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Rua Romão Ramalho, 59
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ABSTRACT
Web legal information retrieval systems use legal ontologies
to represent semantic objects, to associate them with legal
documents and to make inferences about them. The qual-
ity of the output of these systems can be improved with
the ontology completeness, which can be obtained by the
ontology merging process. The first step in this process
is the ontology mapping. This paper proposes to use ab-
stract argumentation frameworks to combine ontology map-
ping approaches. We extend the Value-based Argumenta-
tion Framework (VAF)[1], in order to represent arguments
with confidence degrees. Our agents apply individual map-
ping algorithms and cooperate in order to exchange their
local results (arguments). Next, based on their preferences
and confidence of the arguments, the agents compute their
preferred mapping sets. The arguments in such preferred
sets are viewed as the set of globally acceptable arguments.
We applied our model to map two legal core ontologies, LRI-
Core and DOLCE-Lite, and to map LRI-Core with SUMO
generic core ontology.
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1. INTRODUCTION
Legal ontologies provide a formal description of the ob-

jects and their relations in the legal domain. Web legal
information retrieval systems, such as question answering
systems, use this knowledge to represent semantic objects,
to associate them with legal documents and to make in-
ferences about them. The quality of the output of these
systems can be improved with the ontology completeness,
which can be obtained by merging ontologies from different
sources. The first step in this process is the ontology map-
ping, which takes two ontologies as input and determines
as output correspondences between the semantically related
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entities of those ontologies.
In this paper, we propose to use an argumentation model

to map legal ontologies. Different ontology mapping ap-
proaches are combined, as terms may be mapped by a mea-
sure of lexical similarity ([14][12]), or they can be evaluated
semantically, usually on the basis of semantic oriented lin-
guistic resources, or considering the term positions in the
ontology hierarchy ([8]). It is assumed that the approaches
are complementary to each other and combining different
ones reflect better solutions when compared to the solutions
of the individual approaches.

We use the abstract argumentation frameworks[5] to com-
bine mapping approaches. We extend a state of art argu-
mentation framework, namely Value-based Argumentation
Framework (VAF)[1], in order to represent arguments with
confidence degrees. The VAF allows to determine which
arguments are acceptable, with respect to the different au-
diences represented by different agents. We then associate
to each argument a confidence degree, representing how con-
fident an agent is in the similarity of two ontology terms.

Our agents apply different mapping approaches and coop-
erate in order to exchange their local results (arguments).
Next, based on their preferences and confidence of the ar-
guments, the agents compute their preferred mapping sets.
The arguments in such preferred sets are viewed as the set of
globally acceptable arguments. Our approach is able to give
a formal motivation for the composite mapping approaches.
We applied our model to map two legal core ontologies, LRI-
Core (see [2]) and DOLCE-Lite1, and to map LRI-Core with
SUMO 2 generic core ontology.

This paper is structured as follows. Section 2 comments
on argumentation framework. Section 3 introduces the on-
tology mapping approaches. Section 4 presents our agent
argumentation model. Section 5 presents two walk through
examples. Finally, section 6 presents the final remarks and
the future work.

2. ARGUMENTATION FRAMEWORK
Our argumentation model is based on the Value-based

Argumentation Frameworks (VAF)[1], a development of the
classical argument system of Dung [5]. First, we present
the Dung’s framework, upon which the VAF rely. Next, we
present the VAF and our extended framework.

1http://www.loa-cnr.it/DOLCE.html (version 2.1)
2http://ontology.teknowledge.com



2.1 Classical argumentation framework
Dung [5] defines an argumentation framework as follows.

Definition 2.1.1 An Argumentation Framework is a pair
AF = (AR, attacks), where AR is a set of arguments
and attacks is a binary relation on AR, i.e., attacks ⊆
AR × AR. An attack(A,B) means that the argument A
attacks the argument B. A set of arguments S attacks
an argument B if B is attacked by an argument in S.

The key question about the framework is whether a given
argument A, A ∈ AR, should be accepted. One reasonable
view is that an argument should be accepted only if every
attack on it is rebutted by an accepted argument [5]. This
notion produces the following definitions:

Definition 2.1.2 An argument A ∈ AR is acceptable with
respect to set arguments S(acceptable(A,S)), if (∀ x)(x
∈ AR) & (attacks(x,A)) −→ (∃ y)(y ∈ S) & attacks(y,x)

Definition 2.1.3 A set S of arguments is conflict-free if
¬(∃ x)(∃ y)((x ∈ S)&(y ∈ S) & attacks(x,y))

Definition 2.1.4 A conflict-free set of arguments S is ad-
missible if (∀x)(x ∈ S) −→ acceptable(x,S)

Definition 2.1.5 A set of arguments S is a preferred exten-
sion if it is a maximal (with respect to inclusion set)
admissible set of AR.

A preferred extension represent a consistent position within
AF, which can defend itself against all attacks and which
cannot be further extended without introducing a conflict.

The purpose of [1] in extending the AF is to allow asso-
ciate arguments with the social values they advance. Then,
the attack of one argument on another is evaluated to say
whether or not it succeeds by comparing the strengths of
the values advanced by the arguments concerned.

2.2 Value-based argumentation framework
In Dung’s frameworks, attacks always succeed. However,

in many domains, including the one under consideration, ar-
guments lack this coercive force: they provide reasons which
may be more or less persuasive [10]. Moreover, their per-
suasiveness may vary according to their audience.

The VAF is able to distinguish attacks from successful
attacks, those which defeat the attacked argument, with re-
spect to an ordering on the values that are associated with
the arguments. It allows accommodate different audiences
with different interests and preferences.

Definition 2.2.1 A Value-based Argumentation Framework
(VAF) is a 5-tuple VAF = (AR,attacks,V,val,P) where
(AR,attacks) is an argumentation framework, V is a
nonempty set of values, val is a function which maps
from elements of AR to elements of V and P is a set
of possible audiences. For each A ∈ AR, val(A) ∈ V.

Definition 2.2.2 An Audience-specific Value Based Argu-
mentation Framework (AVAF) is a 5-tuple VAFa =
(AR,attacks,V,val,valprefa) where AR,attacks,V and val
are as for a VAF, a is an audience and valprefa is a pref-
erence relation (transitive, irreflexive and asymmetric)
valprefa ⊆ V × V, reflecting the value preferences of
audience a. valpref(v1,v2) means v1 is preferred to v2.

Definition 2.2.3 An argument A ∈ AR defeatsa (or suc-
cessful attacks) an argument B ∈ AR for audience a if
and only if both attacks(A,B) and not valpref(val(B),
val(A)).

An attack succeeds if both arguments relate to the same
value, or if no preference value between the values has been
defined.

Definition 2.2.4 An argument A ∈ AR is acceptable to au-
dience a (acceptablea) with respect to set of arguments
S, acceptablea(A,S)) if (∀ x) ((x ∈ AR & defeatsa (x,A))
−→ (∃y)((y ∈ S) & defeatsa(y,x))).

Definition 2.2.5 A set S of arguments is conflict-free for
audience a if (∀ x)(∀ y)((x ∈ S & y ∈ S) −→ (¬attacks(x,y)
∨ valpref(val(y),val(x)) ∈ valprefa)).

Definition 2.2.6 A conflict-free set of argument S for au-
dience a is admissible for an audience a if (∀x)(x ∈ S
−→ acceptablea(x,S)).

Definition 2.2.7 A set of argument S in the VAF is a pre-
ferred extension for audience a (preferreda) if it is a
maximal (with respect to set inclusion) admissible for
audience a of AR.

In order to determine the preferred extension with respect
to a value ordering promoted by distinct audiences, [1] in-
troduces the notion of objective and subjective acceptance.

Definition 2.2.8 An argument x ∈ AR is subjectively ac-
ceptable if and only if x appears in the preferred ex-
tension for some specific audiences but not all. An ar-
gument x ∈ AR is objectively acceptable if and only if,
x appears in the preferred extension for every specific
audience. An argument which is neither objectively
nor subjectively acceptable is said to be indefensible.

2.3 An extended value-based argumentation
framework

We extend the VAF in order to represent arguments with
confidence degrees. Two elements have been added to the
VAF: a set with confidence degrees and a function which
maps from arguments to confidence degrees. The confidence
value represents the confidence that an individual agent has
in some argument. We assumed that the confidence degrees
is a criteria which is necessary to represent the ontology
mapping domain.

Definition 2.3.1 An Extended Value-based Argumentation
Framework (E-VAF) is a 7-tuple E-VAF = (AR, at-
tacks,V,val,P,C,valC) where (AR,attacks,V,val, P) is
a value-based argumentation framework, C is a nonempty
set of values representing the confidence degrees, valC
is a function which maps from elements of AR to ele-
ments of C. valC ⊆ C × C and valprefC(c1,c2) means
c1 is preferred to c2.

Definition 2.3.2 An argument x ∈ AR defeatsa (or suc-
cessful attacks) an argument y ∈ AR for audience a if
and only if attacks(x,y) ∧ (valprefC(valC(x), valC(y))
∨ (¬ valpref(val(y),val(x)) ∧ ¬ valprefC(valC(y), valC(x)))).



An attack succeeds if (a) the confidence degree of the at-
tacking argument is greater than the confidence degree of
the argument being attacked; or if (b) the argument being
attacked does not have greater preference value than attack-
ing argument (or if both arguments relate to the same pref-
erence values) and the confidence degree of the argument
being attacked is not greater than the attacking argument.

Definition 2.3.3 A set S of arguments is conflict-free for
audience a if (∀x)(∀y) ((x ∈ S & y ∈ S) −→ (¬attacks(x,
y) ∨ (¬valprefC(valC(x),valC(y)) ∧ (valpref(val(y), val(x))
∨ valprefC(valC(y),valC(x))))).

3. ONTOLOGY MAPPING
The approaches for ontology mapping vary from lexical

(see [14][12]) to semantic and structural levels (see [8]). In
the lexical level, metrics to compare string similarity are
adopted. One well-known measure is the Levenshtein dis-
tance or edit distance [11], which is given by the minimum
number of operations (insertion, deletion, or substitution of
a single character) needed to transform one string into an-
other. Other common metrics can be found in [12], [13], and
[6].

The semantic level considers the semantic relations be-
tween concepts to measure the similarity between them, usu-
ally on the basis of semantic oriented linguistic resources.
The well-known WordNet3 database, a large repository of
English semantically related items, has been used to provide
these relations. This kind of mapping is complementary to
the pure string similarity metrics. It is common that string
metrics yield high similarity between strings that represent
completely different concepts (i.e, the words “score” and
“store”). Moreover, semantic-structural approaches have
been explored [3][8]. In this case, the positions of the terms
in the ontology hierarchy are considered, i.e, terms more
generals and terms more specifics are also considered as in-
put to the mapping process.

Heuristics to combine different approaches for ontology
mapping have been proposed in the literature (see, for ex-
ample, [9], [4], [7]). It is assumed that the approaches are
complementary to each other and combining different ones
reflect better solutions when compared to the solutions of
the individual approaches.

We propose to use the E-VAF to combine such approaches.
Our agents apply different mapping algorithms and coop-
erate in order to exchange their local results (arguments).
Next, based on their preferences and confidence of the ar-
guments, the agents compute their preferred mapping sets.
The arguments in such preferred sets are viewed as the set of
arguments globally acceptable (objectively or subjectively).

4. E-VAF FOR ONTOLOGY MAPPING
In our model, dedicated agents encapsulate different map-

ping approaches. Each approach represents a different audi-
ence in an E-VAF, i.e, the agents’ preferences are based on
specific approach used by the agent. In this paper we con-
sider three audiences: lexical (L), semantic (S), and struc-
tural (E) (i.e. P = {L, S, E}, where P ∈ E-VAF). We point
out that our model is extensible to other audiences.

3http://www.wordnet.princeton.edu

Table 1: h and c to audiences.
Audiences

h c Lexical Semantic
+ certainty 1 synonym
+ uncertainty 1 > r > t related
- certainty 0 < r <= t
- uncertainty 0 unknown

4.1 Argumentation generation
First, the agents work in an independent manner, apply-

ing the mapping approaches and generating mapping sets.
The mapping result will consist of a set of all possible corre-
spondences between terms of two ontologies. A mapping m
can be described as a 3-tuple m = (t1,t2,R), where t1 corre-
sponds to a term in the ontology 1, t2 corresponds to a term
in the ontology 2, and R is the mapping relation resulting
from the mapping between these two terms. The lexical and
semantic agents are able to return equivalence value to R,
while the structural agents return sub-class or super-class
values to R. Each mapping m is represented as a argument.
Now, we can define arguments as follows:

Definition 4.1 An argument ∈AR is a 4-tuple x = (m,a,c,h),
where m is a mapping; a ∈ P is the agent’s audience
generating that argument (agent’s preference, i.e, lex-
ical, semantic or structural); c ∈ C is the confidence
degree associated to that mapping (certainty or un-
certainty, as it will be commented below); h is one of
{-,+} depending on whether the argument is that m
does or does not hold.

The confidence degree is defined by the agent when apply-
ing the specific mapping approach. Here, we assumed C =
{certainty, uncertainty}, where C ∈ E-VAF. Table 1 shows
the possible values to h and c, according to the agent’s audi-
ences. The agents generate their arguments based on rules
from Table 1.

4.1.1 Lexical agent
The output of lexical agents (r) is a value from the interval

[0,1], where 1 indicates high similarity between two terms.
This way, if the output is 1, the lexical agent generates an ar-
gument x = (m,L,certainty,+), where m = (t1,t2,equivalence).
If the output is 0, the agent generates an argument x =
(m,L,certainty,-), where m = (t1,t2, equivalence). A thresh-
old (t) is used to classify the output in uncertain categories.
The threshold value can be specified by the user.

4.1.2 Semantic agent
The semantic agents consider semantic relations between

terms, such as synonym, antonym, holonym, meronym, hy-
ponym, and hypernym (i.e., such as in WordNet database).
When the terms being mapped are synonymous, the agent
generates an argument x = (m,S,certainty,+), where m=
(t1,t2, equivalence). The terms related by holonym, meronym,
hyponym, or hypernym are considered related and an ar-
gument x = (m,S, uncertainty,+) is generated, where m
=(t1,t2, equivalence); when the terms can not be related
by the WordNet (the terms are unknown for the WordNet
database), an argument x = (m,L,uncertainty, -), where m
= (t1,t2,equivalence), is then generated.

4.1.3 Structural agent



Figure 1: SUMO partial ontology.

The structural agents consider the super-classes (or sub-
classes) intuition to verify if the terms can be mapped. First,
it is verified if the super-classes of the compared terms are
lexically similar. If not, the semantic similarity between
they is used. If the super-classes of the terms are lexically
or semantically similar, the terms are considered equiva-
lent to each other. The argument is generated according
to the lexical or semantic comparison. For instance, if the
super-classes of the terms are not lexically similar, but they
are synonymous (semantic similarity), an argument x =
(m,E,certainty,+), where m = (t1,t2, super-class), is gen-
erated.

4.2 Preferred extension generation
After generating their set of arguments, the agents ex-

change with each other their arguments. Following a specific
protocol, an agent asks (ask sign) the others about their ar-
guments. The other agents then, send their arguments to
the first agent. An ack sign is then sent to requesting agents,
in order to indicate that the arguments have been correctly
received. Otherwise, an error sign is sent.

When all agents have received the set of argument of
the each other, they generate their attacks set. An at-
tack (or counter-argument) will arise when we have argu-
ments for the mapping between the same terms, but with
conflicting values of h. For instance, an argument x =
(m1,L,certainty,+) have as an attack an argument y = (m2,E,
certainty,-), where m1 and m2 refer to the same terms in the
ontologies. The argument y also represents an attack to the
argument x.

As an example, consider the mapping between terms “Ob-
ject” (from generic core ontology SUMO - Figure 1) and
“Physical-Object” (from the LRI-Core ontology - Figure 2),
and the lexical and semantic agents. The lexical agent gen-
erates an argument x = (m,L,uncertainty,-), where m =
(Object,Physical-Object,equivalence); and the semantic agent
generates an argument y = (m,E,certainty,+), where m =
(Object,Physical-Object, equivalence). For both lexical and
semantic audiences, the set of arguments is AR= {x,y} and
the attacks = {(x,y),(y,x)}. However, the relations of suc-
cessful attacks will be defined according to specific audience
(see Definition 2.3.2 ), as it is commented below.

When the set of arguments and attacks have been pro-
duced, the agents need to define which of them must be
accepted. To do this, the agents compute their preferred
extension, according to the audiences and confidence de-
grees. A set of arguments is globally subjectively acceptable
if each element appears in the preferred extension for some
agent. A set of arguments is globally objectively acceptable
if each element appears in the preferred extension for ev-
ery agent. The arguments which are neither objectively nor
subjectively acceptable are considered indefensible.

In the example above, considering the lexical(L) and se-

Figure 2: LRI-Core partial ontology.

mantic(S) audiences, where L Â S and S Â L, respectively,
for the lexical audience, the argument y successful attacks
the argument x, while the argument x does not successful
attack the argument y for the semantic audience. Then, the
preferred extension of both lexical and semantic agents is
composed by the argument y, which can be seen as glob-
ally objectively acceptable. The mapping between the terms
“Object” and “Physical-Object”, indicated by y is correct.

5. WALK THROUGH EXAMPLES
Let us consider that three agents need to obtain a con-

sensus about mappings that link corresponding class names
in two different ontologies. First, we used our mode to map
legal core ontologies, LRI-Core and DOLCE-Lite. Second,
the LRI-Core ontology was mapped with SUMO generic core
ontology. We point out that our approach is not restrict to
legal domain. The proposed argumentation model seems to
be useful for general ontology mapping (see, for example
[15], where we applied our model for other domains).

We considered lexical (L), semantic (S), and structural (E)
audiences (mapping approaches) in order to verify the be-
havior of our argumentation model. The agents were imple-
mented in Java 5.0, and the experiments ran on Pentium(R)
4, UCP 3.20GHz, 512MB.

The lexical agent was implemented using the edit dis-
tance measure (Levenshtein measure). We used the algo-
rithm available in the API for ontology alignment (INRIA)4

(EditDistNameAlignment). The semantic agent has used
the JWordNet API5, which is an interface to the Word-
Net database. For each WordNet synset, we retrieved the
synonymous terms and considered the hypernym, hyponym,
member-holonym, member-meronym, part-holonym, and part-
meronym as related terms. The structural agent was based
on super-classes similarity.

The threshold used to classify the matcher agents output
was 0.7. This value was defined based on previous analysis of
the edit distance values between the terms of the ontologies
used in the experiments. The terms with edit distance values
greater than 0.7 have presented lexical similarity.

5.1 LRI-Core and DOLCE-Lite Ontologies
We used a partial view of LRI-Core and DOLCE-Lite on-

tologies, which are shown in Figures 3 and 4.
We have selected a correct mapping returned by our model,

in order to show the mapping process in details. The terms
were “Abstract-Entity” (LRI-Core) and “Abstract” (DOLCE-
Lite). Table 2 shows the arguments and attacks generated

4http://alignapi.gforce.inria.fr
5http://jwn.sourceforge.net (using WordNet 2.1)



Table 2: Arguments and attacks.
ID Argument Attacks
1 (Abstract-Entity,Abstract,equivalence,L,uncertainty,-) 2
2 (Abstract-Entity,Abstract,equivalence,S,certainty,+) -
3 (Abstract-Entity,Abstract,super-class,E,uncertainty,-) 2

Figure 3: LRI-Core (partial two first layers).

Figure 4: DOLCE-Lite ontology (partial view).

for the agents. Each agent has as arguments AR = {1,2,3}
and as relations of attacks = {(2,1), (2,3)}. These sets are
generated by each agent, after receiving the arguments of
other agents. Next, the arguments that defeat each other
are computed, according to the agent’s audience.

For the lexical audience, where L Â S and L Â E, the
lexical agent returned a “not mapping with uncertainty”
and this argument is attacked by the argument “2”. For the
semantic audience, where S Â L and S Â E, the semantic
agent returned a “mapping with certainty” and there is no
argument that successfully attacks this argument. As lexical
audience, the structural agent returned a “not mapping with
uncertainty”, because the term “Abstract-Entity” does have
a super-class to be compared with the corresponding super-
class of “Abstract”. Then the agent does not map the terms,
but uncertainty.

The preferred extensions of the agents are composed by
the arguments generated by the corresponding audience (i.e,
the preferred extension of the lexical agent is {2}; the pre-
ferred extension of the semantic agent is {2}; and the pre-
ferred extension of the structural agent is {2}). The argu-
ment 2 indicate “a mapping” between the terms. Then, we
can consider that the mapping is possible, what is correct
according to a manual mapping.

5.2 SUMO and LRI-Core Ontologies
We mapped a partial view of SUMO generic core and LRI-

Core ontologies. Figures 4 and 5 show the hierarchical view
of these ontologies. We considered the mappings returned
as correct by our model (“mapping with certainty”).

As shown in Table 3, the preferred extensions of the agents
are composed by the arguments generated by the corre-
sponding audience. The preferred extension of the lexical
agents (for all mapped terms) is {2, 5, 8, 11, 14, 16, 19}; the
preferred extension of the semantic agent is {2, 5, 8, 11, 14,
17, 20}; and the preferred extension of the structural agent
is {2, 5, 8, 11, 14, 18, 21}).

Figure 5: SUMO ontology (partial view).

Considering the arguments “objectively acceptable”, the
arguments 2, 5, 8, 11 and 14 are considered as consensus,
indicating the correct mapping between the corresponding
terms. However, the arguments 18 and 19 indicate, for
the terms “Quantity” and “Number” a “mapping with cer-
tainty”, appearing in the 2/3 of the arguments, what indi-
cates that they could be accepted. The same occurs with
the terms “SetOrClass” and “Set”.

6. FINAL REMARKS AND FUTURE WORK
This paper presented a composite mapping approach based

on the argumentation formalism to map legal core ontolo-
gies. We extended a state of art argumentation framework,
namely Value-based Argumentation Framework (VAF), in
order to represent arguments with confidence degrees. The
VAF allows to determine which arguments are acceptable,
with respect to the different preferences represented by dif-
ferent agents. Our extension associates to each argument
a confidence degree, representing the confidence that a spe-
cific agent has in that argument. We assumed that the con-
fidence degrees is a criteria which is necessary to represent
the ontology mapping domain.

We have used different agents’ output which use distinct
mapping algorithms in order to verify the behavior of our
model. Partial views of two legal core ontologies, LRI-Core
and DOLCE-Lite, and the generic SUMO ontology were
used.

In the future, we intend to develop further tests consider-
ing also agents using constraint-based mapping approaches
(i.e., the similarity between two terms can be based on the
equivalence of data types and domains, of key characteris-
tics, or relationship cardinality); use the ontology’s applica-
tion context in our mapping approach (i.e, how the ontology
entities are used in some external context, which is espe-
cially interesting, for instance, to identify WordNet senses
that must be considered to specific terms); and test our ap-
proach for less high-level ontologies. Next, we will use the
mapping result as input to an ontology merge process in a
question answering domain for the law domain.

Acknowledgments
The first author is supported by the Programme Alban, the
European Union Programme of High Level Scholarships for



Table 3: Arguments and attacks.
ID Argument Attacks
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