
UNIVERSIDADE DE ÉVORA Escola de Ciências e Tecnologia Departamento de Zootecnia

TÉCNICAS DE FORMULAÇÃO

EXERCÍCIOS RESOLVIDOS

(Texto de apoio para a unidade curricular Alimentação e Dietética Animal)

Universidade de Évora, 2014

Amadeu Borges de Freitas

RESUMO:

São descritos os fundamentos e a sequência de cálculos de diferentes técnicas manuais de formulação, com especial destaque para a utilização do quadrado de Pearson, visando a utilização de várias matérias-primas para obtenção de alimentos compostos com valores nutricionais (energia, proteína, aminoácidos essenciais, minerais, vitaminas e aditivos) adequados à alimentação dos animais. Para as diferentes técnicas de formulação são equacionados e resolvidos exercícios práticos de aplicação.

Palavras-chave: Técnicas de formulação, cálculo de misturas de matérias-primas

ÍNDICE

	Pag.
1.TENTATIVA E ERRO	3
2. TENTATIVA E TÉCNICA DA SUBSTITUIÇÃO	4
3. SISTEMA DE EQUAÇÕES	5
4. QUADRADO DE PEARSON COM DUAS MATÉRIAS-PRIMAS PARA ACERTO DE UM NUTRIENTE	6
5. QUADRADO DE PEARSON COM TRÊS MATÉRIAS-PRIMAS PARA ACERTO DE UM NUTRIENTE	7
2	
6. QUADRADO DE PEARSON COM FIXAÇÃO PRÉVIA DA	12
INCORPORAÇÃO MATÉRIAS-PRIMAS PARA ACERTO DE UM	
NUTRIENTE	
7. QUADRADO DE PEARSON COM QUATRO MATÉRIAS-PRIMAS PARA	14
ACERTO DE UM NUTRIENTE	
8. QUADRADO DE PEARSON COM QUATRO MATÉRIAS-PRIMAS PARA	17
ACERTO SIMULTÂNEO DOS TEORES EM ENERGIA E PROTEÍNA	
9. QUADRADO DE PEARSON COM MAIS DE QUATRO MATÉRIAS-	21
PRIMAS PARA ACERTO SIMULTÂNEO DOS TEORES EM ENERGIA E	
PROTEÍNA	
10. TÉCNICA DA SUBSTITUIÇÃO	28
11. ACERTO DOS TEORES EM ENERGIA, PROTEÍNA, AMINOÁCIDOS,	32
MINERAIS E VITAMINAS	
12.BIBLIOGRAFIA CONSULTADA	41

1. TENTATIVA E ERRO

Técnica utilizada com duas matérias-primas para acerto do teor de um nutriente

EXERCÍCIO 1: Determinar as percentagens em que milho (90 g PB/Kg) e farinha de peixe (530 g PB/Kg) devem ser misturados, de forma a obter uma mistura com 180 g de PB por Kg.

RESOLUÇÃO:

A resolução passa por estabelecer uma hipótese, determinar o teor da mistura no nutriente que se pretende acertar e depois estabelecer novas hipóteses (tentativas), aumentando ou diminuindo a incorporação das duas matérias-primas até se encontrar a combinação de matérias-primas que possibilite que a mistura tenha o teor desejado.

A técnica das tentativas é trabalhosa e exige alguma experiência do formulador

1ª Tentativa: 50% de milho + 50% de farinha de peixe

PB da mistura =
$$(90 \times 0.5) + (530 \times 0.5)$$

= $310 \text{ g} / \text{Kg}$

A mistura tem muito mais proteína que o desejado. È necessário aumentar a incorporação de milho (matéria-prima menos proteica) e diminuir a incorporação de farinha de peixe (matéria-prima mais proteica)

2ª Tentativa: 90% de milho + 10% de farinha de peixe

PB da mistura =
$$(90 \times 0.9) + (530 \times 0.1)$$

= $134 \text{ g} / \text{Kg}$

A mistura tem muito menos proteína que o desejado. È necessário aumentar a incorporação de farinha de peixe (matéria-prima mais proteica) e diminuir a incorporação de milho (matéria-prima mais proteica)

3ª Tentativa: 79,5% de milho + 20,5% de farinha de peixe

PB da mistura =
$$(90 \times 0.795) + (530 \times 0.205)$$

= $180 \text{ g} / \text{Kg}$

RESPOSTA:

A mistura deverá ser constituída por 79,5% de milho e 20,5% de farinha de peixe

2. TENTATIVA E TÉCNICA DA SUBSTITUIÇÃO

Técnica utilizada com duas matérias-primas para acerto do teor de um nutriente

EXERCÍCIO 2: Determinar as percentagens em que milho (90 g PB/Kg) e farinha de peixe (530 g PB/Kg) devem ser misturados, de forma a obter uma mistura com 180 g de PB por Kg.

RESOLUÇÃO:

A resolução passa por estabelecer uma hipótese, determinar o teor da mistura no nutriente que se pretende acertar e depois utilizar a técnica da substituição (para aumentar uma matéria-prima e diminuir na mesma quantidade a outra matérias-prima) para se encontrar a combinação de matérias-primas que possibilite que a mistura tenha o teor desejado.

1ª Tentativa: 50% de milho + 50% de farinha de peixe

PB da mistura =
$$(90 \times 0.5) + (530 \times 0.5)$$

= $310 \text{ g} / \text{Kg}$

A mistura tem 310 g de PB/Kg e o teor pretendido é de 180 g, ou seja teremos que diminuir o teor proteico em 130 g (310-180). Para diminuir o teor em proteína da mistura teremos que diminuir a incorporação de farinha de peixe (proteico) e aumentar a incorporação de milho (teor proteico inferior). A % que se retira à farinha de peixe será igual à % que se aumenta ao milho.

Cálculo do factor de substituição:

A diferença do teor proteico entre a farinha de peixe e o milho (Factor de substituição) = = 440 g PB

Cálculo da quantidade a substituir :

Teremos que diminuir 29,5% de farinha de peixe e aumentar 29,5% de milho

Cálculo da nova formula:

Milho =
$$50.0+29.5 = 79.5 \%$$

Farinha de peixe = $50.0-29.5 = 20.5 \%$

RESPOSTA: A mistura deverá ser constituída por 79,5% de milho e 20,5% de farinha de peixe

3. SISTEMAS DE EQUAÇÕES:

Técnica utilizada com duas matérias-primas para acerto do teor de um nutriente

EXERCÍCIO 3: Utilizando um sistema de equações determinar as percentagens em que milho (90 g PB/Kg) e farinha de peixe (530 g PB/Kg) devem ser misturados, de forma a obter uma mistura com 180 g de PB por Kg.

RESOLUÇÃO:

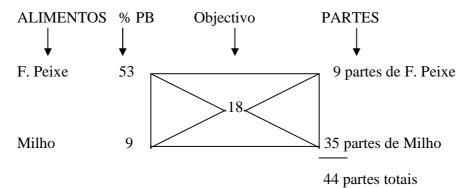
Os sistemas de equações (2 incógnitas e duas equações) podem ser utilizados para formular misturas de duas matérias-primas, de uma forma fácil e rápida.

= 140,0 g / kg

RESPOSTA:

A mistura deverá ser constituída por 79,5 % de Milho e 20,5 % de Farinha de peixe.

4. QUADRADO DE PEARSON COM DUAS MATÉRIAS-PRIMAS PARA ACERTO DE UM NUTRIENTE


EXERCÍCIO 4: Utilizar o quadrado de misturas ou de Pearson para determinar as percentagens em que milho e farinha de peixe devem ser misturados, de forma a obter uma mistura com 18 % de PB.

Teor proteico dos alimentos:

Milho 90 g PB por kg Farinha de peixe 530 g PB por kg

RESOLUÇÃO

1.- Quadrado de Pearson

2.- Cálculo da incorporação de alimentos

3.- Verificação dos resultados:

$$PB = (90 \times 0.795) + (530 \times 0.205)$$
$$= 180 \text{ g/Kg}$$

RESPOSTA:

A mistura deverá ser constituída por 79,5 % de Milho e 20,5 % de Farinha de peixe.

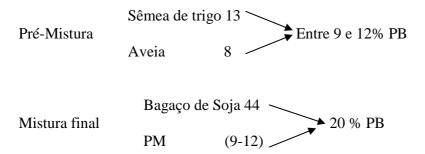
5. QUADRADO DE PEARSON COM TRÊS MATÉRIAS-PRIMAS PARA ACERTO DE UM NUTRIENTE

EXERCÍCIO 5: Utilizando o quadrado de misturas calcular as percentagens em que aveia, sêmea de trigo e bagaço de soja devem ser incorporados de forma a obter-se uma mistura com 20 % PB.

Aveia 8 % PB

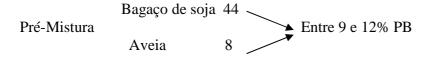
Teor proteico dos alimentos Sêmea de trigo 13 % PB

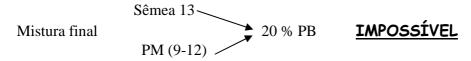
Bagaço de soja 44% PB

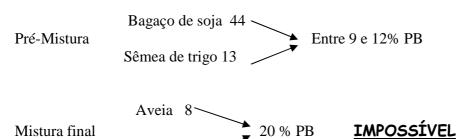

RESOLUÇÃO:

Utilizar o quadrado de Pearson duas vezes. Em primeiro lugar deve-se fazer uma pré-mistura (PM) com duas matérias-primas. Dependendo da escolha, a pré-mistura poderá ter um teor inferior ou superior ao objectivo pretendido. Esta pré-mistura funcionará como se fosse um alimento simples, que conjuntamente com a terceira matéria-prima constituirá a mistura final.

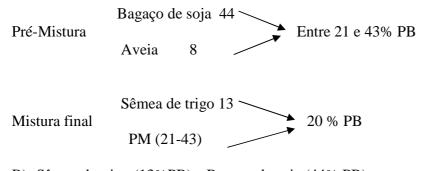
O objectivo pretendido apenas é considerado na mistura final.


<u>Se pretendermos que a **pré-mistura** tenha um **teor inferior a 20% de PB** apenas existe uma possibilidade correcta para resolver o exercício:</u>

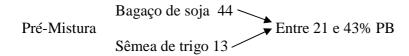

A pré-mistura terá um teor em PB compreendido entre 9 e 12 % PB, valor intermédio entre os teores das matérias-primas utilizadas. A mistura final com um objectivo de 20% PB resultará da mistura do bagaço de soja (44% PB) com a pré-mistura.


As pré-misturas utilizando Aveia (8% PB) e Bagaço de soja (44% PB) ou Sêmea de trigo (13% PB) e Bagaço de soja (44% PB) não são viáveis, uma vez que as misturas finais nunca poderão satisfazer o objectivo pretendido, já que serão realizadas com dois alimentos com teores proteicos inferiores ao objectivo.

- Pré-mistura de Bagaço de soja e Aveia



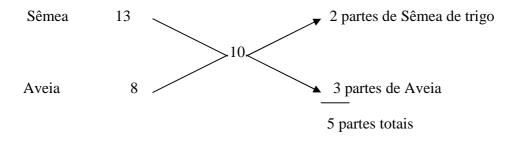
- Pré-mistura de Bagaço de soja e Sêmea de trigo


<u>Se pretendermos que a **pré-mistura** tenha um **teor superior a 20% de PB** existem duas possibilidades correctas para resolver o exercício:</u>

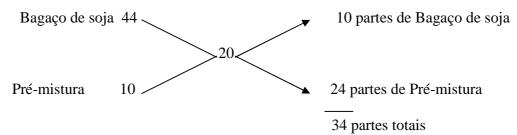
A pré-mistura terá um teor em PB compreendido entre 21 e 43 % PB, valor intermédio entre o objectivo da pré-mistura e o teor proteico mais elevado. A mistura final resultará da mistura de sêmea de trigo (13% PB) com a pré-mistura.

B)- Sêmea de trigo (13%PB) e Bagaço de soja (44% PB)

A pré-mistura terá um teor em PB compreendido entre 21 e 43 % PB, valor intermédio entre o objectivo da pré-mistura e o teor proteico mais elevado. A mistura final resultará da mistura de aveia (8% PB) com a pré-mistura.


Aveia 8

Mistura final


A pré-mistura de Aveia (8% PB) e Sêmea de trigo (13% PB) não é viável, uma vez que os dois alimentos têm teores proteicos inferiores ao objectivo pretendido (20% PB).

1ª RESOLUÇÃO: PRÉ-MISTURA COM SÊMEA DE TRIGO E AVEIA:

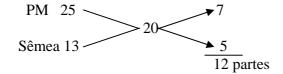
1. Pré-mistura com 10% PB

2.- Mistura final

3.- Cálculo da incorporação de alimentos

4.- Verificação

$$PB = (44 \times 0.294) + (8 \times 0.424) + (13 \times 0.282) = 20 \%$$


RESPOSTA: A mistura deverá ser constituída por 29,4% de Bagaço de Soja, 42,4% de Aveia e 28,2 % de Sêmea de trigo.

2ª RESOLUÇÃO: PRÉ-MISTURA COM BAGAÇO DE SOJA E AVEIA:

1.- Pré-mistura com 25% PB

2.- Mistura final

3.- Cálculo da incorporação dos alimentos

58,3 % - 30,8 % = **27,5** % Bagaço de soja

A MISTURA FINAL SERÁ CONSTITUÍDA POR:

41,7 % Sêmea de trigo 30,8 % Aveia 27,5 % Bagaço de soja

4. Verificação:

$$PB = (44 \times 0.275) + (8 \times 0.308) + (13 \times 0.417) = 20 \%$$

RESPOSTA:

A mistura deverá ser constituída por 27,5% de Bagaço de Soja, 30,8% de Aveia e 41,7 % de Sêmea de trigo.

3ª RESOLUÇÃO: PRÉ-MISTURA COM BAGAÇO DE SOJA E SÊMEA DE TRIGO:

1.- Pré-mistura com 30% PB

2.- Mistura final

3.- Cálculo da incorporação dos alimentos

$$100 - 45,5 = 54,5 \% PRÉ-MISTURA$$

A MISTURA FINAL SERÁ CONSTITUÍDA POR:

24,6 % Sêmea de trigo 45,5 % Aveia 29,9 % Bagaço de soja

4. Verificação:

$$PB = (44 \times 0.299) + (8 \times 0.455) + (13 \times 0.246) = 20 \%$$

RESPOSTA:

A mistura deverá ser constituída por 29,9% de Bagaço de Soja, 45,5% de Aveia e 24,6% de Sêmea de trigo.

6. QUADRADO DE PEARSON COM FIXAÇÃO PRÉVIA DA INCORPORAÇÃO MATÉRIAS-PRIMAS PARA ACERTO DE UM NUTRIENTE

EXERCÍCIO 6: Formular um alimento composto com 12,6 Mj EM por Kg e no qual a Farinha de Peixe seja incorporada em 5%.

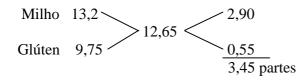
ALIMENTOS DISPONÍVEIS

Milho Glúten feed de milho Farinha de Peixe 13,20 MJ EM / Kg 9,75 MJ EM / Kg 11,50 MJ EM / kg

RESOLUÇÃO:

Em primeiro lugar é necessário calcular a energia fornecida pelo alimento cuja incorporação é fixada inicialmente. Depois determina-se a energia a fornecer pelas restantes matérias-primas e a % em que podem entrar na fórmula (100 - 5 = 95%). Antes de se utilizar o Quadrado de Pearson devese recalcular a energia para 100%. As partes da mistura devem ser referidas à % das matérias-primas não fixadas (95%).

1.- Cálculo da EM fornecida pela F. Peixe


$$EM = 11.5 \times 0.05 = 0.58 MJ$$

2.- Cálculo da EM a fornecer pelos outros alimentos

$$EM = 12,6 -0,58 = 12,02 MJ$$

Se 95 % da ração têm que fornecer 12,02 MJ 100 % terão que fornecer X X = 12,65 MJ

3.- Mistura de Milho e Glúten feed de milho

4.- Verificação

 $EM = (11.5 \times 0.05) + (13.2 \times 0.799) + (9.75 \times 0.151) = 12.6 MJ$

RESPOSTA: A mistura deverá ser constituída por 5,0% de Farinha de peixe, 79,9% de Milho e 15,1% de Glúten feed de milho

EXERCICIO 7: Formule um alimento composto com 180 g de PB por Kg e no qual a Aveia seja incorporada em 15% e a Farinha de Peixe em 5 %.

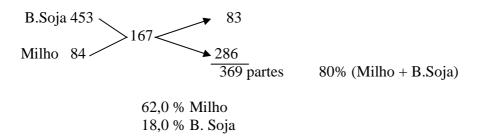
F. Peixe 645 g PB / kg
Aveia 94 g PB / kg
ALIMENTOS DISPONÍVEIS Milho 84 g PB / kg
B. Soja 453 g PB / kg

RESOLUÇÃO:

1.- Cálculo da PB fornecida pelas matérias-primas fixadas:

$$PB = (645 \times 0.05) + (94 \times 0.15)$$
$$= 46.4 \text{ g}$$

2.- Cálculo da PB a fornecer pelo Milho + Bagaço de Soja:


$$180 - 46,4 = 133,7 g$$

3.- Cálculo da mistura Milho + B. Soja

% da mistura =
$$(100-20) = 80\%$$

a) cálculo do teor proteico da mistura:

b) mistura

5.- Verificação:

RESPOSTA:

A mistura deverá ser constituída por 5,0% de Farinha de peixe, 15% de Aveia, 62,0% de Milho e 18,0% de Bagaço de soja.

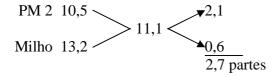
7. QUADRADO DE PEARSON COM QUATRO MATÉRIAS-PRIMAS PARA ACERTO DE UM NUTRIENTE

EXERCICIO 8: Utilizando os 4 alimentos disponíveis formular um alimento composto com 11,1 Mj de EM por kg.

	Milho	13,20 MJ EM / kg
	Glúten Feed	9,75 MJ EM / kg
ALIMENTOS DISPONÍVEIS	B. Soja	10,70 MJ EM / kg
	F. Peixe	11,50 MJ EM / kg

1ª RESOLUÇÃO:

Utilizar a técnica do quadrado de Pearson três vezes. Escolher duas matérias-primas para fazer a pré-mistura 1. Esta pré-mistura 1 será misturada com uma terceira matéria-prima constituindo a pré-mistura 2, que por sua vez será misturada com a quarta matéria-prima constituindo a mistura final. O objectivo pretendido apenas será considerado na mistura final.


OPÇÃO DE TRABALHO A:

Pré-mistura 1 com B. Soja E Glúten Feed Pré-mistura 2 com Pré-mistura 1 e F.Peixe Mistura Final com Pré-mistura 2 e Milho

1.- Pré-mistura 1

2.- Pré-mistura 2

3. Mistura Final

Cálculo da incorporação das matérias-primas

Pré-mistura 2:
$$(100 - 22,2) = 77,8 \%$$

25,9% de F. Peixe

Pré-mistura 1: (77,8-25,9) = 51,9%

0,95 partes ----- 51,9 %

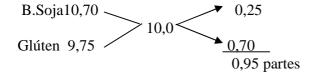
0,70 partes ----- X % de Glúten

38,2% Glúten Feed

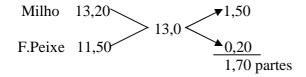
Verificação

EM=
$$(0.222 \times 13.2) + (0.259 \times 11.5) + (0.382 \times 9.75) + (0.137 \times 10.7)$$

= 11.11 MJ / kg


RESPOSTA: A mistura deverá ser constituída por 22,2% de Milho, 25,9% de Farinha de peixe, 38,2% de Glúten Feed e 13,7% de Bagaço de soja.

2ªRESOLUÇÃO:


Fazer duas pré-misturas, uma com um teor superior ao objectivo, outra com um teor inferior. Estas pré-misturas funcionarão como dois alimentos simples na mistura final. O objectivo pretendido apenas será considerado na mistura final.

OPÇÃO DE TRABALHO B: Pré-mistura I com um teor inferior a 11,1 MJ/kg
Pré-mistura II com um teor superior a 11,1 MJ/kg.

1.- Pré-mistura 1

2.- Pré-mistura 2

3. Mistura Final

63,3 % Pré-mistura I

Cálculo da incorporação das matérias-primas

46,6 % Glúten Feed

32,4 % Milho

$$36.7 - 32.4 = 4.3 \%$$
 F. Peixe

Verificação

EM=
$$(0.324 \times 13.2) + (0.043 \times 11.5) + (0.466 \times 9.75) + (0.167 \times 10.7)$$

= 11.11 MJ / kg

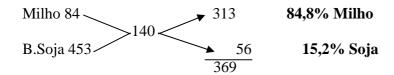
RESPOSTA:

A mistura deverá ser constituída por 4,3% de Farinha de peixe, 46,6% de Glúten Feed, 32,4% de Milho e 16,7% de Bagaço de soja.

8. QUADRADO DE PEARSON COM QUATRO MATÉRIAS-PRIMAS PARA

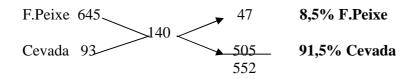
ACERTO SIMULTÂNEO DOS TEORES EM ENERGIA E PROTEÍNA

EXERCICIO 9: Recorrendo à técnica dos quadrados múltiplos e utilizando as 4 matérias-primass formule um alimento composto que tenha 140 g de PB e 13 MJ ED por kg.

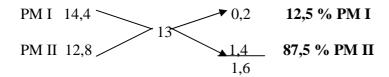

ALIMENTO	PB (g/Kg)	ED (Mj/Kg)
Milho	84	14,5
Cevada	93	12,9
B.Soja	453	13,9
F.Peixe	645	12,1

RESOLUÇÃO:

Fazer duas pré-misturas acertando um dos teores (PB por exemplo), de forma a que o outro teor (Energia) seja superior ao objectivo numa das pré-misturas e inferior na outra. A mistura final resultará de duas pré-misturas com idêntico teor num nutriente (PB, por exemplo), pelo que bastará acertar o teor do segundo nutriente (Energia).


OPÇÃO DE TRABALHO A: Pré-mistura I com 140 gr de PB/kg e um teor energético superior a 13 MJ ED/kg e uma Pré-mistura II com 140 gr PB/kg e um valor energético inferior a 13 MJ ED/kg.

1.- Pré-mistura I


 $ED=(0.848 \times 14.5) + (0.152 \times 13.9) = 14.4 \text{ MJ ED/Kg}$

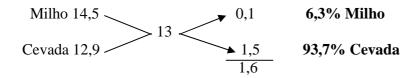
2.- Pré-mistura II

 $ED=(0.085 \times 12.1) + (0.915 \times 12.9) = 12.8 \text{ MJ ED/Kg}$

3.- Mistura Final

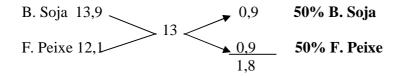
4.- Cálculo da incorporação dos alimentos

5.- Verificação dos resultados


$$ED=(14.5 \times 0.106) + (12.9 \times 0.801) + (13.9 \times 0.019) + (12.1 \times 0.075) = 13.04 \text{ MJ ED/Kg}$$

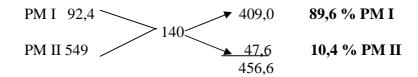
$$PB = (84 \times 0.106) + (93 \times 0.801) + (453 \times 0.019) + (645 \times 0.075) = 140.4 \text{ g PB/Kg}$$

RESPOSTA: A mistura deverá ser constituída por 7,5% de Farinha de peixe, 80,1% de Cevada, 10,6% de Milho e 1,9% de Bagaço de soja.


OPÇÃO DE TRABALHO B: Pré-mistura I com 13 MJ ED/kg e um teor proteico inferior a 140 g PB/kg e uma Pré-mistura II com 13 MJ ED/kg e um teor proteico superior a 140 gr PB/kg.

1.- Pré-mistura I

$$PB = (0.063 \times 84) + (0.937 \times 93) = 92.4 \text{ g PB/kg}$$


2.- Pré-mistura II

$$PB = (0.50 \times 453) + (0.50 \times 645) = 549 \text{ g PB/kg}$$

3.- Mistura Final

4.- Cálculo da incorporação dos alimentos

5.- Verificação dos resultados

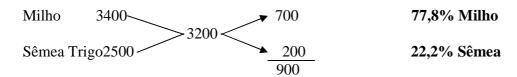
$$ED = (14.5 \times 0.056) + (12.9 \times 0.84) + (13.9 \times 0.052 + (12.1 \times 0.052) = 13.0 \text{ MJ ED/Kg}$$

$$PB = (84 \times 0.056) + (93 \times 0.84) + (453 \times 0.052) + (645 \times 0.052) = 140, \text{ g PB/Kg}$$

RESPOSTA:

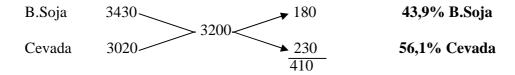
A mistura deverá ser constituída por 5,6% de Milho, 84,0% de Cevada, 5,2% de Bagaço de soja e 5,2% de Farinha de peixe.

EXERCICIO 10: Recorrendo à técnica dos quadrados múltiplos e utilizando as 4 matériasprimas disponíveis formule um alimento composto com 3200 Kcal ED e 17% PB por kg.

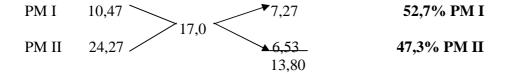

ALIMENTO	ED(Mcal)	PB(%)
Milho	3400	9,0
Cevada	3020	10,0
Bagaço de Soja	3430	42,5
Sêmea de Trigo	2500	15,6

RESOLUÇÃO:

Em virtude de apenas existir um alimento com um teor proteico superior a 17% teremos, obrigatoriamente, que fazer pré-misturas para acertar o teor energético. Pré-mistura I com 3200 Kcal ED e um teor proteico superior a 17% e uma Pré-mistura II com 3200 Kcal ED e um teor proteico superior a 17% (que será a pré-mistura onde o Bagaço de Soja entrar em maior quantidade).


OPÇÃO DE TRABALHO: Pré-mistura I com Milho e Sêmea de Trigo (com 3200 ED/kg e um teor proteico inferior a 17% PB) e Pré-mistura II com Bagaço de Soja e Cevada (com 3200 Kcal ED/kg e um teor proteico superior a 17 % PB).

1.- Pré-mistura 1


$$PB = (9 \times 0.778) + (15.6 \times 0.222) = 10.47 \%$$

2.- Pré-mistura 2

$$PB = (42.5 \times 0.439) + (10 \times 0.561) = 24.27\%$$

3.- Mistura Final

4. Constituição da mistura final

5. - Verificação

ED=
$$(0,410 \times 3400) + (0,117 \times 2500) + (0,208 \times 3430) + (0,265 \times 3020) = 3200$$

PB = $(0,410 \times 9) + (0,117 \times 15,6) + (0,208 \times 42,5) + (0,265 \times 10) = 17 \%$

RESPOSTA:

A mistura deverá ser constituída por 41,0% de Milho, 26,5% de Cevada, 20,8% de Bagaço de soja e 11,7% de Sêmea de Trigo.

9. QUADRADO DE PEARSON COM MAIS DE QUATRO MATÉRIAS-PRIMAS PARA ACERTO SIMULTÂNEO DOS TEORES EM ENERGIA E PROTEÍNA

EXERCICIO 11: Recorrendo à técnica dos quadrados múltiplos e utilizando todas as matérias-primas formule um alimento composto para suínos em crescimento com 3200 Kcal ED e 14% PB . O premix é incorporado em 2%.

ALIMENTO	ED (Kcal/ Kg)	PB (%)
Milho	3 400	9,0
Cevada	3 020	10,0
Bagaço de Soja	3 430	42,5
Sêmea de Trigo	2 500	15,6
Premix (incorporado em 2%)	-	-

RESOLUÇÃO:

Se o Premix é incorporado em 2% de aditivos as restantes matérias-primas serão incorporadas em 98%, pelo que antes de se proceder às pré-misturas será necessário calcular a energia e proteína que deverá ser fornecida por 100% da mistura de milho, bagaço de soja, sêmea de trigo e cevada.

1. Cálculo da ED e PB a fornecer pelas matérias-primas

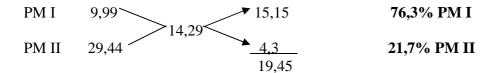
100% da mistura de matérias-primas terá que fornecer:

ED= 3200 / 0.98 = 3265.3 Kcal

PB = 14 / 0.98 = 14.29%

OPÇÃO DE TRABALHO A: FAZER DUAS PRÉ-MISTURAS ACERTANDO O TEOR EM ENERGIA DIGESTÍVEL PARA NA MISTURA FINAL ACERTAR O TEOR EM PROTEÍNA BRUTA

2.- Pré-mistura 1


PB da Pré-mistura 1= 9,99%

3.- Pré-mistura 2

PB da Pré-mistura 2= 29,44%

4.- Mistura Final

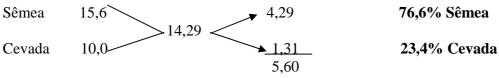
5. Constituição da mistura final

Premix = 2,0% Milho = 64,9% Sêmea = 11,4 % B. Soja = 13,0% Cevada = 8,7 %

6. - Verificação

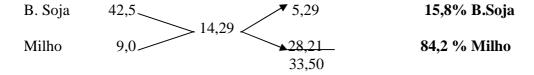
ED= 3200 Kcal; **PB** =14 %

RESPOSTA:

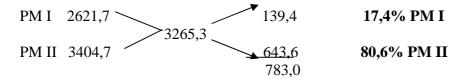

A mistura deverá ser constituída por 64,9% de Milho, 8,7% de Cevada, 13,0% de Bagaço de soja, 11,4% de Sêmea de Trigo e 2% de Premix

OPÇÃO DE TRABALHO B: FAZER DUAS PRÉ-MISTURAS ACERTANDO O TEOR EM PROTEÍNA BRUTA PARA NA MISTURA FINAL ACERTAR O TEOR EM ENERGIA DIGESTÍVEL

1. Cálculo da ED e PB a fornecer pelas matérias-primas


ED=3200 / 0.98 = 3265.3 KcalPB=14 / 0.98 = 14.29%

2.- Pré-mistura 1


ED da Pré-mistura 1= 2621,7 Kcal

3.- Pré-mistura 2

ED da Pré-mistura 2= 3404,7 Kcal

4.- Mistura Final

5. Constituição da mistura final

Premix = 2,0% Milho = 67,9% Sêmea = 13,3% B. Soja = 12,7% Cevada = 4,1 %

6. - Verificação

ED= 3200,5 Kcal **PB** =13,99%

6. - Verificação

ED= 3200 Kcal **PB** =14 %

RESPOSTA:

A mistura deverá ser constituída por 64,9% de Milho, 8,7% de Cevada, 13,0% de Bagaço de soja, 11,4% de Sêmea de Trigo e 2% de Premix

EXERCICIO 12: Utilizando a técnica dos quadrados múltiplos, formular uma mistura de matérias-primas destinada a suínos em crescimento que tenha 180 g de PB e 3200 Kcal ED/ kg, respeitando as restrições de incorporação das matérias primas.

MATÉRIAS-PRIMAS:

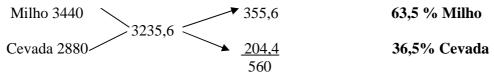
	ED	PB
	(Kcal/kg)	(g/Kg)
Milho	3440	90
Cevada	2880	105
Sêmea	2600	150
B. Soja 44	3330	420
B. Soja 50	3160	500
F.Peixe	3540	650

Limites de utilização de matérias primas (consulta de tabelas):

Sêmea de Trigo < 10% Farinha de Peixe < 7%

OPÇÃO DE TRABALHO A: FIXAR A INCORPORAÇÃO DE 2 MATÉRIAS-PRIMAS DE FORMA A UTILIZAR 4 MATÉIAS-PRIMAS PARA ACERTAR O TEOR EM PROTEÍNA BRUTA E EM ENERGIA DIGESTÍVEL

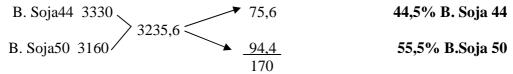
1.- Fixar a incorporação de Sêmea de Trigo, Farinha de Peixe


2- Cálculo da energia e proteína fornecida pelas matérias-primas fixadas :

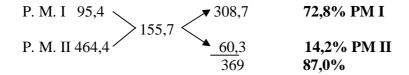
$$ED = 385 \text{ Kcal}$$

 $PB = 44.5 \text{ g}$

3- Cálculo da energia e da proteína a fornecer pelas restantes matérias-primas:


4- Utilização da técnica dos quadrados múltiplos para acertar simultaneamente a energia e proteína. Duas pré-misturas acertando o teor em energia. Mistura final acertando o teor em proteína.

a)- Pré-mistura I


PB da Pré-mistura 1= 95,4 g

b)- Pré-mistura II

PB da Pré-mistura 2= 464,4 g

c) Mistura Final

5.- Cálculo da incorporação de alimentos

6.-Verificação final:

$$\mathbf{PB} = (0.08 \times 150) + (0.05 \times 650) + (0.266 \times 105) + (0.462 \times 90) + (0.063 \times 420)) + (0.079 \times 500) \\ = \mathbf{179.97}$$

$$\mathbf{ED} = (0.08x2600) + (0.05x3540) + (0.266x2880) + (0.462x3440) + (0.063x3330) + (0.079x3160) \\ = \mathbf{3199.79}$$

RESPOSTA:

A mistura deverá ser constituída por 46,2% de Milho, 26,6% de Cevada, 6,3% de Bagaço de soja 44, 7,9% de Bagaço de soja 50, 8,0% de Sêmea de Trigo e 5,0% de Farinha de Peixe.

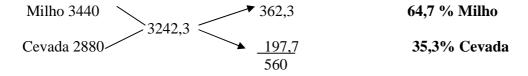
OPÇÃO DE TRABALHO B: FIXAR A INCORPORAÇÃO DE 3 MATÉRIAS-PRIMAS DE FORMA A UTILIZAR 3 MATÉIAS-PRIMAS PARA ACERTAR O TEOR EM PROTEÍNA BRUTA E EM ENERGIA DIGESTÍVEL

1.- Fixar a incorporação de Sêmea de Trigo, Farinha de Peixe e Bagaço de Soja 50

2- Cálculo da energia e proteína fornecida pelas matérias-primas fixadas :

$$ED = 606,2 \text{ Kcal}$$

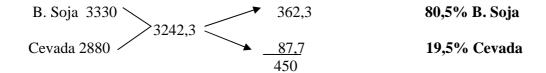
 $PB = 79,5 \text{ g}$


3- Cálculo da energia e da proteína a fornecer pelas restantes matérias-primas:

$$X = 125,6 \text{ g PB}$$

4- Utilização da técnica dos quadrados múltiplos para acertar simultaneamente a energia e proteína.

Como temos apenas 3 alimentos a cevada entrará nas duas pré-misturas. A incorporação de cevada resultará da soma da incorporação de cevada na pré-mistura 1 e na pré-mistura 2.


a)- Pré-mistura I

PB da Pré-mistura 1= 95,3 g

.....

b)- Pré-mistura II

PB da Pré-mistura 2= 358,6 g

c) Mistura Final

5.- Cálculo da incorporação de alimentos

6.-Verificação final:

$$\mathbf{PB} = (0.08 \times 150) + (0.05 \times 650) + (0.07 \times 500) + (0.268 \times 105) + (0.458 \times 90) + (0.074 \times 420) \\ = \mathbf{179.94}$$

$$\mathbf{ED} = (0.08 \times 2600) + (0.05 \times 3540) + (0.07 \times 3160) + (0.268 \times 2880) + (0.458 \times 3440) + (0.074 \times 3330) \\ = \mathbf{3199.98}$$

RESPOSTA:

A mistura deverá ser constituída por 45,8% de Milho, 26,8% de Cevada, 13,0% de Bagaço de soja 44, 8,0% de Sêmea de Trigo, 5,0% de Bagaço de soja 50 e 5,0% de Farinha de Peixe.

10. <u>TÉCNICA DA SUBSTITUIÇÃO</u>

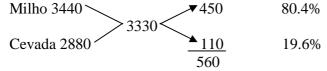
A técnica da substituição utiliza-se quando já temos uma fórmula e queremos corrigir um teor (energia ou proteína).

A técnica da substituição utiliza-se para alterar o teor em energia (ou em proteína) de uma mistura sem alterar o teor em proteína (ou em energia).

Esta técnica pode ser utilizada em conjugação com a técnica do Quadrado de Pearson para acerto de um nutriente (energia ou proteína).

EXERCICIO 13: Na formulação de um alimento composto com 3 200 Kcal de ED e 150 g de PB obteve-se a seguinte fórmula:

Matéria-prima	% Incorporação
Sêmea Trigo	6,0
F.Peixe	4,0
Milho	49,4
Cevada	32,2
B. Soja 44	6,4
B. Soja 50	2,0


Utilizando a técnica da substituição reformule a mistura de forma a obter uma **nova** mistura com **140 g PB /kg** sem alterar o teor energético.

Composição das matérias-primas:

	ED (Kcal/kg)	PB (g/Kg)
Milho	3440	90
Cevada	2880	105
Semea	2600	150
B. Soja 44	3330	420
B. Soja 50	3160	500
F.Peixe	3540	650

1ª RESOLUÇÃO: Para diminuir o teor em proteína da mistura sem alterar o teor energético podemos diminuir a incorporação de um alimento proteico e aumentar a incorporação de uma mistura de alimentos que tenha um teor proteico inferior e o mesmo teor energético. A % que retiramos ao alimento proteico é igual à % que aumentamos na mistura de alimentos.

1- Vamos retirar uma certa quantidade de Bagaço de Soja 44 e substituí-la por uma mistura de milho + cevada

PB da mistura de Milho e Cevada= 93 g/kg

2- Cálculo do factor de substituição:

Ao retirar 100 % B.Soja 44 ----- retira-se 420 g de PB Ao introduzir 100% M+ C ----- acrescenta-se 93 g de PB

Com a substituição a 100% retira-se 327 g de PB

3- Cálculo da quantidade a substituir:

3,1% é a quantidade que se disminuí à incorporação inicial de Bagaço de soja

3,1% é a quantidade que se aumenta à incorporação inicial de Milho+Cevada. A incorporação de Milho e de Cevada é função das respectivas percentagens destas matérias-primas na mistura efectuada:

Milho =
$$+2.5\%$$
 (3.1 x 0.804)
Cevada = $+0.6\%$ (3.1 - 2.5)

4 – Nova Fórmula:

Matéria-prima	% Incorporação
Sêmea de Trigo	6,0
F.Peixe	4,0
Milho	51,9
Cevada	32,8
B.Soja 44	3,3
B. Soja 50	2,0

5 - Verificação final:

$$\mathbf{PB} = (0.06 \times 150) + (0.04 \times 650) + (0.02 \times 500) + (0.328 \times 105) + (0.519 \times 90) + (0.033 \times 420) \\ = \mathbf{140.0}$$

$$\mathbf{ED} = (0.06x2600) + (0.04x3540) + (0.02x3160) + (0.328x2880) + (0.519x3440) + (0.033x3330) \\ = \mathbf{3200.3}$$

RESPOSTA:

A mistura deverá ser constituída por 51,9% de Milho, 32,8% de Cevada, 3,3% de Bagaço de soja 44, 6,0% de Sêmea de Trigo, 2,0% de Bagaço de soja 50 e 4,0% de Farinha de Peixe.

2ª RESOLUÇÃO: Para diminuir o teor em proteína da mistura sem alterar o teor energético podemos aumentar a incorporação de um alimento não proteico e diminuir a incorporação de uma mistura de alimentos proteicos que tenha um teor proteico superior e o mesmo teor energético. A % que adicionamos ao alimento não proteico é igual à % que aumentamos na mistura de alimentos proteicos.

1- Vamos aumentar uma certa quantidade de Milho e substituí-la por uma mistura de Bagaço de soja 44 + Farinha de peixe

2- Cálculo do factor de substituição:

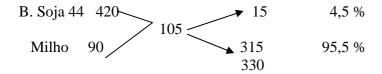
3- Cálculo da quantidade a substituir:

4 – Nova fórmula:

ALIMENTO	%
Semea	6,0
F.Peixe	2,8
Milho	54,1
Cevada	32,2
B.Soja 44	2,3
B. Soja 50	2,0

PB = 140.1 g; ED = 3200.5 Kcal

RESPOSTA:


A mistura deverá ser constituída por 54,1% de Milho, 32,2% de Cevada, 2,3% de Bagaço de soja 44, 2,8% de Farinha de Peixe, 6,0% de Sêmea de Trigo e 2,0% de Bagaço de soja 50.

EXERCÍCIO 14: Utilizando a técnica da substituição reformule a mistura anterior de forma a obter-se uma nova mistura com 3300 Kcal por Kg sem alterar o teor proteico.

RESOLUÇÃO:

1.- Escolher os alimentos a substituir

Vamos retirar Cevada e introduzir uma mistura de Milho + B.Soja 44.

ED= 3435 Kcal /kg

2.- Cálculo do factor de substituição:

Factor de substituição = + 555 Kcal

3.- Cálculo das quantidades a substituir :

4.- Cálculo da nova formula:

5.- Verificação

 $ED = (3440 \times 0,688) + (2880 \times 0,142) + (3330 \times 0,062) + (2600 \times 0,06) + (3160 \times 0,02) + (3540 \times 0,028)$ = 3300,5 Keal ED

11. <u>ACERTO DOS TEORES EM ENERGIA, PROTEÍNA, AMINOÁCIDOS, MINERAIS E VITAMINAS</u>

EXERCÍCIO 15: Formular um alimento composto para frangos com 3100 Kcal EM, 19,5% PB, 0,9% Lisina, 0,41% Metionina, 0,87% Ca e 0,61% P.

Composição das matérias-primas

Alimento	E.M.	P.B.	Lis.	Met.	Ca	P
	(Kcal/Kg)	(%)	(%)	(%)	(%)	(%)
Trigo	3 210	11,3	0,32	0,19	0,06	0,33
Milho	3 315	9,0	0,25	0,19	0,01	0,27
Sêmea de Trigo	2 405	15,6	0,65	0,25	0,15	0,93
Bagaço de Soja	3 135	42,5	2,70	0,59	0,30	0,62
Óleo de Soja	8 500	-	-	-	-	-
Mandioca	3 010	2,6	0,09	0,03	0,30	0,19
Farinha de Peixe	3 225	64,6	5,04	1,81	6,30	3,50
L-Lisina			79,0			
DL-Metionina				99,0		
Fosfato Bicálcico					28,0	21,0
Carbonato de cálcio					38,0	
Premix Frangos						

RESOLUÇÃO:

- 1. Consultar tabelas para conhecer características do alimento composto a formular e das matérias-primas disponíveis
- 2. Em primeiro lugar deve-se reservar uma percentagem para acertar posteriormente o teor em aminoácidos essenciais (Lisina, Metionina), minerais (Ca e P) e para incorporar Premix (Vitaminas e minerais). Esta percentagem será maior qunto maior forem os teores em Ca e P pretendidos na mistura e quanto menor for o teor destes nutrientes nas matérias-primas disponíveis para formular.
- 3. Em segundo lugar deve-se acertar o teor em energia e em proteína. Para este acerto deve-se escolher uma técnica de formulação (acerto simultâneo ou acerto de um teor e técnica da substituição para acertar o outro) e seguir a sequência de cálculos inerente à técnica. Depois de se ter acertado a energia e proteína deve-se calcular os teores em aminoácidos, cálcio e fósforo que a mistura fornece e corrigir as eventuais deficiências utilizando matérias-primas específicas.
- 4. Acertar os teores em aminoácidos essenciais, utilizando aminoácidos sintéticoa
- 5. Acertar o teor em P utilizando o Fosfato bicálcico.
- 6. Contabilizar o Ca fornecido pela incorporação de Fosfato bicálcico e acertar o teor em Ca utilizando Carbonato de Cálcio.

Técnicas de formulação: Exercícios Resolvidos

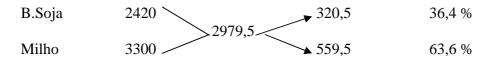
7. Calcular % de Premix (complexo mineral-vitamínico), que resulta da diferença entre a % fixada inicialmente para acertos e as % de incorporação de aminoácidos sintéticos (L-Lisina e DL-Metionina), de Fosfato Bicálcico e de Carbonato de Cálcio.

OPÇÃO DE TRABALHO A:

Vamos reservar 2% para acertar o teor em aditivos (Ca, P, Lisina, etc.) e fixar a incorporação de 3 matérias-primas de forma a utilizar **4 matérias-primas para acertar simultaneamente o teor energético e proteico da mistura.**

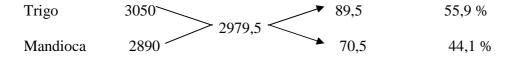
Aditivos 2% Óleo de Soja 4% Sêmea de Trigo 5% Farinha de Peixe 4%

1.- Cálculo da EM e PB fornecida pelas matérias-primas fixadas

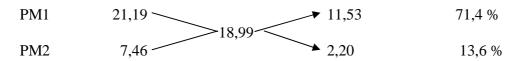

EM = 567.4 Kcal

PB = 3.36 %

2.- Cálculo da EM e PB a fornecer pelos restantes alimentos


2532,6 Kcal	em 85%	2979,5 Kcal em 100%
16.14 % PB	em 85%	18.99 %PB em 100%

3.- Pré-mistura 1


PB=21,19 %

4.- Pré-mistura 2

PB=7,46%

5.- Mistura Final

6. Composição da mistura

2.0 % Aditivos

4,0 % Óleo de Soja

5,0 % Sêmea de Trigo

4,0 % Farinha de Peixe

45,4 % Milho

26,0 % Bagaço de Soja

7,6 % Trigo

6,0 % Mandioca

7.- Cálculo dos teores em Ca, P, Lisina e Metionina da mistura

Alimento	%	Kcal E.M.	%P.B.	%Lis.	%Met.	%Ca	%P
Trigo	7,6	231,8	0,859	0,0243	0,0144	0,0046	0,0251
Milho	45,4	1498,2	4,086	0,1135	0,0863	0,0045	0,1226
Sêmea	5,0	73,0	0,780	0,0325	0,0125	0,0075	0,0475
B. Soja	26,0	629,2	11,050	0,7020	0,1534	0,0780	0,1612
Óleo	4,0	370,0					
Mandioca	6,0	173,4	0,156	0,0054	0,0036	0,0018	0,0144
F. Peixe	4,0	124,4	2,584	0,2016	0,0905	0,3150	0,1750
Aditivos	2,00						
TOTAL	100	3100,0	19,515	1,08	0,36	0,41	0,55
Necessidades		3100	19,5	0,9	0,40	0,87	0,62
Deficiência		-	-	-	0,04	0,46	0,07

Como o pretendido acertamos o teor em Energia Metabolizável (3100 Kcal/Kg), em Proteína Bruta (19,5%). A mistura fornece 1,08% de lisina, valor superior ao pretendido (0,9), pelo que não é necessário utilizar a L-Lisina.

A mistura fornece 0,36% de metionina, 0,55% de fósforo e 0,41% de cálcio, quando o pretendido é 0,40% de metionina, 0,62% de fósforo e 0,87% de cálcio, pelo que é necessário acertar estes nutrientes, recorrendo às matérias-primas específicas.

8.- Cálculo das deficiências em Metionina, Ca e P

Ca=0,46 %

P=0,07 %

Met.=0,04 %

9.- Acerto do teor em aminoácidos

A mistura fornece lisina suficiente, mas é deficiente em metionina, pelo que teremos de utilizar metionina sintética.

X= 0.04 % **DL-Metionina**

12. Acerto do teor em P e Ca

Quando existe uma deficiência em P e Ca pode-se utilizar o fosfato bicálcico para acertar o teor em P e adicionar algum Ca à mistura, de forma a utilizar-se posteriormente o carbonato de cálcio para acertar totalmente o teor em Ca.

a)- Acerto do teor em P

X=0.33 % de **fosfato**

b) Acerto do teor em Ca

Cálculo do Ca fornecido pelo fosfato

$$X = 0.09 \% Ca$$

Cálculo da deficiência de Ca

$$0.46 - 0.09 = 0.37 \%$$
 Ca

Cálculo da quantidade de carbonato

X=0,97 % Carbonato de cálcio

11.- Incorporação de minerais e vitaminas

A diferença entre a % fixada inicialmente para acertos e as % de incorporação de DL-Metionina), de Fosfato Bicálcico e de Carbonato de Cálcio será a % para incorporar minerais, vitaminas e aditivos (**Premix**)

12.- Fórmula final e verificação

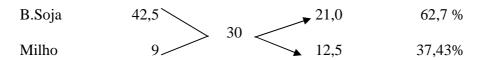
Alimento	%	Kcal E.M.	% P.B.	%Lis.	%Met.	%Ca	%P
Trigo	7,60	231,8	0,859	0,0243	0,0144	0,0046	0,0251
Milho	45,40	1498,2	4,086	0,1135	0,0863	0,0045	0,1226
Sêmea	5,00	73,0	0,780	0,0325	0,0125	0,0075	0,0475
B. Soja	26,00	629,2	11,050	0,7020	0,1534	0,0780	0,1612
Óleo	4,00	370,0					
Mandioca	6,00	173,4	0,156	0,0054	0,0036	0,0018	0,0144
F. Peixe	4,00	124,4	2,584	0,2016	0,0905	0,3150	0,1750
DL- Metionina	0,04				0,040		
Fosfato	0,33					0,07	0,09
Carbonato	0,97					0,370	
Premix	0,66				•		
TOTAL	100	3102,7	19,51	1,06	0,40	0,87	0,62
Necessidades		3100	19,5	0,9	0,40	0,87	0,62

OPÇÃO DE TRABALHO B:

Vamos reservar 2% para acertar o teor em aditivos (Ca, P, Lisina, etc.) e fixar a incorporação de 4 matérias-primas de forma a utilizar **3 alimentos para acertar o teor proteico da mistura e posteriormente acertar o teor energético através da técnica de substituição.**

Aditivos 2% Mandioca 10% Óleo 4% Sêmea 5%

F.Peixe 4%


1.- Cálculo da EM e PB fornecida pelos alimentos fixados

EM= 856,4 Kcal PB=3,62 %

2.- Cálculo da EM e PB a fornecer pelos restantes alimentos

2243,6 Kcal em 75% 2991,5 Kcal em 100% 15,88 % PB em 75% 21,17 % PB em 100%

3.- Pré-mistura 1

4.- Mistura Final

PM1 30 9,87 39,6 %
Trigo 11,3 8,83 35,4 %

5. Composição da mistura

2,0 % Aditivos

4,0 % Óleo

5,0 % Sêmea

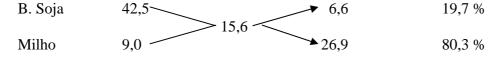
4.0 % F. Peixe

14.8 % Milho

24,8 % B. Soja

35,4 % Trigo

10,0 % Mandioca


6. Teor proteico e energético da mistura

P.B. = 19,49 % Objectivo = 19,5 %

E.M. = 3024,7 Objectivo = 3100 FALTA = 75,3 Kcal

7. Técnica da substituição para acertar o teor energético da mistura

OPÇÃO : Vamos diminuir a incorporação de Sêmea e aumentar a incorporação de Milho e Bagaço de Soja

E.M. = 3126,6 Kcal

Uma substituição a 100% de Sêmea por Mistura Milho + B. Soja implica um aumento de 1666,6 Kcal (3126,6 -1460)

Teremos que diminuir a incorporação de Sêmea em 4,5 % e aumentar a incorporação de Milho em 3,6% e a de B. Soja em 0,9%.

8. Composição final da mistura

2,0 % Aditivos

4.0 % Óleo

0.5 % Sêmea

4,0 % F. Peixe

18,4 % Milho

25,7 % B. Soja

35,4 % Trigo

10,0 % Mandioca

9.- Cálculo dos teores em Ca, P, Lisina e Metionina da mistura

Alimento	%	E.M.	P.B.	Lis.	Met.	Ca	P.
Trigo	35,4	1079,7	4,00	0,1133	0,0673	0,0212	0,1168
Milho	18,4	607,2	1,66	0,0460	0,0349	0,0018	0,0497
Sêmea	0,5	7,3	0,08	0,0032	0,0013	0,0008	0,0046
B. Soja	25,7	621,9	10,92	0,6939	0,1516	0,0771	0,1593
Óleo	4,0	370,0					
Mandioca	10,0	289,0	0,26	0,0090	0,0060	0,0030	0,0190
F. Peixe	4,0	124,4	2,58	0,2016	0,0905	0,3150	0,1750
Aditivos	2,00						
TOTAL	100	3099,5	19,5	1,07	0,35	0,42	0,52
Necessidades		3100	19,5	0,9	0,40	0,87	0,62
Deficiência		-	-	-	0,05	0,45	0,10

Como o pretendido acertamos o teor em Energia Metabolizável (3100 Kcal/Kg), em Proteína Bruta (19,5%). A mistura fornece 1,07% de lisina, valor superior ao pretendido (0,9), pelo que não é necessário utilizar a L-Lisina.

10.- Cálculo das deficiências em Metionina, Ca e P.

Ca=0,45 %

P=0.10 %

Met.=0,05 %

11. Acerto do teor em aminoácidos

A mistura fornece lisina suficiente, mas é deficiente em metionina, pelo que teremos de utilizar metionina sintética

X=0,05 % DL-Metionina

.....

12.- Acerto do teor em P e Ca

a)- Acerto do teor em P

X = 0.48 % de fosfato

b) Acerto do teor em Ca

Cálculo do Ca fornecido pelo fosfato

X = 0.13 % Ca

Cálculo da deficiência de Ca

$$0.45 - 0.13 = 0.32 \%$$
 Ca

Cálculo da quantidade de carbonato

X= 0,84 % Carbonato de cálcio

13.- Incorporação de minerais e vitaminas

Como reservamos 2% para aditivos resta-nos 0,63 % para incorporar os restantes minerais e as vitaminas (**Premix**)

14.- Fórmula final e verificação

Alimento	%	Kcal E.M.	%P.B.	%Lis.	%Met	%Ca	%P
Trigo	35,40	1079,7	4,00	0,1133	0,0673	0,0212	0,1168
Milho	18,40	607,2	1,66	0,0460	0,0349	0,0018	0,0497
Sêmea	0,50	7,3	0,08	0,0032	0,0013	0,0008	0,0046
B. Soja	25,70	621,9	10,92	0,6939	0,1516	0,0771	0,1593
Óleo	4,00	370,0					
Mandioca	10,00	289,0	0,26	0,0090	0,0060	0,0030	0,0190
F. Peixe	4,00	124,4	2,58	0,2016	0,0905	0,3150	0,1750
DL- Metionina	0,05				0,0500		
Fosfato	0,48					0,1300	0,1000
Carbonato	0,84					0,3200	
Premix	0,63						
TOTAL	100	3102,7	19,51	1,06	0,40	0,87	0,62
Necessidades		3100	19,5	0,9	0,40	0,87	0,62

UNIVERSIDADE DE ÉVORA

BIBLIOGRAFIA CONSULTADA:

Costa, B.M.; Costa., M.M.C. (s/d). Formulação de rações utilizando calculadoras.Disponível em: http://www.agronline.com.br/agrociencia/pdf/public_46.pdf

Dias, V.H.P. Médodos manuais para formulação de rações. Instituto Federal de Educação, Ciência e Tecnologia.Disponível em: http://docente.ifrn.edu.br/victordias/disciplinas/metodos-manuais-de-balanceamento-de-racao

Dryden, G.Mcol.(2008). Animal Nutrition Science. Cap.13: Ration Formulation. British Library, London, UK.

Flanders, F.B.; Gillespie, J.R. (2004). Modern Livestock and Poultry Production. Chapter 8. Balancing Rations. Cengage Learning.

Sakomura, N.K. e Rostagno.H.S. (2007). Métodos de Pesquisa em Nutrição de Monogástricos.Capítulo 7: Métodos para formular rações e avaliar alimentos. Fundação de Apoio a Pesquisa, Ensino e Extensão. Jaboticabal, SP.

Flanders, F.B.; Gillespie, J.R. (2004). Modern Livestock and Poultry Production. Chapter 8. Balancing Rations. Cengage Learning.

Tasay. E.S. (2012). Métodos de formulación de raciones. Disponível em: https://eliasnutri.files.wordpress.com/2012/04/clase-b-taller-2012-i-modo-de-compatibilidad.pdf

University of Minnesota. (s/d). Diet Formulation. Lesson 5. Disponível em: http://www.extension.umn.edu/agriculture/beef/components/homestudy/nlesson5.pdf