
Temporal Annotations for a
Contextual Logic Programming Language

Vitor Nogueira and Salvador Abreu

Universidade de Évora and CENTRIA, Portugal
{vbn,spa}@di.uevora.pt

Abstract In this paper we propose the combination of modularity and
temporal reasoning using logic programming as common ground. More-
over, we consider that the usage of a given module is influenced by tem-
poral constraints, i.e. modularity and temporal reasoning are strongly
connected. Besides illustrative examples, we also present the operational
semantics and corresponding compiler for this language.

1 Introduction

The importance of representing and reasoning about temporal information is
well known not only in the database community but also in the artificial in-
telligence one. In the past decades the volume of temporal data has grown
enormously, making modularity a requisite for any language suitable for de-
veloping applications for such domains. One expected approach in devising a
language with modularity and temporal reasoning is to consider that these char-
acteristics co-exist without any direct relationship (see for instance the language
MuTACLP [BMRT02] or [NA06]). Nevertheless we can also conceive a scenario
where modularity and time are more integrated, for instance where the usage
of a module is influenced by temporal conditions. In this paper we follow the
later approach in defining a temporal extension to a language called Contextual
Logic Programming (CxLP) [MP93]. This language is a simple and powerful ex-
tension of logic programming with mechanisms for modularity. Recent work not
only presented a revised specification of CxLP together with a new implemen-
tation for it but also explained how this language could be seen as a shift into
the Object-Oriented Programming paradigm [AD03]. Finally, CxLP structure is
very suitable for integrating with temporal reasoning since its quite straightfor-
ward to add the notion of time of the context and let that time help deciding if
a certain module is eligible or not to solve a goal.

For temporal representation and reasoning we chose Temporal Annotated
Constraint Logic Programming (TACLP) [Frü94,Frü96] since this language sup-
ports qualitative and quantitative (metric) temporal reasoning involving both
time points and time periods (time intervals) and their duration. Moreover, it
allows one to represent definite, indefinite and periodical temporal information.

The remainder of this article is structured as follows. In Sects. 2 and 3 we
briefly overview CxLP and TACLP, respectively. Section 4 presents the temporal

extension of CxLP and Sect. 5 relates it with other languages. Conclusions and
proposals for future work follows.

2 An Overview of Contextual Logic Programming

For this overview we assume that the reader is familiar with the basic notions of
Logic Programming. Contextual Logic Programming (CxLP) [MP93] is a sim-
ple yet powerful language that extends logic programming with mechanisms for
modularity. In CxLP a finite set of Horn clauses with a given name is desig-
nated by unit. Using the syntax of GNU Prolog/CX (recent implementation for
CxLP [AD03]) consider a unit named employee to represent some basic facts
about university employees, using ta and ap as an abbreviation of teaching
assistant and associate professor, respectively:

:-unit(employee(NAME, POSITION)).

item :- employee(NAME, POSITION).
employee(bill, ta).
employee(joe, ap).

name(NAME).
position(POSITION).

The main difference between the example above and a plain logic program is
the first line that declares the unit name (employee) along with the unit argu-
ments (NAME, POSITION). Unit arguments help avoid the annoying proliferation
of predicate arguments, which occur whenever a global structure needs to be
passed around. A unit argument can be interpreted as a “unit global” variable,
i.e. one which is shared by all clauses defined in the unit. Therefore, as soon as a
unit argument gets instantiated, all the occurrences of that variable in the unit
are replaced accordingly.

Suppose also that each employee’s position has an associated index (integer)
that will be used to calculate the salary. Such relation can be easily expressed
by the following unit index:

:- unit(index(POSITION, INDEX)).

item :-
index(POSITION, INDEX).

index(ta, 12).
index(ap, 20).

index(INDEX).
position(POSITION).

A set of units is designated as a contextual logic program. With the units
above we can build the program P = {employee, index}.

Given that in the same program we can have two or more units with the
same name but different arities, to be more precise besides the unit name we
should also refer its arity i.e. the number of arguments. Nevertheless, since most
of the times there is no ambiguity, we omit the arity of the units. If we consider
that employee and index designate sets of clauses, then the resulting program
is given by the union of these sets.

For a given CxLP program, we can impose an order on its units, leading to
the notion of context. Contexts are implemented as lists of unit designators and
each computation has a notion of its current context. The program denoted by
a particular context is the union of the predicates that are defined in each unit.
Moreover, we resort to the override semantics to deal with multiple occurrences
of a given predicate: only the topmost definition is visible.

To construct contexts, we have the context extension operation denoted by
:> . The goal U :> G extends the current context with unit U and resolves goal
G in the new context. For instance to obtain Bill’s position we could do:

?- employee(bill, P) :> item.

P = ta

In this query we extend the initial empty context []1 with unit employee ob-
taining context [employee(bill, P)] and then resolve query item. This leads
to P being instantiated with ta.

Suppose also that the employee’s salary is obtained by multiplying the index
of its position by the base salary. To implement this rule consider the unit
salary:

:-unit(salary(SALARY)).

item :-
position(P),
[index(P, I)] :< item,
base_salary(B),
SALARY is I*B.

base_salary(100).

The unit above introduces a new operator (:<) called context switch: goal
[index(P, I)] :< item invokes item in context [index(P, I)]. To better
grasp the definition of this unit consider the goal:

?- employee(bill, P) :> (item, salary(S) :> item).

1 In the GNU Prolog/CX implementation the empty context its not entirely empty
since it contains all the standard Prolog predicates such as =/2.

Since we already explained the beginning of this goal, lets see the remaining
part. After salary/1 being added, we are left with the context [salary(S),
employee(bill,ta)]. The second item is evaluated and the first matching def-
inition is found in unit salary. Goal position(P) is called and because there
is no rule for this goal in the current unit (salary), a search in the context is
performed. Since employee is the topmost unit that has a rule for position(P),
this goal is resolved in the (reduced) context [employee(bill, ta)]. In an in-
formal way, we queried the context for the position of whom we want to calculate
the salary, obtaining ta. Next, the index corresponding to such position is com-
puted, i.e. [index(ta, I)] :< item obtaining I = 12. Finally, to calculate the
salary, we just need to multiply the index by the base salary, getting S = 1200
as answer and [salary(1200), employee(bill, ta)] as the final context.

3 Temporal Annotated Constraint Logic Programming

This section presents a brief overview of Temporal Annotated Constraint Logic
Programming (TACLP) that follows closely Sect. 2 of [RF00]. For a more detailed
explanation of TACLP see for instance [Frü96].

We consider the subset of TACLP where time points are totally ordered,
sets of time points are convex and non-empty, and only atomic formulae can be
annotated. Moreover clauses are free of negation.

Time can be discrete or dense. Time points are totally ordered by the relation
≤. We call the set of time points D and suppose that a set of operations (such
as the binary operations +,−) to manage such points is associated with it. We
assume that the time-line is left-bounded by the number 0 and open to the future
(∞). A time period is an interval [r, s] with 0 ≤ r ≤ s ≤ ∞, r ∈ D, s ∈ D and
represents the convex, non-empty set of time points {t | r ≤ t ≤ s}. Therefore
the interval [0,∞] denotes the whole time line.

Definition 1 (Annotated Formula). An annotated formula is of the form
Aα where A is an atomic formula and α an annotation. Let t be a time point
and I be a time period:

(at) The annotated formula A at t means that A holds at time point t.
(th) The annotated formula A th I means that A holds throughout I, i.e. at every

time point in the period I.
A th–annotated formula can be defined in terms of at as: A th I ⇔ ∀t (t ∈
I → A at t)

(in) The annotated formula A in I means that A holds at some time point(s) in
the time period I, but there is no knowledge when exactly. The in annotation
accounts for indefinite temporal information.
An in–annotated formula can also be defined in terms of at: A in I ⇔ ∃t (t ∈
I ∧A at t).

The set of annotations is endowed with a partial order relation v which turns
into a lattice. Given two annotations α and β, the intuition is that α v β if α is
“less informative” than β in the sense that for all formulae A, Aβ ⇒ Aα.

In addition to Modus Ponens, TACLP has the following two inference rules:

Aα γ v α
Aγ

rule (v)
Aα Aβ γ = α t β

Aγ
rule (t)

The rule (v) states that if a formula holds with some annotation, then it also
holds with all annotations that are smaller according to the lattice ordering. The
rule (t) says that if a formula holds with some annotation and the same formula
holds with another annotation then it holds in the least upper bound of the
annotations. Assuming r1 ≤ s1, s1 ≤ s2 and s2 ≤ r2, we can summarize the
axioms for the lattice operation v by:

in[r1, r2] v in[s1, s2] v in[s1, s1] = at s1 = th[s1, s1] v th[s1, s2] v th[r1, r2]

The axioms of the least upper bound t can be restricted to:2

th[s1, s2] t th[r1, r2] = th[s1, r2]⇔ s1 ≤ r1, r1 ≤ s2, s2 ≤ r2

A TACLP program is a finite set of TACLP clauses. A TACLP clause is a
formula of the form Aα ← C1, . . . , Cn, B1α1, . . . , Bmαm (m,n ≥ 0) where A
is an atom, α and αi are optional temporal annotations, the Cj ’s are the con-
straints and the Bi’s are the atomic formulae. Moreover, besides an interpreter
for TACLP clauses there is also a compiler that translates them into Constraint
Logic Programming (CLP).

4 Temporal Annotations and Contextual Logic
Programming

In CxLP with overriding semantics, to solve a goal G in a context C, a search is
performed until the topmost unit of C that contains clauses for the predicate of
G is found. We propose to adapt this basic mechanism of CxLP (called context
search) in order to incorporate the temporal reasoning. To accomplish this we
add temporal annotations to contexts and to units and it will be the relation
between those two types of annotations that will help to decide if a given unit
is eligible to match a goal during a context search.

The addition of time to a context is rather intuitive: instead of a list of
unit designators [u1, . . . , un] we now have a temporally annotated list of units
designators [u1, . . . , un]α. This annotation α is called the time of the context and
by default, contexts are implicitly annotated with the current time.

We could follow an approach for units similar to the one proposed for con-
texts, i.e. to add a temporal annotation to a unit’s declaration. Hence we could
have units definitions like :- unit(foo(X)) th [1,4].

Nevertheless, units and more specifically, units with arguments allow for a re-
finement of the temporal qualification, i.e. instead of a qualifying the entire unit,
we can have several qualifications, one for each possible argument instantiation.
For the unit foo above we could have:
2 The least upper bound only has to be computed for overlapping th annotations.

:- unit(foo(X)).
foo(a) th [1,2].
foo(b) th [3,4].

Where the first annotated fact states that unit foo with its argument instan-
tiated to a has the annotation th [1,2]. With these annotations, unit foo will
be eligible to match a goal in the context [..., foo(a), ...] in [1,4] but
its not eligible in the context [..., foo(b), ...] th [3,6] since in[1, 4] v
th[1, 2] and th[3, 6] 6v th[3, 4]. We call those annotated facts the temporal condi-
tions of the unit 3.

Each unit defines one temporally annotated predicate with the same name
as the unit and arity equal to the number of the unit arguments. For the case
of atemporal (timeless) units, it is assumed by default that we have the most
general unit designator annotated with the complete time line.

We decided that these temporal annotations can only appear as heads of rules
whose body is true, i.e. facts. Such restriction is motivated by efficiency reasons
since this way we can compute the least upper bound (t) of the th annotated
facts before runtime and this way checking the units temporal conditions during
a context search is simplified to the verification of partial order (v) between
annotations. Moreover, as we shall see in the examples, such restrictions are
not limitative since the expressiveness of contexts allow us to simulate TACLP
clauses.

Revisiting the employee example, units employee and index with temporal
information can be written as:

:- unit(employee(NAME, POSITION)).

employee(bill, ta) th [2004, inf].
employee(joe, ta) th [2002, 2006].
employee(joe, ap) th [2007, inf].
item.
position(POSITION).
name(NAME).

:- unit(index(POSITION, INDEX)).
index(ta, 10) th [2000, 2005].
index(ta, 12) th [2006, inf].
index(ap, 19) th [2000, 2005].
index(ap, 20) th [2006, inf].
item.
position(POSITION).
index(INDEX).

As an example, consider the goal:

?- at 2005 :> employee(joe, P) :> item.
P = ta

In this goal, after asserting that the context temporal annotation is at 2005,
unit employee is added to the context and goal item invoked. The evaluation of
item is true as long as the unit is eligible in the current context, and this is true
if P is instantiated with ta (teaching assistant), therefore P = ta.

Unit salary can be defined as:
3 The reader should notice that this way its still possible to annotate the entire unit,

since we can annotate the unit most general designator, for instance we could have
foo() th [1, 10].

:- unit(salary(SALARY)).
item :-

position(P), index(P, I) :> item,
base_salary(B), SALARY is B*I.

base_salary(100).

There is no need to annotate the goals position(P) or index(P, I) :>
item since they are evaluated in a context with the same temporal annotation.
To find out joe’s salary in 2005 we can do:

?- at 2005 :> employee(joe, P) :> salary(S) :> item.
P = ta
S=1000

In the goal above item is evaluated in the context [salary(S), employee(joe,
P)] (at 2005). Since salary is the topmost unit that defines it, the body of
the rule for such predicate is evaluated. In order to use the unit employee(joe,
P) to solve position(P), such unit must satisfy the temporal conditions (at
2005), that in this case stands for instantiating P with ta, therefore we obtain
position(ta). A similar reasoning applies for goal index(ta, I) :> item, i.e.
this item is resolved in context [index(ta, 10), salary(S), employee(joe,
ta)] (at 2005). The remainder of the rule body is straightforward, leading to
the answer P = ta and S = 1000.

4.1 Operational Semantics

To define the operational semantics we assume the following notation: C,C ′ for
contexts, u for unit, θ, σ, ϕ, ε for substitutions, α, β, γ for temporal annotations
and ∅, G for non-annotated goals.

We also assume a prior computation of the least upper bound for the units
th annotations. This procedure is rather straightforward and can be describe as:
if A th I and A th J are in a unit u, such that I and J overlap, then remove
those facts from u and insert A th(ItJ). This procedure stops when there are no
more facts in that conditions. Moreover, the termination is guaranteed because
at each step we decrease the size of a finite set, the set of th annotated facts.

Null goal

Cα ` ∅[ε]
(1)

The null goal is derivable in any temporal annotated context, with the empty
substitution ε as result.

Conjunction of goals

Cα ` G1[θ] Cαθ ` G2θ[σ]
Cα ` G1, G2[θσdvars(G1, G2)]

(2)

To derive the conjunction derive one conjunct first, and then the other in
the same context with the given substitutions 4.
Since C may contain variables in unit designators or temporal terms that
may be bound by the substitution θ obtained from the derivation of G1,
we have that θ must also be applied to Cα in order to obtain the updated
context in which to derive G2θ.

Context inquiry

Cα ` :> C ′β[θ]

{
θ = mgu(C,C ′)
β v α (3)

In order to make the context switch operation (4) useful, there needs to be an
operation which fetches the context. This rule recovers the current context
C as a term and unifies it with term C ′, so that it may be used elsewhere in
the program. Moreover, the annotation β must be less (or equal) informative
than the annotation α (β v α).

Context switch

C ′β ` G[θ]
Cα ` C ′β :< G[θ]

(4)

The purpose of this rule is to allow execution of a goal in an arbitrary
temporal annotated context, independently of the current annotated context.
This rule causes goal G to be executed in context C ′β.

Reduction

(uCα) θσ ` Bθσ[ϕ]
uC α ` G[θσϕdvars(G)]


H ← B ∈ u
θ = mgu(G,H)
(uθσ) β ∈ u
α v β

(5)

This rule expresses the influence of temporal reasoning on context search. In
an informal way we can say that when a goal (G) has a definition (H ← B ∈ u
and θ = mgu(G,H)) in the topmost unit (u) of the annotated context (uCα),
and such unit satisfies the temporal conditions, to derive the goal we must
call the body of the matching clause, after unification 5. The verification
of the temporal conditions stands for checking if there is a unit temporal
annotation ((uθσ)β ∈ u) that is “more informative” than the annotation of
the context (α v β), i.e. if (uθσ) α is true.

Context traversal:

4 The notation δdV stands for the restriction of the substitution δ to the variables in
V .

5 Although this rule might seem complex, that has to do essentially with the abun-
dance of unification’s (θσϕ)

Cα ` G[θ]
uCα ` G[θ]

{
pred(G) 6∈ u (6)

When none of the previous rules applies and the predicate of G isn’t defined
in the predicates of u (u), remove the top element of the context, i.e. resolve
goal G in the supercontext.

Application of the rules It is almost direct to verify that the inference rules are
mutually exclusive, leading to the fact that given a derivation tuple Cα ` G[θ]
only one rule can be applied.

4.2 Compiler

The compiler for this language can be obtained by combining a program trans-
formation with the compiler for TACLP [Frü96]. Given a unit u, such trans-
formation rewrites each predicate P in the head of a rule by P’ and adds the
following definition to unit u:

P :- Temporal_Conditions -> P’ ; :^P .

This states that resolving P is equivalent to invoking P’, only if the temporal
conditions are satisfied. If not, P must be solved in the supercontext (:^ P),
i.e. P is called in the context obtained by dropping u (the topmost unit) from
the current context.

The temporal condition can be formalized as the conjunction :< [U |] α, Uα,
where the first conjunct queries the context for its temporal annotation (α) and
its topmost unit (U), i.e. the current unit. The second conjunct checks if the
current unit satisfies the time of the context.

As it should be expected, the compiled language is CxLP with constraints.
Finally, since GNU Prolog/CX besides the CxLP primitives also has a constraint
solver for finite domains (CLP(FD)), the implementation of this language is
direct on such system.

4.3 Application to Legal Reasoning

Legal reasoning is a very productive field to illustrate the application of these
languages. Not only a modular approach is very suitable for reasoning about
laws but also time is pervasive in their definition.

The following example was taken from the British Nationality Act and it was
presented in [BMRT02] to exemplify the usage of the language MuTACLP. The
reason to use an existing example is twofold: not only we consider it to be a
simple and concise sample of legal reasoning but also because this way we can
give a more thorough comparison with MuTACLP. The textual description of
this law can be given as a person X obtains the British Nationality at time T if:

– X is born in the UK at the time T

– T is after the commencement
– Y is a parent of X
– Y is a British citizen or resident at time T.

Assuming that the temporal unit person represents the name and the place
where a person was born:

:- unit(person(Name, Country)).
person(john, uk) th [’1969-8-10’, inf].

The temporal annotation of this unit can be interpreted as the person time
frame, i.e. when she was born and when she died (if its alive, we represent it by
inf).

Before presenting the rule for the nationality act we still need to represent
some facts about who is a British citizen along with who is parent of whom:

:- unit(british_citizen(Name)).

british_citizen(bob)
th [’1940-9-6’, inf].

:- unit(parent(Parent, Son)).

parent(bob, john)
th [’1969-8-10’, inf].

Considering that the commencement date for this law is ’1955-1-1’, one for-
malization of this law in our language is 6:

th [L, _] :> person(X, uk) :> item, fd_min(L, T),
’1955-1-1’ #=< T,
at T :> (parent(Y, X) :> item,

(british_citizen(Y) :> item; british_resident(Y) :> item)).

The explanation of this goal is quite simple because each line of the goal
corresponds and is presented in the same order as the textual description of the
law given above.

5 Related Work

Since [BMRT02] relates MuTACLP with proposals such as Temporal Datalog
[OM94] and the work on amalgamating knowledge bases [Sub94], we decided to
confine ourselves to the comparison between MuTACLP and our language. Mu-
TACLP (Multi-Theory Temporal Annotated Constraint Logic Programming) is
a knowledge representation language that provides facilities for modeling and
handling temporal information, together with some basic operators for combin-
ing different knowledge bases. Although both MuTACLP and the language here
proposed use TACLP (Temporal Annotated Constraint Logic Programming) for
handling temporal information, it is in the way that modularity is dealt that they

6 fd min(X, N) succeeds if N is the minimal value of the current domain of X.

diverge: we follow a dynamic approach (also called programming-in-the-small)
while MuTACLP engages a static one (also called programming-in-the-large).

Moreover, the use of contexts allows for a more compact writing where some
of the annotations of the MuTACLP version are subsumed by the annotation
of the context. For instance, one of the rules of the MuTACLP version of the
example of legal reasoning is:

get_citizenship(X) at T <- T >= Jan 1 1955, born(X, uk) at T,
parent(Y, X) at T,
british_citizen(Y) at T.

6 Conclusion and Future Work

In this paper we presented a temporal extension of CxLP where time influences
the eligibility of a module to solve a goal. Besides illustrative examples we also
provided a compiler, allowing this way for the development of applications based
on these languages. Although we presented the operational semantics we consider
that to obtain a more solid theoretical foundation there is still need for a fixed
point or declarative definition.

Besides the domain of application exemplified we are currently applying the
language proposed to other areas such as medicine, natural language and work-
flow management systems.

Finally, it is our goal to show that this language can act as the backbone for
constructing and maintaining temporal information systems.

References

AD03. Salvador Abreu and Daniel Diaz. Objective: In minimum context. In Catus-
cia Palamidessi, editor, ICLP, volume 2916 of Lecture Notes in Computer
Science, pages 128–147. Springer, 2003.

BMRT02. Paolo Baldan, Paolo Mancarella, Alessandra Raffaetà, and Franco Turini.
Mutaclp: A language for temporal reasoning with multiple theories. In An-
tonis C. Kakas and Fariba Sadri, editors, Computational Logic: Logic Pro-
gramming and Beyond, volume 2408 of Lecture Notes in Computer Science,
pages 1–40. Springer, 2002.

Frü94. T. Frühwirth. Annotated constraint logic programming applied to tempo-
ral reasoning. In M. Hermenegildo and J. Penjam, editors, Programming
Language Implementation and Logic Programming: 6th International Sym-
posium (PLILP’94), pages 230–243. Springer, Berlin, Heidelberg, 1994.

Frü96. Thom W. Frühwirth. Temporal annotated constraint logic programming.
J. Symb. Comput., 22(5/6):555–583, 1996.

MP93. Lúıs Monteiro and António Porto. A Language for Contextual Logic Pro-
gramming. In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors,
Logic Programming Languages: Constraints, Functions and Objects, pages
115–147. MIT Press, 1993.

NA06. Vitor Nogueira and Salvador Abreu. Temporal contextual logic program-

ming. In Francisco J. López Fraguas, editor, Proceedings of the 15th

Workshop on Functional and (Constraint) Logic Programming (WFLP’06),
Madrid, Spain, November 2006. Electronic Notes in Theoretical Computer
Science.

OM94. Mehmet A. Orgun and Wanli Ma. An overview of temporal and modal
logic programming. In ICTL ’94: Proceedings of the First International
Conference on Temporal Logic, pages 445–479, London, UK, 1994. Springer-
Verlag.

RF00. Alessandra Raffaetà and Thom Frühwirth. Labelled deduction, chapter Se-
mantics for temporal annotated constraint logic programming, pages 215–
243. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

Sub94. V. S. Subrahmanian. Amalgamating knowledge bases. ACM Trans.
Database Syst., 19(2):291–331, 1994.

	Temporal Annotations for a Contextual Logic Programming Language
	Vitor Nogueira and Salvador Abreu

