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Existence, Nonexistence and Multiplicity
Results for Some Beam Equations

Feliz Manuel Minhós

Abstract. This paper studies the fourth order nonlinear fully equation

u(4)(x) + f
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
= s p(x)

for x ∈ [a, b] , f : [a, b] × R
4 → R, p : [a, b] → R

+ continuous functions and
s ∈ R, with the boundary conditions

u(a) = A , u′(a) = B ,

k1 u′′(a) − k2 u′′′(a) = C , k3 u′′(b) + k4 u′′′(b) = D

for A, B, C, D, k1, k3 ∈ R, k2, k4 ≥ 0 such that k2
1 + k2 > 0 and k2

3 + k4 > 0.
This problem models several phenomena, such as, a cantilevered beam

with a linear relation between the curvature and the shear force at both
endpoints. For some values of the real constants, it will be presented an
Ambrosetti–Prodi type discussion on s. The arguments used apply lower and
upper solutions technique, a priori estimations and topological degree theory.
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34L30; 47H10; 47H11.

Keywords. Nagumo-type conditions, lower and upper solutions, Leray–
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1. Introduction

In this paper it is studied the fourth order nonlinear fully equations

u(iv)(x) + f
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
= sp(x) , (Es)

for f : [a, b] × R
4 → R and p : [a, b] → R

+ continuous functions and s a real
parameter, with several types of two-point boundary conditions.

This work was partially supported by CRUP, Acção E-99/06.
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If

u(a) = A , u′(a) = B ,

k1 u′′(a) − k2 u′′′(a) = C , k3 u′′(b) + k4 u′′′(b) = D
(1.1)

for A,B,C,D, k1, k3 ∈ R, k2, k4 ≥ 0 such that k2
1 + k2 > 0 and k2

3 + k4 > 0 it will
be proved the existence of solutions to problem (Es)–(1.1) for the values of s such
that there are lower and upper solutions.

In Section 3 it is considered, for clearness, a particular case of the above
boundary conditions in [0, 1]:

u(0) = 0 , u′(0) = 0

k1 u′′(0) − k2 u′′′(0) = 0 , k3 u′′(1) + k4 u′′′(1) = 0
(1.2)

with k1, k2, k3, k4 ≥ 0 such that k1 + k2 > 0 and k3 + k4 > 0 and the existence of
solution for the problem (Es)–(1.2) will depend on s.

Taking, in (1.2), k2 = k4 = 0 and k1, k3 > 0, the two-point boundary condi-
tions are

u(0) = u′(0) = u′′(0) = u′′(1) = 0 (1.3)

and it is obtained in Section 4 an Ambrosetti–Prodi type result, that is, there are
s0, s1 ∈ R such that (Es)–(1.3) has no solution if s < s0, it has at least one solution
if s = s0 and (Es)–(1.3) has at least two solutions for s ∈]s0, s1].

As far as we know these Ambrosetti–Prodi results were never applied to
fourth order nonlinear fully equations. The arguments used were suggested by
several papers namely [2], applied to second order periodic problems, [10], to third
order three points boundary value problems, [1] for two-point boundary value
problems, and make use of Nagumo-type growth condition, [9], upper and lower
solutions technique for higher order boundary value problems, [3,4,7], and degree
theory, [6].

We point out that the localization of solutions provided by lower and upper
solutions method, combined with Ambrosetti–Prodi type results or by itself, can
be useful to prove the existence of positive solutions (if the lower function is non-
negative) or multiple solutions (if there are solutions in two disjoint branches).
In fact, this property is a sharp tool in some applications where bounds on the
solution or its derivatives are important, as it is illustrated in last section.

2. Existence and non-existence results

In the following, Ck([a, b]) denotes the space of real valued functions with con-
tinuous i-derivative in [a, b], for i = 1, ..., k, equipped with the usual norms. The
nonlinearity of (Es) must verify some growth conditions, given by next definition,
providing also an a priori estimate for u′′′, if some bounds on u, u′ and u′′ are
verified.
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Definition 2.1. A continuous function g : [a, b]×R
4 → R is said to satisfy Nagumo-

type conditions in

E =
{
(x, y0, y1, y2, y3) ∈ [a, b] × R

4 : γi(x) ≤ yi ≤ Γi(x), i = 0, 1, 2
}

,

with γi(x) and Γi(x) continuous functions such that γi(x) ≤ Γi(x), for each i and
every x ∈ [a, b], if there exists a continuous function hE : R

+
0 → [k,+∞], for some

fixed k > 0, such that

|g(x, y0, y1, y2, y3)| ≤ hE(|y3|) , ∀(x, y0, y1, y2, y3) ∈ E , (2.1)

with ∫ +∞

0

ξ

hE(ξ)
dξ = +∞ . (2.2)

Lemma 2.2. Let f : [a, b]×R
4 → R be a continuous function that satisfies Nagumo-

type conditions (2.1) and (2.2) in

E =
{
(x, y0, y1, y2, y3) ∈ [a, b] × R

4 : γi(x) ≤ yi ≤ Γi(x), i = 0, 1, 2
}

,

where γi(x) and Γi(x) are continuous functions. Then there is r > 0 such that
every solution u(x) of (Es) verifying γi(x) ≤ u(i)(x) ≤ Γi(x), for i = 0, 1, 2 and
every x ∈ [a, b], satisfies ‖u′′′‖ < r.

The proof is contained in [4].
To apply upper and lower solutions method it will be considered the following

type of functions:

Definition 2.3. Consider A,B,C,D, k1, k2, k3, k4 ∈ R such that k2, k4 ≥ 0, k2
1 +

k2 > 0 and k2
3 + k4 > 0.

A function α(x) ∈ C4(]a, b[) ∩ C3([a, b]) is a lower solution of (Es)–(1.1) if

α(4)(x) + f
(
x, α(x), α′(x), α′′(x), α′′′(x)

)
≥ s p(x) , (2.3)

for x ∈]a, b[, and

α(a) ≤ A , α′(a) ≤ B ,

k1 α′′(a) − k2 α′′′(a) ≤ C , k3 α′′(b) + k4 α′′′(b) ≤ D .

A function β(x) ∈ C4(]a, b[)∩C3([a, b]) is an upper solution if the inequalities are
reversed.

For s such that there are upper and lower solutions of (Es)–(1.1) with the
second derivatives “well ordered”, it is obtained not only an existence result but
also some information concerning the location of the solution of (Es)–(1.1) and its
derivatives.

Theorem 2.4. Let f : [a, b]×R
4 → R be a continuous function. Suppose that there

are lower and upper solutions of (Es)–(1.1), α(x) and β(x), respectively, such that,
α′′(x) ≤ β′′(x), for x ∈ [a, b], and f satisfies Nagumo-type conditions in

E∗ =
{

(x, y0, y1, y2, y3) ∈ [a, b] × R
4 : α(i)(x) ≤ yi ≤ β(i)(x), i = 0, 1, 2

}
.
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If f verifies

f
(
x, α(x), α′(x), y2, y3

)
≤ f(x, y0, y1, y2, y3) ≤ f

(
t, β(x), β′(x), y2, y3

)
, (2.4)

for fixed (x, y2, y3) ∈ [a, b] × R
2 and α(x) ≤ y0 ≤ β(x), α′(x) ≤ y1 ≤ β′(x) then

(Es)–(1.1) has at least a solution u(x) ∈ C4([a, b]) satisfying

α(x)≤u(x)≤β(x) , α′(x)≤u′(x)≤β′(x) , α′′(x)≤u′′(x)≤β′′(x) , ∀x∈ [a, b] .

The proof is a particular case of the main result of [4].
A first discussion on s about the existence and nonexistence of a solution will

be done, for clearness, in [0,1] with A = B = C = D = 0 and k1, k2, k3, k4 ≥ 0
with k1 + k2 > 0, k3 + k4 > 0, that is, for problem (Es)–(1.2). Lower and upper
solutions definition for this problem are obtained considering these restrictions:

Definition 2.5. For k1, k2, k3, k4 nonnegative real numbers such that k1 + k2 > 0
and k3 + k4 > 0, a function α(x) ∈ C4(]0, 1[) ∩ C3([0, 1]) is a lower solution of
(Es)–(1.2) if it verifies (2.3) in ]0, 1[ and

α(0) ≤ 0 , α′(0) ≤ 0 ,

k1 α′′(0) − k2 α′′′(0) ≤ 0 , k3 α′′(1) + k4 α′′′(1) ≤ 0 .

A function β(x) is an upper solution if it satisfies the reversed inequalities.

Theorem 2.6. Let f : [0, 1]×R
4 → R be a continuous function satisfying Nagumo-

type condition and such that:
(H1) f is nondecreasing on the second and third variables;
(H2) f is nonincreasing on the fourth variable;
(H3) there are s1 ∈ R and r > 0 such that

f(x, 0, 0, 0, 0)
p(x)

< s1 <
f(x, y0, y1,−r, 0)

p(x)
, (2.5)

for every x ∈ [0, 1] and every y0 ≤ −r and y1 ≤ −r. Then there is s0 < s1 (with
the possibility that s0 = −∞) such that: for s < s0, (Es)–(1.2) has no solution; for
s0 < s ≤ s1, (Es)–(1.2) has at least one solution.

Proof. Defining s∗ = max {f(x, 0, 0, 0, 0)/p(x), x ∈ [0, 1]}, by (2.5), there exists
x∗ ∈ [a, b] such that

f(x, 0, 0, 0, 0)
p(x)

≤ s∗ =
f(x∗, 0, 0, 0, 0)

p(x∗)
< s1 , ∀x ∈ [0, 1] ,

and, by the first inequality, β(x) ≡ 0 is an upper solution of (Es∗)–(1.2).
The function α(x) = −r x2/2 is a lower solution of (Es∗)–(1.2) and, by

Theorem 2.4, there is s∗ < s1 and a solution of (Es∗)–(1.2) with s∗ < s1. Suppose
that (Eσ)–(1.2) has a solution uσ(x). For s such that σ ≤ s ≤ s1,

u(4)
σ (x) ≤ s p(x) − f

(
x, uσ(x), u′

σ(x), u′′
σ(x), u′′′

σ (x)
)

and so uσ(x) is an upper solution of (Es)–(1.2) for every s such that σ ≤ s ≤ s1.
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For r > 0 given by (2.5) take R ≥ r large enough such that

u′′
σ(0) ≥ −R, u′′

σ(1) ≥ −R and min
x∈[0,1]

u′
σ(x) ≥ −R (2.6)

the function α(x) = −Rx2/2 is a lower solution of (Es)–(1.2) for s ≤ s1. If there
is x ∈ [0, 1] such that u′′

σ(x) < −R, define

min
x∈[0,1]

u′′
σ(x) := u′′

σ(x0) (< −R) ,

then, by (2.6), x0 ∈ ]0, 1[ , u′′′
σ (x0) = 0, u

(4)
σ (x0) ≥ 0. By (H1), (H2), (2.6)

and (2.5), the following contradiction is obtained

0 ≤ u(4)
σ (x0) ≤ σ p(x0) − f

(
x0, uσ(x0), u′

σ(x0),−R, 0
)

≤ s1 p(x0) − f(x0,−R,−R,−R, 0) < 0 .

So −R ≤ u′
σ(x), for every x ∈ [0, 1], and, by Theorem 2.4, problem (Es)–(1.2)

has at least a solution u(x) for every s such that σ ≤ s ≤ s1. Let S = {s ∈ R :
(Es)–(1.2) has at least a solution}. As s∗ ∈ S then S �= ∅. Defining s0 = inf S,
therefore, s0 ≤ s∗ < s1 and (Es)–(1.2) has at least a solution for s ∈]s0, s1] and it
has no solution for s < s0. Observe that if s0 = −∞ then (Es)–(1.2) has a solution
for every s ≤ s1. �

3. Multiplicity results

In the particular case of boundary conditions (1.1) where k2 = k4 = A = B =
C = D = 0 and k1, k3 > 0 it will be proved the existence of a second solution for
problem (Es)–(1.3) as a consequence of a non null degree for the same operator in
two disjoint sets.

The arguments are based on strict lower and upper solutions an some new
assumptions on the nonlinearity.

Definition 3.1. Consider α, β : [0, 1] → R such that α, β ∈ C3(]0, 1[) ∩ C2([0, 1]).
A function α(x) is a strict lower solution of (Es)–(1.3 ) if

α(4)(x) + f
(
x, α(x), α′(x), α′′(x), α′′′(x)

)
> s p(x) , for x ∈]0, 1[ ,

α(0) ≤ 0 , α′(0) ≤ 0 , α′′(0) < 0 , α′′(1) < 0 .
(3.1)

A function β(x) is a strict upper solution of (Es)–(1.3) if the reversed inequalities
hold.

Define the set X = {y ∈ C2([0, 1]) : y(0) = y′(0) = y′′(0) = y′′(1) = 0}
and the operators L : dom L → C([a, b]), with dom L = C4([0, 1]) ∩ X, given by
Lu = u(4) and, for s ∈ R, Ns : C3([0, 1]) ∩ X → C([0, 1]) given by

Nsu = f
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
− s p(x) .

For an open and bounded set Ω ⊂ X, the operator L + Ns is L-compact
in Ω, [6]. Remark that in dom L the equation Lu + Nsu = 0 is equivalent to
problem (Es)–(1.3).
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Next result will be an important tool to evaluate the Leray–Schauder topo-
logical degree.

Lemma 3.2. Consider a continuous function f : [a, b] × R
3 → R verifying a

Nagumo-type condition and (H1). If there are strict lower and upper solutions
of (Es)–(1.3), α(x) and β(x), respectively, such that

α′′(x) < β′′(x) , ∀x ∈ [0, 1] , (3.2)

then there is ρ3 > 0 such that d(L + Ns,Ω) = ±1 for

Ω =
{

y ∈ domL : α(i)(x) < y(i)(x) < β(i)(x), i = 0, 1, 2, ‖y′′′‖ < ρ3

}
.

Remark 3.3. The set Ω can be taken the same, independent of s, as long as α and β
are strict lower and upper solutions for (Es)–(1.3) and s belongs to a bounded set.

Proof. For i = 0, 1, 2 define the truncations

δi(x, yi) = max
{

α(i)(x),min
{

yi, β
(i)(x)

}}
, ∀(x, yi) ∈ [0, 1] × R

consider the modified problem
{

u(4)(x) + F
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
= s p(x)

u(0) = u′(0) = u′′(0) = u′′(1) = 0
(3.3)

with F : [0, 1] × R
4 → R a continuous function given by

F (x, y0, y1, y2, y3) = f
(
x, δ0(x, y0), δ1(x, y1), δ2(x, y2), y3

)
− y2 + δ2(x, y2)

and define the operator Fs : C3([0, 1]) ∩ X → C([0, 1]) by

Fsu = F
(
x, u(x), u′(x), u′′(x), u′′′(x)

)
− s p(x) .

With these definitions problem (3.3) is equivalent to the equation Lu + Fsu = 0
in dom L. For λ ∈ [0, 1] and u ∈ dom L consider the homotopy

Hλu := Lu − (1 − λ) u′′ + λ Fsu

and take ρ2 > 0 large enough such that, for every x ∈ [0, 1],

−ρ2 ≤ α′′(x) < β′′ ≤ ρ2 ,

s p(x) − f(x, α(x), α′(x), α′′(x), 0) − ρ2 − α′′(x) < 0

and
s p(x) − f

(
x, β(x), β′(x), β′′(x), 0

)
+ ρ2 − β′′(x) > 0 .

Following similar arguments to the proof of Theorem 2.4, there is ρ3 > 0 such that
every solution u(x) of Hλu = 0 satisfies ‖u′′‖ < ρ2 and ‖u′′′‖ < ρ3, independently
of λ ∈ [0, 1]. Defining Ω1 = {y ∈ dom L : ‖y′′‖ < ρ2, ‖y′′′‖ < ρ3} then, every
solution u of Hλu = 0 belongs to Ω1 for every λ ∈ [0, 1], u /∈ ∂Ω1 and the degree
d(Hλ,Ω1) is well defined, for every λ ∈ [0, 1].

For λ = 0 the equation H0u = 0, that is, the linear problem
{

u(4)(x) − u′′(x) = 0
u(0) = u′(0) = u′′(0) = u′′(1) = 0
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has only the trivial solution and, by degree theory, d(H0,Ω1) = ±1. By the invari-
ance under homotopy

±1 = d(H0,Ω1) = d(H1,Ω1) = d(L + Fs,Ω1) . (3.4)

By (3.4), there is u1(x) ∈ Ω1 solution of Lu + Fsu = 0. Assume, by contra-
diction, that there is x ∈ [0, 1] such that u′′

1(x) ≤ α′′(x) and define

min
x∈[0,1]

[
u′′

1(x) − α′′(x)
]

:= u′′
1(x1) − α′′(x1) (≤ 0) .

From (3.1) x1 ∈]0, 1[, u′′′
1 (x1)− α′′′(x1) = 0 and u

(4)
1 (x1)− α(4)(x1) ≥ 0. By (H1),

the following contradiction is achieved

u
(4)
1 (x1) = s p(x1) − F

(
x1, u1(x1), u′

1(x1), u′′
1(x1), u′′′

1 (x1)
)

≤ s p(x1) − f
(
x1, α(x1), α′(x1), α′′(x1), α′′′(x1)

)
+ u′′

1(x1) − α′′(x1)

≤ s p(x1) − f
(
x1, α(x1), α′(x1), α′′(x1), α′′′(x1)

)
< α(4)(x1) .

Therefore u′′
1(x) > α′′(x), for x ∈ [0, 1]. By a similar way it can be proved that

u′′
1(x) < β′′(x), for every x ∈ [0, 1]. By integration and (1.3), u1 ∈ Ω.

As the equations Lu + Fsu = 0 and Lu + Nsu = 0 are equivalent on Ω then

d(L + Fs,Ω1) = d(L + Fs,Ω) = d(L + Ns,Ω) = ±1 ,

by (3.4) and the excision property of the degree. �

The main result is attained assuming that f is bounded from below and it
satisfies some adequate condition of monotonicity-type which requires different
“speeds” of growth.

Theorem 3.4. Let f : [0, 1] × R
4 → R be a continuous function such that the

assumptions of Theorem 2.6 are fulfilled. Suppose that there is M ∈ R such that
every solution u of (Es)–(1.3), with s ≤ s1, satisfies

u′′(x) < M , ∀x ∈ [0, 1] , (3.5)

and there exists m ∈ R such that

f(x, y0, y1, y2, y3) ≥ m p(x) , (3.6)

for every (x, y0, y1, y2, y3) ∈ [0, 1]× [−r, |M |]2× [−r,M ]×R, with r given by (2.5).
Then s0, provided by Theorem 2.6, is finite and: if s < s0, (Es)–(1.3) has no
solution; if s = s0, (Es)–(1.3) has at least one solution.

Moreover, let M1 := max{r, |M |} and assume that there is θ > 0 such that,
for every (x, y0, y1, y2, y3) ∈ [0, 1] × [−M1,M1]

3 × R and 0 ≤ η0, η1 ≤ 1,

f(x, y0 + η0 θ, y1 + η1 θ, y2 θ, y3) ≤ f(x, y0, y1, y2, y3) . (3.7)

Then for s ∈]s0, s1], (Es)–(1.3) has at least two solutions.



Da-TeX Infos:
Band: Staicu
Kapitel: 20
Status: Normierung
Bearbeiter: Beate
September 4, 2007

252 F. M. Minhós

Proof. If, by contradiction, there are s ∈]s0, s1], u solution of (Es)–(1.3) and x2 ∈
[0, 1] such that

u′′(x2) := min
x∈[0,1]

u′′(x) ≤ −r .

By (1.3), x2 ∈]0, 1[, u′′′(x2) = 0 and u(4)(x2) ≥ 0. By (H2),

0 ≤ u(4)(x2) ≤ s1 p(x2) − f
(
x2, u(x2), u′(x2),−r, 0

)
.

If u(x2) < −r and u′(x2) < −r, from (2.5) the following contradiction is obtained

0 ≤ s1 p(x2) − f
(
x2, u(x2), u′(x2),−r, 0

)
< 0 .

If u(x2) ≥ −r and u′(x2) ≤ −r (the case u(x2) ≤ −r and u′(x2) ≥ −r is similar),
from (H1) and (2.5), this contradiction is achieved

0 ≤ s1 p(x2) − f
(
x2, u(x2), u′(x2),−r, 0

)
≤ s1 p(x2) − f

(
x2, u(x2),−r,−r, 0

)
< 0 .

If u(x2) ≥ −r and u′(x2) ≥ −r then

0 ≤ s1 p(x2) − f
(
x2, u(x2), u′(x2),−r, 0

)
≤ s1 p(x2) − f(x2,−r,−r,−r, 0) < 0 .

Therefore, every solution u of (Es)–(1.3), with s0 < s ≤ s1, verifies u′′(x) > −r,
for x ∈ [0, 1] , and, by (3.5), −r < u′′(x) < M, for every x ∈ [0, 1] . Integrating on
[0, x], it is obtained −r ≤ −rx < u′(x) < M x ≤ |M | , ∀x ∈ [0, 1] .

Suppose that s0 = −∞, that is, by Theorem 2.6, for every s ≤ s1 problem
(Es)–(1.3) has at least a solution. Define

p1 := min
x∈[0,1]

p(x) > 0

and take s sufficiently small such that

m − s > 0 and
(m − s) p1

16
> M .

If u(x) is a solution of (Es)–(1.3), then, by (3.6), u(4)(x) ≤ (s − m) p(x) and,
by (1.3), there is x3 ∈]0, 1[ such that u′′′(x3) = 0. For x < x3

u′′′(x) = −
∫ x3

x

u(4)(ξ) dξ ≥
∫ x3

x

(m − s) p(ξ) dξ ≥ (m − s)(x3 − t) p1 .

For x ≥ x3

u′′′(x) =
∫ x

x3

u(4)(ξ) dξ ≤ (s − m)(x − x3) p1 .

Choose I =
[
0, 1

4

]
, or I =

[
3
4 , 1

]
, such that |x3 − t| ≥ 1

4 , for every x ∈ I. If
I =

[
0, 1

4

]
, then u′′′(x) ≥ (m − s)p1/4, for x ∈ I, and if I =

[
3
4 , 1

]
, then u′′′(x) ≤

(s − m) p1/4, for x ∈ I. In the first case,

0 =
∫ 1

4

0

u′′′(x) dx +
∫ 1

1
4

u′′′(x) dx ≥
∫ 1

4

0

(m − s) p1

4
dx − u′′

(
1
4

)

=
1
16

(m − s) p1 − u′′
(

1
4

)
> M − u′′

(
1
4

)
,

which is in contradiction with (3.5).
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For I =
[
3
4 , 1

]
a similar contradiction is achieved. Therefore, s0 is finite.

By Theorem 2.6, for s−1 < s0, (Es−1)–(1.3) has no solution. By Lemma 2.2,
consider ρ3 > 0 large enough such that the estimate ‖u′′′‖ < ρ3 holds for every u
solution of (Es)–(1.3), with s ∈ [s−1, s1] .

Define M1 := max{r, |M |} and the set

Ω2 =
{
y ∈ dom L : ‖y′′‖ < M1, ‖y′′′‖ < ρ3

}
.

Then d(L + Ns−1 ,Ω2) = 0. If u is a solution of (Es)–(1.3), with s ∈ [s−1, s1] , then
u /∈ ∂Ω2. Defining the convex combination of s1 and s−1 as H(λ) = (1−λ)s−1+λs1

and considering the corresponding homotopic problems (EH(λ))–(1.3), the degree
d(L + NH(λ),Ω2) is well defined for every λ ∈ [0, 1] and for every s ∈ [s−1, s1] .
Therefore, by the invariance of the degree

0 = d(L + Ns−1,Ω2) = d(L + Ns,Ω2) , (3.8)

for s ∈ [s−1, s1] . Let σ ∈]s0, s1] ⊂ [s−1, s1] and uσ(x) be a solution of (Eσ)–(1.3),
which exists by Theorem 2.6. Take ε > 0 such that

|u′′
σ(x) + ε| < M1 , ∀x ∈ [0, 1] . (3.9)

Then ũ(x) := uσ(x)+εx2

2 is a strict upper solution of (Es)–(1.3), with σ < s ≤ s1.

In fact, by (3.7) with θ = ε, η0 = x2

2 and η1 = x for such σ,

ũ(4)(x) = u(4)
σ (x) < s p(x) − f

(
x, uσ(x), u′

σ(x), u′′
σ(x), ũ′′′(x)

)

≤ s p(x) − f

(
x, uσ(x) + ε

x2

2
, u′

σ(x) + εx, ũ′′(x) + ε, ũ′′′(x)
)

= s p(x) − f
(
x, ũ(x), ũ′(x), ũ′′(x), ũ′′′(x)

)
;

ũ(0) = 0 , ũ′(0) = 0 , ũ′′(0) = ũ′′(1) = ε > 0 .

Moreover α(x) := −r x2

2 is a strict lower solution of (Es)–(1.3), for s ≤ s1. Indeed,
by (2.5) and (H1),

α(4)(x) = 0 > s1 p(x) − f(x,−r,−r,−r, 0) ≥ s p(x) − f

(
x,−r

x2

2
,−rx,−r, 0

)
;

α(0) = α′(0) = 0 , α′′(0) = α′′(1) = −r < 0 .

As −r < u′′
σ(x) for every x ∈ [0, 1] and therefore −r < u′′

σ(x) + ε, ∀x ∈ [0, 1],
that is, α′′(x) < ũ′′(x). Integrating on [0, x], α′(x) ≤ α′(x)−α′(0) < ũ′(x)−ũ′(0) =
ũ′(x), for every x ∈ [0, 1]. Then, by (3.9), Lemma 3.2 and Remark 3, there is ρ3 > 0,
independent of s, such that for

Ωε =
{

y ∈ domL : α(i)(x) < y(i)(x) < ũ(i)(x), i = 0, 1, 2, ‖y′′′‖ < ρ3

}

the degree of L + Ns in Ωε satisfies

d(L + Ns,Ωε) = ±1 , for s ∈]σ, s1] . (3.10)
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Taking ρ3 in Ω2 large enough such that Ωε ⊂ Ω2, by (3.8), (3.9) and the additivity
of the degree, we obtain

d(L + Ns,Ω2 − Ωε) = ∓1 , for s ∈]σ, s1] . (3.11)

So, problem (Es)–(1.3) has at least two solutions u1, u2 such that u1 ∈ Ωε and
u2 ∈ Ω2 − Ωε, for s ∈]s0, s1], since σ is arbitrary in ]s0, s1].

Consider a sequence (sm) with sm ∈]s0, s1] and lim sm = s0. By Theorem 2.6,
for each sm, (Esm

)–(1.3) has a solution um. Using the estimates of Step 1, ‖u(i)
m ‖ <

M1, i = 0, 1, 2, independently of m. As there is ρ̃3 > 0 large enough such that
‖u′′′

m‖ < ρ̃3, independently of m, t hen sequences (um), (u′
m) and (u′′

m), m ∈ N, are
bounded in C([0, 1]). By the Arzèla-Ascoli theorem, we can take a subsequence of
(um) that converges in C3([0, 1]) to a solution u0(x) of (Es0)–(1.3). Hence, there
is at least one solution for s = s0. �
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