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Abstract 
 

 

The main objectives of this thesis were to evaluate the tolerance of a collection 

of native Portuguese chickpea rhizobia to abiotic stresses, namely acidity and 

salinity, and to investigate the molecular bases of acidity and salinity tolerance. 

Additionally, the evaluation of the symbiotic performance of ACC deaminase-

transformed strains under salinity was performed. The involvement of the 

chaperone ClpB in the response to abiotic stresses and in the symbiosis with 

chickpea was investigated by gene deletion in a Mesorhizobium strain.  

Chickpea rhizobia were assigned to several Mesorhizobium species. In both 

stress conditions, tolerant and sensitive rhizobia were found, including 

moderately acidophilic isolates. The analysis of the expression of the chaperone 

genes dnaK and groESL suggests their involvement in acid tolerance. ACC 

deaminase-transformed rhizobia strains showed an improvement of their 

symbiotic performance under salinity. The characterization of the ClpB knockout 

mutant indicated that ClpB is involved in the nodulation process. 
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Resumo  

Tolerância de rizóbios de grão-de-bico à acidez e salinidade  

Os principais objetivos desta tese foram a avaliação da tolerância a stresses 

abióticos, nomeadamente acidez e salinidade, de uma coleção de rizóbios 

portugueses nativos de grão-de-bico, e investigar as bases moleculares da 

tolerância a ambos os stresses. Adicionalmente, avaliou-se a eficiência 

simbiótica de estirpes transformadas com o gene da ACC desaminase em 

condições de salinidade. Investigou-se ainda o envolvimento da chaperone 

ClpB na resposta a stresses abióticos e na simbiose com grão-de-bico através 

da deleção do gene. 

Os rizóbios de grão-de-bico pertencem a diferentes espécies de 

Mesorhizobium. Encontraram-se rizóbios tolerantes e sensíveis a ambos os 

stresses, incluindo isolados moderadamente acidófilos. A análise da expressão 

dos genes de chaperones dnaK e groESL sugere o seu envolvimento na 

tolerância à acidez. Estirpes de rizóbio transformadas com o gene da ACC 

desaminase apresentaram uma melhoria da sua eficiência simbiótica em 

condições salinas. A caracterização do mutante ClpB de Mesorhizobium 

indicou que esta chaperone está envolvida no processo de nodulação.  
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Chapter 1 

 

State of the art 

 

 

 

 

 

To increase crops productivity to meet the demands of the growing human 

population and simultaneously maintain sustainable agricultural practices is a 

challenging task. The increase in land area affected by abiotic stresses due to 

climate changes and agricultural practices makes this task even more 

challenging.   

The legume-rhizobium symbiotic association plays an important role in 

agriculture sustainability. The knowledge of the molecular biology of the response 

to stress of these symbiotic systems can certainly be helpful for the development 

of more efficient rhizobia inoculants. 
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1.1 The importance of nitrogen fixation 

The Earth’s population is expected to reach 10 billion by 2035 (Bockman et al., 

1990; Waggoner, 1994). It is clear that to maintain the current level of protein and 

caloric intake over the next 20 years unprecedented increases in crop production 

are required. Furthermore, the climate changes and anthropogenic activities, 

such as urban development, road construction, industrial processes, mining and 

inadequate agricultural practices, are resulting in the eutrophication and pollution 

of soils and fresh water resources, soil degradation, loss of soil fertility, and 

desertification (McLauchlan, 2006; Spiertz, 2010; Gordon et al., 2010). So, 

augment in crops production will need to be achieved despite a significant 

deterioration of much prime agricultural lands and will require the utilization of 

large areas now considered marginal. 

Nitrogen is an essential nutrient for plant growth, however, its availability is one of 

the major limiting factors for most crop species, since plants cannot fix nitrogen. 

Nitrogen can be provided by the use of chemical nitrogen fertilizers. The increase 

in the use of the chemical nitrogen fertilizers was registered as 10-fold from 1950 

to 1990, mainly in cereal grain yields in developed countries (Waggoner, 1994). 

Moreover, the demand for nitrogen increased greatly in the last 5 years, 

especially in the emerging countries, such as India and China in Asia, and Brazil 

and Argentina in Latin America (FAO, 2011). However, the use of nitrogen 

fertilizers accelerates the depletion of large amounts of fossil fuels, nonrenewable 

energy resources, and it contributes substantially to environmental pollution 

through atmospheric emission and leaching of nitrogenous compounds to ground 

or surface water (Bohlool et al., 1992; Peoples and Crasswell, 1992; Velthof et 

al., 2009). Consequently the massive use of the chemical nitrogen fertilizers is a 

serious problem for sustainability.  

Sustainable agriculture is defined as agriculture that is managed toward greater 

resource efficiency and conservation while maintaining an environment favorable 

for evolution of all species (Bohlool et al., 1992). From this perspective, the 

biological nitrogen fixation (BNF), that is the assimilation of atmospheric nitrogen 
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in forms of organic compounds by microorganisms, is one of the most important 

contributions to the agricultural sustainability. BNF is a sustainable source of 

nitrogen in cropping systems, as fixed-nitrogen can be used directly by the plant 

and it is less susceptible to volatilization, denitrification and leaching, avoiding 

pollution problems in soil and water (Jensen and Hauggaard-Nielsen, 2003; Garg 

and Geetanjali, 2007). The total BNF is estimated to be twice as much as the 

total nitrogen fixation by non-biological processes (Bezdicek and Kennedy, 

1998). Thus, BNF in agrosystems reduces the need for chemical nitrogen 

fertilizers and consequently reduces global warming and water contamination 

(Bohlool et al., 1992). 

 

1.2 Mechanisms of biological nitrogen fixation 

The major conversion of atmospheric nitrogen into ammonia is accomplished by 

microorganisms in the BNF process (Peters et al., 1995). Nitrogen-fixing 

microorganisms, named diazotrophs, have a central role in almost all aspects of 

nitrogen availability and thus in life support on Earth. All these microorganisms 

are prokaryotes, including some Archaea and Bacteria. BNF can be 

accomplished by diazotrophs in free-living or in symbiotic associations (with 

plants or other organisms).  

The conversion of dinitrogen into ammonia is catalyzed in all diazotrophs by the 

nitrogenase enzyme complex in an ATP-dependent manner. This enzyme 

complex is composed by two components that are named according to their main 

functional subunits, dinitrogenase reductase (Fe protein) and the dinitrogenase 

(Mo-Fe protein) (Hageman and Burris, 1978). The nitrogenase complex is 

encoded by the nif (H, D, K, Y, B, Q, E, N, X, U, S, V, W, Z) genes. For example, 

the nifDK genes are structural genes that encode the NifD/K (α and β subunits of 

the dinitrogenase) and nifH gene codes for a subunit of the nitrogenase complex 

NifH (γ2 homodimeric azoferredoxin) (for review see Dixon and Kahn, 2004).  

The biological nitrogen fixation can be represented by the following equation: 
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N2 +8H+ +8e- + 16ATP = 2NH3 +H2 + 16ADP +16Pi 

The reactions occur while atmospheric nitrogen (N2) is bound to the nitrogenase. 

The Fe protein is first reduced by electrons donated by ferredoxin. Then the 

reduced Fe protein binds ATP and reduces the Mo-Fe protein, which donates 

electrons to N2, producing HN=NH. In two further cycles of this process, HN=NH 

is reduced to H2N-NH2, and this in turn is reduced to 2NH3.  

The nitrogenase enzyme complex is highly sensitive to oxygen, due to the fact 

that oxygen reacts with the iron component of the proteins. Nevertheless, the 

free-living aerobic bacteria, such as Azotobacter species, developed several 

mechanisms to overcome such limitation in soils, for example by maintaining a 

very low level of oxygen in their cells or by producing extracellular 

polysaccharides (Dalton and Postgate, 1969; Yates, 1970). In the symbiotic 

nitrogen-fixing organisms, such as Rhizobium, the plant leghemoglobin regulate 

the supply of oxygen to the nodule tissues in order to maintain the low oxygen 

level within the nodules (Fischer, 1994).  

 

1.3 Symbiotic Nitrogen Fixation 

Despite the importance of all nitrogen-fixing microorganisms, rhizobia, soil 

bacteria that are able to establish symbiosis with legumes, are the most 

important nitrogen-fixing agents in agricultural systems and are the best studied. 

This particular symbiotic relationship plays an important role in agriculture in 

grain and forage legumes, such as bean, pea and chickpea, increasing crop 

productivity without the requirement of chemical nitrogen fertilizers and thus 

contributing to the sustainable agriculture as well as for the pollution reduction 

(Freiberg et al., 1997; Stephens and Rask, 2000). Furthermore, this association 

is also important as legume crops can improvement the soil nitrogen availability 

to other crops, for instance cereals, as well as in land remediation (Aslam et al., 

2003). 
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The specific symbiotic association between rhizobia and leguminous plants 

results in the formation of specialized structures, called root nodules, where 

bacteria can convert dinitrogen into ammonia and supply it to the host plant in 

exchange for carbohydrates (Young, 1992). This prokaryotic-eukaryotic intimacy 

is based on a complex molecular crosstalk between both partners, which is 

initiated by the secretion of flavonoids and other compounds to the rhizosphere 

by legume plants, inducing the rhizobial lipo-chito-oligosaccharides, the so-called 

Nod factors (Cooper, 2007). A complete and efficient nitrogen fixation in legume-

rhizobia symbiosis requires the coordinate interaction of several major classes of 

genes present in rhizobia: the nif genes and fix genes (Kaminski et al., 1998) for 

atmospheric nitrogen fixation, and the nod, nol and noe genes for nodulation 

(Downie, 1998). 

Associations of nitrogen-fixing microorganisms and non-legumes are also 

important in agriculture and natural life. For example, actinorhizal symbiosis, 

undertaken by Frankia bacteria with non-legume angiosperm families (Benson 

and Dawson, 2007), is not only beneficial for soil erosion control, but also in 

wood production with economic importance. On the other hand, the 

photosynthetic cyanobacteria can also fix nitrogen. They also form symbiotic 

associations with other organisms, such as the water fern Azolla and cycads. 

Nitrogen-fixing cyanobacteria are an important symbiont of coral reefs (Lesser et 

al., 2004).  

 

1.4 Rhizobia 

Rhizobia are gram-negative soil bacteria able to establish a nitrogen-fixing 

symbiotic relationship with legumes plants (Young, 1992). Once the symbiosis is 

established, the rhizobia convert atmospheric N2 into ammonia to their legume 

host plant. These bacteria may be considered as plant growth promoting bacteria 

(PGPB), since they directly affect plant growth and development. PGPB are 

beneficial soil bacteria, which may facilitate plant growth and development both 
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directly and indirectly (Glick, 1995; Park et al., 2005; Vassilev et al., 2006). PGPB 

may use one or more of the following mechanisms: fix atmospheric nitrogen and 

supply it to plants; synthesize siderophores which can sequester iron from the 

soil and provide it to plant cells; synthesize phytohormones such as auxins, 

cytokinins and gibberellins, which can act to enhance various stages of plant 

growth; solubilize minerals such as phosphorus, making them more readily 

available for plant growth; and synthesize the enzyme 1-aminocyclopropane-1-

carboxylate (ACC) deaminase, which can lower plant ethylene levels (see Garcia 

de Salamone et al., 2005; Lugtenberg and Kamilova, 2009; Spaepen et al., 2009; 

Glick, 2010; Vilchez and Manzanera, 2011). 

In general, rhizobia are aerobic or facultative anaerobic, rod shaped, and do not 

produce endospores. Rhizobia cells are mobile with one polar or sub-polar 

flagellum with two to six peripheral flagella (Jordan, 1984). Rhizobia can exist in 

two fundamentally different modes, namely as free-living saprophytic 

heterotrophs or as legume-host-specific nitrogen fixing symbionts. In soil 

ecosystem, rhizobia may be present as free-living on the order of 10 to 106 

microorganisms per gram per soil, depending on the season, culture’s history 

and agriculture practices. On the other hand, when in symbiosis with their hosts, 

nodules can contain more than 1010 cells per gram (McDermott et al., 1987). At 

the end of the growing season, nodule senescence leads to the release of a large 

number of rhizobia into soil. 

These bacteria were described for the first time by Martinus Beijerinck from a 

leguminous plant root nodule (Beijerinck, 1888) and since then their study 

increased greatly. More than 90 species comprising 12 genera were described to 

date, and this number is increasing as a result of the high diversity of leguminous 

plants being investigated. Most of these bacterial species belong to the α-

Proteobacteria class including species of Rhizobium (Frank, 1889), 

Bradyrhizobium (Jordan, 1982), Azorhizobium (Dreyfus et al., 1988), Ensifer 

(Young, 2003) (formely Sinorhizobium) and Mesorhizobium (Jarvis et al., 1997). 

Until recently, the rhizobia species were restricted to the α-Proteobacteria class, 
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however, rhizobia from β-Proteobacteria have been described. β-Proteobacteria 

comprises three genera containing rhizobia species, namely Burkholderia (Moulin 

et al., 2001), Cupriavidus (Chen et al., 2001) and Herbaspirillum (Valverde et al., 

2003). Nevertheless, both classes comprise non-nodulating legume bacteria, 

such as Rhizobium larrymoorei (Young et al., 2001). 

Rhizobial genomes are composed by core and accessory elements. The core 

genome includes the housekeeping genes, which are required for proper 

functioning of the cell, as well as other genes necessary for the maintenance and 

basic metabolism. The phylogeny based on the housekeeping genes constitutes 

a good biological basis for rhizobium taxonomy (Martens et al., 2007; 2008; 

Vinuesa et al., 2008). On the other hand, the accessory genome is responsible 

for special features, not essential for functioning, such as symbiosis or other 

kinds of ecological niche adaptation (Young et al., 2006; Lindström et al., 2006; 

Maclean et al., 2007).  

Complete sequencing of some rhizobial genomes has allowed the perception of 

rhizobial genome complexity. Until April 2012, more than 35 rhizobial complete 

genomes were ongoing submission or were already available. Significant 

differences are observed within genomes from the rhizobial species belonging to 

the α-Proteobacteria class. The variation in chromosome size and plasmid 

numbers is high. For example, Bradyrhizobium japonicum USDA110 possesses 

a chromosome with a size of 9.11Mbp and no plasmids while Rhizobium etli 

CFN42 has a chromosome of 4.38Mbp and six plasmids ranging on size from 

0.184Mbp to 0.642Mbp in size. Another interestingly feature brought out with the 

systematic sequencing is the symbiosis genes location. For example, in the 

Mesorhizobium genus, namely M. loti R7A and M. sp. MAFF303099, the 

symbiosis genes are on a chromosomal “symbiosis island” (Kaneko et al., 2000; 

Sullivan et al., 2002). In contrast, Rhizobium species show the symbiosis genes 

located on plasmids, usually designated by pSym. 
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The Mesorhizobium genus 

The Mesorhizobium genus is included in the Rhizobiales order (Jarvis et al., 

1997). Nowadays, this genus consists of a total of 22 species (Table 1.1). 

However, this number is increasing mostly due to the identification of 

microsymbionts from newly studied wild legumes.   

Although the Mesorhizobium genus is the most recently described rhizobial 

genus within the Rhizobiales order, it is one of the genus that comprise the 

highest number of nodulating rhizobial species. Mesorhizobium type strains were 

isolated from legume root nodules, with the exception of M. thiogangeticum, 

which was obtained from a legume rhizosphere (Ghosh and Roy, 2006).  

Within the Mesorhizobium genus, the 16S rRNA gene sequence used for 

phylogenetic studies shows a high similarity between species. For example, 

some Mesorhizobium species are 100% identical in terms of the comparable 16S 

rRNA gene sequence, as the recently described M. metallidurans and M. 

gobiense. In the genus Mesorhizobium, other genes have been used for 

phylogenetic purposes, such as dnaK (Stepkowski et al., 2003), atpD and recA 

(Vinuesa et al., 2005). More recently, the dnaJ gene suggested as a phylogenetic 

marker at the level of phylum (Proteobacteria) and class (α-Proteobacteria), can 

also be used for identification of mesorhizobia isolates with more resolution than 

the 16S rRNA gene (Alexandre et al., 2008).  

Three nodulating mesorhizobia strains are completely sequenced, namely M. sp. 

MAFF303099, M. opportunistum LMG 24607 and M. ciceri bv. biserrulae 

WSM1271. Nevertheless, the complete genome annotation of a few 

Mesorhizobium strains, such as M. australicum LMG 24608, M. huakuii 7653R 

and M. alhagi CCNWXJ12-2, is ongoing submission. This will allow to compare 

genes related to the symbiotic lifestyle and to study the evolution of the legumes-

mesorhizobia symbiosis. 



 

 

Table 1.1 Description of the species belonging to the Mesorhizobium genus, in terms of type strain, country and host of 

origin, as well as the respective reference.  

Species Type strain Origin Original host Reference 

M. albiziae  CCBAU 61158 China Albizia kalkora Wang et al. (2007) 

M. alhagi  CCNWXJ12-2 China Alhagi sparsifolia Chen et al. (2010) 

M. amorphae  ACCC 19665 China Amorpha fruticosa Wang et al. (1999) 

M. australicum  LMG 24608 Australia Biserrula pelecinus Nandasena et al. (2009) 

M. camelthorni ACCC14549  China Alhagi sparsifolia Chen et al. (2011) 

M. caraganae  CCBAU 11299 China Caragana spp. Guan et al. (2008) 

M. chacoense  LMG 19008 Argentina Prosopis alba Velázquez et al. (2001)  

M. ciceri  UPM-Ca7 Spain Cicer arietinum Nour et al. (1994)  

M. gobiense CCBAU 83330 China Oxytropis glabra Han et al. (2008) 

M. huakuii CCBAU 2609 China Astragalus sinicus Chen et al. (1991) 

M. loti  NZP 2213 New Zealand Lotus corniculatus Jarvis et al. (1982) 

M. mediterraneum  UPM-Ca36 Spain Cicer arietinum Nour et al. (1995) 

M. metallidurans STM 2683 France Anthyllis vulneraria Vidal et al. (2009) 

M. opportunistum  LMG 24607 Australia Biserrula pelecinus Nandasena et al. (2009)  

M. plurifarium  ORS 1032 Senegal Acacia senegal de Lajudie et al. (1998) 

M. robiniae ACCC 14543 China Robinia pseudoacacia Zhou et al. (2010) 

M. septentrionale  HAMBI 2582 China Astragalus adsurgens Gao et al. (2004)  

M. shangrilense CCBAU 65327 China Caragana spp. Lu et al. (2009) 

M. tarimense  CCBAU 83306 China Lotus frondosus Han et al. (2008) 

M. temperatum HAMBI 2583 China Astragalus adsurgens Gao et al. (2004) 

M. tianshanense  A-1BS China Glycyrrhiza pallidiflora Chen et al. (1995) 

M. thiogangeticum LMG 22697 India Clitoria ternatea* Ghosh and Roy (2006) 

*M. thiogangeticum was isolated from this species rhizosphere. 
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1.5 Host legume 

Legumes are important crops for animal and human food, constituting the largest 

source of vegetable protein in human diets and livestock feed. The legumes are 

an important and diverse family of angiosperms and are divided into three 

subfamilies, Mimosoideae, Caesalpinoideae and Papilionoideae. Most cultivated 

legumes, such as common bean (Phaseolus vulgaris), soybean (Glicine max) 

and chickpea (Cicer arietinum), belong to the Papilionoideae subfamily, which is 

the largest one in total number of genera. Moreover, over 90% of the legumes 

belonging to the Papilionoideae and Mimosoideae subfamily can be nodulated 

whereas only 30% of the legumes members of the Caesalpinoideae subfamily 

are known to be nodulated (Doyle, 2001). The production of legumes worldwide 

is approximately 250Mha and through the symbiotic relationship about 90 Tg of 

atmospheric nitrogen per year is fixed (Kinzig and Socolow, 1994).  

The legume-rhizobium specificity can be determined in both partners perspective. 

The molecular signalling exchange between both partners is fundamental for an 

effective legume-rhizobium symbiosis and can determine the specificity of this 

symbiotic relationship. Production of Nod factors or lipo-chito-oligosaccharide 

signalling molecules by the prokaryotic partner is activated by the release of plant 

phenolic signals, mainly flavonoids, into the rhizosphere. The phenolic flavonoid 

compounds partly determine the specificity of the symbiotic relationship as each 

rhizobium species responds to specific flavonoids. Another determinant of host-

symbiont specificity is attributed to the different Nod factors substituents attached 

to the oligosaccharide backbone (Dénarié et al., 1996; Oldroyd, 2001). 

Most rhizobia species interact with only a few select legumes, but some have 

been shown to have a broad host range (Pueppke and Broughton, 1999). For 

example, the strain Ensifer sp. NGR234 is able to nodulate over 120 plant 

genera, including the non-legume Parasponia andersonii. This feature may rely 

on the family of Nod factors secreted, which are more diverse than in all other 

rhizobia known (Schmeisser et al., 2009) and in the concentration of Nod factors 

released by the NGR234 that is much higher than usual. More recently, M. 
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opportunistum WSM2075 was isolated from Biserrula pelecinus root nodules, but 

the symbiotic genes of this organism provide a broader range of hosts for 

nodulation, including also Astragalus adsurgens, A. membranaceus, Lotus 

peregrinus and Macroptilium atropurpureum (Nandasena et al., 2009). 

On the other hand, there are legumes species that can be nodulated by several 

rhizobia species and others that are very restrict for nodulation and only accept 

as microsymbionts a reduced number of species. For example, Phaseolus 

vulgaris is known as a promiscuous host, since it can be nodulated by rhizobia 

belonging to diverse genera (such as Bradyrhizobium, Rhizobium and Ensifer) 

while Cicer arietinum is considered a restrict host, because it is nodulated only by 

Mesorhizobium species. Nevertheless, the host range depends on the legume 

cultivar used and conditions tested (Martinez-Romero, 2003).  

 

Chickpea (Cicer arietinum L.) 

Chickpea (Cicer arietinum) was one of the earliest grain crops cultivated by 

humans. Today, chickpea ranks third (FAO, 2008) in world production among 

food legumes following beans (Phaseolus spp.) and field pea (Pisum sativum).  

Total annual world chickpea production is 8.4 million tonnes, and the major 

chickpea producing countries include India (65% of annual production), Pakistan 

(10%), Turkey (7%), Iran (3%), Myanmar (2%), Mexico (1.5%) and Australia 

(1.5%). In Portugal, chickpea production is evaluated in 650 tonnes (FAO, 2008).  

Chickpea seed is a protein-rich supplement to cereal-based diets, especially 

critical in developing countries where people cannot afford animal protein. 

Chickpea is also a low-input requiring crop, deriving over 70% of its nitrogen 

requirement through symbiotic nitrogen fixation and providing benefits for 

following cereal crops (Siddique et al., 2005).  

Two rhizobia species were described as chickpea microsymbionts, namely 

Mesorhizobium ciceri (Nour et al., 1994) and Mesorhizobium mediterraneum 



Chapter 1 

12 

(Nour et al., 1995). Since then, several studies addressed chickpea rhizobia 

diversity using different approaches. Phenotypic and/or molecular 

characterization of chickpea rhizobia isolated from diverse areas worldwide were 

conducted (Maâtallah et al., 2002; Laranjo et al., 2004; Rivas et al., 2006; L’Taief 

et al., 2007; Nandwani and Dudeja, 2009). Molecular characterization has been 

performed using RAPD fingerprinting, 16S rRNA sequencing or RFLP (Maâtallah 

et al., 2002; Rivas et al., 2006; L´Taief et al., 2007; Nandwani and Dudeja, 2009) 

or DAPD fingerprint (Laranjo et al., 2004). These data showed high diversity of 

species able to nodulate chickpea but all from Mesorhizobium genus. Despite the 

fact that Ensifer meliloti strains isolated from Tunisian soils were able to induce 

nodule formation in chickpea plants, these nodules were ineffective (Romdhane 

et al., 2007). 

On the other hand, the phylogenetic analysis of two symbiosis genes (nifH and 

nodC) of chickpea rhizobia, including Mesorhizobium ciceri and Mesorhizobium 

mediterraneum type strains as well as Portuguese and Spanish isolates, showed 

a high similarity, suggesting that the symbiosis genes were horizontally 

transferred (Rivas et al., 2007; Laranjo et al., 2008).  

 

1.6 The legume-rhizobia nodulation process  

The legume-rhizobia symbiosis results in the formation of root nodules that 

provide an environment suitable for nitrogen fixation by rhizobia. In general, the 

formation of symbiotic N2-fixing nodules requires two developmental processes: 

bacterial infection and nodule organogenesis (for more details see Oldroyd et al., 

2011). Although these processes can be separated genetically, they must be 

coordinated in both spatial and temporal manner to ensure nodule formation at 

the site of bacterial infection. Herein, the description of the most common 

nodulation processes are detailed in below and schematized in Fig. 1.1 and 1.2. 

In broad terms, leguminous plants excrete, through their roots, specific chemical 

substances that promote rhizobial proliferation in rizosphere (Fig. 1.1). Among 
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others, phenolic flavonoid compounds are the most relevant compounds involved 

in the interaction with symbiotic bacteria (Redmond et al., 1986). Flavonoid 

perception attracts the bacteria to the root and activates nod (nodulation) gene 

expression, via the bacteria activator NodD (Lindström et al., 2002). NodD 

activates transcription of nod boxes promoters, and represents the first level of 

host-specific recognition (Schultze and Kondorosi, 2008). The nod genes 

expression lead to the production of strain-specific lipo-chito-oligosaccharides, 

also called as Nod factors (NF) (Spaink, 2000). NFs have an oligosaccharide 

backbone of N-acetyl-D-glucosamine units with a fatty acyl- group attached to the 

non-reducing sugar, which may undergo additional modifications in the length 

and degree of saturation of the fatty acid group depending on the species of 

rhizobia (Oldroyd and Downie, 2008). Thus, modifications on NFs structure may 

determine the host recognition and therefore NFs are considered the second 

level of host-specific recognition (Perret et al., 2000). For instance, nodC is 

involved in the first step of the synthesis of Nod factors and is important in 

determining the length of the chitin oligosaccharide chain, which is one of the 

host determinant factors (Kamst et al., 1997). 

The presence of compatible rhizobia species and their corresponding NF are 

enough to trigger nodule development. Normally, the tip of the emerging root hair 

is the primary target for infection by rhizobia. Attachment of rhizobia to root hairs 

stimulates root hair deformation and also promotes cortical cell divisions (Fig. 1.1 

B).  
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Figure 1.1 Illustration of the main steps in the infection process of the legume-

rhizobia symbiosis (from Djordjevic and Weinman, 1991). 

 

Rhizobial infection can occur through root hairs, via cracks in the epidermis and 

by interstitial infections between epidermal cells (for review see Oldroyd and 

Downie, 2008). However, the most common via of infection is the formation of 

infection threads (IT) in growing root hairs, and this involves re-differentiation of 

the root-hair cell to enable it to make the IT (Fig. 1.1). The IT grows through the 

root hair into the root cortex and the newly induced dividing cells. Bacteria are 

released from near the growing tip of the IT into an infection droplet in the host 

cell cytoplasm. Through a process resembling endocytosis, the bacteria are 

surrounded by a plant-derived membrane, termed the peribacteroid membrane, 

which in turns forms the symbiosome (Fig 1.2) (Udvardi and Day, 1997, for 

review see Jones et al., 2007).  
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Figure 1.2 Illustration of endocytosis of bacteria and bacteroids differentiation 
(from Jones et al., 2007). 

 

The membrane-enveloped bacteria continue to divide within the host cells before 

they differentiate into bacteroids and start to fix nitrogen (Fig. 1.2) (Roth and 

Stacey, 1989a, b). Atmospheric nitrogen is converted into ammonia by bacteroids 

and is subsequently assimilated into the plant following its conversion to 

glutamine by glutamine synthase. Within the nodule interior and the neighboring 

plant cells, essential nutrients are exchange between bacteroids and plant cells.  

 

1.7 Effects of environmental stresses in the symbiosis 

The soil environment is constantly changing, which can be relatively stressful for 

both macro- and microorganisms. Changes such as fluctuations in pH, 

temperature, salinity and nutrient availability greatly influence the growth, survival 

and metabolic activity of soil microorganism and plants, and thus interfere with 

their ability to enter into symbiotic interactions (Zahran, 1999). So, microbes and 

plants have to evolve to adapt to the constant changing and often inhospitable 

soil environment. Nevertheless, the dual mode of existence of rhizobia, as free-

living or in symbiosis, gives them advantages in terms of survival and persistence 

over most other soil bacteria.  
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It is predictable that any environmental factor that negatively influences either the 

growth of rhizobia or the host plant itself has an impact on symbiotic nitrogen 

fixation. However, these factors can directly influence the plant growth during 

post-nodulation events and consequently the efficient functioning of the 

nitrogenase enzyme complex, or indirectly affect the nodulation process itself and 

thus affect nitrogen fixation. Herein, the negative impacts of acid and salt 

stresses in rhizobia and consequently in symbiosis are addressed. 

 

Salt stress 

Soil salinity affects about 800 Mha of arable lands worldwide (Munns and Tester 

2008), and this area is expanding. Salinity affects agricultural production in arid 

and semiarid regions, where rainfall is limited and is not sufficient to transport 

salts from the plant root zone (Tester and Davenport, 2003).  

Salt stress affects both bacteria and plants in two ways: it induces ionic stress 

due to the high concentration of ions and also osmotic stress through the change 

in the solute concentration around the cells, producing water deficit and 

desiccation. In general, legumes are more sensitive to salinity than their rhizobial 

counterparts, and consequently the symbiosis is more sensitive to salt stress 

than the free-living rhizobia. Salt stress may inhibit the initial steps of the 

symbiosis (nodule initiation, nodule infection, and development) but it also has a 

depressive effect on nitrogen fixation (Zahran, 1999). The detrimental effects of 

salt stress on inoculum viability, nodulation and nitrogen fixation have been 

reported for many Rhizobium spp. strains (Israel et al., 1988). It has been 

reported that fast growing rhizobia are more salt-tolerant than slow-growing 

rhizobia (Zahran, 1999). 

Rhizobia subjected to salt stress may undergo morphological alterations, leading 

to changes in cell morphology and size or modifications in the pattern of 

extracellular polysaccharides (EPS) (Lloret et al., 1998; Vanderlinde et al., 2010) 

and lipopolysaccharides (LPS) (Sousi et al., 2001; Vanderlinde et al., 2009). The 
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latter responses may have an impact on the symbiotic interaction because EPS 

and LPS are necessary to establish symbiosis and for the development of root 

nodules.  

Many microbes, including rhizobia, use distinct mechanisms for osmotic 

adaptation upon salt stress (Zahran, 1999). In general, the metabolism of 

Rhizobium is slowed down under osmotic stress, due to the repression of genes 

implicated in the tricarboxylic acid cycle, in the uptake of carbon supply, in 

glycogen metabolism, in the respiratory chains, and in ribosome composition 

(Domínguez-Ferreras et al., 2006). Furthermore, alteration of the expression of 

genes encoding chaperones and elongation factors as well as genes involved in 

cell division are observed in rhizobia during salt stress (Wei et al., 2004; Miller-

Williams et al., 2006). 

Intracellular accumulation of low-molecular-weight organic solutes (osmolytes), 

including amino acids, sugars, and polyamines, or the accumulation of ions, to 

equilibrate internal and external osmotic concentrations has been observed in 

some species of rhizobia when subjected to salt stress (Talibart et al., 1997; 

Pichereau et al., 1998; Gouffi et al., 1999; Rüberg et al., 2003). Some compatible 

solutes can be used as either nitrogen or carbon sources for growth, suggesting 

that their catabolism may be regulated to prevent degradation during salt stress. 

For example, E. meliloti overcomes salt stress-induced growth inhibition by 

accumulating compatible solutes, glutamate and proline (Rüberg et al., 2003; 

Domínguez-Ferreras et al., 2006). The glgA2, glgB2, and glgX genes involved in 

glycogen metabolism are expressed at higher levels during exposure to salt 

stress, indicating that glycogen accumulates during salt stress (Domínguez-

Ferreras et al., 2006).  

The transport systems of ions may also be involved in rhizobia response to salt 

stress due to the intracellular accumulation of potassium and some polyamines 

(Zahran, 1999; Vriezen et al., 2007). Nogales et al. (2002) identified a kup gene 

specifying an inner-membrane protein involved in potassium uptake, which 

confers salt tolerance in Rhizobium tropici. Another identified transporter involved 
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in the early response to osmotic stress was BetS (betaine/proline transporter) in 

E. meliloti (Boscari et al., 2002).  

Several genes such as ntrY (nitrogen regulator), noeJ (mannose-1-phosphate 

guanylytransferanse), alaS (alanyl-tRNA synthase), dnaJ (heat-shock 

chaperone), greA (transcription elongation factor), omp10 (outer membrane 

lipoprotein), relA ((p)ppGpp synthetase) and nuoL (NADH dehydronase I chain L 

protein) were identified as being involved in salt stress response in rhizobia 

(Nogales et al., 2002; Wei et al., 2004). Despite that several genes have been 

identified in rhizobia response to salinity, the tolerance mechanisms of rhizobia to 

overcome salt stress remains unknown, mainly due to the fact that response and 

adaptation to salinity stress is a complex phenomenon involving many 

physiological and biochemical processes that likely reflect changes in gene 

expression. 

 

Acid stress 

Agricultural practices and climate changes increase the amount of land affected 

by acidity, and thus limit legume crop productivity. Worldwide, more than 1.5 Gha 

of acid soils limit agriculture production (Graham and Vance, 2000) and as much 

as 25% of the Earth's croplands are impacted by problems associated with soil 

acidity (Munns, 1986).  

Legumes and their rhizobia exhibit varied response to soil acidity. Most 

leguminous plants require a neutral or slightly acidic soil for growth, especially 

when depending on symbiotic nitrogen fixation (Rice et al., 1977; Brockwell et al., 

1991; Bordeleau and Prévost, 1994). However, differences in acid soil tolerance 

by legumes have been reported. Some species, like lucerne (Medicago sativa), 

are extremely sensitive to acidity (Rice et al., 1977), while others, such as Lotus 

tenuis tolerate relatively low soil pH (Miñón et al., 1990).  

Rhizobia differ in their response to acidity when grown in liquid culture. Some are 

moderately acid tolerant such as Mesorhizobium ciceri (Laranjo and Oliveira, 
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2011), Mesorhizobium loti and R. tropici (Wood et al., 1988) while others, like E. 

meliloti, are very sensitive to acidity (Brockwell et al., 1991; Tiwari et al., 1992). 

Nevertheless, different strains of the same species may also vary widely in their 

pH tolerance (Glenn and Dilworth, 1994).  

Rhizobia can be more sensitive to low pH than their legume host. Indeed, it is in 

many cases the inability of the microsymbiont to persist under acidic conditions 

that reduces the effectiveness of the symbiosis. Brockwell et al. (1991) reported a 

nearly 10-3 decrease in the number of E. meliloti in soils with a pH < 6 compared 

to those with a pH > 7.0. Therefore, soil acidity is one of the main environmental 

factors limiting the establishment of the rhizobium-legume symbiosis, mainly 

because acidity limits rhizobia survival and persistence in soil, leading to a 

reduction or inexistent nodulation (Zahran, 1999). So, the selection of rhizobial 

strains tolerant to low pH may improve the acid tolerance of the legume through 

an efficient symbiotic nitrogen fixation under acidity conditions. However, the 

relationship between soil acidity and rhizobia competitiveness, and ability to 

survive in acid soils is not always straight forward.  

Although some acid-tolerant rhizobia strains have been identified (Wood et al., 

1988; Vinuesa et al., 2005; Laranjo and Oliveira, 2011), the mechanisms that 

they use to survive and grow under acidic conditions have not been fully 

elucidated and therefore the molecular basis for differences in pH tolerance 

among strains of rhizobia is still not clear. Several reports point out that possible 

mechanisms involved in pH tolerance are the regulation of cytoplasmic pH (Chen 

et al., 1993; Graham et al., 1994), proton exclusion and/or extrusion (Chen et al., 

1993), exopolysaccharide production (Cunningham and Munns, 1984), and 

changes in the hydrophobicity of the plasma membrane (Graham et al., 1994). In 

several bacteria, like R. leguminosarum bv trifolii these mechanisms have been 

described as being an adaptive response to pH (O'Hara and Glenn, 1994), while 

in others, such as in the acid tolerant R. tropici UMR 1899 these mechanisms 

seem to be constitutive (Graham et al., 1994).  
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Acidic soils are often associated with increased aluminium and manganese 

toxicity and reduced calcium availability, since these metals become more 

soluble at lower pH (Hungria and Vargas, 2000; Reeve et al., 2002). Rhizobia 

exhibit an adaptive acid tolerance response that is influenced by calcium (Glenn 

et al., 1999). These effects of calcium under acid conditions might be explained 

by calcium stabilization of various cellular components, or by direct or indirect 

calcium effects on gene expression. Furthermore, when rhizobia are exposed to 

acidic conditions, the presence of a carbon source and the rhizobial ability to take 

it up enhances their survival (Clarke et al., 1993; Steele et al., 1999). The 

activation of glutathione synthesis might be essential for tolerance to acid stress 

(Muglia et al., 2007). Furthermore, acidity can affect the size and morphology of 

rhizobia and their potassium content (Watkin et al., 2003).  

More recently, using molecular techniques, several genes, such as actA, actP, 

exoR, lpiA, actR, actS, and phrR, were shown to be essential for rhizobia growth 

at low pH. For instance, the protein products of these genes include ActA (an 

apolipoprotein acyl transferase) (Tiwari et al., 1996a), ActS (a histidine kinase 

‘sensor’) (Tiwari et al., 1996b), ActR (a response regulator) (Tiwari et al., 1996b) 

and ActP (a CPx heavy metaltransporting ATPase) (Reeve et al., 2002); LpiA (a 

putative transmembrane protein (Reeve et al., 2006) or exopolysaccharide 

biosynthesis (exoR) (Dilworth et al., 2001). Vinuesa et al. (2003), using a Tn5-

mutagenesis approach, isolated and characterized the pH-responsive genes, lpiA 

and atvA, from Rhizobium tropici CIAT899. The microarray data of E. meliloti 

wild-type and sigma rpoH1 mutant, upon acid stress, pointed out several genes 

as being involved in acid-response (de Lucena et al., 2010). This study also 

allowed identification of genes related with distinct function, for example ibpA, 

grpE and groEL5, as known to be involved in heat shock, tufA and rplC, as genes 

involved in translation.  
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1.8 Molecular chaperones  

To be functional, proteins must adopt a defined three-dimensional structure 

called the native fold. However, folded proteins are at permanent risk of 

unfolding, especially under environmental stress conditions (Jahn and Radford, 

2005). Bacteria have evolved several mechanisms that ensure protein folding 

and promote homeostasis under stress conditions (Frydman, 2001). One of the 

mechanisms relies on the activation of proteins such as molecular chaperones, 

proteases, and regulatory factors (Hartl et al., 2011).  

The collectively termed molecular chaperones are complex machineries that 

include several conserved protein families and are recognized by their action on 

the guidance of proteins to their “proper” fate but do not remain associated with 

the final product (Wickner et al., 1999). Members of these protein families are 

often known as stress proteins or heat-shock proteins (HSPs), as they are 

upregulated under conditions of stress in which the concentrations of 

aggregation-prone folding intermediates increase. Several different classes of 

structurally unrelated chaperones exist in cells, forming cooperative pathways 

and networks, which guarantee the optimal functionality of proteins during their 

life-time (Hartl et al., 2011).Two main functions attributed to several molecular 

chaperones comprise folding (including de novo folding and refolding of stress-

denatured proteins) and disaggregation (Fig 1.3). 

 

Protein Folding 

In the bacterial cytosol, the folding of new proteins is assisted by three major 

molecular chaperone complexes well characterized in E. coli: Trigger factor (TF), 

DnaK-DnaJ-GrpE and GroEL-GroES complexes (Genevaux et al., 2004; Hartl 

and Hayer-Hartl, 2002). TF is the first chaperone to interact with nascent 

polypeptide chains coming from the bacterial ribosome (Pfanner, 1999).  
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DnaK–DnaJ–GrpE and GroEL–GroES are multicomponent molecular machines 

that promote folding through ATP- and cofactor-regulated binding and release 

cycles. They typically recognize hydrophobic amino-acid side chains exposed by 

non-native proteins and may functionally cooperate with ATP-independent 

chaperones, such as IbpA and IbpB. The two systems act sequentially, whereby 

DnaK system interacts upstream with nascent and newly synthesized 

polypeptides and the GroESL function downstream in the final folding of those 

proteins that fail to reach native state by cycling on DnaK system alone (Frydman 

et al., 1994; Kolaj et al., 2009). 

Figure 1.3 Illustration of the process of protein folding in E. coli cytoplasm (from 

Kolaj et al., 2009). 

 

DnaK binds to solvent-exposed hydrophobic regions in unfolded polypeptide 

chains, assisting the folding and preventing misfolding and/or aggregation in an 

ATP-driven process that is regulated by the co-chaperone DnaJ and the 

nucleotide-release cofactor GrpE (Genevaux et al., 2004). Hydrolysis of ATP to 

ADP is strongly accelerated by DnaJ, leading to lid closure and stable peptide 
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binding, and DnaJ also interacts directly with unfolded polypeptides and can 

recruit DnaK to protein substrates (Kampinga and Craig, 2010). 

The folding activity of GroEL requires the cooperation of the co-chaperone 

GroES to form the GroESL complex in the presence of ATP (Chaudhuri et al., 

2009). The apical domains of GroEL present hydrophobic amino-acid residues 

for substrate binding in the ring centre. Subsequent folding depends on global 

substrate encapsulation by GroES. The complex GroESL can assist the protein 

folding by two different ways: a cys- folding action or a trans- folding mechanism. 

Nevertheless, independently of the mechanism, for many proteins, multiple 

binding-release cycles are necessary in order to obtain correct folding (Farr et al., 

2003; Chaudhuri et al., 2009).  

 

Protein Disaggregation 

Partially folded or misfolded proteins are problematic because they tend to 

aggregate in a concentration-dependent manner. In bacteria, a network of 

chaperones and proteases carries out the processing of aggregated protein. The 

key elements recognized in protein disaggregation are DnaK and ClpB. ClpB 

belongs to the superfamily AAA+ proteins, but contrary to the other proteins 

included in the superfamily AAA+, the activity of ClpB does not consist in the 

generic proteolytic action, but it is specifically involved in protein aggregate 

disintegration (Dougan et al., 2002). Interestingly, the ClpB activity in fully protein 

disaggregation is achieved in collaboration with the DnaK–DnaJ–GrpE system 

(Fig. 1.4) (Acébron et al., 2009). The DnaK system acts previously or together 

with ClpB (Fig. 1.4). Initially, DnaJ associates with the aggregate and drives 

DnaK to the aggregate surface, and this mediates the binding of ClpB to the 

aggregate (Fig 1.4 (i)). ClpB operates by an ATP-dependent mechanism. The 

disaggregation process occurs by translocating proteins from the aggregate 

through their central channel (Fig. 1.4 (ii)) and releasing them in an unfolded 

state into the solution (Fig. 1.4 (iii)). Once released, proteins may refold 
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spontaneously or require the involvement of other chaperones including the 

DnaK system (Fig. 1.4 (iv)). 

Figure 1.4 Disaggregation of bacterial aggregates by ClpB in combination with 

the DnaK system (adapted from Diemand and Lupas, 2006).  
 

 

It is possible that ClpB function as a disaggregation machine may rely on the 

ATP hydrolysis at the two nucleotide-binding domains of each monomer. 

Furthermore, the probable mechanism of disaggregation–refolding by ClpB 

involves the extraction of polypeptides from aggregates by forced unfolding, 

translocation through ClpB central pore and release into cellular milieu for 

spontaneous or chaperone-mediated refolding (Diemand and Lupas, 2006; Doyle 

and Wickner, 2009).  

 

 

1.9 Major molecular chaperones in rhizobia 

The DnaK-DnaJ-GrpE and GroESL systems are the best characterized molecular 

chaperone systems in E. coli. In contrast, ClpB system is not fully understood 

(Doyle and Wickner, 2009). In rhizobia, these major chaperones systems are less 

studied and understood. 

Several copies of the groEL gene are found in rhizobia genomes. Bradyrhizobium 

japonicum, Ensifer meliloti, Mesorhizobium sp. MAFF303099, Rhizobium etli and 

Rhizobium leguminosarum, all have three or more groEL homologues (Fischer et 

al., 1993; Rusanganwa and Gupta, 1993; Ogawa and Long, 1995; Kaneko et al., 
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2000; Galibert et al., 2001; Young et al., 2006). Despite the similar degree in 

functionality within the multiple groESL copies, these copies have different 

regulation systems and are differentially induced in rhizobia.  

B. japonicum shares similar regulation mechanisms of heat shock genes 

described for E. coli (positive regulation by the σ32 factor) and B. subtilis 

(negative regulation by the CIRCE system) (Babst et al., 1996). Only groESL1 is 

σ32 dependent while the groESL4,5 are under control of a CIRCE element 

(Fischer et al., 1993; Babst et al., 1996; Minder et al., 2000). A third mechanism 

regulates the groESL3, which is under the control of the NifA activator and σ54 

(Fischer, 1994). Both CIRCE and σ32 dependent regulation were found in R. 

leguminosarum and E. meliloti (Mitsui et al., 2004; Bittner and Oke, 2006; Gould 

et al., 2007).  

The multiple groESL copies are also differentially induced. For example, in B. 

japonicum, groESL1,4,5 are heat inducible and groESL3 is induced by low 

oxygen conditions (Fischer et al., 1993, Babst et al., 1996). In R. leguminosarum 

only one of the three groEL homologues is needed for normal growth and 

corresponds to the highly expressed one (Rodriguez-Quinones et al., 2005). In E. 

meliloti, two of the five groESL copies are heat inducible (Mitsui et al., 2004; 

Bittner and Oke, 2006) and each one is regulated by a distinct mechanism. 

One operon was found to be involved in the regulation of early nod genes 

(Ogawa and Long, 1995).  

In rhizobia, the DnaKJ system has been less studied than the GroESL system. 

As in most bacteria, also in rhizobia the dnaK gene is found as a single copy 

gene. In contrast, its co-chaperone dnaJ is often found in several copies in the 

genome.  

The dnaKJ operon was characterized in B. japonicum and was found to be under 

the control of σ32 factor (Minder et al., 1997). Although for some organisms the 

dnaK gene does not seem to be essential for normal growth, in B. japonicum, it 

seems to be essential since no dnaK knockout mutant could be obtained. In 
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contrast, dnaJ mutants were successfully obtained in different rhizobia species. 

Rizobium tropici dnaJ mutants showed higher sensitivity to salt stress condition 

while B. japonicum dnaJ mutants displayed slower growth at high temperatures 

(Minder et al., 1997; Nogales et al., 2002). 

The ClpB chaperone has been scarcely studied in rhizobia. Analysis of the 

complete genomes available shows that the clpB gene is found mostly as a 

single copy gene in rhizobia. It seems that clpB gene is under regulation of the 

rpoH1 gene in E. meliloti (Mitsui et al., 2004; de Lucena et al., 2010). 

Transcriptional analyses of E. meliloti cells upon heat shock and acid stress 

showed up-regulation of clpB in both stress conditions, suggesting that this 

chaperone may be involved in stress response in rhizobia (Sauviac et al., 2007; 

de Lucena et al., 2010). 

Although all these molecular chaperones are known to be involved in the heat 

shock response in many organisms, several studies suggest their involvement in 

other types of stresses due to their ability to help denatured or aggregated 

proteins to reach their native conformation, and thus their functional state 

(Thomas and Baneyx, 1998). In rhizobia, the DnaKJ and GroESL are associated 

to heat shock response. However, little is known about the involvement of these 

molecular chaperones in response to salinity or acidity conditions. A few 

transcriptomic studies pointed out their possible involvement in rhizobia tolerance 

to acid or salt stresses (Domínguez-Ferreras et al., 2006; Hellweg et al., 2009; 

de Lucena et al., 2010) 
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Major molecular chaperones in the legume-rhizobia symbiosis 

Transcriptomic and proteomic analyses of rhizobia in symbiosis with host plants 

suggest the involvement of chaperones, such as ClpB and GroESL, in the 

symbiosis (Djordjevic et al., 2003; 2004; Karunakaran et al., 2009).  

However, the involvement of these molecular chaperones in the nitrogen-fixing 

simbiosis seems to be controversial, probably due to their involvement in different 

stages in the symbiosis process of rhizobia. For example, dnaJ is required for 

effective symbiosis of R. leguminosarum bv. phaseoli (Labidi et al., 2000), 

however in B. japonicum the symbiotic performance of dnaJ mutants was not 

altered (Minder et al., 1997). Nogales et al. (2002) found that a dnaJ mutant of 

Rhizobium tropici was able to form nodules in Phaseolus vulgaris, however this 

mutant showed low nitrogenase activity, which was also evident in the reduced 

plant growth and in the reduction of the nitrogen content of the plant shoots. In E. 

meliloti, the DnaK chaperone is required for optimum symbiotic function 

(Summers et al., 1998). 

Furthermore, in E. meliloti, a groESL5 mutant strain is able of normal symbiotic 

nitrogen fixation (Mitsui et al., 2004). From the five groESL operons in the E. 

meliloti genome only one operon (groEL1) was found to be involved in symbiosis 

(Ogawa and Long, 1995). All single mutants in E. meliloti are viable but double 

mutants are depleted in their symbiotic phenotype (Fischer et al., 1999; Bittner et 

al., 2007). Similarly, B. japonicum mutants that individually lack one groEL gene 

do not change the symbiotic phenotype (Fischer et al., 1993) while double 

mutation on groEL3 and groEL4 genes affects the symbiotic performance 

(Fischer et al., 1999). These two copies are the ones most abundant in GroEL 

pool in bacteroids (Fischer et al., 1993) and are required for the formation of a 

functional nitrogenase in B. japonicum (Fischer et al., 1999). 

In contrast to the other two major chaperone systems mentioned above, there 

are no reports on the characterization of the role of chaperone ClpB in the 

symbiosis process.  
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1.10 Aims of the study 

 

Due to the rapid increase of the area of damaged soils, mainly due to acidity and 

salinity, the demand for isolation and development of rhizobial strains tolerant to 

either stress conditions is imperative. On the other hand, and in spite of the 

studies conducted during the last decades, the molecular bases of the tolerance 

of legume-rhizobia systems to environmental stresses remains largely unknown.  

The present study was focused in the following main objectives: 

 

 To evaluate the tolerance of a collection of native Portuguese chickpea 

rhizobia to acid and salt stress; 

 

 To investigate the molecular bases of acid- and salt-tolerance in rhizobia, 

namely the transcriptional levels of major chaperone systems genes, 

dnaKJ and groESL, upon acid or salt-shock; 

 

 To investigate the symbiotic performance under salt stress of chickpea 

rhizobia expressing an exogenous ACC deaminase gene; 

 

 To investigate the role of the chaperone ClpB in the tolerance to 

environmental stresses as well as in the symbiosis, through clpB gene 

deletion in a chickpea Mesorhizobium strain. 
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Chapter 2 

 

Isolation and characterization of 
native chickpea rhizobia 
 

 

The study of a large collection of rhizobia isolates serves for diverse proposals, 

including ecological studies, search for inoculants with economic and agricultural 

interest and eventually to find new species. Moreover, isolates characterization 

can bring new insights regarding their relationships with the host and 

environment. This chapter describes the isolation and characterization of a large 

collection of native Portuguese chickpea rhizobia. C. Brígido isolated and 

characterized a subset of the rhizobia collection. 

 

 

This chapter is based on the following manuscripts:  

Alexandre, A., Brígido, C., Laranjo, M., Rodrigues, S., Oliveira, S. (2009) "Survey 
of chickpea rhizobia diversity in Portugal reveals the predominance of 
species distinct from Mesorhizobium ciceri and Mesorhizobium 
mediterraneum" Microbial Ecology, 58, 930-941  

Nascimento, F.X., Brígido, C., Glick, B.R., Oliveira, S. (2012) “ACC deaminase 
genes are conserved between Mesorhizobium species able to 
nodulate the same host plant” FEMS Microbiology Letters, 336:26-37. 
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2.1 Summary 

Several Mesorhizobium species are able to induce effective nodules in chickpea, 

one of the most important legumes worldwide. Our aims were to examine the 

diversity and biogeography of chickpea rhizobia considering Portugal as a case 

study. In addition, the phylogeny of the symbiosis genes, nifH and nodC, as well 

as the ACC deaminase (acdS) genes of chickpea rhizobia isolates was 

examined. One hundred and twenty one isolates were obtained from continental 

Portugal and Madeira Island. The 16S rRNA gene phylogeny revealed that 

isolates are highly diverse, grouping with most known Mesorhizobium type 

strains. Interestingly, only 37% of the isolates grouped with M. ciceri or M. 

Mediterraneum, the formerly described specific chickpea microsymbionts. 

Although chickpea is nodulated by many different species, phylogenetic analysis 

of the symbiosis genes revealed that they share common symbiosis genes (nifH 

and nodC), confirming the suggestion of lateral transfer of symbiosis genes 

across different species. Moreover, acdS genes were detected in 10 of 12 

mesorhizobia type strains as well as in 17 of the 17 chickpea mesorhizobia 

isolates. The phylogenetic analysis indicates that strains belonging to different 

Mesorhizobium species, but nodulating the same host plant, have similar acdS 

genes, suggesting that acdS genes were horizontally acquired. An association 

between province of origin and species cluster of the isolates was found. A 

correlation was found between species cluster and origin soil pH of the isolates, 

suggesting that pH is a key environmental factor, which influences the species 

geographic distribution. To our knowledge, this is one of the few surveys on 

chickpea rhizobia and the first systematic assessment of indigenous rhizobia in 

Portugal.  
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2.2 Introduction 

Chickpea (Cicer arietinum) is the third most important legume crop worldwide, 

after dry bean and pea (FAO, 2008). Nevertheless, few studies addressed the 

genetic diversity of native chickpea rhizobia (Kuykendall et al., 1993; Nour et al., 

1994a; Aouani et al., 2001; Maâtallah et al., 2002b). In Portugal, only a small 

area has been studied (Laranjo et al., 2001; Laranjo et al., 2002, Laranjo et al., 

2004).  

Jarvis et al. (1997) included rhizobia that nodulate chickpea in the genus 

Mesorhizobium. Two species were first identified as specific chickpea 

microsymbionts: M. ciceri (Nour et al., 1994b) and M. mediterraneum (Nour et al., 

1995). Chickpea has been considered a narrow-host range legume (Broughton 

and Perret, 1999). Nevertheless, recent studies have shown that chickpea is able 

to establish symbioses with several species of Mesorhizobium, namely M. 

amorphae, M. loti, and M. tianshanense, however, these carry symbiosis genes 

(nodC and nifH) identical to those carried by M. ciceri and M. mediterraneum 

(Rivas et al., 2007; Laranjo et al., 2008).  

Bacterial phylogeny has relied on the sequence analysis of single core genes, 

mainly the 16S rRNA gene (Menna et al., 2006) but also on other housekeeping 

genes, such as atpD and recA (Young and Park, 2007). Still, in the last decade, 

analysis of the 16S rRNA gene has been, by far, the most widely used approach 

to define molecular phylogeny and taxonomy of bacteria (Gevers and Coenye, 

2007; Sun et al., 2008). The 16S rRNA gene is the only sequence available for 

most bacterial species, including type strains. Thus, the 16S rRNA gene is a 

useful tool for placing any new isolate among its closer taxonomic relatives. 

Despite the fact that species of Mesorhizobium genus share a high similarity in 

terms of 16S rRNA gene sequence, which limits mesorhizobia chickpea isolates 

affiliation, the 16S rRNA sequence can be useful for a broad identification of a 

high number of isolates.  
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The plant hormone ethylene is known for its inhibitory effects in various aspects 

of nodule formation and development (Guinel and Geil, 2002). Nevertheless, 

some rhizobial strains utilize different mechanisms for lowering ethylene levels 

such as the production of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) 

deaminase, which is responsible for the cleavage of ACC (the immediate 

precursor of ethylene in plants) into ammonia and α-ketobutyrate (Honma and 

Shimomura, 1978). The prevalence of ACC deaminase genes in rhizobia has 

been studied primarily in Rhizobium spp. (Ma et al., 2003; Duan et al., 2009). In 

these studies, many Rhizobium spp. have been found to possess an acdS gene 

and produce ACC deaminase under free-living conditions (Duan et al., 2009). 

The first report on acdS gene presence in Mesorhizobium was obtained following 

the complete sequencing of M. sp. MAFF303099 (Kaneko et al., 2000). 

Subsequently, the presence of an acdS gene in the symbiosis island of M. loti 

R7A was also reported (Sullivan et al., 2002). Despite the presence of ACC 

deaminase in some Mesorhizobium strains, not much is known about the 

environmental distribution of acdS genes in this bacterial genus.  

The aims of this study were to examine the biogeography of rhizobia able to 

nodulate chickpea, to investigate the presence of a predominant chickpea 

rhizobia species and to identify the most efficient species in the symbiosis, 

considering Portugal as a case study. A survey on chickpea rhizobia was carried 

out in continental and insular Portugal. Genetic diversity of native isolates was 

examined through molecular phylogeny based on 16S rRNA gene sequences 

and by plasmid profiles analysis. Symbiotic effectiveness of chickpea native 

isolates was estimated. Additionally, the phylogeny of the symbiosis genes (nifH 

and nodC) as well as the acdS genes of some Mesorhizobium type strains and 

chickpea rhizobia isolates was examined.  
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2.3 Materials and Methods 

Isolates collection 

More than 45 soil sampling sites were collected of the 11 provinces of continental 

Portugal and from the Madeira and Azores Islands. Only one of the soil sampling 

sites was known as been used for chickpea cultivation, namely ENMP site, which 

is an experimental agricultural field. 

Chickpea seeds (Chk 3226) were surface-sterilized with calcium hypochlorite 

14%, washed with sterile distilled water, and pre-germinated in water-agar. 

Seeds were sown in sterilized pots containing the soil samples. Plants were 

maintained in the plant growth chamber under controlled conditions for 8 weeks. 

Nodules were harvested and isolates were obtained as described by 

Somasegaran and Hoben (1994). Isolates were re-inoculated, under sterile and 

controlled conditions, in order to confirm their ability to nodulate chickpea. 

 

DNA extraction and manipulation 

Rhizobial strains and isolates were grown in 5 mL of tryptone yeast (Beringer, 

1974) medium at 28°C for 2 to 4 days. The bacterial cultures were centrifuged at 

16000 x g for 1 minute and used for genomic DNA extraction using the E.Z.N.A 

bacterial DNA kit (Omega) following the manufacturer’s suggested protocol or 

according to the protocol described by Rivas et al. (2001). 

 

Amplification of the 16S rRNA, nifH, nodC and acdS genes 

The 16S rRNA gene was amplified for each isolate using primers Y1 (Young et 

al., 1991) and Y3 (Laranjo et al., 2004), corresponding to positions 20 to 1507 in 

Escherichia coli. Amplification reaction was carried out as previously reported 

(Laranjo et al., 2004).  
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The nifH gene was amplified by PCR using primers and conditions previously 

described by Laranjo et al. (2008). For amplification of nodC gene, primers and 

conditions described by Rivas et al. (2007) were used. To amplify the acdS gene 

of mesorhizobia type strains and chickpea mesorhizobia isolates, PCR primers 

were designed based on the M. sp. MAFF303099 and M. ciceri bv. biserrulae 

WSM1271 acdS gene sequences, resulting in primers acdS-F2 (5’-

CAAGCTGCGCAAGCTCGAATA-3’) and acdS-R6 (5’-

CATCCCTTGCATCGATTTGC-3’). The acdS gene was amplified using the 

following program: 3 min of initial denaturation at 95ºC, 35 cycles of 1 min 

denaturation at 94ºC, followed by 1 min and 30 sec of primer annealing at 49ºC 

and 1 minute of elongation at 72ºC, and a final elongation step of 5 minutes at 

72ºC. A fragment with 760 bp-long was the expected amplification product. 

Polymerase chain reaction (PCR) products were purified using GFXTM PCR DNA 

and Gel Band Purification kit (GE Healthcare) or ExoSAP-It (USB) following the 

manufacturer’s instructions. 

 

Phylogenetic analysis  

Nucleotide sequences were analyzed and edited using BioEdit Sequence 

Alignment Editor (version 7.0.4.1) (Hall, 1999). Alignments were generated using 

Clustal W (Thompson et al., 1994). The 16S rRNA, nifH, nodC and acdS gene 

sequences obtained were compared with those from GenBank database. 

Phylogenetic and molecular evolutionary analyzes were performed using MEGA5 

(version 5.05) software (Tamura et al., 2011) using both neighbor-joining and 

maximum likelihood methods. The best evolutionary model of nucleotide 

substitutions was determined for each phylogenetic analysis. Bootstrap analysis 

was based on 1000 replicates. 
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Plasmid profiles  

The plasmid profiles were analyzed by horizontal agarose gel electrophoresis 

using a two-comb system, as described by Laranjo et al. (2001).  

 

Symbiotic effectiveness (SE) 

Plant growth chamber trials were performed under controlled conditions in order 

to evaluate the symbiotic effectiveness (SE) of the isolates (Laranjo et al., 2002). 

Pre-germinated chickpea seeds, obtained as described before, were sown in 

sterilized vermiculite and inoculated with a bacterial suspension of each isolate 

grown in yeast mannitol agar (Vincent, 1970). Uninoculated plants were used as 

negative control and uninoculated plants supplemented with nitrogen (140 ppm 

nitrogen as KNO3, in the nutrient solution) were used as positive control. Three 

replicates were used for each treatment. Plants were collected after 8 weeks and 

several parameters were measured, such as shoot dry weight, root dry weight, 

number of nodules, and nodules dry weight. Symbiotic effectiveness (SE) was 

determined as the ratio of shoot dry weight (SDW) of inoculated plants minus 

SDW of non-inoculated control plants and SDW of non-inoculated nitrogen-

supplemented control plants minus SDW of non-inoculated control plants 

(Gibson, 1987). Symbiotic effectiveness is presented as percentages.  

 

Statistical analysis 

Statistical analysis was performed using SPSS 15.0 software (SPSS Inc., 

Chicago, IL, USA). Relationships between categorical variables were determined 

using the chi-square test of association. Relationships between a continuous 

variable and an unordered categorical variable were tested using analysis of 

variance (one-way ANOVA). Results are presented as the test statistic (2), 

degrees of freedom (df), and probability of equal or greater deviation (P). In the 

case of no homogeneity of variances, the Kruskal–Wallis test, as well as the 
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Welch test, was used instead of the ANOVA, in order to investigate a possible 

relationship between soil pH of the sampling sites and species group of the 

isolates. Different post hoc tests (Tamhane, Dunnett T3 and Games-Howell) 

were conducted to search for categories that differ significantly from others. 

Correspondence analysis (CA) was used as an explorative method to study 

associations and to reveal interdependencies between two variables (Benzécri, 

1973). Visualization using CA is based on representing 2 distances among 

variables. 

 

2.4 Results 

Isolation and characterization of native chickpea rhizobia from the following origin 

sites were performed by Ana Alexandre, M. Laranjo or S. Rodrigues: Beja, 

Caldas da Rainha, Coimbra, Elvas, ENMP, Évora, Leiria, Lamego, Guarda, 

Portalegre, Setúbal, Sintra and Viseu.  

 

Isolates collection 

Although several sampled sites were collected, only in 26 of the total sampling 

sites were confirmed as containing rhizobia able to nodulate chickpea. Moreover, 

no nodules were obtained with any of the soil samples collected from Minho 

province and Azores Islands. A total of 121 chickpea rhizobia isolates were 

obtained from 26 sites, covering ten provinces of continental Portugal and 

Madeira Islands. These isolates were used for further studies. Soil characteristics 

of each site are shown in Table 2.1. 
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Table 2.1 Characteristics of soils used to obtain chickpea isolates. 

Soils Phosphorus 
(ppm) 

Nitrogen 
(ppm) 

Potassium 
(ppm) 

Texture pH O.M. 
(%) 

E.C. 
(µmhos/
cm) 

Alenquer ND ND ND ND ND ND ND 
Aveiro 44 9 66 Medium 7.08 5.3 50 
Aveiro II 200 68 740 Medium 6.07 4.8 120 
Beja 108 28 197 Medium 8.20 ND ND 
Bragança 444 681 710 Medium 6.69 4.7 430 
Caldas da Rainha 82 131 170 Medium 6.83 3.2 300 
Castelo Branco 248 132 216 Medium 6.46 6.6 80 
Coimbra 108 66 224 Medium 5.66 2.4 80 
Elvas  48 64 143 Medium 6.20 ND ND 
ENMP 529 12 137 Medium 7.90 ND ND 
Évora 56 47 55 Coarse 5.10 ND ND 
Guarda 476 74 1060 Coarse 7.37 5.1 110 
Lamego 563 53 580 Medium 6.58 5.8 60 
Leiria 182 57 356 Medium 8.19 2.0 120 
Portalegre 26 87 152 Medium 5.25 3.7 110 
Portimão  744 194 1600 Medium 8.66 3.1 290 
Portimão I 318 153 180 Medium 7.20 3.7 130 
Porto II 40 35 340 Medium 6.37 8.3 70 
Praia do Alemão 16 7 86 Coarse 7.80 1.2 74 
Salir 46 9 50 Coarse 8.90 1.5 156 
Santarém 140 101 530 Medium 7.83 4.7 110 
Serra d’ Água 74 42 560 Medium 7·63 1.7 70 
Setúbal 631 18 350 Medium 8.06 ND ND 
Sintra 808 352 910 Medium 7.83 4.1 20 
Telhado 210 86 178 Medium 7.32 2.8 70 
Viseu 12 11 126 Medium 5.94 2.4 50 

Soil sample analyses were performed in the Laboratório Químico Agricola of the 
University of Évora, Portugal. O.M- Organic matter, E.C. Electrical conductivity; 
ND-not determined 
 
 

Phylogeny based on the 16S rRNA gene analysis 

Genbank accession numbers for the 16S rRNA gene sequences of all isolates 

are shown in Table 2.2 and compared to those available on GenBank (Table 

2.3). 
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Table 2.2 Rhizobia isolates used in the present study. Province of origin, 16S 
rRNA gene accession number, species cluster defined from the 16S rRNA gene 
sequence analysis, plasmid number and symbiotic effectiveness (SE) values are 
indicated for each isolate. 

Province Origin Isolate 16S rRNA 
gene accesion 
number 

Species 
cluster 

Plasmid 
number 

SE 
(%) 

Trás-os 
Montes e 
Alto Douro 

Bragança BR-8 EU652123 B 2 45 
BR-9 EU652124 B 1 43 
BR-15 EU652125 B 2 21 
BR-16 EU652126 B 2 35 
BR-28 EU652127 B 0 48 

Lamego LM-1 EU652128 A 1 14 
LM-9 EU652129 A 1 55 
LM-13 EU652130 A 1 11 
LM-18 EU652131 B 1 61 
LM-21 EU652132 A 1 22 

Douro Litoral Porto PII-1 EU652133 B 3 58 
PII-2 EU652134 B 2 71 
PII-3 EU652106* B 2 47 
PII-4 EU652135 B 2 31 

Beira Litoral Aveiro A3 EU652136 A 0 36 
A8b EU652107* A 0 0 

Aveiro II AII5 EU652137 A 2 26 
AII7 EU652138 A 2 32 

Coimbra C-1 EF504313* A 1 47 
C-3 EU652108* A 1 15 
C-7 EU652139 A 1 14 
C-9 EU652140 A 2 20 
C-13 EU652109* A 1 49 
C-14 EU652110* A 2 32 
C-15 EU652141 A 1 20 
C-23 EU652142 A 1 23 
C-24 EU652143 A 1 39 
C-25 EU652144 A 2 21 
C-27b EF504314* A 1 62 

Leiria L-19 EU652111* A 0 48 

Beira Baixa  
 

Castelo Branco CB-10 EU652150 B 0 56 
CB-19 EU652151 B 0 30 
CB-23 EU652152 B 4 52 
CB-30 EU652153 B 4 45 
CB-38 EU652154 B 4 61 
CB-75 EU652155 B 0 38 

Telhado T-3 EU652157 A 1 32 
T-4 EU652158 A 1 86 
T-5 EU652159 A 0 56 
T-7 EU652160 A 1 54 
T-8 EU652114* A 1 31 

Beira Alta Guarda G-1 EU652145 B 0 34 
G-4 EU652146 B 0 41 
G-10 EU652147 B 0 48 
G-24 EU652148 B 0 58 
G-55 EU652149 B 0 88 
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(Table 2.2 continued)      

Province Origin Isolate 16S rRNA 
gene accesion 
number 

Species 
cluster 

Plasmid 
number 

SE 
(%) 

Beira Alta Viseu V-5b EU652112* A 1 65 
V-15b EF504315* A 0 23 
V-18 EF504316* A 0 67 
V-20 EF504317* A 1 67 
V-25b EU652113* A 1 69 

Estremadura Alenquer AL-13 JN191652 A 1 15 
Salir SL-1 JN191657 C 0 21 

SL-2 JN191658 D 0 5 
SL-3 JN191659 A 0 26 
SL-5 JN191660 C 0 30 
SL-6 JN191661 A 2 33 
SL-7 JN191662 C 0 39 
SL-9 JN191663 A 0 5 

Caldas da 
Rainha 

CR-3 EU652161 C 0 77 
CR-16 EU652162 C 0 79 
CR-18 EU652163 C 0 41 
CR-29 EU652164 C 0 55 
CR-32 EU652115* C 0 57 

Setúbal ST-2 AY225401* C 0 4(c) 
ST-5 EU652165 C 0 21 
ST-8 EU652166 C 0 7 
ST-20 EU652167 C 0 43 
ST-33 EU652168 C 0 44 

Sintra S-1 EU652169 D 3 53 
S-8 EU652116* B 1 83 
S-15 EU652170 B 0 79 
S-24 JN191653 B 0 100 
S-26 EU652171 B 0 68 

Ribatejo Santarém STR-2 EU652117* A 1 40 
STR-4 EU652172 A 1 50 
STR-10 EU652173 A 1 28 
STR-14 EU652118* C 1 64 
STR-16 EU652174 C 2 49 

Alto Alentejo Elvas 
 

75 AY225386* B 1(a) 35(c) 
78 AY225387* A 1(a) 63(c) 
79 DQ787130 B 1(a) 47(a) 
83 DQ787131 A 1(a) 49(a) 
85 AY225388* A 1(a) 60(c) 
CV-1 DQ787132 A 0(b) 28(b) 
CV-11 DQ787133 A 0(b) 21(b) 
CV-16 AY225389* B 1(b) 42(c) 
CV-18 AY225390* A 1(b) 72(c) 

ENMP EE-2 AY225396* D 2(b) 36(c) 
EE-7 AY225397* B 0(b) 84(c) 
EE-12 AY225398* B 1 10(c) 
EE-14 AY225399* D 4(b) 32(c) 
EE-29 AY225400* D 4 21(c) 
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(Table 2.2 continued)      

Province Origin Isolate 16S rRNA 
gene accesion 
number 

Species 
cluster 

Plasmid 
number 

SE 
(%) 

Alto Alentejo Évora 87 DQ787134 A 1 ND 
89a DQ787135 A 4 ND 
90 AY225391* A 1 49(c) 
92 DQ787136 A 2 42(a) 
93 AY225392* C 0 27(c) 
94 AY225393* A 1 33(c) 
96 DQ787137 A 2 ND 
98 AY225394* A 2 72(c) 
101 DQ787138 A 2 ND 
102 AY225395* A 0(a) 54(c) 

Portalegre PT-35 EU652119* A 1 56 

Baixo 
Alentejo 

Beja 6b AY225381* D 2(a) 76(c) 
7a AY225382* B 2 39(c) 
27 AY225383* B 1(a) 41(c) 
29 AY225384* D 6 71(c) 
64b AY225385* A 1(a) 10(c) 

Algarve Praia do Alemão PA-5 JN191655 D 0 0 
PA-6 JN191656) D 0 6 

Portimão PM-1 EU652175 D 2 51 
PM-14 EU652176 D 2 33 
PM-17 EU652120* D 2 84 

Portimão II PMI-1 EU652177 B 1 80 
PMI-6 EU652121* A 1 81 

Madeira Serra d’Água SA-4 EU652122* A 0 63 
SA-9 EU652178 A 0 36 
SA-12 EU652179 A 0 56 
SA-13 JN191654 A 0 58 
SA-17 EU652180 A 3 16 

 (a) Laranjo et al. (2001); (b) Laranjo et al. (2002); (c) Laranjo et al. (2008); ND– 
not determined; *complete 16S rRNA gene sequence 
 

 

Since 2009 several new species have been described, so an update of the 16S 

rRNA-based phylogenetic analysis of chickpea isolates using the new nucleotide 

sequences available was performed. In order to analyze the molecular diversity 

of all rhizobia isolates, phylogenetic analysis was performed using a parcial 16S 

rRNA gene sequence of rhizobia isolates. A dendrogram was generated by the 

neighbor-joining method from a 578 bp-long alignment. The 16S rRNA gene-

based phylogenetic analysis of 121 isolates shows that all isolates assigned to 

the genus Mesorhizobium (data not shown). The 16S rRNA gene based 

phylogeny of 33 isolates among the 121 rhizobia isolates was performed (Fig. 
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2.1). Isolates form a large cluster together with the Mesorhizobium type strains, 

which received 99% bootstrap support. Four main clusters (A-D) can be 

identified, each cluster including isolates from at least two different provinces. 

The largest cluster (Cluster A) comprises the type strains M. opportunistum, M. 

huakuii, M. amorphae, M. septentrionale and M. plurifarium as well as 11 

chickpea isolates distributed for five provinces. Although M. septentrionale and 

M. plurifarium type strains are included in this cluster, no isolate was found to 

group closely to these strains. In terms of 16S rRNA gene sequence, two 

isolates, LM-1-Lamego and STR-2-Santarém, are 100% identical to M. 

amorphae. On the other hand, five isolates in this cluster, such as C-14-Coimbra 

and 87-Évora, are 100% identical to M. huakuii. Three isolates share the same 

sequence similarity (99.6%) with both M. opportunistum and M. huakuii, namely 

C-1-Coimbra, CV-18Elvas and V-15b-Viseu, and may be new species. Cluster B 

includes 8 isolates, from five provinces, together with M. loti, M. ciceri, M. alhagi, 

M. camelthorni, M. australicum and M. shangrilense type strains. Six of the 

isolates share the same sequence similarity (100%) with both M. loti and M. ciceri 

type strains whereas the two remaining isolates showed a similarity of 99,6% with 

these type strains. Although M. alhagi, M. camelthorni, M. australicum and M. 

shangrilense type strains are also in this cluster, no isolate was found to group 

closely or to be similar to these strains. Cluster C includes 7 isolates together 

with M. tianshanense, M. metallidurans, M. caraganae, M. gobiense and M. 

tarimense type strains. All isolates in this cluster share high sequence similarity 

(100%) with M. metallidurans, M. caraganae, M. gobiense and M. tarimense type 

strains. No isolate was found to group closely to M. tianshanense. Within cluster 

D are 7 isolates distributed for four provinces and M. mediterraneum and M. 

temperatum type strains. Four isolates share identical sequence with both M. 

mediterraneum and M. temperatum.  
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Figure 2.1 Neighbor-joining tree 
showing the phylogenetic 
relationship of chickpea 33 
rhizobia isolates and strains, 
based on partial 16S rRNA gene 
analysis (alignment length 578 
bp). The neighbor-joining tree is 
based on a distance matrix with 
the distance correction calculated 
by Kimura’s two-parameter 
nucleotide substitution model 
(Kimura, 1980), with a discrete 
Gamma distribution. Bootstraps 
values are listed at the nodes. 
Phylogenetic analysis using 
maximum likelihood methods 
revealed an identical topology. 
The four main clusters generated 
are marked with letters A to D. 
The scale bar indicates 1% 
substitutions per site. 
*Mesorhizobia type strains. 
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Altogether, this analysis revealed that chickpea rhizobia isolates are highly 

diverse and group with several Mesorhizobium type strains. No isolate groups 

with M. albiziae, M. chacoense and M. thiogangeticum type strains.  

Statistical analysis revealed an association between province of isolates and 

species clusters (2= 130.667; df= 30; P < 0.01). In the north of Portugal (Trás-

os-Montes e Alto Douro, Douro Litoral and Beira Baixa), isolates belonging to 

cluster B prevail; in the center (Beira Litoral, Ribatejo and Alto Alentejo), most 

isolates are from cluster A; and in the south (Baixo Alentejo and Algarve), 

isolates mainly belong to cluster D. All isolates from Madeira belong to cluster A. 

Moreover, Estremadura is the only province where isolates from cluster C 

predominate. Isolates from cluster C are found only in three provinces of the 

center of Portugal (Estremadura, Ribatejo, and Alto Alentejo) (Fig. 2.2). 

The CA biplot (data not shown) indicated the existence of three classes of sites, 

consistent with the distribution of isolates. One class, which includes 

Estremadura, is associated with cluster C. A second class, Algarve and Baixo 

Alentejo, is mainly associated with cluster D. Finally, a class including Trás-os-

Montes e Alto Douro, Alto Alentejo, Beira Baixa, Douro Litoral and Beira Alta, is 

associated with clusters A and B.  
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Figure 2.2 Distribution of the 121 chickpea rhizobia isolates by species clusters, 

as defined from de 16S rRNA gene-based phylogeny (A). Map of the provinces of 
Portugal and Madeira Island showing the distribution of isolates in each province, 
according to their cluster. Pie charts sizes are proportional to the number of 
isolates in each province (B). Isolates from: Cluster A (dark grey); Cluster B (light 
grey); Cluster C (white); Cluster D (black). 
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Plasmid profiles 

Plasmid profiles were analyzed, and for most chickpea native rhizobia, at least 

one plasmid was detected (Table 2.2). Plasmid number ranges from zero to six, 

however, no isolate with five plasmids was found (Fig. 2.3).  

 

 

Figure 2.3 Example of an agarose gel showing plasmid profiles of chickpea 
rhizobia isolates. Lane 1 - L-19-Leiria; lane 2 - V-25b-Viseu; lane 3 - 29-Beja; 
lane 4 - BR-9-Bragança; lane 5- C-13-Coimbra; lane 6 - C-32-Caldas da Rainha; 
lane 7- G-55-Guarda; lane 8 – LM-1-Lamego; lane 9 - AII-5-Aveiro; lane 10 - PM-
1-Portimão; lane 11- BR-16-Bragança. 

 

For 36% of the isolates, one plasmid was detected. Only in about 27% of the 

isolates, two or more plasmids were detected. An association was found between 

plasmid number and province (2=120,645; df=50; P < 0.001). Estremadura and 

Alto Alentejo are the provinces with isolates more variable in terms of plasmid 

number, harboring zero to four plasmids, while isolates from Douro Litoral, Beira 

Alta, Ribatejo, Algarve, and Madeira show the least variability in plasmid number. 

There is also an association between plasmid number and species clusters 

(2=51.731, df=15, P < 0.001). The Fig. 2.4 shows the distribution of isolates in 

each cluster, according to their plasmid number. The CA biplot (data not shown) 

also shows an association between plasmid number and species clusters. 

Isolates from cluster A are associated to one plasmid, while in cluster C isolates 
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with no plasmids predominate. Cluster D is clearly associated to isolates with two 

or more plasmids. Isolates from cluster B are associated to plasmid number 

ranging from zero to two plasmids.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Number of isolates in each cluster according to their plasmid number. 

 

 

Symbiotic effectiveness 

Evaluation of SE was performed for all 121 isolates (Table 2.2). SE values range 

from 0% to 100%. SE trials revealed that 37% of the isolates show a SE above 

50%. Twelve isolates, which represent about 10% of the total number of isolates, 

were found to be highly effective in fixing nitrogen in symbiosis with chickpea (SE 

values above 75%); most of these isolates belong to cluster B. The most effective 

isolates were S-24-Sintra and G-55-Guarda from cluster B (SE values of 100% 

and 88%, respectively). Although isolates closer to M. ciceri / M. loti (cluster B) 

have the highest mean SE (52%), no correlation was found between SE and 

species clusters. No correlation was found between SE and plasmid number, 

contrary to a previous study with a smaller set of isolates from Alentejo provinces 

(Laranjo et al., 2002). 

 



 

 

Table 2.3 Bacterial strains and gene accession numbers (GenBank) used in this work.  

Strain Origin Host acdS#  nifH nodC  16S rRNA 

A. caulinodans ORS571
T
 Senegal Sesbania rostrata AP009384 M16709 L18897 X67221 

B. japonicum USDA110 USA Glycine max BA000040 blr1769 blr2027 rrn16S 
B. japonicum USDA6

 T
 Japan Glycine max NA NA NA U69638 

R. leguminosarum bv viciae 3841 UK Pisum sativum AM236084 pRL100162 pRL100187 U29386 
R. etli CFN42

T
 México Phaseolus vulgaris NA RESP0005F RESP0032F U28916 

E. meliloti USDA 1002
T
 USA Medicago sativa NA M55229 EF209423 X67222 

E. medicae A-321
T
 France Medicago spp.  NA DQ450936 DQ450944 L39882 

E. medicae WSM419 Italy Medicago lupulina CP000740 CP000740 CP000740 CP000738 
M. amorphae ACCC 19665

T
 China Amorpha fruticosa ND EU267714 AF217261 AF041442 

M. albiziae CCBAU 61158
T
 China Albizia kalkora, Albizia julibrissin, 

Glycine max, Leucaena leucocefala 
JQ013380 DQ311093 GQ167236 DQ100066 

M. alhagi CCNWXJ12-2
T
 China Alhagi sparsifolia NA NA NA EU169578 

M. australicum LMG 24608
T
 Australia Biserrula pelecinus NA AY601522 CP002447 AY601516 

M. camelthorni ACCC14549 
T
 China Alhagi sparsifolia NA NA NA EU169581 

M. caraganae CCBAU 11299
T
 China Caragana spp. NA NA NA EF149003 

M. chacoense LMG 19008
T
 Argentina Prosopis alba JQ013381 DQ450927 DQ450937 AJ2778249 

M. ciceri UPM-Ca7
T
 Spain Cicer arietinum JQ013382 DQ450928 DQ407292 DQ444456 

M. ciceri bv. biserrulae 
WSM1271 

Italy Biserrula pelecinus CP002447 CP002447 CP002447 CP002447 

M. gobiense CCBAU 83330
T
 China Oxytropis glabra NA NA NA EF035064 

M. huakuii CCBAU 2609
T
 China Astragalus sinicus ND NA NA FJ491264 

M. sp. MAFF303099 Japan Lotus corniculatus BA000012 mlr5905 mlr6163 RRN16Sb 
M. loti NZP 2213T

T
 New Zealand Lotus corniculatus JQ013383 DQ450929 DQ450939 X67229 

M. loti R7A New Zealand Lotus corniculatus AL672114 ML0303 ML0132 U50166 
M. mediterraneum UPM-Ca36

T
 Spain Cicer arietinum JQ013384 DQ450930 DQ450940 AM181745 

M. metallidurans STM 2683
T
 France Anthyllis vulneraria NA NA NA AM930381 

M. opportunistum WSM2075
T
 Australia Biserrula pelecinus CP002279 CP002279 CP002279 AY601515 

M. plurifarium ORS 1032
T
 Senegal Acacia senegal, Prosopis juriflora JQ013385 DQ450931 FJ745283 Y14158 

M. septentrionale HAMBI 2582
T
 China Astragalus adsurgens JQ013386 DQ450932 DQ450941 AF508207 

M. shangrilense China Caragana spp. NA NA NA EU074203 
M. tarimense CCBAU 83306

T
 China Glycyrrhiza uralensis, Lotus 

corniculatus, Lotus frondosus 
JQ013387 EU252607 EF050786 EF035058 

M. temperatum HAMBI 2583
T
 China Astragalus adsurgens NA DQ450933 DQ450942 AF508208 

M. tianshanense A-1BS
T
 China Glycyrrhiza pallidiflora, Caragana spp JQ013388 DQ450934 DQ450943 AF041447 

M. thiogangeticum SJT
T
 India Clitoria ternatea JQ013389 NA NA AJ864462 



 

 

(Table 2.3 continued)       

Isolate Origin Host acdS#  nifH nodC  16S rRNA 

101-Évora Portugal Cicer arietinum JQ013399 NA NA * 
 6b-Beja Portugal Cicer arietinum JQ013398 DQ431732 DQ431753 * 
BR-8-Bragança Portugal Cicer arietinum JQ013390 JQ033936 JQ033958 * 
 C-1-Coimbra Portugal Cicer arietinum JQ013400 NA NA * 
C-14-Coimbra Portugal Cicer arietinum JQ013401 NA NA * 
CV-18-Elvas Portugal Cicer arietinum JQ013402 DQ431741 DQ431762 * 
EE-7-Elvas Portugal Cicer arietinum JQ013391 DQ431743 DQ431764 * 
EE-14-Elvas Portugal Cicer arietinum JQ013403 DQ431745 DQ431766 * 
EE-29-Elvas Portugal Cicer arietinum JQ013404 DQ431746 DQ431767 * 
G-10-Guarda Portugal Cicer arietinum JQ013392 JQ033940 JQ033946 * 
G-55-Guarda Portugal Cicer arietinum JQ013393 JQ033931 JQ033947 * 
L-19-Leiria Portugal Cicer arietinum JQ013394 NA NA * 
PII-1-Porto Portugal Cicer arietinum JQ013405 NA NA * 
PM-1-Portimão Portugal Cicer arietinum JQ013396 NA NA * 
S-15-Sintra Portugal Cicer arietinum JQ013397 NA NA * 
STR-16-Santarém Portugal Cicer arietinum JQ013406 NA NA * 
V5b-Viseu Portugal Cicer arietinum JQ013407 NA NA * 
C-3-Coimbra Portugal Cicer arietinum NA JQ033937 JQ033942 * 
C-9-Coimbra Portugal Cicer arietinum NA JQ033930  JQ033943 * 
C-25-Coimbra Portugal Cicer arietinum NA JQ033938  JQ033944 * 
CR-32-Caldas da Rainha Portugal Cicer arietinum NA JQ033939 JQ033945 * 
LM-9-Lamego Portugal Cicer arietinum NA JQ033932 JQ033948 * 
PA-5-Praia do Alemão Portugal Cicer arietinum NA NA JQ033949  * 
PA-6-Praia do Alemão Portugal Cicer arietinum NA NA JQ033950  * 
S-26-Sintra Portugal Cicer arietinum NA JQ033933 JQ033951  * 
SL-1-Salir Portugal Cicer arietinum NA NA JQ033952  * 
SL-2-Salir Portugal Cicer arietinum NA NA JQ033953  * 
SL-5-Salir Portugal Cicer arietinum NA NA JQ033954  * 
ST-5-Setubal Portugal Cicer arietinum NA NA JQ033955 * 
STR-2-Santarém Portugal Cicer arietinum NA JQ033934 JQ033956  * 
 SL-7-Salir Portugal Cicer arietinum NA NA JQ033959  * 
SL-9-Salir Portugal Cicer arietinum NA NA JQ033960  * 
LM-18-Lamego Portugal Cicer arietinum NA JQ033941 JQ033961  * 

Accession numbers in bold were obtained in this study; #Results obtained in collaboration with F. Nascimento; NA- not 
available; ND- not detected. * Accession number indicated in Table 2.2. T- Type strains.
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Phylogeny analysis of nifH, nodC and acdS genes 

GenBank accession numbers for the nifH, nodC and acdS gene sequences 

obtained herein as well as the accession numbers from those available on 

GenBank are listed in Table 2.3. As expected, all chickpea rhizobia isolates 

tested showed similar nifH and nodC genes sequences similar to the ones 

carried by the typical chickpea microsymbionts. Regarding the phylogeny based 

on the nifH gene sequences (Fig 2.5), the chickpea symbionts form an 

independent branch (Cluster A), which includes the type strains M. ciceri and M. 

mediterraneum. All other species from the genus Mesorhizobium are found 

outside this cluster. The strains known to be able to nodulate Biserrula pelecinus, 

namely M. ciceri bv. biserrulae,  M. opportunistum and M. australicum, are in the 

same cluster (B). The strains (M. loti, M. loti R7A, M. sp. MAFF303099 and M. 

tarimense) able to nodulate Lotus corniculatus grouped together and form a third 

cluster (C). In terms of phylogeny based on the nodC gene sequences (Fig 2.6), 

all chickpea symbionts are again in the same cluster (A), which includes the type 

strains M. ciceri and M. mediterraneum. Similarly, the two clusters (B and C) 

mentioned above are also found in the nodC-based phylogeny, which correspond 

to symbionts nodulating Biserrula pelecinus and Lotus corniculatus, respectively.  

Interestingly, the phylogenetic tree based on acdS gene sequences (Fig. 2.7) 

shows the three main clusters mentioned above. Mesorhizobia type strains and 

the Portuguese mesorhizobia isolates that nodulate Cicer arietinum form one 

cluster (cluster A). The type strains nodulating Biserrula pelecinus form another 

cluster (cluster B). Strains able to nodulate Lotus corniculatus form cluster C. 

Phylogenetic analysis of the acdS gene from Mesorhizobium strains indicates 

that rhizobia able to nodulate the same plant host have a similar acdS gene. The 

acdS gene sequences here obtained share high identity (84 to 99%) to the 

previously described acdS gene of M. sp. MAFF303099. 
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(A) cluster of strains 
nodulating Cicer arietinum 
(B) cluster of strains 
nodulating Biserrula 
pelecinus (C) cluster of 
strains nodulating Lotus 
corniculatus.  
*Mesorhizobia type strains 
 

Figure 2.5 Neighbor-joining tree showing 

the phylogenetic relationship between 
chickpea rhizobia isolates and other 
rhizobia strains, based on partial nifH gene 
analysis (alignment length 472 bp). 
Tamura 3-parameter nucleotide 
substitution model (Tamura, 1992) with a 
discrete Gamma distribution was used. 
Bootstraps values are listed at the nodes. 
Phylogenetic analysis using maximum 
likelihood methods revealed an identical 
topology. The scale bar indicates 2% 
substitutions per site. 
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Figure 2.6 Neighbor-joining tree showing 

the phylogenetic relationship of chickpea 
isolates and type strains, based on nodC 
gene analysis (alignment length 486 bp). 
The neighbor-joining tree is based on a 
distance matrix with the distance 
correction calculated by Tamura 3-
parameter nucleotide substitution model 
(Tamura, 1992) with a discrete Gamma 
distribution. Bootstraps values are listed 
at the nodes. Phylogenetic analysis 
using maximum likelihood methods 
revealed an identical topology. The scale 
bar indicates 5% substitutions per site. 
(A) cluster of strains nodulating Cicer 
arietinum (B) cluster of strains nodulating 
Biserrula pelecinus (C) cluster of strains 

nodulating Lotus corniculatus. 
*Mesorhizobia type strains 
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Figure 2.7 Neighbor-joining tree showing 

the phylogenetic relationship of chickpea 
isolates and type strains, based on acdS 
gene analysis (alignment length 542 bp). 
The neighbor-joining tree is based on a 
distance matrix with the distance 
correction calculated by Tamura 3-
parameter nucleotide substitution model 
(Tamura, 1992) with a discrete Gamma 
distribution. Bootstraps values are listed at 
the nodes. Phylogenetic analysis using 
maximum likelihood methods revealed an 
identical topology. The scale bar indicates 
5% substitutions per site. (A) cluster of 
strains nodulating Cicer arietinum (B) 

cluster of strains nodulating Biserrula 
pelecinus (C) cluster of strains  

nodulating Lotus corniculatus.  
*Mesorhizobia type strains 
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2.5 Discussion 

The present study is the first survey of chickpea rhizobia native populations 

covering the Portuguese territory. One hundred and twenty one isolates were 

confirmed as chickpea symbionts and identified as Mesorhizobium sp., forming a 

monophyletic cluster with all Mesorhizobium type strains in the 16S rRNA gene 

phylogeny.  

Despite the fact that a few isolates affiliation changed with the inclusion of the 

new species described after 2009, the four main clusters found before remain the 

same. The four clusters of the partial 16S rRNA gene-based phylogeny show that 

isolates positioning is scattered within the Mesorhizobium genus. Isolates from 

cluster A, which are more related to M. huakuii, M. opportunistum and M. 

amorphae than to any other type strain, are the most abundant chickpea 

microsymbionts found in Portuguese soils. This was unexpected since these type 

strains are unable to nodulate chickpea. M. huakuii was originally isolated from 

Astragalus sinicus (Chen et al., 1991) that does not exist in Portugal. M. 

amorphae was originally isolated from Amorpha fruticosa (Chen et al., 1991), a 

plant unrelated to Cicer arietinum, which is uncommon and considered invasive 

in Portugal. Nevertheless, a few isolates also affiliated to M. opportunistum, 

which was isolated from Biserrula pelecinus (Nandasena et al., 2009). Biserrula 

pelecinus is a pasture leguminous plant adapted to acid soils and found in Iberian 

Peninsula, however, its microsymbionts are unable to nodulate Cicer arietinum 

(Nandasena et al., 2001; Nandasena et al., 2007a).  M. ciceri and M. 

mediterraneum species groups (clusters B and D, respectively) could be 

expected to include the majority of native isolates, as these species were 

described as the specific chickpea microsymbionts (Nour et al., 1994b; Nour et 

al., 1995). However, only 37% of the isolates grouped with these two type strains. 

Isolates related to M. amorphae (cluster A), M. loti (cluster B) and M. 

tianshanense (cluster C) were found, as in previous studies on chickpea rhizobia 

isolated from Portugal and Spain (Rivas et al., 2007, Laranjo et al., 2004). 

However, the isolates in the cluster C, which formerly only included M 
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tianshanense, are closer to the new species M. metallidurans, M. caraganae, M. 

gobiense and M. tarimense than to M. tianshanense. The present work screened 

the entire Portuguese territory, confirmed the high diversity of native rhizobia and 

revealed an unexpected high proportion of isolates unrelated to M. ciceri and M. 

mediterraneum.  

To our knowledge this is one of the few studies addressing the diversity of 

chickpea rhizobia covering an entire country, namely Morocco (Maâtallah et al., 

2002a) and Tunisia (L’Taief et al., 2007). Using PCR-RFLP analysis of the 16S 

rRNA gene, Maâtallah et al. (2002a) found a lower diversity of chickpea rhizobia 

than the one revealed in the present study, since most isolates were described 

as close to M. ciceri, M. loti and M. mediterraneum. More recently, L’Taief et al. 

(2007) isolated chickpea native rhizobia from several regions of Tunisia and 

found isolates belonging only to either M. ciceri or M. mediterraneum. Probably, 

the low diversity found in Tunisia and Morocco is related to the history of 

chickpea cultivation on the sampled sites, as supported by several studies 

reporting a decrease in rhizobia diversity associated with the presence of the 

host plant (Coutinho et al., 1999). Accordingly, the high diversity found in 

Portuguese soils could be explained by the absence of chickpea crop in Portugal 

(Duarte Maçãs, 2003) and the non-existence of chickpea wild relatives (Talavera 

et al., 1999); furthermore, there are no records of the use of commercial 

inoculants that could reduce the natural chickpea rhizobia diversity. Interestingly, 

isolates from the single site where chickpea has been cultivated (Elvas-ENMP) 

group only with M. ciceri or M. mediterraneum.  

A correlation between isolates species cluster and origin soil pH was found (P < 

0.001). For example, all isolates assigned to the M. mediterraneum / M. 

temperatum species (cluster D) were obtained from the soils with higher pH 

values. This may indicate that genetic determinants, which allow rhizobia survival 

in alkaline soil conditions, are species specific.  
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Considering the correlation found between species cluster and soil pH, it is likely 

that pH is a key environmental parameter determining the species geographic 

distribution. This hypothesis is supported by wider studies addressing soil 

bacterial communities, suggesting that soil pH is the variable that best explains 

the population diversity and overall community composition (Fierer and Jackson, 

2006). Several studies in rhizobia showed that the pH affects survival and 

competitiveness in soil, as well as the nodulation process (Zahran, 1999). The 

effect of pH in chickpea rhizobia growth has been addressed in previous studies 

(Rodrigues et al., 2006). Altogether these studies suggest that pH is a key 

environmental factor for rhizobia population composition, acting on bacteria, both 

free-living and in symbiosis.  

In each 16S rRNA gene-based cluster, isolates with high and low symbiotic 

effectiveness were found. A large set of isolates with very high SE values (above 

75%) are good candidates for field inoculation. Many of these isolates are from 

the M. ciceri cluster (B). About 67% of the isolates from cluster B present a SE 

value above the corresponding type strain M. ciceri, which showed a SE of 41%, 

estimated in a previous study (Laranjo et al., 2008). In the cluster D, which 

includes M. mediterraneum / M. temperatum type strains, 42% of the isolates 

showed a SE above 39%, which is the value described for the type strain of M. 

mediterraneum (Laranjo et al., 2008).  

The plasmid number of rhizobia isolates was found to be associated with species 

cluster, suggesting that this feature might be species constrained. In most 

isolates from cluster A, one plasmid was detected, similarly to M. amorphae 

(Wang et al., 1999). In cluster D, both isolates and M. mediterraneum (Cadahía 

et al., 1986) showed more than one plasmid. In the majority of isolates belonging 

to cluster C no plasmid were detected, similarly to M. tianshanense (Chen et al., 

1995). Isolates from cluster B seem to be more diverse in plasmid number, 

including isolates with zero, one and two plasmids. The type strain of M. ciceri 

(cluster B) harbours one plasmid (Cadahía et al., 1986).  
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Contrary to previous studies, which suggested that most rhizobia nodulating 

chickpea are M. ciceri and M. mediterraneum, this wider survey shows a 

predominance of other species. The obtained isolates collection, highly diverse in 

terms of species, as well as SE, provides an important source of rhizobia strains 

to be used, namely as potential inoculants.  

ACC deaminase genes are naturally present in many strains of Rhizobium spp. 

and are prevalent in isolates from different geographical locations (Ma et al., 

2003; Duan et al., 2009). Nevertheless, little was known in terms of prevalence 

and phylogeny of this gene in Mesorhizobium genus. Our results reveal that 10 of 

the 12 analyzed Mesorhizobium type strains, from different geographical 

locations and nodulating different leguminous plants, possess the acdS gene, 

suggesting that ACC deaminase is a common feature in Mesorhizobium spp. 

Furthermore, the acdS gene was detected in the 17 chickpea mesorhizobia 

isolates tested, indicative that many of the Portuguese chickpea mesorhizobia 

possess an acdS gene, and suggesting that ACC deaminase genes are 

prevalent in these chickpea-nodulating mesorhizobia.  

The phylogenetic analysis based on symbiosis genes (nifH and nodC) is in 

agreement with other studies (Rivas et al., 2007; Laranjo et al., 2008) which 

suggest the lateral transfer of symbiosis genes across different species. This 

study confirms that both genes are good markers for rapid detection of chickpea 

mesorhizobia. The acdS-based phylogenetic tree shows a topology similar to the 

symbiosis (nodC and nifH) genes-based trees, grouping isolates that nodulate 

the same host, rather than by species as in the 16S rRNA gene-based 

phylogeny. Several studies show that many Mesorhizobium strains have 

acquired the ability to nodulate a specific host by acquiring the symbiosis island 

carrying specific symbiosis genes (Sullivan et al., 1995; Sullivan and Ronson, 

1998; Nandasena et al., 2006; Nandasena et al., 2007b; Laranjo et al. 2008). 

Therefore, our results suggest that the acdS gene is likely to be horizontally 

transferred between Mesorhizobium species by exchange of the symbiosis 

island. Moreover, Uchiumi et al. (2004) verified high expression levels of 
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transposase genes during symbiosis, which could give rise to DNA 

rearrangement and thus may contribute to the rapid evolution of symbiosis 

islands in mesorhizobia.  

Altogether, our results may indicate that lateral gene transfer plays a crucial role 

in the acquisition of genes involved in the symbiotic nitrogen fixation process by 

rhizobia, which is an advantage for competiveness among the native rhizobia 

strains. Moreover, the acdS genes found herein appear to be horizontally 

transferred between different Mesorhizobium species by exchange of the 

symbiosis island. Thus, it is possible that lateral transfer of genes may be a 

natural event that occurs with more frequency that it was thought.  

The present study is the first systematic assessment of Cicer arietinum 

microsymbionts in Portugal and contributes to clarify the biogeography of 

chickpea rhizobia, providing a global picture of how species are distributed 

across the country. This study also brings new insights on the evolution 

mesorhizobia-leguminous plant associations. 
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Chapter 3 

Tolerance of chickpea 
mesorhizobia to salinity  
 

 

One of the biggest concerns in agriculture is the increase of salt-affected land 

worldwide. Salt stress affects both soil bacteria and plants, and therefore the 

symbiotic legume-rhizobia relationship may be negatively affected in several 

processes, thus reducing plant growth and development. 

In this chapter, chickpea mesorhizobia tolerance to salt stress was evaluated. 

Additionally, the molecular bases of salt tolerance in rhizobia were studied by 

comparing the expression levels of major chaperone genes in tolerant and 

sensitive isolates, within the same species, to find differences that could be 

related to the different susceptibility to salt stress. 

This chapter is based on the manuscript: 

Brígido, C., Alexandre, A., Oliveira, S. (2012) “Transcriptional analysis of major 
chaperone genes in salt-tolerant and salt-sensitive mesorhizobia” 
Microbiological Research, 167:623-629 
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3.1 Summary 

Salinity is an important abiotic stress that limits rhizobia-legume symbiosis, 

affecting plant growth, thus reducing crop productivity. Our aims were to evaluate 

the tolerance to salinity of native chickpea rhizobia as well as to investigate the 

expression of chaperone genes groEL, dnaKJ and clpB in both tolerant and 

sensitive isolates. One hundred and six native chickpea mesorhizobia were 

screened for salinity tolerance by measuring their growth with 1.5% and 3% 

NaCl. Most isolates were salt-sensitive, showing a growth below 20% compared 

to control. Nevertheless, a few isolates presented a growth above 30% with 1.5% 

NaCl, namely BR-8-Bragança, CR-32-Caldas da Rainha, PA-6-Praia do Alemão 

and SL-2-Salir. An association between salt tolerance and province of origin of 

the isolates was found. The transcriptional analysis by northern hybridization of 

chaperone genes was performed using tolerant and sensitive isolates belonging 

to different Mesorhizobium species. Upon salt shock, most isolates revealed a 

slight increase in the expression of the dnaK gene, whereas the groESL and clpB 

expression was unchanged or slightly repressed. No clear relationship was found 

between the chaperone genes induction and the level of salt tolerance of the 

isolates. This is the first report on transcriptional analysis of the major 

chaperones genes in chickpea mesorhizobia under salinity, which may contribute 

to a better understanding of the mechanisms that influence rhizobia salt 

tolerance.  
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3.2 Introduction 

Rhizobia are soil bacteria able to establish nitrogen fixing symbioses with 

legumes. The biological nitrogen fixation contributes to an ecological and 

sustainable agriculture, as it reduces the need for chemical nitrogen fertilizers 

and improves crop productivity. One of the major problems that agriculture is 

currently facing is the effect of abiotic environmental stresses, leading to yield 

reductions and subsequent economic losses (Ashraf et al., 2008). Among the 

abiotic stresses, salinity seriously limits the productivity of agricultural crops 

(Ashraf et al., 2008; Katerji et al. 2009; Grewal, 2010) and affects about 800 Mha 

of arable lands worldwide (Munns and Tester, 2008).  

Legumes represent a very significant group of crops in agriculture and therefore 

their tolerance to salt stress is important worldwide. Chickpea (Cicer arietinum L.) 

is one of the most important grain legume crops because it is a relevant protein 

source in both human and animal diets. Like other legumes, chickpea is very 

sensitive to salinity, which affects its growth and development (Elsheikh and 

Wood, 1990a).  

Salinity may negatively affect the rhizobia-plant symbioses in several processes: 

growth and survival of rhizobia in soil, root colonization, infection and nodule 

development and functioning (Kulkarni et al., 2000). The rhizobia isolated from 

chickpea nodules and cultured in vitro are usually much more tolerant to salt than 

their host (Zahran, 1999). Nevertheless, chickpea rhizobia differ in NaCl 

tolerance, some strains are able to grow at salt concentrations as high as 500 

mM NaCl (Kucuk and Kivanc, 2008), others cannot grow even when NaCl 

concentration is lowered to 100 mM NaCl (Elsheikh and Wood, 1990a,b; Zurayk 

et al., 1998; Kucuk and Kivanc, 2008).  

A major consequence of salt-stress is the loss of intracellular water, which 

imposes a water deficit because of osmotic effects on a wide variety of metabolic 

activities (Fatnassi et al., 2011). Proteins are at permanent risk of unfolding, 
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especially when cells are exposed to environmental stress conditions, such as 

high salt concentration. When protein denaturation occurs, molecular chaperones 

enable denatured proteins to acquire their native folding faster and more reliably 

than they otherwise would (Hartl and Hayer-Hartl, 2009).  

Several classes of chaperones are induced under stress conditions, such as 

salinity. The DnaK machinery comprises the co-chaperone DnaJ and the 

nucleotide exchange factor GrpE, whereas the GroEL system includes the co-

chaperone GroES (Chaudhuri et al., 2009). ClpB belongs to the Clp family, which 

is ubiquitous among prokaryotes and eukaryotes, acting as both protease and 

chaperone (Gottesman et al., 1997). Under extreme conditions, ClpB interacts 

with the DnaK chaperone system catalyzing protein disaggregation and 

reactivation (Motohashi et al., 1999; Zolkiewski, 1999). In Ensifer meliloti cells 

subjected to salt stress, Domínguez-Ferreras et al. (2006) reported the induction 

of several genes, including clpB as well as the repression of some groESL 

operon copies. Additionally, the co-chaperone dnaJ was described as being 

involved in Rhizobium tropici salt tolerance (Nogales et al., 2002). However, in 

chickpea rhizobia, little is known about the expression of chaperone genes under 

saline conditions.  

The present study describes the screening of a collection of Portuguese chickpea 

rhizobia for salinity tolerance and investigates the gene expression of the well 

characterized chaperone systems dnaK-dnaJ, groEL-groES and clpB. The 

transcription of these chaperone genes upon salt shock was analyzed, using 

sensitive and tolerant mesorhizobia isolates, belonging to several Mesorhizobium 

species.  
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3.3 Materials and Methods 

Bacterial isolates  

A total of 106 chickpea rhizobia isolates were used in the present study (Table 

3.1). Overall, isolates were collected from 26 soil samples (Chapter 2, Table 2.1), 

covering almost all Portuguese territories with the exception of Azores Islands 

and Minho province. Four Mesorhizobium type strains were also used: M. ciceri 

UPM-Ca7, M. loti LMG 6125; M. amorphae ACCC 19665 and M. mediterraneum 

UPM-Ca36. All isolates were preserved in 30% (v/v) glycerol at -80ºC and 

cultured in yeast extract mannitol (YEM) broth (Vincent, 1970) for routine use.  

 

Salt stress tolerance 

The salt tolerance of bacterial isolates was screened by evaluation of their growth 

based on optical density (OD) readings at 540 nm. The YEM medium was 

supplemented with 1.5% and 3% NaCl for stress conditions. For control 

conditions, standard YEM was used. After overnight growth in YEM, bacterial 

cultures were standardized to an initial OD of 0.03 and grown for 48h at 28ºC. 

Three replicas per treatment were done.  

 

Statistical analysis 

In order to compare differences in isolate tolerance, optical density values were 

converted into percentage values, considering growth at control conditions as 

100%. Average value and standard deviation of the three replicas were 

calculated. Statistical analyses were performed using SPSS 17.0 software (SPSS 

Inc., Chicago, USA). The Krustal-Wallis test was used in order to explore the 

relationship between stress tolerance (continuous dependent variable) and 

categorical independent variable, as for instance species group or province of 

origin. To identify categories that differ significantly from others, three different 
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post hoc tests (Tamhane, Dunnett T3 and Games-Howell) were used. To detect 

structure in the relationships between categorical variables, the correspondence 

analysis (CA) was conducted as an exploratory data analysis technique 

(Benzécri, 1973). Isolates were divided into three classes: sensitive (growth < 

10%), tolerant (growth between 10 and 20%) and highly tolerant (growth > 20%), 

in order to investigate the relationships between these classes and isolates 

province of origin. Spearman’s correlations were performed in order to determine 

if any of the soil characteristics were related with salt-tolerance. 

 

RNA extraction and northern hybridization 

RNA extraction was performed using cell cultures in exponential growth phase, 

submitted to a salt shock in YEM supplemented with 5% NaCl, for one hour. 

Control RNA was extracted from cells grown in YEM. Total RNA extraction was 

performed according to the protocol for Rapid Isolation of RNA from Gram-

negative Bacteria (Ausubel et al., 1997). 

The nonradioactive DIG system (Roche Applied Science) was used for northern 

experiments. RNA samples were denatured in a loading buffer (50% deionized 

formamide; 6.1% formaldehyde; 1 × MOPS) and separated by electrophoresis on 

a 1.5% agarose gel containing 2% formaldehyde in 1× MOPS (20 mM MOPS 

buffer, 5 mM sodium acetate, 2 mM EDTA, pH 7.0). After electrophoresis, 

capillary transfer into a positively charged nylon membrane (Roche Applied 

Science) was carried out in 20 ×SSC (3 M NaCl; 300 mM sodium citrate, pH 7.0). 

RNA was fixed by baking the membrane at 120ºC for 30 min. The groEL and 

dnaKJ RNA probes were obtained as previously described (Alexandre and 

Oliveira 2011). The clpB RNA probe was obtained using a gene fragment of 1388 

bp that was amplified using the primers clpB-F (5’-

CGCCGAACCAAGAACAATCC-3’) and clpB-R (5’-

ACCCTCCTCATAGCCGACAT-3’) (Stabvida). The PCR reaction was prepared 

with 2 U Taq DNA polymerase (Fermentas), 1 × reaction buffer, 1.5 mM MgCl2, 
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0.2 mM of each dNTP (Invitrogen), 20 pmol of each primer and DNA of 

Mesorhizobium sp. MAFF 303099. The amplification program used was: 3 min at 

95ºC for initial denaturation; 30 cycles of 1 min at 94ºC, 50 sec at 62ºC and 2 min 

at 72ºC and a final extension step at 72ºC during 5 min. The PCR product was 

purified using the GFXTM PCR DNA or Gel Band Purification kit (GE Healthcare) 

according to the manufacturer’s instructions. The clpB gene fragment was cloned 

using pGEM-T Easy Vector System (Promega) following the manufacturer’s 

instructions. All RNA probes were obtained by in vitro transcription labelling, 

using DIG Northern Starter Kit (Roche Applied Science). The DNA probe for 16S 

rRNA was labeled using DIG High Prime DNA Labelling and Detection Starter Kit 

II (Roche Applied Science). The 16S rRNA gene PCR amplification was 

performed using DNA of M. mediterraneum Ca36T, as previously described 

(Alexandre and Oliveira, 2011). 

Hybridizations were carried out overnight at 68ºC, after a pre-hybridization period 

of 30 min at the same temperature. For the 16S rRNA detection, the membranes 

were re-hybridized overnight at 50ºC with a DNA probe. After hybridization, 

stringency washes and immunological detection were performed according to the 

manufacturer’s instructions.  

Hybridization signals were analyzed using ImageQuantTLTM v7.01 (GE 

Healthcare). The 16S rRNA signal was used as internal control for the amount of 

total RNA loaded. To determine the expression levels, the ratio between 

transcript signals and the corresponding 16S rRNA signals was calculated and 

the fold difference was determined using the ratio of the previous value between 

control and the salt shock conditions. 
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Table 3.1 List of the isolates used in the present study (from Chapter 2). 

Province Origin Isolate Province Origin Isolate 

Trás-os-
Montes e 
Alto Douro 

Bragança BR-8 Estremadura Alenquer AL-13 
BR-9 Caldas da 

Rainha 
CR-3 

BR-15 CR-16 
BR-16 CR-18 
BR-28 CR-29 

Lamego LM-1 CR-32 
LM-9 Leiria L-19 
LM-13 Salir SL-1 
LM-18 SL-2 
LM-21 SL-3 

Douro Litoral Porto PII-1 SL-5 
PII-2 SL-6 
PII-3 SL-7 
PII-4 SL-9 

Beira Litoral Aveiro A-3 Setúbal ST-2 
A-8b ST-5 

Aveiro II AII-5 ST-8 
AII-7 ST-20 

Coimbra C-1 ST-33 
C-3 Sintra S-1 
C-7 S-8 
C-9 S-15 
C-13 S-24 
C-14 S-26 
C-15 Ribatejo Santarém STR-2 
C-23 STR-4 
C-24 STR-10 
C-25 STR-14 
C-27b STR-16 

Beira Alta Guarda G-1 Alto Alentejo Elvas 75 
G-4 78 
G-10 85 
G-24 CV-18 
G-55 ENMP EE-7 

Viseu V-5b Évora 90 
V-15b 93 
V-18 94 
V-20 98 
V-25b 102 

Beira Baixa Castelo Branco  CB-10 Portalegre PT-35 
CB-19 Baixo 

Alentejo 
Beja 6b 

CB-23 7a 
CB-30 27 
CB-38 29 
CB-75 64b 

Telhado T-3 Algarve Portimão PM-1 
T-4 PM-14 
T-5 PM-17 
T-7 Portimão I PMI-1 
T-8 PMI-6 

Madeira Serra d’ Água SA-9 Praia do 
Alemão 

PA-5 
SA-12 PA-6 

SA-13    
SA-17    
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3.4 Results 

Salt stress tolerance 

In general, the chickpea mesorhizobia isolates showed low tolerance to salinity 

(Fig. 3.1). At 1.5% NaCl, the isolates growth ranged from 3% to 46% while at 3% 

NaCl, the growth range was between 2% and 30%. Actually, a positive 

correlation was found between growth at both NaCl concentrations (r = 0.354, P 

< 0.01). Only four isolates grew above 30% with 1.5% NaCl, namely BR-8-

Bragança, CR-32-Caldas da Rainha, PA-6-Praia do Alemão and SL-2-Salir.  

In order to investigate if rhizobial species clusters are significantly different in 

terms of their ability to tolerate salt stress, several statistical tests were 

performed. For both NaCl concentrations used, the Kruskal-Wallis test indicated 

that there were differences between species clusters (2 = 11.949, df = 3, P < 

0.05 for 1.5% NaCl and 2 = 77.062, df = 3, P < 0.01 for 3% NaCl). Despite the 

fact that at 1.5% NaCl, the M. huakuii / M. amorphae and the M. ciceri / M. loti 

isolates present the lowest growth average, no significant differences were found 

between these and the other two species clusters (with the highest growth 

average). On the other hand, at 3% NaCl significant differences were observed: 

M. huakuii / M. amorphae and the M. ciceri / M. loti clusters are the species 

groups with the lowest average tolerance and are significantly different from each 

other and from the remaining two species clusters.  

Comparing the tolerance levels between the type strain and the isolates 

belonging to the same species cluster, differences in tolerance phenotype were 

detected. For instance, the M. mediterraneum type strain (cluster D) grew above 

10% at both stress conditions, and while some isolates of the same species 

group show a similar phenotype, others show a high sensitivity to salt.  

 



 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Growth of chickpea mesorhizobia under different salt stress conditions: 1.5% NaCl (open diamonds) and 3% 

NaCl (closed circles). Percentages were calculated considering the control condition (YEM with no extra NaCl) as 100% 
growth. Presented values are the average of three replicas (standard deviation bars are shown). 
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In order to investigate if salt tolerance is related to the provinces of origin of the 

isolates, statistical analyses were performed. For both NaCl concentrations 

tested, the Kruskal-Wallis test indicated that there are differences between 

provinces of origin of the isolates (2 = 77.528, df = 10, P < 0.01 for 1.5% NaCl 

and 2 = 141.368, df = 10, P < 0.01 for 3% NaCl). Regarding the ability to grow 

with 1.5% NaCl, the isolates from the three provinces with the lowest growth 

averages (Ribatejo, Baixo Alentejo and Madeira) were found to be significantly 

different from the isolates from the provinces with highest growth average 

(Algarve, Estremadura, Beira Litoral and Beira Alta). These differences are also 

evident in the correspondence analysis (CA) biplot, which revealed an 

association between some provinces of origin and isolates’ ability to tolerate 

1.5% NaCl (Fig. 3.2). Madeira, Beira Baixa, Ribatejo and Baixo Alentejo isolates 

are associated with low tolerance to salt stress, while Algarve, Beira Alta and 

Beira Litoral isolates are associated with high tolerance to this stress. Isolates 

from Algarve, Estremadura and Douro Litoral provinces show the highest growth 

averages at 3% NaCl. The post hoc tests indicated that Estremadura and Douro 

Litoral provinces are significantly different from the provinces with low growth 

averages. 

Since significant differences between provinces of origin of the isolates with 

regard to salt tolerance were obtained, statistical analyses were performed in 

order to investigate if soil characteristics (Chapter 2, Table 2.1) were related with 

salt tolerance. For both salt concentrations, a positive correlation between salt 

tolerance and electrical conductivity of the origin soil of the isolates was found (r 

= 0.228, P < 0.01 for 3% NaCl and r = 0.207, P < 0.01 for 1.5% NaCl). A negative 

correlation between growth with 1.5% NaCl and organic matter levels was found 

(r = -0.142, P < 0.01). On the other hand, the pH value of the origin soil and salt-

tolerance at 3% NaCl were found to be positively correlated (r = 0.298, P < 0.01). 
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Figure 3.2 CA biplot of the relationship between provinces of origin of the 
isolates and tolerance to 1.5% NaCl. (Note: the dots corresponding to provinces 
are occasionally overlaid). 

 

Transcriptional analysis of the major chaperone genes upon salt shock 

The transcription of groEL, dnaKJ and clpB genes was analyzed in isolates 

showing different phenotypes upon salt stress, in order to investigate the 

involvement of these genes in tolerance to salinity. The transcriptional levels of 

the major chaperone genes were evaluated by northern hybridization after a salt 

shock and compared to those of control conditions. Based on the salt tolerance 

screening at 1.5% NaCl (Fig. 3.1), 12 chickpea rhizobia isolates, comprising the 

four species clusters and including both tolerant (growth > 20%) and sensitive 

(growth < 10%) isolates, were selected. From cluster A, isolates C-3-Coimbra 
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and C-23-Coimbra as salt-sensitive and isolates C-25-Coimbra and AII-5-Aveiro 

as salt-tolerant were chosen. Isolates BR-8-Bragança and G-10-Guarda as salt-

tolerant and LM-18-Lamego and EE-7-ENMP as salt-sensitive, belonging to 

cluster B, were selected. From clusters C and D, one isolate of each category of 

tolerance was chosen, namely ST-5-Setúbal and 29-Beja as salt-sensitive and 

CR-32-Caldas da Rainha and PA-6-Praia do Alemão as salt-tolerant, 

respectively.  

The northern blot analysis with the dnaKJ RNA probe allows the detection of 

three different transcripts, namely the mRNAs of dnaK and of dnaJ and also the 

bicistronic dnaKJ mRNA (Alexandre and Oliveira, 2011). A transcript with 

approximately 2 kb, which is consistent with the predicted size of the dnaK gene 

transcript, was detected in all analyzed isolates (Fig. 3.3a).  

Figure 3.3 Comparison of transcriptional analysis of the dnaK gene (a) and the 
groESL operon (b) between a salt-tolerant and a salt-sensitive isolate submitted 
to salt shock. Northern blot hybridization of total RNA with probes specific for 
dnaKJ, groEL and 16S rRNA under control conditions (C) and upon salt shock 
(S). 

 

Most isolates showed a slight increase in the dnaK mRNA levels upon salt shock 

(Fig. 3.4), however, the sensitive isolate C-23-Coimbra showed a significant 

increase in dnaK transcript levels (approximately 3 fold) after salt shock. The 

level of dnaK gene transcription was not directly related with the sensitivity or 

tolerance of the isolates for all species cluster. For instance, the sensitive isolates 



Chapter 3 

90 

from clusters C and D, revealed a higher induction of dnaK than the tolerant 

isolates from the same species. On the other hand, in the tolerant isolates from 

cluster B, low induction of dnaK gene was detected, while in the sensitive isolates 

no induction or a slight repression of dnaK gene occurred, after salt shock. 

Figure 3.4 Expression levels of dnaK and groESL genes after salt shock 
evaluated by northern analysis using tolerant and sensitive isolates from the four 
species clusters (A-D). 

 
 
 
 
 



Tolerance of chickpea mesorhizobia to salinity 

91 

Concerning the analysis of the groESL chaperone system, the groEL RNA probe 

could detect two putative transcripts: the bicistronic groESL transcript and the 

groEL transcript (Alexandre and Oliveira, 2011). In this study, the signal detected 

was approximately 2 kb long, which corresponds to the bicistronic groESL mRNA 

(Fig. 3.3b). The majority of the isolates displayed unchanged or slightly lower 

groESL mRNA levels upon salt shock (Fig. 3.4). However, three isolates 

belonging to different species groups, revealed induction of groESL operon after 

salt shock, namely isolates C-23-Coimbra (sensitive), AII-5-Aveiro (tolerant) and 

CR-32-Caldas da Rainha (tolerant). Both sensitive and tolerant isolates, from the 

M. ciceri / M. loti and M. mediterraneum / M. temperatum clusters, showed no 

significant differences on groESL expression level after salt shock, with exception 

of the sensitive isolate EE-7-ENMP, which showed a decrease in the groESL 

mRNA levels. Tolerant isolate AII-5-Aveiro showed the highest induction of 

groESL, nevertheless within the same cluster another tolerant isolate (C-25-

Coimbra) revealed repression of the same operon.  

Regarding the transcriptional analysis of the ClpB chaperone gene, the clpB RNA 

probe detects a single transcript, according to the genome of M. sp. 

MAFF303099 and M. ciceri bv. biserrulae WSM1271. In order to analyse the 

expression of the clpB gene upon salt shock, isolates from cluster B, namely BR-

8-Bragança (tolerant), G-10-Guarda (tolerant) and EE-7-ENMP (sensitive), were 

analyzed. In tolerant isolates, after salt shock the clpB transcript levels were 

similar to those obtained under control conditions (Fig. 3.5).However, for the 

sensitive isolate EE-7-ENMP, a repression of clpB gene expression was 

observed. 
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Figure 3.5 Expression levels of clpB gene after salt shock evaluated by northern 

analysis using tolerant and sensitive isolates from the Cluster B. 

 

 

3.5 Discussion 

In the present study, a large collection of native chickpea rhizobia were screened 

for salt stress tolerance. In all tested mesorhizobia, the growth was reduced upon 

salt stress. Bacterial growth was severely affected with 3% NaCl. Nevertheless, 

some strains such as LM-18-Lamego showed similar growth in both stress 

conditions. Only a few isolates showed a significant growth with 1.5% NaCl. 

These results are in agreement with several studies, which showed that growth of 

most rhizobial strains is inhibited by 100 mM (approximately 0.6%) NaCl, while a 

few strains can tolerate more than 300 mM (approximately 1.8%) NaCl (Elsheikh 

and Wood, 1990a, b; Zurayk et al., 1998; Maâtallah et al., 2002a, b). Several 

studies indicated that fast-growing strains are generally more tolerant to high salt 

concentrations than slow-growing strains (Odee et al., 1997; Zerhari et al., 2000; 

Maâtallah et al., 2002b). Jarvis et al. (1997) described mesorhizobia growth rate 

as lower than the fast-growing members of the genus Rhizobium and higher than 

the slow-growing members of the genus Bradyrhizobium. In general, our isolates 

are more sensitive than Rhizobium sp. strains and more tolerant than 
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Bradyrhizobium sp. strains (Elsheikh and Wood, 1990b) which is in agreement 

with what was mentioned above.  

Despite the fact that salt tolerance seems to be diverse among chickpea rhizobia, 

an association between province of origin of isolates and salt tolerance was 

obtained, which is in agreement with the observations by Kulkarni et al. (2000). 

Correlations between the soil organic matter levels and the size or strain 

composition of population of rhizobia have been reported (Bezdicek, 1972). 

Zahran et al. (1992) observed that the majority of Rhizobium strains isolated from 

saline soils were salt-tolerant. Similarly, herein correlations between origin soil 

characteristics, such as soil pH, electrical conductivity and organic matter levels 

and salt tolerance of the isolates was found, suggesting that strains phenotype is 

closely related with soil characteristics, which act as a selective pressure. 

Shamseldin (2008) found that all salt-tolerant strains of common bean rhizobia 

contained a 250 kb plasmid with the exception of one strain, suggesting that this 

plasmid may play a role in the salt tolerance mechanism. However, no 

relationship between salt tolerance and the presence of plasmids was found in 

our study. 

Although several reports show that many genes may be involved in the response 

to salt stress in rhizobia (Talibart et al., 1994; Nogales et al., 2002; Rüberg et al., 

2003; Wei et al., 2004; Domínguez-Ferreras et al., 2006), the mechanisms for 

osmotic adaptation in rhizobia exposed to salt stress are still unclear. Mutational 

studies allowed the identification of multiple genes involved in salt tolerance, as 

for example genes encoding cation efflux proteins (pha genes), 

methyltransferase (metH), trigger factor (tig) and genes involved in 

exopolysaccharides synthesis (EPS) (Jiang et al., 2004; Miller-Williams et al., 

2006). Taking into account previous studies suggesting the direct or indirect 

involvement of DnaKJ, GroESL and ClpB in salt stress tolerance (Nogales et al. 

2002; Wei et al., 2004; Domínguez-Ferreras et al., 2006), the transcriptional 

analysis of these chaperone genes was performed using sensitive and tolerant 
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isolates within four species cluster. In the majority of the tested isolates, the dnaK 

transcripts increased after salt shock, while no change or a slight repression was 

observed with the groESL operon. However, the detected levels of induction of 

these genes are very low when compared with the levels obtained by Alexandre 

and Oliveira (2011) in chickpea mesorhizobia submitted to heat shock.  

The increase of the dnaK mRNA levels found in the present study is in 

agreement with several former reports in others organisms, such as 

Enterococcus faecalis (Laport et al., 2004), Lactobacillus sanfranciscensis 

(Hörmann et al., 2006) and Bifidobacterium (Ventura et al., 2005) under salinity 

conditions. Nevertheless, Susin et al. (2006) verified that Caulobacter crescentus 

cells with DnaKJ depleted are not affected by the presence of high 

concentrations of NaCl. On the other hand, Nogales et al. (2002) showed that a 

mutant with a disrupted dnaJ gene presented less salt tolerance when compared 

to the wild type.  

The groESL operon was slightly repressed or unchanged in the majority of the 

isolates when submitted to salt shock, which is in agreement with other studies in 

Mesorhizobium and Ensifer (Domínguez-Ferreras et al., 2006; Laranjo and 

Oliveira, 2011). However, in other microorganisms, such as Enterococcus 

faecalis and Caulobacter crescentus, the groESL operon was induced when the 

cells were submitted to salt shock (Laport et al., 2004; Susin et al., 2006).  

ClpB was described to be involved in salt tolerance (Nag et al., 2005; Ventura et 

al., 2005), high temperature tolerance (Eriksson and Clarke, 2000; Nag et al., 

2005; Acébron et al., 2009), and virulence (Chastanet et al., 2004). Our 

preliminary data on transcriptional analysis of the clpB gene showed no induction 

in the salt-tolerant isolates, while in the salt-sensitive isolate a significant 

repression was observed. These results are different from the ones reported by 

Domínguez-Ferreras et al. (2006) who described an induction (2.13 fold) of the 

clpB gene in Ensifer meliloti, upon exposure to 400 mmol l-1 (± 2.5%) NaCl for 

one hour. 
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Our results suggest that chaperone genes are not significantly induced in 

chickpea mesorhizobia under salt shock. Nevertheless, according to Domínguez-

Ferreras et al. (2006) the induction levels greatly depend on the salt type and 

concentration, as well as the duration of the imposed salt stress. Alexandre and 

Oliveira (2011) reported a higher increase in the amount of dnaK and groESL 

transcripts in heat-tolerant isolates in comparison with sensitive ones, within the 

same species group, under heat stress, suggesting that increased levels of these 

chaperones may contribute to a higher tolerance to heat in rhizobia. However, in 

the present study, using salt-tolerant and -sensitive isolates, no clear relationship 

was observed between isolate phenotypes and chaperone gene induction. 

Similar results were observed by Laranjo and Oliveira (2011), who compared the 

induction levels of groESL of two Mesorhizobium species, with different salt 

tolerance phenotypes.  

In conclusion, our results show that most chickpea mesorhizobia are sensitive to 

salt stress. Nevertheless, some isolates were able to grow 30 to 46% compared 

to control conditions. No relationship was found between the level of salt 

tolerance and the chaperone genes induction, among the tested isolates. Taking 

this into account, a higher salt tolerance does not appear to be due to higher 

transcriptional levels of these chaperone genes. To our knowledge, this is the 

first report in chickpea mesorhizobia focusing on the transcriptional analysis of 

the main chaperone genes under salt shock. Response and adaptation to 

environmental stresses are complex phenomena involving many biochemical 

processes that likely reflect changes in gene expression and in the activity and 

transport of proteins. Further studies are required to understand the molecular 

basis of salt tolerance in rhizobia. 
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Chapter 4 
 

Evaluation of the symbiotic 
performance of acdS-transformed 
mesorhizobia under salt stress 
 

Symbiotic performance of rhizobia in saline soils depends on the salt-tolerance of 

both the host and the microsymbiont. The selection of native rhizobia highly 

efficient and simultaneously highly tolerant to environmental stresses is not 

always easy to accomplish. Thus, alternative strategies, such as the genetic 

transformation of the microsymbiont partner, in order to improve its symbiotic 

performance under stressful conditions, may be useful for agriculture 

applications. In an attempt to improve the symbiotic performance under salinity 

conditions of chickpea mesorhizobia, genetic transformation of two isolates with 

an exogenous ACC deaminase gene (acdS) was performed. The ACC 

deaminase is associated to the lowering of ethylene levels in plant tissues by the 

cleavage of its immediate precursor (ACC) into ammonia and α-ketobutyrate.  

This chapter is based on the manuscript: 

Brígido, C., Nascimento, F.X., Duan, J., Glick, B.R., Oliveira, S. “Expression of an 
exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in 
Mesorhizobium spp. reduces the negative effects of salt stress in chickpea” 
Submitted
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4.1 Summary 

Salinity stress is one of the most important abiotic stresses due to its impact in 

reducing crop yield worldwide. Our goal was to study the symbiotic performance 

of two Mesorhizobium ciceri strains, transformed with an exogenous 1-

aminocyclopropane-1-carboxylate (ACC) deaminase gene, in chickpea plants 

under salinity stress. The M. ciceri EE-7 (salt-sensitive) and M. ciceri G-55 (salt-

tolerant) strains were transformed with an acdS gene present on plasmid 

pRKACC, by triparental conjugation. A plant growth assay was conducted using 

chickpea plants inoculated with either acdS-transformed or wild-type strains, 

under control and salt-stress conditions.  

Salinity significantly reduced the overall growth of chickpea plants inoculated with 

either wild-type strains. Although the growth of plants inoculated with either salt-

sensitive or salt-tolerant strain was reduced, the native salt-tolerant mesorhizobia 

strain showed a higher ability to nodulate chickpea under salt stress compared to 

the salt-sensitive strain. Both acdS-transformed strains showed an improvement 

in chickpea growth compared to the wild-type strains, under salinity. All of the 

plant growth parameters were higher in plants inoculated with the acdS-

transformed strains compared to the plants inoculated with the native strains. The 

negative effects of salt stress on nodulation were reduced when using acdS-

transformed strains in comparison to the wild-type strains. Interestingly, by 

expressing the exogenous ACC deaminase gene, the salt-sensitive strain was 

able to induce nodules in the same extent as the salt-tolerant strain, contributing 

for a significant increase in the shoot dry weight of plants. 

As far as we know, this is the first report on the genetic modification of a 

Mesorhizobium strain that improved its nodulation abilities under salt stress, 

indicating that ACC deaminase can play an important role in facilitating plant-

rhizobium interaction under salinity conditions.  
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4.2 Introduction 

Salinity stress is one of the most important abiotic stresses due to its impact in 

reducing crop yield worldwide. More than 800 million hectares of land are salt-

affected (Essah et al., 2003), accounting for more than 6% of the world’s total 

land area. Moreover, about half of the land devoted to irrigated crops is adversely 

affected by salt (Gamalero et al., 2009). 

Salt tolerance in plants is very diverse, ranging from halophytes to extremely salt-

sensitive plants showing a wide range of adaptations (Gamalero et al., 2010). 

Legumes represent a very significant group of crops in agriculture and therefore 

their tolerance to salt stress is important to worldwide agricultural practice. 

Chickpea (Cicer arietinum L.) is one of the most important grain legume crops 

because it is a protein source in both human and animal diets. Furthermore, it 

plays a significant role in the maintenance of soil fertility, through its symbiotic 

association with rhizobia (Saxena and Singh, 1987). Like other legumes, 

chickpea is very sensitive to salinity, which affects its growth and development. 

On the other hand, rhizobial tolerance to salinity is important for the symbiosis, 

particularly if salt concentrations could have a detrimental effect on rhizobial 

populations as a result of direct toxicity and/or as through osmotic stress (Tate, 

1995).  

Despite the fact that legume plants are more sensitive to salinity than their 

rhizobial partners, the establishment of the symbiosis between them is highly 

sensitive to salt stress (Zahran, 1999). Ethylene is produced by plants in 

response to several environmental stresses (Bari and Jones, 2009) and is also 

known for its negative role in nodulation (Ma et al., 2002; Middleton et al., 2007), 

as it inhibits the formation and functioning of nodules (Nandwal et al., 2007; Ding 

and Oldroyd, 2009).  

Symbiotic performance in saline soils depends on the salt-tolerance of both the 

host and the microsymbiont (Saxena and Rewari, 1992; Zahran, 1999). The 

cultivated chickpea has a narrow genetic variation (Udupa et al., 1993), which 
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makes it difficult for breeders to produce elite cultivars with durable resistance to 

the many major abiotic stresses. However, the use of genomic analysis of 

potential salt-tolerant chickpea cultivars may contribute significantly to the 

selection of salt-tolerant cultivars (Mantri et al., 2007; Varshney et al., 2009). 

Meanwhile, several strategies have been followed in an attempt to improve plant 

growth under stressful conditions, such as selection of high-salt tolerant rhizobia 

strains and reduction of deleterious ethylene concentrations in the plant, that 

seem to be promising approaches.  

Despite some reports showing that high salt-tolerant rhizobia strains are 

symbiotically more efficient than salt-sensitive ones under saline conditions 

(Elsheikh and Wood, 1995; Saxena and Rewari, 1992), some researchers are 

critical of these reports. Under salinity, the ethylene levels increase in plant 

tissues (Abeles et al., 1992). Nandwal et al. (2007) reported a positive correlation 

between the levels of salinity and the amount of 1-aminocyclopropane-1-

carboxylate (ACC) content (the immediate ethylene precursor) and ethylene 

production in chickpea nodules. From this perspective, the approach of lowering 

the ethylene levels in plants through the activity of ACC deaminase (encoded by 

the acdS gene), that converts ACC into α-ketobutyrate and ammonia, may be an 

alternative to help chickpea plants to overcome the negative effects caused by 

salt stress. Several reports showed the beneficial effects of the utilization of 

plant-growth promoting bacteria expressing acdS in different plants subjected to 

salinity conditions (Sergeeva et al., 2006; Cheng et al., 2007; Jalili et al., 2008; 

Gamalero et al., 2010; Siddikee et al., 2010, 2011).  

Rhizobia that express the enzyme ACC deaminase typically exhibit only a low 

level of enzyme activity compared with free-living plant growth-promoting bacteria 

(i.e., 10- to 30-fold less than free-living bacteria). This suggests that there may be 

at least two types of ACC deaminase-producing bacteria (Glick et al., 2007a). 

There are free-living bacteria that bind relatively non-specifically to plants and 

have a high level of ACC deaminase activity, protecting plants from different 

stresses by lowering ethylene levels throughout the plant. Alternatively, rhizobia 



Evaluation of the symbiotic performance of acdS-transformed mesorhizobia 
under salt stress 

103 

bind tightly to the roots of specific plants and have a low level of enzyme activity 

which facilitates nodulation by locally lowering ethylene levels. 

Taking into account the previous results on the use of acdS genes from free-

living bacteria to lower stress ethylene levels (Glick, 2003) it should be possible 

to transform Mesorhizobium spp. with acdS genes from free-living bacteria and 

thereby enhance nodulation and growth of legumes under stressful conditions. 

Thus, the main objectives of the work reported here were: (i) to evaluate the 

symbiotic performance of native salt-tolerant and salt-sensitive rhizobia strains in 

chickpea plants under salt stress; and (ii) to improve the symbiotic performance 

of Mesorhizobium ciceri strains in chickpea plants under salinity stress by 

transformation with an exogenous acdS gene. 

 

4.3 Materials and Methods 

Bacterial Growth Conditions 

The bacterial strains and plasmids used in this study are listed in Table 4.1. Two 

chickpea mesorhizobia were selected based on their salt tolerance in liquid 

media (Chapter 3), and their similar symbiotic effectiveness under control 

conditions (Chapter 2), namely Mesorhizobium ciceri EE-7 (salt-sensitive) and 

Mesorhizobium ciceri G-55 (salt-tolerant). The mesorhizobia strains were grown 

at 28ºC in tryptone-yeast (TY) medium (Beringer, 1974) or in minimal medium 

(Robertsen et al., 1981), containing sucrose as the only carbon source. The 

growth medium for transformed mesorhizobia strains was supplemented with 

tetracycline (20 μg.ml-1). The Escherichia coli DH5α and MT616 strains were 

grown in Luria-Bertani (LB) medium (Sambrook and Russell, 2001) at 37ºC. 

Appropriate antibiotics were added to the medium when necessary. For the E. 

coli strain containing pRKACC, 15 μg.ml-1 of tetracycline was used, while for the 

strain with pRK600, the medium was supplemented with 25 μg.ml-1 of 

chloramphenicol. 
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Table 4.1 Bacterial strains and plasmids used in this study. 

Tcr- Tetracycline resistance; Cmr- Chloramphenicol resistance 
 

Triparental Mating 

In this study, plasmid pRKACC, containing the acdS gene from Pseudomonas 

putida UW4 (Shah et al., 1998), was used to transform the two selected chickpea 

mesorhizobia strains, by triparental conjugation. E. coli DH5α cells containing 

plasmid pRKACC were used as the donor, mesorhizobia isolates were the 

recipient and E. coli MT616 cells, with pRK600 acted as a helper, in triparental 

mating (Nascimento et al., 2012). The E. coli cells were grown overnight at 37ºC 

on LB plates, containing the appropriate antibiotics. The mesorhizobia isolates 

were grown on TY plates at 28ºC for 48-72 hours. After growth, a small amount 

of each cell culture of the E. coli strains was transferred to each mesorhizobia 

strain on TY plates and mixed. These mixtures were grown overnight at 28ºC to 

allow plasmid transfer to occur. The mixtures were picked and resuspended in 

liquid minimal medium with no antibiotics. The cells were diluted and then 

Plasmid or 
Bacteria 

Relevant features Reference or source 

Plasmids   

pRKACC 
The broad-host-range plasmid 
pRK415 containing the acdS gene 
from Pseudomonas putida UW4, 
Tcr 

Shah et al., 1998 

pRK600 pRK2013, npt::Tn9, Cmr Finan et al., 1986 
   
Bacteria    
M. ciceri EE-7 M. ciceri strain, salt-sensitive Chapter 3 
M. ciceri G-55 M. ciceri strain, salt-tolerant Chapter 3 
M. ciceri EE-7 
(pRKACC) 

M. ciceri EE-7 strain containing 
pRKACC 

This study 

M. ciceri G-55 
(pRKACC) 

M. ciceri G-55 strain containing 
pRKACC 

This study 

E. coli DH5α SupE44 Δ lacU169 
(φ80lacZΔM15), hsdR17, recA1, 
endA1, gyrA96, thi-1, relA1 

Sambrook and Russell 
2001 

E. coli MT616 Strain containing helper plasmid 
pRK600 

Finan et al., 1986 
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transferred to minimal medium plates containing 20 μg.ml-1 tetracycline and 

allowed to grow at 28ºC. To avoid E. coli cell contamination, the selected isolates 

were purified by at least four single colony passages on minimal medium 

supplemented with 20 μg.ml-1 tetracycline.  

In order to confirm the transfer of plasmid pRKACC to mesorhizobia cells, the 

tetracycline resistant mesorhizobia colonies were picked and plasmids were 

extracted following the manufacturer’s procedures (DNA-SpinTM Plasmid DNA 

Purification Kit, Intron) and visualized in a 1.0% agarose gel stained with ethidium 

bromide. 

 

ACC deaminase activity assay 

The native mesorhizobia cells and the respective transconjugants were tested for 

ACC deaminase activity. ACC deaminase induction was performed according to 

Duan et al. (2009). After induction, ACC deaminase activity was measured based 

on the determination of α-ketobutyrate resulting from ACC cleavage by ACC 

deaminase, as described by Penrose and Glick (2003). Total protein content of 

cells was quantified by the method of Bradford (1976). The final ACC deaminase 

activity was expressed in µmol α-ketobutyrate/mg protein/h. 

 

Chickpea seed sterilization 

Chickpea seeds (cultivar Chk 3226) were surface sterilized with 5% sodium 

hypochlorite diluted with sterile distilled water (1/1: v/v) for 30 minutes. After 

sterilization, seeds were rinsed six times in sterilized distilled water and incubated 

for 2 hours at 28ºC. Seeds were placed in sterilized vermiculite and then 

incubated in the dark for 48 hours at 28ºC. 
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Evaluation of the chickpea plants tolerance to salt 

After germination, the seeds were transferred to plastic pots (±11.5 cm diameter; 

±10.5 cm high) filled with sterile vermiculite and grown in a growth chamber, 

under a 16/8h light/dark cycle and 24/18ºC day/night temperature and at a 

relative humidity of 65%.  

In order to determine the salt concentration to use in the plant growth trial, the 

chickpea plants were tested with three different NaCl concentrations: 0.075%, 

0.15% and 0.3% supplemented in the nitrogen-free nutrient solution (Broughton 

and Dilworth, 1971) applied in alternate watering. Chickpea plants watered with 

nutrient-free solution without supplemented NaCl were considered as control 

plants. Three plants per treatment were used. The nutrient-free solution was 

applied three times a week. Two months after sowing, the chickpea plants were 

harvested and the nonlethal salt concentration was determined.  

 

Plant growth assay under control and salt stress 

In order to evaluate the symbiotic performance of the acdS-transformed and wild-

type mesorhizobia strains in chickpea plants under control and salinity conditions, 

a plant growth assay was conducted in a growth chamber. The Mesorhizobium 

strains were grown in TY liquid medium (supplemented with 20 µg.ml -1 

tetracycline for acdS-transformed mesorhizobia strains) at 28ºC for 72 hours. 

After incubation, the cell suspension was centrifuged at 10,000×g and washed 

twice with TY liquid medium (without antibiotic). The bacterial cultures were 

standardized to an OD540nm of 0.8 and 1 ml of the bacterial suspension was used 

to inoculate each seed.  

For control conditions, a nitrogen-free nutrient solution was used (Broughton and 

Dilworth, 1971). For salinity conditions, 15 days after inoculation, the plants were 

subjected to salt stress using the nutrient solution supplemented with 0.15% 

NaCl and applied in alternate watering. The nutrient solutions were applied three 
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times a week. Uninoculated nitrogen-free plants were used as negative controls. 

After eight weeks, the plants were harvested and several parameters were 

measured, such as shoot dry weight (SDW), root dry weight (RDW), number of 

nodules (NN) and nodule dry weight (NDW).  

 

Statistical analysis 

Six replicates per treatment were used for statistical analysis. These data were 

examined by an analysis of variance and multiple comparisons among treatment 

means was made by Student-Newman-Keuls test. Statistical analyses were 

performed using MSTAC software, version 2.1. 

 

4.4 Results 

The two selected chickpea mesorhizobia were transformed with the plasmid 

pRKACC, containing the ACC deaminase gene from the plant growth promoting 

bacterium, Pseudomonas putida UW4. The successful transformation of the two 

Mesorhizobium strains was confirmed by plasmid extraction and visualization in 

an agarose gel (data not shown). 

The ACC deaminase activity was measured in all mesorhizobia strains, both 

native and acdS-transformed strains. No ACC deaminase activity was detected in 

any of the native mesorhizobia strains in free-living conditions. On the other 

hand, the acdS-transformed mesorhizobia strains displayed ACC deaminase 

activity in free-living conditions. The acdS-transformed mesorhizobia strains 

showed different levels of ACC deaminase activity; the ACC deaminase activity 

of Mesorhizobium ciceri EE-7 (pRKACC) and Mesorhizobium ciceri G-55 

(pRKACC) was 0.768±0.036 and 0.398±0.068 µmol of α-ketobutyrate/mg of 

protein/h, respectively.  

The chickpea cultivar CHK3226 was tested for salt tolerance. Of the three NaCl 

concentration tested, only 0.3% NaCl was found to be lethal to the chickpea 
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plants (data not shown). The other two NaCl concentrations applied to chickpea 

plants also showed negative effects on plants growth, however, in a lower extent. 

For this reason, 0.15% NaCl concentration was chosen for the evaluation of 

symbiotic performance of the mesorhizobia strains under salt stress. 

A chickpea plant growth assay was performed in order to assess the symbiotic 

performance of the native salt-tolerant and salt-sensitive rhizobia strains as well 

the transformed strains, expressing the exogenous ACC deaminase gene, under 

control and salt stress conditions. Under control conditions the symbiotic 

performance of the two native mesorhizobia EE-7 and G-55 strains was similar. 

Shoot dry weight (SDW), root dry weight (RDW), the number of nodules (NN) and 

the nodule dry weight (NDW) of plants inoculated with either strain showed no 

significant differences under control conditions (Fig. 4.1 and 4.2).However, in the 

presence of salt, the growth of chickpea plants inoculated with each native strain 

was significantly inhibited compared to plants grown in control conditions (Fig. 

4.1). The salt stress imposed on the chickpea plants led to a reduction in shoot 

dry weight, root dry weight, nodule dry weight, number of nodules and chickpea 

total biomass when compared to the plants grown under control conditions (Fig. 

4.1 and 4.2). Although the symbiotic performance of both wild-type strains was 

negatively affected by salt, the symbiotic performance of the salt-sensitive strain 

EE-7 was affected in a greater extent when compared to the salt-tolerant strain 

G-55. Indeed, the chickpea plants inoculated with the salt-sensitive strain were 

affected to a greater extent by salinity, in all parameters analyzed compared to 

the plants under control conditions. Under saline conditions, the plants inoculated 

with the salt-sensitive Mesorhizobium, strain EE-7, showed a reduction of 54.5% 

in the shoot dry weight and 48.7% in the total biomass while the plants inoculated 

with the salt-tolerant Mesorhizobium, strain G-55, showed a decrease of 35.9% in 

the shoot dry weight and 33.6% in the total biomass, when compared to plants 

grown under control conditions (Fig. 4.1 A, C). 
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Figure 4.1 Results obtained from plant growth assay using chickpea plants 

inoculated with transformed and native mesorhizobia salt-tolerant and salt-
sensitive strains under control and salinity conditions. Data correspond to the 
mean and standard error values of six plants after eight weeks of inoculation. 
Light grey bars plant under control conditions and grey bars correspond to plants 
subjected to salinity conditions. A) Shoot dry weight (g.plants-1) B) Root dry 
weight (g.plants-1) and C) Chickpea total biomass (g.plants-1). Means sharing the 

same letters are not significantly different at p ≤ 0.05 (n = 6) 



 
Chapter 4 

110 

Concerning the symbiotic performance of the acdS-transformed mesorhizobia 

strains, both transformed strains promoted the growth of chickpea plants in the 

presence of salt (Fig 4.1). Under salinity and with both strains, all parameters 

analyzed (SDW, RDW, NN, NDW, total biomass) from plants inoculated with the 

transformed mesorhizobia strain are higher compared to the plants inoculated 

with the native strain (Fig. 4.1 and 4.2). 

A significant difference between shoot dry weight of plants inoculated with M. 

ciceri EE-7 (pRKACC) and M. ciceri EE-7 wild-type was observed under salinity. 

Moreover, the salt-sensitive strain EE-7 (pRKACC) expressing acdS revealed 

higher symbiotic performance under salt-stress when compared to the 

corresponding native strain (Fig. 4.2). Strain EE-7 (pRKACC) promoted an 

increase of shoot dry weight and chickpea total biomass of 54% and 35%, 

respectively, in plants under salinity stress when compared to those inoculated 

with the wild-type strain under the same conditions (Fig. 4.1 A, C). An increase in 

the nodulation abilities of the Mesorhizobium ciceri EE-7 (pRKACC) was also 

observed, especially regarding the number of nodules formed in chickpea plants 

under salinity. M. ciceri EE-7 (pRKACC) strain showed an increase of 120% in 

the number of nodules when compared to the number of nodules formed by the 

wild-type strain EE-7, under salinity conditions (Fig. 4.2 A). Interestingly, the 

number of nodules formed by the acdS-transformed mesorhizobia strains in 

chickpea plants under salt stress conditions was similar to the number of nodules 

formed in plants inoculated with the same strains, under control conditions (Fig. 

4.2 A).  

Although in a lesser extent, the plants inoculated with the Mesorhizobium ciceri 

G-55 (pRKACC) strain also showed an improvement in tolerance to salinity 

conditions, compared to the plants inoculated with the native strain. The use of 

the M. ciceri G-55 (pRKACC) strain as inocula of plants submitted to salinity 

showed an increase of the symbiotic performance compared to the plants 

inoculated with its corresponding native strain under the same conditions. The M. 

ciceri G-55 (pRKACC) strain resulted in a 38% and 25% increase of shoot dry 
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weight and chickpea total biomass, respectively, when compared to the plants 

inoculated with the native M. ciceri G-55, under salinity conditions.  

 

Figure 4.2 Results obtained from plant growth experiments using chickpea plants 

inoculated with acdS-transformed and no-transformed mesorhizobia salt-tolerant 
and salt-sensitive strains under control and salinity conditions. No nodules were 
obtained in uninoculated plants. Data correspond to the mean and standard error 
values of six plants after eight weeks of inoculation. Light grey bars indicate 
plants under control conditions and grey bars correspond to plants subjected to 
salinity conditions. A) Number of nodules per plant; and B) Nodule dry weight 

(mg). Means sharing the same letters are not significantly different at p ≤ 0.05 (n 
= 6) 
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4.5 Discussion  

Selection of rhizobia strains and host cultivars is required for effective symbiosis 

in order to maximize plant production under stressful conditions, such as salinity. 

In the present work, the effect of NaCl on chickpea plants inoculated with two 

specific Mesorhizobium ciceri strains was evaluated as well as the impact of the 

expression of an acdS gene in the improvement of the symbiotic performance of 

the strains. 

Salinity significantly reduced the overall growth of chickpea plants when 

inoculated with either of the native strains. This is evident from the reduced shoot 

and root dry weights of plants subjected to salinity stress, even when the plants 

were inoculated with either salt-tolerant or salt-sensitive mesorhizobia strains. 

Similar depressive effects of NaCl in chickpea growth have been reported in 

other studies (Soussi et al., 1998; Garg and Singla, 2004; Eyidogan and Öz, 

2007).  

Soussi et al. (1998) have shown that salt applied at the vegetative growth stage 

contributes to a strong inhibition of nodulation even with the lowest NaCl 

concentration tested (i.e. 50mM). Considerable inhibition of nodulation was also 

detected in the present study. A reduction in the nodule dry weight and number of 

nodules was obtained in plants inoculated with both wild-type salt-tolerant and 

salt-sensitive mesorhizobia strains under salinity. This notwithstanding, the native 

salt-tolerant mesorhizobia strain showed an increased ability to nodulate 

chickpea under salt stress compared to the salt-sensitive strain. Although the 

symbiotic performance of the two mesorhizobia strains used in this study was 

affected by salinity, the nodulation process was less affected when a salt-tolerant 

mesorhizobia was used. These results are in agreement with the observations in 

other reports (Elsheikh and Wood, 1995; Saxena and Rewari, 1992; Mhadhbi et 

al., 2004), suggesting that the salt-tolerance of the microsymbiont partner 

influence the symbiosis performance. However, the differences observed 

between plants inoculated with the salt-tolerant and the salt-sensitive 
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Mesorhizobium strains are insufficient to preferentially use salt-tolerant rhizobia 

as a major approach to overcome the negative effects of salinity in plants. 

It is well established that high amounts of ethylene have inhibitory effects on 

plant growth and the reduction in endogenous ethylene levels in plant tissues, by 

bacterial ACC deaminase activity can promote plant growth. Ethylene is also 

known for its negative role inhibiting nodulation of legumes by rhizobia (Ma et al., 

2002; Ding and Oldroyd, 2009). 

In the present study, the acdS gene from Pseudomonas putida UW4 was 

introduced into chickpea mesorhizobia, and their symbiotic performance was 

evaluated under control and salinity conditions. No ACC deaminase activity was 

detected in the native mesorhizobia strains in free-living conditions. Similarly, in 

other studies with mesorhizobia strains possessing the acdS gene, no ACC 

deaminase activity is detected in free-living conditions (Ma et al., 2003; Glick et 

al., 2007b). 

Herein, the two transformed strains displayed different levels of ACC deaminase 

activities in spite of the fact the same exogenous gene was introduced in the 

same plasmid. This difference might reflect differences in promoter recognition 

between the two strains. Alternatively, since the P. putida UW4 acdS gene is 

regulated in a rather complex manner (Saleh and Glick, 2001; Cheng et al., 

2008) by a number of different factors, it more likely is a reflection of metabolic 

differences between the two host mesorhizobia strains.  

While the detected ACC deaminase activities of the two acdS-transformed 

mesorhizobia strains are low compared to the ACC deaminase activity of 

Pseudomonas putida UW4 (Ma et al., 2003), the ACC deaminase activities 

detected in this study are within the expected range of activities detected 

previously (Shah et al., 1998; Nascimento et al., 2012).  

Regardless of the precise level of exogenous ACC deaminase activity displayed 

by acdS-transformed rhizobacteria strains, beneficial effects on plant growth 
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were obtained with Mesorhizobium strains, as described by Nascimento et al. 

(2012) with Mesorhizobium ciceri LMS-1 (pRKACC) in chickpea plants, under 

control conditions. Furthermore, transconjugants of Rhizobium sp. strains 

TAL1145 containing the native- and Sinorhizobium sp. strain BL3-acdS genes 

increased root mass and produced more nodules on Leucaena leucocephala 

than the native strain (Tittabutr et al., 2008). 

Both acdS-transformed mesorhizobia strains improved the chickpea plant growth 

under salt conditions when compared to plants inoculated with native 

mesorhizobia strains under the same stressful conditions. However, the observed 

growth promotion was not equal with the two acdS-transformed mesorhizobia 

strains. With the salt-sensitive M. ciceri EE-7 (pRKACC), expressing the 

exogenous ACC deaminase gene, an increased ability to nodulate chickpea 

plants under salinity was observed. Moreover, the salt-sensitive transformed 

strain is able to form nodules in the same extent of the salt-tolerant M. ciceri G-

55. However, the expression of an exogenous ACC deaminase in the salt-

tolerant strain M. ciceri G-55 did not significantly influenced the nodulation 

abilities of this strain. It is possible that the different improvement obtained in the 

symbiotic performance of the strains upon transformation with the acdS gene is 

due to the different levels of ACC deaminase activity in the two strains, with a 

higher ACC deaminase activity contributing to a higher alleviation of the negative 

effects of ethylene. The reduction of the negative effects of salt stress was 

observed in all of the parameters analyzed. Similar results were previously 

obtained with other plants (canola, tomato, cucumber and red pepper) inoculated 

with rhizobacteria expressing ACC deaminase and subjected to salt stress 

(Cheng et al., 2007; Gamalero et al., 2010; Siddikee et al., 2010, 2011). 

On the other hand, the acdS-transformed strains did not promote plant 

development under optimal conditions, suggesting that the beneficial effect on 

plant growth was related to plant stress and to the modulation of ethylene levels 

through ACC deaminase. Similar results were observed by Gamalero et al. 

(2008), with cucumber plants. In addition, the increased symbiotic performance of 
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acdS-transformed mesorhizobia strains under salinity is achieved by reducing the 

ethylene levels in plant tissues, which in turns, lead to an increased number of 

nodules.  

This study shows that expression of an exogenous acdS gene in mesorhizobia 

improved the symbiotic performance of the bacteria when they were used as 

inoculants of chickpea plants grown under saline conditions, thus almost 

completely alleviating the negative effects caused by salinity. This suggests that 

the expression of an exogenous acdS by Mesorhizobium strains may be a useful 

tool in the development of inocula for sustainable agricultural purposes, 

particularly in salt-damaged lands.  
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Chapter 5 

 

 
Tolerance of chickpea 
mesorhizobia to acidity  
 
 

Due to the agricultural practices and environmental changes, the amount of land 

affected by acidity is increasing, limiting crop productivity worldwide. The demand 

for rhizobia tolerant to low pH is imperative, in order to develop legume-rhizobia 

associations able to tolerate soils acidity. In contrast to the temperature and salt 

response, the acidity stress response has not been widely studied in rhizobia. 

The present study comprised the evaluation of acid stress tolerance of chickpea 

rhizobia, in order to identify isolates tolerant to acidity and to investigate a 

possible relationship between stress tolerance and the species or the site origin 

of the isolates. Additionally, to study the molecular bases of acid stress response 

in rhizobia, we analysed the expression of chaperone genes dnaKJ and groESL 

upon stress, using acid tolerant and sensitive chickpea rhizobia isolates, 

belonging to different Mesorhizobium species.  

This chapter is based on the following manuscripts: 

Brígido, C., Alexandre, A., Laranjo, M., Oliveira, S. (2007) “Moderately acidophilic 
mesorhizobia isolated from chickpea” Letters in Applied Microbiology, 
44:168-174.  

Brígido, C., Oliveira, S. (2012) “Most acid-tolerant chickpea mesorhizobia show 
induction of major chaperone genes upon acid shock” Accepted for 
publication in Microbial Ecology, DOI 10.1007/s00248-012-0098-7 
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5.1 Summary 

The ability of rhizobia to endure stress is important in order to achieve high 

symbiotic performance in suboptimal conditions. The rhizobia-legume symbiosis 

is affected by environmental conditions such as acidity. Our goals were to 

evaluate the tolerance of mesorhizobia to acid and alkaline conditions as well as 

to investigate whether acid tolerance is related to the species or the origin site of 

the isolates. In addition, to investigate the molecular basis of acid tolerance, the 

expression of chaperone genes groEL and dnaKJ was analyzed, using acid-

tolerant and sensitive mesorhizobia.  

Tolerance to pH 5 and 9 was evaluated in liquid medium for 98 Portuguese 

chickpea mesorhizobia belonging to four species clusters. All isolates showed 

high sensitivity to pH 9. In contrast, mesorhizobia revealed high diversity in terms 

of tolerance to acid stress: 35% of the isolates were acid-sensitive and 45% were 

highly tolerant to pH 5 or moderately acidophilic. An association between 

mesorhizobia tolerance to acid conditions and the origin soil pH was found. 

Furthermore, significant differences between species clusters regarding tolerance 

to acidity were obtained. Ten isolates were used to investigate the expression 

levels of the chaperone genes by northern hybridization. Interestingly, most acid-

tolerant isolates, assigned to M. ciceri / M. loti and M. huakuii / M. amorphae 

clusters, displayed induction of the dnaK and groESL genes upon acid shock 

while the sensitive ones showed repression. This study suggests that acid 

tolerance in mesorhizobia is related to the pH of the origin soil and to the species 

cluster of the isolates. Additionally, the transcriptional analysis suggests a 

relationship between induction of major chaperone genes and higher tolerance to 

acid pH in mesorhizobia. 

This is the first report on transcriptional analysis of the major chaperones genes 

in mesorhizobia under acidity, contributing to a better understanding of the 

molecular mechanisms of rhizobia acidity tolerance.  
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5.2 Introduction 

Agricultural practices and environmental changes increase the amount of land 

affected by acidity, limiting crop productivity worldwide. Most leguminous plants 

require a neutral or slightly acidic soil for growth, especially when they depend on 

symbiotic nitrogen fixation. Soil acidity affects the nodulation and nitrogen fixation 

processes undertaken by rhizobia, since it reduces rhizobial persistence and 

survival in the soil as well as nodulation efficiency (Graham et al., 1982; Ibekwe 

et al., 1997). 

In Portugal, most of the soils are acid mainly due to the agricultural practices and 

the mild and dry climate, which favors a fast mineralization of the organic matter 

(Torrent et al., 2007). This results in an important constraint to most agricultural 

crops, such as chickpea production. This legume has a great economic 

importance due to its use worldwide as food for both humans and animals. 

Although chickpea (Cicer arietinum L.) is a successful legume on alkaline soils 

(Rao et al., 2002), its symbiotic relationship with mesorhizobia is better adapted 

to acidity (Siddique et al., 1999; Howieson et al., 2000). 

To avoid losses in the productivity of leguminous crops in acidic soil conditions, 

the development of legume-rhizobia associations able to tolerate such stress 

(Dilworth et al., 2001) or the selection of rhizobia tolerant to low pH (Ruiz-Díez et 

al., 2009) are possible strategies. Chen et al. (2005) described the pH range for 

mesorhizobia growth between 4 and 10, although, the optimal pH range was 

between 6 and 8. Some exceptions have been identified as is the case of strains 

of Mesorhizobium loti that showed a high tolerance to acidity (pH 4) (Correa and 

Barneix, 1997; Jarvis et al., 1997). 

Stress response in bacteria is essential for effective adaptation to changes in the 

environment. Bacteria have the ability to sense protein folding and other signals, 

leading to the activation of proteins such as molecular chaperones, proteases 

and regulatory factors, which play an important role in promoting homeostasis 

under stress conditions, such as acidity (Jakob et al., 1993; Hartl, 1996; 
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Frydman, 2001). Molecular chaperones recognize non-native states of other 

proteins and assist their folding and/or prevent their aggregation. The DnaK-

DnaJ-GrpE and GroEL-GroES complexes are the best characterized molecular 

chaperone systems, especially in Escherichia coli (Sabate et al., 2010). 

Although several studies evaluated the tolerance to acid and alkaline pH of 

strains belonging to the Mesorhizobium genus (Laranjo and Oliveira, 2011), little 

is known about the factors that determine acid tolerance in rhizobia. Furthermore, 

the molecular mechanisms enabling tolerant strains to endure low pH, and thus 

the molecular basis of rhizobia tolerance to acidity, remain mostly unknown.  

The present study evaluates the tolerance to acid and alkaline conditions of a 

Portuguese chickpea rhizobia collection and investigates whether acid tolerance 

is related to the species cluster, origin soil pH or geographical origin of the 

isolates. Additionally, it investigates changes in the expression levels of the major 

chaperone systems groESL and dnaKJ upon acidic shock, using tolerant and 

sensitive mesorhizobia isolates, belonging to several Mesorhizobium species.  

 

5.3 Materials and Methods 

Bacterial isolates  

A total of 98 isolates from a chickpea rhizobia collection (Chapter 2), which 

covers almost all Portuguese territory including Madeira Island, were used in the 

present study (Table 5.1). All isolates were preserved in 30% (v/v) glycerol at -

80ºC and cultured in yeast extract mannitol (YEM) broth (Vincent, 1970) at 28ºC 

for routine use.  
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Table 5.1 List of the isolates used in the present study (from chapter 2).  1 

Province Origin  
(soil pH) 

Isolate Province Origin 
 (soil pH) 

Isolate 

Trás-os-
Montes e 
Alto Douro 

Bragança  BR-8 Estremadura Alenquer  AL-13 
BR-9 Caldas da 

Rainha  
CR-3 

BR-15 CR-18 
BR-16 CR-32 
BR-28 Salir  SL-1 

Lamego LM-1 SL-2 
LM-9 SL-3 
LM-13 SL-5 
LM-18 SL-6 
LM-21 SL-7 

Douro Litoral Porto  PII-1 SL-9 
PII-2 Setúbal  ST-2 
PII-3 ST-5 
PII-4 ST-8 

Beira Litoral Aveiro  A-3 ST-20 
Aveiro II AII-5 ST-33 

AII-7 Sintra S-1 
Coimbra  C-3 S-8 

C-7 S-15 
C-9 S-24 
C-13 S-26 
C-14 Ribatejo Santarém STR-2 
C-15 STR-4 
C-23 STR-10 
C-24 STR-14 
C-25 STR-16 
C-27b Alto Alentejo Elvas  75 

Leiria  L-19 78 
Beira Baixa Castelo 

Branco  
CB-10 85 
CB-19 ENMP  EE-7 
CB-23 Évora  90 
CB-30 93 
CB-38 94 
CB-75 98 

Telhado  T-3 102 
T-4 Beja  6b 
T-5 7a 
T-7 27 
T-7 29 

Algarve Portimão  PM-1 Beira Alta Guarda  G-1 
PM-14  G-4 
PM-17  G-10 

Portimão I  PMI-1  G-24 
PMI-6  G-55 

Praia do 
Alemão  

PA-5  Viseu  V-15b 
PA-6   V-18 

Madeira Serra d’Água  SA-9   V-20 
SA-12   V-25b 

SA-13  
SA-17 

 2 
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pH stress tolerance 

The pH stress tolerance of the bacterial isolates was screened by evaluating their 

growth based on optical density (OD) readings at 540 nm. The pH stresses and 

control conditions were performed according to Laranjo and Oliveira (2011). 

Briefly, the YEM medium was buffered with 25 mM homopiperazine-N, N’-bis-2-

(ethanesulfonic acid) (Homopipes) for pH 5 and with 26 mM 2-amino-2-methyl-

1,3-propanediol (AMPD) for pH 9. For control conditions, YEM was buffered with 

20 mM 2-morpholinoethanesulfonic acid (MES) at pH 7. After overnight growth, 

bacterial cultures were standardized to an initial OD of 0.03 and grown for 48 h at 

28 ºC. Three replicas per isolate under each condition were used.  

 

Statistical analysis 

In order to compare isolates tolerance, optical density values were converted into 

percentage values, considering growth at control conditions (pH 7) as 100%. 

Average value and standard deviations of the three replicas were calculated. 

Statistical analyses were performed using SPSS 17.0 software (SPSS Inc., 

Chicago, USA). Both Krustal-Wallis and the Welch tests were used when there is 

no homogeneity of variances, in order to explore the relationship between stress 

tolerance (continuous dependent variable) and categorical independent variable, 

as for instance species group or province of origin. To identify categories that 

differ significantly from others, three different post hoc tests (Tamhane, Dunnett 

T3 and Games-Howell) were used. To detect structure in the relationships 

between categorical variables, the correspondence analysis (CA) was conducted 

as an exploratory data analysis technique (Benzécri, 1973). In order to 

investigate whether distinct acid tolerance phenotypes were related to the pH 

value of the origin soil of the isolates, these were divided into four classes 

according to their growth at pH 5: sensitive (growth < 30%), tolerant (growth 

between 30% and 70%), highly tolerant (growth between 70% and 100%) and 

moderately acidophilic (growth > 100%).  
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Nonparametric correlations between percentages of growth at acid pH and 

symbiotic effectiveness as well as the soil pH value from the origin site of isolates 

were determined using Spearman’s rank order correlation coefficient.  

 

RNA extraction and northern hybridization  

The transcription of groEL and dnaKJ genes was analyzed in ten isolates 

showing different phenotypes upon acid conditions, in order to investigate the 

involvement of these genes in tolerance to acidity. The transcriptional levels of 

the major chaperone genes were evaluated by northern hybridization after an 

acid shock and compared to those of control conditions. Total RNA extraction 

was performed using cell cultures in exponential growth phase, submitted to an 

acidic shock in YEM (pH 3) for one hour. Control RNA was extracted from cells 

grown in YEM (pH 7). Total RNA extraction was performed according to the 

protocol for Rapid Isolation of RNA from Gram-negative Bacteria (Ausubel et al., 

1997). 

All procedures for northern hybridization and stringency washes were followed as 

described previously in Chapter 3. The groEL and dnaKJ RNA probes were 

obtained as previously described (Alexandre and Oliveira 2011). The DNA probe 

for 16S rRNA was labeled using DIG High Prime DNA Labelling and Detection 

Starter Kit II (Roche Applied Science). The 16S rRNA gene PCR amplification 

was performed using DNA of M. mediterraneum Ca36T, as previously described 

(Alexandre and Oliveira, 2011).  

Hybridization signals were analyzed using ImageQuantTLTM v7.01 (GE 

Healthcare). The 16S rRNA signal was used as internal control for the amount of 

total RNA loaded.To determine the expression levels, the ratio between the 

transcript signals and the corresponding 16S rRNA signals was calculated and 

the number of folds was determined using the ratio of the previous value between 

control and the pH shock conditions minus 1. 
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5.4 Results 

Evaluation of mesorhizobia tolerance to acidic and alkaline stresses 

Isolates from the chickpea mesorhizobia collection were tested for tolerance to 

pH 5 and 9 (Fig. 5.1). The screening revealed that chickpea mesorhizobia varies 

in terms of tolerance to acid conditions (pH 5). In contrast, all chickpea 

mesorhizobia were sensitive to alkaline conditions (pH 9). Interestingly, isolates 

from M. mediterraneum / M. temperatum and M. tianshanense clusters are highly 

sensitive to both tested pH stress conditions, whereas isolates belonging to the 

other two species clusters (M. ciceri / M. loti and M. huakuii / M. amorphae) 

showed high diversity in tolerance to pH 5. In total, only 35% of the isolates 

tested were sensitive to acidic conditions. On the other hand, 45% of the isolates 

were highly tolerant or prefer acidic pH. Moreover, isolates C-25-Coimbra, T-5-

Telhado and Al-13-Alenquer belonging to M. huakuii / M. amorphae cluster as 

well as isolates 27-Beja and S-8-Sintra from the M. ciceri / M. loti cluster can be 

considered as moderately acidophilic (growth above 100% in pH 5).  

Statistical analysis indicated that there are significant differences between 

species clusters regarding their tolerance to acidic conditions (2 = 125.822; df = 

3; P < 0.01). For instance, M. ciceri / M. loti isolates showed the highest growth 

average at pH 5 while the M. tianshanense isolates showed the lowest growth 

average, and are significantly different from each other and from the other two 

species clusters. Actually, these results are reinforced by the post hoc tests, 

which indicate that the growth averages at pH 5 are significantly different among 

species clusters.  

Similarly, the statistical analysis showed that provinces of origin are significantly 

different in terms of the isolates tolerance to acid pH (2 = 102.260; df = 10; P < 

0.01). The three provinces with the highest growth averages at pH 5 (Beira Alta, 

Trás-os-Montes e Alto Douro, Beira Litoral) were found to be significantly 

different from the provinces with the lowest growth average (Ribatejo, Algarve, 

Estremadura).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Growth of chickpea mesorhizobia under acid and alkaline stress conditions: pH 5 (squares) and pH 9 (circles). 

Percentages were calculated considering the control condition (pH 7) as 100% growth. Presented values are the average 
of three replicas (standard deviation bars are shown). 
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In order to investigate whether the pH value of the sampling site is one of the 

explanations for the significant differences found between provinces of origin, the 

sampling soils were classified into three classes based on their pH’s values. 

Sampling soils with pH’s values below 6.5 were considered acid soils, whereas 

the neutral soils include soils with pH’s values ranging from 6.5 to 7.4 and the 

alkaline soils represented the soils with pH’s values above 7.4. 

The correspondence analysis biplot (Fig. 5.2) shows an association between the 

pH class of the origin soil and the isolate’s ability to tolerate pH 5. Additionally, a 

negative correlation was found between the isolates growth at acid pH and the 

pH value of the sampling soil (r = -0.358; P < 0.01). For instance, isolates from 

alkaline soils were more sensitive to pH 5 than the isolates from neutral or acidic 

soils. Sensitivity to acid conditions is clearly associated to alkaline soils whereas 

the acid tolerance is associated to neutral or acidic soils.  

 
Figure 5.2 CA biplot of the relationship between origin soil pH and tolerance to 

acid pH of the isolates.  
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Our results indicate an association (2 = 156.863; df = 6; P < 0.01) between the 

origin soil pH of the isolates and species clusters. Moreover, a CA biplot also 

detects an association between species clusters and soil pH classes, where the 

M. ciceri / M. loti and M. huakuii / M. amorphae species clusters are associated to 

neutral soils and acidic soils, respectively, and the remaining species clusters are 

associated to the alkaline soils (Fig. 5.3). 

Figure 5.3 CA biplot of the relationship between origin soil pH and the isolates 

species clusters. 
 

Curiously, a positive correlation between tolerance to acidic conditions and 

symbiotic effectiveness was found (r = 0.139; P < 0.05). For example, the isolate 

G-55-Guarda showed a growth of 106% at pH 5 and it is also highly efficient with 

a symbiotic effectiveness of 88%.  
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Transcriptional analysis of the major chaperones genes upon acidic shock 

In order to investigate the involvement of the major chaperone genes in tolerance 

to acidic conditions, the transcription of groEL and dnaKJ genes was analyzed. 

Using northern hybridization, the transcriptional levels of these chaperone genes 

upon an acidic shock were compared to those under control conditions. Based on 

the pH stress tolerance screening (Fig. 5.1), ten chickpea mesorhizobia isolates, 

from the four species clusters, with different phenotypes under acidic conditions, 

were selected. From the M. huakuii / M. amorphae species cluster the following 

isolates were chosen: isolate PMI-6-Portimão as acid-sensitive, V-15b-Viseu and 

C-9-Coimbra as acid-tolerant and AL-13-Alenquer as moderately acidophilic. 

From the M. ciceri / M. loti cluster, the isolate PII-4-Porto as acid-sensitive, G-55-

Guarda and G-10-Guarda as acid-tolerant and S-8-Sintra as moderate 

acidophilic were selected. The clusters M. tianshanense and M. mediterraneum / 

M. temperatum only include isolates sensitive to acidity, so only one isolate from 

each of these two clusters was chosen, namely ST-33-Setúbal from the M. 

tianshanense and PM-14-Portimão from M. mediterraneum / M. temperatum.  

The northern blot analysis using the dnaKJ mRNA probe allows the detection of 

three different transcripts, with 1917, 1131 and 3048 nucleotides in size, 

corresponding to the predicted mRNAs of dnaK, dnaJ and also the bicistronic 

dnaKJ respectively, according to the Mesorhizobium sp. MAFF303099 genome. 

A transcript with approximately 2 kb, which is consistent with the size of the dnaK 

gene transcript, was detected in all isolates under control conditions and upon 

acidic shock (Fig. 5.4a). The majority of the isolates showed increase in the dnaK 

transcript levels (Fig. 5.5) after acidic shock.  
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Figure 5.4 Comparison of transcriptional analysis of the dnaK gene (a) and the 
groESL operon (b) between acid-tolerant and acid-sensitive isolates submitted to 
acidic shock. Northern blot hybridization of total RNA with probes specific for 
dnaKJ, groEL and 16S rRNA under control conditions (C) and upon acidic shock 
(S). 

 

The tolerant isolates belonging to M. ciceri / M. loti cluster showed an increase in 

the dnaK mRNA level, after acidic shock when compared with the control. 

However, the sensitive isolate PII-4-Porto showed a decrease in the expression 

of the dnaK gene after acidic shock. Similarly, in isolates from the M. huakuii / M. 

amorphae cluster, the level of dnaK gene transcription was positively related to 

the acid tolerance of the isolates, since a slight repression of the dnaK gene was 

observed in the sensitive isolate (PMI-6-Portimão) while induction was observed 

in the acid-tolerant ones (V-15b-Viseu, C-9-Coimbra and AL-13-Alenquer) (Fig. 

5.5). 

No significant changes in the transcriptional levels of dnaK gene were observed 

in the sensitive isolates neither from the M. tianshanense nor M. mediterraneum / 

M. temperatum clusters upon acidic shock.  

Regarding the analysis of the groESL chaperone system, the groEL RNA probe 

allows the detection of two putative transcripts with 1947 and 1632 nucleotides, 

corresponding to the bicistronic groESL transcript and to the groEL transcript 

respectively, according to the Mesorhizobium sp. MAFF303099 genome. In this 

study, the signal detected was approximately 2 kb, which corresponds to the 
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bicistronic groESL mRNA (Fig. 5.4b). Most isolates showed an increase of the 

groESL mRNA transcript levels after the acidic shock. Interestingly, isolates 

belonging to the M. ciceri / M. loti cluster presented the same pattern in the 

groESL chaperone gene transcription as obtained for the dnaK chaperone gene 

(Fig. 5.5): tolerant isolates (G-10-Guarda, G-55-Guarda and S-8-Sintra) showed 

an increase of the groESL mRNA levels while the sensitive isolate (PII-4-Porto) 

revealed a repression of this chaperone gene, after acidic shock.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Expression levels of dnaK and groESL genes after salt shock 
evaluated by northern analysis using tolerant and sensitive isolates from the four 
species clusters. 

 

Concerning the cluster M. huakuii / M. amorphae, the tolerant isolates (V-15b-

Viseu and C-9-Coimbra) showed an increase in the groESL mRNA levels after 

acidic shock, whereas the sensitive isolate (PMI-6-Portimão) showed repression 

of the groESL gene. Although the moderately acidophilic isolate (AL-13-
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Alenquer) showed a repression of the groESL gene, it shows one of the highest 

levels of dnaK gene induction, upon acidic shock. 

The acid-sensitive isolates belonging to the M. tianshanense and M. 

mediterraneum / M. temperatum showed a slight induction of the groESL genes 

compared to the control. 

For both dnaK and groESL transcription levels, the isolates from the M. ciceri / M. 

loti and M. huakuii / M. amorphae seem to exhibit a similar relationship between 

transcription levels and tolerance to acid pH, with the exception of the moderately 

acidophilic isolate AL-13-Alenquer for the groESL analysis.  

 

5.5 Discussion 

In this study, evaluation of growth in acid and alkaline conditions was performed 

for 98 isolates from a collection of native Portuguese chickpea mesorhizobia 

previously characterized (Chapter 2). All mesorhizobia showed sensitivity to 

alkaline stress, which is in agreement with previous studies (Laranjo and Oliveira, 

2011). In contrast, the mesorhizobia isolates tested herein showed high diversity 

regarding tolerance to acid pH. Interestingly, almost half of the tested isolates 

were highly tolerant (growth > 70%), including 11 isolates with a higher growth at 

pH 5 than at pH 7, indicative of moderately acidophilic isolates. High tolerance to 

low pH has been previously reported in Mesorhizobium species, namely M. 

huakuii (Chen et al., 1991), M. ciceri (Nour et al., 1994), M. loti (Jarvis et al., 

1982) and M. amorphae (Wang et al., 1999), which are all able to grow at pH 5. 

On the other hand, M. mediterraneum and M. tianshanense cannot grow at pH 5 

(Chen et al., 1995; Nour et al., 1995). More recently, a high diversity in tolerance 

to acidic conditions within the Mesorhizobium genus was reported by Laranjo and 

Oliveira (2011).  

Amarger et al. (1997) reported that tolerance to salinity, acidity and alkalinity is 

more strain-specific than species-specific. However, other studies suggest that 
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the tolerance to pH stress in rhizobia is species-related (Reeve et al., 2006). 

Herein, the evaluation of tolerance to acidity of a large set of chickpea 

mesorhizobia suggests that acid tolerance phenotype is related to the species 

clusters. Significant differences between species clusters regarding tolerance to 

acidity were obtained. For instance, the majority of isolates from M. ciceri / M. loti 

cluster are acid-tolerant whereas isolates belonging to M. tianshanense cluster 

are acid-sensitive. Moreover, several studies in rhizobia have reported that stress 

tolerance seems to be species related namely temperature stress tolerance 

(Alexandre and Oliveira, 2011) and tolerance to copper (Laguerre et al., 2006) as 

well as antibiotic resistance (Alexandre et al., 2006).  

An association between species clusters and origin soil pH of the isolates was 

already found in Chinese soybean rhizobia (Li et al., 2011). Our results suggest 

that soil pH contributes to determine the species that prevail in the rhizobia 

population. This type of association was found in other studies addressing soil 

bacterial communities, indicating soil pH as the variable that better explains the 

population diversity and mainly the community composition (Fierer and Jackson, 

2006). On the other hand, in this study, the tolerance to acid pH of the chickpea 

mesorhizobia isolates was found to be associated to the origin soil pH, agreeing 

with some previous reports (Kulkarni and Nautiyal, 1999; Rodrigues et al., 2006). 

These results suggest that isolates collected from acidic or neutral soils may be 

more resistant to acidic environmental conditions than the ones from alkaline 

soils.  

Interestingly, our results also reveal a positive correlation between the tolerance 

to acid pH and the symbiotic effectiveness of isolates, suggesting that the 

establishment of an effective symbiosis is related to tolerance to acidity. Bacterial 

persistence in soil is significantly dependent on soil pH, which may affect the 

symbiotic performance by reduction of the nodulation efficiency (Graham et al., 

1982; Ibekwe et al., 1997; Brockwell et al., 1991). In addition, it is known that the 

pH in the rhizosphere of the leguminous host plant is lower due to the protons 

and organic acids excreted by the plants (Marschner, 2006), suggesting that the 
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rhizobial partner has to deal with this stressful condition to achieve effective 

symbiosis. Previous studies in our lab (data not shown) indicated that the 

maximum symbiotic performance achieved by a specific strain is related to its 

optimal growth pH. This suggests that reaching a higher symbiotic performance 

of rhizobia inoculants in chickpea crops should require the selection of a strain 

whose preferred pH is similar to the pH of the soil to be cultivated. Similar results 

were found in peanut rhizobia by Angelini et al. (2005).  

Despite the fact that several studies have attempted to characterize the genes 

involved in tolerance to acidity, the molecular mechanisms to respond to acidity 

are still unknown in rhizobia. Molecular chaperones form a multi-protein network 

that prevent protein denaturation, and also help in the proper protein folding and 

refolding, transport, degradation and regulation. The functioning of this network is 

particularly important under stress conditions, such as acidic shock (Hartl and 

Hayer-Hartl, 2002). Our results from the transcriptional analysis of eight 

mesorhizobia isolates show a relationship between higher levels of transcriptional 

induction of both dnaK and groESL genes upon acidic shock and a higher ability 

of mesorhizobia to tolerate acid pH. Upon acid shock, both dnaK and groESL 

genes were induced only in acid-tolerant isolates and not in sensitive isolates, 

with the exception of the moderately acidophilic isolate (AL-13-Alenquer), which 

showed a repression of the groESL gene but one of the highest levels of dnaK 

gene induction. These results suggest that increased expression of chaperone 

genes may contribute to a higher tolerance to acid stress in rhizobia. However, 

these results only refer to the isolates belonging to M. ciceri / M. loti and M. 

huakuii / M. amorphae species clusters, since no comparison between tolerant 

and sensitive isolates was available for the remaining group species. Foster 

(1991) suggested a model to explain the acid response in Salmonella cells 

involving DnaK and GroEL, due to their ability to refold acid denatured proteins. 

Studies in Streptococcus mutants revealed that dnaK and groEL are part of the 

general stress response being both induced during the acid shock response 

(Lemos et al., 2001, 2007; Matsui and Cvitkovitch, 2010). Other studies in 

Escherichia coli showed that the expression of the chaperones DnaK, DnaJ and 
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GrpE was inducible under acid shock (Zmijewski et al., 2004). However, contrary 

to these results, dnaK and dnaJ chaperone genes were found to be down-

regulated upon acidic stress in Streptococcus suis S2 (Wei et al., 2011).  

In rhizobia little is known about acid response. Recently, transcriptional analysis 

using Ensifer meliloti 1021 cells following an acidic upshift showed increased 

groEL5 transcript levels (Hellweg et al., 2009; de Lucena et al., 2010). Hellweg et 

al. (2009) verified that the groEL5 gene was not immediately up-regulated after 

the pH shift, but slowly increased its expression level during the time course (1 

hour, pH 5.75).  

Our previous studies in chickpea mesorhizobia suggest the existence of a 

relationship between higher levels of transcriptional induction of the dnaK and 

groESL chaperones genes and a higher ability of isolates to endure heat stress 

(Alexandre and Oliveira, 2011). In contrast, no correlation between salt tolerance 

and expression levels of these chaperones genes in mesorhizobia was found 

(Chapter 3). Altogether, it seems that dnaK and groESL genes may be involved 

in acid and heat tolerance in chickpea mesorhizobia. 

Here we evaluated the diversity of tolerance to acid and alkaline stress conditions 

of a collection of chickpea mesorhizobia isolates belonging to four species 

clusters and investigated possible relationships between acid tolerance 

phenotype of isolates and their species cluster, geographical origin, origin soil pH 

and symbiotic effectiveness. Our findings suggest that tolerance to acid stress is 

related to the species clusters and to the origin soil pH. A relationship between 

induction of dnaK and groESL genes upon acidic shock and tolerance to acidic 

conditions was found, suggesting that induction of these chaperone genes is 

involved in the chickpea mesorhizobia tolerance to acid pH. However, further 

studies are required to clarify the role of these chaperone genes in acid stress 

tolerance of rhizobia. 
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Chapter 6 
 

Evaluation of the role of 
chaperone ClpB in chickpea 
mesorhizobia stress tolerance 
and symbiosis 
 

Molecular chaperones play an important role in cells homeostasis, especially 

under stress conditions, due to their ability to prevent protein aggregation, assist 

refolding and mediate degradation of misfolded proteins. Chaperone systems are 

referred as heat shock proteins, since they are activated in response to high 

temperatures. Nevertheless, they are also involved in the response to other 

environmental stress conditions, such as acidity and salinity.  

Chaperone systems from rhizobia are less studied in comparison to those in E. 

coli. In order to better understand the molecular basis of stress response that 

affects the legume-rhizobium interaction, the present work focused the role of the 

chaperone ClpB of mesorhizobia in the tolerance to several environmental 

stresses and in the symbiosis with chickpea plants. 

This chapter is based on the following manuscript: 

Brígido, C., Robledo, M., Menéndez, E., Mateos, P.F., Oliveira, S. "A ClpB 
chaperone knockout mutant of Mesorhizobium ciceri shows a delay in the 
root nodulation of chickpea plants" Accepted for publication in Molecular 
Plant-Microbe Interactions 
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6.1 Summary 

Several molecular chaperones are known to be involved in bacteria stress 

response. To investigate the role of chaperone ClpB in rhizobia stress tolerance 

as well as in the rhizobia-plant symbiosis process, the clpB gene from a chickpea 

microsymbiont, strain Mesorhizobium ciceri LMS-1, was identified and a knockout 

mutant was obtained. The ClpB knockout mutant was tested to several abiotic 

stresses showing that it was unable to grow after a heat shock and it was more 

sensitive to acid shock than the wild-type strain. A plant growth assay performed 

to evaluate the symbiotic performance of the clpB mutant showed a higher 

proportion of ineffective root nodules obtained with the mutant than with the wild-

type strain. Nodulation kinetics analysis showed a 6-8 day delay in nodule 

appearance in plants inoculated with ΔclpB mutant. The mutant strain showed 

lower levels of nodC expression, particularly in stress conditions. Analysis of 

histological sections of nodules formed by the clpB mutant showed that most of 

the nodules presented low amount of bacteroids. No differences in the root 

infection abilities of GFP-tagged clpB mutant and wild-type strains were detected. 

To our knowledge, this is the first study that evidences the involvement of the 

chaperone ClpB from rhizobia in the symbiotic nodulation process. 
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6.2 Introduction 

Severe stresses result in extensive protein denaturation and aggregation. 

However, bacteria have developed molecular mechanisms, including chaperones 

and potentially destructive proteases, to deal with the stress effects ensuring cell 

survival. Molecular chaperones are protective systems within the cell to prevent 

protein aggregation, assist refolding and mediate degradation of misfolded 

proteins (Hart, 1996). Molecular chaperones like ClpB, DnaK, GroEL, and small 

heat shock proteins, such as IbpA and IbpB, are known to participate in bacterial 

stress response and tolerance to various stress conditions (Hartl et al., 2011).  

The Escherichia coli ClpB and its homologue in yeast, Hsp104, are essential for 

cell survival during extreme heat stress (Sanchez and Lindquist, 1990; Squires et 

al., 1991), due to its ability to solubilize and reactivate protein aggregates that 

were previously viewed as dead-ended products in the life of proteins (Parsell et 

al., 1994; Weibezahn et al., 2005). Moreover, ClpB seems to be involved in 

virulence in Listeria monocytogenes (Chastanet et al., 2004) and in other 

stresses, such as ethanol and acid stresses in Brucella suis (Ekaza et al., 2001) 

and osmotic stress in Bifidobacterium breve UCC (Ventura et al., 2005). 

Hsp104/ClpB belongs to the Hsp100/Clp superfamily of AAA+ (ATPase 

associated with various cellular activities) (Neuwald et al., 1999; Dougan et al., 

2002), which form large hexameric ring structures in an ATP-dependent manner 

(Zolkiewski et al., 1999; Wang et al., 2001; Lee et al., 2003). Hsp100/Clp 

superfamily contains central components of the protein quality control system 

that degrade or disaggregate unfolded and aggregated proteins (Maurizi and Xia, 

2004; Sauer et al., 2004; Mogk et al., 2008).  

The bacterial ClpB monomer contains an N-terminal domain and two AAA+ 

nucleotide-binding domains (NBDs) separated by a coiled-coil middle-domain (M-

domain) (Barnett et al., 2000; Doyle and Wickner, 2009; DeSantis and Shorter, 

2012). Protein disaggregation by ClpB in vitro requires the collaboration of a 

second ATP-dependent molecular chaperone, DnaK, to promote the 
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solubilisation and reactivation of proteins that misfold and aggregate following 

heat shock (Motohashi et al., 1999; Goloubinoff et al., 1999; Zolkiewski 1999). 

This cooperation is essential for the ability of cells to survive transient extreme 

stress conditions (Squires et al., 1991).  

Biological nitrogen fixation is of extreme importance in both agronomic and 

environmental terms, as it is an alternative to the use of chemical nitrogen 

fertilizers. Rhizobia are soil bacteria able to establish symbiotic relationships with 

legumes and can convert nitrogen into ammonia within the plants root nodules. In 

general, two main developmental processes are required for the formation of 

symbiotic N2-fixing nodules: bacterial infection and nodule organogenesis (Gage, 

2004; Oldroyd and Downie, 2008). These processes must be coordinated in both 

spatial and temporal manner to ensure nodule formation at the site of bacterial 

infection (for review see Oldroyd and Downie, 2008).  

Early events in the symbiosis process such as molecular signalling, rhizobial 

attachment, root hair curling, infection thread formation, and nodule initiation, are 

particularly sensitive to high temperatures, salinity, acidity and other 

environmental stresses (Zhang and Smith, 1996; Hungria and Stacey, 1997; 

Hungria and Vargas, 2000). Furthermore, during the infection process rhizobia 

also have to deal with adverse conditions within the host cells and with the plant 

innate immunity that induce physiological stress responses and may interfere 

with the symbiosis (Soto et al., 2009). These stresses may negatively affect the 

microsymbiont in free-living conditions as well as during the symbiotic 

relationship, thus leading to an ineffective nitrogen fixation (Zahran 1999). 

Transcriptomic and proteomic analyses of rhizobia in symbiosis with host plants 

suggest the involvement of chaperones in this process (Pessi et al., 2007; 

Djordjevic et al., 2003; Karunakaran et al., 2009; Tsukada et al., 2009). These 

approaches provide a global view on putative genes involved in symbiosis but 

further strategies, such as gene knockout, are required to confirm the 

involvement of a specific gene. In order to investigate the potential role of the 

chaperone ClpB in the stress tolerance of mesorhizobia in free-living and in 
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symbiosis with chickpea plants, in this work the clpB gene of the strain 

Mesorhizobium ciceri LMS-1 was deleted. 

 

6.3 Materials and Methods 

Plasmids, bacterial strains and growth conditions 

Bacterial strains and plasmids used are described in Table 6.1. Mesorhizobium 

ciceri strain LMS-1 and its derivatives LMS-1ΔclpB and complemented were 

grown in tryptone yeast (TY) or yeast extract mannitol (YEM) broth at 28ºC for 

routine use and preserved in 30% (v/v) glycerol at -80ºC. The E. coli strains were 

grown at 37ºC in Luria-Bertani (LB) broth supplemented with appropriate 

antibiotics. The final concentrations of antibiotics were: kanamycin at 50 µg ml-1, 

ampicillin at 100 µg ml-1 and chloramphenicol at 25 µg ml-1. 

 

Table 6.1 Plasmids and strains used in the present study. 
Strains and Plasmids Description

 
Source or reference 

Mesorhizobium ciceri   
LMS-1 Wild-type Nod

+
 FiX

+ 
Nascimento et al., 2012 

LMS-1ΔclpB  Derivative from LMS-1 clpB minus This Study 
LMS-1clpB+  Derivative of LMS-1 clpB reintroduced This Study 
Escherichia coli   
DH5α Host for cloning and triparental conjugation Sambrook and Russel 2001 
JM109 Host for cloning Promega Corp. 
MT616 Host containing the helper plasmid used for 

triparental conjugation 
Finan et al., 1986 

Plasmids   
pGEM-T easy Amp

r
, M13ori pBR322ori, linear T overhangs 

vector 
Promega Corp 

pRK2013 Helper plasmid for mobilization with replicon 
ColE1; Km

r
 tra 

Ditta et al., 1980 

pK18mobsacB plasmid suicide; Km
r
; sacB

s 
Schafer et al., 1994 

pMRGFP pBBR1MCS-2 derivative containing the gfp 
gene constitutively expressed; Km

r 
Garcia-Fraile et al., 2012 

pRK600 Helper plasmid; pRK2013 npt::Tn9, Cm
r 

Finan et al. 1986 

Kmr, Ampr and Cmr indicate resistance to kanamycine, ampicilin and 
chloramphenicol, respectively. 
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DNA methods and construction of LMS-1 derivative strains 

Total DNA from rhizobial strains was extracted using the E.Z.N.A. bacterial DNA 

kit (Omega bio-tek, USA) according to the manufacturer’s suggested protocol. 

Plasmid DNA was obtained by using DNA-SpinTM Plasmid DNA Purification Kit 

(Intron) following the manufacturer’s instructions. Unless specified otherwise, 

molecular techniques were performed using standards protocols (Sambrook and 

Russel, 2001). 

The M. ciceri LMS-1 clpB gene (2607 nucleotides) was isolated by PCR 

amplification. First, an internal fragment of 1388 bp was obtained using 

heterologous primers (Chapter 3) based on the clpB sequence from 

Mesorhizobium sp. MAFF303099. The stop region sequence was obtained by 

inverse PCR. The complete gene sequence was obtained by PCR amplification 

using a forward primer based on the gene sequence Mesorhizobium sp. 

MAFF303099. To generate the ΔclpB deletion mutant strain, a clpB gene 

fragment of 2558bp was amplified using the primers clpB-F1 (5’-

TGAGAAGTACTCCGAGCGCGT-3’) and clpB-R1 (5’-

GGAAGTTCAGCCGGTCGGAA-3’). The PCR product was purified using the Gel 

Band Purification kit (GE Healthcare) according to the manufacturer’s 

instructions. The clpB gene fragment was cloned using pGEM-T Easy Vector 

System (Promega) following the manufacturer’s instructions. An internal 675 bp 

Eco47III-BamHI fragment from the cloned clpB gene fragment was removed. The 

truncated clpB gene was cloned as an EcoRI fragment into plasmid 

pK18mobsacB and transferred to the Mesorhizobium ciceri LMS-1 by triparental 

mating using pRK2013 as a helper. Double recombinants were selected as 

previously described (Schafer et al., 1994).  

To complement the disruption of the clpB gene, replacement of the disrupted 

clpB gene by the complete clpB gene in its original genomic location was 

performed. The complete clpB gene (2607 bp) was amplified using the primers 

clpB-XbaI-F (5’-CTAGAGATGAACCTTGAGAAGTAC-3’) and clpB-XbaI-R (5’-

CTAGACAGGATCAGGCTGCCGCTT-3’) and cloned using pGEM-T Easy Vector 
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System (Promega) and introduced as an XbaI fragment into plasmid 

pK18mobsacB. Complemented strain was generated by replacement of the clpB 

gene disrupted for the complete one by following the same approach to obtain 

the ΔclpB mutant strain as mentioned above. 

To confirm the successful allele replacement in M. ciceri LMS-1 derivatives, PCR 

analysis and Southern hybridization were conducted. PCR analysis was 

performed as previously described (Chapter 3). Briefly, for Southern 

hybridization, about 2 µg of total DNA from Mesorhizobium ciceri LMS-1 and its 

derivatives were digested with the restriction enzyme HindIII. A 1388bp fragment 

of the clpB gene of M. ciceri LMS-1 was amplified as described before (Chapter 

3) and used as a DNA probe, which was labeled using DIG High Prime DNA 

Labelling and Detection Starter Kit II (Roche Applied Science, Germany) 

according to the manufacture’s protocol. The hybridization process was carried 

using Dig Easy Hyb hybridization buffer (Roche Applied Science, Germany) at 

42ºC, followed by stringency washes at room temperature and 68ºC. The 

immunological detection was performed according to the manufacturer’s 

instructions. 

Mesorhizobium ciceri LMS-1 and ΔclpB deletion mutant strains were transformed 

with the gfp gene. For that, the plasmid pMRGFP (Garcia-Fraile et al., 

submitted), containing the gfp gene constitutively expressed, was used to 

transform both mesorhizobia strains, by triparental conjugation as previously 

described (Chapter 4). 

 

Analysis of stress tolerance 

To evaluate the stress tolerance of the Mesorhizobium ciceri LMS-1 ΔclpB strain 

and compared it to the wild-type strain, bacterial growth was evaluated by 

measuring optical density at 540 nm, every 6h during 54h of growth in liquid 

medium. Mesorhizobium ciceri LMS-1 and its derivatives were grown in YEM 

medium at 28ºC for overnight until late log phase (16-18h). After inocula growth, 
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the optical density was adjusted at 0.03 and submitted to different stress 

conditions. Three replicas per treatment were done. 

For continuous cold and heat stress, mesorhizobia cells were grown at 15 ºC or 

37ºC, respectively for 54h. For heat shock, cells were incubated at 45ºC for 1h, 

48ºC for 15 min or 50ºC for 5 min, and then grown at 28ºC for 54h. For cold 

shock, cells were subjected to 4ºC for 1h followed by 28ºC for 54h. Growth at 

28ºC for 54h was considered the control condition. 

To study the effect of acid stress, mesorhizobia strains were grown in YEM 

medium buffered with 25 mM homopiperazine-N,N’-bis-2-(ethanesulfonic acid) 

(Homopipes) for pH 5. For control conditions, YEM was buffered with 20 mM 2-

morpholinoethanesulfonic acid (MES) at pH 7. To evaluate the effect of an acidic 

upshift, the cells were subjected for one hour in YEM (pH 3), and then grown in 

YEM (pH 7) and YEM (pH 5) at 28º for 54h.  

For salt stress, mesorhizobia cells were grown in YEM supplemented with 1.5% 

NaCl at 28ºC for 54h. For control conditions, YEM with no extra addition of NaCl 

was used. Bacterial cells were also submitted to a salt shock in YEM 

supplemented with 5% NaCl, at 28ºC for 1h, and then grown in YEM or in YEM 

supplemented with 1.5% NaCl, for 54h at 28ºC. 

 

Immunoblotting 

ClpB was detected in cells by immunoblotting using a rabbit polyclonal antibody 

against E. coli ClpB (kindly supplied by Professor Michal Zolkiewski). After 

growth under control and heat shock conditions, cells were harvested by 

centrifugation at 16.000×g for 3 min, washed in TE buffer (10mM Tris, 1mM 

EDTA, pH 8.0) and resuspended in 500μL of the sterile water. Cells were kept on 

ice during sonication and then centrifuged at 13.500×g for 12 min at 4ºC and 

resuspended in 500μL of sterile water. Protein extracts containing similar 

concentration (±15µg) were then separated on a 12% linear polyacrylamide gel 

and electrophoretically transferred to a nitrocellulose membrane (Bio-Rad) 
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according to the manufacturer’s instructions. Following transfer, the membrane 

was blocked with 1% (w/v) low fat milk in TBS buffer for 1 h, and incubated 

overnight with rabbit polyclonal antibodies against E. coli ClpB protein diluted 

1:500. The membrane was washed 3 times with TBS-Tween (0.05% Tween20), 

and incubated for 1 h with 1:500 dilution of anti-rabbit IgG-peroxidase antibody 

(Sigma). The membrane was washed with TBS and visualized with peroxidase 

substrates (4-Chloro-1-naphthol, Sigma) in a color development buffer.  

 

Analysis of the Symbiotic Phenotype 

In order to evaluate the symbiotic performance of the ΔclpB and wild-type 

mesorhizobia strains in chickpea plants, a plant growth assay was conducted in a 

growth chamber. Chickpea seeds (cultivar Chk 3226) were surface sterilized and 

pre-germinated as described before (Chapter 4). After germination, the seeds 

were transferred to plastic pots filled with sterile vermiculite and grown in a 

growth chamber, under a 16/8h light/dark cycle and 24/18ºC day/night 

temperature and at a relative humidity of 65% for 8 weeks.  

The rhizobia strains were grown in TY liquid medium at 28ºC for 72 hours. After 

incubation, the cell suspension was centrifuged at 10.000×g and resuspended in 

fresh TY liquid medium. Finally, the bacterial cultures were standardized to an 

OD540nm of 1.0 and 1 ml of the bacterial suspension was used to inoculate each 

seed. Four replicates were used for each treatment. A nitrogen-free nutrient 

solution (Broughton and Dilworth, 1971) was applied three times a week. 

Uninoculated plants were used as negative control. After eight weeks, the plants 

were harvested and several parameters were measured, such as shoot dry 

weight (SDW), root dry weight (RDW), number of nodules (NN) and nodule dry 

weight (NDW).  

In order to evaluate the nodule kinetics and development, a hydroponic plant 

growth assay was conducted using chickpea plants inoculated with either M. 

ciceri LMS-1 or ΔclpB mutant strain. The bacterial cultures were grown in TY for 
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72 hours days. The bacterial suspension was centrifuged at 10,000×g and 

resuspended in nitrogen-free nutrient solution (Harper and Gipson, 1984) diluted 

in sterile water (1:4). The bacterial suspension was adjusted at an optical density 

of 0.6. Finally, the pre-germinated roots of the seeds were put into contact with 

the bacterial suspension overnight at 28ºC, in dark. The chickpea seeds were 

washed in nutrient solution and put in a container with 5L of nutrient solution in a 

growth chamber under controlled conditions. For negative controls, no bacterial 

culture was used. Five seeds per treatment were used. The nutrient solution was 

replaced every week and the nodule formation and development were recorded 

every 3 days for 35 days. The nutrient solution was aerated using an aquarium 

pump.  

 

Analysis of nodC gene expression by semi-quantitative RT-PCR 

To evaluate the nod genes expression in the ΔclpB strain, analysis of the nodC 

expression in the wild-type and mutant strains was performed by semi-

quantitative RT-PCR (Moscatiello et al., 2009). Induction of the nod genes was 

performed using chickpea root exudates, which were obtained as described by 

Srivastava et al. (1999). The root exudates were added to exponential phase 

cells and the cultures were incubated for 6h at 28ºC (control condition). Cells 

were then submitted to control or heat shock (42ºC, for 30 min). conditions.  

Total RNA was extracted using the RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s protocol. After extraction, about 2µg of total RNA were treated 

with DNase I (Roche). Conversion of total RNA to cDNA was conducted using 

the RevertAid First Strand cDNA synthesis kit (Fermentas) according to the 

manufacture’s suggestions. Amplification of 16S rRNA and nodC genes was 

performed as previously described (Laranjo et al. 2004; Rivas et al. 2007). 

Densitometric analysis of ethidium bromide-stained agarose gels was performed 

using Kodak Digital Science 1D version 2.0.3 (Eastman Kodak Company, New 

Haven, USA). The 16S rRNA gene was used to normalize relative nodC 
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transcript abundance. Three independent biological replicas were used to assess 

the nodC transcript levels. The viability of the mutant strain, subjected to this heat 

shock, was previously confirmed. 

 

Statistical analysis 

The data obtained from the chickpea plant growth assay was characterized by 

analysis of variance, and means were compared by One-way ANOVA. Statistical 

analysis was carried out using SPSS V.17 software (SPSS Inc., Chicago, USA). 

 

Microscopy 

For analysis of the infection performance of the rhizobia strains, 4 days-old 

germinated chickpea seeds were inoculated with GFP-tagged mesorhizobia 

strains as previously described (Robledo et al., 2011). After 4 days of inoculation, 

root hairs were examined by confocal spectral microscopy with a Leica confocal 

microscope equipped with krypton-argon laser using a blue excitation filter 

(excitation maximum 488 nm; 530 nm long-pass filter), allowing simultaneous 

visualization of GFP and propidium iodide fluorescence. Roots and root hairs 

were stained with 10 µM propidium iodide (Sigma-Aldrich). Projections were 

made from adjusted individual channels in the image stacks using Leica 

software.  

Roots and nodules were excised from 25-day-old chickpea plants and processed 

for light microscopy. The internal morphological features of chickpea nodules 

were examined by microscopy after Toluidine blue staining. Pink nodules were 

fixed in 4% formaldehyde in 50 mM phosphate buffer (pH8), dehydrated in an 

increasing ethanol series, and embedded in paraffin. Toluidine blue-staining 

sections (2 µm) of embedded nodules were examined by light microscopy. 
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6.4 Results 

Analysis of the clpB gene sequence from Mesorhizobium ciceri LMS-1 

The complete nucleotide sequence (2607 bp) corresponding to the clpB gene of 

M. ciceri LMS-1 was determined by PCR amplification and compared to those 

from other bacteria (Fig. 6.1). The predicted amino acid sequence corresponds to 

a protein with approximately 96 kDa. The amino acid alignment with 

characterized prokaryotic ClpBs showed that the M. ciceri LMS-1 ClpB 

possesses an N-terminal domain, two nucleotide-biding regions (NBD1 and 

NBD2), and a coiled-coil middle (M) domain inserted into NBD1 (Fig. 6.1), 

corresponding to the typical domains of the bacterial ClpB subfamily. 

The predicted amino acid sequence displays a high degree of similarity to 

predicted and experimentally proven ClpB proteins from a wide variety of 

organisms. As expected, the comparative analysis showed that the most similar 

protein (100% identity) to the predicted M. ciceri LMS-1 ClpB was the putative 

ClpB protein from M. ciceri bv. biserrulae WSM1271 (accession number 

E8TAM5). Nevertheless, identity levels > 50% were observed between the 

predicted M. ciceri LMS-1 ClpB amino acid sequence and the ClpB amino acid 

sequences from unrelated bacteria such as E. coli (58.1%) and Thermus 

thermophilus (57.2%). Moreover, the predicted ClpB sequence from M. ciceri 

LMS-1 shared high similarity (>67%) with the predicted ClpB among the bacteria 

belonging to the α-Proteobacteria class, especially in the regions corresponding 

to the nucleotide biding domains. 

 

 

 

http://www.uniprot.org/uniprot/E8TAM5
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Figure 6.1 Alignment of ClpB proteins amino acid sequences from bacteria belonging to Mesorhizobium genus, E. coli and 
Thermus thermophilus. The conserved residues between all ClpB proteins are indicated in grey columns.LMS-1- M. ciceri LMS-
1 (predicted ClpB); WSM1271- M. ciceri bv. biserrulae WSM1271 (E8TAM5); WSM2073- M. australicum WSM2073 (G4JW53); 
CCNWGS0123- M. amorphae CCNWGS0123 (G6YIV4); MAFF303099- M. sp. MAFF303099 (Q98G96); WSM2075- M. 
opportunistum WSM2075 (F7Y492); E.coliK12- E. coli strain K12 (P63284); T.termo.HB8- Thermus thermophilus strain HB8 
(Q9RA63). The regions containing the two ATP-binding domains (ATP-1 and ATP-2) are boxed. Amino acids underlined in red 
correspond to the BamHI-Eco47III deletion fragment in M. ciceri LMS-1.  

http://www.uniprot.org/uniprot/E8TAM5
http://www.uniprot.org/uniprot/G4JW53
http://www.uniprot.org/uniprot/G6YIV4
http://www.uniprot.org/uniprot/Q98G96
http://www.uniprot.org/uniprot/F7Y492
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Confirmation of the ΔclpB knockout mutant construction 

Deletion of an internal fragment of 675 nucleotides that encodes the M-domain 

and the initial sequence of NBD2 within the clpB gene from M. ciceri strain LMS-1 

was performed (Table 6.1; Fig 6.1). The truncated clpB gene fragment was 

cloned in the mobilizable suicidal plasmid pK18mobsacB (Schafer et al., 1994) 

and transferred to M. ciceri LMS-1. To confirm the allele replacement after 

plasmid integration, at the desired site of M. ciceri LMS-1 genome, total DNA 

HindIII-digested samples from wild-type and mutant strains were analyzed by 

Southern hybridization. A single band of about 2800bp was detected in the wild-

type strain, indicating clpB as a single copy gene in M. ciceri LMS-1 genome (Fig. 

6.2). In contrast, a shorter band with approximately 2100bp was detected in the 

DNA from the clpB knockout mutant strain, confirming the disruption of the clpB 

gene. Furthermore, the absence of ClpB protein using total proteins from the 

ΔclpB mutant strain was confirmed by immunoblotting assay. On the other hand, 

Southern hybridization of DNA from the complemented strain showed a band 

similar to the one obtained with the wild-type strain (Fig. 6.2).  

In order to evaluate the effect of the loss of function of the ClpB chaperone in 

stress tolerance and symbiosis, wild-type, mutant and complemented strains 

were further tested under stress conditions and during symbiotic interaction with 

chickpea plants.  

 

 

 

 

Figure 6.2 Southern hybridization of total DNA from M. ciceri LMS-1 (A), ΔclpB 
mutant (B) and complemented strain (C) digested with HindIII restriction enzyme. 
Open arrows indicate a band with approximately 2800 bp; closed arrow indicates 
a band of about 2100 bp. 
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ΔclpB mutant phenotype under environmental stresses 

To characterize the phenotype of the ClpB mutant strain, designated as M. ciceri 

LMS-1 ΔclpB, its growth was evaluated in liquid medium under several 

conditions, namely heat, cold, acidity and salinity stresses. To evaluate the 

phenotype under different stresses, strains were subjected to both shock and 

stress conditions (Fig 6.3).  

No significant differences between the growth rates of the complemented and the 

wild-type strains, under the different conditions, were found (data not shown). 

 In control conditions (28ºC; pH 7; 0% NaCl), M. ciceri LMS-1 ΔclpB showed a 

similar growth curve to the wild-type strain (Fig. 6.3 A).  

Under heat stress (37ºC for 54 h), the ΔclpB mutant showed a lower growth rate 

when compared to the wild-type (Fig. 6.3 B), suggesting the involvement of the 

ClpB in the adaptation to heat stress. To further determine whether ClpB is 

important for thermotolerance, the strains were subjected to different heat shock 

conditions, namely 45ºC for 1h and 48ºC for 15 min, followed by growth at control 

temperature (28ºC, 54 h). In both experiments, the wild-type strain showed ability 

to grow after heat shocks while the ΔclpB mutant was not able to grow (Fig. 6.3 

C, D). Evaluation of growth after a heat shock of 50ºC for 5 min showed similar 

results (data not shown). However, under cold temperatures, no difference was 

observed between the ΔclpB mutant and the wild-type M. ciceri LMS-1 strain 

(data not shown). 
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Figure 6.3 Growth curves of wild-type (open triangles) and ΔclpB mutant (open 
circles) strains under different conditions during 54 hours. A) Control conditions: 
28ºC, 0% NaCl, pH 7; B) Growth curves under heat stress at 37ºC; C) Growth 
curves after a heat shock of 45ºC for 1 hour D) Growth curves after a heat shock 
of 48ºC for 15 min; E) Growth curves under pH 5 after a shift of pH 3 for 1 hour; 
F) Growth curves under salt stress after a salt shock of 5% NaCl for 1 hour. Data 
represents the mean and standard deviation of three independent biological 
replicates. Table summarizes the stress/shock experiments tested and indicates 
the effects in the ΔclpB mutant phenotype. 
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Taking into account these results, the production of ClpB protein in the wild type 

strain M. ciceri LMS-1 after heat shocks (45ºC, 1h; 50ºC, 5min) was evaluated. 

Total proteins from wild-type strain grown under control conditions and after heat 

shocks were extracted and ClpB was detected by immunoblotting assay. A 

protein with the expected molecular weight (±96 kDa) was found in all conditions 

(Fig. 6.4 lanes 1-3). However, a higher amount of the ClpB protein was detected 

in M. ciceri LMS-1 cells submitted to a heat shock in comparison to cells grown 

under control conditions, confirming its involvement in heat shock response. As 

expected, no band was detected in the ΔclpB mutant strain, confirming the ClpB 

absence in the mutant strain (Fig. 6.4 lanes 4 to 6).  

Figure 6.4 Western blot analysis of ClpB production levels with polyclonal 

antibody against E. coli ClpB (1:500). Total protein lysates (15 µg per lane) were 
obtained from wild-type (1-3) and ΔclpB mutant (4-6) strains under control and 
heat shock conditions. Control conditions (28ºC) (lane 1 and 4), heat shock 
conditions: 45ºC for 1h (lane 2 and 5) and 50ºC for 5min (lane 3 and 6). 

 

To investigate the involvement of the ClpB chaperone in acid tolerance, the wild-

type and mutant strains were submitted to different acid conditions. Both strains 

were grown under pH 5 for 54 h and were also submitted to a pH 3 shock for one 

hour and then grown at pH 7 or pH 5, for 54 h. No differences were observed 

between ΔclpB mutant and wild-type strains when grown at pH 5 for 54 h or 

when submitted to a pH 3 shift and then grown at pH 7 (data not shown). In 

contrast, when the cells were subjected to an acid shock (pH 3) and then were 

grown at pH 5, a lower growth rate was observed with the ΔclpB mutant strain 

when compared to the wild-type strain (Fig. 6.3 E), suggesting the involvement of 

the ClpB chaperone in acid-tolerance.  
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The wild-type M. ciceri LMS-1 and ΔclpB mutant strains were also tested to salt 

stress. At continuous growth with 1.5% NaCl, no difference between ΔclpB 

mutant and the wild-type strains growth was observed. Furthermore, no 

differences between strains growth after a salt shock followed by growth in 

control conditions (0% NaCl) were observed. Unexpectedly, after a salt shock 

(5% NaCl for 1h) followed by growth with 1.5% NaCl, the ΔclpB mutant growth 

was two times higher than the wild-type growth after 54 hours (Fig. 6.3 F). 

 

Evaluation of the symbiotic performance of the ΔclpB mutant strain 

To examine the involvement of the ClpB chaperone in the chickpea-rhizobium 

symbiosis, the symbiotic performance of the ΔclpB mutant strain was evaluated. 

A plant growth assay was performed in a plant growth chamber, using vermiculite 

as substrate. The chickpea plants were harvested 8 weeks after inoculation and 

several parameters were measured (Table 6.2). The shoot and root dry weights 

of chickpea plants inoculated with the ΔclpB mutant strain were lower compared 

to the ones obtained from plants inoculated with the wild-type strain, however, 

these differences were not statistically significant. Although no differences on the 

total number of nodules per plant formed by either strain were obtained, a 

difference in the nodule development was observed. A low free-oxygen level in 

the infected nodule parenchyma is a prerequisite for the activity of the oxygen-

labile nitrogenase in bacteroids, the oxygen-binding plant protein leghemoglobin 

accumulates gradually in the host tissue and the nodule becomes pink to bright 

red (Fisher, 1994). Concomitantly, the absence of this protein results in small and 

white, ineffective nodules (Ott et al., 2005). Despite both strains were able to 

form pink colored nodules, the number of white/pink colored nodules induced by 

each strain was different (Table 6.2). From the total number of nodules formed by 

the wild-type, 84,5% were fully pink effective nodules whereas only 61,2% of the 

total number of nodules induced by ΔclpB mutant were effective nodules. The 

number of small and white, ineffective nodules produced by the ΔclpB mutant 

strain was significantly higher compared to those formed by the wild-type, 
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suggesting that nodule development was delayed in plants inoculated with the 

ΔclpB mutant strain. Due to the higher proportion of ineffective nodules, a lower 

nodule dry weight as well as a lower average weight per nodule was obtained in 

plants inoculated with the ΔclpB mutant strain (Table 6.2). 

 

Table 6.2 Symbiotic performance in chickpea plants after inoculation with wild-
type LMS-1 or ΔclpB mutant strain. Results obtained from a plant growth assay 
using chickpea plants inoculated with M. ciceri LMS-1 and M. ciceri LMS-1 ΔclpB 
strains under controlled conditions in a growth chamber. No nodules were 
obtained in uninoculated plants. Data correspond to the mean ± standard 
deviation values from four plants for each treatment after eight weeks of 
inoculation. 

Strain Number of 
nodules 

Pink 
nodules 

White 
nodules 

Average weight per 
nodule (mg/nodule) 

Uninoculated 0 0 0 0 
LMS-1 84±26 71±19 13±8 2.454±0.792 
LMS-1 ΔclpB 85±11 52±9 33±2# 1.520±0.387 

# Statistical significant differences (P < 0.05) SDW-shoot dry weight; RDW-root 
dry weight; NDW- nodule dry weight 

 

The ΔclpB mutant shows a delay in nodule development 

In order to determine in which step of the symbiosis process the ClpB is involved, 

further studies were conducted. A hydroponic plant assay was performed to 

compare the nodulation kinetics of the ΔclpB mutant and wild-type strains. After 

10 days of inoculation, the chickpea plants inoculated with the M. ciceri LMS-1 

showed the first nodules (Fig. 6.5). A significant increase of the number of 

nodules was observed in the first two weeks after the nodules appearance, and 

the number of nodules stabilized 30 days after inoculation. On the other hand, 

the first nodules formed by the ΔclpB mutant appeared 16-18 days after 

inoculation, with a 6-8 day delay compared to the wild-type strain. The increase 

Strain SDW 
(g/plant) 

RDW 
(g/plant) 

Total biomass 
(g/plant) 

NDW (g/plant) 

Uninoculated 0.155±0.034 0.327±0.058 0.482±0.082 0 
LMS-1 0.768±0.136 0.445±0.104 1.213±0.235 0.224±0.143 
LMS-1 ΔclpB 0.638±0.146 0.382±0.048 1.019±0.189 0.126±0.023 
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in the number of nodules was slower than with the wild-type strain. However, 35 

days after inoculation, a similar number of nodules was observed in plants 

inoculated with either strain. In spite of the similar total number of nodules per 

plant after 35 days of inoculation, the number of effective were significantly less 

in plants inoculated with the ΔclpB mutant strain compared to those formed by 

the wild-type strain (21 ±4 pink nodules formed by ΔclpB mutant strain versus 35 

±5 pink nodules induced by wild-type strain). 

 

 

Figure 6.5 A- Nodulation kinetics of chickpea plants inoculated with either wild-type 
(open diamonds) or ΔclpB mutant (open squares) strain during 35 days after 
inoculation. Each point represents the mean of 5 plants per treatment. Standard 
deviation is represented by bars on each data point. B- Analysis of nodC gene 
expression by semi-quantitative RT-PCR during control and heat shock conditions in 
M. ciceri LMS-1 (lane 1, dark grey bars) and ΔclpB mutant (lane 2, light grey bars) 
strains, after 6h treatment with chickpea root exudates. Relative nodC transcript 
abundance was normalized against 16S rRNA. Data are the means ± standard 
deviation of three independent biological replicates. 
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To compare the level of expression of the nodulation (nod) genes in the wild-type 

and in the ΔclpB strains, analysis of the nodC gene expression was performed by 

semi-quantitative RT-PCR. Compared with the wild type strain, the ΔclpB mutant 

displayed a lower amount of nodC transcript, particularly under the heat shock 

condition (Fig. 6.5B). The lower level of nod genes expression can account to the 

delay observed in root nodulation by the mutant strain (Fig. 6.5A). 

To investigate potential differences in the nodule formation and development 

induced by ΔclpB mutant and wild-type strains, nodules obtained 25 days after 

inoculation, in the hydroponic plant assay, were collected. Histological sections of 

nodules induced by either strain were compared. The main differences observed 

between the nodules formed by either strain were the size (Fig. 6.6 A-C) and 

color. The majority of the nodules formed by the ΔclpB mutant strain were 

smaller than the ones formed by the wild-type strain. All nodules induced by the 

wild-type strain showed the characteristic zones, namely meristematic, invasion, 

and fixation zones (Fig. 6.6 A). The senescent zone was not visible in any of the 

nodules analyzed. In contrast, the fixation zone in the majority of the nodules 

formed by the ΔclpB mutant strain showed scarce content in bacteroids. Indeed, 

the nodules formed by the ΔclpB mutant strain contain a higher proportion of 

undifferentiated bacteria, namely immature bacteroids (Fig 6.6 C). However, no 

significant differences between the invasion threads and release pockets were 

observed between the nodules formed by either strain (Fig. 6.6 D, E). Moreover, 

in the fixation zone found in some nodules induced by the ΔclpB mutant strain, 

the bacteroid organization within the cortical cells was well defined and similar to 

the wild-type strain (Fig. 6.6 F).  
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Figure 6.6 Bright field micrographs of 2 µm histological sections of 

representative embedded pink nodules, stained with Toluidine Blue, formed by 
the wild-type M. ciceri LMS-1 (A), or the ΔclpB mutant strains (B-F). A-C, 
sections of entire nodules; D-F, higher magnification of ΔclpB mutant nodules, 
invasion zone (D), interzone (E), and fixation zone (F). Black arrows in D show 
pockets of intercellular bacteria and infection threads emerging from them. Black 
arrows in E show infected cortical cell and bacteria released from the infection 
threads into the root cortical cells. Black arrow in F shows the bacteroid 
differentiation and indicates the complete symbiosome organization. 
Magnification: A-C: 50x; D-F: 630x.  
 

Initial interaction of the ΔclpB mutant with chickpea roots  

In order to determine if the delay in the nodules appearance observed in plants 

inoculated with the ΔclpB mutant strain, in the hydroponic assay, could be due to 

a failure in the first stages of the mutant strain’s interaction with the plant roots, 

the infection processes by the ΔclpB mutant and wild-type strains were 

compared. To visualize root hair attachment of rhizobia and their ability to grow 

on the root surface and form infection threads in root hairs, the M. ciceri LMS-1 

and M. ciceri LMS-1 ΔclpB strains, harbouring plasmid pMRGFP, containing the 

constitutively expressed gfp, were used. Four days after chickpea roots 



Evaluation of the role of chaperone ClpB in chickpea mesorhizobia stress 
tolerance and symbiosis 

163 

inoculation with either ΔclpB mutant or wild-type strain, the roots and root hairs 

were visualized using confocal spectral microscopy.  

Root hair attachment of rhizobia and their ability to grow on the root surface and 

form infection threads in root hairs were compared. Four days after chickpea 

roots inoculation, attachment of numerous cells to roots and root hairs was visible 

with both strains (Fig. 6.7). Bacteria were located mainly on roots, but were also 

found on root hair tips (Fig. 6.7 A, B) and forming caps (Fig. 6.7 A, B). Curled root 

hair, infection threads initiation and extension to root epidermal cells inside of 

some of the root hairs were also observed with both strains (Fig. 6.7 A, B). 

Overall, no differences in the infection abilities of wild-type and ΔclpB mutant 

cells were detected. 

 

 

Figure 6.7 Confocal laser scanning micrographs of propidium iodide-stained 
roots inoculated with GFP-tagged LMS-1 and ΔclpB mutant strains showing the 
initial infection process in chickpea roots. Images from chickpea root and root 
hairs were obtained 4 days after inoculation with either wild-type (A) or ΔclpB 
mutant (B) strains. Root hair curling formed by either strain (closed white arrows); 
Infection threads on root hairs (closed grey arrows); caps on root hairs tips (open 
white arrows), rhizobial attachment on roots (square). A, B scale bars correspond 
to 30µm and 40µm, respectively. 
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6.5 Discussion 

In the present work, a ClpB chaperone knockout mutant from the strain M. ciceri 

LMS-1 was obtained. Our results suggest that clpB is a single gene in the M. 

ciceri LMS-1 genome. Similarly the completely sequenced genomes of 

Mesorhizobium strains, namely Mesorhizobium sp. MAFF303099 (Kaneko et al., 

2000), M. opportunistum WSM2075T (NC_015675), M. australicum WSM2073T 

(http://www.ncbi.nlm.nih.gov/nuccore/354575234) and M. ciceri bv. biserrulae 

WSM1271 (NC_014923) show also a single clpB copy gene. Furthermore, the 

similarity and identity in the clpB nucleotide/amino acid sequence between 

Mesorhizobium strains is extremely high (>90%). 

The ΔclpB mutant strain tolerance to environmental stress conditions as well as 

its involvement in the symbiotic process with chickpea plants was evaluated. The 

evaluation of the ClpB mutant phenotype under abiotic stresses showed that it 

was unable to grow after a heat shock and it was more sensitive to acid shock 

than the wild-type strain. Our results confirm that ClpB is essential in heat shock 

tolerance in M. ciceri LMS-1. This is in agreement with the transcriptomic study 

conducted by Sauviac et al. (2007), which showed the clpB gene up-regulation 

by heat shock in Ensifer meliloti cells. Similar results were observed in diverse 

organisms, such as E. coli (Squires et al., 1991; Zolkiewski, 1999), Vibrio cholera 

(Nag et al., 2005), Synechococcus spp.(Eriksson and Clarke, 2000) and Brucella 

suis (Ekaza et al., 2001). In contrast, no difference between wild-type and ΔclpB 

mutant strains growth under cold temperatures was found. Similar results were 

obtained previously in Listeria monocytogenes (Chastanet et al., 2004) and E. 

coli (Strocchi et al., 2006). Strocchi et al. (2006) suggested that low temperatures 

may lead to inactivation of a few key cold-sensitive chaperone-interacting 

proteins, such as ClpB, DnaK and GroEL, in E. coli. It is possible that the 

absence of differences under low temperatures between wild-type and ΔclpB 

mutant strains may be due to the cold inactivation of chaperone-interacting 

proteins, such as ClpB, covering the lack of ClpB in the mutant strain.  
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Under acid or salt continuous stress conditions, no difference between the growth 

curves of the wild-type and ΔclpB mutant strains was observed. Similar results 

were obtained when cells were subjected to an acid or salt shock. In contrast, 

when the cells were subjected to an acid shock followed by growth under 

continuous mild acid conditions, the ΔclpB mutant displayed a higher sensitivity 

compared to the wild-type strain, indicating the involvement of ClpB in acid 

response. This result corroborates previous studies (de Lucena et al., 2010) 

suggesting that ClpB is involved in acid-response in Ensifer meliloti cells. 

Moreover, Reid et al. (2008) identified several genes, including clpB, which may 

be involved in acid tolerance of Campylobacter jejuni.  

Interestingly, the ΔclpB mutant showed a higher ability to overcome salt stress 

followed to a salt shock, compared to the wild-type strain. This may result from 

the induction of genes upon salt-shock that after were useful to overcome the 

salt-stress, in a higher extent in the mutant than in the wild-type strain. 

Nevertheless, further studies are required to clarify this unexpected result. 

Our results indicate that ClpB is essential for heat shock response and is 

involved in the acid-tolerance, suggesting that both stress responses involve the 

action of this chaperone. Interestingly, Reid et al. (2008), using transcriptomic 

analysis in Campylobacter jejuni in vivo and in vitro conditions, suggested a 

common response to acid stress and heat shock involving the up-regulation of 

most heat shock genes, namely clpB, dnaK, groEL and groES. 

In the present study, the role of the chaperone ClpB in the chickpea-

mesorhizobium symbiosis was also examined. Although the shoot and root dry 

weights of chickpea plants inoculated with the ΔclpB mutant strain were lower 

compared to the ones obtained from plants inoculated with the wild-type strain, 

these differences weren’t statistically significant, suggesting that ClpB is not 

essential for the successful symbiotic nitrogen-fixation. This is supported by 

previous studies in Ensifer meliloti cells showing that a mutation in rpoH1, which 

regulates the ClpB expression (de Lucena et al., 2010), does not affect the 

expression of the major nitrogen fixation genes (Mitsui et al., 2004). 
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Although the plant development displayed by the ΔclpB mutant and wild-type 

strain was statistically similar, the nodules induced by the mutant strain showed a 

slower development. The nodulation kinetics showed a 6-8 day delay in nodule 

appearance in chickpea plants inoculated with the ΔclpB mutant strain when 

compared to the wild-type strain. Furthermore, a higher proportion of the nodules 

formed by the mutant strain were small and white. This result was corroborated 

by the analysis of the histological sections of nodules formed by the ΔclpB 

mutant strain, showing that most of the nodules presented low amount of 

bacteroids. The delay observed in nodule appearance and development probably 

contributes to the lower number of effective nodules of chickpea plants obtained 

with the ΔclpB mutant strain. Altogether, our results suggest that ClpB is not 

essential for the establishment of a successful symbiosis with chickpea plants, 

but is involved in the process of nodule formation and development. 

Furthermore, our results indicated that nodC gene expression is lower in the 

ΔclpB mutant, suggesting that ClpB is involved in the molecular signalling 

between both partners. A previous study of Ogawa and Long (1995) showed that 

the Ensifer meliloti GroEL chaperone is required for regulation of early nod genes 

by the transcription activator NodD. This protein is required for the induction of 

nodC expression, as shown in Ensifer meliloti (Mulligan and Long, 1985) and in 

Rhizobium leguminosarum (Rossen et al., 1985). The lower levels of nodC 

transcript detected in the mutant strain, particularly under the heat shock 

condition, suggest that the delay in nodules formation by the ΔclpB mutant could 

be related to its inability to activate properly the expression of the nod genes due 

to an inappropriate folding of the NodD protein. 

Oke and Long (1999) suggested that, among the genes needed for bacteroid 

formation, some of them are specific for symbiosis and others are involved in the 

physiological adaptation to the environmental conditions within and outside the 

nodule. More recently, transcriptomic and proteomic analyses of nodules or 

bacteroids suggested that chaperone genes, including ClpB, are involved in the 

symbiosis process (Djordjevic et al., 2004; Sarma and Emerich, 2005; 
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Karunakaran et al., 2009). Shimoda et al. (2008) suggested the interaction 

between chaperones during symbiosis, namely ClpB with ClpA, as part of a 

protease complex that functions in protein processing during symbiosis. Nomura 

et al. (2010) verified, by analysis of differential protein profiles of Bradyrhizobium 

japonicum bacteroids, that a number of chaperone proteins were overexpressed 

at the onset of the nitrogen fixation. Several studies on the symbiotic 

performance of strains mutated in other chaperone´s genes suggested their 

involvement in the symbiosis. For example, Nogales et al. (2002) found that a 

dnaJ mutant of Rhizobium tropici was able to form nodules in Phaseolus vulgaris, 

however this mutant showed low nitrogenase activity. The DnaK chaperone 

seems to be required for optimum symbiotic function in Ensifer meliloti (Summers 

et al., 1998). A double mutation on groEL3 and groEL4 genes affects the 

symbiotic performance in B. japonicum (Fischer et al., 1999).  

It is acceptable that the symbiotic process is affected by the ability of rhizobial 

cells to respond to environmental stresses encountered when infecting or within 

the plant host. Marschner (2006) reported that the environmental pH in the 

rhizosphere of the leguminous host plant is decreased due to the protons and 

organic acids excreted by the plants. Moreover, rhizobia have to face acid 

conditions within the plant cell, due to the transport of protons or ionized acids 

that acidify the symbiosomes. In addition, rhizobia have to deal with the low 

oxygen concentration in the nodules, leading to the production of organic acids 

that inhibit the regulation of the cytoplasmic pH (Perez-Galdona and Kahn, 1994).  

Furthermore, several studies in rhizobia showed the induction of genes encoding 

molecular chaperones and proteases, such as ClpB, under acidity or 

microaerobic conditions in rhizobia, supporting their involvement in the protection 

of proteins from denaturation and aggregation (Puskás et al., 2004; Uchiumi et 

al., 2004; de Lucena et al., 2010).  

Take into account all these studies, it is probable that the involvement of ClpB in 

symbiosis is by disaggregating protein aggregates formed in bacteria subjected 

to atypical conditions, such as pH shifts or microaerobiosis, within the plant cells 



 
Chapter 6 

168 

and nodules. Considering the lower nod genes expression by the ΔclpB mutant 

strain when compared to the wild-type strain plus the stress effects on ΔclpB 

mutant growth, the delay on nodule formation and development may be due to 

the inability to properly activate the expression of the nod genes as well as the 

lack of ability to counteract the stress conditions within the host plant and nodule. 

Furthermore, the lack of ClpB, particularly in the atypical conditions within the 

root cells, such as pH shifts or microaerobiosis, may result in some aggregation 

of the NodD proteins that fail to induce the normal expression of the nodABC 

genes thus leading to the delay in nodulation observed with the mutant strain. 

Assuming that the ClpB function is protein disaggregation, we can speculate that 

nodule formation and development involve changes in physiological conditions 

that lead to protein aggregation, thus requiring the ClpB action. However, further 

studies are required to clarify the role of this major chaperone in rhizobia during 

symbiosis. 

Our results indicate that, in Mesorhizobium ciceri, ClpB is involved in the 

response to several stresses, namely heat and acid shocks. Furthermore, the 

ClpB absence caused a delay in the nodule formation and development, despite 

the ability of the ΔclpB mutant strain to establish a symbiotic relationship with 

chickpea plants. Overall, in Mesorhizobium ciceri LMS-1, the chaperone ClpB 

seems to play an important role in overcoming stress conditions as free-living 

cells as well as in the symbiosis process. To our knowledge, this is the first report 

supporting the involvement of chaperone ClpB from rhizobia in the symbiotic 

nodulation process.  
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Chapter 7 

 

 

General discussion 

 

The demand for a more effective utilization of biologically-fixed nitrogen in 

agricultural systems as an alternative to the chemical nitrogen fertilizers has 

increased the number of studies on rhizobia diversity and tolerance to 

environmental stresses. In contrast to other rhizobia such as soybean or bean 

microsymbionts, only a few studies have addressed rhizobia able to nodulate 

chickpea, one of the most important legume crops worldwide. Using chickpea 

rhizobia as a study model, the present thesis focused three main goals: i) the 

evaluation of biodiversity and characterization of chickpea rhizobia in an attempt 

to find new species as potential candidates to be used as field inoculants; ii) the 

evaluation of chickpea rhizobia tolerance to environmental stresses, namely 

acidity and salinity, in order to find isolates tolerant to either stress conditions; iii) 

the study of the molecular bases of acid- and salt-tolerance of these chickpea 

microsymbionts. Globally, the present thesis aimed to contribute to the 

development of efficient rhizobia. 
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The present work contributed to the isolation and characterization of chickpea 

rhizobia that, presently, are part of a collection composed by a total of 121 native 

Portuguese isolates collected from 26 soil samples, covering almost the entire 

country. The isolation and characterization of these native chickpea rhizobia 

allowed the identification of isolates from Mesorhizobium species and brought 

new insights into species geographic distribution. The collection includes several 

potential chickpea microsymbionts for agricultural applications.  

Analysis based on the 16S rRNA gene sequence revealed that all the native 

chickpea microsymbionts belong to the Mesorhizobium genus. However, most 

chickpea rhizobia isolates were assigned to different species besides the 

previously described specific chickpea microsymbionts, namely M. ciceri and M. 

mediterraneum (Nour et al., 1994; Nour et al., 1995). Indeed, only 37% of the 

isolates belong to the M. ciceri and M. mediterraneum species. Four main 

species clusters were generated by the 16S rRNA gene analysis. Considering all 

121 chickpea rhizobia isolates, cluster A comprises 60 isolates with high identity 

with the type strains M. huakuii, M. amorphae and M. opportunistum. Although M. 

plurifarium and M. septentrionale type strains are included in this cluster, no 

isolate was found to group closely to these strains. In cluster B, the 33 rhizobia 

isolates group closely or were more similar to M. ciceri and M. loti. Chickpea 

rhizobia (16 isolates) from Cluster C, which formerly included only M. 

tianshanense, are closer to the new species M. metallidurans, M. caraganae, M. 

gobiense and M. tarimense than to M. tianshanense. Cluster D includes 12 

isolates together with M. mediterraneum and M. temperatum.  

Previous studies on the diversity of chickpea rhizobia from the southern region of 

Portugal already suggested that natural populations are diverse (Laranjo et al., 

2001; Laranjo et al., 2002). The present study extended the sampling sites to the 

entire country and confirmed the high diversity found before. Furthermore, the 

data obtained in the present study also revealed an unexpected high proportion 

of isolates unrelated to M. ciceri and M. mediterraneum, especially the high 

number of isolates clustering with M. amorphae, M. huakuii and M. opportunistum 
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(cluster A). This was unexpected, since M. amorphae and M. huakuii type strains 

are unable to nodulate chickpea and their hosts, Amorpha fruticosa and 

Astralagus sinicus respectively, are unrelated to Cicer arietinum and uncommon 

in Portugal. M. opportunistum type strain was isolated from Biserrula pelecinus 

root nodules, and similarly to the two other type strains mentioned above, it is 

unable to nodulate chickpea. In contrast to Amorpha fruticosa and Astralagus 

sinicus plants, Biserrula pelecinus is a common pasture legume adapted to acid 

soils in Mediterraneum and common in Iberian Peninsula (Vicente et al., 2009). 

However, Biserrula pelecinus microsymbionts are unable to nodulate Cicer 

arietinum (Nandasena et al., 2001; 2007a; 2009).  

The chickpea rhizobia diversity was also studied in other countries, such as 

Morocco and Tunisia (Maâtallah et al., 2002a; L’Taief et al., 2007). However, 

these studies revealed that most of the indigenous chickpea rhizobia isolates 

were assigned to M. ciceri and M. mediterraneum, showing a low diversity of 

chickpea rhizobia. The high diversity of chickpea rhizobia found in our study may 

be due to the differences in the Portuguese soil characteristics, such as soil pH, 

and to the chickpea cultivation history in those countries.  

The biogeography found for the Portuguese chickpea rhizobia isolates revealed 

an association between province of origin of the isolates and species clusters, 

suggesting that the geographical distribution of species is not random. Despite 

several parameters may influence the geographic distribution of isolates in terms 

of species clusters, the biogeography found herein was associated to the soil pH 

of the sampling site, indicating that pH contributes to determine the species that 

prevail in the rhizobia population. This type of association was found in several 

studies addressing soil bacterial communities, indicating soil pH as the variable 

that better explains the population diversity and the community composition 

(Fierer and Jackson, 2006). 

In order to investigate whether the symbiotic effectiveness of the chickpea 

rhizobia isolates is related to their species cluster, the analysis of the isolates 

symbiotic effectiveness (SE) was performed under control conditions. These 
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results showed that in each species clusters we can find isolates with high and 

low SE. However, no correlation was found between SE and species clusters. 

Interestingly, six of the most efficient isolates belong to cluster B (M. ciceri / M. 

loti). For example, isolate S-24-Sintra and isolate G-55-Guarda show SE values 

above 85%, indicating them as potential candidates for field inoculation. 

In order to investigate the molecular determinants for chickpea host specificity, 

several mesorhizobia isolates belonging to the four main clusters were 

investigated in terms of symbiosis genes nifH and nodC. The phylogenetic 

analyses based on these symbiosis genes indicate that all chickpea 

mesorhizobia show identical nifH and nodC genes. These results are in 

agreement with previous studies (Rivas et al., 2007; Laranjo et al., 2008), which 

reported that all isolates able to nodulate chickpea possess identical symbiosis 

genes to the ones carried by the typical chickpea microsymbionts (M. ciceri and 

M. mediterraneum). So, despite that several Mesorhizobium species are able to 

nodulate chickpea, they all share the same symbiosis genes, reinforcing 

chickpea as a restrict host. Both nifH and nodC genes can be used as markers 

for the rapid detection of chickpea microsymbionts. Several studies suggest that 

many Mesorhizobium strains have acquired the ability to nodulate a specific host 

probably by acquiring a symbiosis island carrying specific symbiosis genes 

(Sullivan et al., 1995; Sullivan and Ronson, 1998; Laranjo et al., 2008; 

Nandasena et al., 2006; Nandasena et al., 2007b). 

In the present work, the detection and sequencing of the ACC deaminase gene 

(acdS) was performed in several mesorhizobia type strains as well as in 

Portuguese chickpea mesorhizobia isolates. The acdS gene was detected in 10 

of 12 mesorhizobia type strains and in all of the 17 Portuguese chickpea 

mesorhizobia isolates tested, suggesting that this gene is a common feature 

among mesorhizobia. Interestingly, the acdS-based phylogeny indicates that this 

gene seems to be similar among rhizobia nodulating the same host, suggesting 

that the acdS gene, similarly to the symbiosis genes, is likely to be horizontally 

transferred between Mesorhizobium species. The analysis of the symbiosis 
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islands of mesorhizobia strains (M. loti R7A, M. sp. MAFF303099, M. ciceri bv. 

biserrulae WSM1271 and M. opportunistum WSM2075T), shows that they all 

include an acdS gene closely located to the nitrogen fixation genes. Thus, it is 

probable that symbiosis islands exchange among mesorhizobia will result in the 

acdS gene transfer together with the symbiotic genes. 

The development of rhizobial inoculants requires the selection of isolates that are 

symbiotically efficient as well as adapted to the local environmental conditions. 

The present study included the evaluation of tolerance of chickpea mesorhizobia 

to salinity and acidity, in order to identify isolates tolerant to both stresses and to 

investigate a possible relationship between stress tolerance and the species or 

the origin site of the isolates. Tolerance to salinity was evaluated in 106 isolates 

whereas tolerance to acid and alkaline pH was investigated for 98 isolates, 

representing the entire country. In general, chickpea mesorhizobia isolates 

showed a low tolerance to salinity. Nevertheless, a few isolates displayed a 

considerable growth with 1.5% NaCl compared to the majority of the isolates. For 

example, isolates BR-8-Bragança, CR-32-Caldas da Rainha, PA-6-Praia do 

Alemão and SL-2-Salir showed a growth above 30% with 1.5%NaCl. Concerning 

the tolerance of chickpea mesorhizobia isolates to alkaline conditions (pH 9), 

isolates revealed to be highly sensitive to this condition. In contrast, almost half of 

the tested isolates are highly tolerant (growth > 70%) to acidic conditions (pH 5), 

including 11 moderately acidophilic isolates.  

Interestingly, associations between province of origin of the isolates and 

tolerance to either acid or salt conditions were found. These associations may be 

related to the characteristics of the origin soil. Supporting this hypothesis, 

correlations between origin soil characteristics, such as soil pH, electrical 

conductivity or organic matter levels, and acid or salt tolerance of the isolates 

were found, indicating that soil may act as a selective pressure in terms of acid 

and salt tolerance. Thus, several characteristics of the origin soil of the isolates 

may be involved in determining isolates tolerance to acidity and salinity. 

Correlations between salt tolerance of rhizobia and some characteristics of the 
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origin soils were found in other studies (Bezdicek, 1972; Zahran et al., 1992; 

Kulkarni et al., 2000; Maâtallah et al., 2002b). Furthermore, the association 

between tolerance to acidity and the origin soil pH found herein suggests that 

isolates collected from acidic or neutral soils may be more resistant to acidic 

environmental conditions than the ones from alkaline soils. Similar results were 

already obtained with a smaller set of Portuguese chickpea rhizobia isolates 

(Rodrigues et al., 2006).  

The four species groups were found to differ significantly regarding their ability to 

tolerate acid stress, suggesting that acid tolerance phenotype is related to the 

species clusters. For instance, the majority of isolates from cluster B are acid-

tolerant whereas isolates belonging to cluster C are acid-sensitive. In contrast, no 

association between species cluster of the isolates and salt tolerance was found. 

The analysis of the chickpea Portuguese mesorhizobia tolerance suggests that 

acid tolerance seems to be species-specific while the salt tolerance is more likely 

to be strains-specific. Several studies in rhizobia have reported that stress 

tolerance seems to be species related, namely temperature stress tolerance 

(Alexandre and Oliveira, 2011), tolerance to copper (Laguerre et al., 2006), 

tolerance to acid pH (Reeve et al., 2006) as well as antibiotic resistance 

(Alexandre et al., 2006). 

Several studies indicate that strains found to be tolerant to a specific stress 

display a better symbiotic performance than the sensitive ones when subjected to 

the same stress condition in plant growth assays (Mhadhbi et al., 2004). Take 

into account these reports, the present study allowed the identification of acid- 

and salt-tolerant isolates that can be used as potential inoculants with economic 

and agricultural interest, especially in acid or salt-affected soils. Nevertheless, the 

symbiotic performance of tolerant isolates in plant growth assays, under stress 

conditions, must be evaluated prior to implementation of field trials.  

In order to contribute to the development of efficient rhizobia and since chickpea 

mesorhizobia showed high sensitivity to salinity, a strategy was followed to 

improve their symbiotic performance under salt stress conditions. This strategy 
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involved the expression of an exogenous ACC deaminase gene in rhizobia. To 

evaluate the impact of the expression of an acdS gene in the improvement of the 

symbiotic performance of two chickpea mesorhizobia with different salt tolerance 

phenotype, both isolates were transformed with the exogenous acdS gene, from 

Pseudomonas putida UW4.  The two mesorhizobia isolates were selected based 

on their ability to endure salt stress, namely EE-7-ENMP as salt-sensitive and G-

55-Guarda as salt-tolerant (see chapter 3). The symbiotic performance of the 

acdS-transformed and wild-type isolates was evaluated. The results obtained 

with both acdS-transformed mesorhizobia revealed that through the use of ACC 

deaminase, the nodulating abilities of both strains were promoted and the 

negative effects induced by salt stress in the chickpea growth and development 

were reduced. These results suggest that the exogenous ACC deaminase gene 

improves the symbiotic performance of mesorhizobia, thus contributing to help 

chickpea plants endure the negative effects of salt stress. Interestingly, the 

symbiotic performance of the salt-sensitive strain, transformed with an 

exogenous acdS gene, was increased in a higher extent than the salt-tolerant 

one. The different increase of the symbiotic performance obtained for each acdS-

transformed strain under salt stress conditions, may be due to the different ACC 

deaminase activity detected in the two strains. Similar results were previously 

obtained with other plants (canola, tomato, cucumber and red pepper) inoculated 

with rhizobacteria expressing an ACC deaminase gene and subjected to salt 

stress (Cheng et al., 2007; Gamalero et al., 2010; Siddikee et al., 2010, 2011). 

However, this is the first study showing that the expression of an exogenous 

acdS gene in mesorhizobia improved the symbiotic performance of the bacteria 

when they were used as inoculants of chickpea plants grown under saline 

conditions, thus almost completely alleviating the negative effects caused by 

salinity. Our results suggest that the expression of an exogenous acdS by 

Mesorhizobium strains may be a useful tool in the development of inocula for 

agricultural purposes, especially to improve crop productivity in salt-damaged 

land. 
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The ability of rhizobia to endure stress is essential to achieve high symbiotic 

performance in suboptimal conditions. It is important to understand the molecular 

bases of acid and salt tolerance in rhizobia since this knowledge can be used to 

improve their symbiotic performance under stressful conditions.  

Stress response in bacteria is essential for effective adaptation to changes in the 

environment. Bacteria have evolved several mechanisms that ensure protein 

folding and promote homeostasis under stress conditions (Frydman, 2001). 

Among others, DnaK-DnaJ-GrpE and GroEL-GroES and ClpB are fundamental 

chaperones systems that assist the proteins folding and disaggregation, ensuring 

homeostasis in E. coli cells, under heat stress conditions. Yet, their involvement 

in tolerance to salt and acid conditions remains to be clarified. In order to find 

differences that could be related to the different susceptibility to salt and acid 

stress, the expression levels of dnaKJ and groEL genes were analyzed, using 

tolerant and sensitive isolates within the same species cluster. The expression of 

these chaperones genes in isolates subjected to acid and salt shock was 

analyzed by northern hybridization.  

The transcriptional analysis of the major chaperones genes using 12 chickpea 

rhizobia isolates, belonging to the four main species clusters (chapter 2), 

revealed that, in the majority of the isolates (either tolerant or sensitive), the dnaK 

mRNA levels increased after a salt shock while no change or a slight repression 

was observed with the groESL operon. These results suggest that dnaK and 

groESL chaperone genes are differently involved in chickpea mesorhizobia salt 

tolerance. Similarly to our results, Domínguez-Ferreras et al. (2006) reported 

repression of some groESL operon copies in Ensifer meliloti cells subjected to 

salt stress. Additionally, groESL operon was slightly repressed or unchanged in 

some mesorhizobia type strains when submitted to salt shock (Laranjo and 

Oliveira, 2011). Furthermore, Nogales et al. (2002) showed that a mutant with a 

disrupted dnaJ gene presented higher sensitivity to salt stress when compared to 

the wild type. Nevertheless, no relationship between higher expression levels of 

dnaK chaperone gene and higher ability of isolates to tolerate salt stress was 
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obtained, suggesting that this gene is not involved in determining the salt 

tolerance phenotype of chickpea mesorhizobia. 

On the other hand, both dnaK and groESL mRNA levels increased after an acidic 

shock in acid-tolerant isolates and were slightly repressed in acid-sensitive 

isolates, with the exception of the moderately acidophilic isolate (AL-13-

Alenquer). Considering eight isolates, from cluster A and B, a relationship 

between higher levels of transcriptional induction of both dnaK and groESL 

genes upon acidic shock and a higher ability of mesorhizobia to tolerate acid pH 

was found. These results suggest that increased expression of these chaperone 

genes may contribute to a higher tolerance to acid stress in mesorhizobia. 

Recently, transcriptional analysis using Ensifer meliloti 1021 cells following an 

acidic upshift showed increased groEL5 transcript levels (Hellweg et al., 2009). 

Overall, our results suggest that both chaperone genes are involved in determine 

chickpea mesorhizobia tolerance to acidity but not tolerance to salinity. 

Interestingly, another study on chickpea mesorhizobia suggest the existence of a 

relationship between higher levels of transcriptional induction of both dnaK and 

groESL chaperones genes and a higher ability of isolates to endure heat stress 

(Alexandre and Oliveira, 2011). It seems that dnaK and groEL genes may be 

involved in determine acid and heat tolerance in chickpea mesorhizobia. A similar 

up-regulation of most heat shock genes, namely clpB, dnaK, groEL and groES, 

was detected using transcriptomic analysis of Campylobacter jejuni in vivo and in 

vitro conditions after both acid stress and heat shock (Reid et al., 2008). These 

results support a common molecular role of major chaperone genes in both heat 

and acid tolerances. To our knowledge, this is the first study focusing the 

transcriptional induction of chaperone genes under salt and acid shocks, using 

tolerant and sensitive chickpea mesorhizobia. 

The transcriptional analysis described in chapter 5 suggests that major 

chaperones may be involved in acid tolerance in mesorhizobia. In order to 

investigate the role of the major chaperones in stress tolerance of mesorhizobia, 

in free-living conditions as well as in symbiosis with chickpea plants, the 
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chaperone ClpB was chosen for further studies. Few reports address this 

chaperone gene, compared to GroEL or DnaK in rhizobia. To our knowledge, 

there are no reports on a ClpB knockout in rhizobia or any study investigating its 

role in rhizobia tolerance to abiotic stresses.  

To investigate a potential role of the chaperone ClpB in stress tolerance and in 

the symbiosis process of mesorhizobia, the clpB gene of the strain 

Mesorhizobium ciceri LMS-1 was deleted (chapter 6). ClpB mutant was tested 

under several abiotic stresses and compared to the wild-type. These phenotypic 

tests showed that the ΔclpB mutant was unable to grow after a heat shock and 

was more sensitive to an acid shock than the wild-type strain. These results 

agree with previous studies that suggest the involvement of this gene in both 

heat and acid resistance in Ensifer meliloti cells (Sauviac et al., 2007; de Lucena 

et al., 2010). In contrast, no growth reduction was obtained upon salt stress or 

shock with the ΔclpB mutant, suggesting that this chaperone is not involved in 

salt resistance. Interestingly, this result agrees with our preliminary data on 

transcriptional analysis of the clpB gene (chapter 3) that showed no induction of 

this gene upon salt shock. Unexpectedly, a higher growth was obtained with the 

ΔclpB mutant when exposed to a salt shock followed by growth under salt stress, 

compared to the wild-type. This may suggest that, in the absence of ClpB, other 

mechanisms are activated under salt shock that provided a higher tolerance to 

the continuous salt stress. However, further studies must be performed to clarify 

this result. 

In symbiosis with chickpea plants, the differences noticed between the ΔclpB 

mutant and the wild-type strains were a 6-8 day delay in nodule appearance and 

a higher proportion of ineffective root nodules in plants inoculated with the ΔclpB 

mutant. These results indicate that although ClpB is not essential for the 

establishment of the symbiotic relationship with chickpea plants, it is involved in 

the nodulation process. These results agree with transcriptomic and proteomic 

studies in nodules or bacteroids that revealed the overexpression of the clpB 

gene in symbiosis (Djordjevic, 2004; Sarma and Emerich, 2005; Karunakaran et 
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al., 2009). It is possible that during the symbiosis process, rhizobia have to 

overcome changes in physiological conditions, such as low pH and 

microaerobiosis, which may lead to protein aggregation, thus requiring the 

disaggregation function of ClpB chaperone. However, further studies are required 

to clarify the role of ClpB in rhizobia during symbiosis, since the specific function 

of this chaperone in the symbiosis per se still remains to be unravelled. To our 

knowledge, this is the first report supporting the involvement of the chaperone 

ClpB in the symbiotic nodulation process.  

 

Future perspectives  

The present study contributed to find potential candidates to be used as inocula 

for agricultural interests and to the improvement of the symbiotic performance of 

mesorhizobia with chickpea plants. Moreover, this work brings new insights on 

the molecular bases of tolerance of mesorhizobia to acid and salt stresses. 

Nevertheless, many questions have arisen concerning the molecular 

mechanisms of stress tolerance in rhizobia.  

In the transcriptomic and proteomic era, it would be interesting to compare the 

transcriptome of tolerant and sensitive strains subjected to environmental 

stresses in order to investigate the genes that may be responsible for the 

differences on tolerance phenotype. On the other hand, analysis of the genome 

of strains from the same species with different tolerance phenotypes may also 

elucidate potential genes in which relies the mechanism of stress tolerance. 

Sequencing data and functional studies of stress response genes should clarify 

their roles in stress tolerance and establishment of the symbiosis. Altogether, 

furthers studies in genome composition and evolution in combination with 

functional studies are likely to shed more light on the genetics of symbiotic 

nitrogen fixation and stress response in rhizobia. 
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