
 
 

  

INSTITUTO DE INVESTIGAÇÃO E FORMAÇÃO AVANÇADA 

ÉVORA, NOVEMBRO 2014 

 

ORIENTAÇÃO: Professora Doutora Maria do Rosário Gamito de Oliveira 

Professor Doutor Nuno Manuel Cabral de Almeida Ribeiro 

Doutor Peter Surový  

Tese apresentada à Universidade de Évora 

para obtenção do Grau de Doutor em Gestão Interdisciplinar da Paisagem 

Cati Oliveira Dinis 

Sistema Radical do Sobreiro (Quercus suber L.): Uma 
Abordagem Estrutural-Funcional 3D 

CORK OAK (Quercus suber L.) 
 ROOT SYSTEM: 

A STRUCTURAL-FUNCTIONAL 3D 
APPROACH 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A doutoranda Cati Oliveira Dinis beneficiou de uma Bolsa de Doutoramento pelo 

Programa Bento Jesus Caraça, concedida pela Universidade de Évora (Instituto de 

Investigação e Formação Avançada), entre o período de Janeiro de 2011 a Dezembro de 

2013 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 
Cati Dinis, 2014 
 

Agradecimentos 

No decorrer desta tese muitas foram as pessoas que direta ou indiretamente colaboraram para 

que a sua conclusão fosse possível. O meu sincero agradecimento a todas elas. Contudo, não 

poderia deixar de destacar e agradecer, particularmente: 

 À minha orientadora e mentora, Professora Maria do Rosário Oliveira, por todo o 

seu apoio, disponibilidade, sentido crítico e conhecimento transmitido quer a nível 

científico quer a nível pessoal. 

 Aos meus co-orientadores Doutor Peter Surový e Professor Nuno Ribeiro por me 

terem “lançado” este desafio e pelo seu acompanhamento incansável ao longo destes anos 

de trabalho conjunto! Pela transmissão de conhecimentos técnicos e científicos, 

brainstorms, apoio, confiança, paciência, entusiasmo e, amizade.  

 A todos os colegas que passaram pela equipa de investigação: Susana, Rita, Paulo, 

João, Marco, Isilda, Constança, Radek, Marketa, Ana, Gabriela, Chris, Hugo, Manuela. 

O vosso apoio foi essencial nos trabalhos de campo assim como nas temporadas 

laboratoriais, sempre com motivação, profissionalismo e…boa disposição!  

 A toda a equipa da empresa TRA pelo apoio prestado, garantindo a execução de 

parte desta investigação.  

 Ao Professor Cermak por me ter recebido em Brno, República Checa, partilhando 

o seu conhecimento, em ambiente de campo, acerca dos métodos de escavação de raízes. 

“Quem estuda raízes tem que ter um pouco de loucura dentro de si!”. E ao Professor 

Robert Marusak por ter cedido emprestar o equipamento necessário ao tratamento 

laboratorial de raízes finas. 

 À Doutora Teresa Soares David pela sua disponibilidade e transmissão de 

conhecimentos na área das raízes. 

 Às técnicas D. Zetinha e D. Maria das Dores, pelo inestimável apoio nas longas 

horas passadas no laboratório. 

 Aos vários docentes e investigadores da Universidade de Évora, principalmente 

do Departamento de Fitotecnia, que me acompanharam durante este processo. Quer seja 

ao nível dos ensinamentos transmitidos nos mais variados temas abordados nesta 

investigação, quer seja pelas palavras sábias, experientes e motivacionais nos momentos 

certos, o meu Muito Obrigado! Um especial Obrigado ao Professor Rui Machado e ao 

Professor Alfredo Gonçalves Ferreira.  



ii 
Cati Dinis, 2014 
 

 À D. Fátima pela sua eficiência profissional e pelo apoio pessoal transmitido 

durante as “nossas conversas”.  

 À minha Amiga Susana Palminha que me acompanhou nos primeiros tempos 

desta aventura… muitos meses passados a escavar raízes! E embora nos tenhamos 

separado a nível profissional a sua amizade incondicional, apoio, compreensão, espírito 

crítico e motivação ao longo do tempo de elaboração desta tese ajudaram-me 

incansavelmente a seguir em frente. 

 A todos os meus amigos do coração, eles sabem quem são! Obrigada por 

compreenderem as minhas ausências, os momentos de impaciência e, por vezes o mau 

humor momentâneo; pelas palavras amigas e por nunca deixarem de acreditar em mim. 

Um agradecimento especial às minhas “5 chacras” (Jaqueline, Raquel, Sara, Su, Maria 

Inês) por me terem sempre ajudado a manter o equilíbrio, cada uma à sua maneira… e 

um agradecimento especial também aos meus amigos da “La Família”! Tenho um lugar 

no coração para cada um de vocês! 

 À minha família! Obrigada por tudo e principalmente obrigada pela vossa 

paciência e compreensão. Obrigada por nunca me deixarem esquecer quem sou, de onde 

venho e que o mundo é do tamanho dos meus sonhos. Um obrigado carinhoso aos meus 

sobrinhos Tomás e André pelo seu amor… e desculpem por tantas vezes terem dito “Oh, 

a tia está sempre a trabalhar!”. 

 Aos meus pais, as minhas RAÍZES! Os que acompanharam verdadeiramente este 

processo do início ao fim… os bons e os maus momentos, as dúvidas, as incertezas, as 

quebras de força, os momentos de ânimo… foram vocês que sempre estiveram lá! 

Obrigada por me terem incutido os valores e princípios de que eu tanto me orgulho e que 

me fizeram chegar aqui! Ao meu Pai, o meu pilar de segurança, que por mais que eu 

abane nunca me deixa cair ou levantar de mais, sempre com as palavras certas no 

momento certo, essencial para manter a mente e o espírito sãos! E à minha Mãe, uma 

força da natureza, uma guerreira da vida…um exemplo que quero seguir! O seu amor foi 

um porto de abrigo para mim neste processo. Muitas vezes fazendo-me acreditar que 

tenho todas as forças do mundo para zarpar e chegar onde quiser e outras vezes, puxando-

me para a “costa” e fazendo-me ver a realidade como ela é! Apesar de muitas vezes eu 

ter sentido que gostavam de me ter ajudado mais, acreditem… vocês estiveram sempre lá 

quando eu precisei! E mais importante que tudo, obrigada por nunca terem deixado de 

acreditar em mim! Esta tese é dedicada a vocês! 



iii 
Cati Dinis, 2014 

Abstract 

The last decades have witnessed the decline and sudden death of the cork oak (Quercus 

suber L.) in Montado. The complexity of this production system management has lead to 

a large set of solutions which have been absent by scientific based research findings (such 

as those related with the cork oak root system) deriving mainly from empirical knowledge 

application. The present integrated research approach permits a better understanding of 

the production system vulnerabilities that can result in management modification 

proposals which will be useful in a near future. To contribute to a more realistic and 

integrated forest management and planning, a study relying on a morphological 

evaluation of cork oak root system in a Cambissoil soil, using a 3D digitizing method was 

performed. Cork oak showed a dimorphic root system with a relative high quantity of 

sinkers distributed all over the soil profile, one root subsystem at a superficial level until 

40 cm depth and another at a deeper level, around 1.20 m depth. Tree biomass allocation 

was similarly distributed between aerial and root systems. Previously, a study on 

methodologies for roots excavation - profile washing with water and excavation through 

high pressure air jet – was carried out. Results showed that for sandy soils the most 

suitable method is the excavation by high pressure air jet. Both methods showed to be 

inadequate for clayed soils. Following the evidence that soil compaction could be an 

important factor for root growth, a study was conducted, in a greenhouse, with cork oak 

seedlings. Results showed that tap root length and total root biomass (coarse and fine 

roots) are negatively affected by soil compaction in depth. In regard to the low survival 

rate of cork oaks regeneration that has been observed in Montado, another complementary 

study was conducted in a greenhouse where fertilisation, inoculation with mycorrhizal 

fungi and aminoacids supply were tested. It was concluded that seedlings subjected to 

fertilisation and inoculation had a more equilibrated growth between shoot and root 

components. It is expected that the research developed in the present thesis can provide 

an essential tool for future forest planning and management and for the natural and 

artificial regeneration processes in cork oak stands, ensuring the maintenance of the 

typical Montado landscape. 

 

Key-words: Cork oak; 3D root system architecture; Montado decline; Tree regeneration
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Sistema Radical do Sobreiro (Quercus suber L.): Uma Abordagem Estrutural 

Funcional 3D 

 

Resumo 

Desde as últimas décadas que se tem vindo a testemunhar o declínio e a morte súbita do 

sobreiro (Quercus suber L.) no Montado. A complexidade da gestão deste sistema de 

produção engloba um grande conjunto de soluções que, por terem sido ausentes de 

validação científica (tal como a relacionada com o sistema radical do sobreiro), tem vindo 

a ser suportado, principalmente, pela aplicação do conhecimento empírico. A presente 

abordagem integrada permite uma melhor compreensão das vulnerabilidades deste 

sistema que pode resultar em propostas de alteração de gestão que serão úteis num futuro 

próximo. De forma a contribuir para uma gestão e planeamento florestal mais realistas e 

integrados, foi realizado um estudo acerca da avaliação morfológica do sistema radical 

do sobreiro num cambissolo, usando o método de digitalização 3D. O sobreiro mostrou 

um sistema radicular dimórfico com uma elevada quantidade relativa de sinkers 

distribuídos por todo o perfil do solo. Foi observado um subsistema à superfície, até aos 

40 cm de profundidade e outro mais profundo, a cerca de 1.20 m. Observou-se também 

que a biomassa da árvore foi distribuída de forma similar entre os sistemas aéreo e radical. 

Anteriormente foi conduzido um estudo sobre as metodologias de escavação de raízes - 

lavagem de perfil com água e escavação por meio de jato de ar de alta pressão. Os 

resultados mostraram que para solos arenosos, o método mais adequado é o método por 

meio de jato de ar de alta pressão e, que ambos os métodos mostraram ser inadequados 

para os solos argilosos. Após a observação de que a compactação do solo pode ser um 

fator importante para o crescimento das raízes, um estudo foi realizado em ambiente de 

estufa com plântulas de sobreiro. Os resultados mostraram que o comprimento da raiz 

principal e a biomassa total de raízes (raízes grossas e finas) foram negativamente 

afetados pela compactação do solo em profundidade. No que diz respeito à baixa taxa de 

sobrevivência da regeneração dos sobreiros, outro estudo complementar foi realizado em 

ambiente de estufa onde a fertilização, a inoculação com fungos micorrizos e o 

suplemento de aminoácidos foram testados. Concluiu-se que as plântulas submetidas à 

fertilização e inoculação tiveram um crescimento mais equilibrado entre as componentes 

aéreas e radicais. Espera-se que a investigação apresentada nesta tese possa proporcionar 

uma ferramenta essencial para o planeamento e gestão florestal futuros e, contribuir para 
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o sucesso da regeneração natural e artificial dos povoamentos de sobreiro, garantindo a 

manutenção da paisagem típica do Montado. 

 

 

 

Palavras-chave: Sobreiro; Arquitetura 3D do sistema radical; Declínio do Montado; 

Regeneração 
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Preface 

This thesis is structured in seven chapters. Chapter 1 consists of a general introduction 

with the main objectives of the research highlighted. This chapter also provides a relevant 

literature review about the decline of Montado, tree root systems and the role of cork oak 

root system as a structural and functional element in the Montado landscape dynamic, 

justifying the relevance of this study at the landscape level. This additional literature is 

focused mainly on topics that are not extensively mentioned in the literature reviews of 

the remaining chapters. Chapters 2, 3, 4 and 5 correspond to the main research studies, 

which are presented through scientific articles format (published, submitted or ready for 

submission for future publication), including a theoretical framework (introduction), 

methods, results, discussion and conclusions. A number of illustrations that were not 

included in the articles, due to high publication costs, are presented in this thesis in order 

to emphasize important research points. The studies presented in these chapters integrate 

the research project: "Determination of Methodologies for Adult Cork Oak Trees 

Transplantation". Chapter 2 includes a study about comparison of methods to access tree 

root systems. Specifically, soil profile washing with water and high pressure air jet 

methods were tested. The results of this study provide important information regarding 

the choice of which method should be applied according to soil characteristics. Chapter 

3 presents one of the most important parts of the research undertaken, consisting of an 

intensive study about the functional structural evaluation of the cork oak root system 

development in a Cambissoil soil. The approach applied in this study was the use of three-

dimensional scanning techniques and the evaluation of important variables to describe 

the morphology of the roots (biomass, length, volume, etc.). One of the major 

contributions of this study is the quantity and quality of information generated, non-

existent to date, which can be used as a basis for future decision support systems in 

planning and management of cork oak stands. The experimental study described in 

Chapter 4 emerged from the evidence observed during the study of cork oak root system 

(Chapter 3), that is, that soil compaction in depth can be a determining factor for the tree 

root system morphology and, consequently, contribute to the lack of natural regeneration 

observed in Montado. Following these observations, an experimental study was carried 

out under greenhouse conditions. This study assessed the effects of soil compaction at 

different depths in the cork oak seedlings growth. Still regarding the lack of natural 
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regeneration, and taking into account the studies that have been conducted in the main 

research project about the determination of methodologies for cork oak transplantation, 

an additional  study on cork oak seedlings was carried out in a controlled environment 

(Chapter 5) . This study served to test the influence of fertilization, mycorrhizal fungi and 

aminoacids applications on cork oak seedlings growth. The main purpose was to promote 

a reduction in the time required for regeneration and, simultaneously, to reduce the stress 

effects of post-transplant. Chapter 6 presents the general discussion and conclusions 

regarding all the results from the previous chapters. The final remarks and some technical 

improvements, suggested for future forest management and planning, are in chapter 7, 

which also highlights the relevance of this work and some perspectives for future research 

lines.  
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1.1 Background 

 

The awareness that the dependence of the relationship between the use of territory by 

human and the natural cycle’s dynamics (water and carbon) is what enables and supports 

the existence of life on earth, has promoted a growing concern about environmental issues 

by the society. Nowadays, notions about scarcity of natural resources are increasingly 

present and the search for sustainable solutions to conservation is rising. Globally, targets 

and measures to ensure the sustainability of these resources for future generations have 

been imposed.  

Existing concerns about water and greenhouse gases, have taken a growing relevance 

worldwide. To achieve the desired goals in the regulation of these parameters it is 

essential to increase the knowledge not only about the natural cycle’s dynamics but also 

about the influence of ecosystem management in these cycles. Forests are recognized as 

having a crucial role in sustaining water and nutrient cycles. An elevated biodiversity, 

expressed through different degrees of tree cover (trees of different ages), shrub and 

herbaceous entitling a wide variety of vertical and horizontal vegetation structure, 

benefits the functionality of the referred cycles. The maintenance of these vegetation 

structures through low impact forestry operations allows a stability that is crucial to the 

quality and durability of ecosystems. 

With the Water Framework Directive (Directiva 2000/60/CE - Jornal Oficial das 

Comunidades Europeias, 2000) Portugal, as all member states, aims to achieve by 2015 

a good qualitative status of its water resources through a series of ambitious goals. These 

goals, which are reflected at watershed management plans scale and include the polluter-

payer principle, are quite demanding. The two major goals outlined in this policy are the 

characterization of the maximum ecological potential conditions for the main water 

reservoirs, and the creation of a method for potential ecological evaluation. For 

environmental protection purposes this document also dictates a better integration of the 

qualitative and quantitative aspects of surface and ground water, regarding the natural 

water flow conditions within the hydrological cycle. Thus, the purposed challenge 

requires a greater knowledge about the hydrological balance functioning within the forest 

systems. The specific issue of quantification of how much water the forest uses and resets 
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to the system constitutes a stimulating challenge that could be integrated into watershed 

management plans. 

The same can be applied to carbon sequestration. It is generally known that forests capture 

and sequester more carbon compared to what they release to atmosphere, but the 

knowledge about the quantification and therefore the attempt to assign real value to 

indirect use of this service is minimal. The European carbon markets in functioning since 

2005 and, at the same year, the Kyoto Protocol (http://www.apambiente.pt/), bring new 

dynamics and interest regarding carbon cycle knowledge.  

For Portugal to adopt a competitive strategy it is essential and fundamental to know how 

much carbon is captured and sequestered by our forest ecosystems. However to 

accomplish this target it is necessary to understand the forest systems dynamics, assuming 

the multifunctionality of their uses.  It is also important to highlight that the management 

of forest multifunctionality is what enables forest goods and services provision to society, 

both facilities or amenities.  

In the south of Portugal co-exist, among others, two different vegetation stand structures. 

Where the tree density is high and the goal is forest productivity (cork, wood, etc.) the 

system is defined as cork oak (Quercus suber L.) or holm oak (Quercus rotundifolia 

Lam.) stands. When the system integrates several functions it is called cork oak or holm 

oak woodland referred in Portugal as Montado (Dehesa in Spain). The Montado supports 

multiple land uses, combining the exploitation of tree cover, and a rotation of grazing, 

cultivation and fallow in the undercover. This agro-silvo-pastoral system has existed for 

centuries in a more or less developed and intensively managed form (Surova & Pinto-

Correia, 2008). Montado ecosystem has a variety of different vegetation structures, the 

most predominant of which is a savannah-type landscape mainly composed by scattered 

trees of Quercus species, cork oak (Quercus suber L.) and holm oak (Quercus ilex subsp. 

rotundifolia Lam), without shrubs and only with an herbaceous substrate. It is common 

to use this herbaceous layer with cereal production. In areas of less accessibility, such as 

in high slopes, stands are more closed and the shrub layer develops under the tree 

canopies. 

Cork oak (Quercus suber L.) is a large and long-living tree, spatially distributed across 

the Mediterranean basin, which is part of the Mediterranean Montado structure. This 
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ecosystem has a high national importance not only due to the production of cork, but also 

because of their vegetation formations that have an extraordinary ability to adapt to the 

specific climatic conditions of the Mediterranean climate (Moreno & Oechel, 1995). 

These formations have the capacity to support large climatic variations over the year, a 

long period of dry conditions in summer and cold and humid conditions in the winter 

(Otieno et al., 2006). 

In Portugal, the current area occupied by Montado of cork oak is about 715 922 ha of 

which 601 90 6ha are in the south, in the Alentejo region (AFN, 2010). This area 

represents 22% of the total country forested area and 33% of the total world area occupied 

by cork oaks (Ribeiro et al., 2010). Due to the high density of this species in the country, 

Portugal is currently the world leader in cork production and exportation (representing 

54% of the cork annual average world production). Portugal is also responsible for the 

transformation, by the cork industry, of 70% of the cork produced globally. 

The Montado ecosystem is classified as a "High Nature Value Farming System" 

according to the European classification proposed by the European Environment Agency 

(Paracchini et al., 2008). Ecologically, this ecosystem promotes a high amount of benefits 

and services. The elasticity and resilience of Montado is good, but can be disturbed by 

extreme changes of various nature. According to Ribeiro et al. (2004) this may happen 

both by (1) random, external variables that relate to tree mortality, tree damage and 

intensity of natural regeneration, and (2) management-based variables that can affect the 

system at tree level physiology (debarking, crown pruning and root pruning) and at site 

level mainly by soil structure modifications (soil mobilization, erosion risk, organic 

matter depletion, fertility loss, etc.). 

For Portugal, Montado ecosystem has a high ecological representativeness contributing 

to biodiversity, watershed protection, CO2 fixation, soil improvement and flood 

protection, among others (Millenium Ecosystem Assessment, 2003). Montado benefits 

rely on nutrients and soil formation cycles hence their trees have the ability to capture 

large quantities of nutrients not only at superficial soil layers but also at major depths, 

which otherwise would be inaccessible to vegetation (Millenium Ecosystem Assessment, 

2003). Biota of the ecosystem plays an important role in nutrients storage and recycling. 

The trees provide a lot of material that rots in the soil as humus, enriching it with nutrients. 

As mentioned before an important Montado benefit and regulatory function is carbon 
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fixation through the reduction of greenhouse gas emissions (all plants store carbon 

dioxide - CO2 - captured from atmosphere). Healthy cork oak stands with reasonable tree 

cover can sequester annually 1 – 3 tons of carbon per hectare (Pinto-Correia et al., 2013). 

These values are close to the Central European forest’s mean, although the variability is 

very high. Carbon balance values tend to decrease with aging and sick trees (after 

reaching a maximum); water deficit; fire and high impact forestry operations which 

increase soil erosion. Each time cork is removed and cork oak trees are pruned, they 

absorb more CO2 (Pinto-Correia et al., 2013). Other benefit of this system is the control 

of erosion, by wind and rainfall. Forest vegetation increases the rate of infiltration and 

evapotranspiration (namely rainfall interception and transpiration), decreasing the 

amount of streamflow and aquifer recharge, compared to short vegetation.  

Montado is also presented as a singular Mediterranean forest ecosystem, extremely 

valuable in biodiversity and is identified as of upmost importance for nature conservation 

at national and European level. What is the contribution of the Montado for water cycle 

and carbon sequestration? How does forest management of this multifunctional system 

can enhance this contribution? And how can the trees role in these dynamic cycles be 

studied? Knowing that the tree water and nutrients uptake is made through its root system, 

the functioning of the referred cycles in Montado can be evaluated through the 

understanding of the relationship between tree root system and the surrounding matrix. 

In an attempt to valuate these benefits and functions it is necessary to increase the 

resolution scale to an individual level scale – the tree. Only after understanding the 

relationship between roots and the surrounding matrix it is possible to assess the tree 

contribution to the water and carbon cycles. Expectedly, the ideal would be to extrapolate 

these models to Montado and watershed scale.  

Current climate change scenarios point to an intensification of dry periods in 

Mediterranean climate regions (Vaz, 2005). This fact will lead to an intensification of 

vegetation drought stress in these regions and thus carbon assimilation and transpiration 

will be severely restricted (Pereira et al., 2004) which may jeopardize the survival of the 

trees. Otieno et al. (2006) assume that, in regard to Montado ecosystem, the establishment 

of only certain specific species, their distribution, and their mortality appear to be partially 

controlled by edafoclimatic conditions. Plants that have the ability to keep physiologically 

active for long periods of summer dryness must have access to deep soil layers which 
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remain wet for a longer period of time (Rambal, 1984). Also the plants must have the 

ability to exploit large volumes of soil (Breda et al., 1995) and redistribute water within 

the soil profile through roots (Ryel et al., 2003; David et al., 2013). 

Trees act as propulsion pumps of nutrients, enabling the uptake of nutrients from deeper 

soil areas and lateral areas underneath the canopy projection, depositing them in the most 

superficial soil layers (Joffre, 1999). In general, the trees rooting depth is greater in dry 

environments with seasonal drought (Canadell et al., 1999; Otieno et al., 2006; Schenk 

& Jackson, 2005). David et al. (2007, 2013) and already in 2005, Lubczynski and Gurwin 

reported that the evergreen trees from Mediterranean Montado depends greatly on 

groundwater tables. 

Ecophysiologicaly the processes of resistance to the summer drought stress by the cork 

oaks are certainly related to maintaining internal water homeostasis (Losch & Schulze, 

1995; Kurz - Besson et al., 2006; Otieno et al., 2006; Palace et al., 2009) and to ensure 

the carbon balance (Pereira et al., 2004; Unger et al., 2009). Lima (2008) in his review 

about cork oak root system, listed the following strategies for this species: 1) interruption 

of shoot growth during the summer when the dawn water potential in the upper soil layer 

(where more fine roots are present) is about -1.5MPa, 2) emission of deeper fine roots to 

capture the water available in the soil, 3) secondary production of narrower conducting 

vessels in the summer, to replace the large vessels produced earlier in the spring, 

preventing the xylem cavitation, 4) maintenance of an efficient transport of water between 

roots and leaves and; 5) extraction of water from the soil at a reduced mean transpiration 

rate associated to minimal seasonal stomatal conductance. In this ecosystem that depend 

on the groundwater, the lowering of the water table level can increase the tree water stress 

and, consequently, promote the leaf fall which may lead to the death of trees (Zencich et 

al., 2002; Cooper et al., 2003). 

As mentioned, cork oak must have structural, functional and ecophysiological response 

patterns which allow the withstanding of the seasonal effect of intense water stress, 

imposed by the Mediterranean climate during summer (Aranda et al., 2007; Costa et al., 

2009; David et al., 2004; 2013; Gouveia & Freitas, 2008; 2009; Ja et al., 2011; Kurz-

Besson et al., 2006; Otieno et al., 2007). It is thus crucial to understand the access of cork 

oak root system to groundwater to evaluate the water balance of the tree and consequently 

of the Montado (Lacambra et al., 2010). For that purpose it is necessary to identify what 
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structural and functional mechanisms occur in the root system and what is the relationship 

between roots and the surrounding matrix, at different growth stages (seedling and adult 

stages). 

Seedling stage is one of the crucial steps in the tree development. The behavior of mature 

shoot and root systems are the result of the growth conditions at the initial phase. In 

addition to the intrinsic factors inherent to plant growth, extrinsic factors are decisive for 

the development of the tree. Essentially, the morphological structure of mature root 

system is a result of the roots soil exploitation strategy at the first stages. This initial root 

growth strategy is related with the rhizosphere characteristics where the plant develops. 

During their growth, roots explore the soil searching for water and essential elements 

which promote the structural functional support of the tree (Coder, 2007). Is this initial 

growth and development strategy that will define the morphological structure of mature 

root and shoot system. 

Knowing that the root system is responsible not only for the tree fixing and support but 

also for water and nutrients uptake and transport to the shoot, it is easy to understand the 

importance of root systems on the dynamics of Montado. Because we are not dealing with 

a static and timeless ecosystem, to understand the root system development it is necessary 

to relate the belowground system (root) with the aerial system (shoot); with the 

biophysical parameters of the surrounding matrix (soil type, water and nutrients 

availability); with ecophysiological parameters (water and nutrients uptake and transport 

and carbon assimilation); and with the soil tillage applied (disking, clear cuts, traction) 

(Figure 1). It is important to mention soil tillage techniques because bad forest 

management practices or aggressive farming techniques can induce the destruction of 

vegetation, roots and fungi which are essential to provide a good state of Montado 

conservation. These facts, together with soil erosion, can lead to the weakening and 

diminish of the tree water and nutrients absorption capacity promoting the tree water 

stress (internal dry) which consequently will affect directly the water balance. 
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Figure 1. Explanatory model of research background. 
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The knowledge about this topic is almost nonexistent either at national or international 

level. The difficulty and time consuming nature of obtaining root data, as well as the costs 

associated with this type of research, explains the lack of research focusing on this topic. 

However, as mentioned before, the need to improve the knowledge of root systems and 

their relations with the subsoil, which are clearly conditioned by the surrounding matrix 

processes, is increasingly relevant. In the specific case of cork oak, forests researchers 

but also plant physiologists have studied more intensively the shoot system. The only 

studies identified that relate to adult cork oak root system are: i) Surový et al. (2011) 

where 12-years old root systems were partially accessed to verify the influence of field 

installation process (planting and seeding) on the morphology of root systems. These 

authors compared the distribution of roots along the soil depth profile; ii) Metro and 

Sauvage (1957) where the root systems of some adult cork oaks of different ages from 

Mamora forest were fully described in terms of horizontal and vertical distribution; iii) 

Kurz-Besson et al. (2006); Nadezhdina et al. (2008) and David et al. (2013) who focused 

their studies on the structural and/or functional aspects of cork oak root system, namely 

on root hydraulic redistribution.  

Tree root systems can be studied having different approaches, according to the specific 

objectives of the study. A structural functional approach is essential to understand the 

development strategy of roots in the soil. Recent methods to evaluate root systems, such 

as tridimensional digitizing, have the possibility to bring new insights about this research 

area. This method is largely discussed in Chapter 3 which represents the main research 

study of this thesis. 
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1.2 Objectives  

 

This research was developed under the research project “Determination of Methodologies 

for Adult Cork Oak Transplantation". This project was financed by a consortium between 

the University of Évora and a private company, TRA (Transplant Trees, Ltd). This project 

presents itself as innovator and pioneer in the research area of cork oak root system as it 

will not only add to the existent studies but will also potentially enable the development 

of a new range of scientific and technological research studies. 

Also the understanding of these underground structures will influence different research 

fields, such as environment, ecology, ecosystem valuation, economy, etc... 

 

The main objectives of this thesis are: 

 

i) To evaluate the morphological, structural and architectural characteristics of 

cork oak root system through the three-dimensional digitising method; 

ii) To understand the root distribution pattern on depth and extend and 

accordingly to soil conditions;  

iii) To relate the cork oak root system behavior with the surrounding matrix 

focusing mainly on soil type, soil mechanical impedance and effects of 

nursery cultivation for future field establishment (fertilisation, mycorrhizal 

fungi inoculation and aminoacids supply). 

 

For a common and universal evaluation of the results obtained during this research 

process, it was decided to adopt the world soil classification from FAO (2006). 
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1.3  Review of Relevant Literature 

 

1.3.1 Montado Landscape 

 

The definition of landscape has been evolving over time. According to the review made 

by Filho (1998) the concept of landscape has changed due to an attempt to integrate all 

the system´s constituents. In the abovementioned review the author emphasizes the 

Bertrand (1968) landscape definition as “a particular portion of space that results from 

the dynamic combination of physical, biological and human elements which interact 

dialectically on each other form a single and inseparable set in perpetual evolution". In 

1972, Zonneveld (in Filho, 1998) described landscape “as a part of space on Earth's 

surface covering a systems set characterized by geological, air, plants, animals and 

human and their resulting physiognomic forms, which may be recognized as entities". 

More recently, according to the European Landscape Convention (2000), landscape was 

defined as "the result, observed by Man, of a complex and dynamic system of many 

natural and cultural factors that influence each other and change over time". All the 

definitions abovementioned identify the need of thinking about the landscape as a 

dynamic system in constant variation of their multiple system “components". 

A landscape can be in equilibrium or exist in different states of equilibrium, depending 

on its resistance level to disturbance and also on the ability to recover from a disturbance 

process. Moderate disorders of the landscape elements (such as vegetation) provide more 

patches in the landscape. However, severe disturbances of those elements can eliminate 

the presence of patches, resulting in a complete landscape change. For instance, adverse 

climatic and environmental conditions and certain soil uses may promote a patched 

distribution that is totally distinctive from the original landscape distribution.  

Biodiversity is an integral part of the landscape allowing for variability. This variability 

can be expressed into economic, social and environmental improvements. Bioindicators 

are essential tools for planning and according to Quine and Watts (2009) and Di Giulio 

et al. (2009) these bioindicators should be applied at different spatial scales, describing 

the variation of the landscape functions, and taking into account the specifications of the 

spaces that are to be managed. The application of bioindicators at different temporal 

scales should also be taken into account in the context of the landscape multifunctionality. 
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For instance, in agricultural systems the management can be made in certain cases at 

short-medium term, but if we are dealing with a forest system management it should be 

planned for a medium - long term. It is of the upmost importance to face the composition 

of a space as a set of existent processes that occur in that space. It is also necessary to be 

aware that the loss of a certain potential at any of the system levels will be expressed as 

a loss of value on the entire space. 

Forest ecosystems are one of the existing landscape types. The forest ecosystem can be 

considered as a set of biological communities and the abiotic environment in which they 

live. These ecosystems are places of high metabolic activity where the water and energy 

fluxes are strongly influenced by the existence of trees and by their density. Tree canopies 

absorb large amounts of solar radiation for food production, but can also shade other plant 

species, which will influence the type and diversity of species occurring below the 

canopy. Trees also modify substantially the forest ecosystem’s microclimate. In this type 

of ecosystems the relations with the soil are strong, not only because the soil serves as a 

source of raw materials for the tree, but also because the level of organic processes 

occurring in it will influence the soil quality and the productivity of trees. The main 

characteristics of the forest ecosystem are the strong dependence of the natural 

environment, the difficulty to distinguish between productive capital and incomes, the 

production of long-term benefits, productive externality, residual value of products, 

goods and services, production variability, impact of forest operations on the vegetation 

and fauna and management of marginal productive spaces, among others. The human 

species although sheltered by culture and technology from the immediate effects of 

environment, is ultimately dependent on a number of ecosystem services (Millennium 

Ecosystem Assessment, 2003). In this context ecosystem services are defined as all the 

benefits that people get from ecosystems: food, fiber and water; regulation services; 

cultural services (relating to aesthetic, spiritual or recreational experiences); and support 

services (such as biogeochemical cycles, soil formation and primary production of 

ecosystems) (Millenium Ecosystem Assessment, 2003). However in these 

multifunctional ecosystems (forests) there are still issues in the definition of 

multifunctionality for each space. To focus on forest multifunctionality it is necessary to 

know previously what model space will be evaluated and particularly, concerning to 

forest planning and management, it is necessary to be aware of the temporal scale. 
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There are few natural forest systems still in existence worldwide. Most of them have been 

influenced by humans thus becoming humanized such as the case of Montado. The 

Montado ecosystem is a specific landscape type that is constantly changing without being 

noticeable on the scale of human life. This type of landscape is characterized by a savanna 

forest type with the existence of open spaces, allowing a high biodiversity, both locally 

and at a regional level. The presence of many endemic species in these landscapes is also 

highlighted. Montado can be divided into three categories: Montado of cork oak (Quercus 

suber), dominated by cork oak species; Montado of holm oak (Quercus rotundifolia) in 

which the predominant species is the holm oak; and mixed Montado in which the 

coexistence of the two species is observed in the same space. Additionally to cork oak 

and holm oak their association with other species, such as the stone pine (Pinus pinea) 

and olive trees (Olea europaea) is often observed. The Montado ecosystem is legally 

protected in Portugal by the Law No. 169/200137 and in Europe through the Directive 

92/43/CEE38. 

Due to the desertification observed essentially in the south of the country, the components 

of ecological biodiversity linked to the trees and land use management, turned the 

Montado ecosystem into a heterogeneous, dynamic and sustainable landscape with 

increasing contrast mosaics (Pinto-Correia et al., 2011). As mentioned before, cork oak 

Montado in Portugal are dominated by cork oak tree which is a native oak species, 

evergreen and is distinguished from other oak species because of their typical bark – the 

cork. 

 

 

 

1.3.2 Cork Oak Decline 

 

The last decades (since the 80’s) have been witnessing the decline and sudden death of 

the cork oak in Portugal (Ja et al., 2011; Ribeiro & Surový, 2008; Sousa et al., 2007). 

However, the factors involved in this phenomenon are not fully understood. Inadequate 

control of shrub removing operations in the Montado during the second half of the 20th 

century; pathogens establishment and increased aggressiveness; and drought stress have 

been suggested as some of the factors related to the cork oak vulnerability (Azul, 2011). 
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However as early as the 50’s, Natividade (1950) highlighted the importance of facing and 

evaluating this typical ecosystem through a new perspective: "The intensive tree and soil 

exploration, a seductive and misleading cultural technique, badly adjusted to the agro 

climate conditions of the country; the disinterest on the deciduous trees replacement; the 

premature cut or the no use of very valid and promising wood; the enlargement of crop 

cultures; the expansion of pine and olive forests; the diseases and pests and the climate 

fatalities, weakened and continuous to weaken day after day the Portuguese cork heritage 

and threaten its future". Nowadays, the declining signs of cork oak trees patches 

throughout the country are indisputable and the lack of natural and/or artificial 

regeneration is visible. These trends may result, among many other factors, from various 

aspects carried out for decades, many of which still continue to be observed nowadays in 

the conduction of Montado. The over exploration of the tree constitutes a threat with the 

excessive pruning to produce firewood, wood and coal as well as the bad practices applied 

on the debarking causing irreparable mutilation of trees, leading them to death. The soil 

over exploration through intensive cultural practices; the use of heavy machinery; the soil 

mobilization with impact on tree roots; misuse of pesticides and an excess on the number 

of animals (especially occurring due to the previously replacement of pigs and sheeps for 

cows, causing a major impact) lead to the weakening and decreasing of the tree´s ability 

to absorb water and nutrients, creating a situation of water “stress" on the tree (internal 

dry) and consequently, causing its death (Matias, 2008). Other causes of cork oak decline 

include bad management practices with the use of aggressive farming techniques 

destroying vegetation, roots and fungi, essential to a good soil preservation. This fact 

together with soil exploration enhances the soil erosion, decreasing soil water availability. 

These factors will interfere on the tree water, carbon and nutrient cycles. 

Initially cork oak decline was only associated to pest and disease infestation 

(Phytophthora cinnamomi Rands and Armillaria mellea (Vahl:Fr.) Kumm on the root 

system; Botryosphaeria spp., Biscogniauxia mediterranea (De Not.) Kuntze (Syn 

Hypoxylon mediterraneum (De Not.) Mill.), Coryneum modomium (Sacc.) Griff & 

Maubl. and Endothiella gyrosa Sacc. on the trunk and branches) . However due to the 

high complexity of the ecosystem, many other factors that could act directly on the 

imbalance of the system, including physical and chemical properties of soil and climatic 

factors (mainly the drought periods) are starting to be considered as well. These factors 

have been reported to be determinants for cork oak decline evaluation (David et al., 2004; 
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Sousa et al., 2007). Sousa et al. (2007) also identified the human activities on forest and 

stands management, the air pollution and the forest fires as possible factors related to cork 

oak decline (Figure 2). 

 

 

Figure 2. Main factors associated to cork oak stands decline in Portugal (adapted from: Sousa et al,. 2007). 

 

The misconception that cork oak trees presenting thermophilic and xerophilic 

characteristics would be better adapted to extreme conditions of temperature, associated 

with climate changes, and the consequent potential increase of the area of this species has 

been discarded. Matias (2008) states that, given the scenarios of increased droughts and 

taking into account that, currently, many stands are already debilitated, this increase could 

lead to a further decline in the stands, especially in warm and dry areas of the interior of 

the country. 

Regarding human actions on the management of the stands, in the second half of the 

century they were characterized by bad farming practices and excessive use of heavy 

machinery. These actions probably caused an intensive damage on tree roots, especially 
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in dry regions or during the drought seasons when trees become more dependent on their 

extensive shallow root systems to survive (Acácio, 2009; David et al., 2004). The 

destruction of acorns and regeneration plants, due to the excessive pressure of cattle in 

settlements observed in recent decades (Campos et al., 1998), combined with the factors 

mentioned before, contributed decisively to the observed cork oak decline. 

Ribeiro and Surový (2008) in their study regarding the cork oak mortality in Portugal, 

identified a set of interactions occurring between the trees and the biophysical 

environment, based on diagnostic features. They observed that a close relationship exists 

between these interactions and the observed decline. Some conclusions of this study are: 

1) on land with slopes between 15 and 35%, cumulative effects of soil erosion 

(conditioned by shrubs control made with mobilization of soil) led to a loss of soil 

thickness usable by trees; 2) on sloping land (between 15 and 35%) combined with a 

depth soil limit (textural discontinuity, effective thickness and expandable depth), the 

effects of soil tillage are more intensively felt limiting even more the volume of soil 

available for trees; and 3) soil tillage creates a debilitating interaction between soil volume 

loss (slow process and dependent on the slope value) and the loss of a significant amount 

of the root system (quick process that occurs periodically during the moment of soil 

mobilization). The referred root loss is an important issue hence cork oak trees have a 

surface and deep thick root distribution in which about 80% of fine roots are distributed 

in the first 30cm depth. Ribeiro and Surový (2008) also referred that the effects of cuts, 

further healing and later replacement of damaged roots consume a significant amount of 

tree resources facilitating the appearance of multiple infection points, especially by 

Phytophora cinnamomi. 
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1.3.3 The Tree Root Systems – A Complementary Review 

 

1.3.3.1 Terminology 

 

Throughout this thesis some specific terms about root systems will be used. Thus, in order 

to clarify the interpretation and harmonize the terms used, a short summary of the 

definitions is presented (adapted from Lyford, 1980). 

Root system: The whole structure of fine and coarse roots that extends horizontally, 

vertically and diagonally in the subsoil. Tap root: first root to be formed. It is an individual 

and central root that presents a vertical growth through depth. This root emerges from the 

acorn. Initially, during the acorn germination phase, it is called radicle. This root is often 

regarded as the extension of the trunk in the subsoil. Lateral root: any root originated from 

another root. The primary lateral roots originate in the tap root. Parental root: root that 

originates another root. Replacement root: any lateral root that was formed due to injuries 

in the parental root. For most species, the replacement roots follow its elongation growth 

in the same direction that the injured root was taken. The replacement roots are usually 

classified with the same order of the root that was previously damaged. Root cap: terminal 

root zone that protects the apical meristem from the abrasive action of the soil during the 

root elongation. Root tip: terminal portion of the root that contains live cortical tissue that 

extends from the terminus of the root cap back to either the first lateral root or if, lateral 

is non-existent, until the parent root. May or may not have mycorrhiza. These root 

portions are divided into 4 distinct areas: 1) cap; 2) Region of cell division (production 

zone of new cells promoting the root growth); 3) elongation region (zone where cells 

grow and elongate in size towards the root axis); and 4) maturation region (zone where 

differentiation of root tissues occurs and where root hairs appear, promoting an increase 

in the surface area available for water and nutrients absorption and uptake). 

Branching order: degree of bifurcation. Lateral roots of first order originate from tap root; 

second order lateral roots originate from 1st order lateral roots and so on (Figure 3). 

Longitudinal spacing: distance between lateral roots along the root axis. Central root 

system): group of roots located on the central tree basis which can extend laterally and in 
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depth, about 2meters. In this system are included the tap root and a high portion of lateral 

and vertical coarse roots. This system includes the majority of first order roots and is 

responsible for the tree fix and support in the ground. Outer root system:  all the rest of 

roots that extend far behind the central root system. Due to the high distance between 

these roots and tap root, they present smaller diameters becoming more flexible and 

consequently, more subject to an easier break in adverse conditions (eg., strong winds).   

 

 

 

Figure 3. Example of a schematic diagram of root system composition, representing the branching order 

classification according to root formations. 

 

Woody or coarse roots: woody roots with rough and thick structure due to secondary 

xylem. Usually woody or coarse roots of forest trees present diameters greater than 2mm. 

Non-woody or fine roots: fine and flexible roots with diameters less than 2mm. Structural 

roots: thicker roots that are responsible for tree supporting (structure). These roots can be 

simultaneously structural and functional. Functional roots: roots that have as primordial 

role the maintenance and functionality of the tree. These roots are responsible for water 

and nutrients transport, from water caption in the root/soil interface to water achieving 

the trunk column, promoting the balance between root and shoot system. Sinker roots: 

roots usually from secondly or thirdly order originated from parental roots that develop 

horizontally. These specific roots present a woody structure and develop vertically into 

depth and parallel to tap root. Normally they can reach higher depths than tap root. Their 

main function is to capture water from low water table levels and transport it to the trunk 
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or, when necessary, transport the water from deepest levels and release it in first horizon 

layer, process called hydraulic lift.  

Root grafts: small structures formed by the conexion of two coarse roots that grow closely 

to each other or that in some point cross each other. This conexion can be so strong that 

sometimes roots can even share their internal tissues (xylem, phloem and cambium), 

resulting in a root intergrowth. These root grafts can occur between roots of the same tree 

or can be formed by the conexion with roots from neighboring trees. Turnover: life time 

of fine roots since their formation until their death. Turnovers vary according to tree 

species, root diameters, soil type, etc.  

 

 

 

1.3.3.2 Roots Formation and Functions 

 

Generally, the initial root systems of all seeds develop along a single axis that grows in 

depth, the tap root, from which the lateral roots develop. These roots will form a complex 

root network of various orders that develop either horizontally, vertically and diagonally, 

originating the root system of the adult tree (Hodge, 2009). However, in most of the tree 

species the tap root dominance will decrease as tree grows, with that dominance replaced 

by secondary roots (Sutton, 1980). 

All the roots from the most various species of plants have a common characteristic: the 

continuous root growth takes place from the division and subsequent extension or 

elongation of the cells from the apical meristem (Oliveira, 1988; Hodge, 2009; Pacheco-

Villalobos & Hardtke, 2012). During the formation of the lateral roots a group of 

pericycle cells become meristematic and form a salient lateral root primordium that grows 

through the endodermis, cortex and epidermis (Guyomarch et al., 2012; Nibau et al., 

2008). Before breaking through the surface tissue of the parental root the lateral root 

develops a well-defined apical meristem and a root cap. Both the surrounding tissue 

digestion and the mechanical pressure seem to be involved in the lateral roots growth 

through the cortex (Kozlowski, 1971; Malamy, 2005). 
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Despite the lack of knowledge concerning root growth, opportunism seems to be the main 

cause of its growth both in terms of time and in terms of orientation. Growth occurs when 

and where water, oxygen, nutrients and minerals are available (Guyomarch et al., 2012; 

Malamy, 2005). The roots grow most of the year stopping only when soil temperatures 

are too low (Kozlowski, 1971). The roots can be woody and perennial (thick roots) or 

with absorptive characteristics and annuals (fine roots). Fine roots die and are replaced 

by others also with absorptive functions. These roots are usually horizontally arranged 

forming a network mainly in the first soil layers. Woody roots become thicker every year 

(Gautam et al., 2003) and can grow to a greater or lesser depth, in order to enable the tree 

establishment on the soil. 

In a simplistic way the root systems structural architecture consists of a tap root; lateral 

coarse roots (greater than 2mm diameter) which can have horizontal or vertical direction 

and different orders; and fine roots (with less than 2mm diameter). Each order is 

characterized by its unique set of parameters that describe the frequency of branching, 

elongation rate, growth direction, biomass deposition rate and time. These parameters 

will determine firstly the functional properties in terms of support, water and nutrient 

uptake and transport; and secondly determine its influence on the rhizosphere (Tobin et 

al., 2007). 

The first studies about root systems, as the one of Büsgen et al. (1929 in Perry, 1982), 

already identified that in some species the tap root persists until adult stage and that these 

structures present higher diameters just below the trunk zone. A drastic decrease of tap 

root diameters was verified with depth. These authors identified three types of root 

systems. Despite the fact that these definitions are considered as generalist, they continue 

to be use nowadays: i) sharped root systems, characterized by the dominance of a primary 

root that develops vertically in depth on the same axis as the trunk (eg., Quercus robur 

L., Pinus sylvestris L. and Abies alba Mill); ii) fasciculated root systems, characterized 

by the presence of thick roots of different diameters that descended diagonally in relation 

to stem axis (eg., Betula spp., Fagus spp., Larix spp., Tilia spp., Acer platanoides L.); and 

iii) surface root systems, characterized by the existence of thick roots that grow both 

horizontally and vertically, just below the soil surface line, and from which smaller roots 

develops vertically in depth (eg., Fraxinus spp., Populus spp., Picea abies Karst., Pinus 

strobus L.). 
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To understand the root growth pattern level it is necessary to know how the roots explore 

the subsoil area. Generally, root soil penetration occurs through the pores presenting 

greater or equal diameters as the root end section (Coder, 2007). When the pore diameter 

is less than the root diameter and if the soil is easily deformed, roots will exert a certain 

pressure on the surrounding particles enabling an increase on pores diameter. This will 

allow the continuous root growth through soil until mechanical soil impedance gets too 

high (Taylor & Gardner, 1960; Kristoffersen & Riley, 2005). When the soil structure 

presents a greater rigidity, disabling the movement of the soil particles, the root does not 

penetrate. Instead, roots become ticker and invest on the branching process (Bengough & 

Mullins, 1990; Day et al., 2010; Hisinger et al., 2009; Hodge et al., 2009). If the soil 

pores size is too small even for lateral roots growth the entire root system becomes 

atrophied. 

The reason for how or why only some thick roots develop from a range of numerous fine 

roots of first order, originated from the taproot, remains unexplained. The process by 

which some roots develop to thick roots occurs due to the increased growth of the primary 

tissue. It is noteworthy that the rate and time duration of root growth may vary, either 

seasonally or daily, according to rhizosphere environment, species or tree age. 

Roots have a mechanism involving signal emissions to shoot system (Aiken & Smucker, 

1996; Dodd, 2005). Basically, the responsible molecules for this mechanism are the 

abscisic acid (ABA), the aminocyclopropane carboxylic acid (ACC), the cytokinins 

(CKs), the gibberellins and the nitrates. This mechanism is extremely important because 

it is through the responses to these signals that plants can change their growth and 

development. According to Davies (2007) these signals emitted by the roots "contain" 

information that allow the plant to change its pattern of growth according the water and 

nutrients availability in the soil, or soil mechanical impedance. The same author also 

highlighted that shoot system development and the behavior of leaf stomata can be 

determined by the signals emitted by the roots. Signals allow the plant to maintain or even 

increase the canopy development rate when the soil presents a water deficit. On the other 

hand, roots are dependent of shoot system at carbohydrates, growth regulators and some 

organic compounds levels (Aiken & Smucker, 1996). 

Generally, the main root functions of terrestrial plants are the absorption and transport of 

resources (mainly water and nutrients) and the support of all aerial plant structure 
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(Brunner & Godbold, 2007; Danjon & Reubens, 2008; Eissenstat & Volder, 2005; Fitter 

et al., 2002; Malamy, 2005; Pregitzer, 2008). Pagès et al. (2004) also mentions that root 

systems act as a storage, deposition and excretion of biochemical components source 

forming associations with symbiotic organisms. Coarse roots also contribute to the tree 

stability, and provide a network of vessels for water and nutrients transport and for other 

metabolic components. These coarse roots also act as a backup power system during 

dormancy periods (Danjon & Reubens, 2008; Pagès, 2002). However, to have an effective 

ability to use the water and nutrients for the shoot system at the same time they provide 

an increase on support structure, the root system has to establish an intimate and robust 

interface with the surrounding soil matrix. This interface is possible due to the production 

of fine roots and root hairs that significantly increase the surface area contact between 

root and soil (Harris, 1992). Fine roots are also mainly responsible for the water and 

nutrients uptake from soil (Brunner & Godbold, 2007; Danjon & Reubens, 2008; Jackson 

et al., 1997). These fine structures constitute the most dynamic portion of the root system. 

Due to its constant replacement because of turnover, fine roots contribute to subsoil 

biomass increase containing carbon and nutrients. These turnovers, which may last from 

a few weeks up to more than 8 years (Hendrick & Pregitzer, 1992), make costs for fine 

roots formation very high when compared to leaves formation. Fine roots are generally 

found in most abundance at surface layer (Pagès, 1999). This abundance at superficial 

layers is justified by the high availability of nutrients and water but also due to the high 

microbial activity present at this level (Kucbel et al., 2011). It is important to highlight 

that according to Kucbel et al. (2011) review, fine roots production is extremely sensitive 

to the amount of biomass needed for the canopy structure maintenance because these are 

the final structures that act as a carbohydrates reserve source. The deepest fine roots, 

despite being non representative for total tree biomass, can play a crucial role in the 

extraction of deeper soil mixture during dry periods (Canadell et al., 1996; Hendrick & 

Pregitzer, 1996), which is a typical characteristic of the Mediterranean climate. Yet, 

Brunner & Godbold (2007) defend that mycorrhizal symbiosis are important for the soil 

carbon flux, as well as for the subsurface nutrients recycle such as nitrogen (N), 

phosphorus (P), magnesium (Mg) and calcium (Ca). 

Under normal conditions and even considering that tree shoot system can be usually 

higher in terms of dry weight, plant roots, as previously mentioned, are capable of 

supplying water and nutrients to all the aerial system as well as storing certain 
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carbohydrates and plant growth regulators. Most plants have the ability to adapt to 

environmental changes conditions if the changes are not too drastic or quick. For instance, 

if the shoot is subject to pruning, more carbohydrates are used to restore the tree top and 

less stay available for the roots. Contrarily, if roots suffer any damage or if the water and 

nutrients availability become scarcer, carbohydrates will be used for roots maintenance. 

Harris (1992) also points out that responses to the availability or not of certain nutrients, 

at tree structure level, has led to the notion that nitrogen stimulates the shoot growth 

instead of root growth; and that phosphorus stimulates root growth. However, more recent 

studies indicated that both nutrients (nitrogen and phosphorus) stimulate both tree 

systems growth (Rubio et al., 2002; Trubat et al., 2006). 

 

 

 

1.3.3.3 Root Soil Interface 

 

Roots grow following a strategy of searching for available resources to maintain the tree 

functionality and survival. Therefore, biotic and abiotic factors have a deep influence on 

root growth and consequently on its structure (Cuesta et al., 2010). 

A crucial key factor for root growth is water availability which will influence all the tree 

maintenance (Yu et al., 2007). The process of water absorption and transport from roots 

to the shoot system occurs because of pressure gradient differences (Steudle, 2000; 

Wiegers et al., 2009). When the water is released by transpiration occurring in the leaves, 

the gradient difference provides a replacement of the water loss in the leaves by the water 

existent on the xylem of other aerial structures and consequently, on the xylem of roots. 

The consequent reduction of the roots water potential forces water uptake from the soil 

and the flow process to go back, upwards. If transpiration rates are not very high and if 

the trees are well rooted in a soil with high water availability, this movement occurs 

relatively quickly promoting a balance between the water released by transpiration and 

the one captured by roots. However, when transpiration rates are high and subsoil water 

availability is low and slowly restored, areas of water and nutrients “shortage” may occur 

near the roots (Davies, 2007). In these areas the water movement can be drastically 
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reduced causing a consequent tree restriction on water and nutrients uptake rate. Water 

availability and consequent absorption is usually a component with a simplified approach 

given the frequent lack of data about the distribution of roots in soil. However, in 2006, 

Kurz-Besson et al. found that the daily water fluctuations on the topsoil under oaks 

canopy (0.35m depth), observed during the summer season, suggest that part of the still 

existent water on deepest soil horizons is pulled by the sinkers (during night when no 

transpiration occur) and is released (in early morning) in the upper layers of the soil (due 

to the water potential gradient). After, this water is reabsorbed by the superficial roots 

and used in next day tree transpiration. This process is known as hydraulic lift. According 

to the review made by Jackson et al. (1999) a relative frequency of this process was 

verified on trees belonging to the Mediterranean biota. 

Another factor influencing significantly the growth and development of roots is the soil 

mechanical impedance, resulting in an induced soil compaction (Bejanaro et al., 2010; 

Ganatsas & Spanos, 2005; Kozlowski, 1999). This unsaturated soil compression modifies 

the original soil structure, essentially the structure of large soil pores. This modification 

causes a decrease in soil porosity, aeration and infiltration rate (Kristoffersen & Riley, 

2005). This process can occur naturally by the soil sedimentation or may be artificially 

induced by heavy machinery, cattle and fire, among several others factors (Kozlowski, 

1999). For a given root point mechanical impedance is defined as the ratio between the 

forces exerted at that point and his dislocation speed (Portas, 1970). Bengough (2003) 

states that the increase in soil strength, as it becomes dryer, can have a significant impact 

on root branching ability and, normally, more lateral roots per unit length of the parental 

root axis are found. However, Goss (1997) found that the total number of lateral roots 

may decrease with the increase of soil mechanical impedance. The plant benefit or loss 

effects of soil compaction have caused some disagreement among experts in this area. 

For example, Bassett et al. (2005) and Kozlowski (1999) showed in their studies, that tree 

growth is adversely affected by soil compaction. On the other hand, Alameda & Villar 

(2009) and Tubeileh et al. (2003) obtained positive results in terms of growth with low 

intensity levels of soil mechanical impedance. 

Soil temperature might also influence the root growth and functioning (Domisch et al., 

2002; Lahti et al., 2005; Oliveira, 1988; Pregitzer et al., 2000). According to the review 

of Pregitzer et al. (2000), which compiled several studies findings regarding the influence 
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of soil temperature on plants growth, this factor was found to have the potential to alter 

the root morphology and the quality of root tissues, reducing its absorption capacity. This 

reduction may be a result of an increase in the water viscosity, a decrease on the soil/root 

hydraulic conductivity and a lower permeability of the membrane cell (Voorhees et al., 

1981). The way this factor affects the growth of root structures is directly related not only 

to the tree species and nutrients availability, but to the climatic conditions where they 

develop as well. The root growth rate increase almost linearly with temperature until it 

achieves a maximum value, after which root growth decreases drastically. The same 

situation occurs when soil temperatures are too low (eg., Apostol et al., 2007; Lathi et al., 

2005; Peng & Dang, 2003; Vappavuori et al., 1992). For most species there is an optimum 

soil temperature value, corresponding to the maximum root growth rate. However, as 

referred by Pregitzer et al. (2000), the studies concerning to the influence of soil 

temperature on plant root growth, are scarce. 

 

 

 

1.3.3.4 Root Models 

 

Since the last decade the architectural models of root systems have received a relevant 

importance in the understanding of the tree functioning. The necessity to integrate these 

models in the already existent for tree growth is known, thus the knowledge about forest 

ecosystems has been seen as crucial in the current reality of preservation and valuation of 

natural resources. In the actual context of climate changes its relevance is also highlighted 

since, in general, roots act as dioxide carbon sinks through photosynthetic processes, 

mitigating the consequences of an anthropogenic increase of gases inherent to greenhouse 

effect (Vaz, 2005). 

Root systems can be modeled considering different basic principles, different scales and 

different levels of detail. Studies about roots usually rely on geometry, topology or 

biomass estimations (Danjon & Reubens, 2008). Specifically, studies on root modeling 

through biomass estimation focus on tree species and on its relation with the forest 

management activities (Bolte et al., 2004; Le Goff & Ottorini, 2001; Nielsen & Hansen, 

2006). Although some authors have chosen to use the root homogeneous density (Feddes 
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et al., 1978), others represented a decrease in root density along the soil profile through a 

linear function (Heidmann et al., 2000), a potential function (Monteith et al., 1989), or 

through an exponential function (Williams et al., 2001). Other authors used specific 

values of relative root density for each soil layer considered (eg., Tiktak & Bouten, 1992). 

Studies about root distribution usually are based on root biomass and/or root length, 

through soil depth (Lynch, 1995). Physiologically, root biomass is a parameter used to 

evaluate the role of roots as carbon sinks, while root length is a direct indicator of the 

water and nutrients absorption capability (Atkinson, 2000). However, Canadell et al. 

(1996) argue that for models using these parameters the main roots have a limited 

significance, besides their important role on the survival strategy during drought period.  

The simplest root distribution models were developed with the purpose of evaluate the 

roots distribution on depth under non-limiting growth conditions (Pagès et al., 2000). The 

model used by Monteith et al. (1989) defines the root length density (root length per unit 

of soil volume) as an inverse function of depth square root. Drexhage & Gruber (1998) 

used a similar approach to describe the biomass decomposition as a function of the 

horizontal distance from the tree trunk base. More flexible models have been adjusted to 

root distributions at plant community level (Schenk & Jackson, 2002). The 

parameterization obtained by fitting a model with a certain root distribution allows a 

simple characterization of their rooting pattern. 

Bengough et al. (2000) found that, due to a high root systems diversity existent in natural 

conditions, the approaches focusing the individual plant must be favored. Models at 

individual plant scale allow the study of determinant factors that influence root branching 

pattern hence root distribution is directly influenced by these factors. Nevertheless, a 

considerable quantity of important information is overlooked with these simplifications, 

such as the spatial distribution of root system. According to Mulia et al. (2010) models 

including the root spatial distribution can be aggregated in four classes: i) Models that 

ignore the root dynamics and that use the root spatial distribution independently from 

time variable; ii) models that incorporate a simple root dynamics described by a generic 

distribution model independently of shoot system processes and soil conditions; iii) 

models that simulate the root growth as a response of shoot system conditions but without 

considering the interaction of soil; iv) models that simulate root growth considering soil 

conditions and characteristics as well as shoot system conditions. Dupuy et al. (2010), on 
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their review work, considered another type of classification, specifically into three 

categories: 1) models of rooting depth defined as continuous models showing the root 

length density distribution; 2) architectural models based essentially on the root length 

description and bifurcation pattern in 1,2 or 3 dimensionally aspect; 3) spatial models of 

root dynamics that are continuous models describing the patterns of growth, whether in 

2D or 3D, using length and meristems densities. According to a recent literature review, 

the emerging models presenting better and more relevant results are the ones that focus 

on root system representation as a dynamic structure (Kalliokosky et al., 2010). This 

dynamic structure follows a growth pattern defining types of roots with specific 

morphology (defined according to their differentiation state and development pattern) 

(Jourdan & Rey, 1997). These structures may also be related and evaluated according to 

the characteristics of soil profile horizon (Pagès et al., 2004), basing their growth on 

fractal modeling. In this type of modeling root systems are represented as static structures, 

resulting from similar repetitions of branching patterns (following Gravelius codification) 

on similar "sub-structures”. In these models the morphological characteristics of the “new 

roots” formed, derive exclusively from the dimensions of parental roots (van Noordwijk 

et al., 1994; Ozier Lafontaine et al., 1999; Smith, 2001; van Noordwijk & Mulia, 2002; 

Richardson & zu Dohna, 2003). Yet and according to the review made by Huang et al. 

(2010), some studies indicate that root bifurcation patterns shows great morphological 

heterogeneity and different orders may have significant differences at physiological 

activity, chemical composition and functions (Pregitzer et al., 1997; Guo et al., 2011). 

Roots characterization by their bifurcation pattern is considered an essential method 

approach to identify the root functions inside the complex networks of root systems. 

Wagner et al. (2010) mentioned that the perception of tree support, development 

processes and possible carbon exchanges between shoot and root systems would provide 

a significant advance of scientific knowledge on root modeling through the integration of 

root annual behavior. This author also highlighted that most of the studies about this 

subject only focused on individual samples and that there is a urgent necessity to model 

the entire root system, providing the reconstruction of the exact position of roots on the 

underground. In the future, this would allow justifying and understanding many of the 

actions and functions that this important belowground system has, both in the functional 

and structural ecosystem dynamics, and on the understanding of the role of roots on the 
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water and carbon balances. Thus and citing the author (Wagner et al., 2010) “the exposure 

of the root system is essential for future research". 

However, the efforts that have been made to quantitatively characterize the root systems 

have been low mainly concerning to coarse roots. The majority of the studies relying on 

root systems have been conducted on agricultural species and on forest tree seedlings. 

This is probably justified by the fact that the efforts necessary to access roots systems of 

adult trees are quite cost and time consuming.  

 

 

 

1.4.4 The Role of Cork Oak Root System on the Landscape Dynamics  

 

Throughout all that was already mentioned, the concern with the decline signs and 

consequently with the change of the landscape as we know it, is increasing also due to an 

increase about environmental awareness and biodiversity maintenance. The 

intensification of the Montado decline verified since the mid 80’s throughout the 

Mediterranean region including southwest Portugal, together with the general decline of 

oaks in Europe and North America, lead to concerns about their overall sustainability 

(Costa et al., 2009). This vulnerability exposes the need to meet new biological and 

ecological parameters that may influence the vitality of cork oak tree. Sousa et al. (2007) 

suggested that future lines of research, to understand the causes of decline, should focus 

on the physiology of trees and on an accurate mapping of the root system, both laterally 

and in depth. 

The role of the cork oak root system in landscape is preeminent. As a landscape element 

of the Montado structure, the cork oak survival strategy and growth dynamics will 

influence the landscape dynamics. The root system, along with its function of tree support 

and uptake and transport of water and nutrients to the shoot, is essential for water and 

carbon cycles dynamics in the ecosystem. A break or deficiency in these processes, at a 

high scale, will certainly cause a deep change in the landscape multifunctionality which 

can lead to a loose of the landscape identity. Therefore, knowing and understanding the 

structures that develop in the underground of this landscape is crucial and essential to 

maintain such a distinctive landscape as Montado. Despite the almost non-existent 
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information about the root system dynamic and about the relationships that occur at the 

underground level, this "hidden landscape” may bring some answers to the observed cork 

oak decline. In addition, studies on the best conditions to promote and facilitate the natural 

and/or artificial regeneration establishment will also promote the maintenance of the 

Montado structure as we know it, guaranteeing the functioning of ecosystem services 

promoted by these trees. 
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2.1 Abstract 

 

In this article we describe two methods for acquisition and examination of the root 

architecture of trees in order to evaluate the possible influence on stand diversity and 

horizontal structure. The roots and belowground biomass in semi-arid areas of south 

Portugal can be understood as the main competition area for the trees. Evaluation of root 

architecture is essential for understanding plant growth, interaction among plants and 

finally the diversity of the stand. 

 

 

 

2.2 Introduction 

 

The rooting strategy is of major importance in understanding the dynamics of species 

over forest succession and maturation (Curt & Prévosto, 2003). If a determined tree has 

the ability to, for some reason, acquire a greater proportion of water and nutrients, they 

turn to be more competitive in producing biomass and allocating assimilates in ways that 

maximize its survival and growth. Researchers that try to explore knowledge in the area 

of root systems recognized the difficulties associated with the study of roots in the soil 

(Box, 1996; Atkinson, 2000; Pàges et al., 2004; Tobin et al., 2007; Dupuy et al., 2010). 

Besides the growing of technological innovations that already can be used actually, the 

study of plant root systems still continue to be a challenge often refused, because of the 

small relation between the obtained results and the invested effort (Dupuy et al., 2010; 

Mulia et al., 2010; Kalliokosky et al., 2010). Whatever the type of modeling applied, root 

system must be exposed in a way of that it is possible to capture and analyze its volume 

and tridimensional structure. To have access to the belowground structure several 

researchers applied different methodologies, e.g., Hruska et al. (1999) used the “ground 

penetrating radar”. However, in a more recent study, Stokes et al. (2002) showed that the 

resolution obtained is unsatisfactory plus the demanding requirements necessary to apply 

this method (homogeneous soil, dry soil, etc.), make this technique inappropriate in the 

majority of studies of root systems behavior. Danjon & Reubens (2008) used another 

technique, laser digitizing, referring that it’s the best technique available to describe the 
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surface and the shape of roots. The authors recognize that the integration of lift 

perception, the development processes and carbon exchanges in modeling works should 

also integrate the annual behavior of root system (Wagner et al., 2010). This author also 

refers, that many studies only analyze samples of individual roots but the necessity of 

construction on new modeling approaches of the entire root system is urgent. Acquisition 

of the exact spatial distribution of the roots in belowground, will allow the explanation 

and understanding of many actions and functions of these systems, so little studied, in 

terms of functional and structural dynamic of tree, allowing the ecosystem understanding 

also in terms of water and carbon cycles. Quoting the referred author “the exposition of 

root system is crucial to future researches”. 

According to Danjon & Reubens (2008), the collected information about the availability 

for coarse roots can be achieved through invasive and non-invasive techniques. In the 

application of non-invasive methods, the accessibility to root system does not implicate 

its exposure, being the measurements made through X-ray (Pierret et al., 1999) or MRI 

(Asseng et al., 2000). In these techniques the quantity of available parameters is low, 

comparing with value cost of equipment acquisition and, also the demand of specific soil 

conditions, as temperature, texture, water, presence of coarse soil material, etc. make this 

technique less viable for applications in tree root system. In invasive techniques, it’s 

assumed that the exposition of tree root system should be made by pulling or lifting of 

roots with heavy machinery help, by profile excavation or excavation of total volume of 

soil occupied by the roots. After root system exposition, the coarse root measurements 

can be achieve by the techniques: (1) manually using a frame and plumb (Khuder et al., 

2006); (2) using computational programs to reconstruct the geometry analyzed manually 

by measurements recovered with the use of a ruler and compass (Dupuy et al., 2003) and 

(3) semi automated method using a digital compass or a 3D digitiser (Danjon et al., 1999; 

Oppelt et al., 2000). Nowadays, the method more often used is the 3D digitizing, as the 

Polhemus Fastrak of low magnetic field and the analysis made through specific software’s 

(Danjon et al., 1999; Danjon & Fourcaud, 2005; Tamasi et al., 2005; Nicoll et al., 2006). 

By the research made until this moment, the measurements can be done in situ (Oppelt et 

al., 2001; Khuder et al., 2006; Danjon & Reubens, 2008) or in excavated root systems 

(Danjon et al., 1999; Danjon & Fourcaud, 2005; Nicoll et al., 2006). The in situ method 

is the better technique to apply resulting in a major quantity of information despite 

expensive and time consuming.  
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In this paper we try to demonstrate the application of two different methodologies in 

excavation of tree root systems (Pinus pinea L. and Quercus suber L.) representing a 

technical component of a project of tridimensional architecture modelation of tree root 

system. 

 

 

 

2.3 Methodology 

 

When the main goal is to evaluate the morphology and root system architecture, it is 

necessary to have access to this system in a complete and integral way in all the extension, 

horizontally and in depth. For this experimental work, two healthy trees were selected, a 

stone pine (Pinus pinea L.) and a cork oak (Quercus suber L.). Both of trees were located 

in Canha, in central Portugal (38º45’31.94”N 8º38’30.93”O and 8º45’38.38”N 8º 

38’22.22”O, respectively). The predominant type of soil in the study area is a Cambissoil 

soil (Vt) with sandy-loam characteristics with clay congregations.  

For both method application, a shortly biophysics analysis of the surrounding matrix was 

made, soil condition, slope of the surface, density stand conditions and stand type 

characteristics of the study area (trees, shrubs and herbs layers) (Table 1). 

In this comparative experiment, we tested two methods for excavation of total volume 

soil occupied by the root system: (1) by washing the root with water and, (2) cleaning the 

root by high pressure air spade. In both methods, initially dendrometric evaluation of tree 

samples and the collection of soil cores (two soil cores minimum per tree) for textural and 

chemical analysis of the different soil layers of the profile, were made. 

The stone pine was located in a pure stand installed by seedlings in 1998, with 4x4m 

distance. Cork oak was located in a mixed stand with juvenile cork oaks, stone pines and 

essentially eucalyptus (Eucalyptus globulus Labill.), main competitor for subsoil 

resources. The surface layer was also occupied by some sage-leaved cistus shrubs (Cistus 

salvifolius L.) and some annual herbs. These were removed in advance to facilitate the 

excavation process. The cork oak was young (around 20 years) and never had been 

debarked. 
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Table 1. Evaluation of study location characteristics. 

  Stone pine Cork oak 

Stand Pure Mixed 

Neighborhood Stone pines 
Cork oaks, stone pines, 

eucalyptus 

Shrub layer No Sage-leaved cistus 

Slope (%) 0 0 

 

 

 

1 - Root system excavation by profile washing with water  

 

We use the following steps: (1) initially a hole was open with two meters of depth and in 

a distance of three meters from the tree trunk (this distance was estimated as the maximum 

horizontal root spread), to function as a deposit of water and flowed sediments, from the 

washed profile; (2) Proceeded to the opening of the main trench with water washing; 

being careful with the position and distance of the water jet, because it can cause the 

movement and displacement of mainly more fine structural roots (diameter between 0.2 

– 0.5 cm) from the original position (Figure 1). In our case, the loss of structural fine roots 

was imminent, so we use a fine net in the top of the hole in the expectation of collecting 

these roots for further biomass evaluation. 

Simultaneously, after the opening/washing of each 10 cm of vertical soil layer, in the 

demand of not losing the original position of the roots, we proceed with the digitalizing 

with 3D digitizer (Polhemus Fastrak), collecting the 3D representation of roots, codifying 

each root, collecting and storing them to future laboratory analysis. Because of the 

complex “net” form by root system, we decided to label the roots for easier identification 

along the excavation process. 

For the first layers (layers AP and beginning of A) (Table 2) this method of excavation 

with water works well, however for deeper layers, because of the embedded clay features 
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we decide to use the manual excavation method which turned the process harder and time 

consuming.  

In the final stage of excavation, when only the central part of root system wasn’t exposed, 

it was necessary to fix the root system with sticks and strings avoiding the movement and 

displacement of the rest of the system while the soil was being removed. The purpose of 

this step is trying to maintain the 3D spatial distribution the most close to reality as 

possible.  

For fine roots samples (less than 2mm of diameter) we used the method of wall profile 

where we collected soil cubes with 15x15x15 cm dimensions, in a soil wall at 0.75 m 

deeper and with one meter of length. These soil cubes were codified and store in cold 

environment, for future laboratory treatment. 

 

   

   

Figure 1. Stone pine root system excavation through profile washing with water method. 
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2 - Root system excavation by high pressure air jet 

 

For the method of excavation by high pressure air jet after dendrometric evaluation of 

cork oak aerial component, similar to the technique adopted to wash profile excavation a 

deposit of sediments was open with two meters of depth and at a distance of four meters 

from the trunk of the tree. With the use of the jet air connected to a compressor we began 

the excavation of the first layer – topsoil – from the trunk in the direction of the crown 

edge’s horizontal projection. This technique was well succeed in the first 15 cm of soil 

(high percentage of sand), however as we were reaching more depth, soil characteristics 

became more clayey, what made us change to the manual option (by and with help of 

archaeological material used in excavations) with the aid of a pneumatic hammer when 

was necessary (characteristics of high bulk density) (Figure 2). 

With the excavation of one quarter of the horizontal projection of the root system we 

began the 3-dimensional digitizing of the roots, applying the same methodological 

proceeding used for the stone pine, to cut, label and store of the roots for further analysis 

always aiming the total exposure of each root for proper digitizing. In the final stage of 

cork oak root system excavation, the central part of the root was supported and fixed with 

wooden sticks, strings and also with the support of a tractor to avoid displacement of the 

remaining root system when the rest of soil was being removed. After total exposure, the 

rest of the root system was carried to laboratory where we finished the task of 3D 

digitizing, cutting and storing the root samples.  
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Figure 2. Cork oak root system excavation by high pressure air jet metod. 

 

 

 

 

2.4 Results 

 

The results show that both methods are able to obtain the expected results, i.e., the ability 

to have full access to the entire root system.  However according to the soil characteristics 

of the study area also supported by the results obtained by chemical and textural analysis 

(see Table 2), both methods only worked well up to 20 cm depth where the predominant 

texture was sandy. After this depth the only method possible to use in our profiles was 

the manual excavation method plus the pneumatic hammer, when necessary.  
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Table 2. Profile layers description of the soil in the study area. 

Layers Depth (cm) Texture Structure Consistency 

Ap 20 Sandy Independent particles Loose, not sticky 

A 12 Sandy-loam Weak fine blocky Mild, friable, not sticky 

AB 23 
Sandy with clay 

congregations 
Weak fine blocky Loose, friable, not sticky 

C 92 Sandy-loam Weak medium blocky Loose, friable, not sticky 

R 
Sandstone 

 

According to what was possible to evaluate with this work, the comparative results of the 

two methodologies are shown in Table 3. 

 

Table 3. Comparative results of application of both methods evaluated. 

  

  

Excavation method 

Water washing  High pressure air jet 

Opening deposit sediment trench Yes Yes 

Opening main drainage trench Yes No 

Cleaning the deposit sediment  

using the pressure pump 

Yes No 

Cleaning the deposit sediment  

using heavy machinery 

Yes Yes 

Removal of coarse material  +++ + 

Structural fine roots loss +++ ++ 

Displacement of coarse roots +++ + 

Time requirements +++ ++ 
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For root system excavation by profile washing with water, the total money budget spend 

between days of work, men per day for the excavation process and digitizing (100 

man/days for excavation), heavy machinery work (5 hours) for open the deposit sediment 

trench and for cleaning the deposit sediment during the process, acquisition of excavation 

equipment (1500€) and water spended (700€), was about 7000€. In case of excavation 

method by high pressure air jet it was necessary 150 man/days, 5 hours of heavy 

machinery work. The comparison is shown in Table 4. 

The values presented in Table 4 indicate that the excavation types might have similar 

costs. However to obtain the precise comparison we should divide the total amount of air 

excavation costs by two due to the fact that the total volume of excavation was twice as 

big as in the water case. So in such a way, when multiplying the man/day values by index 

price 35 we obtain for water excavation total 5105 (3500+105+1500+500) and for air 

excavation 3177.5 (5250+105+1000)/2. So we can conclude that the air excavation is 

approximately 40% cheaper than water.  

 

 

 

Table 4. Comparison of total costs for water washing and high pressure air jet methods. 

  

  

Excavation method 

Water washing  High pressure air jet 

Excavation time man/days 100 150 

Heavy machinery hours 5 5 

Additional equipment costs 

(index) 
1500 1000 

Additional costs (water) 500 0 
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2.5 Discussion and Conclusion 

In this article we describe two methods for excavation of structural root systems of trees. 

The first one is based on water washing of root system aiming to remove the surrounding 

soil by water current. Second method uses air pressure jet. For the application of both 

methods it is advisable to make a brief analysis of biophysical environmental matrix, such 

as, soil conditions, the slope of the surface, conditions of stand density and characteristics 

of forestry layers of the stand (trees, shrubs, herbs). For both methods before beginning 

the excavation of volume soil occupied by the roots its necessary to remove the aerial part 

of the tree, which could cause displacement of roots during topsoil removal. In the case 

of sandy texture soils the method of high pressure air jet, will probably have good results 

when the main goal is having complete access to the root systems. This method besides 

being logistically easier to install is faster and less costly. In cases of clayey textural soil 

characteristics both methods are likely to be inefficient to clean soil layers. The manual 

option is the best choice to achieve best results, although time-consuming and expensive. 

Taking into account the criteria evaluated in this work of comparison of root excavation 

methodologies and making the balance of costs/time versus quality of results, we 

conclude that for sandy soil types with embedded clay features, the method of excavation 

by high pressure air jet together with manual excavation is the best technique to apply 

when the main goal is to achieve the complete root system of a tree. The growing interest 

that has been observed in this research area – large trees root systems – justify an 

imminent and necessary research focus on excavation methods, testing and creating new 

alternatives. Results obtained within this study provide a better understanding on the 

competition that may exist belowground, dependent on rooting patterns, contributing to 

explain stand diversity. The net formed by the root systems, and its functions and spatial 

distributions justify the survivor of the trees enabling the anchorage, the acquisition and 

transport of nutrients and water for aerial growth and survival. 
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CHAPTER 3 

MORPHOLOGICAL EVALUATION OF CORK OAK ROOT SYSTEM 

USING A 3D APPROACH 

Dinis, C., Surovy, P., Ribeiro, N.A., Oliveira, M.R.O. (2014). Morphological Evaluation 

of Cork Oak Root System using a 3D Approach. Submitted to Trees - Structure and 

Function. 

 

 

 



 

 
   
   

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 – MORPHOLOGICAL EVALUATION OF CORK OAK ROOT SYSTEM USING A 3D APPROACH 

 
Cati Dinis, 2014  59 

 

3.1 Abstract 

 

The knowledge and understanding of the cork oak (Quercus suber L.) root system and its 

capacity to reach the groundwater, which is crucial for the water balance of the tree and 

consequently for woodlands sustainability is very important. The architecture of a root 

system besides determines its exploration of distinct spatial domains in the soil also 

reveals the root system ability to respond dynamically to the localized availability of soil 

resources (which are highly nonuniform within a root system space). Yet, root function 

in mechanical support of the shoot system is also determined by root architecture. The 

purpose of this study was to show how the root system of cork oak (Quercus suber L.) 

developed structurally (3D architecture) under a Cambissoil soil profile with 1.4 m depth. 

A 19 years old cork oak was intensively studied with focus on its structural and 

morphological aspects. The entire root system was exposed and digitized by magnetic 

motion tracker device Fastrak POLHEMUS. The dimorphic root system was observed as 

well as the presence and location of sinkers roots, important structures for drought 

resistance in the Mediterranean ecosystems. Through this work several spatial 

distribution aspects were evaluated. Evaluation of root lengths, biomass and volumes, 

among others, were performed. It was verified that the higher root volume distribution is 

located on the first 20 cm depth. The horizontal canopy projection was 2 times minor than 

the root system horizontal spread. In North-East direction some roots between 5 and 40 

cm depth were found at 10 meters distance from the trunk, four times the line canopy 

projection. The biomass evaluated for shoot and root system were similar with 65 Kg 

allocated at the aerial compartment and 55 Kg allocated at the root system. We believe 

that this work, also supported by others about cork oak hydraulic distribution, will 

reinforce less intensive tillage techniques in order to avoid the tree decline and mortality 

of cork oak woodlands. 

 

 

 

 

Key-words: cork oak (Quercus suber L.); root system; tridimensional architecture; root 

volume 
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3.2 Introduction 

 

Climate change scenarios suggest an intensification and an increase of time periods of 

dryness for the regions of Mediterranean climate (Vaz, 2005) which will cause an increase 

of drought stress in these ecosystems (eg., cork oak woodlands). The carbon assimilation 

and transpiration will be severely restricted (Pereira et al., 2004) and may jeopardize the 

survival of trees. Otieno et al. (2006) refer that in cork oak woodlands, the establishment 

of only certain specific species, their distribution, as well as its mortality appears to be 

partially controlled by edafoclimatic conditions and may be the product of an optimum 

of environmental water availability. Plants that have the ability to remain physiologically 

active for long periods of dryness during the summer must have access to deep soil layers 

(David et al., 2004; 2013), which stays moist longer (Rambal, 1984), as well as the ability 

to explore large volumes of soil (Breda et al., 1995) or have efficient mechanisms 

redistributing water within the soil profile (Ryel et al., 2003; David et al., 2004; 2013; 

Kurz-Besson et al., 2006). One of the main specie occurring in these woodlands is the 

cork oak (Quercus suber L.). Generally cork oak is adapted to well-aerated soils, avoiding 

compacted and permanently flooded soils. According to Montero et al. (1988), the most 

abundant soil texture where this specie occurs is loamy (74 percent of studied cases), 

followed by sandy (14 percent), and within the loamy texture group about 30 percent are 

sandy loam, 28 percent loam, and 16 percent silty loam. Also most cork oak woodlands 

occur on moderately acidic to slightly acidic soils, with pH generally in the range of 4.7 

to 6.5 and, more rarely, 3.4 to 7.8. 

Several researchers (David et al., 2007; 2013; Kurz-Besson et al., 2006; Lacambra et al., 

2010; Oliveira et al., 1992; Otieno et al., 2006) advises that it is of upmost importance 

the knowledge and understanding of the cork oak root system and its capacity to achieve 

the groundwater, which is crucial for the water balance of the tree and consequently for 

woodlands sustainability. Nevertheless only few studies focus on this system, mostly 

because of the difficulty associated to the access to belowground compartment. Root 

researchers recognize the difficulties associated with the study of roots in soil 

(Kummerov, 1981; Box, 1996, Atkinson, 2000; Pagès et al., 2004, Tobin et al., 2007; 

Dupuy et al., 2010). Even taking into account technological innovations that can be used 

today still remains a challenge often refused, given the very low benefit between results 
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and effort invested (Silva et al., 2002, Dupuy et al., 2010; Mulia et al., 2010; Kalliokoski 

et al., 2010).  

Root systems are complex structures, typically being composed of thousands of 

individual root axis that vary developmentally, physiologically, and morphologically 

(Lynch, 1995). Roots, like shoots, are dynamic branched structures originating from the 

collar of the plant. They really form a “system” in the sense that their components are 

connected in an organized network (Pàges, 1999). Their functioning seriously depends 

on the entire root system structure or architecture (Danjon & Reubens, 2008). Roots with 

different orders play different roles in absorbing (radially) and transporting 

(longitudinally) water and nutrients (Doussan et al., 1998).  

 

 

 

Tree architecture 

 

Tree architecture (structure) has been subject of research since long time (see review 

article from Barthelemy & Caraglio, 2007; Surový et al., 2011a; 2012) creating the 

physical framework for different functions. Tree structure has to ensure resource capture 

and transport, and mechanical stability continuously during its life span (Kalliokoski et 

al., 2010). In order to accomplish these functions trees need to adjust their structure and 

functions according to the surrounding environment. Tree architecture describes the 

spatial configuration of a tree, i.e. the geometric dimensions, shapes, and explicit 

locations of botanical units in 3D space (Barthélémy & Caraglio, 2007; Danjon & 

Reubens, 2008) and the constructional organization of the branching system (Godin, 

2000). The functioning of both shoots and roots depends on the entire structure or 

architecture of the system, including the topological arrangement of components and their 

geometric characteristics. However, Danjon & Reubens (2008) refer that roots deviate 

from shoots in many ways: they are functionally less differentiated, do not have similar 

kinds of morphological markers (no leaves, leaf petioles, branches or stem, as in shoots) 

and have more irregular, opportunistic growth as a response to soil heterogeneity.  

Full, detailed quantitative 3D plant architecture assessment was initiated in 1979 by de 

Reffye and Fisher & Honda (Danjon & Reubens, 2008). Several methods for description 
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and modeling of 2D and 3D shoot and root architecture are revised in Godin (2000), Pagès 

et al. (2000) and Danjon & Reubens (2008).  

According to Surový et al. (2011a) shoot architecture, as a specific sub-area of plant 

architecture, has been intensively studied to evaluate the reappearance of geometrical 

structures or to analyze carbon allocation. Although studies about root system architecture 

are scarce due to the complexity to access the entire root systems and to obtain their 

architecture (Cermak et al., 2006; Collet et al., 2006; Dupuy et al., 2007; Fitter & 

Stickland, 1991; Hruska et al., 1999; Kalliokoski et al., 2008; Lintunen & Kalliokoski, 

2010; Nicoll et al., 2006, Stokes et al., 2002; Surovy et al., 2011b). Despite this scarcity 

some authors advise different approaches when dealing with root systems. Asaah et al. 

(2010) defend that studies on root systems should concentrate more on root architecture 

and distribution than on individual root numbers. Root system architecture plays an 

important role in the acquisition of the edaphic resources, which are in subject to local 

depletion (Zhang et al., 2003). These kinds of studies, usually do not include fine 

structural details, such as root hairs, instead they rely in an entire root system or a large 

subset of the root system of an individual plant (Lynch, 1995). Root architecture refers to 

the spatial configuration of the root system presenting the explicit geometry deployment 

of root axes. Yet, root system spatial configuration (number and length of lateral organs), 

vary greatly depending on the plant species, soil composition, and particularly on water 

and mineral nutrients availability (Malamy, 2005; Hodge, 2009). It results of the 

extension growth of individual root axes, the appearance of lateral roots along root axes, 

the direction of root axis elongation, the senescence or mortality of root axes, and the 

plasticity of these processes in response to environmental conditions such as soil strength, 

nutrient availability, water status, and oxygen status (Lynch, 1995).  

When root system architecture is studied there are several aspects that can be explored 

such as root typology, topology, geometry of root elements and their spatial distribution 

in soil (Lynch, 1995). Specifically, root dry weight and length are the most studied 

characteristics, respectively for plant partitioning and the uptake of water and nutrients 

from the soil (Amato & Pardo, 1994).  

Root branches are usually classified as coarse or fine roots based on the root diameter; 

most typically, roots with a diameter ≥ 2 mm are defined as coarse roots and thinner root 

branches (less than 2 mm diameter) as fine roots (Kalliokoski et al., 2010). The two most 
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distinctive groups are shallow and sinker roots (Danjon & Reubens, 2008). Shallow root 

axes of mature trees spread several meters horizontally in the uppermost soil layers, 

determining the limits of the horizontal influence area of the root system. Sinker roots 

extend obliquely or vertically in soil determining the vertical influence area of the root 

system. 

 

 

 

3D Digitizing  

 

Exhaustive 3D plant digitizing is presently considered to be the most accurate way to 

describe plant architecture (Sonohat et al., 2006). The 3D digitizing method has been used 

since the 70’s. Firstly, an articulated arm measuring rotation angles was employed (Lang, 

1973 in Godin & Sinoquet, 2005). Although more advanced technologies are applied 

nowadays. Semiautomatic measurement of 3D aerial tree architecture using a 3D digitizer 

was first proposed by Sinoquet and Rivet (1997) and Sinoquet et al. (1997), and was 

adapted to root system by Danjon et al. (1999). A detailed review about comparisons with 

other techniques, equipments and different software are presented in Danjon & Reubens 

(2008) work. A precise and detailed tree reconstruction can be achieved using special 

equipment of 3D digitizing which record the 3D position of sensors inside a magnetic 

field created around the target (Lintunen, 2013). Polhemus “3Space Fastrack”, 

manufactured by Polhemus (Polhemus, Colchester, Vermont), is an alternating current 

low frequency magnetic field digitizer, consisting of an electronic unit, a magnetic 

transmitter and a small receiver (pointer) fitted with a switch. The whole is connected to 

a computer. According to Danjon & Reubens (2008) the “3Space Fastrack” provides 6-

degree of freedom (X Y Z Cartesian coordinates and azimuth, elevation as well as roll 

orientation of the receiver) digitizing of single points in a 1.5 m radius sphere. The size 

of the sphere can be extended to 5 m with the “Long Ranger” option. The magnetic 

digitizer requires that no metallic objects are situated in the measurement field (Surovy 

et al., 2011a). 

Aim of study  
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The purpose of this study is to show how the root system of cork oak develops structurally 

(3D architecture) under a specific soil type – Cambissoil soil (FAO, 2006). We believe 

that the results will open new insights to the research of this underground system.  

To our knowledge, only the works from Metro and Sauvage (1957) analysed the full root 

system of cork oak trees of different ages from the Mamora forest (in Marocco 

occidental). Surovy et al. (2011b) accessed partially the root system with the main 

purpose of comparing rooting patterns from seeded and planted juvenile trees; David et 

al. (2013) mapped the root system of an adult cork oak tree till the lowest water table 

level at the end of summer (4.5 m depth) and modeled the contribution of different water 

sources to tree transpiration based on root structure and functioning. Results from this 

work showed a dimorphic root system with a network of superficial roots linked to sinker 

roots, and a tap root diverging into tangles of deep fine roots submerged for long periods. 

Kurz-Besson et al. (2006) and Nadezhdina et al. (2008) have also found a dimorphic root 

system and identified the occurrence of hydraulic lift. 

From our knowledge, in terms of detailed 3D cork oak root architecture, using the referred 

digitalization technology, this work is unique. This study will only focus on one sample 

tree. But we consider that the results that will be obtained together with the information 

already existent from the abovementioned studies, will allow a general description of the 

structural-functional approach for the root system development of this species. The tree 

specific pattern of roots distribution in soil is tree self-dependent on its own genetic and 

fenology, and completely dependent on the soil conditions and effects of the surround 

matrix. 
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3.3 Material and Methods 

 

3.3.1 Field site and environmental conditions 

 

This study was carried out in Canha, in SW Portugal (38’38.38”N 8º 38’22.22”O). The 

field work was executed between September 2008 until November 2010. Soil profile 

description and evaluation was made in situ and soil samples from each layer were 

collected for physical and chemical analysis. Also specific soil samples were taken for 

bulk densities and porosity analysis. For this purpose, we used cylindrical metallic 

samplers (with 5 cm Ø and 3 cm width). 

Data from Pegões climatic station was used on climatic conditions evaluation, due to the 

proximity to field work site. Data was collected from MAMAOT (2012) publication and 

climatic parameters were analyzed. Assuming the mean monthly temperature, the year 

can be divided in two semesters. The warmer semester occurs between May and October. 

The mean monthly temperature ranges from 9.8ºC in January and 22.5ºC in August. The 

warmer months, consequently, are the ones with lower values of precipitation, July and 

August; with values less than 10 mm (Figure 1). The months where more precipitation is 

observed are December and January with values of 99.3 and 100.8 mm, respectively. The 

mean annual value verified for Pegões station is about 703 mm. This region according to 

hidric index is evaluated as sub-humidic dry (C1) (MAMAOT, 2012).  Maximum values 

of evaporation occur in summer, with August and July presenting the higher values (202.2 

mm and 191.7 mm, respectively). By year, evaporation in Pegões, achieve 1347.2 mm. 

Potential evapotranspiration (PET) was calculated according to Thornthwaite method 

which assumes PET as a result of mean temperature, with a correction in function of day 

time and number of days per month. Results presented in Figure 2 shows that for this 

region values goes from a minimum of 22.7 mm in January and a maximum of 126 mm 

in July. The start increase of this value is verified in February and it continues almost in 

a mean of 20 mm per month until July. From August until January it decreases in mean 

almost 30 mm per month. Annual potential evapotranspiration assumed is of 797.4 mm.  
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Figure 1. Ombrotermic diagram for Pegões station (mm). 

 

 

 

Figure 2. Mean monthly potential evapotranspiration (mm) evaluated by the Thornthwaite method, for 

Pegões station. 

 

 

3.3.2 Plant material 

 

A cork oak of 6 m height (3.82 m of trunk and 2.18 m of canopy height) with a diameter 

at breast height (1.3 m) of 19.8 cm was used in this study (Figure 3). It had19 years old 

and had never been debarked. The tree was located in a flat terrain (0º slope) and the last 

management practice – disking – occurred 8 years ago. Young cork oaks, eucalyptus and 

young maritime pines were present in the neighborhood. 
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Figure 3. Cork oak used in the study. 

 

 

 

3.3.3 Field survey 

 

 3.3.3.1 3D Digitizing 

 

The digitizing process began with the tree identification into individual branches, leaves 

and trunk for shoot system and individual root segments for belowground system. For the 

digitizing process we use the methodology described in Surový et al. (2012) work. We 

used the FASTRAK Polhemus magnetic digitizer that enables the acquisition of Cartesian 

coordinates in relation to a chosen origin, or 0,0,0 reference point. To transfer information 

from FASTRAK into the database we used PiafDigit (Dones et al., 2006) and an 

experimental software written in Delphi 2009 Professional (Embarcadero, California, 

USA) for visualizing and editing datasets. Yet, for branches, some lateral roots and central 

root system, where the digitizing process in situ was impossible due to displacement, were 
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marked reference points before they were cut. After they have been removed and placed 

in a new site, these reference points are then digitized again enabling the reconstruction 

of the original position of the segments in the tree architecture (for a detailed description 

see Surový et al., 2011a).  

The semi automated 3D digitizing methodology was made by a team of 2 persons. As 

advised by Danjon & Reubens (2008) one person was responsible for clicking the 

appropriate positions with the receiver and for measuring the root diameters, and other 

person was responsible for entering diameters and topological indications on the PC as 

well as controlling the measurement process through the root system image on the screen. 

For diameters, two perpendicularly measurements were taken with a plastic caliper. Yet, 

recommendations from the abovementioned authors were followed for definition of 

segments: they advise that very short segments will result in an overestimation of root 

length and volume because of proportionally large imprecision in XYZ pith position. 

When a 3D digitizer is used, in large axes, digitizing should be made with the same 

receiver direction, for example clicking all the time on the roots from the north direction. 

From 3D digitizing process in the field, the following parameters were obtained: root 

length from 3D (RL3D) and root diameter from 3D (RD3D).  

 

 

 3.3.3.2 Plant material collection  

 

Specific parameters for shoot system as total height, trunk height, and circumference at 

breast height were measured. Identification and codification of branches was done 

according to tree graph structure. The first branches originated from trunk (first order) 

were considered of second order; the ones originated from second order were identified 

as third order and so on. Seven orders were identified in aboveground system. The aerial 

system was divided into leaves (which weren’t 3D digitized), new branches (last year 

grow), branches and trunk. 

A first digitizing was made from the trunk base until the top of the tree. The two main 

branches were tridimensional digitized avoiding any disturbance from their original 

spatial position. Due to tree height, it was impossible to make the digitalization in situ or 

with standing tree, because the cable length from 3D equipment was not enough. We 
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decided to cut the branches and by so, several spatial reference points were marked in 

each branch before cutting. Each main branch was carefully cut and transported to 

specific place where the conditions allowed a complete digitalization. Through these 

reference points it was possible to join the several files, maintaining the original spatial 

position in the tree architecture.  

After the digitizing process, each individual segment (branches and small branches) was 

collected, codified and stored in hermetic plastic bags in a fridge (4ºC), for biomass 

analysis. Respective group of leaves from each branch were also collected, codified and 

stored at low temperatures. The trunk was maintained in the field in its original position 

until the root system excavation process was completed. After ¾ of root system 

excavation and due to the instability of the trunk, caused by soil removing, some ropes 

were used to prevent trunk displacement from the original position. At the end of root 

system excavation, trunk was separated from main root and carried out to laboratory. 

The methodology described at our previous work for cork oak (see Dinis et al., 2011) was 

adopted to access the entire root system. At the beginning, a deposit of sediments was 

opened with a machine. This deposit was 2 m depth and was at 6m distance from tree 

trunk. The excavation by high pressure air jet method started in the topsoil (first layer) 

following the orientation from trunk to the crown projection line. These first 18 cm had 

an elevated sand percentage and by so this technique was well succeeded. However for 

deepest layers, it was difficult to remove the soil only through the air pressure. Deepest 

layers became less sandy and more clayed. Since these characteristics were not suitable 

for the use of this method and in accordance with the result of earlier work (see Dinis et 

al., 2011), we also excluded the method of profile washing with water. Thus, the only 

viable option for the excavation of deepest layers was the manual (by hand, with the aid 

of material used in archaeological excavations and sometimes with the aid of a pneumatic 

hammer, in the cases where the soil characteristics were very compacted with a high bulk 

density).  

The excavation was conducted in different phases. After the excavation of one quarter of 

root system, and with the roots exposed and maintained at the original position, digitizing 

began. Each root segment was identified, codified and digitized. After digitalization, the 

respective root segment was cut, labeled and stored in hermetic plastic bags in cold 

environment. The respective smaller fine roots (less than 1mm diameter) spread through 
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all root segment were also stored. When all the roots from this section (one quarter) were 

exposed, digitized and removed, the excavation continued. At each complete root 

exposure the digitalization was made. These two processes occurred simultaneously until 

achieve the final stage of root system excavation. When only the central part of root 

system was left, to avoid movement and displacement of roots, the trunk was supported 

and fixed with wooden sticks, strings and also with the aid of a tractor. Through this 

method it was possible to remove the soil from the main root. After total exposure of root 

system, this central system was carried to laboratory where the tasks of 3D digitizing, 

cutting and storing the root segments were completed. All the roots were labeled, 

following the graphic tree codification, where roots that were originated from tap root 

received the code of order 1; the ones originated from order 1 receive the code of order 2 

and so on. Seven orders were identified in this cork oak root system. All the root segments 

were stored in fridge (4ºC) for further laboratory biomass analysis. 

 

 

 

3.3.4 Laboratory measurements 

  

 

 3.3.4.1 Shoot system 

 

 

Aboveground structures, such as leaves, new branches, branches and trunk were analyzed 

at laboratory and different procedures were applied for the different components.  

35 bags of leaves were randomly selected for leaf area measurements. Leaf area measures 

were obtained through image analysis software (ImageJ) from the scanned images made 

with a scanner (HP Scanjet 4850), with 254 dpi resolution. After area measurements, 

leaves were dried at 75ºC during 48 hours and dry weight was taken. With these results, 

a linear regression model was tested between biomass and areas (Figure 4). 
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Figure 4. Linear regression model between leaf area (dependent variable) and leaves biomass (independent 

variable). 

 

Through this model (1) it was possible to achieve leaf area values for all sets of leaves 

collected on the tree. All the fresh leaves sets were dried in an oven at 75ºC, during 48 

hours and dry weights were registered.  

 

𝐿𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 (𝑚2) = 79.798 ∗ 𝐿𝑒𝑎𝑓 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝐾𝑔) − 0.118        𝑅2 = 0.918                     (1) 

Wood structures (new branches, branches and trunk) were individually analyzed. Lengths 

and minimum and maximum diameters were recorded. Biomass, expressed in terms of 

dry weight, was obtained after a drying process at 103ºC, during 48 hours. For shoot 

system the follow variables were obtained: 

 

 LB – Leaf biomass (Kg) 

 LA – Leaf area (m2) 

 NbB – New branches biomass (Kg) 

 NbL - New branches length (m) 
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 BB – Branches biomass (Kg) 

 BL - Branches length (m) 

 TB – Trunk biomass (Kg) 

 TH – Trunk height (m) 

 SB – Shoot biomass (Kg) 

 

 

 

 

 3.3.4.2 Root system 

 

 

Root system laboratory analysis was divided in two phases, one concerning to the coarse 

roots and other to the fine roots. Assuming that coarse roots are all the roots that present 

a diameter greater than 2 mm, the laboratory procedure applied for each root segment 

was: (1) root segment division by diameter classes, (2) length measurement using a metric 

tape, (3) evaluation of fresh weight, (4) drying of roots in an oven at 103ºC, during 48 

hours, (5) registration of biomasses expressed as dry weights. For fine roots analysis: (1) 

fine roots were separated from the respective root segment and washed carefully with 

water enabling the separation of soil aggregates and were conserved at a water and alcohol 

solution, at lower temperatures, (2) Lengths of fine roots were measured using Comair 

Root Length Scanner (Commonwealth. Aircraft Corp. Ltd. Melbourne, Australia) and 

metric tape. The Comair root length scanner is one automated device that is based on the 

line-intercept method (Newman, 1966). For Comair root length scanner fine roots were 

individually spread on the circular glass plate, avoiding overlapping and water bubbles 

(Figure 5). Due to that, sometimes it was necessary to repeat the process several times to 

complete only one sample.  
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Figure 5. Measurements of fine roots using Comair Root Length equipment. 

 

The total length was then calculated by sum of the several measurements. This equipment 

does not allow the measurement of areas and diameters. (3) Fine roots fresh weights were 

taken, (4) fine roots were dried, on an oven, during 48 hours at 103ºC and (5) registration 

of biomass, expressed in terms of dry weight, for each sample. 

The size-related root variables obtained from laboratory analysis were: 

 

 RL –Root length (m) 

 RB – Root biomass (Kg) 

 RD – Root diameter (cm) 

 CRL – Coarse root length (m) 

 CRB – Coarse root biomass (Kg) 

 FRL - Fine root length (m) 

 FRB – Fine root biomass (Kg) 
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Through the previous variables, functional morphological root parameters were also 

calculated: 

 

 RSA – Root surface area (m2) = 2Π R (m) * Root Length (m)  

 SRA – Specific Root Area (m2 Kg-1) = Root Surface Area (m2) / Root Biomass  

  (Kg) 

 SRL –Specific Root Length (m Kg-1) = Root Length (m)/Root Biomass (Kg) 

RV – Root Volume (m3) = Π*Length (m) * [Rmax
2(m) + (Rmax (m) * Rmin(m)) + 

Rmin
2(m)] / 3 

 RF – Root Fineness (cm cm-3) = Root Length (cm) / Root Volume (cm3) 

 FRTD – Fine Root Tissue Density (g cm-3) = Fine Root Biomass (g)/Fine Root  

   Volume (cm3) 

 R:S ratio – Root shoot biomass ratio = Root Biomass (Kg) / Shoot Biomass (Kg) 

 

According to several authors such as Eissenstat and Yanai (1997), Ostonen et al., (2007), 

Pregitzer et al. (2002) these morphological parameters, especially SRL and to a lesser 

extent SRA, have been used as indices of root benefit to root cost, assuming that resource 

acquisition is proportional to length or surface area and that root cost (construction and 

maintenance) is proportional to mass. Yet, Ostonen et al. (1999) assumes that higher SRA 

indicates a higher allocation of assimilates to roots. Root volume and root fineness are 

parameters that allow a major perception of root structure strategy. From tridimensional 

architecture, which included the minimum and maximum diameter and length variables 

taken in the field during the digitizing method, root volume (RV3D) was calculated. 
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3.4 Results and Discussion 

 

3.4.1 Soil characteristics 

 

The soil type where the cork oak was developing was a Cambissoil soil with sandy-loam 

characteristics with clay congregations. This type of soil is originated from 

unconsolidated materials, with exception of materials with fluvic properties or with very 

rough or stony texture. It is characterized by not having clear diagnostic layers besides a 

umbric A and without hidromorphic properties within 50cm of the surface. The results of 

soil profile evaluation made in field, through wall visualization showed that this soil was 

composed by 3 different layers (Table 1). In the first layer (A horizon), from 0 to 8cm 

depth, was observed the presence of many roots from herbs, shrubs and eucalyptus. This 

high root presence is due to topsoil characteristic where the higher quantity of organic 

matter was available (1%) when compared to the other depth layers. Its physical 

evaluation showed a higher presence of sand (75%) and through chemical analysis the 

higher values for nutrients available in soil (phosphurus (0.0103%), potassium (0.056%) 

and nitrogen (0.03%)), were verified in this layer. A second homogeneous layer (B 

horizon) was verified at 20-95 cm depth. The presence of fine roots from shrubs was 

verified until approximately 35 cm depth. Below this depth only roots from cork oak and 

eucalyptus were verified. The organic matter available was only of 0.20% and nitrogen 

was not detected in the chemical analysis. The presence of sand continued very high in 

this layer (75.1%) although some clay aggregations were observed. The last 

homogeneous layer (bedrock) was observed between 95 and 140 cm depth, were only few 

tree roots (from cork oak and eucalyptus) were present. This layer was completely 

different from the previous when observed in the field. The presence of clay aggregations 

was high and easily recognized by visualization. The physical soil analysis confirmed this 

aspect. The presence of clay increase 229% compared to previous layer. This was the 

layer, in the entire soil profile, where a higher percentage of potassium was found 

(0.0126%). Below the 1.40 meters it was impossible to continue the soil profile 

description due to bedrock conditions. pH ranged from 4.9 to 5.1  (moderated acidic soil) 

which is in accordance to soil type preferences for cork oak development (Montero et al., 

1988). As expected, soil bulk density increase with depth increase. A range from 1.62 to 

1.76 g cm-3 was obtained. The second layer (B horizon) presented a value of 1.73 g cm-3. 
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Table 1. Physical and chemical characteristics and field observations of soil profile. 

Depth, cm 0-20 20-95 95-140 

Texture Sandy-loam Sandy-loam Sandy-clay-loam 

Sand, % 75.2 75.1 58.7 

Silt, % 16.4 14.6 7.5 

Clay, % 8.4 10.3 33.9 

Bulk density, g cm-3 1.62 1.73 1.76 

pH (H2O) 4.90 5.00 5.10 

Organic matter (%) 1.00 0.20 0.30 

Phosphorus (P), % 0.0103 0.0035 0.0018 

Potassium (K), % 0.0056 0.0056 0.0126 

Nitrogen (N), % 0.03 Non detectable 0.01 

Field observations 
Many roots from 

herbs,shrubs and 

eucalyptus 

Some fine roots 

from 

herbs and shrubs 

No roots from 

herbs and shrubs 

 

 

 

3.4.2 Cork oak tree architecture and morphological evaluation 

 

In cork oak 3D architecture the segments of roots, new branches, branches and trunk are 

represented with real diameters and lengths evaluated in situ. 3D cork oak architecture 

shows a root system that spread horizontally far away from horizontal canopy projection. 

From the longest distance between outsider’s branches (largest horizontal canopy 

projection) the diameter reaches 4.80 m. The shoot system is formed by a trunk of 3.82 

m height with 19.8 cm Ø at breast height (1.30 m), several branches, new branches (last 

annual growth) and leaves. Two main branches with a growing pattern mostly in height 

and, several branches from different orders growing diagonally, constitute the shoot 
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system structure. Total height measured for this cork oak was of 6 m. Although leaves 

are not presented in the 3D architecture, each new branch formed (at the final of each 

branch presented in the architecture) contains a set of leaves. According to spatial 

position, root system could reach until 10 m distance measured horizontally from trunk, 

and in vertically, tap root reached 1.40 m depth. Only few small roots were observed 

bellow this depth. Figures 6a, b, c and d represent the different views of cork oak 

architecture.  

 

 

 

 

 

 

 

 

 

 

 

          Canopy line projection a) 
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    Canopy line projection 

    Canopy line projection 

c) 

b) 
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Figure 6. Different angle views from cork oak 3D architecture (aerial and root system) a) from North, b) 

from East, c) from South and d) from West. 

 

 

By the representation presented on Figure 7 it is possible to verify that cork oak root 

system spread much more than the aerial system. These spatial distributions occurs 

possibly due to the soil conditions and specifically due to the high bulk density of the 

deepest layers (see Table 2), forcing the horizontal development of roots instead of their 

growth in depth. Also Metro and Sauvage (1957) in their work, verified through an 

observation of a 40 years old cork oak growing in a sandy profile soil with a maximum 

depth also of 1.40 m, that root surface area extended a lot more the horizontal line of 

canopy system. David et al. (2013) in their recent study observed that root system of a 

mature cork oak growing on a deep Haplic Arenosoil, with high permeability and a low 

water retention capacity, only extended at least into the crown limits. However they 

related this limit with probably physical restrictions by the occurrence of prior soil tillage. 

 

 

    Canopy line projection 

d) 
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Figure 7. Spatial distribution of cork oak systems. Green color: shoot system, brown color: root system.  

 

 

Evaluation of cork oak morphology shows that biomass allocation is similarity distributed 

between both systems (Table 3). Shoot system represents 54.1% of the total biomass 

distribution, with 64.7 Kg and root system presented 55 Kg. In total was verified that cork 

oak allocated 119.7 Kg of biomass, expressed in terms of dry weight. For total length, 

measured trough axes (see Figure 8) of trunk, branches, new branches and roots, a result 

of 5426 m was obtained. Root system for this parameter is more representative with 1815 

m measured through root axis, mainly due to fine root structures. Structural root system 

composed only by the coarse roots, presented a total of 753 m length.  

 

Table 2. Total tree biomass and length (aerial and root system). 

  Shoot System Root system  Total 

Biomass (Kg)  64.74 54.94  119.68 

Length (m)  1 610.48 1 815.44  3 425.92 
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Figure 8. Difference between typical length and length measured through line segment axes (method 

adopted on Fastrak Polhemus 3D digitizer).  

 

3D architecture of cork oak canopy system is presented on Figure 9. Biomass allocation 

of cork oak aerial system (Table 3 and Figure 10) indicates that, as expected due to its 

constitution, woody structures allocate more biomass than leaves. Tree trunk has more 

weight in terms of biomass (33 kg) representing 51.6 % of total aboveground system. 

Branches represent approximately 29.6%, with about 19 Kg of biomass evaluated. The 

structures that allocate less biomass are the new branches and leaves. Respectively, the 

values obtained for these compartments were 2.5 Kg and 6 kg. In percentage, new 

branches allocate 4% and leaves 15% of aboveground system biomass. The total length 

reported for the various tree aerial structures; show that branches and new branches 

together present 1607 m of length and the trunk measure 3.82 m (Table 2). 

 

 Figure 9. 3D architecture of cork oak shoot system.  
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Table 3. Biomass (leaves, new branches, branches, trunk) and length (branches and trunk) of aerial system. 

 

Shoot system 

Leaves New 

branches 
Branches Trunk Total 

Biomass (kg) 5.97 2.53 19.20 33.38 64.74 

Length (m) - - 1 606.66 3.82 1 610.48 

 

 

 

 

 Figure 10. Aboveground biomass distribution of cork oak (%).  

 

 

 

3.4.3 Cork oak root system architecture and morphology 

 

In this work when it is referred the number of root segments, it should not be understood 

as the real number of roots. Meaning, as it was abovementioned, for an easier evaluation, 

the roots were cut and separated by diameter classes in laboratory and by so, there are 

cases that one single root can be separated into several root segments. Sanesi et al. (2013) 

defend that data collection on roots systems can be performed at different levels according 

to the aims of the research and can include topics such as: biomass measures (above and 

below-ground), dendrological parameters (length and diameter of roots at different 

sections) and architecture analysis. In our case the data collection was made with the 

14.91

3.92

29.59

51.58

Leaves

New branches

Branches

Trunk
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purpose of architecture analysis but also biomass and length, measured through root axes, 

were evaluated.  

Cork oak root system architecture show 2 subsystems, one at a superficial level (until 

40cm depth) and another at a deeper level (around 1.20 m depth) (Figure 11) 

demonstrating that the root system of cork oak has the ability to explore the entire soil 

profile. Also Mètro and Sauvage (1957), Kurz-Besson et al. (2006) and recently, David 

et al. (2013) verified this dimorphic root system for cork oak. The connection between 

these two sub-systems is also composed of singular roots, usually from second or third 

order, that grow vertically in depth, called sinkers (Figure 12). This deep rooting strategy 

is an important feature for tree survival (Canadell et al., 1996), enabling the exploitation 

of deep soil and deep water tables (Cermak et al., 1980; Jackson et al., 1999) which are 

important for the maintenance of the transpiration of Mediterranean oaks during drought. 

David et al. (2013) mentioned that by accessing deep water sources, sinker roots may also 

contribute to the increase of whole-plant water transport efficiency through hydraulic 

redistribution. According to existent works (David et al., 2013; Kurz-Besson et al., 2006; 

Nadezhdina et al., 2008) it is already proved that water in cork oak tree may move 

upwards (hydraulic lift), downwards (hydraulic descent or reverse hydraulic lift) or 

laterally. Hydraulic lift is the process of water movement from relative moist to dry soil 

layers using plant root system as a conduit (Caldwell et al., 1998). This process allow that 

the water released from roots in the upper soil layers, when transpiration ceases, will be 

absorbed and used by the tree in the next day. Specifically, David et al. (2013) verified 

that hydraulic lift occurred at the end of summer from deep wet soil to superficial dry one 

and that hydraulic descent occurred in the wet periods following rain when the surface 

soil was wet. For instance, Kurz-Besson et al. (2006) had verified that in the warmer 

period of drought season, about 17 to 81% of the water lifted during night was used in the 

day after for transpiration. Pereira et al. (2004) stressed that hydraulic lift in cork oak may 

be also especially important on the onset of autumn rains. According to them, at this time 

of the year, herbaceous plant roots are not alive in the top soil to use the suddenly available 

nutrients and rain water is not plentiful enough yet to carry them deep into the soil.  
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Figure 11. Cork oak dimorphic root system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Presence of sinkers in cork oak root system. 

 

 

The maximum vertical root depth reached by cork oak root system was 2 m, although 

only few roots with very low diameters were verified below 1.4 m depth. This is in 

accordance with Serrasolses et al. (2009) when they mentioned that as the most oaks, 

cork oak is a deep-rooting species with a tap root depth of a meter or more. In this work 

we verified in situ that tap root growth vertically until 1.40 m and, probably due to soil 
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characteristics it stopped the growth in vertical and continued horizontally, changing 

sometimes the anatomical form of the root (cylinder to smashed form) to allow the 

passing through zones with higher mechanical impedance (Figure 13 and Figure 14). 

Different views of cork oak architecture are presented in Figure 15 a, b, c, d, e.   

 

 

Figure 13. Vertical tap root development. 

 

 

 

Figure 14. Horizontal tap root development at 1.40 m depth. 

 

Tap Root  
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Figure 15. a), b), c), d), e) Different views of cork oak root system 3D architecture. 

 

 

The higher percentage of roots is superficial and it’s possible to verify that, for the 

majority of the directions (azimuths), they can spread away at least 2 times the canopy 

horizontal projection. The maximum root distance found had 4 times the horizontal line 

canopy projection (root code R6R14R2R12) (Figure 16). The growth of this particular 

root from 4th order was mainly horizontally between the 0.05 and 0.35 m depth and it was 

oriented for the SE azimuth. By so we confirm what was already mentioned by other 

authors (David et al., 2004; 2013; Moreno et al., 2005). Although they had not accessed 

the entire root system of these trees, they defend that in water-limited environments, roots 

may extend far beyond the crown projection area. For other Quercus species, Quercus 

e) 

d) 

Depth  
(m) 

1.4 

2.0 
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petraea, some authors (Cermák et al., 1981; 1986; Hruska et al., 1999) verified an 

enlargement of a large oak root system in sandy loam soil as a response to drought.  

 

 

 

Figure 16. Maximum horizontal root distance observed. 

 

 

Besides the abovementioned, pattern of root growth strategy is not simple to replicate. 

Each individual root has its own strategy of growth being misunderstood why and when 

it creates a new lateral root or why they develop in some specific direction or even, why 

they connect with others, exploring the same soil space. For this cork oak we verified 

some root grafts between coarse roots of this same tree (Figure 17) but no intergrowth 

was observed. During this work it was not possible to find a pattern that could allow us 

to try a modeling approach for its architecture.  

Another interesting root behavior was found. During excavation process it was observed 

an injured root which had clearly suffered a cut. This cut probably was a result of the last 

soil disking operation (8 years ago). As it is possible to verify by the 3D representation 

(see Figure 18) the replacement root did not followed the same root growth direction as 

the original one. It seems that the tree as the ability to memorize the place where it was 

hurt and to never “send” again any root for the same place. This important factor was also 

observed in other study. According to Surovy et al. (unpublished data) in the sample of 

cork oak trees used in their previous study (Surový et al, 2011b) where they accessed 

partly of the root system and cut half of the root system the same trend was verified. The 

authors refer that after their study was complete, they closed the profiles with soil and the 
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trees continue their growth. Three years later those profiles were open (excavated) again 

until the 20 cm depth and, for all the profiles, in the soil space previously occupied by the 

roots that were cut, no roots were found (Surový et al., personal information). This fact, 

concerning silvicultural management options, is very important hence it gives new 

reliable and valuable information about the effect of soil mobilization in depth.  

  

Figure 17. Root graft with no intergrowth, observed between 2 coarse roots from cork oak. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Example of root behavior after root cut injury. 

 

In the revision made by Malamy (2005) about the intrinsic and environmental response 

pathways that regulate root system architecture, is highlighted the difficulty in 
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understanding completely the architecture of the root. Options should be made taken into 

account the approach of study. According to Lynch (1995) studies of root distribution, 

typically, deal with root biomass and root length as a function of factors such as depth in 

soil, distance from the stem and, position between neighboring plants. In this study we 

focused on the distribution of two main parameters, root biomass and root length 

distribution through root categories, profile depth and azimuth orientation. 

For the evaluation of root system a total of 1983 root segments were analyzed. For 

belowground system a total of 54.94 Kg of biomass and 1815.43 m length were obtained 

through laboratory analysis (Table 4). As referred in Material and Methods section, the 

root data were treated according to 2 categories, coarse roots (Ø>2 mm) and fine roots 

(Ø<2 mm). Results of biomass, expressed in terms of dry weight, demonstrate that coarse 

roots had 53 Kg and that fine roots represented only 3.2% of total biomass, due to their 

thickness. 753 meters were measured for coarse roots, and fine roots, as expected, 

presented a higher value, 1 062 meters representing 58% of total length. 

 

Table 4. Biomass (Kg) and length (m) of cork oak root system categories. 

 Root system 

 Coarse roots Fine roots Total 

Biomass (kg) 53.15 1.79 54.94 

Length (m) 753.32 1 062.11 1 815.43 

 

 

From root system 3D architecture analysis, 25 roots from order 1 were observed. By their 

relevance in terms of structure 4 roots, including tap root (R22), are highlighted, R6, R8 

e R21. The tap root, R22, presented a diameter in the origin (in the tree collar) of 29 cm, 

14.6 Kg of biomass and a total length of 4.8 m, measured through root axes. Vertically, 

in depth, tap root achieved 1.40 m. When this main root reached the bedrock, due to the 

high bulk density (1.76 g cm-3), it continued the growth horizontally whit a lot of curves 

(Figure 19). Root labeled as R6 (Figure 20) presented a diameter in the origin of 7.66 cm 

and was the longer root observed in the root system with 7 meters. It was the second with 

major weight in terms of biomass (2.7 Kg) and lateral roots originated from R6 growth 
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until order 7. For the set of roots having the origin in R6 a result of 208 m length and 9.9 

Kg of biomass was obtained. Other main root observed in terms of structure was the R8 

(Figure 21). This root, represented in Figure 24, had 15 cm of diameter in the origin and 

it extends through 12.6 m measured in the root axes. A total of 5.9 Kg was obtained for 

this root. Lateral roots originated from R8 were verified until the 5th order. Another 

relevant root in terms of structure was observed through 3D architecture, R21 (Figure 22). 

This root with a diameter on the origin of 6.5 cm extended through 3.4 m and weighted 

0.7 Kg.  

 

 

Figure 19. Tap root (R22). 

 

 
Figure 20. Root R6. 

 

 

Figure 21. Root R8. 
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Figure 22. Root R21. 

 

 

 

3.4.4 Depth distribution and azimuths distribution of roots 

 

3D representation of roots shows that majority of roots were formed at the upper layers. 

During its growth they spread overall the soil profile, some of them growing mostly 

horizontally (Figure 23) and others grow smoothly in depth, occupying the entire profile. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Root horizontal growth near the surface. 

 

 

As already mentioned, the horizontal distance achieved by roots could reached until 4 

times the canopy horizontal line projection, although in depth the maximum root vertical 

depth verified was of 2 m. However, the main structure of root system (central root 
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system) developed only until 1.40 m corresponding to the deepest water table level. 

Below this depth only few roots could penetrate in this layer that corresponds to the 

bedrock of the soil. However, David et al. (2013) for a cork oak growing under a well-

drained deep Haplic Arenossoil soil observed that the deepest roots were at 4.5 m depth. 

In the present study, below 0.95 m soil presented a higher bulk density value and clay 

aggregations (see Table 2) which helps to verify that is a strong and compacted layer; 

inhibiting the majority of roots to penetrate. This evidence of soil compaction effect on 

root growth lead this research to a complementary study where it was evaluate the effect 

of soil compaction depth on cork oak seedlings growth (see Chapter 4). In the referred 

study it was simulated soil compaction layers at different depths (30 and 60 cm), in a 

greenhouse experiment. Through the results obtained it was possible to verify that already 

at first cork oak seedlings growing stages, for a soil bulk density of 1.73 g cm-3, tap root 

length was negatively affected by this soil related factor. Yet, it was verified that 

compacted layers promote a decrease on total tree biomass. For that reason, in the present 

study, it can be though that probably the investment that the tree needed to produce new 

roots and promote the growth below 1.40 m was high. Meaning, if the roots were mainly 

growing until the 1.40 m, it can be presumed that until this depth the soil conditions and 

water and nutrients availability were enough to not compromise the growth of the tree. A 

20 to 20 cm depth evaluation was made and results from 3D digitizing for volume (RV3D) 

and length (RL3D) are presented in Figures 24 and 25, respectively.  

As expected by the observations made in the field, root volume decreased with depth. The 

highest percentage of root volume (37%) was found in the first 20 cm. This was expected 

and is in accordance with what was observed in the field due to soil profile characteristics 

from horizon A (0-18 cm depth) which present the better conditions for plant root 

development specially in radial growth (lower values of fine root fineness (0.55 cm cm-

3), see Figure 33). This horizon presented a higher nutrient availability, less mechanical 

impedance (soil bulk density of 1.62 g cm-3) and was the layer that first benefits from the 

infiltrated water coming from the surface (water availability). This was the 2nd more 

representative layer (21%) for root length. As it was observed during the field survey 

longer roots segments were found between 20 and 40 cm. Results of 29.17 meters and 

0.92 cm cm-3 of root fineness were obtained demonstrating that probably in this layer the 

tree invested more energy in root elongation than in radial growth. Probably this 

investment was made with the main purpose of anchoring and supporting functions 
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(structural). 30% of root volume was observed in this layer being the second more 

representative layer for this parameter. A relevant decrease of 59% in root volume and of 

47% in root length was observed between this layer and 40 to 60 cm depth. Probably due 

to less availability of water and nutrients, root development expressed through root 

volume and root length parameters, between 60 cm and 100 cm depth layers, was less 

observed comparing to top layers (Figures 23 and 24).  

Until 1m depth a continuous decrease of 32.5% and 10.5% was observed in root volume. 

Root length decreased in orders of 48% and 28% for 60-80 cm and 80-100 cm depth, 

respectively. It is important to refer that at these layers an investment tendency on root 

radial growth was observed, justified by a decrease in root fineness parameter (Figure 

26). These results allow assuming that at these depths structural root functions are 

reinforced probably with the main purpose of tree fixation and anchorage (larger cross 

sectional areas). Below 100 cm depth and due to soil horizon conditions (C horizon) a 

significant minor presence of roots was observed. Also horizontal root distribution was 

greatly diminished, possible to verify by the results of Table 7. This fact is justified on 

one side by the minor water and nutrients availability and on the other side, by the 

physical soil constrains. Soil profile analysis (Table 3) shows that below 98 cm depth soil 

texture became more clayed which creates more difficulties either to root radial and/or 

elongation growth. The soil pores are smaller and by so, the tree needs to invest more 

energy in root soil exploration in this layer. Yet, taking into account that tap root vertical 

growth stopped at 140 cm, below this depth a significant increase in root fineness was 

observed, meaning that only thinner roots were present (values between 4.8 cm cm-3 (at 

140-160cm) and 7 cm cm-3 (at 180-200 cm)), representing only 0.15% (160-180 cm) and 

0.1% (180-200 cm) of total root volume achieved. 
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Figure 24. Root volume distribution in depth (m), obtained through 3D digitizing. 

 

 

 

 

 

 

Figure 25. Root length distribution in depth (m), obtained through 3D digitizing. 
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Figure 26. Root fineness (cm cm-3) through depth layers. 
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Figure 27. Spatial distribution by azimuths of roots. 
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Figure 28. a) Root Length (RL3D), b) Root Volume (VL3D) and c) Root Fineness (cm cm-3) through 

azimuths, evaluated from 3D digitizing. 
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belonging to this order correspond mainly to the initial stage of plant life and by so was 

expected an equilibrated biomass allocation for new structures constructions to allow the 

growth and development of the tree. From 2nd to 6th orders cork oak invested always more 

in the shoot system. This indicates that roots were able to guarantee the tree functioning 

allowing the tree to reinforce the production of aerial structures Among these orders a 

continuous decrease was observed (Figure 29), expect for order 4. A result of 0.57 was 

obtained presenting a slightly increase due to 3rd order. Only for 7th order was observed a 

greater tree investment in root production compared with shoot production.  

 

 

Figure 29. Root shoot biomass ratio per branching order. 
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order biomass, making it the most representative order for this parameter (Figure 31). For 

branches biomass, first order represents 41%, 2nd order 51%, 3th order 35% and a 

representativeness of 13% for order 4. The remaining orders only represent 3.8% of the 

branches total biomass. In comparison with the other aerial compartments, from 4th order 

onwards, a pattern of higher biomass allocation is observed for leaves and new branches 

(Figure 31).   

 

 

Figure 30. Shoot biomass allocation per branching order (%). 

 

 

 

Figure 31. Cork oak aboveground biomass partition, per branching order. 
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The newer structures of the tree (leaves and new branches) presented the same distribution 

pattern in terms of biomass per bifurcation order. The most representative orders 

evaluated for leaves and new branches biomass, are 3rd, 4th and 2nd, respectively. Values 

of 3.99 Kg, 2.32 Kg and 2.25 Kg were obtained (Figure 32). Expectedly taking into 

account that the last formed structures have less weight in terms of dry weight because of 

their recent formation, lower values of biomass were obtained for these orders (6th and 

7th), with distributions below 3%. 

 

 

Figure 32. New branches and leaves biomass, per branching order. 
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the top of the tree with a small set of leaves and, the 7th order where only few wood 

segments (new branches) were observed and consequently only few sets of leaves were 

found in this order. 

 

 

Figure 33. Total cork oak leaf area (m2) and leaf area per branching order. 
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 3.4.5.2.1 Coarse roots 

 

As already mentioned, tap root, included in coarse roots category had a diameter in origin 

(collar) of 29 cm (Figure 34). For the other roots belonging to coarse roots it was verified 

a range of diameter from a mean maximum of 5.27±0.72 cm (roots from order 1) to a 

mean minimum diameter of 0.30±0.00 cm (corresponding mainly to roots from order 7). 

The maximum value was observed in root R8 within 15cm of diameter in origin. When 

mean diameters values are compared, 2nd order present a decrease of 80%, compared to 

order 1. The 2nd order diameter range goes through a maximum of 8.23 cm to a minimum 

of 0.30cm. For order 3, 3.80 cm was the maximum value observed. However the mean 

value evaluated for this order was 0.69±0.40 cm. Order 4 presented a mean diameter value 

of 0.57±0.03 cm. Unexpectedly an increase of 14% was observed between order 5 

(0.44±0.01 cm) and order 6 (0.50±0.09 cm). This can be due to the fact that only 6 roots 

were classified as order 6 and one of them has a mean diameter of 0.6 cm which will 

affect positively the mean value of the order. 

 

 

Figure 34. Maximum mean diameter verify for coarse roots, by branching order. 
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root by itself represents 27% (14.6 Kg). The pattern of biomass distribution shows that 

biomass decrease as branching order increases. This was expected hence the first roots 

formed (older ones) spend more energy in diameter growth (stretching) than in length 

(elongation). This elongation performance is leaved to the new roots than continuously 

are formed. From order 1 to 2 a decrease of 45% was verified and from 2nd to 3rd order 

the decrease was of 44%. Although order 3 present the higher result in terms of length 

(Figure 36a and b) and specific root area (Figure 37) the set of roots belonging to this 

branching order are thinner, and by so the biomass is lower than the previous orders. For 

this order a total of 3 Kg was obtained, representing 11% of the total. Order 5 represent 

only 5.7% of the total biomass, where 0.5 Kg were obtained. The last orders 6 and 7, with 

a low representativeness in relation to the total obtained, presented only 0.026 Kg of dry 

weight (Figure 34b). Lengths of 2nd and 4th orders were elevated, with 184.8 and 167.6 

m, respectively, representing 24.5 and 22% of the total coarse root length. Specific root 

area (SRA) (Figure 37) showed the same pattern, which allows us to confirm that these 

values were mainly improved by the presence of longer roots than on largest diameters. 

Order 7 (last order being formed) for all the parameters evaluated, presented the lower 

values mainly to their almost inexistence in the root system (2 roots). For instance, only 

90 cm were registered for this order. Tap root presented a total of 4.8 m, representing only 

0.9% of total length (Figure 35a and b). Summarizing the values for the entire cork oak 

root system a result of 1281 m2 Kg-1 of SRA was obtained. This fact reinforces the already 

demonstrated high capability that cork oak roots showed on the exploitation of this 2 m 

soil depth profile. 

 

Figure 35. a) Sum of biomass (Kg) and b) biomass distribution (%), obtained by branching order, for coarse 

roots (diameter>0.2 cm). TR: tap root, 1: Order 1, 2: Order 2, 3: Order 3, 4: Order 4, 5: Order 5, 6: Order 6, 7: Order 7. 
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Figure 36. a) Sum of length (m) and b) Length distribution (%), by branching order, for coarse roots 

(diameter>0.2 cm). TR: tap root, 1: Order 1, 2: Order 2, 3: Order 3, 4: Order 4, 5: Order 5, 6: Order 6, 7: Order 7. 

 

 

 

Figure 37. Total specific coarse root surface area (SRA; m2 Kg-1) and per branching order. 
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biomass was registered. As we are dealing with fine roots category, no relevant changes 

in diameter occurs. However through the changes of morphological parameters (specific 

root length (SRL), specific root surface area (SRA)) it is possible to evaluate the tree 

ability to significantly influence the extent of the occupied soil bulk and subsequently to 

modify some physical features in the rhizosphere (Kucbel et al., 2011). In our study the 

evaluation of these parameters was made for each branching order. Also total biomass 

per order was weighted (FRB). Concerning to branching order, as it was verify for CRL, 

3rd order was the most representative order for all the fine root parameters evaluated 

(Figure 38a, b and c) meaning that most soil was exploited by roots of this order. For 

FRB, SRL and SRA results of 0.61 Kg, 25888 cm g-1 and 15954 cm2 g-1 were obtained, 

respectively. Also fine roots of 4th and 2nd order played a significant role on water and 

nutrient absorption for tree maintenance, regarding the high distribution observed on SRL 

and SRA parameters (Figure 38b and c). It is important to mention that almost 7 m2 of 

fine root surface area were in contact with soil in the entire cork oak root system. 

 

 

 

 

Figure 38. Sum of fine roots distribution of  a) biomass (g), b) Specific root length (SRL; cm g-1) and c) 

Specific root area (SRA; cm2 g-1). 1: Order 1, 2: Order 2, 3: Order 3, 4: Order 4, 5: Order 5, 6: Order 6, 7: Order 7. 
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3.5 Conclusions 

 

This intensive study about cork oak architecture and morphology evaluation brings new 

highlights for all the research areas that focused on this typical Mediterranean tree 

species. A brand new possibility to observe how the entire root system architecture is 

distributed on the soil and how it is sensitive to surface practices mainly in silviculture 

practices is reinforced with this study. The dimorphic root system of cork oak already 

described by other authors was verified. 3D root system architecture showed the 

respective 2 subsystems, one at a superficial level until 40 cm depth and another at a 

deeper level around 1.20 m depth. This fact indicates that the root system of cork oak has 

the ability to explore the entire soil profile. A relative high quantity of sinkers distributed 

all over the soil profile was also found. These roots are originated from parental roots 

present on the first 20 cm depth and far away from the main central root system. Their 

strictly vertical growth until lower depths layers, to achieve water from deepest water 

tables, was observed. Specifically, a larger superficial root system that spread at least two 

times the horizontal canopy projection at the first 40 cm depth, reinforce the already 

defended soil mobilization limitation in depth, justified by the loss of the majority of root 

volume that are at the first 20cm depth. This study allows to focus on a possible direct 

relation between soil mobilization techniques and root system damaging (superficial 

roots) probably contributing to the cork oak decline and mortality verified nowadays in 

Mediterranean oak woodlands. We hope that this research together with other relevant 

studies about hydraulic root distribution can be used as an indicator for 

forestry/agriculture management options. For this Cambissoil soil we observed that 

although biomass allocation is distributed almost similarity in shoot and root systems, the 

aerial compartment presented a slightly higher biomass value.  
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4.1 Abstract 

 

Soil compaction promoted either by inadequate management (pressure of livestock and 

machinery) or by soil natural conditions (podzolisation) can influence the growth of cork 

oak seedlings. We hypothesized that compaction could be related with the lack of natural 

regeneration and decline on cork oak stands. In this paper, we evaluated the response of 

cork oak seedlings growth in terms of area and biomass production for above and 

belowground parts at different compaction depths tested for a sandy-loam soil. This study 

was done in a greenhouse, with germinated seedlings. Three treatments were applied. One 

no-compaction treatment (control, C0) and two with a soil compacted layer at 60 cm (C1) 

and 30 cm depth (C2). The level of compacted layer was 1.37 MPa of mechanical 

resistance. Results show that tap root length is negatively affected by compaction at 60 

cm and 30 cm depth. Below and aboveground biomass are affected by compaction at 

30cm depth. In addition, the leaf area results demonstrate that compaction is a sensitive 

factor for this parameter. In this 1-year stage, plants spend more energy in roots 

production. Due to soil formation and bad management of cork oak stands, soil 

compaction at depth could be a cause for the observed lack of natural regeneration, 

affecting the growth at earlier stages and probably for the decline of cork oak populations. 
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4.2 Introduction 

 

The actual area of the cork oak woodlands (Montado) in Portugal is approximately 

715,922 ha, of which 601,906 ha are distributed in the southern region of Alentejo (AFN, 

2010),which accounts for 22% of the total forest area in the country and 33% of the total 

world area of cork oak distribution. Cork oak (Quercus suber L.) is a typical tree species 

present in Mediterranean agro-silvo-pastoral systems - Montado. The ecological and 

economic value of this species is already well documented (see Costa et al., 2010; David 

et al., 2007; Pinheiro et al., 2008; Pereira & Tomé, 2004; Ribeiro et al., 2006; 2010).  

In the last few decades, a decline in the cork oak density and population has been 

documented in the literature (David et al. 1992; Ribeiro & Surový, 2008) as a response 

to the probable inadequate management applied in these areas during long periods of time, 

along with other factors. Human disturbances, including tree thinning and soil tillage to 

keep open areas for livestock (Gouveia & Freitas, 2008), make natural regeneration 

difficult and also promote soil compaction (Kozlowski, 1999). Ribeiro & Surový (2008) 

clearly observed indications of the soil depth limitations on the intensity of mortality in a 

national study, especially when combined with the slope factor. However, according to 

the FAO (2006), the common types of soils where these Mediterranean stands develop 

are Podzols, Luvisols, Leptosols, Cambisols and Regosols soils. In the case of Podzols 

soils, the main process in the formation is podzolization. This complex process, in which 

organic material and soluble minerals (commonly iron and aluminum) are leached from 

the A and E horizons to the B horizon (spodic horizon), can sometimes lead to a dense 

(compacted) layer in the profile (FAO, 2006), known in Portugal as “surraipa”. 

Fortunately, it is possible to break these formations with common low impact silviculture 

practices used both in establishing and maintaining the stands. Specifically, ripper 

subsoiling is advised for this purpose, where a ripper (with different depths) is coupled to 

a high power tractor. In accordance with Pagliai et al. (2004), this alternative tillage 

system promotes a more open and homogeneous soil structure, allowing better water 

movement. Because of these specific soil conditions, the cork oak growth and, 

specifically, the ability of their roots to reach deep layers to receive water and nutrients 

can be compromised.  
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Soil compaction is often responsible for the poor performance or failure of the 

establishment of trees (Sinnett et al., 2008). The compaction term is understood as the 

compression of unsaturated soil, especially affecting the larger soil pores (Kristoffersen 

& Riley, 2005). Compaction typically alters the soil structure and hydrology by breaking 

down soil aggregates, decreasing soil porosity, aeration and infiltration capacity and by 

increasing soil strength, water runoff and soil erosion. All of these factors could lead to 

physiological dysfunctions in plants, mainly influencing the normal and healthy growth 

of roots and promoting a decreased supply of physiological growth requirements at 

meristematic sites; this will make mature trees more vulnerable to wind-throw. In 

addition, the quantity of oxygen in the rhizosphere on compacted soils can be limiting for 

regular metabolic processes (Queiroz-Voltan et al., 2000), stopping the detritus food 

chain, eliminating the diversity of living material and roots and favoring the emergence 

of “pests” that attack organisms and roots that are unable to defend themselves (Coder, 

2007). This will affect the entire functionality of the trees.  

As soils become increasingly compacted, the respiration of the roots shifts towards an 

anaerobic state. Compaction stops the respiration processes that are responsible for all 

tree functions. For instance, Kozlowski (1999) notes that the photosynthesis rate of plants 

growing in very compacted soil decreases because of both stomatal and non-stomatal 

inhibition. During growth, the roots use the soil water and nutrient uptake for structural 

support. Roots grow by following interconnected pores that occur between soil aggregates 

and through voids created by decomposing roots and animal burrows (Coder, 2007). 

According to Hakansson et al. (1998), in compacted soils, the lower development of the 

root system results in a minor soil volume that could be explored by the roots, influencing 

water and nutrient absorption. However, Benghough & Mullins (1990) show that the 

decrease in root development in compacted soils occurs because of the minor cellular 

elongation rate, which is a consequence of the decrease in the meristematic cellular 

division rate.  

As a strategy against compaction, a tree initially promotes tap root thickening and the 

production of more lateral roots with various diameters. Then, if the lateral roots are thin 

enough to pass through the compacted soil pores, these specific roots continue to grow, 

while the tap root growth is restricted. If the soil pore is too small for the lateral roots, 

lateral root growth stops and another site of the subsoil is explored (Russel, 1997 in Coder, 
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1999).  In some cases, roots can also enlarge the smaller pores by squeezing soil material 

aside (Kristoffersen & Riley, 2005). When the root-impeding layers are near the surface, 

they will slow the downward root growth (Bennie, 1991; Ehlers et al., 1983 in Ganatsas 

& Spanos, 2005).  

Previous studies show that plant growth is, in general, negatively affected by soil 

compaction (Bassett et al., 2005; Kozlowski, 1999). On the other hand, some other studies 

conducted under a low range of compaction show a positive effect of this factor on plants 

(Alameda & Villar, 2009; Tubeileh et al., 2003). In the case of oak species, Laliberte et 

al. (2008) found that the long-term survival and growth of trees is largely dependent on 

first-year establishment. Severe soil compaction adversely influences the regeneration of 

forest stands by inhibiting seed germination and the growth of seedlings and by inducing 

seedling mortality (Kozlowski, 1999). In greenhouses or in the field, roots show 

difficulties penetrating in compacted soil layers, promoting a higher root development on 

the less compacted upper or lower soil layers as a compensation procedure (Beulter & 

Centurion, 2004).  

With this study, we wanted to evaluate the behavior of cork oak seedling growth, 

specifically, the behavior of their root system under conditions of compacted layers at 

different depths. Studies on plant growth during this seedling stage are crucial because of 

the plants’ higher vulnerability to environmental constraints (Silvertown & Charlesworth, 

2001). The way resources affect the plant at this stage are fundamental for understanding 

tree recruitment patterns (Villar et al., 2004; Tsakaldimi et al., 2005; Gomez-Aparicio et 

al., 2008), which largely influence forest composition and dynamics. The starting 

hypothesis for this work was that soil compaction will be a negative factor for cork oak 

seedling growth in Montado because it limits tap root growth at a certain depth, causing 

a decrease in biomass production at the aboveground part. The other hypothesis was that 

fine roots will not have the same strength to penetrate a soil compacted layer and, 

consequently, will not explore the layers under compaction in the same way, in terms of 

distribution, as on the non-compacted layers.  
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4.3 Material and Methods 

 

4.3.1 Design of the experiment 

 

The research was carried out in a greenhouse at the Mitra campus of the University of 

Évora, a site close to Évora in southern Portugal. The acorns of cork oak were collected 

from a single, isolated tree. The acorns were washed with water, and the ones that showed 

signs of infection (verified by a water fluctuation process and visual analysis) were 

discharged. One hundred and fifty acorns were artificially germinated in humid cotton 

beds in recipients closed with film. The film was bored to allow respiration. The acorns 

were irrigated once a day and stayed in a room under 23ºC. One week after germination, 

acorns that had a minimum root length of 1 cm were selected. We selected 45 samples 

and attempted to choose as many similar weights and root lengths as possible to avoid 

different levels of seed mass factors, which could influence the results. According to the 

statistical analysis, no significant differences were obtained between treatments for 

weight (P-value = 0.9255), length (P-value = 0.872) and radicle length (P-value = 0.717).  

One large and homogenized soil sample was collected from a depth of 10 to 30 cm of the 

E horizon of a Podzol soil profile, avoiding the spodic horizon (FAO, 2006). The soil was 

collected in the Canha region, in South Portugal. This soil was passed through a 5-mm 

mesh sieve to separate it from bigger aggregates, dust and residues. Three samples from 

this original soil were collected for chemical and textural analysis. According to the 

International Granulometric Scale (Attenberg), the soil used in the experiment was a 

sandy-loam soil. The percentage of pebbles was 2 %, and for the fine earth fraction, the 

percentages of sand, silt and clay were 89.5%, 4.9% and 5.6%, respectively. The pH[H2O] 

was 6.66. The results for organic carbon and organic matter were 0.34 and 0.58%, 

respectively.  

To simulate the compaction of soil inside PVC tubes (inside diameter of 10.5 cm and 

height of 97 cm), we used a metallic weight of 2kg made specifically for this specific 

diameter tube. The experiment was designed for three treatments, C0 (Control) “No 

compaction”, C1“Compaction at 60cm” and C2 “Compaction at 30cm” (Figure 1). For 

compaction at a depth of 60cm, (C1) loose soil was introduced until it reached a tube 

height of 35cm. A metallic weight was dropped 10 times, and more loose soil was 
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introduced in the tube until it reached the top. For C2, the tubes were filled with loose soil 

until it reached a tube height of 65cm, a metallic weight was dropped 10 times and the 

tubes were filled again with loose soil until the top. Through an evaluation of the bulk 

density, we obtained results of 1.66 g cm-³ for the non-compacted soil (treatment C0), 

with a penetrometer resistance of approximately 0.01 MPa, and 1.73 g cm-³ of bulk 

density for compacted layers of the soil (presented in C1 and C2 treatments), with a 

penetrometer resistance of 1.37 MPa. The low differences in the bulk densities between 

non-compacted and compacted soil can be related to the process of compaction that only 

had an effect on a thin layer of a few centimeters and that was difficult to sample by the 

method referred (missing the compacted layer).  

Fifteen acorns were selected for each treatment, planted individually in each tube and 

completely under the soil surface, and irrigated with 200ml of water. The samples were 

arranged randomly in a greenhouse (25°C day / 10°C night temperature and 50% air 

humidity). The plants were subjected to 100% of the natural radiation inside the 

greenhouse (from an average of 275.5 Wm-2 for spring/summer seasons to an average of 

138.5 Wm-2 for autumn and winter) (www.cge.uevora.pt). The seedling growth was 

observed for 1 year (the time period that tap roots of the control treatment (no compaction) 

needed to reach the end of the tubes); during this period, irrigation was provided manually 

with 100 ml of water and was repeated every 48 hours. No fertilization or pesticide 

products were used in this experiment.  

 

Figure 1. Schematic view of the experiment. 
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4.3.2 Data collection  

 

To evaluate the soil strength applied for this experiment, we used a penetrometer 

(Penetrologger, Eijkelkamp, Agrisearch Equipment) equipped with a conical steel probe 

(cone top angle 60° with a base area of 1cm2). During the destruction process, 4 

compacted soil samples (2 for each treatment, between a 60-70cm depth for C1 and 

between a 30-40cm depth for C2) and 2 non-compacted soil samples (between a 30-50cm 

depth) were collected randomly for bulk density analysis. For this purpose, we used 

cylindrical metallic samplers (with a diameter of 5 cm and a width of 3 cm). By evaluating 

the bulk density, we obtained results of 1.66 g cm-³ for the non-compacted soil (treatment 

C0), with a penetrometer resistance of approximately 0.01 MPa, and 1.73 g cm-³ of bulk 

density for compacted layers of the soil (presented in C1 and C2 treatments), with a 

penetrometer resistance of 1.37 MPa. The low differences in the bulk densities between 

non-compacted and compacted soil can be related to the process of compaction that only 

had an effect on a thin layer of a few centimeters and that was difficult to sample by the 

method referred (missing the compacted layer).  

After the bulk densities analysis, the fine roots that were collected by the cylindrical 

samplers were integrated with the others from the original sample for biomass, length, 

area and volume analysis. For each sample, the leaves, branches and stem were separated 

for an analysis of the aboveground part and the tap root and fine roots for an analysis of 

the belowground part (Figure 2). 
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 Figure 2. Destruction process resulting in the separation of leaves, branches and stem, tap root and fine 

roots.  

 

The height, length and area of the branches and stem were measured. For the fresh leaves, 

the number of leaves and leaf area were also evaluated using scanned images (with 254 

dpi resolution) and ImageJ software. The stem and branches were dried at 103ºC and the 

leaves at 75ºC for 48 hours, and the dry mass was found, thus obtaining the biomass of 

the components. The belowground part was divided into segments of 10 cm depths, in 

which the fine roots (diameter less than 2mm) and coarse roots (diameter higher than 2 

mm) were separated, which, for all cases, corresponded to the tap root structure. The fine 

root area, for each 10cm of depth, was measured through scanned images with a 400 dpi 

resolution and ImageJ. For both the tap root and fine roots, dry weights were taken after 

48 hours of drying in an oven at 103ºC, thus obtaining the respective biomass. The 

variables collected were stem height (SH) and biomass (SB); branch length (BL) and 

biomass (BrB); leaf area (LA), biomass (LB) and leaves number (LN); aboveground 

biomass (AB) and area (AA); tap root length (TRL), biomass (TRB) and number (TRN); 

fine roots biomass (FRB) and length (FRL); and belowground biomass (BB) and area 

(BA). 
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4.3.3 Data analysis 

 

The soil was analyzed in the laboratory for texture using the SediGraph 5100 equipment; 

the organic carbon and organic matter were evaluated using the Leico Carbon Analyser 

(SC-144DR); humidity, pH[H2O](1:2) and bulk density. The soil bulk density was 

calculated as the ratio of soil dry mass to soil volume (g cm-3).  

From the data obtained, the following parameters were determined and analyzed: specific 

leaf area (SLA), as the ratio between the leaf area, and leaf biomass (cm2 g-1); specific 

root length (SRL), as the ratio between the fine root length and fine root biomass (cm g -

1); total biomass (TB), as the sum of all tree components’ biomass (g); shoot:root ratio 

(S:R), as the ratio between the aboveground and belowground biomass; fine roots 

belowground biomass ratio (FRB:BB); fine root length leaf area ratio (FRL:LA) (cm cm-

2); and fine roots length total biomass ratio (FRL:TB) (cm g-1). 

For the statistical analysis, we used the SPSS software (version 20.0, SPSS Inc., Chicago, 

IL). Because of non-normality (Shapiro-Wilk) and non-homocedasticity (Levene’s test), 

we applied the Kruskal-Wallis test for K independent samples to verify the statistically 

significant differences among treatments. 

 

 

4.4 Results 

 

4.4.1 Effect of compaction on growth and allocation  

 

Soil compaction had a clear negative influence on every evaluated variable (Table 1). The 

stem and branch biomass decreased by 35 and 55%, respectively. The leaf biomass was 

also negatively affected. The total aboveground biomass produced in compacted soils was 

33% lower than the one produced in non-compacted soil. The leaf area and aboveground 

area were also affected by this factor and decreased by almost 30%. The difference 

between the C1 and C2 treatments for these parameters was small and statistically 

insignificant. However, the degree of this influence should be studied more thoroughly. 
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Table 1 – Aboveground part evaluation of cork oak seedlings developed under different depths of soil 

compaction. 

 

Variable 

Compaction treatments 

H  0cm (C0) 60cm (C1) 30cm (C2) 

Biomass 

SB (g) 9.51±0.98a 6.04±1.04ab 6.18±0.60b 7.123* 

BrB (g) 6.26±0.54a 4.68±0.89ab 3.42±0.56b 9.357** 

LB (g) 9.32±0.74a 6.53±0.98ab 6.96±0.49b 9.654** 

AB (g) 25.10±0.74a 17.25±2.63ab 16.56±1.06b 13.397** 

Area 

LA (cm2) 717.50±65.36a 493.70±71.08ab 509.62±38.93b 7.800* 

AA (cm2) 802.15±68.98a 553.47±79.68ab 575.02±42.46b 8.342* 

SLA (cm2 g-1) 76.33±2.00 77.10±2.32 72.75±1.30 2.055 

 SH (cm) 75.14± 3.54 66.30± 6.86 68.77±3.14 2.333 

 BL (cm) 273.33±33.27 168.65±27.07 180.78±24.22 0.067 

 LN 379.07±44.21 260.90±36.91 300.54±36.86 3.175 

Mean±SE. n=45. SB, stem biomass (g), BrB, branches biomass, LB, leaves biomass, AB, aboveground biomass, LA, leaves area, 

SLA, specific leaf area, AA, aboveground area, SH, steam height, BL, branches length, LN, number of leaves. H-values for Kruskal-

Wallis test. * Significant at 0.05 level, **at 0.01 level. Means with different letters are significantly different (P<0.05).  

 

 

The results of belowground biomass production (Table 2) were similar to those in 

aboveground biomass production. The belowground biomass lost more than 40% of the 

potential growth compared to non-compacted soil. The tap root area was reduced by 42%. 

Compaction at 60cm (C1) had a negative impact on the length per unit of mass (specific 

root length, SRL) response. 

Compaction significantly reduced the total biomass (TB) by 36 and 39% for C1 and C2, 

respectively (Table 3). In spite of not being statistically significant between treatments, 

the results obtained for the shoot:root ratio (S:R) (Table 3) demonstrated that, during 

earlier stages, cork oak seedlings allocate more energy to belowground plant tissue 

compared with the aboveground organ production (Figure 1). However, for the fine roots 

belowground biomass ratio (FRB:BB), it was possible to verify the significant effect of 

compaction at 60cm (C1) compared with the no compaction treatment.  
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Table 2 – Belowground part evaluation of cork oaks seedlings developed under different 

depths of soil compaction. 

 

Variable 
Compaction treatments 

H 
  0cm (C0) 60cm (C1)  30cm (C2) 

Biomass 

TRB (g) 39.86±3.33a 20.93±3.57b 21.67±1.30b 17.011** 

FRB (g) 2.94±0.52 3.03±0.55 2.93±0.44 0.044 

BB (g) 42.80±3.33a 23.96±3.74b 24.60±1.56b 18.295** 

Area 

TRA (cm2) 65.68±7.58a 48.49±7.15ab 38.24±2.48b 6.532* 

FRA (cm2) 191.46±22.95 156.70±27.27 175.00±23.48 1.541 

BA (cm2) 257.14±28.31 205.19±31.65 213.24±24.56 1.954 

Length 

TRL (cm) 93.07±0.75a 63.80±1.39b 43.46±1.15c 32.985** 

FRL (cm) 202.89±24.35 163.58±26.27 185.42±24.90 1.541 

SRL (cm g-1) 76.30±4.80a 57.04±4.33b 66.80±3.68ab 6.828** 

 TRN 2.86±0.61 2.10±0.31 1.85±0.15 0.643 

Mean ±SE. n=45. TRB, tap root biomass, FRB, fine root biomass, BB, belowground biomass, TRA, tap root area, FRA, fine root area, 

BA, belowground area, TRL, tap root length, FRL, fine root length, SRL, specific root length, TRN, number of tap roots. H-values 

for Kruskal-Wallis test. * Significant at 0.05 level, **at 0.01 level. Means with different letters are significantly different (P<0.05).  

 

 

 

 

Table 3 – Evaluation of plant functionality variables. 

Variable 
Compaction treatments 

H 
 0cm (C0) 60cm (C1) 30cm (C2) 

TB (g) 67.90±4.87a 43.18±5.87b 41.16±2.45b 17.605** 

S:R 0.65±0.07 0.74±0.09 0.68±0.04 4.488 

FRB:BB 0.08±0.15a 0.15±0.34b 0.12±0.01ab 6.866* 

FRL:LA (cm cm-2) 0.29±0.03 0.35±0.42 0.36±0.34 2.322 

FRL:TB (cm g-1) 3.08±0.35 4.49±0.77 4.38±0.44 5.235 

Mean ±SE. n=45. TB, total biomass, S:R, shoot:root biomass ratio (no units), FRL:LA, fine root length leaf area ratio, FRL:TB, fine 

root length total biomass ratio. H-values for Kruskal-Wallis test. * Significant at 0.05 level, **at 0.01 level. Means with different 

letters are significantly different (P<0.05).  
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Figure 1 – Effects of the treatments on the stem, aboveground and belowground biomass (g) of cork oak 

seedlings. Mean biomass ± SE. 

 

 

 

4.4.2 Depth distribution of the fine roots  

 

The distribution of fine roots through the profile depth was clearly influenced by 

compaction (Figure 2). Figure 2 shows a decrease in fine roots below the compacted 

layers of the respective treatment, as we hypothesized. For non-compacted treatment, we 

verified that the seedling strategy was to produce and spread fine roots for all of the soil 

interval layers. Higher values of the fine root biomass were observed in the deepest layers 

(80-90cm and 90-93cm), representing 19 and 16% of the total biomass evaluated for this 

treatment, respectively. For compaction at a depth of 60cm (C1), higher values, each 

representing 17.2% of the total biomass evaluated, were observed on 50-60 and 60-70cm 

layers. In compaction at 30cm, higher values were observed in the 10-20cm layer, where 

22.4% of the belowground biomass occurred. 
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Figure 2 – Distribution of the fine roots biomass (g) in depth (cm). Treatments: a) C0; b) C1; and c) C2. 

Mean biomass ± SE. 

 

 

4.5 Discussion 

Cork oak seedling growth was evaluated in this work. Souch et al. (2004) state that this 

can be the most sensitive stage because the young roots, of slight thickness, have to 

colonize the soil and have to overcome the soil resistance. In this work, to diminish the 

possible noise in the experimental results, promoted by variations in seedlings, we 
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decided to germinate acorns from one single tree and with similar length and weight. As 

far as we know, there has not been any study on these compaction levels for cork oak 

stands in Portugal; however, there are some studies available in Spain. Soil compaction 

levels from 0.9 to 3.4 MPa were found by Perez-Ramos et al. (2010) in a Quercus forest 

in SW Spain and from 0.14 to 4.2 MPa by Quero et al. (2008) in a Mediterranean forest 

in Granada (SW Spain). Alameda et al. (2009) evaluated Quercus species under a range 

of 0.14 to 1.16 MPa. As we hypothesized, the tap root length of cork oak seedlings are 

constrained by soil compaction (Table 2). As observed here for Quercus suber, a 

reduction in the rooting depth in compacted soils has also been reported by Perez-Ramos 

et al. (2010). The same growth behavior was also verified for other Quercus species [(Q. 

ilex (Cubera et al., 2009) and Q. pyrenaica seedlings (Bejarano et al., 2010)]. Whalley et 

al. (1995) showed that root growth in many plants is restricted above a soil penetration 

resistance of 2 MPa. Bejarano et al. (2010) found that the length of the main root in 

seedlings grown in a soil compacted to approximately 3 MPa was approximately 50% 

smaller than in less compacted soil. In our case, 1.37 MPa was the soil mechanical 

resistance limit that stopped vertical growth. According to Cubera et al. (2012), cork oak 

will develop deeper root systems in the absence of root impedance, probably as would 

other oak species. 

For total seedling root system evaluation, in terms of biomass, we confirmed that 

compaction has a negative effect (Table 2). This is in line with the results of Chirino et 

al. (2008), specifically for a depth of 30cm. Our findings are also similar to those of 

Cubera et al. (2009), who reported reduced root development and, consequently, reduced 

aboveground plant growth. With our study, it was also possible to confirm that the 

strategy of the fine root distribution in the depth due to compaction is to decrease the 

volume of soil exploited per unit biomass (lower SRL), promoting the construction of 

thicker roots or roots with more tissue density. Alameda & Villar (2012) also observed 

this strategy in their work. As in the results for tap root evaluation, the decrease of fine 

roots below 10cm of the compacted layers was noticeable (Figure 2). Arvidsson (1999) 

showed that decreased small pore space can be positive by facilitating root-soil contact, 

thus promoting better water and nutrient absorption. In our study, we verified that 

seedlings established the same amount of fine roots, but only where the production costs 

can be balanced with the benefits, increasing access to water and nutrients. Our second 
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hypothesis was also confirmed; fine roots have more difficulty penetrating small pore 

spaces when presented in compacted soils with a mechanical resistance of 1.37MPa.  

For aboveground plant tissue, our results (Table 1) show that the stem biomass, branches 

biomass, leaf area, leaf biomass, aboveground area and biomass of the seedlings subjected 

to soil compaction at a depth of 30 cm significantly decreased when compared with non-

compacted soils. Perez-Ramos et al. (2010) also observed an exponential reduction of the 

total leaf area for Quercus canariensis. Because of that effect, photosynthesis can be 

compromised. Despite that, for some variables calculated for plant allocation, the results 

show that no significant differences were found (Table 3). It was possible to evaluate that 

soil compaction at different depths had a negative effect on the total tree biomass, and the 

fine roots belowground biomass ratio was affected by this soil factor. As the fine root 

length per unit of the leaf area presented no significant differences, we can probably 

assume that, at least for this experiment, the water and nutrient requirements for the 

development of seedling structures must have been met despite the reduced root length 

observed, similar to findings reported by Bejarano et al. (2010). The results of this study 

are not statistically significant between treatments, probably because of the short 

experiment time, and demonstrate that for biomass allocation, cork oak seedlings invest 

more energy in roots formation, than with aboveground plant tissues, in this stage. This 

is consistent with findings by Chirino et al. (2008) when they referred that one of the 

main strategies of this species is to develop a deep tap root during the early stages of plant 

development. Yet, we can also assume that compaction effect, at seedling stage, will 

compromise the adult tree stabilization, in sandy loam soils, limiting the tap root fixation 

at major depths. Lloret et al. (1999) in Alameda et al. (2009) referred that this effect will 

also determine that, in situations of water deficit (such as Mediterranean case), plants with 

a lower root development may suffer drought more severely and, therefore, and it could 

seriously limit seedling survival.  

Perez-Ramos et al. (2010) in their work, defended that acorn mass is responsible for most 

of the growth and morphological variables during the first year and hence, soil factors did 

not play an important role in seedling growth during this stage. However, our results 

demonstrate that for the same acorn mass (no significant mean differences were observed 

between treatments) cork oak seedling growth is affected by soil compaction. This 

reinforces our thesis of relating soil compaction with the lack of natural regeneration in 
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Mediterranean typical soil types (especially Podzols soils) as a reduced length of tap root 

in earlier stages of growth. Therefore, it will compromise the mature cork oaks survival 

by limiting not only their ability to reach water in dry periods, but also to remain erect 

and anchored to the substrate. By so, the practice of silviculture should be based on a 

sufficient knowledge about the response of each species to different environmental 

conditions (Cardillo & Bernal, 2006). As far as cork oak stands are concerned, the 

possibility to break the compacted layers will allow the trees to spread their root systems 

through the entire profile depth, as it is reported by Surový et al. (2011). Soil tillage 

practices, specifically the ripper subsoiling is advised for this purpose hence improves the 

soil pore system, preventing soil structural degradation and soil losses, as results of 

Pagliai et al. (2004) demonstrate. This effect will, consequently, promote a major root 

distribution on profile depth, as a consequence of compaction soil break and an increase 

of available water for plants (Pagliai et al., 2004). More studies should be taken to 

reinforce the importance of the tillage management on cork oak seedlings and mature 

trees. Moreover, studies about tree root systems morphology, behavior and dependent 

factors are of huge emergence because it is necessary to understand and justify the better 

choice and less damageable management of Montado, promoting the maintenance of 

multifunctionality. 

 

 

 

4.6 Conclusions 

We found that compaction at different depths with a mechanical resistance of 1.37 MPa, 

limits the tap root growth of cork oak seedlings. Seedling root biomass, aboveground 

biomass and total seedling biomass are negatively affected by this factor. The effects of 

soil compaction also influence the distribution of fine roots at the profile depth, where the 

absence of these structures was verified below the compaction layer.  
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5.1 Abstract 

 

Regeneration process deals with some constrains related with the livestock management, 

pasture rotations, dependence of a sequence of favorable climatic years which can lead to 

a continuous delay in the initiation of the regeneration process which results in the late 

replacement of the young trees cohort. The main purpose of this study was to promote an 

increase of cork oak seedling growth in order to decrease the time required for 

regeneration and also to contribute to avoid the effect of post-transplant stress on cork 

oak. With this objective a study was carried out on a greenhouse, where the effect of 

fertilisation, mycorrhizal fungi inoculation and aminoacids supply were tested. Results 

show that cork oak seedling capability to growth, expressed as total seedling dry weight, 

is positively affected by treatments, except when only fertilisation was applied. We 

verified that cork oak seedlings inoculated with mycorrhizal fungi presented better results 

in terms of aerial structures growth. Any of the treatments was suitable to contribute 

positively for tap root and total belowground dry weight accumulation. Only fine roots 

structures were sensitive to treatments effects. It was verified that both inoculated and 

non-inoculated seedlings subjected to fertilisation were capable to invest largely on the 

production of these structures (33 and 30% respectively). To reinforce the cork oak 

seedlings growth, probably the equilibrium between fertilisers and mycorrhizal fungi 

inoculation is the better option to enhance the cork oak regeneration process. The balance 

between shoot and root systems growth is guaranteed, fertilisation mainly for root system 

and mycorrhizal fungi inoculation for shoot growth. This equilibrium probably will also 

promote a major efficiency on survival strategy of trees in post-stress plantation. 
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5.2 Introduction 

 

Cork oak (Quercus suber L.) tree is one of the main species of Mediterranean ecosystem 

woodlands – Montado, with a life time around 150 years. This specie has a high 

economical and environmental value. Its economic value relies on cork production which 

is renewable every 9 years. The most typical characteristic of the Portuguese Montado is 

its savanna-like physiognomy, spread throughout a large scale mosaic, with different 

densities, of cork oak (Quercus suber L.) and holm oak (Quercus rotundifolia Lam.) trees 

(Pinto-Correia et al., 2011). These typical stands are usually open areas with trees 

growing on an isolated way or associated with shrubs and/or livestock. Being the 

woodland system based on trees, it sustainability (continuous crown cover in time) is 

strongly associated with the natural or artificial trees regeneration (Ribeiro et al., 2010). 

Ribeiro et al. (2006; 2010; 2012) refer that the system resilience is based on specific stand 

structure and densities that are applied, with new trees to compensate natural rates of 

mortality, allowing the maintenance of a stable crown cover. A crown cover between 30-

70% (slope dependent) is fundamental to the woodland ecological sustainability, 

enhancing the multifunctionality of the system, promoting a protective effect on soil, 

preventing the erosion risk and improving the water and nutrient cycles (Ribeiro et al., 

2004). In the last decades it has been observed an increase on cork oak mortality and, at 

the same time, a lack of natural regeneration (Ribeiro & Surový, 2008), which is one of 

the major demands to revitalize the Montado. Regeneration process deals with some 

constrains related with the livestock management and pasture rotations but is also strongly 

dependent of a sequence of favorable climatic years (at least 10 years). The need of a 

grazing area to support the existing livestock leads to a continuous delay in the initiation 

of the regeneration process which results in the late replacement of the young trees cohort. 

In the Mediterranean environment, which is characterized by seasonal droughts, the water 

availability is also a limiting factor that is of key importance in the regeneration of oaks 

and other woody species (Aranda et al., 2007; Gakis et al., 2004). Hence, for this purpose 

it is necessary to understand the strategy of root growth according to the soil 

environmental matrix. In result of the difficulty to access root system of mature trees the 

studies have been relying in experiments with seedlings and young trees (Jonsson et al., 

2001; Gogorcena et al., 2001; Rached-Kanouni et al., 2012). The seedling stage is an 
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important and usually critical phase in the regeneration of woody species under natural 

conditions since the effect of environmental stress is very high at this stage. Seedlings 

establishment can be reinforced by some external and internal factors such as light 

protection, soil water capacity and strategy to drought tolerance, which will be reflected 

in tree biomass partitioning.  

Seedling fertilization is refereed as being relevant in Mediterranean areas influencing 

seedling resistance to drought (Singh & Sale, 2000; Trubat et al., 2006) by the increase 

of N and P availability (Sabaté & Gracia, 1994; Sardans et al., 2004). Trubat et al. (2010) 

results show that above and belowground cork oak biomass accumulations are reduced 

by low nutrient availability. Aminoacids are fundamental ingredients, influencing directly 

or indirectly the physiological activities of the plant (protein synthesis, plant growth, 

photosynthesis, nutrients absorption). Under drought conditions they help the plant to 

sustain cellular functions and adjust the osmotic process (Khattab et al., 2012). When 

incorporated into the soil contribute to improve the soil microflora thereby facilitating the 

assimilation of nutrients. 

The need to evaluate the success of seedling establishment and also tree transplanting has 

led the research to complementary studies about the role of mycorrhizal symbiosis. 

Ectomycorrhizal (ECM) fungal species and fungi networks are mediators between soil 

processes and plant community, by enhancing nutrient uptake, drought tolerance, and 

pathogen resistance of their hosts, thus influencing seedling establishment, plant 

diversity, and vegetation community dynamics (Azul et al., 2010; Futai et al., 2008). 

Smith and Read (1997) point out that mycorrhizal symbiosis is essential for oak trees 

because it promotes water and nutrients uptake under natural conditions in result of a 

higher absorption surface area. According to Taylor and Alexander (2005) the ECM 

communities contain a high diversity of fungal tax, which are associated with a variety of 

strategies that contribute to the functioning and stability of the forest ecosystem. The 

Mediterranean oaks and specifically cork oak have been shown to be associated with a 

wide range of ectomycorrhizal fungi (ECM) (Ortega and Lorite, 2007). By so the 

importance of ECM symbiosis in cork oak seedlings establishment should be taken into 

account (Mousain et al., 2009; Aronson et al., 2009). Garbaye and Guehl (1997) also refer 

that mycorrhizal fungi are more efficient than roots in extracting water at very low soil 
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water potential. Under the Mediterranean climatic conditions this will probably contribute 

to a major regularity of water absorption during the summer drought season.  

These facts lead to the present study, which focuses on the increase of seedling growth in 

order to decrease the time required for regeneration. With this objective a study was 

carried out where the effect of fertilization, induction of mycorrhizal fungi and 

aminoacids application were tested on performance of above and belowground systems 

of the cork oak seedlings. The results of this study will contribute choosing the better 

treatment that should be applied to reduce the time for seedlings regeneration process and 

also contribute to avoid the effect of post-transplant stress of cork oak.  

 

 

 

5.3 Material and Methods 

 

5.3.1 Plant material and growing conditions 

 

The present study was carried out in a pot experiment in a greenhouse at Mitra’s campus 

from University of Évora, in South Portugal. Cork oaks seedlings with one year old were 

transplanted into individual 30cm height x 27cm Ø plastic containers, filled with a 

Cambissol/Podzol soil collected in the 10-30cm layer. The soil was sieved through a 5mm 

mesh sieve and a bulk density of 1.66g cm-3 was then achieved. The soil characteristics 

are described in Table 1.  

 

Table 1. Soil characteristics. 

Organic matter 

(%) 

pH 

[H2O] 

NO3 

(mg Kg-1) 

K2O 

(mg Kg-1) 

P2O5 

(mg Kg-1) 

0.58 4.86 38 34 16 
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The temperature inside the greenhouse ranged from 31ºC and 9ºC and air humidity was 

50%. The plants were subjected to global radiation inside the greenhouse (≃275.5 Wm-2 

for spring/summer and ≃138.5 Wm-2 for autumn and winter seasons) 

(www.cge.uevora.pt).  

 

 

 

 

5.3.2 Experimental design 

 

Five treatments, including control, were arranged in a randomized complete block design 

with four replications. Treatments applied were: control (C); fertilization (F); fertilization 

+ mycorrhizal fungi (FM); fertilization + aminoacids (FA); and fertilization + aminoacids 

+ mycorrhizal fungi (FAM). Considering that there were 9 seedlings per treatment and 

replication, a total of 180 seedlings were used in this study. 

Prior to transplanting each container was fertilized with 30 mg N, 10 mg NO3
-, 20 mg 

NH4
+, 60 mg P2O5, 125 mg K2O, 12.5 mg MgO, 0.15 mg B, 0.05 mg Cu, 0.1 mg Mn and 

0.15 mg Zn. For treatments with fertilization were also applied 8.3 mg N, 3.7 mg P2O5, 

16.0 mg K2O, 8.1 mg CaO, 4 mg MgO, 7.8 mg SO3
-, 0.5x10-2 mg B, 0.4x10-2 mg Cu, 

0.1x10-2 mg Fe, 2x10-2 mg Mn and 0.1x10-2 mg Zn through irrigation water, at each 

application. For FM and FAM treatments a commercial mixture of mycorrhizal fungi 

(ECTOVIT by Symbiom Ltd (www.symbiom.com)) was applied, according instructions, 

during the transplanting process. The mixture is compound by 4 strains of mycorrhizal 

fungi on a liquid medium and 2 strains of mycorrhizal fungi on a peat-based carrier with 

ingredients supporting the development of mycorrhiza (humates, ground materials, 

extracts from sea organisms), naturally degradable granules of a water-retaining gel. The 

ECM species are Cenococcum geophilum, Hebeloma sinapizans, H. crustiliforme, 

Pisolithus tinctorius, Amanita rubescens and Tricholoma acerbum.   

FA and FAM seedlings were also subjected at each irrigation to a supply of 0.19 g of 

aminoacids and 0.47 g of vegetable organic matter dissolved in the water. The control 

treatment (C) was only subject to irrigation. Irrigation consisted of 0.5 L of water applied 

per container at each 10 days along the 18 months of the experiment.  
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5.3.3 Data collection 

 

After 18 months all seedlings were handled under laboratory conditions for data 

collection. For each seedling, height (H) was registered. Each of the 180 seedlings was 

subjected to aerial components separation (leaves, branches and stem) and each 

component was labelled and preserved in a cold environment (5ºC). The root systems 

were carefully washed out of soil and fine roots (Ø <2 mm) were removed from tap root. 

In order to get the remaining fine roots, the entire soil volume of each container was 

sieved through a sieve of 1mm mesh and fine roots were manually collected and stored 

in a water and alcohol solution at 5ºC.  

For each sample (individual seedling), fresh leaves, branches + stems and tap roots were 

scanned using a HP Scanjet 4850 scanner. For the analysis of scanned images the ImageJ 

software was used to calculate the superficial areas occupied by these structures, meaning 

leaf area (LA), wood area (WA) and tap root area (TRA). After the scanning process, 

branches + stems and tap roots were dried at 103º and leaves at 75ºC during 48 hours, and 

dry weight was obtained as leaf dry weight (LDw), wood dry weight (WDw) and tap root 

dry weight (TRDw). The seedlings growth was also analyzed as aboveground dry weight 

(ADw), aboveground area (AA), belowground dry weight (BDw) and belowground area 

(BA) and total seedling dry weight (SDw). 

Fresh fine roots were spread on a water-filled transparent plastic tray and scanned with a 

transmitting light scanner (EPSON Expression 10000XL 3.4). The images were analyzed 

with WinRhizo Reg 2009.Total fine root length (FRL) and fine root areas (FRA) were 

obtained. After image analysis fine roots were dried at 103ºC during 48 hours, for dry 

weight (FRDw). 

Additionally, to evaluate the biomass allocation and seedlings growth the following 

parameters were calculated: 

 

𝑅𝑜𝑜𝑡: 𝑠ℎ𝑜𝑜𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 

𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 
  (adimensional) 
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𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑖𝑛𝑒 𝑟𝑜𝑜𝑡𝑠 =
𝐹𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 

𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 
 × 100  (%) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑅𝑜𝑜𝑡 𝐿𝑒𝑛𝑔𝑡𝒽(𝑆𝑅𝐿)  =
𝐹𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 

𝐹𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 
  (cm g-1) 

 

𝑅𝑜𝑜𝑡 𝐿𝑒𝑛𝑔𝑡ℎ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑅𝐿𝐷)  =
𝐹𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙
  (cm cm-3) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐿𝑒𝑎𝑓 𝐴𝑟𝑒𝑎 (𝑆𝐿𝐴)  =
𝐿𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 

𝐿𝑒𝑎𝑓 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 
  (cm2 g-1) 

 

𝐹𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑎𝑟𝑒𝑎: 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 𝑟𝑎𝑡𝑖𝑜 =
𝐹𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑎𝑟𝑒𝑎 

𝐿𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 
 (adimensional) 

 

𝑅𝑜𝑜𝑡 𝑙𝑒𝑛𝑔𝑡ℎ: 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑟𝑎𝑡𝑖𝑜 (𝑅𝐿𝑅) =
𝐹𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 
  (cm g-1) 

 

𝐿𝑒𝑎𝑓 𝑎𝑟𝑒𝑎: 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑟𝑎𝑡𝑖𝑜 (𝐿𝐴𝑅) =
𝐿𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 
  (cm2 g-1) 

 

 

 

 

5.3.4 Statistical analysis 

 

Data were analyzed using SPSS software (version 20.0, SPSS Inc., Chicago, IL). 

Distribution was tested for normality by Kolmogorov-Smirnov criterion and homogeneity 

of variances tested by Levene’s test. Significant differences between treatment means 

were tested using analysis of variance (one-way ANOVA). Means were separated at 5% 

level using Fisher's least significant difference (LSD) test.  
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5.4 Results 

 

The effect of treatments on seedlings growth (seedlings height and dry weight) is shown 

on Table 2. Seedlings height and dry weight are only significantly affected when 

fertilisation is associated with mycorrhizal fungi (FM) and aminoacids application (FA), 

with a significant increase in seedling height of 54.53 cm and 56.54 cm/seedling, 

respectively. For total seedling dry weight the major increase (46%) was also obtained 

for treatment with fertilization+aminoacids+mycorrhizal fungi (FAM). 

Mycorrhizal fungi treatments (FM and FAM) also increased leaf and wood dry weight. 

The highest values were observed for FMA seedlings, with increases of 108% for 

aboveground, 81% for leaves and 146% for wood. Although the highest growth expressed 

through dry weight for aboveground structures is verified on treatments subjected to 

mycorrhizal inoculation, it is not directly related to a higher root dry weight. For 

belowground dry weight and tap root dry weight (Table 2) no significant effect from 

treatments compared to control was verified. However it was observed a significant 

positive effect of FM and FA treatments in fine root dry weight (9.44 g/seedling). When 

the percentage of fine roots on the entire root system (Figure1) was analyzed it was 

verified that treatments F and FM present the highest percentages (30% and 33% 

respectively). 

For growth evaluation expressed through area the effect of treatments are shown on Table 

3. Treatments where mycorrhizal fungi were present increased significantly the area of 

aboveground (AA) and leaves (LA) in relation to control and fertilisation. The treatment 

where mycorrhizal fungi were associated with aminoacids (FAM) presented the best 

results for these parameters. Increases of 75% in aboveground area, 71% in leaf area and 

149% in wood area were verified (Table 3). Root system area (BA) and fine roots surface 

area (FRA) were positively affected by all treatments. However tap root area was only 

affected by fertilisation and fertilisation with aminoacids. The highest increases for tap 

root, fine root and belowground areas were verified in FA (34%, 44.3% and 44.1%, 

respectively).   
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Table 2. Effect of treatment on seedlings height and dry weight (leaf, wood, aboveground, tap root, fine root, belowground and total seedling). 

Treatment 

 

Height 

(cm) 
 

Dry weight (g/seedling) 

Leaf 

(LDw) 

Wood 

(WDw) 

Aboveground 

(ADw) 
 

Tap root 

(TRDw) 

Fine root 

(FRDw) 

Belowground 

(BDw) 
 

Total 

Seedling 

(SDw) 

C  44.58c  12.85cb 9.06d 21.91cb  26.28ab 7.02b 33.30ab  55.21c 

F  47.90bc  14.79cb 10.94cd 25.72cb  27.28ab 9.08ab 35.35ab  61.07bc 

FM  54.53ab  21.34a 18.22b 39.57a  22.94b 9.44a 31.75b  71.31ab 

FA  56.54a  16.04c 12.66c 28.70c  30.16a 9.44a 39.60a  68.29b 

FAM  51.72abc 

 

23.27a 22.32a 45.59a  27.73ab 7.50ab 35.23ab  80.82a 

F  3.165* 29.255** 24.038** 37.106**  3.501** 4.446** 31.530**  10.188** 

P-value  0.015 0.000 0.000 0.000  0.009 0.002 0.000  0.003 

Mean. n=180. F-values for ANOVA test. ns. No significant, * Significant at 0.05 level, **at 0.01 level. Means with different letters are significantly different (P<0.05).  

C, control; F, fertilisation treatment; FM, fertilisation + mycorrhizal fungi treatment; FA, fertilisation+aminoacids treatment; FAM, fertilisation+aminoacids+mycorrhizal fungi treatment. 
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Figure 1. Effect of treatment on fine root dry weight to total root dry weight percentage. Means with 

different letters are significantly different (P=0.00). n=180. C, control; F, fertilisation; FM, fertilisation + mycorrhizal 

fungi; FA, fertilisation+aminoacids; FAM, fertilisaation+aminoacids+mycorrhizal fungi. 

 

 

Fine root length (FRL) (Table 3) and specific root length (SRL) (Table 4) are significantly 

affected by F, FM and FA treatments. Fertilisation treatment (F) presented the highest 

values for the abovementioned parameters. Increases of 58% for FRL and 37% for SRL 

were obtained. Concerning to fine root volume which is also directly related to fine root 

functions, mainly to water and nutrient transport capacity, it was verified that all 

treatments affected positively this parameter (Table 3) with mycorrhizal fungi treatment 

presenting the highest increase (42%). For specific leaf area parameter none of the 

treatments promoted significant effects.  

The root:shoot dry weight ratio was also affected by all treatments (Figure 2). Yet, it is 

verified that seedlings grown within associations of mycorrhizal fungi (FM) and 

mycorrhizal fungi+aminoacids (FAM) allocate less biomass to roots (p<0.001). These 

results allow assuming that production of aerial structures (leaves, branches and stems) is 

highly reinforced by the root symbiosis with mycorrhizae.  
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Table 3. Effect of treatment on seedlings area (tap root, fine roots, belowground, leaf, wood and aboveground). 

Treatment 

Area (cm2) Fine root 

Length 

(FRL) 

(cm) 

Fine Root 

Volume 

(FRV) 

(cm3) 
Leaf 

(LA) 

Wood 

(WA) 

Aboveground 

(AA) 

 
Tap root 

(TRA) 

Fine root 

 surface area 

(FRA) 

Belowground 

(BA) 

C 1102.40b 58.37d 1160.77b  48.54c 1704.57b 1753.12b 9537.53c 25.18b 

F 1252.73b 66.42dc 1319.15b  61.07ab 2413.17a 2474.24a 15062.90a 32.02a 

FM 1867.77a 117.42b 1985.19a  53.54bc 2364.53a 2418.07a 13057.25ab 35.82a 

FA 1397.35b 80.20c 1477.55b  66.46a 2461.14a 2527.60a 13385.92a 35.42a 

FAM 1886.32a 145.34a 2031.66a  55.20bc 2178.68a 2233.88a 10849.42bc 33.58a 

F 10.265** 26.443** 11.412**  3.842** 4.255** 4.347** 6.083** 3.745** 

P-value 0.000 0.000 0.000  0.005 0.003 0.002 0.000 0.006 

Mean. N=180. F-values for ANOVA test. ns. No significant, ** Significant at 0.01 level. Means with different letters are significantly different (P<0.05). C, control; F, fertilisation; FM, fertilisation + mycorrhizal     

fungi; FA fertilisation+aminoacids; FAM, fertilisation+aminoacids+mycorrhizal fungi. 
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Table 4. Effect of treatment on parameters used to evaluate the seedlings growth (specific root length and 

specific leaf area).  

Treatment 

Specific Root 

Length 

(SRL) 

(cm g-1) 

Specific Leaf  

Area 

(SLA) 

(cm2 g-1) 

C 1395.96c 84.89 

F 1917.48a 84.14 

FM 1474.16ab 86.00 

FA 1514.97a 85.96 

FAM 1486.24bc 78.82 

F 3.323* 4.98n.s. 

P-value 0.012  

Mean. n=180. F-values for ANOVA test. ns. No significant, * Significant at 0.05 level, ** Significant at 0.01 level. Means with different 

letters are significantly different (P<0.05).  C, control; F, fertilisation; FM, fertilisation + mycorrhizal fungi; FA, 

fertilisation+aminoacids; FAM, fertilisation+aminoacids+mycorrhizal fungi. 

 

 

 
Figure 2. Effect of treatment on root:shoot dry weight ratio. Means with different letters are significantly 

different (P=0.00). n=180. C, control; F, fertilisation; FM, fertilisation + mycorrhizal fungi; FA, fertilisation+aminoacids; 

FAM, fertilisation+aminoacids+mycorrhizal fungi. 
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The data for the two parameters calculated to evaluate the capability of seedlings to 

acquire belowground and aboveground resources, RLR and LAR, are presented in 

Figures 3 and 4.  

 

 
Figure 3. Fine root length per seedling biomass ratio (cm g-1). Means with different letters are 

significantly different (P=0.000). n=180. C, control; F, fertilisation; FM, fertilisation + mycorrhizal fungi; FA, 

fertilisation+aminoacids; FAM, fertilisation+aminoacids+mycorrhizal fungi. 

 

 

 
Figure 4. Leaf area per seedling biomass ratio (cm2 g-1). Means with different letters are significantly 

different (P=0.011). n=180. C, control; F, fertilisation; FM, fertilisation + mycorrhizal fungi; FA, fertilisation+aminoacids; 

FAM, fertilisation+aminoacids+mycorrhizal fungi. 
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Compared to control, fertilization treatment (F) is the only treatment affecting positively 

root length per seedling dry weight (RLR) (Figure 3). A mean value of ≃284 cm g-1, 

reporting an increase of 59%, was verified. Although not significant, the treatment 

subjected to fertilisers, mycorrhizal fungi and aminoacids (FAM) presented a decrease of 

about 23% when compared to control. For leaf area per seedling dry weight (LAR) 

(Figure 4) only mycorrhizal fungi treatment (FM) affected positively this parameter. 

Carbon investments expressed through exchange surfaces between leaf/atmosphere and 

soil/root interactions (FRA:LA ratio) (Figure 5) was only significantly affected by 

fertilization. Is important to point out that FMA treatment presented a decrease of 19% 

compared with control, probably due to the higher leaf production verified on this 

treatment. 

 

 

 

Figure 5. Fine root surface area leaf area ratio. Means with different letters are significantly different 

(P=0.000). n=180. C, control; F, fertilisation; FM, fertilisation + mycorrhizal fungi; FA, fertilisation+aminoacids; FAM, 

fertilisation+aminoacids+mycorrhizal fungi. 
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5.5 Discussion 

 

For discussion, due to the fact that there is no extensive literature dealing with cork oak 

species, it was decided to make a more functional approach. This study shows that 

seedling capability to growth, expressed as total seedling dry weight (SDw), is positively 

affected by treatments, except when only fertilisation was applied (F). The most effective 

treatment concerning to seedlings growth was composed by fertilisers, mycorrhizal fungi 

inoculation and aminoacids (FAM), justified by the 46% increase on SDw. The other 

results of morphological parameters as leaves, wood and aboveground dry weight (Table 

2) and area (Table 3) reinforce this positive effect of FMA treatment on 2 ½ years-old 

cork oak seedlings growth. The second higher production of aerial organs expressed, in 

terms of dry weight and area, was observed for the inoculated seedlings subjected to 

fertilisation (FM). As hypothesized, mycorrhizal inoculation promoted a higher growth 

of aerial structures of cork oak seedlings which is in agreement with Moussain et al. 

(2009) and Sebastiana et al. (2013) works. Moussain et al. (2009) observed significant 

aboveground biomass increments of 18 months-old cork oak seedlings inoculated with an 

ECM fungi; Pisolithus arrhizus. Through their study they also verified an increase in 

water use efficiency of these seedlings during the first two growing seasons. In the case 

of Sebastiana et al. (2013) they evaluated the effect of Pisolithus tinctorius inoculation 

on shoot systems of nursery cork oak seedlings. Again, the positive effect of mycorrhizal 

fungi innoculation in seedlings growth was verified mainly through a significant increase 

in leaf area and dry weight. Our results are also in accordance with results observed for 

other tree species (e.g., Diagnea et al., 2013 for Acacia mangnium seedlings and Wu et 

al., 2011 for peach seedlings). However in our study, data for aboveground evaluation 

showed no significant differences between inoculated and fertilised seedlings (FM) and 

inoculated and fertilised seedlings subjected to a supply of aminoacids (FAM). This 

indicates that the effect of aminoacids supply, to facilitate the nutrients assimilation, is 

not relevant for the growth rate increase of cork oak seedlings, at least until the 30 months-

old. 

Taking into account that all treatments applied in this study where subjected to a supply 

of nutrients (N, P, K) through fertilisation, the results obtained are in with the ones 

obtained Trubat et al. (2010). In their greenhouse experiment they subjected cork oak 

seedlings of 18-months to different supplies of N, P, K and evaluated the relationship 
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between seedling morpho-functional traits and field performance of cork oak seedlings. 

They observed that aboveground accumulations were reduced by low nutrient 

availability, in cork oak seedlings. However, in our case we didn’t verified any significant 

effect on biomass parameter (expressed through dry weight) of seedlings subjected only 

to fertilizers through irrigation water (F treatment) during the 18 months growing period.  

The evaluation of cork oak seedlings root system area (BA), a morphological parameter 

which gives information about the quantity of root surface in contact with the soil, showed 

that all treatments increase significantly the root surface contact (values higher than 2200 

cm2) compared to control (1753 cm2). Yet, the application of fertilisers plus aminoacids 

proves to be the more efficient treatment to increase significantly the root surface contact. 

Results of 34% for tap root and 44% for fine roots were verified on seedlings subjected 

to this treatment. Comparing results from above and belowground system areas we 

verified that after 30 months of growth, in all treatments including control, the amount of 

root system area is higher than shoot area. However, this study indicates that any of the 

treatments was suitable to contribute positively for tap root and total belowground dry 

weight accumulation. Only fine roots structures were sensitive to treatments effects. 

Significant differences in dry weights were observed when fertilisers and aminoacids 

(FA) and fertilisers with mycorrhizal fungi (FM) were present. Equal result was obtained 

for both treatments (9.44 g/seedling). However, through the analysis of mean fine root 

distribution per seedling (Figure 1), we verified that both inoculated and non-inoculated 

seedlings subjected to fertilisation (FM and F treatments, respectively) were capable to 

invest largely on the production of these structures (33 and 30% respectively). This is an 

important issue because despite fine root biomass contributes relatively little to total tree 

biomass, fine roots are major contributors to carbon inputs because of their rapid turnover 

(Kucbel et al., 2011). In addition, for these important structures of root system we also 

verified that the abovementioned treatments and yet fertilisation plus aminoacids 

application (FA) promoted significant positive effects in fine root length (FRL) (Table 3) 

and in specific root length (SRL). SRL is considered a key factor to evaluate the amount 

of “harvesting” or absorptive tissue deployed per unit mass invested. This parameter is 

usually applied in prognoses of the capacity of root systems to changed nutrient 

availability in soils. The bigger the SRL the better is the adaptability of root systems to 

the changing environment (Zeleznik et al., 2007). By so we can assume that the 

interactions between roots/soil interface and consequently, caption and absorption of 
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nutrients are reinforced positively when F, FM and FA treatments are applied in cork oak 

seedlings. Specifically for fertilisation treatment we expected these results, hence this 

treatment only have the aid of one product and by so, needs to promote the growth in 

length of fine roots to allow a major capability to explore all the soil available, looking 

for available water and nutrients. It is noteworthy that the length of the fine roots in all 

treatments exceeded 9.5m, which shows that soil exploration capacity of cork oak 

seedlings during the first two growing seasons, is high. In contrast and although all 

treatments affected positively fine root volume non inoculated seedlings subjected to 

fertilisation presented the lower value when compared to control (32.02 cm3). This allows 

us to assume that besides application of fertilisers on cork oak seedlings promote longer 

roots (higher FRL) they are thinner than the ones from other treatments.  

According to Eissenstat and Yanai (1997) the root length is assumed to be proportional 

to resource acquisition (benefit) and the root dry weight to be proportional to construction 

and maintenance (cost). Struve et al. (2009) refer that generally higher fine root 

production present a slower growth. We disagree with the authors hence in our study 

inoculated seedlings subjected to fertilisation (FM) present also a significant growth of 

the upper system (9.44 g/seedling for FRDw and 39.57 g/seedling for ADw on FM, 

compared to 7.02 g/seedling for FRDw and 21.91g/seedling for ADw on control). Instead, 

our results are partly in accordance with Mohammadi et al. (2011). They defend that 

mycorrhizal fungi frequently stimulate plants to reduce root biomass while 

simultaneously expanding nutrient uptake capacity by extending far beyond fine root 

surfaces. Although not significantly for mean total root system dry weight of seedlings 

subjected to FM treatment we observed a decrease when compared to control (Table 3) 

but when the evaluation of fine roots was made a significant increase was observed. 

However for the inoculated seedlings subjected to fertilisation and aminoacids (FAM) a 

slightly increase was observed on root biomass, expressed through dry weight. In contrast, 

Diagnea et al. (2013) for 4 months-old Acacia mangnium seedlings observed that 

mycorrhizal fungi enhance root biomass. In our study we verified that root biomass after 

30 months-old cork oak seedlings weren’t affected by none of the treatments applied. 

More studies should focus on this subject to verify the influence of ECM inoculation on 

cork oak root seedlings by itself.  
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The relative allocation of resources to roots or shoots has been considered a key factor in 

plant strategies regarding water and it is very important for seedling performance and 

survival in the field (South, 2000; Kostopoulou et al., 2011). In our study root:shoot dry 

weight ratio (R:S) is enhanced by all the treatments tested (Figure 2). Expectedly, lower 

values of R:S, were observed for inoculated seedlings (FM and FAM). This allows us to 

assume that with these two treatments cork oak seedlings, during the first two growing 

seasons are able to transpire more water than the ones subjected to other treatments. 

Unlike us, Scagel & Linderman (1998) for douglas fir and lodgepole pine seedlings at the 

end of the first growing season and Jonsson et al. (2001) for Pinus sylvestris, found that 

inoculation with mycorrhizal fungi had little effect on this ratio. Also an increase in soil 

fertility is commonly associated with a reduction in the root:shoot ratio (Harris, 1992), 

which we confirm with our results comparing seedlings from control (1.60±0.08) with 

other treatments applied (1.36±0.07 for F, 1.41±0.05 for FA, 0.83±0.04 for FM and 

0.76±0.04 for FAM) (Figure 2). However, in this work no differences between 

fertilisation (F) and fertilisation plus aminoacids addiction (FA) were found. For a future 

field establishment of these plants we believe that fertilized inoculated seedlings will be 

better adapted to a faster growth and survival. Villar-Salvador et al. (2004) observed that 

during the first two growing seasons the field performance of holm oak (Quercus ilex) 

seedlings, previously fertilized during 10 months on nursery, was higher on seedlings 

with larger shoots and lower R:S. They verified that plants with these attributes presented 

lower mortality and grew faster in the field than those with smaller shoots and high R:S. 

As in our case, the lower R:S was due to an increase in shoot growth but not to a reduction 

in the biomass allocated to roots. This response has also been observed in other Quercus 

species suggesting that these species have a conservative pattern of root mass in response 

to variations in mineral nutrients (Villar-Salvador et al., 2004). Specific leaf area (SLA) 

being a measure of leaf thickness, is used to evaluate the drought resistance of the plants. 

An elevated SLA indicates a better adaptability to dryness environments. In a previous 

study Makita et al. (2012) investigated how colonization by different ectomycorrhizal 

fungal species affects the physiology and morphology of other Quercus specie (Quercus 

serrata) seedlings. They observed a positive effect of ECM on specific leaf area (SLA) 

in their 9-month-old Q. serrata seedlings inoculated with Pisolithus tinctorius, 

Scleroderma citrinum, Laccaria amethystea, and Astraeus hygrometricus. . We cannot 

confirm the same results for cork oak seedlings. After 30 months of growth, any effect on 
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SLA was observed in our inoculated seedlings (Table 4). However when leaf area is 

analyzed per total seedling dry weight (LAR) (Figure 4) we verified that fertilised 

inoculated treatment (FM) enhanced significantly the capacity of 30 months-old cork oak 

seedlings to acquire resources from the atmosphere. This is in conformity with results 

obtained by Merouani et al. (2005). In their work they also subjected cork oak seedlings 

to the effect of mycorrhizal fungi inoculation (with Pisolithus tinctorius) and fertilised 

them once a week, during 6 weeks, with 50±7.4 mL/seedling of NPK solution. After 18 

months growth they also observed that SLA wasn’t affected by this treatment. But, such 

as us, they observed a positive effect of this treatment on LAR parameter. Similar LAR 

results were obtained between our 30 months-old seedlings (26.13 cm2 g-1) and their 18 

months-old seedlings (29.2 cm2 g-1). On the other side, the enhancement capacity of cork 

oak seedlings to acquire resources from soil (RLR) is only sensitive to fertilisation 

through irrigation (RLR, Figure 3). Non-inoculated and fertilised seedlings (from F 

treatment) presented the better result with a mean value of 283.97 cm2 g-1. It is important 

to refer that although not significantly mean differences were obtained, a decrease on 

RLR was observed for FAM when compared to control. Yet, with this work we verified  

that during the 30 months-old growing period only non-inoculated and fertilised cork oak 

seedlings (from F treatment) presented a growth strategy more focused on root 

functioning (water and nutrients absorption) than on photosynthesis function (leaf 

atmosphere exchanges). This assumption is made based on the results of the carbon 

investments balance of cork oak seedlings, expressed through the evaluation of exchanges 

surfaces between leaf/atmosphere and soil/root interactions (Figure 5). Significant 

increase compared to control was observed when root leaf area ratio was calculated. Cork 

oak seedlings of control presented a ratio of 1.71±0.13 and for non-inoculated and 

fertilised seedlings a mean value of 12.62±7.56 was observed. However, when focusing 

on our main objective, from our understanding it is of the outmost importance to maintain 

equilibrium between shoot and root system growth preserving the success of future 

growth stages (juvenile and mature) in the field. Then, a similar carbon investment in 

both compartments of the seedling must be guaranteed. Through the results (Figure 5), 

we assume that mycorrhizal fungi inoculation with fertilisation is the treatment that better 

can promote this balance (mean value of 1.85±0.45 for this ratio). 
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5.6 Conclusions 

Conclusively, this work shows:  

 

1) Mycorrhizal fungi inoculation with fertilisation and mycorrhizal fungi inoculation with 

fertilisation plus aminoacids are the treatments which are capable to enhance greatly shoot 

production of cork oak seedlings. Mycorrhizal fungi are probably responsible for this 

effect (major aboveground biomass allocation in comparison to belowground). 

Mycorrhizal fungi improved roots efficiency in extracting water and nutrients for 

aboveground maintenance;  

2) Seedlings subject only to fertilisation or to fertilisation with aminoacids present slower 

growths in terms of total seedling biomass. Most energy is spending in root system 

construction, verified by the higher specific root length observed. Without the symbiosis 

with mycorrhizae, cork oak seedlings need to focus more intensively on root growth, to 

allow an efficient supply of water and nutrients for shoot system construction and 

development; 

3) To reinforce the cork oak seedlings growth probably, the equilibrium between 

fertilisers and mycorrhizal fungi inoculation (FM treatment) is the better option to 

enhance the cork oak regeneration process. The balance between shoot and root systems 

growth is guaranteed, fertilisation mainly for root system and mycorrhizal fungi 

inoculation for shoot growth. This equilibrium probably will also promote a major 

efficiency on survival strategy of trees in post-stress plantation.  

 4) If no treatment is applied, the seedlings would promote root growth, until at least 21/2 

years-old.  

Although the results presented in this study bring new highlights about the advantage of 

induction treatments to promote an increase in the rate of cork oak seedlings growth, this 

research lead to some open questions that have to be subject of future works. With this 

study, it is not clear if inoculation with mycorrhizal fungi by itself allows a rate of success 

in seedlings growth. Future work should test the effect of products separately. 
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The complexity of the Montado production system management leads to a large set of 

solutions, derived mainly from empirical knowledge application, which has been absent 

by scientific based research findings. These knowledge gaps involve, as referred earlier, 

the cork oak root system. The present whole tree integrated research approach permits a 

better understanding of the production system vulnerabilities that can result in 

management modification proposals that will be useful for the managers in a near future. 

The cork oak root system is essential not only in the functioning of the natural cycles of 

water and carbon, but also as a structural component of landscape dynamic.  

 

The main conclusions from the research studies are: 

Regarding the comparison of two methods to assess the root architecture as a 

potential factor influencing the diversity of a stand it can be concluded 

Knowing that root excavation is essential for the validation of non-invasive methods to 

access the root systems and for the collection of essential information for 2D and 3D root 

structure representation, in Chapter 3 two different methods were tested to access entire 

tree root systems.  Two tree species, stone pine (Pinus pinea) and cork oak (Quercus 

suber), growing in the same soil type (Cambissoil soil (Vt)), were subjected to these 

methods. Tree root systems excavation is a technique that requires an effort in terms of 

time and costs, since all methods used for roots separation from soil have to be done very 

carefully. The methods tested were root system excavation by profile washing with water 

on the pine stone, and root system excavation by high pressure air jet on cork oak. Results 

showed that in the case of a soil with a sandy texture the most suitable excavation method 

is the excavation by high pressure air jet. Besides being logistically easier to install and 

apply, it is faster and less costly. In the case of soils presenting clayey characteristics both 

methods proved to be inadequate to excavate the entire root system of large trees. In this 

case, the manual option could be the best choice to accomplish better results. 
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Regarding the morphological evaluation of cork oak root system the conclusions 

are: 

One of the main highlights obtained with the intensive study presented on Chapter 3, 

where the morphological evaluation of cork oak root system in a Cambissoil soil is 

studied, was the possibility to represent the entire root system at a 3dimensional scale. In 

a 1.40 m depth soil profile a dimorphic root system was observed and a relative high 

quantity of sinkers distributed all over the soil profile was observed. One root subsystem 

at a superficial level until 40 cm depth and another at a deeper level around 1.20 m depth 

were observed, indicating that cork oak root system has the ability to explore the entire 

soil profile. The root system spread far away from horizontal canopy projection, for 

example a 4th order root was found at 10 m distance from the tree trunk. Vertically, tap 

root reached 1.40 m depth, and at this depth continued its growth horizontally, probably 

due to soil bulk density (1.76 g m-3) at that depth. Only few small roots were found 

between 1.40 and 2 m depth. The major distribution of root volume was verified at the 

first 20 cm depth and some superficial coarse roots with elevated diameters (eg., R8 with 

15 cm Ø) were formed at only 8 cm depth. Through the in situ evaluation and through 3D 

representation it was proved that the pattern of root growth strategy is complex to 

replicate. It was found that each individual root has its own strategy of growth, without 

an understanding of why and when a new lateral root is created or why they develop in 

some specific direction or even, why they connect with others, exploring the same soil 

space. Still, the results obtained show that tree biomass allocation is distributed almost 

similarity in aerial and root systems, and that, concerning to length and biomass variables, 

3rd order was the most representative branching order for shoot and root systems. The 

possibility to integrate these results with the soil management practices and consequently 

with the root system damaging, can bring new concerns about their relation with the 

observed cork oak decline and mortality verified in Montado. 

 

Concerning to the effects of soil compaction depth on cork oak seedlings growth it 

can be concluded: 

In the Mediterranean basin, where the water is scarce, being available only in deeper soil 

horizons trees that do not have deep roots are at a disadvantage during the summer season. 
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Specifically, in the case of seedlings or young trees, growing in Mediterranean areas, 

these facts can be crucial if the plants are unable to develop a deep root before the summer 

period, assuming that the better the root system develops at seedling stage the better will 

be the performance of the tree at its adult stage. A study was developed in a greenhouse, 

where the effects of soil compaction at different depths in the growth of cork oak 

seedlings were evaluated. The selected soil was a Podzol soil. The results of this study, 

presented in Chapter 4, led to the conclusion that the length of tap root and total root 

biomass (coarse and fine roots) are negatively affected by soil compaction in depth. The 

absence of fine roots (responsible for water and nutrients uptake) in the compacted soil 

layers was also observed.  Results showed that soil mechanical impedance at 30 cm depth 

decreased leaf area, when compared to non-compacted soils. In conclusion, it can be 

stated that soil compaction in the initial growth stage disables the root penetration to 

greater depths compromising the stabilization of the tree in adulthood stage. 

 

Regarding to cork oak seedlings growth under different soil conditions, from 

fertilization, mycorrhizal fungi and aminoacids application, the main conclusions 

are: 

One of the main facts observed in cork oak stands, beside the observed decline of mature 

trees, is the low success rate of natural and artificial regeneration. In order to minimize 

the time required for the establishment of cork oak seedlings in the field, promoting a 

faster but equilibrated growth, a study was conducted in a greenhouse where several 

treatments were tested. The results of this study, presented in Chapter 4, show that 

seedlings` growth was not increased when only fertilization was added. The treatment 

that presented the better results in terms of growth, measured through several variables 

and parameters, was the one where fertilizers, aminoacids and mycorrhizal fungi 

inoculation were applied. This treatment substantially promoted the growth of the 

seedlings shoot, concerning total biomass and in terms of leaf area. Despite this the root 

growth was not affected by this treatment. Therefore, it is though that the imbalance 

between the components of the plant (shoot and root) in adulthood may not be beneficial, 

especially concerning tree anchorage and support, due to tensile forces increase between 

canopy and roots, as the tree grows. Consequently, the best treatment to be induced is the 

one that comprises fertilizers application and inoculation with mycorrhizal fungi. It was 
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observed that seedlings subjected to this treatment presented a more equilibrated growth 

between shoot and root components.  

 

Integration of this research results on the Montado dynamics 

Relating the results obtained in this thesis (Chapter 2, 3, 4 and 5) with the existing 

knowledge about Montado decline factors (Chapter 1) some important considerations 

need to be highlighted: 

 The effects of soil disking involves an high risk of damage to the structure of cork oak 

root system, since the superficial coarse roots with high diameters start to develop 

approximately at 8 cm depth; 

 Results seem to indicate that the effect of root cuts by disking is permanent. 

Replacement roots may be formed but they will not occupy the same space as the 

original roots; 

 Roots subjected to cuts, while not completely healed, will function as input focus of 

pathogens, which may jeopardize the entire functionality of the tree, leading to its death; 

 Being the root structural dynamics affected, the maintenance of root system 

functionality will also be affected; 

 Soil compaction caused by excessive heavy machinery and excessive livestock can 

affect the natural regeneration of cork oaks, inhibiting tap root growth in depth, at initial 

stage. This fact can latter prevent the tree access to deep groundwater sources, which 

are important water reservoirs during dry summers in the Mediterranean region. 

It is expected that the research developed in the present thesis, can provide an essential 

tool for the future forest planning and management and for the natural and artificial 

regeneration processes in cork oak stands, ensuring the maintenance of typical Montado 

landscape. 
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As mentioned throughout this thesis and taking into account the limitations of research 

focusing on root systems (expensive and time consuming work, little information about 

methodologies and comparison of results, among others), it can be assumed that the 

results obtained represent a valuable contribution to the knowledge of the structure and 

functioning of Montado ecosystem. 

Studies focusing on cork oak belowground systems are very scarce and usually only one 

section of the root system is studied. From the results obtained for that small root portion 

an extrapolation is usually made for the entire root system. Instead, the research described 

in this work presents real values allowing less errors occur in further works especially in 

the cork oak root dynamics modeling approach. 

As the present study was developed according with a long term multidisciplinary research 

strategy, combining the already available scientific knowledge, it is possible to propose 

the following technical solutions for sustainable management on cork oak stands for 

Cambissoil soils: 

 Given that superficial coarse roots occur at the first 8 cm depth, a bandwidth 

management of up to 5 cm depth should be followed to minimize the risk of structural 

root damage. This can be attained with the use of shrub cutter instead of disking. When 

soil disking is used the working depth should also be limited to 5 cm.  

 To improve natural regeneration survival rates, and if the shrub layer development 

compromises the fire risk management, a shrub cutter should be used. This management 

option will not damage permanently the young cork plantlets (that can re-sprout if root 

system is not damaged) and is beneficial to organic matter accumulation (at surface and 

in depth), fertility and soil water infiltration and storage. 

 Due to the livestock feeding process permanent pastures or forage cultures are 

often installed under tree cover. In these situations no tillage seeding techniques should 

be used. For natural/artificial regeneration management, grazing pressure should be 

adequate to soil vulnerability conditions and the new cork oak trees should be protected. 

 For natural pasture management, shrub control should be done with shrub cutter, 

or alternatively with soil disking of up to 5 cm, combined (if necessary) with soil 

fertilization to enhance the herbaceous layer development. The grazing pressure should 
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be set to the available pasture production to increase system sustainability and avoid soil 

degradation. 

 In areas where the cork oak stand regeneration is the main short term objective, 

care should be taken until the plants achieve an appropriate size/height. In those areas the 

use of space by animals must be controlled. The optimal grazing management over large 

areas can be done with a good planning of grazing zones rotation, with cattle exclusion 

according tree regeneration process in each area.  

 When the stand is in a Podzol soil where often the existence of a surraipa layer 

(spodic B horizon resulting from the Podzolization process) causes a physical barrier to 

root penetration due to soil compaction) is advised, before any planting, transplanting 

and/or seeding intervention of young oaks, to perform a deep mobilization with the riper. 

This procedure will avoid soil compression promoting the increase of soil porosity and 

will contribute to a large-scale penetration of roots in depth, ensuring a more balanced 

functionality of the trees along their growth and development. 

As it might be expected, future advances in the knowledge of this subject should focus 

primarily on the different types of soils where Montado ecosystem occurs, through the 

Mediterranean basin. It is recognized that the roots behavioral pattern formation and 

distribution varies according the soil type where it grow, not neglecting the influence of 

biophysical aspects and forestry management. 

The potential advance in the modeling of the dynamics of cork oak root systems through 

a model that could relate the shoot and root systems, including the time variable, would 

certainly bring new perspectives and, consequently, new lines of research in terms of 

structure and functionality of trees. This would reinforce the knowledge of the root 

systems role within the ecosystem. Future steps should also focus on the scale level of 

work, trying to extrapolate the results to the stand level. This would allow a better 

understanding of the influence and role of these underground systems in landscape 

dynamics, especially on the water and carbon balances.  

In an area where the available information is so scarce, it would be rewarding if this thesis 

could serve as a basis or reference point for future advances in the integrated study about 

the multifunctionality of this ecosystem. 


