_XXX
or object creation with java_New.

51

A20.16 java_PutArg float/3

Templates

java_PutArg_float(+ArgsArray, +ArgNo, +ArgValue, +SubType), [return(boolean)]
Description

Insert into the arguments array, previously allocated with java_Create_Args (see
section A.2.0.14 on page 51), into the position named in the second argument the
value given in the third. The particular kind of real number has to be referred in
the last argument and it has to be: O for float and 1 for double.

Notes

A2.0.17 java_PutArg String/3

Templates

java_PutArg_String(+ArgsArray, +ArgNo, +ArgValue), [return(boolean)]
Description

Insert into the arguments array, previously allocated with java_Create_Args (see
section A.2.0.14 on page 51), into the position named in the second argument the
value given in the third.

Notes

A.2.0.18 java_PutArg obj/3

Templates

java_PutArg_obj(+ArgsArray, +ArgNo, +ArgValue), [return(boolean)]
Description

Insert into the arguments array, previously allocated with java_Create_Args (see
section A.2.0.14 on page 51), into the position named in the second argument the
value given in the third.

Notes

A2.0.19 java_CallMethod_Go_int/4

Templates

java_CallMethod_Go_int(+Object, +MethodID, +ArgsArray, -ReturnValue)
Description

Given an object in the first argument, invokes the method whose ID is the second
parameter with the arguments present in the third and returns an integer in the last
parameter.

Notes

This predicate should only be called with methods that return integer values, with
a signature with template (XXX)I.

52

A.2.0.20 java_CallMethod_Go_float/4

Templates

java_CallMethod_Go_float(+Object, +MethodID, +ArgsArray, -ReturnValue)
Description

Given an object in the first argument, invokes the method whose ID is the second
parameter with the arguments present in the third and returns a float in the last
parameter.

Notes

This predicate should only be called with methods that return integer values, with
a signature with template (XXX)F.

A.2.0.21 java_CallMethod_Go_void/3

Templates

java_CallMethod_Go_void(+Object, +MethodID, +ArgsArray)

Description

Given an object in the first argument, invokes the method whose ID is the second
parameter with the arguments present in the third.

Notes

This predicate should only be called with methods that return nothing (return void
in Java), with a signature with template (XXX)V.

A.2.0.22 java_CallMethod_Go_obj/4

Templates

java_CallMethod_Go_obj(+Object, +MethodID, +ArgsArray, -ReturnValue)
Description

Given an object in the first argument, invokes the method whose ID is the second
parameter with the arguments present in the third and returns an object in the last
parameter.

Notes

This predicate should only be called with methods that return integer values, with
a signature with template (XXX)L<Fully-qualified-name>; .

A.2.0.23 java_CallMethod_Go_String/4

Templates

java_CallMethod_Go_String(+Object, +MethodID, +ArgsArray, -ReturnValue)
Description

Given an object in the first argument, invokes the method whose ID is the second
parameter with the arguments present in the third and returns a java String in the
last parameter.

Notes

53

This predicate should only be called with methods that return nothing (return void
in Java), with a signature with template (XXX)Ljava.lang.String;.

A.2.0.24 java_CallMethod_Free/1

Templates

java_CallMethod_Free(+ArgsTerm)

Description

Rebuilds the java reference given in the Prolog term in the parameter and deallo-
cates the memory referenced.

Notes

A.2.0.25 java_CallStaticVoidMethod/3

Templates

java_CallStaticVoidmethod(+JVM_index, +ClassName, +MethodName)
Description

Invokes the void method named in the third parameter belonging to the class named
in the second. Notes

This predicate is deprecated since the using of the the callback tables which provide
a better way to assure type conformity in the arguments and the returning value. It
can only be called, as the name suggests, with void methods. It was only kept alive
for it is a point of proof that the static methods don’t need an object created just for
the purpose of calling.

A.2.0.26 java_New/4

Templates

java_New(+JVM_index, +ClassIndex, +ArgsArray, -Object)

Description

In the JVM in the first argument and the class in the second argument, picks a
constructor and applies the parameters in the third argument to create an object
that is returned in the last argument.

Notes

Since JNI allows, using reflection, to pick a constructor correctly is is not needed
to name it explicitly.

A.2.1 GPL_java_PL

The following predicates are built in Prolog so the parameter direction does not
make much sense. It is provided here only as an indication of the most common
use for better prolog usability.

54

A.2.1.1 java_Compile/5

Templates

java_Compile(+JVM, +CLASS, +METHOD, +PLTYPE, -CLAUSE)

Description

Succeeds if in the JVM, in CLASS, there is a METHOD with prolog signature
PLTYPE and creates the CLAUSE.

Notes

The clause obtained from this predicate is suitable for prolog calling so its most
common use should be assertion or pretty printing

A212 type?2

Templates

type(?PLTYPE, 2JTYPE)

Description

Utility for converting between Prolog (PLTYPE) and Java (JTYPE) signatures
Notes

A.3 Java to GNU Prolog

In this section the Java methods created to wrap the foreign C interface are pre-
sented. The aspect is based in the Javadoc standard where applicable. The follow-
ing, with exception of Main_Wrapper, are all created as native implementations
and defined in the class gprologJava.

A.J3.1 Main_Wrapper

Templates

public native int Main_Wrapper(int argc, String args[])

Description

This wrapper only functions as a debug aid where different invocations of the de-
fined methods can be tested.

Notes

A.3.2 Pl_Query_Begin

Templates

public void PI_Query_Begin(boolean recoverable)

Description

This is the wrapper for the function P1_Query_Begin. It is used to initialize a query.
Notes

55

The recoverable parameter shall be set to true if the user wants to recover, at the
end of the query, the memory space consumed by the query.

A3.3 Pl_Query_Call

Templates

public int PI_Query_Call(int functor, int arity, java.lang.Object[] arg)

Description

This is the wrapper for the function P1_Query_Call. The function PL_Query_Call(functor,
arity, arg) calls a predicate passing arguments.

Notes

It is used to compute the first solution.

A.3.4 Pl_Query_Next_Solution

Templates

public int P1_Query_Next_Solution()

Description

This is the wrapper for the function P1_Query_Next_Solution. Itis used to compute
a new solution.

Notes

Tt must be only used if the result of the previous solution was PL_SUCCESS (i.e.
TRUE).

A.3.5 Pl_Query_End

Templates

public void P1_Query_End(int op)

Description

This is the wrapper for the function P1_Query_End. It is used to finish a query.
Notes

This function mainly manages the remaining alternatives of the query. However,
even if the query has no alternatives this function must be used to correctly finish
the query.

A.3.6 Pl_Get_Exception

Templates

public java.lang.Object P1_Get_Exception()

Description

This is the wrapper for the function P1_Get_Exception. It can be used to obtain the
exceptional term raised by throw/1. Notes

56

A.3.7 Pl_Exec_Continuation

Templates

public void P1_Exec_Continuation(int functor, int arity, java.lang.Object[] arg)
Description

This is the wrapper for the function Pl_Exec_Continuation. It replaces the current
calculus by the execution of the specified predicate.

Notes

57

Appendix B

Compiling and running

The compile/link lines can be checked in the following Makefile:

Makefile for gprolog <-> Java interface
JAVA_HOME=/opt/j2sdkl.3
PROLOG_HOME=/usr/local/gprolog-1.2.14
INCLUDES=-C -I$(JAVA_HOME)/include \
-C -I$(JAVA_HOME) /include/linux \
-C -I$(JAVA_HOME) /src/launcher \
-L -LS$ (JAVA_HOME) /jre/lib/i386/classic -L -1ljvm \
-1 -L$ (JAVA_HOME) /jre/lib/i386/native_threads \

-L —-lhpi \
-L -L$ (JAVA_HOME) /jre/l1ib/i386 -L —lverify \
-L -L.

C_INCLUDES= —I$ (JAVA_HOME) /include \
—I$ (JAVA_HOME) /include/linux \
—-I$(JAVA_HOME) /src/launcher \
-L -L$ (JAVA_HOME) /jre/lib/i386/classic -L -1ljvm \
-1 -L$(JAVA_HOME)/jre/lib/i386/native_threads \

-L -lhpi \
-L -L$ (JAVA_HOME) /jre/lib/i386 -L —-lverify \
-L -L.

all : gpl_java gprologJdava.so gprologJava.class

clean :
rm gpl_java

gpl_java : gpl_java.pl gpl_java.h gpl_java.c types.pl Makefile \
jni_compiler.pl helper.pl
gplc -v —o gpl_java -C -g gpl_java.pl gpl_java.c helper.pl \

58

types.pl jni_compiler.pl $(INCLUDES)

#Experimenting gcj
libgcjSample.so : gcjSample.o
gcc —shared -o libgcjSample.so gcjSample.o

gcjSample.o : gcjSample.c gcjSample.h
gcc —c gcjSample.c

gcjSample.class : gcjSample. java
gcj —C gcjSample. java

gcijSample.h : gcjSample.class
gcjh —-jni gcjSample

gciSample : gcjSample.class
gcj —fjni -o gcjSample gcjSample.class --main=gcjSample
#End experimenting gcj

#Experimenting gcj —> GNU Prolog
libgcj_test.so : gcj_test.o
gplec -v -L -shared -L -Wl,-soname,libgcj_test.so \
-0 libgcj_test.so gcj_test.o
#The following is the linking line directly invoking gcc
gcc -o libgcj_test.so gcj_test.o \
/usr/local/gprolog-1.2.14/1ib/obj_begin.o —-shared \
-Wl,-soname, libgcj_test.so \
-L/usr/local/gprolog-1.2.14/1ib \
/usr/local/gprolog~1.2.14/1ib/obj_end.o —-lengine_pl —1llinedit

gcj_test.o : gcj_test.c gcj_test.h
gplc -v -C -Wall -C -fPIC -L -g -C -I$(JAVA_HOME) /include \
~C -I$(JAVA_HOME)/include/linux -c gcj_test.c

gcj_test.class : gcj_test.java
gcj -C gcj_test.java

gcj_test.h : gcj_test.class
gcjh -jni gcj_test

gcj_test : gcj_test.class gcj_test.o

gcj -fini —o gcj_test gcj_test.class ——main=gcj_test \
-L. -lgcj_test

59

#Java —-> GNU Prolog
libgprologJdava.so : gprologJava.o
gcc —-shared -o libgprologJava.so gprologJdava.o \
/usr/local/gprolog-1.2.14/1ib/libengine_pl.a

gprologJava.o : gprologJava.c gprologJava.h
gplc -C -0 —-C -I$(JAVA_HOME)/include \
-C -I$(JAVA_HOME) /include/linux -c gprologJava.c

gprologJdava.class : gprologJava.java
gcj -C gprologJava. java

gprologJdava.h : gprologJava.class
gcjh -jni gprologJdava

gprologJava : gprologJava.class
gcj —fijni -o gprologJava gprologJava.class \
--main=gprologJava

#gprologJdava.so : gprologJava.c gprologJava.h

gple -C -0 -C -D_REENTRANT -C -fpic -C ~I$ (JAVA_HOME) /include \
#-C —-I$(JAVA_HOME) /include/linux —-c gprologJava.c

gplc -C -shared -o libgprologJava.so gprologJava.o $(INCLUDES)

gprologJdava.so : gprologJava.c gprologJava.h
gplc -C -0 —-C —-D_REENTRANT -C -fpic -C -IS$ (JAVA_ HOME)/lnclude \
-C —-IS(JAVA_HOME)/include/linux -c¢ gprologJava.c
gcc -shared -o libgprologJava.so gprologJava.o \
$ (PROLOG_HOME) /1ib/obj_begin.o \
$ (PROLOG_HOME) /1ib/obj_end.o \
$ (PROLOG_HOME) /1ib/libbips_pl.a \
$ (PROLOG_HOME) /1lib/libengine_pl.a \
$ (PROLOG_HOME) /1ib/liblinedit.a $(C_INCLUDES)

Appendix C

Usage examples

C.1 Helper predicates in helper.pl

Some predicates which are usually just shortage of names based upon the as-
sumption that actually only one JVM is used are presented in the file helper.pl.
They are also usage examples that can be both apprehended, as a kind of learn
by example tool, and used by the Prolog programmer. Such examples/predicates
are, for instance, java_Init/1 that initializes a JVM with the class passed as ar-
gument loaded and j_comp/2 that compiles the method name given as first argu-
ment belonging to the class in the second argument. These predicates make use
of j_c_jvin/1 that is java_CreateJavaVM/1, j_gc/3 that is java_GetClass/3, j_gm/1
that is java_GetMethods/1, j_mid/3 that is java_MethodID/4 and j_new/2 that is
java_New/4 all these later predicates assume only one JVM and the class intended
to be used is the first one loaded.

j_c_jvm(JVM) :- java_CreateJdJavaVM(JVM) .

j_gc(JvM, C,Class) :- java_GetClass(JVM, C, Class).

j_gm(C) :— Java_GetMethods(C).

j_mid (MName,MSig,M) :- java_MethodID (0, MName, MSig, M).
j_new(MParms, Object) :- java_New(0, 0, MParms, Object).
java_Init(C) :- j_c_jvm(JIJVM), j_gc(JVM,C,Class), J_gm(Class).
j_comp (MName, CName) :- j_mid(MName,MSig,M), name(MSig, Sig),

type (PSig, Sig), Jjava_Compile (0, CName, MName, PSig, Clause),
assertz (Clause).

61

C.2 Various examples in test_java.pl

As the gpl_java tool was being built, the new features were being tested through
examples gathered in this file. So it both shows the usage enhancement and broader
capabilities that were being achieved and it can be used as a source of examples
of the way gpl_java is supposed to be used. Some examples or, better said, their
usage are now deprecated and are no longer of interest but they were kept for the
sake of the work development understanding.

% The following tests evolve for greater completion:
java_CreateJavavM(JVM), Jjava_GetVersion(JVM,Major,Minor)

java_CreateJavaVM(JVM), java_GetClass (JVM, testClass, Class),
java_CallStaticVoidMethod (JVM, Class, printJavaString).

java_CreateJavaVM(JVM), java_GetClass (JVM, testClass, Class),
java_GetMethods (Class), java_MethodID(Class,
printHelloWorld, MethodSig, Method),
java_New (JVM, Class, '()V', '’, Object),
java_CallMethod(Object, Method, [’']).

java_CreateJavaVM(JVM), java_GetClass(JVM, testClass, Class),
java_New (JVM, Class, ’'()V’, '’, Object).

java_CreateJavavM(JVM), java_GetClass (JVM, testClass, Class),
java_New (JVM, Class, ' (Ljava/lang/String;)V’,
'Testing after hours’, Object).

java_CreateJavaVM(JVM), java_GetClass (JVM, testClass, Class),
java_GetMethods (Class),
java_MethodID (Class, sumInstancelntegers, MethodSig, Method),
java_New (JVM, Class, '()V', '’, Object),
java_CallMethod (OCbject, Method, [2,4], Res).

java_CreateJavaVM(JVM), java_GetClass (JVM, testClass, Class),
java_GetMethods (Class),
java_MethodID (Class, MethodName, MethodSig, Method),
java_New (JVM, Class, '()V', '’, Object),
java_CallMethod (Object, Method, [2,4], Res).

java_CreateJavavM(JVM), java_GetClass(JVM, testClass, Class),

java_GetMethods (Class),
java_MethodID(Class, sumIntegers, MethodSig, Method),

62

java_New (JVM, Class, " ()V’, ’’, Object),
java_CallMethod(Object, Method, [2,4], Res).

$Now both initializers work:

java_CreateJavaVM (JVM), java_GetClass (JVM, testClass, Class),
java_GetMethods (Class),
java_MethodID (Class, printJavaString, MethodSig, Method),
java_New (JVM, Class, ' ()V’', '’, Object),
java_CallMethod (Object, Method, [’Testing after hours’],Res).

java_CreateJavaVM(JVM), java_GetClass(JVM, testClass, Class),
java_GetMethods (Class),
java_MethodID (Class,printJavaString, MethodSig, Method),
java_New (JVM, Class, ' (Ljava/lang/String;)V’,
'Testing even after’, Object),
java_CallMethod (Object, Method, [’ Testing’], Res).

$For the hierarchy testing

java_CreateJavaVM(JVM), java_GetClass (JVM, testSubClass, Class),
java_GetMethods (Class),
java_MethodID (Class,printHelloWorld, MethodSig, Method),
java_New (JVM, Class, ’’, Object),
java_CallMethod (Object, Method, [], Res).

$For the new interface testing

java_CreateJavaVM(JVM), java_GetClass(JVM, testClass, Class),
java_GetMethods (Class),
java_MethodID (Class, sumIntegers, MethodSig, Method),
java_New (JVM, Class, ’’, Object),
java_Create_Args(2,Args), java_PutArg_int (Args, 0, 13, 2),
java_PutArg_int (Args, 1, 14, 2),
java_CallMethod_Go_int (Object, Method, Args, Res),
java_CallMethod_Free (Args).

%$The following will do
$provided a java_Init (testClass) in helper.pl.

java_Init (testClass).
java_MethodID (0, sumIntegers, MethodSig, Method),
java_New (0, 0, ‘()V’', Object), Jjava_Create_Args (2, Args),

java_PutArg_int (Args, 0, 134, 2),
java_PutArg_int (Args, 1, 453, 2),

63

java_CallMethod_Go_int (Object, Method, Args, Res).

j_mid(printHelloWorld, MSig, M), j_new(MSig, Object),
java_Create_Args (0, Args),
java_CallMethod_Go_void (Object, M, Args).

j_mid(printJavaString, MSig, M), Jj_new(MSig, Object),
java_Create_Args(l, Args),
java_PutArg_String(Args, 0, ’'Testing String Args’),
java_CallMethod_Go_void (Object, M, Args).

j_mid (printJavaString, MSig, M), Jj_new(MSig, Object),
java_CallMethod (Object, M,
[/ Testing java_CallMethod with void return’], Res).

j_mid(sumIntegers, MSig, M), j_new{(MSig, Object),
java_CallMethod (Object, M, [123, 532], Res).

$From now on using jni_compiler

j_mid (sumIntegers, MSig, M), name (MSig, Sig), type(PSig, Sig),
java_Compile (0, testClass, sumIntegers, PSig, Clause),
assertz (Clause), j_new(MSig,Object),
sumIntegers (Object, 23, 37, Soma).

j_mid{printHelloWorld, MSig, M), name (MSig, Sig),
type (PSig, Sig), .
java_Compile (0, testClass, printHelloWorld, PSig, Clause),
assertz (Clause), j_new(MSig,Object),
printHelloWorld (Object, _).

$Working
j_comp (printHelloWorld, testClass), Jj_new(’ ()V’',0bj),
printHelloWorld (Obj,_) .

j_comp (sumIntegers), Jj_new(’ ()V’,0bj),
sumIntegers (Obj, 23,69, Soma) .

j_comp (multiplyFloats), j_new(’ ()V’,0bj),
multiplyFloats (0Obj,2.3,6.9,Mult).

$Not Working due to different float—double implementations
java_Compile (0, testClass, multiplyFloats,
[float, float]-float, Clause),
assertz(Clause), j_new(’ (FF)F’, Obj),

64

multiplyFloats (Obj, 2.3, 3.4, Mult).
%$New definition of java_New

java_Create_Args (2, Args), java_PutArg_int (Args, 0, 23, 2},
java_PutArg_int (Args, 1, 37, 2), java_New(0,0,Args, Object).

65

