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Abstract: In presence of linear diffusion and non-positive dispersion, we prove well-posedness of the nonlinear

conservation equation uy + f(u)y = €Ugy .

— 6(u2,)z. Then, as the right-hand perturbations vanish, we prove

convergence of the previous solutions to the entropy weak solution of the hyperbolic conservation law w;+ f (u), =

0.
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1 Introduction

We consider the initial value problem

ur + f(u)y = elge — 6(uzy)e (1)
u(z,0) = up(x). (2)

When § = 0 we reduce to the (generalized) Burg-
ers’ equation and the approximate solutions u*° con-
verge to the solution of the inviscid Burgers’ equa-
tion (this is the vanishing viscosity method, see, e.g.,
Whitham [13] or Kruzkov [6])

u + f(u)e =0 3)
u(z,0) = uo(z). @)

On the other hand, when € = 0, if we consider the flux
function f(u) = u? and the linear dispersion dt,,
we obtain the Korteweg-de Vries equation. The ap-
proximate solutions u° do not converge in a strong
topology, Lax-Levermore [7]). So, as parameters ¢
and ¢ vanish, we are concerned with singular limits
and to ensure convergence it is necessary a dominant
dissipation regime.

The pioneer study of these singular limits
was given by Schonbek [11] about (generalized)
Korteweg-de Vries-Burgers equation

Ut + f(u)x = EUgy — 6u$xw

In the case of a convex flux function f(u), she proved
the convergence under the condition that § = o(g?),
while the sharp condition should be, according to
Perthame-Ryzhic [10], § = o(e!).

See also the analogy between the singular limit
for the Korteweg-de Vries-Burgers equation and the
hydrodynamic limit of the kinetic Boltzmann equa-
tion for a rarefied gas to the continuum Euler equa-
tions of compressible gas dynamics as the Knudsen
number approaches zero in “From Boltzmann to Eu-
ler: Hilbert?s 6th problem revisited”, Slemrod [12].

LeFloch-Natalini [8] proved the convergence in
the case of a nonlinear viscosity function 8 and linear
capillarity

ur + f(u)m = Eﬁ(um)x - 5ux:rx

Then, Correia-LeFloch [4] improved the estimates in
Schonbek [11] and LeFloch-Natalini [8] and for the
first time treated the multidimensional equation, but
still in the case of a nonlinear viscosity function and
linear capillarity. In fact, there, the dominant dissipa-
tion regime is also assured by the nonlinear viscosity.
In our case, we consider the reverse situation.

In general for ¢ = 0, like for the Korteweg-de
Vries equation, the divergent behaviour is expected, as
we are considering “pure-dispersive equations”. But,
Brenier-Levy [3] considered the fully nonlinear equa-



tion
u + fu)e = —6(u7, )

as a nonlinear generalization of the Korteweg-de Vries
equation. Such nonlinear dispersion significantly af-
fects the dispersive behaviour of the solutions that
differs completely from the linear case. In partic-
ular, Brenier and Levy conjectured that for strictly
convex flux functions f we have convergence when
§ = o(eh).

In this work we show first that the initial value
problem (1)-(2) is well-posed and then we prove the
convergence to the initial value problem (5)-(6). So,
our proof of convergence is not formal. To obtain the
well-posedness, a condition which links the disper-
sion and the dissipation is needed. It can be written
as, for all ug sufficiently smooth initial data,

[|luo|| e < Ce/é.

And the vanishing dissipation-dispersion limit is ob-
tained when § < ¢.

The paper is organized as follows. In section 2,
we prove the well-posedness of the perturbed initial
value problem. Then section 3 deals with the hyper-
bolic limit as €, J go to zero.

2 Well-posedness

We prove here that the initial value problem (1)-(2) is
well-posed.

2.1 Regularized equation
To compute the well-posedness of the initial value
problem, we consider the fourth order regularization,
with © > 0
u(z,0) = ug(z). (6)

The solution of the linearized equation

1 [t 2 4
_ L go—e€?t—pgtt g

[ e 3

satisfies the following regularization property. For
r,s > 0and u € H*(), we have

1 r/2 1/2
\IStu\|r+s§Cr<l+( ) ) [

2plt|

Spu(x) :

Proposition 1 Let s > 5/2. Assume that |f(u)| =
O(|ulP*Y) with B > 1. Then there exists T, > O,
depending on p, such that

o(u)(t) := Spug
= [ Sirf@ == @)

is a contraction mapping on the closed ball

B(T,) = {u € C([0,T,}; H*(R)) :
[[u(t) = uolls < clluolls}-

Proof: Let u,v € B(T},). We have
80 — 000} (1) = | S ((Fw)s — F(0))

+0((—udy)e — (~vip)a))(7)dr.

On one hand, we write

1St (f (W) — [(0)2) ()]l =
||St77'(f(u):r - f(v)a: (T)||(5_1)+1 <

o (1 (i)

[f(w)z — f(V)alls—1,

)
)

and, the Sobolev embedding implies with s > 1/2

1f(w)e = F(@)alls—1 = [If(u) = Fv)]]s <
Clfuol | llu — ]l
On the other hand, it gets thanks to the Sobolev em-
bedding with s > 5/2 and using u? — v? = (u +

v)(u—v)

[Seru2e)e = @2)2) ()|

s\t o7 = Vs
Cluw ( +(5m=) ) =

We deduce

sup [[¢(u)(t) — ¢(v)(B)]ls <

t€[0,T]
C(u, lfuollrs, T') sup [lu —olfs,
t

)

and we choose T > 0 so that ¢ is a contraction map-
ping in B(T},). 0

First of all, we have to prove that the time 7" can
be chosen independently of L.

Theorem 2 Let s > 5/2. Assume that |f@(u)| =
O(|ulP17%), for 0 < i < 2and B > 1. Let
ug € H*(R) with ||uol|ls < €/(25). Then there ex-
ists a time T', independent of u, such that there exists
a unique solution u € C(|[—T,T]; H°IR) of the initial
value problem (5)-(6).



Proof: Multiplying the equation (5) by Y1, 0%u
and integrating over space give

1d 9 6 +oo PR
S GIERST S MNCHI S
2 dt 2w

10 oo .
> [ 0T O ) S (w)ade

ST AT Ry

rxr
i=0 —00

+e(—1)" (0% u)ugpdr = T4 1L

Using the Sobolev embedding and the Gagliardo-
Nirenberg inequality[9], we obtain

L< Clful[ 2,

+00 146

—0o0

We deduce that, for 5 > 0,

d 6.
%Ilu(t)lli +u > 108)| 2 = O(|]ullf )
1=2

too 146
+/ ugz (—5 + 5umx) dzx. (8)

Thanks to |[u]|e0 < v/2| ||| 15 ||uz |15, it gets

40,02l < V2lluolls <

£
V26

oo 146
/ U%,m <—5 + 5u07xm) dz < 0.
—0o0

Since ||u(t)||2 < y(t) where ¥ is solution of

Y (1) = 20()2)2

and

y(0) = ||uol[3,
we can choose T > 0,(T = 1/(2p||up|l§)) such
[lu(t)||la <e/(20) forallt <T. O

2.2 Regularization limit

Theorem 3 Let ug € H*(IR) with ||uo||s < £/(26).
There exists T > 0, inversely proportional to
||uo||4, such that there exists a unique solution u €
C([-T,T), H*(IR)) of the initial value problem (1)-
2).

Moreover, there exists C > 0 such that the solutions
u and v, with ug and vg as initial datum respectively,
satisfy for |t| < T,

[lu(t) = v(®)lls < Cllug — volla-

Proof: To obtain the limit as x4 goes to zero, we show
that the solution (u*(t)), is a Cauchy sequence for
t € [0,T]. Let u,v > 0, and u*, v” be the respective
solution of (5)-(6). We have, for t € [0, 7],

ollut — | = 2<u—wv,up— v >
—2<u—v, f(u)e — f(v)s >
+26 <u—v,9(tz)rz
*g(vw)xaz>
426 < U — UV, Upy — Vgg >

—<u-— U, WPUggrx — VVgzax >

and it comes for z; = (1 — A\j)u + \jv,i = 1,2 and
Ae(0,1)

+oo _ )2
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< Cyllu* —o*| + Culp — vl
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because ||ut(t)||s and [[v¥(t)||s are uniformly
bounded. We conclude using the Gronwall lemma
[2,5]. O

Remark 4

e The time T, proportional to 1/||uo||4, is also the
time well-posedness of the purely hyperbolic ini-
tial value problem.

o The constraint ||up||s < €/(20) is not so restric-
tive, 0 being chosen very small compared to € to
obtain the hyperbolic limit.

3 Convergence

Theorem 5 (Main theorem) Ler ¢ > 0, § = o(e"/?)
and f : IR — R be a convex flux function satisfying
f"(u) < C(1+ |u|?), where 0 < 3 < 1/2. Then,
setting u = ug 5 the solution of (1)-(2), the family of
solutions {u. s} converges to the entropy solution of
@D-C?N.



3.1 A priori Estimates

Multiply (1) by a function 7’ (u) and let ¢ = n' f’ be
the derivative of a new flux function:

n(w) +q(u)e = €(n’(U) Ug), — en'(u) ul

8 (1 (u) )
)t

— 8" (u) up w2 ©)

Integrate over IR x [0,¢] with n(u) = |u|*T!. The
conservative terms vanish and we obtain the

Lemma 6 Ler o > 1. Each solution of (1) satisfies
fort e]0,T]

/}R u($)]* de + (o + l)aa/ot/m !

¢
uidmds—(a%—l)aé// lu* "t ug u?, deds
0J/R
:/ o]+ dz (10)
R

Usually, taking o = 1 in (10), we deduce the a priori
L? first energy estimates. It is not the case here, unless
the factor du,, of u2, is always negative.

We use now the multipliers (¢4 2)(|ug|%uy ), and
(g + 2)(ug™), to obtain

/ e (£)|7+2 d

+e(g+2)(g+1) // |ug|? uZ, drds

= [ e+ 1) [ [ e
R 0 JIR

1 t
1wy deds = 23 g+ 20+ [ [ v
lug|92 ult dxds, (a1

/ U (1) dx
R

¢
+5(q+2)(Q+1)// ugumdxds

7 _t q—1
" (u) dxds 35(q+2)(q+1)q/0/mux
ul, dxds. (12)

We restrict to odd ¢ and 6 > 0, we add (12) to
(11). We abbreviate as U™ (analogously for /™) the
{(z,t) € R x [0,T] : dug > 0} or their section by
t = sasU,". We obtain:

Lemma 7 Let q be a odd number, then each solution
of (1) satisfies for t € [0, T

| lua)r+ do
U+
+e(g+2)(g+1 // |ug|? u2, drds

35(q+2 (g+1)q // lug |9 ul, dxds

bat ) [ [ el 5 ) dods
0 Just
:/ AGEY " (13)
Up™

Actually, Lemmas 6 and 7 together will solve our
problem.

Proposition 8 Lete > Oand f : IR — IR be a convex
flux function. Then, setting u = ug s the solution of
(1), the family of solutions {u. s} satisfy the estimate

t
/yu(t)|a+1dx+s// L2 deds
R 0 JIR

t
46 [ [ ul T e, deds < Co, (14
0JIR

forall L < a <3
When 6 < ke, then the family of solutions {u. s}
satisfy the estimate (14) for a = 1, i.e.,

t
/U(t)2d$+€// u? dxds
R 0 JIR

t
+5// lug| u2, deds < C. (15)
0 /IR

If in addition f"(u) < C(1 + |u|?), where 0 < 8 <
1/2, and § < ke, then {u. s} satisfy

¢
/ux(t)2da:—|—€// uZ, drds
R 0 /R

< Cp+ Cyd 127 1/4 (16)

Proposition 9 Letc > 0, § = o(¢*/?) and f : R —
R be a convex flux function satisfying " (u) < C(1+
|ul?), where 0 < B < 1/2. Then, setting u = u, s the
solution of (1), the family solutions {u. s} satisfy

(a): {eu2} is bounded in L(9).

(b): {euy} — 0 whene — 0, in L?(52).

(c): {Suy u2,}, where u; = max(0,—uy), is
bounded in L'(Q).

(d): {5ufu2,} — 0, where uf = max
when e — 0 in L*(Q).

(e): {§u2,} — Owhene — 0, in L*(Q).

(0, uy)



Proof: The statements (a), (b) and (c) are obtained
thanks to (15). Now, (d) is obtained from (13) with
q = 1 since

t
5/ / ug u2, drds 17)
0 Just
t
< 0 (5/ / uxuixdafds) < Coé.
€ 0 Jus* €

Finally, (e) is obtained thanks to (9) since,

t
) / / u?, dxds (18)

<526 5/4 5255/4// u L dxds)
§00V5675/2.

3.2 Convergence proof

Definition 10 Assume that ug € L*(IR)NLI(IR) and

f € C(IR) satisfies the growth condition, for some
m € [0,q)

[f (w)] < O(Jul™) as [u] — oco. (19)

A Young measure v is called an entropy measure-
valued (e.m.-v.) solution to (1)-(2) if for all k € IR

(v, [u = k)¢ + (v, sgn(u = k)(f(u) = f(K)))z < 0
(20)
in the sense of distributions on IR x (0,T") and for all
compact set K C IR

t1—1>r(])ﬂ+ t // Pws) |u

Lemma 11 Let {uy, }nec1n be a bounded sequence in
L*>((0,T); LY(IR)). Then there exists a subsequence
denoted by {U,}nciNn and a weakly-* measurable
mapping v : IR x (0,T) — Prob(IR) such that, for all
functions g € C(IR) satisfying (19), (V(y.1), g) belongs

to L>°((0,T); Lq/m(IR)) and thefollowmg limit rep-

loc
resentation holds:

// (V(z,),9) ¢(z,t) dadt (22)
Rx(0,T)
= lim_ //IRX(O T) (x,t)) ¢(z,t) dadt

forall € L*(IR x (0, T)) N L>®(IR x (0,7)).

Conversely, given v, there exists a sequence {uy}
satisfying the same conditions as above and such that
(22) holds for any g satisfying (19).

uo(z)|) deds = 0. (21)

For details on the setting of e.m.-v. solutions see,
e.g., Correia and LeFloch [4] and references therein.

Proof of Theorem 5 [Main theorem]: We begin
proving (20). We use the L? bound given by (14) of
Proposition 8 and we apply the Young measure repre-
sentation theorem in this L7 space (i.e., formula (22)
of Lemma 11) to show that v satisfies (20): by a stan-
dard regularization of sgn(u — k)(f(u) — f(k)) and
|u — k| (k € IR), which satisfies the growth condition
(19), we see it is sufficient to show that there exists a
bounded measure p < 0 such that

n(u)e + q(u)y — p in D'(R x (0,T))

for an arbitrary convex function 7 (we assume
"

n',n"”,n" to be bounded functions on IR).

n(we +aq(uw)e = e (w)uz), — e (u) uj
=6 (1 (u) uz,),
+0 7" (u) uguZ, . (23)

We rewrite the last formula in the form

n(w)e + q(u)y = p1 + p2 + ps + pa

where,
p: = (' (u) ug),;
pe: = —en(u)ul;
pz: = —6(n'(u)u,),;
pas = 6w g,
T
| <p1,0>] < 5/ / 10 7' (u) ug| dzds
0 JRr
T
< 6/ / |0y uy| dxds
0 JRr
<l galle el o
T
| < po,0>| < 5/ / 07" (u) u2| dzds
0 JRr

< Olfbllzlleul] -

Since 7 is convexe, for a non negative function 6 we
have

T
< pg,0 > = —5//977”(u)u§dacds§0.
0 JIR
T
| <z, 0>] < 6/ / 10, 1 (u) u?,| deds
0 /R
T
< 05/ / 10, 2, | deds
0 JIR
< O8]l 2110 uZy | 2.



Now, we can decompose L4 in the form

g = phg1 + p42,
where,
par = 61" (u) u;f uia:?
paz s = =60 (u) uy uF,.

Then we have
T
| < par,0>1] < 5/ / 107" (u) ufu?,| deds
0o JR

T
< C(S/ / 0wt v, | deds
0 JRR
Cl10]] < 116 wf uZell 1.

A

IN

Thus, thanks to (d) of Proposition 9, when ¢ — 0
< 41,0 >— 0. Also, thanks to (c) of Proposition 9
we get

T
| <z 0>] < 5/ / 100" (u) 1y u2,| deds
0 R

T
06/ / 0w, u2,|drds
0 JRR

10l zo0[6 uz uZellr,
c

IN

ININ

and

T
< 42,0 > = —5/ / 01" (u)uy u?, deds < 0
0 JRR

In order to prove (21) we can follow the argument
as in Correia-LeFloch [4]. O
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