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A case study on the use of a predictive adaptive  algorithm to control pool level in a pilot water distribuition 
canal is described. The algorithm is a modification of the basic MUSMAR controller that includes parallel 
integral action and, in the case of multiple pools, feedforward action to coordinate the gates. Experimental 
results in the case of a single pool and simulations for multiple pools  are presented. The contributions of the 
paper stem from the explicitation of  rules for tuning the adaptive controller in a practical situation and from the 
coordination of different pools using reduced complexity controllers and feedforward  in a multivariable setting. 

 

1. INTRODUCTION 

 
The problem considered in the paper is the control of the pool level in a pilot water 

distribution canal. This problem has been the subject of a lot of attention, of which [1-5] are 
representative examples. The main difficulties are unmodelled dynamics (the plant is infinite 
dimensional), variable transport delays and strong interactions between the different subsystems 
(pools). While the generatility of existing references depart from a model that is initially identified, 
serving then as a basis for controller design, the approach followed in this paper relies on adaptive 
control and hence allows for changes of the canal dynamics due to unpredictable factors that slowly 
act over time. This approach has also the advantage of not requiring the expensive initial phase of 
modelling. 

In order to control the canal the predictive adaptive MUSMAR algorithm was selected [6]. 
This algorithm has a number of advantageous features such as a certain degree of insensivity with 
respect to plant i/o transport delay and unmodelled dynamics [7]. It has been applied to several 
industrial or large scale plants with distributed parameter dynamics including industrial boilers [8], 
arc welding [9] and distributed collector solar fields [10].  
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The present paper includes results for a single pool as well as for multiple pools. Both the 
objectives of tracking a reference and regulating the level in the presence of disturbances for each 
pool level are considered. The paper is organised as follows: After this introduction, the plant is 
described in section 2. Section 3 describes the algorithm and its adaptation to the problem at hand 
and section 4 presents experimental and simulation results. Conclusions are drawn in section 5. 
 

2.   PLANT DESCRIPTION 

 
The plant to be controlled is the experimental canal of Núcleo de Hidráulica e Controlo de 

Canais of  UNiversidade de Évora, located in the south of Portugal. Figs. 1 and 2 show a general 
view of it. It has been the subject of other studies, e. g. [4]. 

 

 
 

1. Overall view of the experimental canal. 
 

             
 

2. The end of the computer controlled canal with gate 3 (foreground) and gate 4 (background) and the beginning of the 
returning traditional canal (feft). On the right the wells where two level sensors are installed can be seen. 

 



H0 C1
C2

C3
C4

J1
M1

J2
M2

J3
M3

M4

Discharge

Q1 Q2 Q3 Q4

Reservoir

u1 u2 u3

u4

Gate 1 Gate 2 Gate 3

Gate 4

Pool 1
Pool 2

Pool 3
Pool 4

 
3. Schematic view of the experimental computer controlled canal. 

 
The canal has 141 m long and is divided in 4 pools, separated by gates. A SCADA system 

allows to perform computer control of the system with a sampling interval of 1 s. From the systems 
point of view, this is a distributed parameter system with 4 inputs (the gate position commands), 4 
outputs (the level of each pool measured just before each gate) and 4 disturbances (water flow 
outlets in each pool). Fig. 3 shows a schematic view of the canal, with the main variables indicated. 
 
 
3. THE CONTROL ALGORITHM 

 
Many natural systems rely on multiple individual actions that combine in a probabilistic way to 
yield the desired result. In a control framework, this inspires a structure where the control decision 
is based on the probabilistic merging of multiple agents, such as shown in fig. 4. Each agent 
receives the same plant signals but takes partial decisions assuming different scenarios. A 
probabilistic combination of these partial actions yields the final control decision. 
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3. Control decision based on the probabilistic merging of multiple agents. 

 
In an ideal situation (perfect modelling, complete state information, no disturbances, no 
nonlinearities), only one agent (one controller, based on a single plant model) would be enough to 
achieve a high performance controller. In the presence of non-ideal factors, however, a controller 
based on just one agent is prone to yield incorrect control actions. If, instead, the controller is based 
on multiple agents (simpler controllers based on different plant models), the diversity thereby 
introduced leads to increased performance and robustness properties. 
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4. Diversity based plant description using multiple predictors sharing a common regressor build from plant data, 
assuming a constant feedback from 1+t  up to Tt + . 

 
In order to achieve a practical control algorithm, the plant I is described (fig. 4) by multiple 
predictive models, sharing a common regressor. Assuming a constant feedback to act on the plant, 
the predictive models are described by 

)()(')()( tvtstuity iii ++=+ ψθ  

        Ti ,,1 K=  
 

where u  is the manipulated variable, y is the deviation of the output of the system to control with 
respect to the set-point, v  and w  are residues orthogonal to the data in a least squares sense and 

iiii φµψθ ,,, are parameters to be extracted from plant data using Least Squares. The pseudo-state 

vector )(ts  is made from samples of past plant data and defines the controller structure. An 
example is 

[ ]')1()()()1()1()(:)( +−−−+−= ptwtwmtutuntytyts LLL  
where w is an auxiliary signal (system’s internal variable or accessible disturbance). Each of the 
individual agents is designed such as to minimize the single-step horizon i steps ahead cost 
functional given by 

[ ]ti IituityEtJ |)1()()( 22 −+++= ρ          Ti ,,1 K=  

where [ ]tIE |o is the mean conditioned on the available observations up to time t , tI . 
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5. Realization of the MUSMAR control [6] law by merging T self-tuners, each matched to a single-step horizon i-steps 
ahead cost functional. Compare with fig. 2. 
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The control action generated by the partial controller (agent) i is given by a feedback from the 
pseudo-state )(ts  
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and the probabilistic weights for merging these actions are given by [2] (see fig. 4 for a block 
diagram that parallels fig. 2): 
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Actually, this multiple actions merge to yield the control action simply defined by 
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This controller has a number of interesting features that are a consequence of the diversity features 
that it embodies. In particular, the update of the gain vector F  is made suich as to minimize the 
steady state quadratic cost defined by 
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6. Multiple predictors parameter update from plant data, using a common Kalman gain 
and redundant estimates. 

 
Indeed, the update of F  in two consecutive time steps is given by 
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j µρθα , sR is an approximation of the Hessian matrix of ∞J  and ))1(( −∇ ∞ tFJT  

is an approximation of the gradient of the steady state cost with respect to the cost. Hence, the 
controller acts as an approximation to a Newton type minimization algorithm that seeks the 
minimum of the steady state quadratic cost. Furthermore, this approximation becomes better when 
the number of predictive models (the diversity) increases. 
 
Separate MUSMAR controllers are employed for each pool, but with feedforward signals designed 
in such a way has to coordinate them. This is achieved by using as accessible disturbance in each 
controller the sum of the tracking error of the precedent pools. Furthermore, a low gain integrator is 
used in pareallel to eliminate stationary tracking errors (fig. 7). 
 

Ref
MUSMAR Canal Pool

Ki /s

u m

+ -

+
+

 
 

7. Block diagram of the controller:MUSMAR with the parallel integrator. 
 
4. RESULTS 

Figs. 8 and 9 show experimental results for a single pool. The configuration used was 10=T  
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8. Tracking a reference level. Left: model and reference (top) and manipulated variable (bottom). Right: Contribution 
of the integral effect (middle) and of MUSMAR (bottom) to the manipulated variable.  Experimental results with one 

pool. 
 

3=n , 2=m , 01.0=ρ  and 02.0−=IK . Fig. 8 (right) shows how MUSMARE and the parallel 
integrator conjugate their control actions. MUSMAR acts essentially during the transients, 
providing a fast response, while the integrator adjusts the gate position during steady state to 
achieve zero tracking error. 



 Fig. 9 shows experimental results on disturbance rejection. The disturbances are induced by 
opening the exterior outlet to simulate the use of water for irrigation. When the outlet 2Q opens, the 
gate closes to compensate the loss in water flow. 
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9. Rejecting disturbances due to the opening of the external outlet: Measured level and constant reference  (above) and 
manipulated variable (below). 

 
Figs 10 and 11 show simulation results when the four pools of the canal are controlled each with a 
MUSMAR controller having an integrator in parallel. The simulation was performed using a 
SIMULINK model based on the numeric integration of the Saint-Venant equations that has been 
calibrated with plant data. 
 
In a practical situation, a canal is usually operated with a constant reference. In this case, for the 
sake of testing the dynamic response of the controlled canal, the reference of pools 1 and 3 is made 
to vary in alternation, according to squared signals. This induces disturbances from the one pool 
into the others, resulting in frequent level changes. 
 
In the case of fig. 11 there is a feedforward included in the pseudo-state made from the sum of the 
tracking errfors of the previous pools, while for fig. 10 this feedforward action is not used. The 
rationale for this consists in the fact that the controller of a pool will act to compensate the existing 
tracking error and this results in the retention of release of a certain quantity of water that will 
disturbe the down-stream pools forcing their controllers, in turn, to react. The feedforward action 
allows a corrective action that anticipates the effect of the water expected to arrive due to the action 
of the upstream controllers. 
 
As can be seen by comparying both figures, the feedforward action results in oscillations of small 
amplitude. 
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. 10. Tracking a reference level. Level and reference of the four pools when all pools are controlled with MUSMAR. 
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11. Tracking a reference level. Level and reference of the four pools when all pools are controlled with MUSMAR with 
feedforward. 



5. CONCLUSIONS 
 
The paper shows how to configure a predictive adaptive controller in a practical situation. 

Prediction over extended horizon is needed for tackling the difficulties associated with the variable 
delays associated to the transport phenomena (water displacement). The redundancy in the 
identification of the predictive models helps tackling unmodeled dynamics inherent to an infinite 
order (distributed) plant. Furthermore, this is a multivariable plant with strong interaction between 
the different parts. Although MUSMAR could be configured as a multivariable controller, this 
would yield severe identifyability problems. The results show that the feedforward scheme 
proposed allows to achieve a good perfcormance due to a balance between pool coordination and 
reducing the identifyability problems.  
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