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EXISTENCE AND LOCATION RESULT FOR THE BENDING OF A1

SINGLE ELASTIC BEAM2

F. MINHÓS∗, T. GYULOV† , AND A. I. SANTOS‡3

Abstract. In this paper it is obtained an existence and location result for the fourth order fully4

nonlinear equation5

u(iv) = f
(
t, u, u′, u′′, u′′′) , 0 < t < 1,6

with the Lidstone boundary conditions7

u (0) = u′′ (0) = u (1) = u′′ (1) = 0,8

where f : [0, 1] × R4 → R is a continuous function verifying a Nagumo-type condition. We remark that9

f must only verify some assumptions of bound type and no monotonicity restrictions are considered, as10

it is usual. The existence of at least a solution lying between a pair of well ordered lower and upper11

solutions is obtained using a priori estimates, lower and upper solutions method and degree theory.12

Key words. Fourth order BVP, lower and upper solutions, Nagumo-type condition, a priori esti-13

mate, odd mapping theorem, degree theory14

AMS subject classifications. 34B15, 34B18, 34L3015

1. Introduction. The bending of a single elastic beam with both endpoints simply16

supported can be studied by the fully nonlinear differential equation17

u(iv)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)) , 0 < t < 1, (1.1)

where f : I × R4 → R is a continuous function, with the Lidstone boundary conditions18

u (0) = u′′ (0) = u (1) = u′′ (1) = 0. (1.2)

These fourth order boundary value problems have been studied by many authors19

either in a point of view of a beam application (see [7, 8] and the references therein) or20

referred to suspension bridges (see [9], the survey paper [5] and the references therein). In21

short it is applied a variational approach in the cases where the nonlinearity depends only22

on u or u′′ ([7, 8, 13, 14]), a topological method ( [1, 2, 15, 17]) or both ([4]). However,23

in all the above papers there are no dependence on odd-order derivatives.24

In the present paper, lower and upper solutions technique together with a priori25

bounds are used to obtain an existence and location result, following the arguments26

suggested by [3] for second order, [11, 12, 16] for higher order and applying the odd27

mapping theorem ([6, 10]). Let us point out that in fourth order problems with Lidstone28

boundary conditions, (1.1)–(1.2), lower and upper solutions can not be considered in an29

independent way, that is they must be considered as a pair (see Definitions 2.4, 3.230

and the Counter-example in last section). Usually, it is assumed that the nonlinearity31
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verifies some monotonicity or, in a more general case, some conditions of monotone type32

([12, 16]). Our existence and location theorems (see Theorem 3.1 and Theorem 3.3)33

improves the above results because it is only assumed that f satisfies some bound-type34

conditions, more precisely, for α and β lower and upper solutions of (1.1)–(1.2),35

f(t, β(t), β′(t), β′′(t), β′′′(t)) ≤ f(t, x0, x1, β
′′(t), β′′′(t)),36

f (t, α (t) , α′ (t) , α′′ (t) , α′′′ (t)) ≥ f (t, x0, x1, α
′′ (t) , α′′′ (t))37

hold for (t, x0, x1) ∈ [0, 1] × R2, such that α (t) ≤ x0 ≤ β (t) and α′ (t) ≤ x1 ≤ β′ (t) .38

These assumptions are weaker than the previous ones, as it can be seen in the example39

of last section.40

To prove the existence part of Theorem 3.1 it is used a Nagumo-type growth con-41

dition, to obtain an a priori estimation on the third derivative and an open bounded set42

where the topological degree is well defined. The technique applied allows us to locate the43

solution and some derivatives on adequate strips defined by well ordered lower and upper44

solutions and the corresponding derivatives. So it can also be used to prove the existence45

of positive solutions for problem (1.1)–(1.2) if it will be assumed in Theorem 3.1 that46

α (t) ≥ 0, for every t ∈ [0, 1] . In this sense the existence part of [15] is also improved.47

2. Definitions and preliminary result. To obtain an a priori estimate on u′′′ it48

must be defined a Nagumo-type growth condition that will be an important tool for the49

definition of a set where the Leray-Schauder degree can be evaluated and non null.50

Definition 2.1. Given a subset E ⊂ [0, 1] × R4, a function f ∈ C([0, 1] , R) satisfies51

a Nagumo-type condition in E if there exists a real function hE ∈ C
(
R+

0 , [a,+∞[
)
, for52

some a > 0, such that53

|f (t, x0, x1, x2, x3)| ≤ hE (|x3|) , ∀ (t, x0, x1, x2, x3) ∈ E, (2.1)54

with55 ∫ +∞

0

s

hE (s)
ds = +∞. (2.2)

56

57

Lemma 2.2 ([16] Lemma 1). Let the functions γi, Γi ∈ C([0, 1] , R) be such that γi (t) ≤58

Γi (t) , for each i = 0, 1, 2 and t ∈ [0, 1] , and define the set59

E =
{
(t, x0, x1, x2, x3) ∈ [0, 1]× R4 : γi (t) ≤ xi ≤ Γi (t) , i = 0, 1, 2

}
.60

Assume there exists a continuous function ϕ : R+
0 → [a,+∞), for some a > 0, such that61 ∫ +∞

η

s

ϕ(s)
ds > max

t∈[0,1]
Γ2(t)− min

t∈[0,1]
γ2(t)

62

where η ≥ 0 is given by η = max {Γ2(0)− γ2(1),Γ2(1)− γ2(0)} . Then there is r > 063

such that, for every continuous function f : [0, 1] × R4 → R satisfying a Nagumo-type64

condition and every solution u (t) of problem (1.1)–(1.2) verifying γi (t) ≤ u(i) (t) ≤ Γi (t) ,65

for i = 0, 1, 2 and t ∈ [0, 1] , satisfies ‖u′′′‖∞ ≤ r.
66

Remark 2.3. Observe that r depends only on the functions hE , γ2 and Γ2 and it does67

not depend on the boundary conditions.68



Equadiff-11. Nonlinear beam fully equation simply supported 3

Definitions of well ordered lower and upper solutions for problem (1.1)–(1.2) must be69

done as a couple of functions and can not be defined by independent way.70

Definition 2.4. The functions α, β ∈ C4 (]0, 1[) ∩ C3 ([0, 1]) verifying71

α (t) ≤ β (t) , α′ (t) ≤ β′ (t) , α′′ (t) < β′′ (t) , ∀t ∈ [0, 1] , (2.3)72

define a pair of lower and upper solutions of problem (1.1)–(1.2) if the following conditions73

are verified:74

(i) α(iv) (t) ≥ f (t, α (t) , α′ (t) , α′′ (t) , α′′′ (t)) ,

β(iv) (t) ≤ f (t, β (t) , β′ (t) , β′′ (t) , β′′′ (t))
(2.4)

75

76

(ii) α (0) ≤ 0, α′′ (0) ≤ 0, α′′ (1) ≤ 0,

β (0) ≥ 0, β′′ (0) ≥ 0, β′′ (1) ≥ 0,
(2.5)

77

78

(iii) α′ (0)− β′ (0) ≤ min {β (0)− β (1) , α (1)− α (0)} . (2.6)79

80

Remark 2.5. Condition (iii) can not be removed. (See Counter-example).81

3. Existence and location results. The existence and location result obtained in82

this section provides not only the existence of solution but define also some strips where83

the solution and its derivatives are defined.84

Theorem 3.1. Suppose that there exists a pair of lower and upper solutions of (1.1)–85

–(1.2), α (t) and β (t) , respectively. Let f : [0, 1]×R4 → R be a continuous function such86

that f satisfies the Nagumo-type condition in87

E1 =
{

(t, x0, x1, x2, x3) ∈ [0, 1]× R4 : α(i) (t) ≤ xi ≤ β(i) (t) , i = 0, 1, 2
}

.88

Moreover if89

f (t, β (t) , β′ (t) , β′′ (t) , β′′′ (t)) ≤ f (t, x0, x1, β
′′ (t) , β′′′ (t)) , (3.1)90

and91

f (t, α (t) , α′ (t) , α′′ (t) , α′′′ (t)) ≥ f (t, x0, x1, α
′′ (t) , α′′′ (t)) , (3.2)92

hold for (t, x2, x3) ∈ [0, 1]× R2, α (t) ≤ x0 ≤ β (t) and α′ (t) ≤ x1 ≤ β′ (t) , then there is93

at least a solution u (t) ∈ C4 ([0, 1]) of problem (1.1)–(1.2) satisfying94

α (t) ≤ u (t) ≤ β (t) , α′ (t) ≤ u′ (t) ≤ β′ (t) , α′′ (t) ≤ u′′ (t) ≤ β′′ (t) ,∀t ∈ [0, 1] .95

96

Proof. Consider the continuous truncations97

δi (t, xi) =


α(i) (t) , xi < α(i) (t)

xi, β(i) (t) ≥ xi ≥ α(i) (t)

β(i) (t) , xi > β(i) (t)

, i = 0, 1, 2,

98



4 F. Minhós, T. Gyulov and A. I. Santos

the function γ : [0, 1]× R → R given by99

γ(t, x) =
β(iv) (t) [δ2 (t, x)− α′′ (t)]− α(iv) (t) [δ2 (t, x)− β′′ (t)]

β′′ (t)− α′′ (t)
,

100

and, for λ ∈ [0, 1] , the homotopic problem101

u(iv) (t) = λf (t, δ0 (t, u (t)) , δ1 (t, u′ (t)) , δ2 (t, u′′ (t)) , u′′′ (t)) (3.3)102

+(1− λ)γ(t, u′′ (t)) + u′′ (t)− δ2 (t, u′′ (t)) ,103

with boundary conditions104

u(i) (0) = (1− λ)
β(i) (0) + α(i) (0)

2
, u(i) (1) = (1− λ)

β(i) (1) + α(i) (1)
2

, (3.4)105

for i = 0, 2.
106

Step 1. Every solution u (t) of problem (3.3)–(3.4) satisfies107

α(i) (t) ≤ u(i) (t) ≤ β(i) (t) , ∀t ∈ [0, 1] ,108

for i = 0, 1, 2 independently of λ ∈ [0, 1] .
109

Assume, by contradiction, that the above inequalities do not hold for i = 2. So there110

exist λ ∈ [0, 1] , t ∈ [0, 1] and a solution u of (3.3)–(3.4) such that u′′ (t) > β′′ (t) or111

α′′ (t) > u′′ (t) . In the first case define112

u′′ (t1)− β′′ (t1) := max
t∈[0,1]

[u′′ (t)− β′′ (t)] > 0.
113

By (3.4) and Definition 2.4114

u′′ (0) ≤ (1− λ)
β′′ (0)

2
< β′′ (0)115

for every λ ∈ [0, 1] and so t1 6= 0. Analogously it can be proved that t1 6= 1. Then,116

t1 ∈ ]0, 1[ , u′′′ (t1) = β′′′ (t1) and u(iv) (t1) ≤ β(iv) (t1) . Then by (3.1), the following117

contradiction holds for λ ∈ [0, 1] :118

β(iv) (t1) ≥ u(iv) (t1)119

= λf (t1, δ0 (t1, u (t1)) , δ1 (t1, u′ (t1)) , β′′ (t1) , β′′′ (t1))120

+(1− λ) γ (t1, u′′ (t1)) + u′′ (t1)− β′′ (t1)121

≥ λf (t1, β (t1) , β′ (t1) , β′′ (t1) , β′′′ (t1))122

+(1− λ) β(iv) (t1) + u′′ (t1)− β′′ (t1)123

≥ λβ(iv) (t1) + (1− λ) β(iv) (t1) + u′′ (t1)− β′′ (t1) > β(iv) (t1) .124

The case u′′ (t) < α′′ (t) , for all t ∈ [0, 1] yields to a similar contradiction and therefore125

α′′ (t) ≤ u′′ (t) ≤ β′′ (t) , ∀t ∈ [0, 1] . (3.5)126
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By (2.6) and (3.4) it can be obtained127

u′ (0) = u (1)− u (0)−
∫ 1

0

∫ t

0

u′′ (s) ds dt
128

≥ u (1)− u (0)−
∫ 1

0

∫ t

0

β′′ (s) ds dt
129

= β′ (0)− β (1) + β (0) + u (1)− u (0)130

= β′ (0) +
1 + λ

2
[β (0)− β (1)] +

1− λ

2
[α (1)− α (0)]131

≥ β′ (0) + min {β (0)− β (1) , α (1)− α (0)} ≥ α′ (0) .132

Analogously u′ (0) ≤ β′ (0) and so133

α′ (0) ≤ u′ (0) ≤ β′ (0) .134

As, by (3.5), (β′ − u′) (t) is a nondecreasing function then135

β′ (t)− u′ (t) ≥ β′ (0)− u′ (0) ≥ 0, ∀t ∈ [0, 1] ,136

and β′ (t) ≥ u′ (t) for every t ∈ [0, 1] . By similar arguments137

β (t)− u (t) ≥ β (0)− u (0) =
1 + λ

2
β (0)− 1− λ

2
α (0) ≥ 0,138

i.e. β (t) ≥ u (t) for t ∈ [0, 1] .139

The inequalities u′ (t) ≥ α′ (t) and u (t) ≥ α (t) , for all t ∈ [0, 1], can be proved in140

analogously way.
141

Step 2. There exists r > 0 such that every solution u (t) of problem (3.3)–(3.4)142

verifies143

|u′′′ (t)| < r, ∀t ∈ [0, 1] ,144

independently of λ ∈ [0, 1] .
145

Let u (t) be a solution of (3.3)–(3.4). Then by Step 1146

u(iv) (t) = λf (t, u(t), u′(t), u′′(t), u′′′(t)) + (1− λ)γ(t, u′′ (t)).147

Consider, for λ ∈ [0, 1] , the auxiliary function Fλ : E1 → R given by148

Fλ (t, x0, x1, x2, x3) = λf (t, x0, x1, x2, x3) + (1− λ) γ (t, x2) .149

As f verifies (2.1) in E1 then150

|Fλ (t, x0, x1, x2, x3)| ≤ |f (t, x0, x1, x2, x3)|+ C151

≤ hE1 (|x3|) + C,152

with C a real positive number such that153

C ≥ max
t∈[0,1]

{∣∣∣α(iv)(t)
∣∣∣ +

∣∣∣β(iv)(t)
∣∣∣} .

154
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Defining hE1 : R+
0 → [a,+∞[ given by hE1 (t) = C +hE1 (t) , Fλ verifies (2.1) with E and155

hE replaced by E1 and hE , respectively. Condition (2.2) holds since156 ∫ +∞

0

s

hE1 (s)
ds =

∫ +∞

0

s

hE1 (s) + C
ds

157

≥ 1
1 + C

a

∫ +∞

0

s

hE1 (s)
ds = +∞.

158

Then by Lemma 2.2 there is r > 0 such that159

|u′′′ (t)| < r, ∀t ∈ [0, 1] .160

Remark that r is independent of λ since hE1 does not depend on λ .
161

Step 3. For λ = 1 problem (3.3)–(3.4) has at least a solution u1 (t) which is solution162

of problem (1.1)–(1.2).
163

Define the operators164

L : C4 ([0, 1]) ⊂ C3 ([0, 1]) → C ([0, 1])× R4
165

by166

Lu =
(
u(iv), u (0) , u′′ (0) , u (1) , u′′ (1)

)
167

and, for λ ∈ [0, 1] , Nλ : C3 ([0, 1]) → C ([0, 1])× R4 by168

Nλu = (λf (t, δ0 (t, u (t)) , δ1 (t, u′ (t)) , δ2 (t, u′′ (t)) , u′′′ (t))169

+(1− λ) γ (t, u′′ (t)) + u′′ (t)− δ2 (t, u′′ (t)) , A0,λ, A′′0,λ, A1,λ, A′′1,λ

)
,170

where171

A
(i)
0,λ = (1− λ)

β(i) (0) + α(i) (0)
2

, A
(i)
1,λ = (1− λ)

β(i) (1) + α(i) (1)
2

,172

for i = 0, 2.173

As L−1 is compact it can be defined the completely continuous operator174

Tλ :
(
C3 ([0, 1]) , R

)
→

(
C3 ([0, 1]) , R

)
175

by176

Tλ (u) = L−1Nλ (u) .177

Consider the real numbers ri > 0, i = 0, 1, 2, such that178

ri > max
t∈[0,1]

{∣∣∣α(i)(t)
∣∣∣ ,

∣∣∣β(i)(t)
∣∣∣} .

179

For r given by Step 2 define the set180

Ω =
{

x ∈ C3 ([0, 1]) :
∥∥∥x(i)

∥∥∥
∞

< ri, i = 0, 1, 2, ‖x′′′‖∞ < r
}

.181



Equadiff-11. Nonlinear beam fully equation simply supported 7

Remark that, by Steps 1 and 2, the degree d (I − Tλ,Ω, 0) is well defined for every182

λ ∈ [0, 1] . To evaluate d (I − T0,Ω, 0) it is considered the equation x = T0 (x) which is183

equivalent to the problem184  u(iv) (t) = γ (t, u′′ (t)) + u′′ (t)− δ2 (t, u′′ (t)) ,

u (0) = A0,0, u′′ (0) = A′′0,0, u (1) = A1,0, u′′ (1) = A′′1,0.
(3.6)

185

Defining new functions186

u (t) = u (t)− α (t) + β (t)
2

(3.7)187

and188

δ2 (t, x2) = δ2

(
t, x2 +

α′′ (t) + β′′ (t)
2

)
− α′′ (t) + β′′ (t)

2
,

189

that is190

δ2 (t, x2) =


sgn(x2)

β′′ (t)− α′′ (t)
2

if |x2| >
β′′ (t)− α′′ (t)

2

x2 if |x2| ≤
β′′ (t)− α′′ (t)

2

,

191

then192

δ2 (t, u′′) = δ2 (t, u′′) +
α′′ (t) + β′′ (t)

2193

and194

γ (t, u′′ (t)) =
β(iv) (t)− α(iv) (t)

β′′ (t)− α′′ (t)
δ2 (t, u′′ (t)) +

β(iv) (t) + α(iv) (t)
2

.
195

Applying the change of variable given by (3.7) in problem (3.6) it is obtained the196

equivalent problem composed by197

u(iv) (t) =
β(iv) (t)− α(iv) (t)

β′′ (t)− α′′ (t)
δ2 (t, u′′ (t)) + u′′ (t)− δ2 (t, u′′ (t)) (3.8)

198

with the boundary conditions199

u (0) = u′′ (0) = u (1) = u′′ (1) = 0. (3.9)200

Therefore equation x = T0 (x) is also equivalent to problem (3.8)–(3.9) and by the201

odd mapping theorem202

d (I − T0,Ω, 0) 6= 0.203

By degree theory the equation x = T0 (x) has at least a solution and by the invariance204

under homotopy205

d (I − T0,Ω, 0) = d (I − T1,Ω, 0) 6= 0.206
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So equation x = T1 (x) and the equivalent problem207

u(iv) (t) = f (t, δ0 (t, u (t)) , δ1 (t, u′ (t)) , δ2 (t, u′′ (t)) , u′′′ (t))208

+u′′ (t)− δ2 (t, u′′ (t)) ,209

with the boundary conditions (1.2) has at least a solution u1 (t) in Ω.210

By Step 1 this solution u1 (t) is also a solution of the initial problem (1.1)–(1.2).
211

If data on lower and upper solutions are considered on the beam right endpoint then212

a new definition must be assumed, with the corresponding first derivatives in reversed213

order.214

Definition 3.2. The functions α, β ∈ C4 (]0, 1[) ∩ C3 ([0, 1]) such that215

α (t) ≤ β (t) , β′ (t) ≤ α′ (t) , α′′ (t) < β′′ (t) , ∀t ∈ [0, 1] , (3.10)216

define a pair of lower and upper solutions of problem (1.1)–(1.2) if (2.4) and the following217

conditions are verified:218

α (1) ≤ 0, α′′ (0) ≤ 0, α′′ (1) ≤ 0,219

β (1) ≥ 0, β′′ (0) ≥ 0, β′′ (1) ≥ 0,220

α′ (1)− β′ (1) ≥ max {β (0)− β (1) , α (1)− α (0)} .221

With these lower and upper solutions a new existence and location result holds.
222

Theorem 3.3. Suppose that there exists a pair of lower and upper solutions of (1.1)–223

–(1.2), α (t) and β (t) as in Definition 3.2. Let f : [0, 1] × R4 → R be a continuous224

function such that f verifies the Nagumo-type condition in225

E2 =
{
(t, x0, x1, x2, x3) ∈ [0, 1]× R4 : α (t) ≤ x0 ≤ β (t) , β′ (t) ≤ x1 ≤ α′ (t) ,

α′′ (t) ≤ x2 ≤ β′′ (t)} .226

Moreover if (3.1) and (3.2) hold for (t, x0, x1) ∈ [0, 1] × R2, α (t) ≤ x0 ≤ β (t) and227

β′ (t) ≤ x1 ≤ α′ (t) , then there is at least a solution u (t) ∈ C4 ([0, 1]) of problem (1.1)–228

–(1.2) satisfying229

α (t) ≤ u (t) ≤ β (t) , β′ (t) ≤ u′ (t) ≤ α′ (t) , α′′ (t) ≤ u′′ (t) ≤ β′′ (t) ,∀t ∈ [0, 1] .230

231

Example:Consider the fourth order boundary value problem232  u(iv) = e−sgn(u) u u′′,

u (0) = u (1) = u′′ (0) = u′′ (1) = 0.
(3.11)

233

Functions α, β : [0, 1] → R given by234

α (t) := −t2 − t, β (t) := t2 + t235

define a pair of lower and upper solutions of (3.11) and although the boundary conditions236

of Definitions 2.4 and 3.2 are satisfied, only (2.6) holds.237
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Notice that238

f (t, x0, x1, x2, x3) = e−sgn(x0) x0 x2239

does not verify the monotone type assumption used in [16],240

f (t, α (t) , α′ (t) , x2, x3) ≥ f (t, x0, x1, x2, x3) ≥ f (t, β (t) , β′ (t) , x2, x3) ,241

for (t, x2, x3) ∈ [0, 1]×R2 and α (t) ≤ x0 ≤ β (t) , α′ (t) ≤ x1 ≤ β′ (t), but it satisfies (3.2)242

and (3.1).243

Since the Nagumo-type condition is verified in244

E =
{
(t, x0, x1, x2, x3) ∈ [0, 1]× R4 : −t2 − t ≤ x0 ≤ t2 + t,

−2t− 1 ≤ x1 ≤ 2t + 1, −2 ≤ x2 ≤ 2} ,245

then, by Theorem 3.1, there exists a solution u (t) of (3.11) such that,246

−t2 − t ≤ u (t) ≤ t2 + t, − 2t− 1 ≤ u′ (t) ≤ 2t + 1, − 2 ≤ u′′ (t) ≤ 2,247

for every t ∈ [0, 1].
248

Counter-example: To prove that (2.6) can not be removed, consider the fourth order249

problem250  u(iv) = − (u′)2 + u′′ + 2u′′′,

u (0) = u (1) = u′′ (0) = u′′ (1) = 0.
(3.12)

251

The functions252

α (t) :=
t (1− 3t)

6
, β (t) :=

t (1 + t)
6

.253

satisfy assumptions (2.4) and (2.5) but (2.6) is not verified since254

α′ (0)− β′ (0) = 0 > min {β (0)− β (1) , α (1)− α (0)} = −1
3
.255

Problem (3.12) has only the trivial solution u (t) ≡ 0 and256

0 = u (t) < α (t) < β (t) , 0 = u′ (t) < α′ (t) < β′ (t) , ∀t ∈
]
0,

1
6

[
,

257

that is the localization given by Theorem 3.1 does not hold.258
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