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Summary

In this thesis, the optimization of forced convection heat sinks and groundwater-

-source heat pumps is addressed with the purpose of improving energy efficiency.

Parallel ducts heat sinks are considered under constrained (fixed) pressure drop,

pumping power and heat transfer rate. The intersection-of-asymptotes method is

employed together with numerical simulations and relationships for determining

optimum hydraulic diameter are put forward. An optimal design emerges under

fixed heat transfer rate, which matches that found through the joint minimization

of pressure drop and pumping power. With regard to heat pumps optimization,

the relation between coefficient-of-performance and air-to-ground exergy potential

is established, showing that energy saving as compared to air-to-air systems depends

on the square root of that potential. The exergy potential in the Évora region

is estimated, and exergy analysis of groundwater-source systems helps identifying

distinct conditions of operation: maximum/null net exergy output and best trade-off

between environmental exergy utilization and power input.
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Resumo

Optimização de sistemas de transferência de calor e aproveitamento do

potencial de exergia ambiental – Aplicação a permutadores de calor

compactos e a bombas de calor

Esta tese apresenta a optimização de dissipadores de calor e de bombas de calor

geotérmicas para melhoramento da eficiência energética. São estudados dissipadores

de passagens paralelas sujeitos a constrangimentos de queda de pressão, potência de

bombeamento e taxa de transferência de calor. Utiliza-se o método da intersecção-

-das-assimptotas juntamente com simulações numéricas, e apresentam-se expressões

do diâmetro hidráulico óptimo. Um design ideal emerge no caso de transferência

de calor fixa, o qual se aproxima da minimização conjunta de queda de pressão e

potência de bombeamento. Relativamente às bombas de calor, estabelece-se uma

relação entre coeficiente-de-performance e potencial de exergia ar-solo, e mostra-se

que a redução de consumo energético comparado com sistemas ar-ar depende da raiz

quadrada desse potencial. O potencial de exergia em Évora é avaliado, e identificam-

se várias condições de funcionamento usando análise exergética: máxima/nula sáıda

ĺıquida de exergia e compromisso óptimo entre utilização de exergia ambiental e

potência fornecida.
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Chapter 1

Introduction

1.1 Preliminary remarks

The optimization of heat transfer systems is an important issue in science and

technology due to environmental impacts and energy consumption concerns. The

main objective is to maximize performance and decrease energy demand, thus contri-

buting to the rational use of energy and to the reduction of carbon dioxide emis-

sions. Heat transfer systems are used in a wide variety of engineering applications

and technologic apparatus (e.g. cooling devices in computers, air conditioning in

inhabitation houses, industrial processes, and many others). Although they can

have diverse working principles and designs, their main purpose is either to transfer

heat between two fluids or from a solid device to a coolant. In certain applications,

heat transfer is also associated with mass transfer processes and/or with chemical

reactions.

The fundamental theory that describes the heat transfer modes – conduction,

convection and radiation – is quite well known and established [1 – 3], as well as

the numerical solution methods of the mass, momentum and energy conservation

equations (e.g. see Refs. [4, 5]). These numerical methods have been often used in

optimization procedures based on energy analysis, while other methods have been

developed based on the entropy generation minimization [6] and, more recently, on

the constructal theory [7, 8]. In this last case, wemust refer the method of intersecting

the asymptotes, which is a straightforward but powerful tool for predicting the

optimal internal geometric structure of volumes cooled either by forced or natural

convection [9].

Exergy analysis [10 – 14] is also a useful tool for the optimization of heat

transfer systems, because it takes into account the internal irreversibilities and

allows comparing the maximum useful work that can be obtained from different

energy fluxes in relation to a reference environment. As an example, this analysis

is useful in dealing with systems that require an external power source (e.g. shaft

work) and that exchange heat with the atmosphere, which is the case of heat pumps

used in air conditioning.

1



2 Chapter 1. Introduction

In general, most heat transfer systems require an external energy input to operate,

as for example are forced convection heat sinks, heat exchangers and heat pumps,

in which power must be supplied either to a fan, pump or compressor. These sys-

tems are usually optimized in order to maximize the heat transfer rate while the

amount of heat that is transferred per unit of energy that is supplied is a measure

of its performance. Moreover, a thermal efficiency defined as the ratio of actual to

maximum heat transfer rate is often used in heat exchangers analysis. In the same

manner, exergy efficiency is defined as the ratio of the useful output of exergy to

exergy input, and rational efficiency is defined as the ratio of total exergy output to

total exergy input. There are other systems that do not require an external energy

input, as for example are free convection heat sinks and heat pipes, which must be

optimally designed to promote and maximize heat transfer rate.

This thesis is focused on the optimization of forced convection heat sinks and

of groundwater or water source heat pumps. Both systems require external power

input to operate although they have different configuration and different working

principles. In the first case, power is supplied to a fan or pump which drives the

fluid flow through the heat sink channels in order to extract heat from the device

to be cooled. In the second case, power is supplied to the compressor, fans and fluid

pumps in a vapour compression heat pump system with the purpose of transferring

heat from a cold reservoir onto a hot reservoir. The selection of the two systems

studied and the development of this work were based on the following ideas and

criteria:

1. Energy analysis and exergy analysis – These are the two broad approaches

on which the optimization procedures are based;

2. Component optimization and system operation optimization – We look onto

the component optimization procedure as the improvement of existing devices

or with the purpose of design of new and specific devices, which are part

of a heat transfer system. Conversely, we look onto the system optimization

procedure as the improvement of the operation of a thermal system composed

of generic components or devices;

3. Energy efficiency and rational use of energy – The search for new and

renewable energy sources for reducing fossil fuels demand must be carried

out together with two complementary actions: improvement of energy effi-

ciency and rational use of energy. It means that it is crucial to built up more

efficient equipments but it is also essential to use those equipments properly

because the capacity of installation of renewable energy systems is finite in a

long term perspective, even though this kind of resource is inexhaustible at

the human time scale (e.g. solar energy).



1.2 Aim 3

Accordingly, the issues studied in the present work are addressed and organized as

follows:

(i) Optimization of forced convection heat sinks

♦ energy analysis – optimization is based on energy analysis taking into

account the relation between heat transfer rate, pressure drop and pumping

power;

♦ component optimization – the internal geometric structure of a compact

heat sink is optimized using both the intersection-of-asymptotes and nume-

rical methods;

♦ improvement of energy efficiency – the objective pursued is maximization

of heat transfer rate and/or minimization of pumping power to achieve a

better energy efficiency;

(ii) Optimization of groundwater or water source heat pumps

♦ exergy analysis – optimization is based on exergy analysis taking into

account irreversibilities and input and output exergy fluxes;

♦ system operation optimization – heat pump operation is optimized in order

to obtain the ideal relation between heat transfer rate and coefficient of

performance;

♦ rational use of energy – the objective is to maximize the use of the

environmental exergy potential, i.e. the non-flow exergy potential that exists

between the groundwater or water from lakes and rivers and the atmospheric

air due to the natural temperature differences. This corresponds to optimiza-

tion of the system operation with the purposes of performance improvement

and the rational use of energy in comparison with the conventional air-to-air

systems.

1.2 Aim

The work presented in this thesis has the purpose of contributing to advances in

the optimization of forced convection heat sinks and groundwater or water source

heat pumps, for achieving maximum performance together with minimum energy

consumption. Two distinct approaches and methods are used: (i) in the first case,

the objective is the optimization of fluid flow and internal geometric structure of

parallel ducts heat sinks (component optimization) based on energy analysis and

using both the intersection-of-asymptotes and numerical methods; and (ii) in the

second case, the objective is the optimization of a vapour compression heat pump

system connected to a groundwater or water heat reservoir (system optimization)

based on exergy analysis and aiming at optimal utilization of environmental air-to-

-ground exergy potential.



4 Chapter 1. Introduction

1.3 Optimization of forced convection heat sinks and the method of inter-

secting the asymptotes

In general, the objective of heat sink optimization is to maximize heat transfer rate

under global constraints. Geometric constraints exist which depend on the available

space and construction requirements (e.g. fixed volume and fixed porosity), while

fluid flow constraints (e.g. fixed pressure drop and fixed pumping power) depend on

the fluid flow arrangement in which the heat sink is connected.

Optimization can be carried out through numerical simulations or using the

method of intersecting the asymptotes. Numerical techniques use either simulations

of entire temperature and flow fields [4] or correlations for Nusselt number and

friction factor [2, 3]. In the first case, computational simulations for each set of free

parameters values are required, which can be coupled to numerical optimization

procedures [15 – 17] in order to determine the optimal design. A recent example of

this technique can be found in Ref. [18]. Similar numerical optimization procedures

can also be employed in the case of using correlations for modelling heat transfer and

fluid flow as functions of free parameters. An example of this approach can be found

in Ref. [19], in which optimization of heat transfer in a bundle of parallel tubes in a

solid matrix is carried out for pumping power minimization either with laminar or

turbulent flow regimes. Although these methods are quite exact they often require

non-negligible computational and time resources. On the other hand, the method

of intersecting the asymptotes is a simple and straightforward analytical tool for

predicting the scale or order-of-magnitude of optimum values.

The method of intersecting the asymptotes was first reported by Bejan [20] for

the optimization of a natural convection heat sink composed of parallel plates, and

thereafter applied to the optimization of a heat sink of similar geometry under forced

convection and subjected to fixed pressure drop and uniform wall temperature [21].

This method was further extended for the cases of fixed pumping power and fixed

mass flow rate [22] and, more recently, generalized for a heat sink composed of

parallel circular or non-circular ducts under fixed pressure drop [23]. The case of

parallel plates with uniform heat flux was also addressed using this method [24].

The method of asymptotes is based on the intersection of two dissimilar trends or

limits: (i) for increasing large hydraulic diameters of the heat sink passages the flow

approaches to the hydrodynamic and thermal developing flow limit, while (ii) for

vanishing small hydraulic diameters the flow approaches to the fully developed limit.

In the developing flow limit the fluid in the core flow participates very inefficiently in

the heat transfer process as the local temperature tends to the value of temperature

at the inlet. Conversely, in the fully developed limit the fluid bulk temperature tends

to the surface temperature (fluid ’overheating’) with the consequent decreasing on
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heat transfer coefficient. Both limits must be avoided in heat sink design. In fact, the

maximum heat transfer rate under global constraints is achieved with the optimal

hydraulic diameter that is close to that obtained by intersecting these two limits.

If fixed pressure drop is considered, this optimal design corresponds to the case in

which boundary layers merge just at the exit of flow channels [21].

This simple geometric criterion was also invoked in the optimization of other

channel configurations and flow conditions either with natural or forced convection,

as in the following examples: stacks of equidistant and non-equidistant plates [25];

stacks of parallel plates shielded by porous screens [26]; parallel plates cooled by

turbulent forced convection [27, 28]; staggered plates [29, 30]; pin fins arrays with

impinging flow [31]; parallel cylinders in crossflow [32 – 34]; heat-generating strips

inside ducts [35]; vertical diverging or converging channels with natural convection

[36]; and compact heat exchangers composed of metal honeycombs [37]. A review

on the cooling optimization of electronic packages using this method is presented in

Refs. [7] and [38], in which some of the geometries referred above are addressed. The

same criterion together with the scale of optimal hydraulic diameter predicted by

intersecting the asymptotes have been used to optimize stacks of parallel plates with

multiple lengths under forced [39 – 41] and natural convection [42], and to design

multi-scale heat exchangers for maximum heat transfer density [43].

The method of intersecting the asymptotes was also used in the design of porous

media with decreasing flow lengths, in which limit the large spacing asymptote

is modelled based on heat transfer by conduction between the surface of solid

substrate and a stationary fluid [44], and in the design of compact heat sinks com-

posed of multi-scale tubes [45]. Rogiers and Baelmans [46] addressed the problem of

heat transfer maximization at decreasing lengths of parallel plates counterflow heat

exchangers and obtained the optimal internal geometry based on the intersection of

the asymptotic relationships for the cases of large and small channels, and taking

into account the axial heat conduction in the plates. Additionally, this method was

used to find the optimal geometry of L and C-shaped ducts with natural convection

[47], and to optimize the aspect ratio and volume fraction of flow passages in micro-

-channels heat sinks [48, 49] and vascularized materials [50] under forced convection

with the purpose of minimizing the peak temperature. Sadeghipour and Razi [51]

used the intersection of asymptotes to find out the optimum confining wall-to-wall

distance for maximum heat transfer rate from a confined horizontal cylinder with

isothermal surface under laminar natural convection.

Hollow sandwich cylinders with prismatic cores were designed by using this

method together with a structural model for maximum heat transfer rate and

mechanical performance at minimum mass [52]. A structural optimization of two-

-dimensional cellular metals cooled by forced convection at fixed pumping power
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was also reported [53]. In another recent work, the optimal thickness of a metal

foam layer wrapped around a cylinder in crossflow was obtained through both nu-

merical and asymptotes methods [54]. Dallaire et al. [55] carried out a numerical

optimization of rotary heat exchangers with porous core and used scale analysis and

the method of asymptotes to predict the optimum longitudinal length and porosity.

Hegazy [56] has found the optimum channel depth in flat-plate solar air heaters

by intersecting the fully developed and developing turbulent flow asymptotes, while

Miguel [57] addressed the optimum design that arises from intersecting the laminar

and turbulent flow limits in an array of pipes of a solar energy system that is used to

warm a room. In this last case, optimum design emerge also as the balance between

heat transfer rate augmentation and flow resistance reduction.

The fully developed and developing flow asymptotes have also been combined

through the correlation method outlined by Churchill and Usagi [58] to develop

models for predicting the heat transfer rate in plate fin heat sinks, as in e.g. Ref. [59]

in which the non-uniformity of temperature at fins surface was taken into account.

The work by Yilmaz et al. [60] reports an asymptotic analysis for large and small

hydraulic diameter ducts of different shapes with forced convection at fixed pressure

drop. In that work, the maximum heat transfer rate and the optimal duct geometry

are obtained through an exact method based on correlations for Nusselt number.

Other optimization problems have also been solved using the method of inter-

secting the asymptotes. The work by Lewins [61] provides a mathematical basis

for this method and demonstrates that optimal design is achieved through an equi-

-potential division between the two competing trends. The method is illustrated

through optimization of an electric circuit composed of high and low conductivity

materials at fixed current and volume, for minimum voltage difference. In this case,

in which voltage relates to current by Ohm’s Law, the equi-potential division it is

also an equi-partition of resistances [8].

Another application is the prediction of natural crack pattern formation in shrin-

king solids [7, 62], as it occurs in wet soil exposed to the sun and wind. Here, the

scale of cracks width is estimated by intersecting the ’many cracks’ and ’few cracks’

asymptotes for minimum overall drying time or, equivalently, for maximum mass

transfer rate from the wet soil to the ambient. In the same manner, the natural

flow pattern that appears in fluid layers heated from below can be predicted by

intersecting the ’many cells’ and ’few cells’ asymptotic limits so that maximum

upward heat flux is obtained [7, 63]. As result, the optimum number of convective

cells, or the optimal cell slenderness ratio, is estimated as a function of layer height,

vertical temperature gradient and fluid properties. Similarly, the flow pattern in

porous layers saturated with fluid and heated from below is predicted by intersecting

two distinct limits: increasing large number of slender cells of vertical counterflow
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and decreasing small number of slender cells of horizontal counterflow in which the

upward thermal conductance (convective) is dominated by two horizontal boundary

layers [7, 63, 64].

Reis et al. [65] have made use of the method of intersecting the asymptotes to

design air-cleaning devices composed of either parallel channels (tubes or parallel

plates) or porous material (filter), for maximum particle transfer rate from air to

cleaning surfaces. This maximum is achieved when concentration boundary layers

merge just close to the exit plane, which is in agreement with the result for heat

sink optimization if we consider the analogy between heat and mass transfer.

Regarding again the optimization of forced convection heat sinks, it must be

noted that the thermally developed and developing flow limits can always be reached

if diverse constraints are considered, and thus the method of the intersection of

asymptotes as enounced above constitutes a general rule for heat sink optimization.

Accordingly, one can foresee that this method can also be useful for predicting the

optimal fluid flow conditions if a fixed heat transfer rate is considered. This is relevant

because in certain applications the heat transfer rate and the maximum or nominal

temperature of operation are known, and the objective is to reduce pumping power

and/or pressure drop.

These aspects were not explicitly addressed in previous works using this method

and a comparison between the results for different constraints was not carried

out. Furthermore, the analysis of results has been focused mainly in the hydraulic

diameter or aspect ratio of ducts while the analysis of the optimal dimensionless

thermal length, which is a measure of the thermal development of the flow, was

not sufficiently addressed for all the cases. Additionally, the optimal internal geome-

tric structure of heat sinks composed of circular or non-circular ducts under fixed

pumping power was not reported yet.

This thesis reports the following new advances in the optimization of forced

convection heat sinks and in the method of intersecting the asymptotes:

(i) the optimal internal design of heat sinks composed of circular or non-circular

ducts is obtained either for maximization of heat transfer density at fixed

pumping power as well as for pumping power minimization with specified

heat transfer rate;

(ii) a broad scale analysis of heat sink optimization is carried out together with

numerical simulations by considering three different constraints – fixed pres-

sure drop, fixed pumping power and fixed heat transfer density – and the

method of intersecting the asymptotes is derived using dimensionless thermal

length as the primary optimization variable and hydraulic diameter as the

design variable. The optimal internal design of heat sinks composed of parallel
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tubes is obtained for these three cases;

(iii) the concept on which the method of asymptotes is based on is further explored

by deriving and intersecting both the fully developed and developing flow

limits with specified heat transfer density and without imposing any fluid

flow condition. New results are found that clarify the meaning of optimal

design that emerges from this method, by showing its relation to optimal

fluid flow conditions;

(iv) a new relation for Nusselt number of thermally developing flows in ducts is

deduced based on the assumptions assumed in the developing flow asymptote.

This relation is similar to the well known Lévêque solution [1] but presents

a better agreement with data in practical ranges of dimensionless thermal

length. This outcome proves the correctness of the assumptions used in this

work and constitutes also a new result.

1.4 Optimization of groundwater or water source heat pumps and the use of

environmental exergy potential

The incoming solar radiation is the major source of energy that generates and sus-

tains transfer processes and life on Earth. On the other hand, the same amount

of energy that is absorbed has to be radiated by the Earth back into the space,

according to a global energy balance. While the energy balance of the Earth’s surface

and atmosphere allows quantifying the different forms of energy in which absorbed

solar radiation is converted to, the exergy balance gives us additional information

about the capacity of that energy flows to produce useful work [66 – 68]. That is,

exergy analysis provides information on the ’quantity’ and ’quality’ of energy and

on the exergy losses associated with the transfer processes. Such exergy fluxes occur

as the result of the non-uniform heating of the Earth’s surface and atmosphere, and

constitute some of the most used renewable energy resources (e.g. wind energy). A

review on exergy analysis of renewable energy and conversion technologies can be

found in Refs. [69, 70].

The non-uniform heating of the Earth generates time dependent temperature

gradients between distinct masses of air in the atmosphere and also between the

atmospheric air and the ground and water of rivers and oceans. In that sense, we

can identify and define an exergy potential that is associated to the natural air-to-

-ground temperature difference, which may be used for improving the performance

of heat pump systems in buildings by reducing its energy consumption in compari-

son to air-to-air systems. This is due to the lower average temperature difference

between ground (or either groundwater or water from lakes and rivers) and the
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air in the acclimatized space as compared to the temperature difference between

outside air and acclimatized space. Moreover, ground display rather more moderate

temperature changes than the overlaying air.

One reason for expressing the natural air-to-ground temperature difference as

exergy potential is that it allows establishing connection between two similar quanti-

ties while related to the external exergy input (shaft power) of heat pumps. Although

this is a low exergy potential as compared to the conventional geothermal resources

[71], it may replace a real environmental exergy source in the sense that this poten-

tial contributes for reducing energy consumptions instead of being used to generate

power directly. The use of low exergy systems for heating and cooling of buildings

has been already recognized as a good practice for achieving a sustainable built

environment and considerable energy savings [72 – 74]. This approach shows that

low exergy resources are advantageous as compared to high valued energy carriers

(as e.g. fossil fuels) for producing the low exergy heating and cooling required in

buildings. Reis et al. [75] addressed the evaluation of the exergy potential of the

near ground atmosphere with respect to the soil and presented an analysis on the

use of this potential for improvement of natural ventilation, air conditioning, and

passive heating and cooling systems.

Ground source systems comprise pipe coils buried horizontally or vertically in

the ground. The working fluid of the heat pump is made to circulate within pipes

(or a different fluid, usually brine, in a secondary loop) for exchanging heat with

the ground. If brine circulation loop is used an additional heat exchanger and fluid

pump are required, thus lowering the global performance of the installation. The

ground temperature near the buried coils depends on the local climatic conditions

and of heat pump operation mode – it decreases in wintertime while it increases in

summertime. As for the rate of heat exchange with the ground is highly dependent on

moisture content in the soil. This temperature field has been studied using theoretical

models, numerical simulations and experimental techniques [76 – 80]. Groundwater

or water source heat pumps can operate either as open or closed systems. In open

systems, groundwater is pumped into the heat pump unit and then re-injected in

a different well or used for other purpose. In closed systems, pipe coils (or heat

exchangers) are placed in a well at a deep below the groundwater table, or placed

at the bottom of lakes and rivers.

Several studies show that improvements on the performance of heating and cool-

ing systems can be achieved with heat pumps connected to ground or groundwater

heat reservoirs [81 – 90]. The recent work by Kalz et al. [91] reports a detailed

energy analysis on the performance of heat pumps using environmental heat sources

and sinks – ground, groundwater, rainwater and ambient air – for application in

buildings. The use of water from rivers and lakes was addressed in the study by
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Buyukalaca et. al. [92]. Hybrid systems such as those combining rainwater and

ground heat sources/sinks [93] and solar-assisted ground-source heat pumps [94 – 99]

have been also investigated and developed.

Petit and Meyer [100] presented a techno-economic analysis on the performance

of horizontal-ground-source air-conditioners in comparison with air-source systems.

This study was conducted for the climatic conditions of Pretoria (South Africa)

and shows that, although capital cost of an air-source system is cheaper, the lower

operation cost of a ground-source system makes it more viable economically. Zogou

and Stamatelos [101] addressed the effect of climatic conditions on the performance

of ground and groundwater source heat pumps by comparing specific examples in

the northern and southern parts of Europe. They concluded that climatic conditions

greatly affect the performance of such systems and that high gains of performance

can be achieved in the Mediterranean region.

Exergy analysis of heat pumps allows identifying the irreversibility of each process

of the thermodynamic cycle [10, 102]. Szargut [103] studied the influence of the

internal irreversibilities on the coefficient of performance and expressed this para-

meter as the product of the thermodynamic efficiencies of each component. Detailed

exergy analysis of ground source heat pumps was reported in various studies, as e.g.

in Refs. [104 – 106]. Alhazmy [107] used the Second Law of thermodynamics and ex-

ergy analysis to estimate the minimum work required for air conditioning process in

hot and humid climates. On the other hand, the variation of the environmental con-

ditions affects the performance of such systems (particularly in the case of air-source

systems) and influences the exergy balance depending on the selected reference con-

ditions – either standard or actual atmospheric air conditions. Göǧüş et al. [108]

addressed this issue by deriving the exergy balance of a general system taking into

account both the variation of the environmental conditions and the motion of that

system with respect to the environment.

Cheng and Chen [109] addressed the optimization of an irreversible heat pump

by finding the optimum hot-end temperature of working fluid for maximum perfor-

mance. In that work, the heat reservoirs temperatures and the thermal conductances

are considered to be constants, while considering both internal irreversibilities and

external irreversibilities due to finite temperature difference and heat leak between

reservoirs. Internally reversible (endoreversible) [110] and irreversible refrigerators

[111] were optimized using the same method.

Optimization of heat pumps, refrigerators and air conditioning systems has been

also carried out by determining the optimal heat exchanger allocation between hot

(condenser) and cold (evaporator) sides [6, 112 – 114]. In this procedure, the total

area or the total thermal conductance is constrained (fixed) and its optimal partition

between hot and cold sides is obtained for achieving maximum useful heat transfer.



1.5 Outline of the thesis 11

The maximization of coefficient of performance was carried out through a similar

procedure [115]. The minimization of total heat transfer area and overall thermal

conductance was also conducted either for a given heat transfer load or coefficient

of performance [116, 117].

The relations between maximum rate of exergy output and both coefficient of

performance and heat transfer load of an endoreversible refrigerator were obtained

by Yan and Chen [118]. Another optimization criterion that has been used is the

maximization of the so called ’ecological function’, which can be defined based on

energy or exergy analysis [118 – 120]. This corresponds to the best trade-off between

energy (or exergy) output rate and entropy generation rate (or irreversibility).

This thesis reports the following new advances in the assessment of environmental

exergy potential and in the optimization of ground/groundwater source heat pumps:

(i) the natural air-to-ground exergy potential is defined as the specific non-flow

exergy of atmospheric air with respect to the ground conditions;

(ii) a simple expression relating the air-to-ground exergy potential to the power

input of both air-source and ground-source systems is deduced, which allows

estimation of the order-of-magnitude of energy savings;

(iii) the air-to-ground exergy potential and the performance of ground-source

systems are assessed for the conditions at the Évora region (Portugal) based

on the hourly and monthly averaged values of air and ground temperatures;

(iv) the optimization of a groundwater-source heat pump is carried out through

exergy analysis for four distinct criteria – maximum net exergy output, null

net exergy output, maximum ’ecological function’, and optimum compromise

between environmental exergy utilization and power input.

1.5 Outline of the thesis

This thesis comprises six chapters. Chapter 1 presents a general introduction to the

thesis. Chapters 2 and 3 concern the optimization of forced convection heat sinks.

Chapters 4 and 5 concern the optimization of groundwater source heat pumps and

the use of environmental exergy potential. Chapter 6 presents the general conclu-

sions.

Chapter 2 addresses the optimization of compact heat sinks composed of parallel

ducts for the cases of heat transfer density maximization and pumping power mini-

mization. An asymptotic analysis is carried out together with an exact method based

on correlations for circular tubes, parallel plate ducts, rectangular ducts, square

ducts and equilateral triangular ducts. Chapter 3 addresses optimization of fluid
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flow and internal geometric structure of volumes cooled by forced convection in an

array of parallel tubes. A new approach of the intersection-of-asymptotes method

is developed and applied to the following cases: (i) heat transfer rate maximization

at fixed pressure drop; (ii) heat transfer rate maximization at fixed pumping power;

and (iii) fluid flow optimization at fixed heat transfer rate. This optimization is vali-

dated and complemented by means of numerical simulations of entire temperature

and flow fields.

Chapter 4 addresses the use of the natural air-to-ground exergy potential in

the performance improvement of groundwater source heat pumps, and a relation

between that potential and both coefficient of performance and power consumption

is established. An assessment of the non-flow exergy potential in the region of Évora

(Portugal) is also presented and estimates of maximum energy savings in cooling and

heating modes are reported. Chapter 5 addresses the optimization based on exergy

analysis of an endoreversible heat pump connected to a groundwater or water heat

reservoir.
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Chapter 2

Optimization of forced convection heat sinks with pumping

power requirements†

Abstract

In this paper we address the optimization of a heat sink formed by parallel

circular or non-circular ducts in a finite volume. The flow is considered to

be laminar and steady and the fluid properties are assumed to be constant.

Results for optimum dimensionless thermal length, optimum hydraulic

diameter and maximum heat transfer rate density are presented for five

different duct shapes subjected to a fixed pumping power constraint. Simple

equations for the calculation of these optimum values are presented, and the

influence of the local pressure drops at the inlet and outlet plenums, and

of Prandtl number is discussed. The optimization results are then extended

for the case of pumping power minimization at fixed heat transfer density.

Keywords: Heat sinks, Forced convection, Laminar flow, Pumping power,

Optimization.

2.1 Introduction

Compact heat exchangers that are used in forced convection cooling systems must

be optimally designed because space is valuable and demand for pumping power

must be as low as possible. Generally, optimization is carried out with the purpose

of reaching the maximum heat transfer rate density either with fixed pressure drop

or fixed pumping power. Bejan and Sciubba [1] addressed this problem by using the

method of the intersection of asymptotes for a parallel plates heat sink with appli-

cation to cooling of electronic systems, and Mereu et al. [2] extend that work to the

cases of fixed mass flow rate and fixed pumping power. This method is a straightfor-

ward tool for predicting the optimal internal geometric structure of volumes cooled

†Paulo Canhoto(1), A. Heitor Reis(1), Optimization of forced convection heat sinks with pumping power

requirements, International Journal of Heat and Mass Transfer 54 (2011) 1441–1447.
(1) Physics Department and Geophysics Centre of Évora, University of Évora.
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by forced convection and is part of the constructal method [3, 4].

More recent works report the application of the method of the intersection of

asymptotes to other duct shapes, e.g. Muzychka [5] for microchannel heat sinks

with fixed pressure drop and Wen el al. [6] for metallic cellular sandwich heat sinks

with constant pumping power. In other recent works the constructal principle was

used to optimize duct geometry at the entrance region of laminar flow [7] and to

design multi-scale micro-tube heat sinks [8] with the purpose of increasing the heat

transfer density.

Yilmaz [9] applied an exact method based on generalized empirical correlations

to obtain the optimal geometry for circular, parallel plates, equilateral triangle and

square duct shapes with fixed pressure drop, laminar flow conditions and uniform

wall temperature. Li and Peterson [10] developed a parametric analysis for the opti-

mization of rectangular microchannel heat sinks with fixed pumping power by using

a detailed three-dimensional numerical simulation model. Also a computational fluid

dynamics model was developed and compared with analytical solutions by Liu and

Garimella [11] for the optimization of rectangular microchannel heat sinks assuming

a prescribed pumping power as a design constraint.

Copeland [12] reported the influence of fin thickness and pitch of a parallel plates

heat sink on pressure drop and pumping power with constant thermal resistance.

Reduction of pumping power in fluid distribution networks with application to heat-

-generation plates cooling devices was studied by Gosselin [13], and simultaneous

minimization of the global fluid flow resistance and global thermal resistance was

reported by Wechsatol [14] for tree shaped heat convection network on a disc.

In this work we address the optimization of a heat sink formed by parallel circular

or non-circular ducts in finite volume and subjected to fixed pumping power, for

maximum heat transfer density. The duct geometries that have been considered were:

circular, parallel plates, rectangular, square and equilateral triangle. An asymptotic

analysis for ducts with small and large hydraulic diameter was also carried out.

Next, the optimization results were extended and discussed for the case of pumping

power minimization with fixed heat transfer density. This is relevant because in

most practical cases the heat to be extracted from a system or device at a given

temperature is known and the objective is to reduce the electric power input to the

fan or pump.

2.2 General theory

The compact heat sink under consideration in the present work consists of a solid

matrix of fixed dimensions H, W and L containing an array of circular or non-

-circular ducts as shown in Fig. 2.1-(a). The cross-sectional area is constant along
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Fig. 2.1: Compact heat sink of parallel ducts. (a) Geometry. (b) Thermal boundary layer

development and energy balance in an elemental volume of flow inside one duct.

the heat sink length and is equal for all ducts. The volume is cooled by internal

laminar forced convection using a fluid with inlet temperature Ti and mean velocity

U0. It is assumed that the flow is steady and uniformly distributed, i.e. the mass

flow rate is equal in all ducts, and that the walls are isothermal with temperature

Tw.

This last assumption follows from neglecting the conduction resistance in the

array, which is admissible if the solid matrix is made of a high thermal conductivity

material, thus Tw is considered to be the scale for wall temperature, in line with

recent works for similar multilayer channel configuration [5 – 9]1. In particular, Wen

et al. [6] presented a study where both the cases of uniform wall temperature and

finite thermal conductivity substrate were considered2. However, we note that the

error affecting the optimization results when this assumption is considered increases

significantly only for values of heat sink porosity close to unity. The properties of

1Mereu et al. [2] also stressed that “This assumption is not meant to imply in any way that the board

substrate is a perfect thermal conductor. [...] in the present scale analysis the board temperature Tw [...]

plays the same role as the L-averaged surface temperature when the board is modelled as uniform [heat]

flux.”

2As an example, for the case of a substrate with thermal conductivity of 100Wm−1K−1, using air as

the coolant and for H = 0.012m, W = 5 H, L = 5 H, ε = 0.6 and Ṗ = 0.5W, the optimization results

shown in Fig. 8 of Wen’s paper [6] indicate that the predicted optimum values of both the overall thermal

resistance and the number of square channel layers are higher by approximately 10% with respect to

the case when uniform wall temperature is assumed. If a highly conductive material is used (e.g. copper,

k≈400Wm−1K−1), the error due to the assumption of uniform wall temperature becomes even smaller.
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the fluid are assumed to be constant.

The number of ducts with cross-sectional area An is

N ' εHW

An

(2.1)

The volume fraction of ducts ε is defined and set fixed by the heat sink designer,

and is a measure of the wall thickness. ε = 1 is assumed whenever thickness of

parallel plates, square, rectangular or triangular ducts is neglected. In the case

of circular tubes in a maximum packing square arrangement we have ε ' 0.785.

Fig. 2.1-(b) schematically shows the thermal boundary layer development and an

elemental volume in one duct. The energy balance in that elemental volume reads

ṁcpdT = q′′dA (2.2)

where T and dA are, respectively, average bulk fluid temperature and elemental heat

transfer area. The mass flow rate ṁ is given by

ṁ = ρU0An, (2.3)

while the heat flux q′′ at the wall reads

q′′ = hx (Tw − T ) (2.4)

with hx standing for local heat transfer coefficient. By combining Eqs. (2.2) – (2.4)

with dT =−d (Tw−T ) and dA = pdx , where p is perimeter of the duct, and then

integrating along the total length, we obtain the mean temperature of the fluid at

the heat sink exit To in the following dimensionless form:

θ =
Tw − To

Tw − Ti

= exp

(
− ph0−LL

ρcpU0An

)
(2.5)

with the average heat transfer coefficient h0−L defined as

h0−L =
1

L

∫ L

0

hxdx (2.6)

Eq. (2.5) can be rewritten in terms of the dimensionless thermal length of the flow

x∗ = (L/Dh)/(RePr), where Dh = 4An/p is the hydraulic diameter of the duct, in the

following simplified form:

θ = exp (−4x∗Nu0−L) . (2.7)

The mean Nusselt number Nu0−L =h0−LDh/k is a function of x∗ and Pr and depends

on the duct cross-sectional shape.

The mean Nusselt number is calculated by using the model proposed by Muzychka

[15, 16] and now rewritten in terms of the hydraulic diameter:

Nu0−L (x∗) =


Nu5

fd +

(
0.6135

(
fRe

x∗

)1/3
)5

+

(
0.664

Pr1/6x
1/2
∗

)5



1/5

(2.8)
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where Nufd and fRe are, respectively, Nusselt number and friction factor-Reynolds

number group for fully developed flow, which are characteristic of each duct geome-

try. Table 2.1 summarizes these values for the five geometries considered in present

work. Eq. (2.8) was compared with data [17 – 19] for the geometries in Table 2.1 and

maximum differences fall in the range −8% to 15% for thermally developing flow

(Pr→∞) and −8% to 16% for simultaneously developing flow with Pr=0.7.

Table 2.1: Hydraulic diameter, maximum duct fraction and fully developed flow Nusselt

number and friction factor for different duct geometries.

Duct geometry Dh εmax Nufd fRe

Circular tubes D 0.785 3.66 16

Parallel plates 2D 1.0 7.54 24

Rectangular 1:4 8D/5 1.0 4.44 18.23

Square D 1.0 2.98 14.23

Equilateral triangle D/
√

3 1.0 2.47 13.33

The total heat transfer rate is obtained from the energy balance to the heat sink as

Q̇N = Nṁcp (To − Ti) (2.9)

which, by combining with Eqs. (2.1), (2.3) and (2.7), yields

Q̇N = εHW
ρk

µ
PrU0 (1− θ) (Tw − Ti) (2.10)

The mean velocity of the fluid can be related to the total pumping power by:

ṖN =
1

ρ
Nṁ∆p (2.11)

where the pressure drop across the heat sink ∆p is obtained with the apparent

friction factor method through the following expression

∆p

1/2ρU2
0

= 4x+fappRe + KSC + KSE (2.12)

In Eq. (2.12), KSC and KSE are coefficients that account for specific pressure drops.

The group fappRe accounts for the friction along the walls and for the acceleration

of the fluid core as the hydrodynamic boundary layer develops, and is determined

through the formula

fappRe =




(
3.44

x
1/2
+

)2

+ (fRe)2




1/2

. (2.13)
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Note that the dimensionless hydrodynamic length x+ =(L/Dh)/Re is related to the

dimensionless thermal length through x+ =x∗Pr. Eq. (2.13) combines the Shapiro’s

limit for developing flow fappRe = 3.44/x
1/2
+ ([20] as quoted by Muzychka [15]),

which is nearly independent of duct geometry, with the fully developed flow limit

fRe through the asymptotic correlation method of Churchill and Usagi [21]. More

recently, Muzychka [22] presented a detailed review and analysis of the friction

factor in non-circular ducts and proposed new models for predicting the friction

factor-Reynolds product for developing and fully developed flow.

The coefficients for local pressure drop at the inlet and outlet plenums are

provided by models for sudden contraction (KSC) and sudden expansion (KSE)

given respectively by [23]

KSC = 0.42 (1− ε) (2.14)

and

KSE = (1− ε)2 (2.15)

Finally, by combining Eqs. (2.1), (2.3) and (2.10) to (2.12) we obtain the overall

heat transfer rate density in the following dimensionless form

Q∗
N/ε =

[
2x∗fappRe +

KSC + KSE

2Pr

]−1/3

(1− θ) Pr2/3 (P ∗
N/ε)1/3 (2.16)

with

Q∗
N =

L2Q̇N/ (HWL)

k (Tw − Ti)
(2.17)

and with the dimensionless pumping power per unit of volume defined as

P ∗
N =

ρ2L4ṖN/ (HWL)

µ3
(2.18)

Note that the groups Q∗
N/ε and P ∗

N/ε represent the dimensionless heat transfer rate

and total pumping power per unit of volume that is effectively occupied by the fluid,

respectively. As already stated above, the groups fappRe and 1−θ can be determined

as functions of the dimensionless thermal length and of the Prandtl number, thus

x∗ emerges as the unique optimization variable in Eq. (2.16) when maximizing Q∗
N

with fixed P ∗
N . Then, the ratio of hydraulic diameter to duct length can also be

expressed in terms of x∗, ε, Pr and P ∗
N using Eqs. (2.1), (2.3), (2.11) and (2.12) with

U0 =νRe/Dh. The result is

Dh/L =

[
2fappRe +

KSC + KSE

2x∗Pr

]1/6

x−1/3
∗ Pr−1/3 (P ∗

N/ε)−1/6 (2.19)

In view of Eqs. (2.16) and (2.19) the heat transfer density scales with the group

Pr2/3 (P ∗
N/ε)1/3 while the ratio of hydraulic diameter to duct length scales with

the group Pr−1/3 (P ∗
N/ε)−1/6, as shown in Figs. 2.2 to 2.5 in which the existence of

maximums is made evident.
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Fig. 2.2: Variation of dimensionless heat transfer density with x∗ for (a) circular tubes and

(b) parallel plates ducts with KSC =KSE =0 and Pr=0.7.
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Fig. 2.3: Variation of dimensionless heat transfer density with x∗ for (c) rectangular ducts

1:4, (d) square ducts and (e) equilateral triangular ducts with KSC =KSE =0 and Pr=0.7.
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2.3 Asymptotic analysis of heat sink optimization

In this section the limiting asymptotes for small and large ducts are presented and

the order of magnitude of the optimum hydraulic diameter is predicted. The analysis

is carried out using the formulation derived in the previous section and neglecting

the local losses at the inlet and outlet plenums (KSC =KSE =0).

2.3.1 Heat transfer density for small ducts

In the case of ducts with vanishing small hydraulic diameter (Dh→0) the flow

becomes fully developed (x∗→∞) and therefore θ→0, i.e. the mean temperature of

the fluid at the exit tends to the temperature of the walls. Additionally, the apparent

friction factor of Eq. (2.13) tends to the fully developed flow value fRe. Therefore,

Eq. (2.16) reduces to

Q∗
N/ε = (2x∗fRe)−1/3 Pr2/3 (P ∗

N/ε)1/3 (2.20)

We conclude that the heat transfer density varies with x
−1/3
∗ . Using Eq. (2.19) the

asymptote of the expression above can be rewritten in terms of the hydraulic diame-

ter as

Q∗
N/ε = (2fRe)−1/2 (Dh/L) Pr (P ∗

N/ε)1/2 (2.21)

Thus, in the limit Dh→0 the heat transfer density decreases with Dh/L.

2.3.2 Heat transfer density for large ducts

In the case of ducts with large hydraulic diameter (Dh →∞) the flow is in both

thermal and hydrodynamic development (x∗→0). Therefore we have

θ ' 1− 4x∗Nu0−L (2.22)

In this limit both the mean Nusselt number and apparent friction factor are nearly

independent of the cross-sectional shape of the duct and are well described, respec-

tively, by the following equations [15]

Nu0−L (x∗) =
0.664

Pr1/6x
1/2
∗

(2.23)

and

fappRe =
3.44

x
1/2
+

(2.24)

Note that Eq. (2.23) is the third component of the asymptotic correlation for mean

Nusselt number presented in the right hand side of Eq. (2.8), and that Eq. (2.24) is

the Shapiro’s limit. Thus, Eq. (2.16) reduces to

Q∗
N/ε = 1.396x1/3

∗ Pr2/3 (P ∗
N/ε)1/3 (2.25)
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In conclusion, the heat transfer density varies with x
1/3
∗ . This asymptote is

independent of the cross-sectional shape and therefore holds for all duct geometries.

Using Eq. (2.19) the expression above can be rewritten in terms of the hydraulic

diameter as

Q∗
N/ε = 1.805 (Dh/L)−4/5 Pr1/3 (P ∗

N/ε)1/5 (2.26)

Thus, in the limit Dh→∞ the heat transfer density decreases as (Dh/L)−4/5.

In the case of parallel plates and in the range 5×10−3 < x∗ < 5×10−2 the heat

transfer density is higher than the values given by the asymptote of Eq. (2.25) and

approaches to the limiting curve that corresponds to the case Pr→∞. This curve

is derived as before but using in this case the second component of the asymptotic

correlation in the right hand side of Eq. (2.8):

Nu0−L (x∗) = 0.6135

(
fRe

x∗

)1/3

(2.27)

The result is:

Q∗
N/ε = 1.290 (fRe)1/3 x1/2

∗ Pr5/6 (P ∗
N/ε)1/3 (2.28)

This shows that in the limit x∗→0, the heat transfer density decreases with x
1/2
∗ .

2.3.3 Scale analysis of optimum hydraulic diameter

The variation of the heat transfer density with respect to x∗ is represented in Fig. 2.2

for circular tubes and parallel plates with Pr=0.7 and for the case when the local

losses at inlet and outlet plenums may be neglected. Fig. 2.3 shows the same variation

for the case of rectangular, square and equilateral triangular ducts. The limiting

curves a′ to e′ are obtained from Eq. (2.20) and correspond to the small duct limit.

The large duct limiting curve f is obtained from Eq. (2.25) while curve g is obtained

from Eq. (2.28) for the case of parallel plates. In Figs. 2.4 and 2.5, the heat transfer

density is represented as a function of Dh/L, exhibiting the existence of maximum

values as well.

The maximum heat transfer density corresponds to the optimum Dh/L ratio,

which is close to that obtained by intersecting the limits of Eqs. (2.21) and (2.26),

as shown in Figs. 2.4 and 2.5. Thus, we can predict the order of magnitude of the

optimum hydraulic diameter as

(Dh/L)opt (P ∗
N/ε)1/6 = 1.388 (2fRe)5/18 Pr−10/27 (2.29)

This result indicates that the optimum hydraulic diameter is nearly insensitive to

both P ∗
N and ε. With respect to optimum plate-to-plate spacing, in the case of

parallel plates (Dh =2 D) the right hand side of Eq. (2.29) reduces to 2.03 Pr−10/27,

which is very similar to the result obtained by Mereu et al. [2] for this duct geometry.
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2.4 Optimization and discussion

From Eq. (2.16) whenever the plenum losses may be neglected we conclude that the

optimum x∗ that arises from the condition ∂Q∗
N/∂x∗=0 is independent of the duct

fraction ε and, in that case, the maximum heat transfer density varies with ε2/3 while,

according to Eq. (2.19), the optimum ratio of hydraulic diameter to duct length varies

with ε1/6. The values of the optimum dimensional thermal length and maximum heat

transfer density were found through numerical maximization of Eq. (2.16) using the

Newton method. A maximum difference of 10−4 between two successive values of x∗
was used as convergence criteria, with a maximum number of iteration of 100. The

optimum hydraulic diameter was then calculated using Eq. (2.19).

2.4.1 Influence of the local losses

The influence of the local losses on the optimum dimensionless thermal length, maxi-

mum heat transfer density and optimum hydraulic diameter is shown in Figs. 2.6, 2.7

and 2.8, respectively. These variations are represented in percentage of the values for

the case KSC =KSE =0 and Pr=0.7. The optimum x∗ decreases with increasing ε

while the maximum heat transfer density and (Dh/L)opt increase. This is explained

by the increasing high values of local pressure drop at the plenums as ε decreases,

leading to lower values of Q∗
N . The parallel plates geometry is more affected by local

losses in terms of the maximum heat transfer density while the square and equilateral

triangular ducts are the less affected. In terms of optimum hydraulic diameter the

variations are small in all the cases (less than −1.5% for ε=0.5).
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2.4.2 Influence of the Prandtl number

For the case of circular tubes in which local losses may be neglected, both the

variation of (x∗)opt and maximum heat transfer density with the Prandtl number

is shown in Fig. 2.9. The optimum x∗ decreases with Pr and tends to (x∗)opt≈ 0.1

which corresponds to the optimum value for a thermally developing flow, while

maximum heat transfer density increases with Pr. The values of (x∗)opt, (Dh/L)opt

and maximum Q∗
N are presented in Tables 2.2, 2.3 and 2.4, respectively, for various

values of Pr.
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Fig. 2.9: Variation of (a) optimum dimensionless thermal length and (b) maximum heat

transfer density with Pr for circular tubes and KSC =KSE =0.

The optimum Dh/L ratio decreases with Pr as shown in Fig. 2.10 (solid lines),

where the scaling factor (P ∗
N/ε)1/6 is used with the purpose of showing the effect of

Prandtl number. These optimum values are found to be correlated for the geometries

considered through the following expression:

(Dh/L)opt (P ∗
N/ε)1/6 = 2.265 exp

(
fRe

32

)
Pr−0.33 (2.30)

with a maximum error within −2.1% to 2.0% in the range 0.1≤Pr≤ 100. On the

other hand, the prediction made by Eq. (2.29) reproduces the numerical results with

error within −8.6% to 13.5% for 0.1≤Pr≤10 and for all the geometries considered

except for parallel plates in which the lower limit of the error is −23%.

Once the optimum Dh/L ratio is known through Eq. (2.30), it is straightforward

to determine the characteristic length scale of the duct (e.g. diameter of circular

tubes, the length of the side of square ducts, etc) from the definition of hydraulic

diameter (Table 2.1).
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Table 2.2: Optimum x∗ for different duct geometries and Pr numbers with KSC =KSE =0.

Pr

Duct geometry 0.1 0.7 1 5 10 50 100

Circular tubes 0.153 0.127 0.123 0.111 0.109 0.107 0.107

Parallel plates 0.083 0.069 0.067 0.063 0.062 0.061 0.061

Rectangular 1:4 0.132 0.110 0.106 0.097 0.096 0.095 0.094

Square 0.173 0.143 0.138 0.122 0.119 0.116 0.116

Equilateral triangle 0.180 0.150 0.143 0.123 0.119 0.116 0.116

Table 2.3: Optimum hydraulic diameter (Dh/L)opt Pr1/3 (P ∗
N/ε)1/6 for different duct

geometries and Pr numbers with KSC =KSE =0.

Pr

Duct geometry 0.1 0.7 1 5 10 50 100

Circular tubes 3.739 3.668 3.680 3.733 3.745 3.756 3.757

Parallel plates 4.854 4.781 4.790 4.826 4.834 4.840 4.841

Rectangular 1:4 3.989 3.926 3.937 3.981 3.991 3.999 4.000

Square 3.550 3.468 3.483 3.554 3.571 3.586 3.588

Equilateral triangle 3.481 3.389 3.409 3.502 3.526 3.548 3.551

Table 2.4: Maximum heat transfer density (Q∗
N/ε)max Pr−2/3 (P ∗

N/ε)−1/3 for different duct

geometries and Pr numbers with KSC =KSE =0.

Pr

Duct geometry 0.1 0.7 1 5 10 50 100

Circular tubes 0.425 0.506 0.515 0.537 0.540 0.543 0.543

Parallel plates 0.472 0.556 0.564 0.585 0.588 0.590 0.591

Rectangular 1:4 0.436 0.515 0.523 0.544 0.547 0.549 0.550

Square 0.415 0.496 0.506 0.529 0.533 0.536 0.537

Equilateral triangle 0.408 0.488 0.497 0.522 0.526 0.529 0.529
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Fig. 2.10: Variation of optimum hydraulic diameter with Pr for heat transfer maximiza-

tion (solid lines) and pumping power minimization (dashed lines) with KSC = KSE = 0:

(a) circular tubes; (b) parallel plates ducts; (c) rectangular ducts 1:4; (d) square ducts;

(e) equilateral triangular ducts.

For the maximum heat transfer density the formula

(Q∗
N/ε)max (P ∗

N/ε)−1/3 = (0.42 + 0.0061fRe) Pra (2.31)

is found to hold, with a=0.75 for 0.1≤Pr≤1 and a=0.68 for 1≤Pr≤100. In this

case, the maximum error is −2.7% to 2.8% in the entire range of Pr. When Pr=1

the maximum absolute error is 1.6%.

2.4.3 Pumping power minimization

Given the proportionality between heat transfer and pumping power according to

Eq. (2.16), the problem of minimizing P ∗
N with fixed Q∗

N is equivalent to maximizing

Q∗
N with fixed P ∗

N , resulting in the same optimum x∗ in both cases. The optimum

hydraulic diameter for minimum pumping power is calculated from Eq. (2.19) by

making x∗ = (x∗)opt and P ∗
N = (P ∗

N)min that comes from Eq. (2.16). These values

scale with (Q∗
N/ε)1/2 and are shown in Fig. 2.10 (dashed lines) as function of Prandtl

number.

For all the geometries considered the following expression it is found to hold:

(Dh/L)opt (Q∗
N/ε)1/2 = 2.265 (0.42 + 0.0061fRe)1/2 exp

(
fRe

32

)
Prb (2.32)
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with b = 0.045 for 0.1 ≤ Pr ≤ 1 and b = 0.01 for 1 ≤ Pr ≤ 100. In this case, the

maximum error is within −2.6% to 3.1% in the entire range of Pr. We can see

that (Dh/L)opt (Q∗
N/ε)1/2 is nearly constant for Pr ≥ 0.7 suggesting that, as an

approximation, the heat sink can be firstly optimized geometrically for the required

heat transfer density and then operated according to the kind of fluid for the purpose

of achieving minimum pumping power, which is obtained from Eq. (2.16).

2.5 Conclusions

In this study we addressed the optimization of a heat sink formed by parallel

ducts in a solid matrix of fixed volume. The optimum dimensionless thermal length

and optimum hydraulic diameter were found for achieving maximum heat transfer

density at fixed pumping power. We present simple equations for the calculation of

those optimum values as function of Prandtl number. When local pressure losses at

inlet and outlet plenums are considered we found that the optimum dimensionless

thermal length varies inversely with the volume fraction of ducts while the maxi-

mum heat transfer density and the optimum hydraulic diameter vary directly with

the same quantity. Results were extended and discussed for the case of pumping

power minimization with fixed heat transfer density, and it was found that the opti-

mum hydraulic diameter is nearly constant for Pr ≥ 0.7, thus suggesting that heat

sinks can be firstly optimized geometrically for the required heat transfer density

and then operated according to the fluid properties for achieving minimum pumping

power.
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Nomenclature

An cross-sectional area (m2)

cp specific heat (J kg−1 K−1)

Dh hydraulic diameter (m), ≡ 4An/p

f friction factor

H height (m)

hx local heat transfer coefficient (W m−2 K−1)

h0−L average heat transfer coefficient (W m−2 K−1)

L length (m)

k thermal conductivity (W m−1 K−1)

K local pressure drop coefficient

ṁ mass flow rate (kg s−1)

N number of ducts

Nu0−L mean Nusselt number, ≡ h0−LDh/k

p perimeter (m)

ṖN total pumping power (W)

P ∗
N dimensionless pumping power, ≡ ρ2L4ṖN/(µ3HWL)

Pr Prandtl number, ≡ µ cp/k

q′′ heat flux (W m−2)

Q̇N total heat transfer rate (W)

Q∗
N dimensionless heat transfer density, ≡ L2Q̇N/ (kHWL (Tw − Ti))
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Re Reynolds number, ≡ U0Dh/ν

T temperature (K)

U0 mean fluid velocity in ducts (m s−1)

x+ dimensionless hydrodynamic length, ≡ (L/Dh)/Re

x∗ dimensionless thermal length, ≡ (L/Dh)/(RePr)

W width (m)

Greek symbols

∆p pressure drop (Pa)

ε volume fraction of ducts, ≡ NAnL/(HWL)

µ dynamic viscosity (kg m−1 s−1)

ν kinematic viscosity (m2 s−1), ≡ µ/ρ

ρ density (kg m−3)

Subscripts

app apparent

i inlet

fd fully developed flow

max maximum

min minimum

o outlet

opt optimum

SC sudden contraction

SE sudden expansion

w wall





Chapter 3

Optimization of fluid flow and internal geometric structure

of volumes cooled by forced convection in an array of

parallel tubes†

Abstract

This paper reports the optimization of a heat sink composed of parallel

tubes in a solid matrix of fixed dimensions for the following cases: (i) fixed

pressure drop; (ii) fixed pumping power and (iii) fixed heat transfer rate

density. The method of the intersection of asymptotes is employed using

the dimensionless thermal length (x∗) as primary optimization variable,

and approximate theoretical expressions for predicting the optimum ratio of

diameter to tube length (D/L) are presented for each case. When the system

is optimized with fixed heat transfer density it is found that the optimum

values of both x∗ and D/L are very close to those that correspond to the

joint minimization of pressure drop and pumping power. These results are

validated and complemented by means of numerical simulations.

Keywords: Heat sinks, Forced convection, Laminar flow, Optimization,

Intersection of asymptotes method.

3.1 Introduction

The design of forced convection heat sinks is usually carried out in order to maximize

the heat transfer density under the maximum surface temperature allowed for the

system to be cooled. In this case, the optimal internal geometric structure depends

on the imposed constraint, e.g. fixed pressure drop or fixed pumping power. The

same procedure is also used either for determining the maximum packaging of heat

generating devices in a fixed volume or, conversely, if the heat generated is fixed and

†Paulo Canhoto(1), A. Heitor Reis(1), Optimization of fluid flow and internal geometric structure of

volumes cooled by forced convection in an array of parallel tubes, International Journal of Heat and Mass

Transfer 54 (2011) 4288–4299.
(1) Physics Department and Geophysics Centre of Évora, University of Évora.
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known, for minimizing the hot spot temperature.

Two different approaches are commonly considered in heat sink optimization: (1)

numerical simulations of flow and temperature fields and; (2) scale analysis of flow

and heat transfer variables. Although the numerical simulation is more accurate,

it requires computing time and resources that are not negligible as compared with

the second approach. In the second approach, the method of the intersection of

asymptotes [1, 2] is a straightforward but powerful tool for predicting the optimal

internal geometric structure of volumes cooled either by natural or forced convection,

and is a tool of the constructal theory [3, 4, 5]. The constructal theory has extensive

applicability in many domains, e.g. in optimization of engineered fluid flows and heat

transfer networks [6, 7], and prediction of shape and structure in natural systems

[8, 9] as well in living organisms [10].

The method of intersecting the asymptotes was first employed to predict the

optimal spacing in a heat sink composed of parallel plates under natural convection

[1], and thereafter applied to the optimization of a similar heat sink under forced

convection and subjected to fixed pressure drop [2]. More recently, this last work

was generalized to other duct geometries [11]. Optimization was also carried out

for the case of a stack of heat generating boards with fixed mass flow rate and

fixed pumping power [12] and for the cases of staggered plates [13] and cylinders

in cross-flow [14, 15]. Recent works report the use of the constructal method in

the optimization of aspect ratios of channels with fixed pressure drop [16, 17], and

of metallic cellular sandwich heat sinks with constant pumping power [18]. The

same method was used to design multi-scale compact micro-tube heat sinks [19] for

maximum heat transfer density.

Yilmaz et al. [20] carried out an asymptotic analysis of forced convection heat

transfer in ducts of different shapes for laminar flow with fixed pressure drop, and

used an exact method based on correlations to obtain the optimal geometry. More

recently, the optimization of a heat sink composed of parallel circular or non-circular

ducts in a finite volume was reported for the case of fixed pumping power constraint,

see Ref. [21]1. This work also reports the optimum length scale of ducts for pumping

power minimization with fixed heat transfer density at a given nominal or maximum

temperature of operation.

The method of intersecting the asymptotes provides the geometric point that

optimizes the trade-off of two distinct trends. For example, in the case of a heat sink

composed of parallel channels, for small hydraulic diameters the flow becomes fully

1The paper “Optimization of forced convection heat sinks with pumping power requirements”, Int. J.

Heat Mass Transfer 54 (2011) 1441–1447 by P. Canhoto and A.H. Reis [21] is included in this thesis in the

Chapter 2.
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developed and the outlet temperature of the fluid approaches the wall temperature,

while for large hydraulic diameters the flow is thermally developing and the tempe-

rature of the fluid in the core remains nearly unchanged. It is also possible to

represent these limiting cases in terms of the dimensionless thermal length of the

flow (x∗), thus allowing to directly verify if the fluid is ’efficiently used’ for the cool-

ing purpose: (i) if x∗ is too small it means that the fluid in the core flow almost do

not participate in the heat transfer process and; (ii) if x∗ is too large the heat flux

decreases and, in the limit, no more heat can be extracted by the fluid. The inter-

section of these two distinct trends makes it possible to predict the optimum length

scale of the heat sink channels together with the optimum dimensionless thermal

length under global constraints. For example, for a parallel plates heat sink sub-

jected to fixed pressure drop the intersection of asymptotes underestimates by only

12% the optimum plate-to-plate spacing for maximum heat transfer density [2]. In

this case the adjacent thermal boundary layers merge just at the exit of the channel.

However, we can recognize the concept beyond this method as a general rule

that is likely independent of the imposed fluid flow constraints, because thermally

developed and developing flow limits are still possible to reach if diverse conditions

are considered. Specifically, we may assume that the method is able not only to

predict the optimal internal geometric structure but also provide some guidelines

about the better fluid flow conditions for a given heat transfer density.

The fluid flow constraint depends on the flow arrangement in which the heat

sink is connected [12]. If several heat sinks or other components are connected in

parallel thus receiving the flow from the same plenum then the fixed pressure drop is

the appropriate constraint, while fixed mass flow rate constraint reveals appropriate

when several components are placed in series. If a heat sink is the only component

that is cooled by the flow imposed by a pump or fan, then the fixed pumping power

assumption must be used. However, in this case we must also consider pumping

power minimization with fixed heat transfer density, because in several practical

installations the heat to be extracted from a system or device at a given design or

maximum temperature is known, and the objective is reducing the electric power

input to the fan or pump.

In this work, we explore the concept of the method of intersecting the asymp-

totes for the optimization of a heat sink composed of parallel tubes, by considering

different constraints: fixed pressure drop, fixed pumping power, and fixed heat trans-

fer density. The dimensionless thermal length is used as the primary optimization

variable and the optimum ratio of diameter to tube length (D/L) is obtained for

each case together with the maximum heat transfer density, minimum pressure drop

or minimum pumping power. These results are validated and complemented by

numerical simulations of fluid flow and temperature fields.
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Fig. 3.1: Compact heat sink of parallel ducts in a finite volume: (a) geometry schematic;

(b) physical domain of an elemental channel; (c) computational domain and boundary

conditions.

3.2 Hydrodynamic and thermal analysis of heat sink optimization

The heat sink under consideration in the present work is composed of parallel tubes

in a solid matrix of high thermal conductivity material with fixed dimensions H, W

and L, as shown in Fig. 3.1(a). The number of tubes with diameter D in the array

is given by

N ' 4εHW

πD2
(3.1)

The volume fraction of the tubes ε is set fixed by the heat sink designer. For

example, in the case of circular tubes in a maximum packing square arrangement

ε'0.785 and N'HW/D2. A coolant flows in the tubes with mean velocity U0 and

inlet temperature Ti. It is assumed that the flow is steady, laminar, incompressible,

and equally distributed among the tubes, together with negligible pressure losses at

the inlet and outlet plenums.

The walls of the tubes are considered to be at uniform temperature Tw, thus

neglecting the conduction resistance in the solid matrix, in line with recent works

for similar multilayer channel configuration [11, 17 – 21]. This also means that we can
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regard Tw as the scale of the surface temperature, which is distinct from the inlet and

outlet temperatures of the fluid. Additionally, it is assumed that the thermodynamic

and transport properties of the fluid are constant.

The mass flow rate in each tube is given by:

ṁ = ρU0πD2/4 (3.2)

while the total rate of heat removed from the heat sink reads:

Q̇N = Nṁcp (To − Ti) (3.3)

The mean temperature of the fluid at the outlet To is determined through the

following expression [22]:

θ =
Tw − To

Tw − Ti

= exp (−4x∗Nu0−L) (3.4)

where Nu0−L is the mean Nusselt number and x∗ is the dimensionless thermal length,

which reads:

x∗ =
L/D

RePr
(3.5)

By combining Eqs. (3.1) – (3.4) one finds the total heat transfer rate in the form:

Q̇N = εHW
ρk

µ
PrU0 (1− θ) (Tw − Ti) (3.6)

The mean fluid velocity U0 is related to the pressure drop across the heat sink

through the apparent friction factor method by using the known formula:

∆p

1/2ρU2
0

= 4x+fappRe (3.7)

with the friction factor-Reynolds number group given by [23]

fappRe =




(
3.44

x
1/2
+

)2

+ (fRe)2




1/2

(3.8)

Note that the dimensionless hydrodynamic length x+ = (L/D) /Re may also read

x+ = x∗Pr and that fRe stands for friction factor of fully developed flow. More

recently, Muzychka and Yovanovich [24, 25] presented a detailed analysis of heat

transfer and friction factor in circular and non-circular ducts and proposed new

models for developing and fully developed flow.

By combining Eqs. (3.6) and (3.7) we obtain

Q̇N = (εHW )︸ ︷︷ ︸
Geometry

(ρ1/2Pr1/2k/µ)︸ ︷︷ ︸
Fluid properties

(2x∗fappRe)−1/2

︸ ︷︷ ︸
Fluid flow

(1− θ)︸ ︷︷ ︸
Heat transfer

∆p1/2(Tw − Ti) (3.9)
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In the right hand side of this equation four groups of factors are identified that

relate to overall geometry, fluid properties and fluid flow and heat transfer conditions,

respectively. Considering that both fappRe and Nu0−L can be determined as functions

of dimensionless thermal length and Prandtl number, then x∗ emerges as the unique

free variable in Eq. (3.9) that can be adjusted for maximum heat transfer rate.

From previous works on heat sink optimization [2, 11, 20] it is known that when

the imposed pressure drop is fixed an optimal internal geometry exists for which the

total heat transfer rate is maximum. In fact, as for a given Pr both fRe and Nu0−L

decrease with x∗, and by a simple graphical analysis of Eq. (3.9) (not shown here for

concision, see the next sections), if both ∆p and (Tw−Ti) are fixed we conclude that a

maximum value of Q̇N exists for a certain value of x∗ (optimum). What is important

to retain now is that the group (1−θ)x
−1/2
∗ makes it possible this maximum to exist,

also for thermally developing flow (fRe=16). If we rewrite Eq. (3.9) in the following

simplified form:

Q̇N

∆p1/2(Tw − Ti)
= f(x∗) (3.10)

where f(x∗)>0 stands for the four groups of factors identified before, it is straight-

forward to show that the optimum value of x∗ that emerges from ∂f(x∗)/∂x∗ = 0

may be found either through maximization of Q̇N at constant ∆p and Tw−Ti, or

equivalently through minimization of either ∆p (at constant Q̇N and Tw−Ti) or

Tw−Ti (at constant Q̇N and ∆p).

The relation between D/L, x∗ and ∆p may be derived from Eqs. (3.5) and (3.7)

with U0 =νRe/D:

D/L =

(
2fappRe

x∗Pr

)1/4

∆p∗−1/4 (3.11)

where ∆p∗ = ρL2∆p/µ2 is dimensionless pressure drop. Once the optimum x∗ is

known, the optimum ratio of diameter to tube length can be determined through

Eq. (3.11) by using either the fixed value or the minimum value of pressure drop.

In the case of heat transfer rate maximization the value of (Q̇N)max is determined

by making x∗=(x∗)opt in Eq. (3.9), which can be rewritten in the following form:

Q∗
N/ε = (2x∗fappRe)−1/2 (1− θ) Pr1/2∆p∗1/2 (3.12)

with

Q∗
N =

L2Q̇N/(HWL)

k(Tw − Ti)
(3.13)

which is dimensionless heat transfer density.

From this analysis we may conclude that both the optimum dimensionless ther-

mal length and the optimum D/L ratio are independent of porosity ε while the

maximum heat transfer rate density varies with ε at fixed ∆p, and the minimum
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pressure drop varies with ε−2 at fixed Q̇N . Furthermore, one can verify that the

maximum heat transfer rate scales with the group (Pr∆p∗)1/2 while the optimum

diameter scales with (Pr∆p∗)−1/4.

If the mean velocity U0 is related to the total pumping power in the form

ṖN =
1

ρ
Nṁ∆p (3.14)

then, by using Eqs. (3.1), (3.2), (3.6), and (3.7), the heat transfer rate reads:

Q̇N = (εHW )2/3

︸ ︷︷ ︸
Geometry

(ρ2/3Pr2/3k/µ)︸ ︷︷ ︸
Fluid properties

(2x∗fappRe)−1/3

︸ ︷︷ ︸
Fluid flow

(1− θ)︸ ︷︷ ︸
Heat transfer

Ṗ
1/3
N (Tw − Ti) (3.15)

Again, the dimensionless thermal length is the unique optimization variable. Simi-

larly to the case before, by rewriting the last equation in the form:

Q̇N

Ṗ
1/3
N (Tw − Ti)

= g(x∗) (3.16)

where g(x∗) > 0 stands for the four groups of factors identified in the right-hand

side of Eq. (3.15), we can easily verify that the optimum value of x∗ that emerges

from ∂g(x∗)/∂x∗=0 may be found either when maximizing Q̇N at constant ṖN and

Tw−Ti, or either when minimizing ṖN (at constant Q̇N and Tw−Ti) or Tw−Ti (at

constant Q̇N and ṖN). Here, the existing extreme comes from the group (1−θ)x
−1/3
∗ .

The relation between D/L, x∗ and ṖN is obtained from Eqs. (3.1), (3.2), (3.5),

(3.7), and (3.14) with U0 =νRe/D:

D/L =

(
(2fappRe)1/2

x∗Pr

)1/3

(P ∗
N/ε)−1/6 (3.17)

where P ∗
N = ρ2L4ṖN/(µ3HWL) is dimensionless pumping power. Again, once the

optimum x∗ is known the optimum ratio of diameter to tube length can be deter-

mined through Eq. (3.17) by using either the fixed value or the minimum value of

pumping power.

In the case of heat transfer rate maximization the value of (Q̇N)max is deter-

mined by making x∗=(x∗)opt in Eq. (3.15), which can be rewritten in the following

dimensionless form

Q∗
N/ε = (2x∗fappRe)−1/3 (1− θ) Pr2/3 (P ∗

N/ε)1/3 (3.18)

Note that the groups Q∗
N/ε and P ∗

N/ε represent the dimensionless heat transfer rate

and total pumping power per unit of volume that is effectively occupied by the fluid,

respectively.

In this case we may conclude that the optimum dimensionless thermal length is

independent of ε while the optimum D/L ratio varies with ε1/6, the maximum heat
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transfer rate density varies with ε2/3 at fixed ṖN , and the minimum pumping power

varies with ε−2 at fixed Q̇N . One can also verify that the maximum Q∗
N/ε scales with

the group Pr2/3(P ∗
N/ε)1/3 while the optimum diameter scales with Pr−1/3(P ∗

N/ε)−1/6.

3.3 Numerical heat sink modelling

The physical domain of one single tube of the heat sink together with the computa-

tional domain and the boundary conditions are shown in Fig. 3.1. The dimensionless

governing equations for steady flow in cylindrical coordinates read:

Continuity
∂ũ

∂x̃
+

ṽ

r̃
+

∂ṽ

∂r̃
= 0 (3.19)

x–momentum

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂r̃
= −∂p̃

∂x̃
+

1

Re

(
∂2ũ

∂x̃2
+

1

r̃

∂ũ

∂r̃
+

∂2ũ

∂r̃2

)
(3.20)

r–momentum

ũ
∂ṽ

∂x̃
+ ṽ

∂ṽ

∂r̃
= −∂p̃

∂r̃
+

1

Re

(
∂2ṽ

∂x̃2
− ṽ

r̃2
+

1

r̃

∂ṽ

∂r̃
+

∂2ṽ

∂r̃2

)
(3.21)

Energy

ũ
∂T̃

∂x̃
+ ṽ

∂T̃

∂r̃
=

1

RePr

(
∂2T̃

∂x̃2
+

1

r̃

∂T̃

∂r̃
+

∂2T̃

∂r̃2

)
(3.22)

The axial and radial velocity components are ũ and ṽ, respectively. These equations

are obtained by defining the following variables transformations

(ũ, ṽ) = (u, v) /U0 (3.23)

(
x̃, r̃, L̃

)
= (x, r, L) /D (3.24)

p̃ = p/
(
ρU2

0

)
(3.25)

T̃ =
T − Ti

Tw − Ti

(3.26)

No-slip condition at the wall and zero gradients at the outlet boundary are as-

sumed. The heat transfer rate is calculated from the local heat flux at the wall

q′′=k(∂T/∂r)r=D/2.

The governing equations were solved with the help of the finite volume method by

using a free source code for convection–diffusion problems [26]. The diffusion terms

were discretised by means of a central differencing scheme, and convergence was

considered to be achieved when the normalized residuals of the mass and momentum

equations became smaller than 10−6, and the residual of the energy equation smaller

than 10−8. A grid independence test was carried out for the following conditions:
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D=0.004 m, L=0.10 m, U0 =0.1 m/s and Pr=5.0. The numerical values generated

in this simulation test were validated by comparison with the results presented in

referenced literature [27], and it was found that mesh size of 100×50 assures a grid

independent solution.

From the analysis presented in the previous section we concluded that the same

value of optimum x∗ is obtained either when maximizing heat transfer density or

when minimizing either pressure drop or pumping power at fixed heat transfer den-

sity. Furthermore, the optimum x∗ is independent of the volume fraction of tubes.

Thus, the numerical simulations were carried out considering the following fixed

values: Q∗
N =1×103, ε=0.6 and V =1×10−4 m3.

In the case of simultaneously developing flow the numerical procedure can be

briefly described as comprising the following steps: (1) obtain the fluid flow and

temperature fields in a long tube (D/L 6 0.01) for a given Reynolds number; (2)

assume an initial number of tubes; (3) find the D/L ratio to obtain the required

heat transfer density; (4) update the number of tubes and the D/L ratio according

to the fixed volume constraint; (5) calculate the dimensionless thermal length, the

pressure drop and the pumping power. The procedure above is repeated for various

Reynolds numbers within the laminar fluid flow range and such that the dimen-

sionless thermal length falls in the range 10−4 < x∗ < 0.5. The minimum pressure

drop and the minimum pumping power are obtained with the help of an external

numerical minimization procedure.

In the particular case of hydrodynamically fully developed flow the radial velocity

component is zero and the axial component is ũ = 2(1−4r̃2). Then, by neglecting

the effect of axial conduction (RePrÀ1), the energy conservation equation reduces

to the classical Graetz problem formulation [28]. In this case the heat transfer rate

is well modelled by using an appropriate estimate for the mean Nusselt number in

Eqs. (3.12) and (3.18) along with fRe = 16. We modelled the Nusselt number of

thermally developing flow as:

Nudv = 1.522x−1/3
∗ (3.27)

This equation is deduced during the scale analysis presented in the next section

and is very similar to the Lévêque solution (Nudv = 1.615x
−1/3
∗ ) [29]. Then, the

asymptotic correlation method outlined by Churchill and Usagi [30] was used to

model the Nusselt number in the entire range of x∗ in the form:

Nu0−L =
(
Nu4

dv + Nu4
fd

)1/4
(3.28)

with Nufd =3.66. The values generated by Eq. (3.28) were compared with data from

Shah and London [31] and maximum differences were found within −0.96% to 0.62%

for x∗>1×10−3. These differences fall in the range −3.04% to 0.62% for x∗>1×10−4.
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3.4 Scale analysis and intersection-of-asymptotes method

In the first part of this section, we present scale analysis and the method of inter-

section of asymptotes for predicting the optimal heat sink design that maximizes

the heat transfer density with fixed pressure drop and fixed pumping power. In the

second part, we present scale analysis of fluid flow optimization (minimization of

pressure drop and pumping power) with fixed heat transfer density.

3.4.1 Scale analysis of heat transfer rate maximization

Bejan and Sciubba [2] and more recently Muzychka [11] used the method of the

intersection of asymptotes for optimizing a parallel channels heat sink subjected to

finite volume and fixed pressure drop constraints. In those works the optimal inter-

nal structure was predicted for maximum heat transfer rate, with the optimization

variable D either representing the plate-to-plate spacing or the inner circular tube

diameter or else other reference length scale of the duct shape. In that case, the mean

velocity of the fluid (or equivalently the Reynolds number) and the dimensionless

thermal length x∗ implicitly vary according to the flow constraint. The method is

based on the intersection of two distinct trends: (i) the fully developed flow asymp-

tote (D→ 0 limit), in which the mean outlet temperature of the fluid approaches

the temperature of the wall and the heat transfer rate varies as ∼D2; and (ii) the

developing flow asymptote (D→∞ limit), in which the mean temperature of the

fluid in the flow core approaches the inlet temperature, and the total heat transfer

rate varies as ∼D−2/3.

In this section, the method of the intersection of asymptotes is employed using x∗
as the optimization variable and for the cases when either pressure drop or pumping

power are fixed. Firstly, the method is applied for the case of thermally developing

flow and then the results are generalized for simultaneously developing flow, and

formulae for predicting the optimum diameter of the tubes are presented.

Fixed pressure drop

In the fully developed flow limit the total heat transfer rate is given by the global

energy balance in the array:

Q̇fd = Nṁcp (Tw − Ti) (3.29)

The mass flow rate ṁ or, alternatively, the mean velocity of the fluid in the tubes U0

is related to pressure drop ∆p through Eq. (3.7), where the friction factor-Reynolds

number group in the case of circular tubes and fully hydrodynamically developed

flow is fRe=16. Then, by setting x∗=x+/Pr as the optimization variable, the mean
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velocity reads:

U0 =

(
∆p

2fReρPrx∗

)1/2

(3.30)

By combining Eqs. (3.1), (3.2), (3.29), and (3.30), and with Prandtl number given

by Pr=µcp/k, the total rate of heat transfer reads:

Q̇fd = εHW

(
ρPr∆p

2fReµ2x∗

)1/2

k (Tw − Ti) (3.31)

This expression can be rewritten in dimensionless form as (see Eq. (3.13)):

Q∗
fd = ε

(
Pr∆p∗

2fRe

)1/2

x−1/2
∗ (3.32)

Thus, in the limit x∗ → ∞ the heat transfer density varies as x
−1/2
∗ . The group

Be=Pr∆p∗ that appears in the last equation is also referred as the Bejan number

[32].

In the thermally developing flow limit the total heat transfer rate that is removed

from the entire array of tubes with transfer area AN =NπDL is given by

Q̇dv = ANh0−L (Tw − Ti) (3.33)

The average heat transfer coefficient h0−L may be approximated by the expression

for laminar boundary layer flow over a flat plate [11, 28]:

Lh0−L

k
= 0.664Re

1/2
L Pr1/3 (3.34)

for Pr > 0.5. The Reynolds number based on the length ReL is obtained from

balancing the forces on the array:

τwNπDL = N
πD2

4
∆p (3.35)

in which the mean wall shear stress τw is given by the velocity boundary layer

solution [28]
τw

1/2ρU2∞
= 1.328Re

−1/2
L (3.36)

and U∞ is the free stream (core flow) velocity. Combining Eqs. (3.35) and (3.36)

with U∞=νReL/L yields:

Re
1/2
L = 0.722∆p∗1/3 (D/L)1/3 (3.37)

The use of the square root of ReL instead of the free stream velocity U∞ is advanta-

geous because Re
1/2
L accounts for the boundary layer slenderness ratio as noted by

Bejan [28].
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Finally, by combining Eqs. (3.11), (3.33), (3.34), and (3.37) we obtain the dimen-

sionless heat transfer density in the form:

Q∗
dv = 1.918ε

(Pr∆p∗)1/2

(2fRe)1/6
x1/6
∗ (3.38)

Eq. (3.38) shows that in the limit x→ 0 the global heat transfer density varies as

∼x
1/6
∗ .

It is worth noting that by combining Eqs. (3.34) and (3.37) and eliminating the

pressure drop through Eq. (3.11) we obtain the mean Nusselt number based on D

in the form:
Dh0−L

k
= 0.604 (fRe)1/3 x−1/3

∗ (3.39)

which in the case of circular tubes (fRe=16) reduces to

Dh0−L

k
= 1.522x−1/3

∗ (3.40)

This expression was already presented in the previous section (see Eq. (3.27)) (the

difference to data [31] is smaller than 3.04% in the range 1×10−4 6x∗6 1× 10−2).

Eq. (3.39) still holds for other duct geometries provided that the correspondent hy-

draulic diameter and friction factor-Reynolds number group are used, and good

agreement can also be found for square and parallel plate channels. This confirms

the correctness of the approximations assumed in the formulation of the developing

flow asymptote and corresponds to (τw)plate =(τw)tube, i.e., the average heat transfer

coefficient of a thermally developing flow in a circular tube is quite well described

by the boundary layer solution of Eq. (3.34) when using values of Re
1/2
L such that

the mean gradient of the fluid velocity near a flat plate surface (∂u/∂y)y=0 (that is

the fluid that effectively participates in the heat transfer) is equal to the gradient of

the fluid velocity at the wall of the tube.

The asymptotes described by Eqs. (3.32) and (3.38) as well as the actual dimen-

sionless heat transfer density from Eq. (3.12) are depicted in Fig. 3.2. The optimum

x∗ that emerges from the intersection of these asymptotes is given by

(x∗)opt =
1

1.9183/2 (2fRe)1/2
(3.41)

while the optimum ratio of diameter to tube length can be predicted through

Eq. (3.11) by making x∗=(x∗)opt:

(Dh/L)opt ≈ 1.277 (2fReDh
)3/8 (Pr∆p∗)−1/4 (3.42)

This equation is intentionally presented in its generalized form based on hydraulic

diameter with the purpose of highlighting two aspects: (i) the present result still

holds for other duct geometries, in particular, we note that the application of
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Fig. 3.2: Heat transfer asymptotes as function of dimensionless thermal length at fixed

pressure drop.

Eq. (3.42) to parallel plates heat sink (Dh = 2D, fReDh
= 24) leads to Dopt/L ∼=

2.73Be−1/4 with Be = Pr∆p∗, which matches exactly the optimum plate-to-plate

spacing (Dopt) found by Bejan [2] for that geometry; and (ii) Eq. (3.42) is a straight-

forward form alternative to the result obtained by Muzychka [11] that used the

geometric length scale Dh as optimization variable in the case of simultaneously

developing flow. In the case of the present work, for circular tubes we have (x∗)opt≈
0.067 and

Dopt/L ≈ 4.684 (Pr∆p∗)−1/4 (3.43)

As conclusion, we can extend the use of Eqs. (3.42) and (3.43) to simultaneously

developing flow and, by comparison with Eq. (3.11), to find out (x∗)opt from

(
2fappRe

(x∗)opt

)1/4

= 4.684 (3.44)

The solution of this equation depends on Prandtl number due to the relation between

dimensionless hydrodynamic and thermal lengths x+ =x∗Pr. A polynomial equation

on (x∗)opt is obtained by substituting Eq. (3.8) in Eq. (3.44), and the optimum x∗
decreases and approaches 0.067 for PrÀ1. The feasible solution of this polynomial

equation is presented and discussed in Section 3.5 for various values of Pr.

From Eq. (3.32) (or Eq. (3.38)) one finds that the maximum heat transfer density

corresponding to x∗=(x∗)opt is given by:

(Q∗
N/ε)max < 1.630 (2fRe)−1/4 (Pr∆p∗)1/2 (3.45)
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The maximum heat transfer density is directly proportional to ε and to the square

root of Prandtl number. In the case of a parallel tubes heat sink in a maximum

square packing arrangement (ε≈0.785) one has Q∗
N,max <0.538 (Pr∆p∗)1/2.

Fixed pumping power

The heat transfer asymptotes at fixed pumping power can be derived in a way

similar to that of fixed pressure drop. Again, we start by considering a thermally

developing flow. By using Eqs. (3.7) and (3.14) together with Eqs. (3.1) and (3.2)

the mean velocity reads:

U0 =

(
ṖN

εHW2fReρPrx∗

)1/3

(3.46)

while pressure drop relates to pumping power as:

∆p∗ = (2fRex∗Pr)1/3

(
P ∗

N

ε

)2/3

(3.47)

Then, by using Eqs. (3.32) and (3.47) the fully developed flow asymptote reads:

Q∗
fd =

ε2/3

(2fRe)1/3
Pr2/3P

∗1/3
N x−1/3

∗ (3.48)

Thus, in the limit x∗→∞ the heat transfer density varies with x
−1/3
∗ . In the same

way the developing flow asymptote of Eq. (38) turns into:

Q∗
dv = 1.918ε2/3Pr2/3P

∗1/3
N x1/3

∗ (3.49)

In the limit x∗→0 the heat transfer density varies with x
1/3
∗ . It must be also noted

that this asymptote is independent of the duct shape.

Both the asymptotes and the actual dimensionless heat transfer density calcu-

lated from Eq. (3.18) are shown in Fig. 3.3. Due to proportionality between pressure

drop and pumping power shown by Eq. (3.47), it is expected that the intersection

of the asymptotes with fixed P ∗
N will predict the same optimum x∗ as with the

asymptotes at fixed ∆p∗. In fact, from the combination of Eqs. (3.48) and (3.49)

we obtain again Eq. (3.41). This shows that in the case of thermally developing

flow, the optimum x∗ predicted by intersecting the asymptotes is independent of the

constraint imposed to fluid flow.

The optimum ratio of diameter to tube length is predicted by making x∗=(x∗)opt

in Eq. (3.17):

(Dh/L)opt ≈ 1.385 (2fReDh
)1/3 Pr−1/3 (P ∗

N/ε)−1/6 (3.50)

Again we present a generalization based on the hydraulic diameter to show that

this result still holds for other duct geometries. In particular, we note that the
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application of Eq. (3.50) to a parallel plates heat sink (Dh = 2D, fReDh
= 24, ε =

1) yields Dopt/L ∼= 2.52 Pr−1/3P
∗−1/6
N , which is similar and matches the optimum

plate-to-plate spacing (Dopt) found by Mereu et al. [12] very closely, in which the

dimensionless pumping power raised to the power −1/6 is multiplied by the group

2.26 Pr−10/27. The result by Mereu was obtained by using the plate-to-plate spacing

as the optimization (free) variable together with simultaneously developing flow, and

assuming that the mean velocity of the fluid U0 is equal to the free stream velocity

U∞ when deriving the developing flow asymptote.

The values of (Dh/L)opt obtained from the present work are tabulated and sum-

marized in Table 3.1 for some duct geometries. In the case of circular tubes we have

(x∗)opt≈0.067 and

Dopt/L ≈ 4.397Pr−1/3 (P ∗
N/ε)−1/6 (3.51)

We can extend the use of Eqs. (3.50) and (3.51) to simultaneously developing flow

and, by comparison with Eq. (3.17), determine (x∗)opt for that case from:

(
(2fappRe)1/2

(x∗)opt

)1/3

= 4.397 (3.52)

The optimum x∗ decreases and approaches 0.067 for Pr À 1, and the results for

various values of Prandtl number are presented in Section 3.5.

The maximum heat transfer density is predicted through Eq. (3.48) (or Eq. (3.49))

and is given by:

(Q∗
N/ε)max < 1.385 (2fReDh

)−1/6 Pr2/3 (P ∗
N/ε)1/3 (3.53)
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Table 3.1: Values of optimum hydraulic diameter (Dh/L)optPr1/3(P ∗
N/ε)1/6 and maxi-

mum heat transfer density (Q∗
N/ε)maxPr−2/3(P ∗

N/ε)−1/3 as predicted by the method of

the intersection of asymptotes for different duct geometries at fixed pumping power.

Duct geometry Dh fReDh
Optimum Dh Maximum Q∗

N

Parallel plates 2D 24 5.033 0.727

Circular tubes D 16 4.397 0.777

Square D 14.24 4.230 0.793

Equilateral triangle D/
√

3 13.33 4.137 0.801

The maximum heat transfer density is proportional to ε2/3 and varies with Pr2/3.

The estimated values of maximum Q∗
N are presented in Table 3.1 for some duct

geometries. In the case of a parallel tubes heat sink with ε≈0.785 we have Q∗
N,max <

0.661 Pr2/3P
∗1/3
N .

3.4.2 Scale analysis of fluid flow optimization with fixed heat transfer density

In this section we present a scale analysis of fluid flow optimization with fixed heat

transfer density through the method of the intersection of asymptotes, allowing pre-

dicting the optimum D/L ratio for minimum pressure drop and minimum pumping

power. This method is also used for fixed heat transfer density without imposing

any fluid flow condition.

Scale analysis of fluid flow optimization

The model and analysis developed in Sections 3.2 and 3.3 are now used for studying

the optimal fluid flow conditions at a given (fixed) heat transfer density. Fig. 3.4

shows total mass flow rate ṁN and fluid flow resistance RN as function of x∗. Both

variables are presented in its dimensionless form through m∗
N =L2m′′′

N/µ with m′′′
N =

Nṁ/(HWL) and R∗
N =RN(HWL)/ν with RN =∆p/(Nṁ), respectively. Increasing

x∗ imply decreasing mass flow rate together with increasing fluid flow resistance.

Fig. 3.5 presents the parametric plot of dimensionless pressure drop and dimen-

sionless pumping power with x∗ shown along the curve. The two minima evidenced in

this curve are ∆p∗minPr(Q∗
N/ε)−2 = 4.343 and (P ∗

N/ε)minPr2(Q∗
N/ε)−3 = 6.033 which

correspond to x∗ ∼ 0.043 and x∗ ∼ 0.102, respectively. In view of the analysis of

Section 3.2, and for thermally developing flow, these values of x∗ do not depend on

Pr, and thus are constant.

Also noticed in the Section 2 was the fact that maximization of Q∗
N with x∗

as the free variable is equivalent to minimization of either ∆p∗ or P ∗
N . Thus, the

asymptotes derived in the previous section can be rearranged so as to predict the
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optimal heat sink designs corresponding either to minimum ∆p∗, or to minimum

P ∗
N . In both cases the optimum dimensionless thermal length is the same, and is

given by Eq. (3.41). On the other hand, from Eq. (3.45) we have

∆p∗min > 0.376 (2fReDh
)1/2 Pr−1 (Q∗

N/ε)2 (3.54)

where the sign > means that the actual minimum pressure drop is higher than the

predicted value.

Similarly, from Eq. (3.53) we have

(P ∗
N/ε)min > 0.376 (2fReDh

)1/2 Pr−2 (Q∗
N/ε)3 (3.55)

Again, the sign > reminds that the actual pumping power is higher than the

predicted value. We note that the factor 0.376(2fReDh
)1/2 is present in both the

Eqs. (3.54) and (3.55). More remarkable is the result that the estimate of the optimum

diameter is exactly the same either for (∆p∗)min (Eqs. (3.11), (3.41), and (3.54)) or

(P ∗
N)min (Eqs. (3.17), (3.41), and (3.55)) and is given by:

(Dh/L)opt ≈ 1.630 (2fReDh
)1/4 (Q∗

N/ε)−1/2 (3.56)

It is also interesting to note that the estimated (D/L)opt ratio does not depend on

Prandtl number, thus suggesting that firstly one may design geometrically the heat

sink for the required heat transfer density, and then operate it in the optimal flow

conditions according to the fluid in use.

In the next section we proceed with a further examination of the implications of

these results.

Intersection of asymptotes and fluid flow optimization

The results presented above justify a more close analysis of the relation between

optimal design predicted by the method of the intersection of asymptotes and by

fluid flow optimization. By inspection of Fig. 3.5 we note that the predicted opti-

mum value (x∗)opt ≈ 0.067 is located in between the values of x∗ corresponding to

the minima of ∆p∗ and P ∗
N . Furthermore, it seems to be very close to the joint

minimization of both these quantities.

We explore this aspect by rewriting the asymptotes for a fixed heat transfer

density without any fluid flow constraint and using two design variables: the D/L

ratio that is related uniquely to the internal geometry; and the Reynolds number

that is related to the fluid flow characteristics. In the following, for the sake of

exemplification, thermally developing flow is considered with the values Q∗
N =5×103,

ε=0.6 and Pr=5.0.

The fully developed flow asymptote (small D and small Re) is derived as before

by considering the outlet temperature approaching the wall temperature. Thus, by
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combining Eqs. (3.1), (3.2), and (3.29), with U0 =νRe/D and Prandtl number Pr=

µcp/k, we obtain the dimensionless heat transfer density in the form:

Q∗
fd = εRePr (L/D) (3.57)

We conclude that in this limit the D/L ratio varies with Re at fixed Q∗
N .

The developing flow asymptote (large D and large Re) is derived using the

boundary layer solution and assuming that the temperature of the fluid in the core

flow approaches the inlet temperature. By combining Eqs. (3.33) and (3.39) with

x∗=(L/D)/(RePr), the dimensionless heat transfer density reads:

Q∗
dv = 4 · 0.604 (fRe)1/3 ε (RePr)1/3 (L/D)5/3 (3.58)

Then, in this limit, for a fixed value of Q∗
N the D/L ratio varies with Re1/5.

The asymptotes of Eqs. (3.57) and (3.58) intersect each other at the dimensionless

thermal length defined by Eq. (3.41) and at the D/L ratio given by Eq. (3.56), as

expected, and as shown in Fig. 3.6 for the case of circular tubes analysed in the

present work. In this case, however, it is particularly useful to find out the optimum

D/L ratio along the Q∗
N curve (i.e., the point of intersection of the dashed line with

the solid curve in Fig. 3.6). Thus, by using Eq. (3.6) with U0 =νRe/Dh we obtain:

(Dh/L)opt =

(
1− θopt

(x∗)opt

)1/2

(Q∗
N/ε)−1/2 (3.59)

For thermally developing flow we have (x∗)opt≈0.067, Nu0−L =4.41 and θopt =0.307,

and therefore the estimate of the optimum diameter given by Eq. (3.59) reduces to:

(Dh/L)opt = 3.221 (Q∗
N/ε)−1/2 (3.60)

Again we verify that this estimate does not depend on Pr.

Assuming that the numerical factor in the equation above is constant, in the

same way as in the previous cases, to find out the optimum x∗ as function of Pr for

a simultaneously developing flow we can use the following expression:
(

1− θopt

(x∗)opt

)1/2

= 3.221 (3.61)

The mean Nusselt number can be determined from correlations available in literature

(e.g. [33]):

Nu0−L = Nufd

[
1 + 0.067 (x∗Pr)−0.62]0.27

(3.62a)

Nufd =





−0.5632 + 1.57x−0.3351
∗ , 10−6 6 x∗ 6 10−3

0.9828 + 1.129x−0.3686
∗ , 10−3 6 x∗ 6 10−2

3.6568 + 0.1272x−0.7373
∗ exp (−3.1563x∗) , x∗ > 10−2

(3.62b)
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Because the mean Nusselt number varies inversely with Pr in the developing region,

the optimum x∗ decreases and tends to 0.067. The solution of Eq. (3.61) is presented

and discussed in the next section. The values of pressure drop and pumping power

that corresponds to these values of (x∗)opt and (D/L)opt along the curve Q∗
N (fixed)

are now easily calculated using Eqs. (3.11) and (3.17), respectively.

We proceed by considering the graphical representation of D/L .vs. Re as some

kind of map where not only the heat transfer density can be represented, the same

happening with the other variables involved, thus allowing to find out the order of

magnitude of the optimum diameter and Reynolds number that match the minima

of ∆p∗ and P ∗
N . Then from Eq. (3.11) with x∗=(L/D)/(RePr) one has

(D/L)∆p =

(
2fRe

∆p∗

)1/3

Re1/3 (3.63)

Similarly, from Eq. (3.17):

(D/L)PN
=

(
2fRe

P ∗
N/ε

)1/4

Re1/2 (3.64)

By considering ∆p∗=∆p∗min and P ∗
N =P ∗

N,min respectively in Eqs. (3.63) and (3.64),

with fRe=16, the tangents to the Q∗
N curve can be drawn as shown in Fig. 3.7. Note

that the points of tangency correspond to x∗=0.043 and x∗=0.102, respectively.
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The optimum values of D/L ratio and Reynolds number corresponding to the

minima of ∆p∗ and P ∗
N meet at the intersection of these lines, and the following

function of (x∗)opt is obtained

2 (x∗)opt fRePr =
(∆p∗)3

min

(P ∗
N/ε)2

min

(3.65)

With the numerical values presented at the beginning of this section we have x∗=

0.070. This value is very close to that of the intersection of asymptotes. The solution

of Eq. (3.65) for simultaneously developing flow is presented and discussed in the next

section.

3.5 Heat sink optimization results

In this section we present and discuss the main results of the present work according

to the optimization objectives and the imposed constraints. The results are summa-

rized in various tables in such a way that useful information is easily extracted,

together with the equations for predicting the optimal heat sink design deduced in

the previous section. The numerical results were obtained using the model described

in Section 3.3.
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3.5.1 Results of optimum dimensionless thermal length

When maximizing the heat transfer density and considering a thermally developing

flow, the scale analysis carried out in the previous section shows that the optimum

dimensionless thermal length (x∗)opt predicted by the method of the intersection of

asymptotes is independent of the imposed fluid flow constraint (e.g. fixed pressure

drop or fixed pumping power). The value (x∗)opt ≈ 0.067 was found to hold for

circular tubes. In fact, it is possible to find out the fully developed and developing

flow limits on which this method is based if diverse fluid flow conditions are imposed.

In the case of simultaneously developing flow the values of (x∗)opt depend on the

fluid flow constraint and Prandtl number due to the existence of a hydrodynamic

boundary layer and to the relation between the hydrodynamic and thermal entrance

lengths. These values of (x∗)opt are shown in Fig. 3.8 (dashed lines) as function of

Prandtl number for a fixed value of ∆p∗ (from the solution of Eq. (3.44)) and for a

fixed value of P ∗
N (from Eq. (3.52)). For small Pr, the optimum dimensionless thermal

length in the case of fixed ∆p∗ is slightly higher than in the case of fixed P ∗
N , and in

both cases (x∗)opt decreases with Pr, and tends to the value obtained for thermally

developing flow. This is explained by the fact that the hydrodynamic entrance length

is very small as compared with the thermal entrance length for higher Pr. The curve

representing a fixed Q∗
N (from Eq. (3.61)) is not shown for concision, but some values

are presented in Table 3.5. For increasing values of Pr we found a variation similar

to that of the previous cases with values decreasing from (x∗)opt≈0.0722 for Pr=0.7

and tending to (x∗)opt≈0.067.
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Also represented in the graph are the values of (x∗)opt obtained numerically

through the model described in Section 3.3. The two series of values show the same

dependency on Prandtl number as the estimated values, and tend to the values of

x∗ obtained for the case of thermally developing flow (x∗ ≈ 0.043 and x∗ ≈ 0.102,

respectively). The values adapted from the work of Yilmaz et al. [20] for fixed ∆p∗

are presented for comparison. The results of Yilmaz’s study were obtained using

correlations for Nusselt number and are not expressed in terms of x∗ thus requiring

to be rewritten in terms of the solution of an equation similar to Eq. (3.44).

In average, the estimated values of (x∗)opt surpass by 32% the numerical values

in the case of fixed ∆p∗, while in the case of fixed P ∗
N the numerical values are

underestimated by 48% in average. The differences between the predicted and the

numerical results slightly increase with Prandtl number. The intersection of the

fluid flow limits are calculated from Eqs. (3.8) and (3.65) and by using the values of

minimum pressure drop and minimum pumping power obtained numerically. We can

see that these values are very close to the values that emerge from the intersection

of asymptotes and tend to x∗≈0.070.

3.5.2 Results of optimum diameter for the maximization of Q∗
N

The numerical results of (D/L)opt for maximum Q∗
N are summarized in Table 3.2.

These values are in average 11% higher than the estimate of Eq. (3.43) for the case

of fixed ∆p∗, and for the values of Pr shown, while in the case of fixed P ∗
N are in

average 12% lower than the estimate of Eq. (3.51). The results of maximum heat

transfer density are summarized in Table 3.3, and show a mean difference of 13% as

compared to the order-of-magnitude of Eq. (3.45) in the case of fixed ∆p∗ and of 17%

compared with the estimate of Eq. (3.53) in the case of fixed P ∗
N . These differences

increase with Prandtl number in the case of (D/L)opt while they decrease in the

case of (Q∗
N/ε)max.

3.5.3 Results of optimum diameter for the fluid flow optimization

In Table 3.4 the values of the optimum diameter are presented for minimum pressure

drop and minimum pumping power at fixed heat transfer density. These values are

in average only 8% lower than the estimate of Eq. (3.56) in the first case, and 26%

in the second. If compared with the more reasonable estimate of Eq. (3.60) we found

mean differences of order 11% in both cases.

A more noticeable result is presented in Table 3.5 that shows that the minimum

pressure drop and the minimum pumping power are in average, respectively 4%

and 9% lower than the values obtained using the optimum diameter estimate of

Eq. (3.60) together with Eq. (3.11) and Eq. (3.17).
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Table 3.2: Optimum diameter of the tubes for maximum heat transfer density at fixed

pressure drop (D/L)opt(Pr∆p∗)1/4 and fixed pumping power (D/L)optPr1/3(P ∗
N/ε)1/6 for

different values of Pr number.

Pr Fixed ∆p∗ Fixed P ∗
N

0.70 5.088 3.854

2.23 5.121 3.852

5.49 5.185 3.865

9.45 5.231 3.854

12.43 5.246 3.850

18.30 5.229 3.847

∞ 5.223 3.814

Table 3.3: Maximum heat transfer density at fixed pressure drop (Q∗
N/ε)max(Pr∆p∗)−1/2

and fixed pumping power (Q∗
N/ε)maxPr−2/3(P ∗

N/ε)−1/3 for different values of Pr number.

Pr Fixed ∆p∗ Fixed P ∗
N

0.70 0.420 0.523

2.23 0.460 0.546

5.49 0.478 0.554

9.45 0.483 0.557

12.43 0.486 0.558

18.30 0.488 0.559

∞ 0.480 0.549

Table 3.4: Optimum diameter of the tubes (D/L)opt(Q∗
N/ε)1/2 for minimum pressure drop

and minimum pumping power at fixed heat transfer density.

Numerical

Pr Minimum ∆p∗ Minimum P ∗
N

0.70 3.299 2.787

2.23 3.475 2.845

5.49 3.584 2.877

9.45 3.637 2.876

12.43 3.656 2.876

18.30 3.652 2.876

∞ 3.619 2.826
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Table 3.5: Numerical and predicted values of minimum ∆p∗Pr(Q∗
N/ε)−2 and minimum

(P ∗
N/ε)Pr2(Q∗

N/ε)−3 at fixed heat transfer density.

Numerical Intersection of asymptotes

Pr (∆p∗)min (P ∗
N )min x∗ ∆p∗ P ∗

N

0.70 5.657 7.000 0.0722 5.698 7.606

2.23 4.718 6.152 0.0698 4.854 6.708

5.49 4.381 5.882 0.0685 4.602 6.479

9.45 4.281 5.795 0.0681 4.522 6.403

12.43 4.241 5.763 0.0678 4.505 6.406

18.30 4.203 5.730 0.0676 4.478 6.383

∞ 4.343 6.033 0.0666 4.464 6.460

(a) = 0.04 ( / = 0.08 , Re = 5 . 8)x D L* 3 86 2 4

(c) = 0.0 7 ( / = 0.07 8, Re = 3 . )x D L* 6 8 7 89

(b) = 0.10 ( / = 0.069 , Re = 28. )x D L* 2 2 32

0.0 0.25 0.50 0.75 1.0

Dimensionless temperature ( )T
~

Fig. 3.9: Temperature field in an elemental tube for three distinct optimal designs: (a)

minimum pressure drop; (b) minimum pumping power and (c) intersection of asymptotes

(Q∗
N =1×103, Pr=5.0, ε=0.6).

Fig. 3.9 shows an example of the temperature field of a thermally developing

flow within a single tube for three different heat sink designs with Q∗
N = 1×103,

ε = 0.6 and Pr = 5.0. The first temperature field corresponds to minimum pressure

drop where the thermal boundary layer merge just at the tube outlet, while the

second corresponds to minimum pumping power where the boundary layer merge

approximately at the middle length of tube, and the third corresponds to the optimal

design as defined from the intersection of asymptotes, the case in which the boundary

layer merge closely before the tube outlet.
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3.6 Conclusions

In the present work, we developed a set of theoretical results based on the method of

intersection of asymptotes for predicting the optimal design of a heat sink composed

of parallel tubes in a fixed volume and for various optimization objectives and

imposed constraints. The estimated values were validated and complemented by

numerical simulations. The optimization procedures lead to the following conclu-

sions:

(a) Maximization of heat transfer density with fixed pressure drop and fixed pum-

ping power.

The estimate of the optimum dimensionless thermal length obtained through

the method of the intersection of asymptotes is nearly independent of the

constraints imposed to fluid flow and tends to a fixed value with increasing

Pr. For lower values of Pr the predicted values of (x∗)opt are slightly higher

in the case of fixed pressure drop as compared to the values found for fixed

pumping power. Estimates of optimum diameter of the tubes, and of the

order of magnitude of maximum heat transfer density were obtained in both

the case of fixed pressure drop and fixed pumping power. Results of the

numerical procedure used for validation are also presented.

(b) Minimization of pressure drop and pumping power with fixed heat transfer

density.

The estimates of the optimum diameter provided the same value when consi-

dering either pressure drop minimization or pumping power minimization.

The order of magnitude of minimum pressure drop and minimum pumping

power are presented together with numerical results for comparison and

validation. Additionally, it was found that the estimate of the optimum

diameter does not depend on Prandtl number.

(b) Joint minimization of ∆p∗ and P ∗
N with fixed heat transfer density.

Scale analysis together with the method of the intersection of asymptotes

was used in the case when heat transfer density is fixed. In this case two

optimization variables are used: one of geometric nature that is represented by

diameter to length ratio; and the other relative to fluid flow conditions, which

is represented by the Reynolds number. The predicted (x∗)opt is very close to

the values corresponding to the case of joint minimization of pressure drop

and pumping power. A more reasonable estimate of the optimum diameter is

also presented together with the corresponding values of pressure drop and

pumping power, which are found to overestimate the respective minima by

only 4% and 9% in average.
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Nomenclature

A area (m2)

cp specific heat (J kg−1 K−1)

D diameter (m)

Dh hydraulic diameter (m)

f friction factor

H height (m)

h0−L average heat transfer coefficient (W m−2 K−1)

L length (m)

k thermal conductivity (W m−1 K−1)

ṁ mass flow rate (kg s−1)

N number of tubes

Nu0−L mean Nusselt number, ≡ h0−LD/k

p pressure (Pa)

ṖN total pumping power (W)

P ∗
N dimensionless pumping power, ≡ ρ2L4ṖN/(µ3HWL)

Pr Prandtl number, ≡ cp µ/k

q′′ heat flux (W m−2)

Q̇N total heat transfer rate (W)
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Q∗
N dimensionless heat transfer rate density, ≡ L2Q̇N/(kHWL(Tw − Ti))

r radial coordinate (m)

R fluid flow resistance (m−1 s−1)

Re Reynolds number based on diameter, ≡ U0D/ν

ReL Reynolds number based on length, ≡ U∞L/ν

T temperature (K)

U0 mean velocity in tubes (m s−1)

U∞ free stream velocity (m s−1)

(u,v) velocity components (m s−1)

x axial coordinate (m)

x+ dimensionless hydrodynamic length, ≡ (L/D)/Re

x∗ dimensionless thermal length, ≡ (L/D)/(RePr)

W width (m)

Greek symbols

α thermal diffusivity (m2 s−1), ≡ k/(ρcp)

∆p pressure drop (Pa)

∆p∗ dimensionless pressure drop, ≡ ρL2∆p/µ2

ε volume fraction of tubes

µ dynamic viscosity (kg m−1 s−1)

ν kinematic viscosity (m2 s−1), ≡ µ/ρ

ρ density (kg m−3)

θ dimensionless temperature, ≡ (Tw−To)/(Tw−Ti)

τw mean wall shear stress (Pa)

Subscripts

app apparent

Dh refers to hydraulic diameter

dv developing

i inlet

fd fully developed

max maximum

min minimum

N total for N tubes
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o outlet

opt optimum

PN refers to fixed pumping power

QN refers to fixed heat transfer density

w wall

∆p∗ refers to fixed pressure drop

Superscripts

(˜) dimensionless variables, Eqs. (3.23) to (3.26)





Chapter 4

Utilisation of air-groundwater exergy potential for

improvement of the performance of heat pump systems†

Abstract

This paper reports a study on the use of the non-flow air-groundwater

exergy potential for improving heat pump performance. It is shown that

for air/groundwater temperature differences of order 15oC, energy savings

up to 50% may be expected for heat pumps operating either in the heating

mode or in the cooling mode. It is also shown that the reduction in the

energy required to drive the heat pump is proportional to the square root

of the exergy potential. In the Évora region the exergy potential peaks

during wintertime and during summertime. It is concluded that the use

of the non-flow air-groundwater exergy potential is attractive either for

heating purposes in wintertime, when energy savings can reach 20%, or for

cooling purposes during summertime when they can reach 10%.

Keywords: Environment, Exergy potential, Heat pumps, Performance

improvement.

4.1 Introduction

Exergy, that is the maximum work that can be extracted from a system as it comes to

equilibrium with a reference environment, has been recognised as a fundamental tool

for planning the adequate use of the energy resources. The air-to-ground temperature

difference generates an exergy potential that may be used for improving either the

performance of thermal machines or heating/cooling systems.

The importance of the use of environmental heat sources and sinks (air, ground,

groundwater and wastewater) on the improvement of the performance of heat pumps

†Paulo Canhoto(1), A. Heitor Reis(1), A.F. Miguel(1), R. Rosa(1), Utilisation of air-groundwater exergy

potential for improvement of the performance of heat pump systems, International Journal of Exergy 3

(2006) 1–15.
(1) Physics Department and Geophysics Centre of Évora, University of Évora.
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is widely recognised [1, 2]. It is well known that significant energy savings may be

achieved by using available heat sources and sinks properly.

The most common type is the air-source heat pump (AHP) that uses outside

air as the heat source during the heating season and as the heat sink during the

cooling season [3]. However, AHPs performance decreases sharply when the outside

air temperature increases during cooling or decreases during heating.

Water and ground-source heat pumps, referred to as geothermal heat pumps

(GHP), have several advantages over AHP [4 – 8]. They benefit from the circums-

tance that water or rock or soil display rather more moderate temperature change

than the surface air. Besides, GHPs seem to have better performance and lower

maintenance costs. Recent studies (e.g. [4 – 6]) show that improvements on perfor-

mance of heat pumps using water and ground heat sources are being achieved in a

variety of circumstances. In order to evaluate the potential of energy savings from

the utilisation of heat pumps, the knowledge of the exergy potential of heat sources

or sinks is required. Exergy analysis has proved to be useful in energy policymaking

[9], as well as for dealing with environmental issues [10].

As the exergy potentials of available heat sources or sinks change in time due

to climatic conditions and also because of the finiteness of the exergy ’reservoirs’,

the exergy potential provides a tool for taking into account the magnitude of the

exergy ’reservoir’ and for making more realistic evaluations of the potential of energy

savings ensuing from its utilisation.

In this study we address heat pump performance in relation with the non-flow

air-groundwater exergy potential that changes over a year. The surface–underground

environmental exergy potential of the Évora region which is situated in the south of

Portugal, is evaluated and presented here. The Évora region is sparsely populated

but has many farm buildings and other installations dispersed over the region that

require the use of either fuel or electricity. Due to its dispersion, providing these

installations with electricity or fuel has considerable distribution and transportation

costs, which are higher than in other regions of Portugal. This is why the estima-

tion of the environmental exergy potential is of great importance for evaluating the

opportunities for the implementation of heat pumps for an ever-increasing number

of applications that includes the acclimatisation of buildings, water heating, crop

drying, agricultural greenhouses, etc. [11, 12].

4.2 Heat pump performance

The heat pump system used in this study is schematically represented in Fig. 4.1.

Steady state operation is assumed and in addition that the refrigerant vapour at

the compressor inlet and the liquid at the condenser outlet are saturated at the
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Fig. 4.1: Dual mode heat pump flow diagram.

temperatures TLC and THC , respectively. After leaving the condenser the refrigerant

flows into the evaporator through the expansion valve.

The heat transfer rate in the condenser can be written as

Q̇H = εHĊH

(
THC − T in

H

)
(4.1)

and the heat transfer rate in the evaporator as

Q̇L = εLĊL

(
T in

L − TLC

)
(4.2)

where the heat capacitances rates of the external fluids in the condenser and in the

evaporator are given, respectively, by

ĊH = ṁhcp,h (4.3)

ĊL = ṁlcp,l (4.4)

Considering that both the heat transfer processes occur at constant refrigerating

fluid temperature, the effectiveness of the condenser, εH , and of the evaporator, εL,

read, respectively [13]:

εH = 1− exp

(
−AHUH

ĊH

)
(4.5)

εL = 1− exp

(
−ALUL

ĊL

)
(4.6)

where A is area and U is the overall heat transfer coefficient. It is assumed that the

cycle is endo-reversible, therefore the entropy balance of the internal fluid reads

Q̇H

THC

=
Q̇L

TLC

(4.7)
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By using Eqs. (4.1), (4.2) and (4.7), the refrigeration COP can be written as a

function of the heat transfer rate at the evaporator [14]:

COPc =
T in

L − Q̇L/K

T in
H − T in

L + Q̇L/K
(4.8)

where
1

K
=

1

εHĊH

+
1

εLĊL

(4.9)

and K is the overall heat conductance. By defining an equivalent temperature of

the external fluid at evaporator inlet as

T in∗
L = T in

L − Q̇L

K
(4.10)

the refrigeration COP assumes the following form:

COPc =
T in∗

L

T in
H − T in∗

L

(4.11)

Using the same procedure as above, the heating COP is obtained as a function

of the heat transfer rate at the condenser as:

COPh =
T in∗

H

T in∗
H − T in

L

(4.12)

with the equivalent temperature of the external fluid at the condenser inlet given

by:

T in∗
H = T in

H +
Q̇H

K
(4.13)

4.3 Utilisation of air/groundwater exergy potential

We compared the performance of the above-described heat pump operating as air-to-

-air system with the performance of a similar heat pump operating as air-to-ground

system. We assumed that the heat exchanger, operating as the evaporator in winter-

time and as the condenser in summertime, could be embedded in the ground, or

submerged into a well, or having groundwater forced as external fluid. This purpose

can be achieved with only one of the two heat pumps’ heat exchangers because the

heat pump can operate reversibly.

Due to the fact that the ground (or the water) has finite heat conductivity its

temperature will change during operation. Therefore, by using the presented heat

pump model we investigated the range of interest for the operating conditions in the

Évora region. Another relevant aspect is that the energy savings ultimately result

from the utilisation of the surface-air/groundwater exergy potential.
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If the air temperature, Ta, is higher than the groundwater temperature, Tw, its

specific exergy relatively to the water/ground conditions is given by1

Exair/ground =
cp,a (Ta − Tw)2

2Tw

(4.14)

where cp,a is the air specific heat. On the other hand, if groundwater temperature is

higher than the air temperature its specific exergy with respect to air is

Exground/air =
cp,w (Ta − Tw)2

2Ta

(4.15)

where cp,w is the groundwater specific heat2. Using Eq. (4.11) for the refrigeration

mode of operation, the ratio of the coefficients of performance of the air-to-ground

and of the air-to-air systems is given by

φc =
COPw

c

COP a
c

=
T ∗

c,w

(
Ta − T ∗

c,a

)

T ∗
c,a

(
Tw − T ∗

c,w

) (4.16)

where T ∗
c,a and T ∗

c,w are the equivalent temperatures at the evaporator inlet for the

air-to-air and air-to-ground systems, respectively, corresponding to the air comfort

temperature, Tc. Those temperatures also depend on the heat transfer rate at

the evaporator and on the overall thermal conductance, Ka and Kw, according to

Eq. (4.10). Using Eq. (4.12) a similar expression can be obtained for the heating

COP ratio

φh =
COPw

h

COP a
h

=
T ∗

h,w

(
T ∗

h,a − Ta

)

T ∗
h,a

(
T ∗

h,w − Tw

) (4.17)

where T ∗
h,a and T ∗

h,w are the equivalent temperatures at condenser inlet for the

air-to-air and air-to-ground systems, respectively, corresponding to the air comfort

temperature, Th.

1The specific physical exergy of air is

Ex = (h− h0)− T0 (s− s0)

where h and s refer to specific enthalpy and specific entropy, respectively, and T0 is reference temperature.

Assuming the air as an ideal gas and neglecting the pressure difference (p=p0, p0 – reference pressure), we

have h − h0 = cp (T − T0) and s − s0 = cpln (T/T0), where cp stands for specific heat. Thus, the specific

exergy reads

Ex = cp (T − T0)− cpT0ln (T/T0)

For T/T0 ∼ 1 this equation can be rewritten in the following simplified form:

Ex ≈ cp (T − T0)
2 / (2 T0)

Furthermore, in the present case it is also assumed that the moisture content of the air does not change

due to water vapour condensation if it comes to equilibrium with the soil.

2It must be also noted that both Eqs. (4.14) and (4.15) still to hold either if Ta < Tw or Ta > Tw,

respectively.
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Some simplifications can be made, assuming the same comfort temperature for

the cooling and heating operation and assuming that the equivalent temperatures

of the two systems are equal in each mode of operation. Then Eqs. (4.16) and (4.17)

can be written in the following form

φ =

(
1− |Ta − Tw|

|Ta − T ∗
i |

)−1

(4.18)

where T ∗
i is the equivalent temperature of the air comfort temperature, Ti, in the

conditioned space which, for the cooling mode of operation, is given by

T ∗
i = Ti − Q̇L

K
(4.19)

and for the heating mode of operation is given by

T ∗
i = Ti +

Q̇H

K
(4.20)

In this case the comfort temperature is assumed to be the same for the heating and

cooling operation mode. A further simplification was been implicitly made assuming

that the overall thermal conductance is equal in the two modes of operation.

Now, by using Eqs. (4.14) and (4.18) we obtain

φ =

(
1− Ex1/2

|Ta − T ∗
i |

(
2Tw

Cp,a

)1/2
)−1

(4.21)

Furthermore, if it is assumed that the heat transfer rate is equal for the two systems,

the magnitude of the reduction of the energy consumption by the compressor is

related to the ratio φ in the following way

∆W

Wa

= 1− 1

φ
(4.22)

∆W

Wa

=
Ex1/2

|Ta − T ∗
i |

(
2Tw

Cp,a

)1/2

(4.23)

Eq. (4.23) shows that the energy savings are proportional to the square root of the

surface-air/groundwater exergy potential and depend upon the ambient temperature

(Ta) and the groundwater temperature (Tw).

A graphical interpretation is shown in Figs. 4.2 to 4.5, which display the improve-

ment in performance and the energy consumption reduction due to the use of the

exergy potential against ambient temperature, either in the heating or in the cooling

modes. The comfort temperature is equal to 293 K, the equivalent temperature for

the cooling mode is set to 273 K, and for heating mode is set to 313 K. Because

of its finite size, the temperature of the groundwater reservoir will tend to increase

when the heat pump is working for cooling while the opposite will occur when it is

working for heating. From Figs. 4.2 to 4.5 we can conclude that for air/groundwater

temperature differences of order 15oC, reductions up to 25% in energy consumption

may be expected for the heating mode and up to 50% for the cooling mode.
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as function of air and ground temperatures.
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4.4 Use of the exergy potential for improving heat pump performance

The non-flow air-to-ground exergy potential was calculated from the values of air

and ground temperatures, Ta and Tw respectively, with the help of Eq. (4.14). The

values of temperature used in the calculations were hourly values averaged over

each month, during a ten year period (1995–2004). The hourly values are them-

selves the average of six values measured with intervals of ten minutes at the Mitra

meteorological station near the city of Évora. The air temperatures were taken in

standard conditions, i.e. 1.5m above the ground level, and the ground temperatures

are measured at 0.30 and 0.70m below ground level.

The hourly mean air temperature for typical winter, spring, summer and autumn

days is shown in Fig. 4.6. The monthly averaged temperatures of air and ground

are shown in Fig. 4.7. The monthly mean value of ground temperature was used

because ground temperature is practically constant over the day. Fig. 4.8 shows

the variation of the hourly exergy potential in a day period. Fig. 4.9 displays the

coefficient of performance ratio with reference to the ground temperature at the

depth of 0.70 m corresponding to the typical months referred above. For the monthly

averaged temperatures at the depths of 0.30 and 0.70 m, Figs. 4.10 and 4.11 show

the variation in the coefficient of performance and energy consumption, respectively.

In all cases considered, the maximum of the exergy potential occurs when either

heating or cooling is most required. In fact, we can observe that in wintertime the

minimum of the air temperature corresponds to a high exergy potential that can be

used either for driving or improving the performances of passive or active heating

devices. Conversely, during summertime the maximum of the exergy potential occurs

when cooling is most needed. Therefore, the exergy potential is available either for

driving or improving the performances of cooling devices or for ventilation, or else

for water pumping for irrigation. The spring and autumn patterns are quite similar,

though the exergy potential is a little higher in autumn.

4.4.1 Heating

The analysis of Figs. 4.2 and 4.3 indicates that exergy potentials of order 0.1 kJ kg−1

may increase heat pump performances up to 50%, while allowing energy savings of

the same magnitude. From Fig. 4.8 we see that the exergy potential may go up to

0.1 kJ kg−1 that is just the order of its upper limit in the Évora region.

Taking into consideration the exergy potential available in the Évora region along

the year we can see in Fig. 4.10 that the use of water reservoirs at temperature of the

ground at the bare depth of 0.7 m may increase heat pump heating performances

up to 20% in autumn (average 10%), with energy savings of the same magnitude

(Fig. 4.11). The reference to 0.7 m is conservative and is due to the fact that we have
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used temperatures measured at this depth, because it is a reference for meteorologi-

cal measurements. If temperatures corresponding to deeper levels (corresponding to

most water-tables) were considered, heat pump heating performances would surpass

20% in autumn. In wintertime the exergy potential is somewhat lower than in au-

tumn but the energy savings are still significant and of order 10%. If we consider the

distribution of the exergy potential along the day, we may observe in Figure 4.8 that

it is most significant during night-time, between 9 p.m. and 7 a.m., that matches

the period in which heating is most necessary.

4.4.2 Cooling

As we can observe in Fig. 4.8, the use of the air-to-ground exergy potential of the

Évora region for cooling purposes is less interesting than for heating. Nevertheless

it can also lead to interesting energy savings as seen in Fig. 4.11. We note that

with water reservoir temperature corresponding to ground temperature at a depth

of 0.3 m, energy savings are not possible at all. However, energy savings become

interesting for temperatures that match those of the ground at 0.7m depth. In this

case, average energy savings in the order of 5% may be reached. Therefore, we may

anticipate that if temperatures of deeper levels are used, energy savings will become

more significant.

4.5 Conclusions

The use of air-to-ground exergy potential was considered in relation with improve-

ment of heat pump performance. From thermodynamic considerations it was shown

how this potential could be related to the coefficient of performance (COP) and

to savings in the power consumed by the heat pump compressors. The analytic

formulation was translated into thermodynamic charts that display these relation-

ships in a wide range of temperatures, therefore, allowing examination of the use of

the exergy potential in particular cases.

We investigated the use of air-to-ground exergy potential in the Evora region.

The hourly averaged exergy potential were evaluated for the months of January,

April, July and October as well as the monthly averaged values that were evaluated

for every month. These data were analysed with the help of thermodynamic charts

relating the exergy potential to COP and energy saving.

As a general conclusion we can say that, in the Évora region the use of the air-

-ground exergy potential should be considered of interest in energy saving strategies.

Actually, energy savings are in the order of 10% in heating mode, though can rise

to 20%, while in the order of 5% in cooling mode. Despite this analysis was focused

on the Évora region, the method is general and of wide application.
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Nomenclature

cp heat capacity (kJ kg−1 K−1)

Ċ heat conductance (kW K−1)

COP coefficient of performance

Ex specific exergy (kJ kg−1)

Q̇ heat transfer rate (kW)

K overall heat conductance (kW K−1)

ṁ mass flow rate (kg s−1)

T temperature (K or oC)

W work (kJ)

ε heat exchanger efficiency

φ coefficient of performance ratio

Subscripts

a air

c cooling

h heating

H hot end (condenser)

HC hot end temperature

i room temperature

L cold end (evaporator)

LC cold end temperature

w groundwater

Superscripts

a air

in inlet

out outlet

w groundwater

∗ equivalent temperature





Chapter 5

Performance analysis of an endoreversible heat pump system

for optimal air-ground or water environmental exergy

potential utilization†

Abstract

This paper reports the optimization of a ground or water source heat pump

system for housing applications with respect to the best exergy performance

and maximum environmental exergy potential use. The analysis presented

also offers the opportunity of explore a new objective for the optimization

of the use of exergy sources: “In any system powered by an external exergy

source optimization is achieved when the exergy flux to the environment

is minimum under the existing constraints”. This corresponds to utilizing

the supplied exergy to overcome the total irreversibilities of such a system

only. The environmental exergy utilization and the exergy output to the

environment are analyzed in connection with this objective.

Keywords: Ground source heat pump; Exergy analysis; Environmental exergy;

Optimization.

5.1 Introduction

The use of air-source heat pump systems for indoor heating and cooling is nowa-

days widespread and represents a large parcel of the electric and primary energy

consumption in buildings. In the year 2004 the total energy demand in buildings

represented nearly 40% of the final energy consumption in the European Union [1].

The exergy input (work or heat) of those systems is directly or indirectly (through

the electric energy generation in thermal power plants) produced from fossil fuels

that burn at very high temperature. Therefore the overall exergy efficiency is very

†Paulo Canhoto(1), A. Heitor Reis(1), A.F. Miguel(1), Performance analysis of an endoreversible heat

pump system for optimal air-ground or water environmental exergy potential utilization, International

Journal of Energy Research, 33 (2009), 205–210.
(1) Physics Department and Geophysics Centre of Évora, University of Évora.
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92 Chapter 5. Performance of an endoreversible heat pump

low because a high-exergy content fuel is used to produce low-exergy heating or

cooling. The same is to say that most of the work that could be produced from the

fossil fuels is wasted. Additionally, part of the work input to indoor air conditioning

systems is directly ’lost’ to the environment in the process. This means that high

cost exergy produced from fossil fuels is being released directly to the environment.

However, the efficiency of these systems can be improved if ground or water is used

as heat source instead of environmental air.

Groundwater and water from lakes or rivers present an environmental exergy

potential relatively to the atmospheric air, which varies with the diurnal and seasonal

cycles [2 – 4]1. In recent years, the interest on these systems was increased due to

the rational energy utilization and environmental issues [5 – 7]. Such systems not

only continue to use the exergy input corresponding to external work but also make

use of the environmental potential.

In this paper the exergy analysis of a groundwater or water source heat pump

system in housing applications is presented, offering the opportunity to pursue a

new objective for optimization of the use of exergy sources: “In any system powered

by an external exergy source optimization is achieved when the exergy flux to the

environment is minimum under the existing constraints”. This corresponds to utili-

zing the supplied exergy only to overcome the total irreversibilities of the system.

The main exergy fluxes are quantified and analyzed from the point of view of the

environmental exergy potential use and of minimum exergy output to the environ-

ment.

5.2 System description

Fig. 5.1 shows the flow diagram of a groundwater or water source heat pump system

for housing cooling in summertime. Groundwater or water from lakes or rivers can be

used as external fluid in the hot end heat exchanger, consisting in a heat reservoir

with temperature TH . As first approach this heat reservoir is considered to have

a large capacity, which means that it is able to exchange heat without significant

temperature variation. The temperature inside the house is to be maintained at

TL, and the environmental air temperature is T0 (TL < TH < T0). Heat conduction

through the walls and windows, air infiltration and ventilation are responsible for

the heat input, Q̇i, from the exterior into the house.

Atmospheric air conditions are used as the reference for the exergy calculation,

1The paper “Utilisation of air-groundwater exergy potential for improvement of the performance of

heat pump systems”, Int. J. Exergy 3 (2006) 1–15 by P. Canhoto, A.H. Reis, A.F. Miguel and R. Rosa [2]

is included in this thesis in the Chapter 4.
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Fig. 5.1: Groundwater or water source heat pump system flow diagram for housing cooling

in summertime.

because the indoor temperature will approach to those conditions if the system is

turned off. In other words, as the system pumps exergy into the house, an exergy

potential will be created and maintained in reference to the environmental condi-

tions. The Carnot coefficient of performance of the groundwater or water source

heat pump will be higher than that of a similar air-source system. In practice, the

generation and maintenance of the indoor temperature requires less external exergy

input rate (power) if a reservoir with an exergy potential closer to the desired indoor

potential is used.

The exergy balance of the heat pump system reads

ĖH + Ẇ = ĖL + İ (5.1)

where ĖH , ĖL, Ẇ and İ are, respectively, the exergy transfer rate at the hot end,

the exergy transfer rate at the cold end, the power input and the irreversibility

generation rate.

5.3 Exergy analysis and optimization

In the present work we refer to the situation when the system operates with optimal

relation between the heat transfer rate at the cold end, Q̇L, and the coefficient of

performance, ε, of an endoreversible heat pump working in cooling mode between

the temperatures TH and TL [8]

Q̇L = K

(
TL − TH

1 + ε−1

)
(5.2)

where

K =
αβ

[α1/2 + β1/2]
2 (5.3)
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α and β being the thermal conductance between the internal working fluid and the

hot and cold ends heat reservoirs, respectively. As the optimal heat transfer rate

decreases monotonically with the coefficient of performance, its maximum value is

defined as

Q̇max
L = KTL (5.4)

which is obtained by setting ε = 0 in Eq. (5.2). On the other hand, by setting the

optimal heat transfer rate equal to zero as a limit condition, the equation reduces

to the Carnot coefficient of performance

εc = TL/ (TH − TL) (5.5)

The rate at which heat is released at the hot end is related to the absorbed heat

rate and the coefficient of performance through

Q̇H =
(
1 + ε−1

)
Q̇L (5.6)

According to Fig. 5.1 we can define the net exergy output as

Ė = ĖL − ĖH = Ẇ − İ (5.7)

which represent the net exergy flow at the heat exchangers or, alternatively, the

difference between power input and irreversibility generation rate. Therefore, the

net exergy output takes the following form

Ė = Q̇L

(
T0

TL

− 1

)
− Q̇H

(
T0

TH

− 1

)
(5.8)

where all the quantities in the right hand side of Eq. (5.8) were assumed as positive.

By combining Eqs. (5.2) to (5.6) and (5.8) the dimensionless rate of exergy output

reads
Ė

Q̇max
L

=
ε−1 − ε−1

c

1 + ε−1

[
ε−1 − (

ε−1 − ε−1
c

) T0

TH

]
(5.9)

Yan and Chen [9] obtained and applied a similar expression for an endoreversible

refrigerator with lower values of TL. Fig. 5.2 shows the normalized curves of the net

exergy output rate for three different values of TH , with T0 =310 K and TL =290 K.

The net exergy output presents a maximum value at

εA =

[√
(1 + ε−1

c )

(
1 +

ε−1
c

1− TH/T0

)
− 1

]−1

(5.10)

which corresponds to the following heat transfer rate

Q̇A
L = Q̇max

L

(
1−

√
1 + ε−1

c

1 + ε−1
c / (1− TH/T0)

)
(5.11)
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Fig. 5.2: Net exergy output as function of the coefficient of performance for various hot

end reservoir temperatures.

In the case of a null exergy output, the coefficient of performance is given by

ε0 = (1− TH/T0) εc (5.12)

and the corresponding heat transfer rate reads

Q̇0
L = Q̇max

L

(
1− 1 + ε−1

c

1 + ε−1
c / (1− TH/T0)

)
(5.13)

This situation corresponds to the case when the irreversibility generation rate of

the heat pump system balances the power input. This means that an amount of

exergy input equal to the supplied power is consumed for overcoming the internal

irreversibilities, i.e., the exergy pumped into the house equals the exergy taken out

from the hot end reservoir. Furthermore, if the net exergy output becomes negative,

some amount of exergy from the high-temperature reservoir is also destroyed. This

occurs only when the temperature TH is lower than the environmental temperature

T0. If these temperatures are equal the curve does not intercept the x-axis and the

maximum occurs for the limit condition ε=0.

In order to investigate the optimal use of the environmental exergy potential, we

can define the following quantities:

φW =
Ė

Ẇ
(5.14)

and

φH =
Ė

ĖH

(5.15)
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Fig. 5.3: Variation of φW and φH with the coefficient of performance.

which can be considered as representative of the net exergy output efficiencies from

the power input perspective and from the environmental exergy perspective, respec-

tively. The first equation may also be seen as the ratio between Ẇ − İ and the

power input Ẇ , and therefore representing a measure of the fraction of power that

is released into the house when ε > ε0. Eqs. (5.14) and (5.15) are represented in

the Fig. 5.3 as function of the coefficient of performance, for TH = 296 K and for

α = β = 1.96 kW K−1. Both functions intercept the x-axis at ε0, and increase with

ε. The first one increases linearly and the second one increases asymptotically to

a maximum value that depends on TH . Another remark to this function is that

φH→∞ when TH→T0.

We can also define the following empirical function:

φ = φH − φW = Ė

(
1

ĖH

− 1

Ẇ

)
(5.16)

to compare the contribution of the exergy input from the hot end reservoir and of the

power to the net exergy output. The objective is to investigate a way of maximizing

the environmental exergy use and to reduce the fraction of power that is ultimately

released to the environment. Using Eqs. (5.2) to (5.8) the empirical function reads

φ =

[
(T0/TL − 1) ε

(T0/TH − 1) (ε + 1)
− 1

] [
1− (ε + 1)

(
T0

TH

− 1

)]
(5.17)

This function is plotted in Fig. 5.4 for various values of TH , and we can clearly see

the existence of maximum points of φ for the hot end reservoir temperatures shown.
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Setting the condition ∂φ/∂ε = 0, we find the coefficient of performance εB that

maximizes φ, in the following form

εB =

√
T0/TL − 1

(T0/TH − 1) (T0/TL − T0/TH)
− 1 (5.18)

This coefficient of performance tends to infinity as TH tends to T0. Therefore, the

previous condition and Eq. (5.18) are only valid for values of TH lower than a limiting

value corresponding to εB = εc, which also matches the case of Q̇L = 0. For higher

values of TH the groundwater or water source heat pump system is not competitive

in the perspective of function φ, while the heat transfer rate becomes numerically

negative and the previous analysis and the φ definition do not hold anymore.

We compare the previous results with the so-called ecological function [9, 10]

defined as

Ec = Ė − İ (5.19)

where the irreversibility rate is given by

İ = T0

(
Q̇H

TH

− Q̇L

TL

)
(5.20)

By using Eqs. (5.2) to (5.8) again, and applying the condition ∂Ec/∂ε=0, we find

the optimal coefficient of performance that maximizes the ecological function in the
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form

εC =

[√
(1 + ε−1

c )

(
1 +

ε−1
c

1− TH/ (2T0)

)
− 1

]−1

(5.21)

Fig. 5.5 shows the various coefficients of performance ε0, εA, εB and εC , (Eqs. (5.10),

(5.12), (5.18) and (5.21)) as function of the hot end reservoir temperature. All the

coefficients of performance tend to infinity as TH approach to TL, as well the Carnot

coefficient does.

The coefficients ε0 and εA decrease and approach 0 as TH tend to T0 and the

coefficient of performance that arises from the optimization of the ecological function

presents higher values. The coefficient of performance obtained from Eq. (5.18) shows

mid-range values in the admissible range of TH . This last curve crosses the other ones

and therefore, depending of the value of TH , it corresponds either to an optimization

for null exergy output to the environment (ε0), to an optimization for maximum net

exergy output (εA), or to an optimization based in the ecological function (εC).

5.4 Conclusions

This paper presents the exergy analysis of a ground or water source heat pump

system for indoor air cooling. With this analysis we identified the operating condi-

tions for null net exergy output to the environment and for maximum net exergy
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output. The optimization of the system based on the ecological function criterion

was also presented and compared. The dependence of the net exergy output both

on power input and on exergy input from the groundwater or water heat reservoir

was also studied. A coefficient of performance was obtained to identify the maxi-

mum environmental exergy potential use together with the minimum exergy release

to the environment. It was found that, depending on the hot end heat reservoir

temperature the system optimization through this function corresponds to an opti-

mization for null net exergy output function (hot end reservoir temperature close to

indoor temperature), or as an ’ecological function’ optimization (hot end reservoir

temperature close to the environmental air temperature).
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Nomenclature

Ė exergy transfer rate or net exergy output (W)

Ec ecological function – Eq. (5.19) (W)

İ irreversibility generation rate (W)

K composite thermal conductance – Eq. (5.3) (W K−1)

Q̇ heat transfer rate (W)

T temperature (K)

Ẇ work (W)

Greek symbols

α thermal conductance at hot end (W K−1)

β thermal conductance at cold end (W K−1)

ε coefficient of performance

εc Carnot coefficient of performance, ≡ TL/ (TH−TL)

φ empirical function for performance evaluation – Eq. (5.14) to (5.16)

Subscripts

0 reference or null net exergy output

H hot end

L cold end

Superscripts

0 null net exergy output

max maximum
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Conclusions

In this thesis, the performance improvement of forced convection heat sinks and

heat pumps was addressed through two distinct approaches:

(i) optimization of fluid flow and internal geometric structure of compact heat

sinks based on energy analysis using both intersection-of-asymptotes and nu-

merical methods;

(ii) optimization of either groundwater or water source heat pump systems based

on exergy analysis for the best utilization of the environmental exergy potential,

i.e. the non-flow exergy potential due the natural temperature differences that

exists between ground/groundwater or water from lakes and rivers and the

atmospheric air.

The main conclusions are referred in the following.

6.1 Optimization of forced convection heat sinks

Heat sinks composed of parallel circular or non-circular ducts were considered,

subjected to three distinct constraints: (i) fixed pressure drop; (ii) fixed pumping

power; and (iii) fixed heat transfer rate. Optimization was carried out by considering

that heat sink substrate (solid matrix) is composed of a high thermal conductivity

material, and thus assuming that for practical purposes the walls of ducts may

be considered isothermal. In fact, if the Biot number – which weights the thermal

resistance by conduction in the solid against the convective resistance in the wall

– is much smaller than 1, the assumption of a uniform temperature distribution is

acceptable [1]. This is in line with recent works on optimization of multi-channel

heat sinks, (e.g. see Refs [2 – 4]). Further explanations about the validity and limi-

tations of this assumption were already presented and discussed in Section 2.2. On

the other hand, we can also regard this temperature (uniform) as the scale of surface

temperature, which is distinct from the inlet temperature of the fluid [5, 6]. Addi-

tionally, the flow was assumed to be laminar, steady and equally distributed among

101
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the ducts, together with constant fluid properties. The overall dimensions and the

porosity (ε) of the stack are set (fixed) by the design in face of the available space

and other construction constraints.

Heat transfer rate was maximized at fixed pumping power for circular, parallel

plates, rectangular 1:4, square and equilateral triangular ducts. This is equivalent to

improving heat sink performance since the amount of heat that is extracted per unit

of energy that is consumed is also maximized. An asymptotic analysis was carried

out for small and large ducts using the dimensionless thermal length (x∗) as primary

optimization variable, which proved to be advantageous because it allows to directly

see if the fluid is efficiently used for the cooling purpose. Similar analysis was also

carried out using the ratio of hydraulic diameter to duct length (Dh/L) as the main

design parameter, and a simple expression for determining the optimum Dh/L ratio

was disclosed thus allowing the estimation of the optimal internal structure of the

heat sink.

Additionally, it is verified that the maximum heat transfer rate per unit of volu-

me that is effectively occupied by the fluid scales with the group Pr2/3 (P ∗
N/ε)1/3 ,

while the optimum ratio of hydraulic diameter to duct length scales with the group

Pr−1/3 (P ∗
N/ε)−1/6, where P ∗

N/ε stand for pumping power per unit of volume bathed

by the fluid. As a conclusion, in the case that plenum losses are neglected, the

optimum hydraulic diameter is nearly insensitive to porosity (ε) and to pumping

power (P ∗
N), while the optimum dimensionless thermal length is independent of ε

and P ∗
N , and the maximum heat transfer rate varies both with ε2/3 and P

∗1/3
N .

Numerical optimization was also carried out at the same conditions as above, and

for various values of Prandtl number and for all duct geometries under consideration.

The numerical results were correlated through simple equations for determining

the optimum hydraulic diameter and maximum heat transfer density in the range

0.1 < Pr < 100. By comparing these values with the results of scale analysis obtained

before, it was verified that the estimate of optimum hydraulic diameter reproduces

the numerical results with an error within−8.6% to 13.5% in the range 0.1 < Pr < 10

for all the duct geometries, except for the case of parallel plates in which the lower

limit of the relative error is 23%. It was also verified that a heat sink composed

of parallel plates presents the highest heat transfer density, followed in descending

order by the rectangular 1:4, circular, square and equilateral triangular ducts, for

fixed values of pumping power and porosity and in the range 0.1 < Pr < 100.

The influence of local pressure losses at the inlet and outlet plenums were studied

using the numerical method by varying the porosity and it was concluded that the

optimum x∗ varies contrariwise to porosity, while the maximum heat transfer rate

and optimum hydraulic diameter vary likewise the same quantity. This is explained

by the increasingly higher values of local pressure drop as ε decreases, leading to
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lower values of maximum heat transfer density. As compared to the case in which

the local pressure losses are neglected the observed variations in optimal hydraulic

diameter and maximum heat transfer density are less than 1.5% and 3.0%, respec-

tively.

Results were extended for the case of pumping power minimization with fixed

heat transfer density and a simple equation for determining the optimum Dh/L ratio

was also presented. It was concluded that the optimum hydraulic diameter is nearly

constant for Pr > 0.7. Therefore, a fairly accurate method follows: the heat sinks

can be simply optimized geometrically for the required heat transfer density and

then operated according to the fluid in use for achieving minimum pumping power

requirement. This aspect of heat sinks optimization was not explicitly addressed

before in previous works (as e.g. [2 – 6]), and it is useful in the cases in which both

heat transfer demand and nominal or maximum operating temperature are known,

and the objective is minimization of the energy consumption of fluid pumping.

Optimization of a heat sink composed of parallel tubes was carried out for three

distinct sets of objectives and constraints: (i) maximization of heat transfer rate at

fixed pressure drop; (ii) maximization of heat transfer rate at fixed pumping power;

and (iii) fluid flow optimization at fixed heat transfer rate. If the maximization of

heat transfer rate is considered, it was shown that the optimum values of dimen-

sionless thermal length predicted by the method of intersecting the asymptotes are

nearly independent of the imposed fluid flow constraint, either fixed pressure drop or

fixed pumping power, in the range 0.1 < Pr < 100. These optimum values decrease

with Pr and converge to the same value in both cases, being slightly higher in the

case of fixed pressure drop as compared to the values found for fixed pumping power

for lower values of Pr.

It was also shown that the values of optimum x∗ obtained through maximization

of heat transfer rate at either fixed pumping power or fixed pressure drop are the

same that are obtained respectively through minimization of pumping power or

minimization of pressure drop at fixed heat transfer rate. Furthermore, the values of

optimum Dh/L ratio predicted through the method of intersecting the asymptotes

are independent of the Prandtl number and of the optimization objective, either it

is minimization of ∆p∗ or minimization of P ∗
N .

These results were further investigated by developing a new approach of the

method of intersecting the asymptotes, which comprise two optimization variables:

one of geometric nature that is represented by ratio of diameter to tube length;

and the other relative to fluid flow conditions, represented by the Reynolds num-

ber. It was verified that for a fixed heat transfer rate, the optimum dimensionless

thermal length that arises from this method is very close to that corresponding to

the joint minimization of pressure drop and pumping power. A simple theoretical
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expression for determining the optimum diameter was presented together with the

corresponding values of pressure drop and pumping power which in average were

found to surpass the respective minima obtained numerically by only 4% and 9%.

As a conclusion, the optimal design that emerges from the intersection-of-asymp-

totes method for a given heat transfer rate and inlet fluid-to-wall temperature dif-

ference match very closely the criterion of joint minimization of ’fluid flow driving

potential’ (pressure drop) and ’fluid flow energy rate’ (pumping power). In the same

way, if either pressure drop or pumping power are set fixed, this method allows pre-

dicting the maximum ’heat transfer rate’ at a given ’heat transfer driving potential’

(inlet fluid-to-wall temperature difference). Now we are able to notice that this duali-

ty or competition between ’driving potential’ and ’energy rate’ is also present in the

basis of the intersection-of-asymptotes method. In fact, we can recognize the fully

developed flow limit as corresponding to a configuration of maximum heat transfer

rate (not the configuration for the overall maximum but the configuration in which

no more heat can be extracted), and the developing flow limit as corresponding to a

configuration of maximum heat transfer driving potential in which the temperature

difference between the wall and the fluid in the core flow is maximum.

The correctness and validity of the approximation made in the method of asymp-

totes was also demonstrated, by showing that the Nusselt number obtained by the

use of the similarity solutions of heat transfer and fluid flow over a flat plate is

very close to the data for thermally developing flow in a circular tube with uniform

wall temperature. The condition for using this similarity solution is that the mean

gradient of the fluid velocity near a flat plate surface must be equal to the veloci-

ty gradient at the wall of the tube. A theoretical expression for the mean Nusselt

number was deduced, which is very similar to Lévêque’s solution and that shows

an error lower than 3.04% in the range 10−4 < Pr < 10−2 if tested against data.

This contributed not only to validate the optimization method, but also constitutes

a new result per se.

The theoretical results were validated and complemented through numerical

simulations of entire temperature and flow fields for the various sets of objectives

and constraints, and readily usable data for heat sink optimization are provided

either through simple expressions as in table form.

6.2 Optimization of groundwater or water source heat pump systems

In this work, the coefficient of performance of a groundwater or water source heat

pump system was related to the environmental air-to-groundwater exergy potential

for both cooling and heating modes of operation. Simple expressions were deduced

and charts were presented for a wide range of air and groundwater (or surface water)
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temperatures, thus providing an easy way of estimating the exergy potential, the

improvement on performance and the savings in energy consumption compared to

air-to-air systems. It was shown that the reduction in the energy required to drive

the heat pump depends on the square root of the exergy potential.

An assessment of the exergy potential at the Évora region (Portugal) was carried

out based on the hourly averaged values of air temperature and ground temperature

at a deep of 0.70 m for the months of January, April, July and October. The same

assessment was also carried out using the monthly averaged values for every month.

This allowed estimating the improvement in coefficient of performance and savings

in energy consumption of a groundwater source heat pump in this region. It was

concluded that the use of the natural exergy potential can provide energy savings

up to 10% in the heating mode, while energy savings in the order of 5% are achieved

in the cooling mode. This shows that the use of natural exergy potential should be

considered in the improvement of energy efficiency and in strategies for the rational

use of energy.

Distinct conditions of operation were identified through exergy analysis of an

endoreversible heat pump system connected to a groundwater or water heat reser-

voir, in cooling mode of operation. First, the coefficient of performance together

with the heat transfer rate at the evaporator were obtained as function of the tem-

perature of the hot end reservoir for maximum net exergy output (exergy released

into the cooled space minus exergy extracted from the hot end reservoir), as well

as for null net exergy output. This last situation also corresponds to the case where

power input balances the irreversibility generation rate. An empirical expression was

put forward to compare the contribution to the net exergy output of both exergy

input from the hot end reservoir and of power input. From the sake of maximization

of this expression, a coefficient of performance was obtained corresponding to the

combined maximization of exergy extracted from the hot reservoir together with

minimization of power input. These distinct operation conditions were represented

in terms of coefficient of performance as function of the temperature of the hot end

heat reservoir.
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